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Abstract 

Analytic solutions to the Laplace equation in annulus and disk are combined with trans

mission conditions to find analytic solutions for multiple concentric circular interface trans

mission problems. Coefficients are .found rapidly by solving 2 x 2 linear systems for each 

interface. The special case of two very close interfaces is used to quantitatively test crack 

jump conditions which result from approximately combining transmission conditions at the 

two interfaces into conditions at a single interface. 



1 Introduction 

Transmission problems arise in settings with composite materials. One equation models the 

behavior of a physical quantity (such as displacement, flow, etc.) but at least on of the 

coefficients is discontinuous across the interface between different materials. 

In the inverse transmission problem, the location of the interface(s) is unknown and 

should be determined. To study the inverse problem ([1, 2, 3]), good knowledge and good 

solvers for the forward problem are needed. The efficiently computable solutions which are 

found here are useful as test cases for forward solvers (especially those that can deal with 

discontinuities) and can also be used to quantitatively evaluate the crack jump conditions 

found in [4, 5]. 

2 Analytic solutions for layered conductivities in a disk 

We are interested in analytic solutions to 

\7 . ({3\7u) = 0 

au 
a~ = 9 

in D, 

on aD with r 9 = O. Jan 

(1) 

(2) 

Here {3 is positive piecewise constant witll k concentric circular interfaces inside the unit 

disk D and ~ denotes the outward normal directions on the boundary and on interfaces. 

The existence of a unique solution to this problem follows from the regularity of {3 and 

since {3 is bounded from below by a positive constant. Such solutions are useful to test 

our approximations for crack-like inclusions from [4, 5] and also our implementation of the 

Explicit Jump Immersed Interface Method from [4]. The procedure extends the idea in [3] in 

matching coefficients for the nth Fourier coefficient gn and writing the solution for Neumann 

boundary conditions with Fourier coefficients l , to multiple interfaces. 

2.1 General solution 

Consider k interfaces at 0 < SI < S2 < ... < Sk < Sk+1 = 1 between constant conductivities 

{30 in 0 0 = {r < sd, {31 in 0 1 = {SI < r < S2}, ... , {3k-l in Ok-l = {Sk-l < r < Sk} and2 

{3k = 1 in Ok = {Sk < r < 1}. Define the contrasts Pk = {3k-t!l, Pk-l = {3k-2/{3k-l, ... , 

PI = {30/ {31. 

lFor computations with real numbers, we use cosine expansions; due to J 9 = 0 we have 90 = O. 
2For normalization purposes we define the conductivity closest to the boundary as 1. 
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aD 

Figure 1: The unit disk, divided into four concentric layers by three interfaces of radii 81, 82 

and 83. 

We make the following ansatz for the solution: u(r,O) = u(i)(r,O) in ni(i = 0,1, ... k) 

and 

au(k) au 
~(1, 0) = L·cos(nO)gn = a~ on aD, 

nEN 

(3) 

u(i)(r,O) = L cos(nO) (a~)rn + b~)r-n) in ni , i = 1,2, ... ,k, (4) 
nEN 

u(O)(r,O) = L cos(nO)inrn (5) 
nEN 

Continuity of u and (3u€ across the interfaces and the boundary condition yield the 

following 2k + 1 equations ((8) and (9) for i = 2,3, ... ,k) in gn, in and a~), b~) for i = 
1,2, ... ,k 

n8n- 1a(i) _ n8-:-n- 1b(i) = np' (8",:-l a(i-l) _ 8-:-n- 1b(i-l)) tnt n tt n tn' 

na~k) - nb~) = gn' 

(6) 

(7) 

(8) 

(9) 

(10) 

We observe that gn and a~), b~) for i . 1,2, ... ,k are linear in in and that for given In 

(for simplicity we use In = 1), the system decouples into k (2 x 2) systelps with solutions 

l){I) _ 1 - PI 2n 
n - 2 8 1 , 

-(1) _ 1 + PI 
an - 2 ' 
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for i = 2,3, ... , k 

and finally 

(13) 

(14) 

(15) 

For the case of a single interface (see [3]) and two interfaces (see below, §2.2) we have proved 

directly that 9n =I- 0 as long as P > 0, which by the next Lemma guarantees the unique 

solution to the original problem. The direct proof for the general case has evaded us so far, 

but we know that always 9n =I- 0 because a unique solution to for (1) and (2) is known to 

exist and has to satisfy our ansatz, (3)-(5). 

By linearity in in, we have the following result. 

Lemma 1 The solution to the original system (6)-(10) with given gn can be obtained as 

(i=I,2, ... ,k) 

in = gn/9n, 
a(i) = a,(i)/g-n n n, 
b~) = b~) /9n. 

(16) 

(17) 

(18) 

2.2 Exact solution for a problem with a crack-like double interface 

The above solution for the case of two very close interfaces can be viewed as an analytic 

solution for a crack problem, that is a problem posed in a region including a thin layer of very 

different material properties. We will use it to probe both analytically and numerically the 

jump conditions for cracks derived in [5]. Denote the two interface locations by s_ = S - E 

and S+ = s + E, and let (30 = 1, (31 = P and by convention, (32 = 1. Then, in the previous 

notation, PI = p-1 and P2 = p. As a special case of Lemma 1, we find the following Corollary. 
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Corollary 2 The solution for a crack-like double interface has coefficients 

f - 4n-1gn 

n - ((1 + p-l)((l- p)stn + 1 + p) - (1- p-1)s=-n(1 + p + (1- p)S+2n)) ' 

(1) _ 1 + p-1 f 
an - 2· n, 

b(l) = 1 - p-1 2nf 
n 2 s_ n, 

a(2) = 1 + p a(1) + 1 - P s-2nb(1) 
n 2 n 2 + n' 

b(2) = 1 - P s2na(1) + 1 + Pb(l) 
n 2 +n 2 n' 

where s_ = s - E and s+ = s + E. 

(19) 

(20) 

(21) 

(22) 

(23) 

Proof. As long as we didn't show an =I 0 in general, it remains to be shown that fn exists. 

We check that thedenominator in (19) is zero if and only if p is one of 

-1 + s:.ns+2n + J -4 s:.ns+2n + (stn)2 + 2 stns:.n + (s=-n)2 

- stn + 1 - s:'n + s:.ns+2n 

-1 + s:.ns+2n - J -4 s:.ns+2n + (stn)2 + 2 stns:'n + (s=-n)2 

- stn + 1 - s=-n + 2 s=-ns+n 

Observing that 1 > s+ > s_ > 0 it is easily seen that the denominator in these expressions 

is always positive, and that the argument of the root is always negative. This shows that In 

can be computed by (19) for any real p, and in particular positive p that we are considering. 

o 

2.3 Approximation via a single interface 

When representing the crack as a single interface, we will compare the approximation on 

the outside with U(2) and on the inside with u(O). So it is natural to consider the function u 
obtain.ed by using the coefficients of u(O) on {r < s}, and those of U(2) on {s < r < I}. For 

this function, seen for s = 0.25 and E = 0.01 in a conductive case (a) and a resistive case (b) 

in Figure 2, expansions in E yield the following jumps: 

[ul = (~af~2) + ~ bf~2) s-2n - ~) '[/'sn-1 In cos( nO), = (21 - P E + O( E2)) uZ, 
nn nn n V' p 

=Ue 
(24) 

[ud ~ (~:) - ~ s~'n - 1) ;<rl f:~os(nBt ~ (2nP ~ 1 d 0(£')) u( (25) 

=u{ 
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0.5 0.5 

·0.5 -0.5 -0.5 -0.5 

a) b) 

Figure 2: Analytic solutions for g = >. cos (), with >. chosen so that u( x, y) = x on an, 
according to §2.3 in the a) conductive (p = 100) and b) resistive (p = 0.01) case. In both 

cases s = 0.25 and € = 0.01. 

This analytically known comparison function u and its jumps led to the modifications of the 

jump conditions from [4] to the jump conditions in [5]. The jump conditions in [4] agreed to 

O(€) with (24) (error -wn and (25) (error -nEB-I), while those in [5] agree to 0(€2). This 

improvement is most noticable for small B, or more generally, for large curvature. Note that 

(25) implies that superposition for [u~] fails, so from this point on the analysis is only valid 

in each Fourier mode. 

3 Analytic solutions for crack-approximations 

In, [5], we derived jump conditions describing the behavior of the solution to an elliptic equa

tion in the presence of cracks. For the simple geometry considered in the previous sections 

and for boundary data consisting of a single Fourier mode, we can find analytic solutions 

satisfying these jump conditions, and compare them with the "exact jump conditions" for u 
derived above. 

3.1 Conductive Crack 

In Theorem 1 b) in [5] (for p» 1), the jumps are approximated as 

[u] = 0, 

. [u~] = -2€(p - l)(u~)'. 

5 
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The approximation (26) for (24) is O(E) since for large P we have 2(p-1 - l)E ~ -2E. Recall 

that the arclength derivative along the interface (u;)' can also be expressed as (u;)' = 

u;, - O'u~ = -u~~ - O'u~ where 0' is the curvature of the crack, and equal to II s for a 

circular crack of mean radius s. So (27) becomes 

Making the ansatz that for r < s the solution u has the form f n cos( nO)rn, we find that 

u~~ = (n - 1) I s u~, and using this and that for the circle 0' = 1 Is we arrive at 

, (1 n -1) [u~] = 2E(p - 1) -; + -s- u{. (28) 

Hence (27) matches (25) exactly up to 0(E2). This is important because the 0(E2) term 

contains the large factor p. Defining 

p = 2n (p - 1) E + 1, 
s 

(28) is just the jump condition for a single interface case of the general solution considered 

in §2.1, with Po = P and Sl = s. We write the analytic solution for the conductive crack 

approximation as the solution of the single interface problem with "effective conductivity" 

Po = P and using Lemma 1. 

Corollary 3 The conductive crack approximation has the following solution 

2gn 

fn = n(1 + p - (1 _ p)s2n) ' 

an = (1 + p)fn/2, 

bn = (1 - p)s2n fn/ 2. 

Proof. Algebra shows that fn exists except when p = (s2n - 1)/(s2n + 1) < O. But the 

assumption that the crack is conductive, i.e. p ~ 1, which together with 0 < s < 1 yields 

p> O. o 

Figure 3 a) shows the solution accoring to Corollary 3 with the same Dirichlet data, 

s = 0.25 and E = 0.01 as in Figure 2 a). Figure 3 b) shows the difference between the two. 

The magnitude of the e~ror corresponds quite well to the fact that we do not model the 

discontinuity of the solution. 
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Figure 3: a) Analytic solution according to Corollary 3 and b) error when comparing with 

the analytic solution in Figure 2 a). 

3.2 Resistive Crack 

In Theorem 1 a) in [5] (for p « 1), the jumps are approximated as 

[u] = 2E (p-l - 1) uf:, 

[u~] = o. 
(29) 

(30) 

The approximation (29) matches [u] in (24) exactly up to O(E2); the approximation (30) 

for (24) is O(E). This is true because for small p we have 2n(p - l)S-lE ~ -2ns-1c. This 

example implies that s cannot be too small (i.e. the curvature of the crack should not be too 

small) ang n. cannot be too large (i.e. the boundary values have to be sufficiently regular) 

for the derivations in [5] to be valid. 

As in §2.1 we find that now the following equations hold 

Now we combine this with the boundary condition (10). 

Lemma 4 The resistive crack approximation has the following solution 

f - . gn 
n - n((l- s2n)E (p-l - 1) + 1)' 

(31) 

an = (E (p-l - 1) + l)fn, 

bn = E (p-l - 1) s2n fn. 
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Figure 4: a) Analytic solution according to Lemma 4 and b) error when comparing with the 

analytic solution in Figure 2 b). 

Proof. Again, we have to prove that in exists. But the assumption that the crack is 

resistivetive, p :::; 1, shows that the denominator in (31) is positive for any E > 0 and 

0<8<1. 0 

Figure 4 a) shows the solution accoring to Lemma 4 with the same Dirichlet data, 8 = 0.25 

and E = 0.01 as in Figure 2 b). Figure 3 b) shows the difference between the two. The 

larger error of this approximation compared with the conductive case is due to the larger 

discontinuity in the solution. 

4 Conclusion 

We have found analytic solutions to certain multi-interface transmission problems. The 

special case of solutions for two very close interfaces was used to quantitatively test the 

crack jump conditions from [5]. The analysis here illustrates that the use of these conditions 

for conductive cracks shouls pose no problem, while for resistive cracks the quality of the 

approximation was much poorer than for the resistive cracks. Also, restrictions on the 

curvature of the crack and regularity of the solution in order to apply the crack conditions 

need to be carefully specified. 
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