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Abstract

Mapping the Kinematic Structure of the Milky Way Halo with the HALO7D

Survey

by

Emily Clifford Cunningham

The structure and kinematics of the Milky Way (MW) stellar halo provide a unique

archaeological record of the MW’s formation, past evolution, and accretion history.

We present studies of the kinematic structure of the MW stellar halo with the Halo

Assembly in Lambda-CDM: Observations in 7 Dimensions (HALO7D) survey. The

HALO7D dataset consists of Keck II/DEIMOS spectroscopy and Hubble Space Tele-

scope-measured proper motions of Milky Way (MW) halo main-sequence turnoff stars

in the CANDELS fields. We first present the HALO7D pilot study, in which we use 13

distant main-sequence MW halo stars make the first estimate of the velocity anisotropy

β using 3D kinematic information outside of the solar neighborhood. Next, we present

the spectroscopic component of the full HALO7D survey, and discuss target selection,

observing strategy, and survey properties. We present a new method of measuring line-

of-sight (LOS) velocities by combining multiple spectroscopic observations of a given

star, utilizing Bayesian hierarchical modeling. We estimate the LOS velocity disper-

sions in the four fields and find that they are consistent with one another. We perform

mock HALO7D surveys using the synthetic survey software Galaxia to “observe” the

Bullock & Johnston (2005) accreted stellar halos. Based on these simulated datasets,
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the consistent LOS velocity distributions across the four HALO7D fields indicates that

the HALO7D sample is dominated by stars from the same massive (or few relatively

massive) accretion event(s). Finally, we present the proper motions for the HALO7D

sample, and use the 3D kinematic measurements to estimate β. We find that β varies

from field to field, which suggests that the halo is not phase mixed at 〈r〉 = 23 kpc.

We explore the β variation across the skies of two stellar halos from the Latte suite of

FIRE-2 simulations, finding that both simulated galaxies show β variation over a similar

range to the variation observed across the four HALO7D fields. The accretion histories

of the two simulated galaxies result in different β variation patterns; spatially mapping

β is thus a way forward in characterizing the accretion history of the Galaxy.
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Chapter 1

Introduction

The Milky Way (MW) galaxy is a spiral galaxy that is embedded in halo of

dark matter. According to the Lambda Cold Dark Matter (ΛCDM) paradigm, the MW

assembled its dark matter halo over its evolution by consuming smaller dark matter

halos. Some of these smaller dark matter halos contain smaller galaxies, known as

dwarf galaxies. The remnants from these consumed galaxies are strewn throughout the

MW’s dark matter halo in a diffuse envelope known as the stellar halo. Because the

orbital timescales of these halo stars are so long compared to the age of the Galaxy, the

velocities of these stars retain a link to their initial conditions. Therefore, by mapping

the positions and velocities of halo stars (i.e., the phase-space structure of the halo), we

can learn about the MW’s formation and evolution.

Our position within the MW offers provides us with the unique opportunity

to study a galaxy star by star from within. However, the MW halo is very difficult to

observe, because it is so diffuse and because of our position within the Galaxy. Until
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recently, our knowledge of the structure of the MW’s stellar halo has been hindered by

observational constraints. Our knowledge of the motions of halo stars has been limited to

one component (the line-of-sight, LOS, velocity) of only bright, rare tracer populations

(e.g., red giant branch [RGB] or blue horizontal branch [BHB] stars). For the first time,

we finally have knowledge of the tangential motion of these stars, thanks to the second

data release from the Gaia mission (Gaia DR2; Gaia Collaboration et al. 2018b). While

evolved stars make excellent tracers due to their bright apparent magnitudes, there are

disadvantages to working exclusively with giants. First of all, giants are rare: the vast

majority of stars in the stellar halo are main sequence stars. Secondly, different types

of evolved stars do not necessarily trace the same age and metallicity populations in

the halo. For example, RR Lyrae are found more commonly in metal-poor populations,

whereas M-giants are found in metal-rich populations (e.g., Price-Whelan et al. 2015).

On the other hand, all stellar populations have MS stars. With its limiting magnitude of

G ∼ 20, Gaia will not provide proper motions (PMs) for MS stars farther than D ∼ 15

kpc in the halo.

We designed the Halo Assembly in Lambda-CDM: Observations in 7 Dimen-

sions (HALO7D) project to address these limitations. The HALO7D dataset consists

of Keck II/DEIMOS spectroscopy and Hubble Space Telescope (HST ) measured PMs

measured of distant (D ∼ 10–100 kpc) MW main-sequence turnoff (MSTO) stars. HST

is currently the only instrument capable of measuring PMs of distant (D > 15 kpc)

halo MS stars, thanks to its stability, high spatial resolution, and well studied geomet-

ric distortion solutions and point-spread functions (PSFs; e.g., Anderson & King 2006).
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Because of our faint limiting magnitude v < 24.5, this dataset is unique even in the era

of Gaia.

1.1 Outline

This dissertation is organized as follows. In Chapter 2, we present the HALO7D

pilot study, in which we present the first sample of stars to have measured 3D kinematics

outside of the solar neighborhood. We use this sample of 13 stars, located along the line

of sight towards M31, to estimate the halo velocity anisotropy β. We find β along this

line of sight to be consistent with isotropy, lower than solar neighborhood β measure-

ments by 2σ (βSN ∼ 0.5− 0.7). The potential decrease in β with Galactocentric radius

is inconsistent with theoretical predictions, though consistent with recent observational

studies, and may indicate the presence of large, shell-type structure (or structures) at

r ∼ 25 kpc.

In Chapter 3, we present the spectroscopic component of HALO7D. We discuss

target selection, observations, and survey properties. We also present a novel method

for measuring the LOS velocities of stars from multiple spectroscopic observations using

Bayesian hierarchical modeling. We present the LOS velocity distributions of the four

HALO7D fields, and estimate their means and dispersions. All of the LOS distributions

are dominated by the “hot halo”: none of our fields are dominated by substructure that

is kinematically cold in the LOS velocity component. Our estimates of the LOS velocity

dispersions are consistent across the different fields, and these estimates are consistent

with studies using other types of tracers. To complement our observations, we perform

3



mock HALO7D surveys using the synthetic survey software Galaxia to “observe” the

Bullock & Johnston (2005) accreted stellar halos. Based on these simulated datasets,

the consistent LOS velocity distributions across the four HALO7D fields indicates that

the HALO7D sample is dominated by stars from the same massive (or few relatively

massive) accretion event(s).

In Chapter 4, we present the HALO7D 3D kinematic sample. We discuss our

novel PM measurement methodology, developed to efficiently measure PMs from many

HST pointings that are not necessarily well-aligned across epochs. This methodology

makes use of a Bayesian mixture modeling approach for creating the stationary reference

frame of distant galaxies. Using the 3D kinematic HALO7D sample, we estimate the

parameters of the halo velocity ellipsoid, 〈vφ〉, σr, σφ, σθ, and the velocity anisotropy

β. Using the full HALO7D sample, we find β = 0.68+0.04
−0.05 at 〈r〉 = 23 kpc. We also

estimate the ellipsoid parameters for our sample split into three apparent magnitude

bins; the posterior medians for these estimates of β are consistent with one another.

Finally, we estimate β in each of the individual HALO7D fields. We find that the

velocity anisotropy β can vary from field to field, which suggests that the halo is not

phase mixed at 〈r〉 = 23 kpc. We interpret this finding in the context of simulations by

exploring the properties of β in two of the stellar halos from the Latte suite of FIRE-2

simulations. We find that the two simulated halos both show spatial variation (of similar

magnitude to the observed variation) across their skies, and that the two halos have

very different β maps as a result of their different accretion histories.

In Chapter 5, we summarize our findings, and discuss several future directions

4



for studying the MW stellar halo with HALO7D, Gaia, and simulations.
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Chapter 2

Isotropic at the Break? 3D

Kinematics of Milky Way Halo

Stars in the Foreground of M31

2.1 Introduction

The Milky Way halo devours hundreds of lower mass dwarf galaxies over its

lifetime. The stripped stellar material from this voracious eating habit is splayed out in

a vast, diffuse stellar halo. The orbital timescales at these large distances (< 10 kpc)

are very long, and the halo stars retain a memory of their initial conditions. Thus, by

studying the phase space distribution of halo stars, we are privy to a unique window

into the past accretion history of our Galaxy.

Global kinematic properties, such as the velocity anisotropy (i.e., the relative
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pressure between tangential and radial velocity components), can provide important

insight into the formation of the stellar halo (see Binney & Tremaine 2008). The exact

merger and dissipation history of a spheroid can strongly affect its velocity anisotropy

profile (e.g., Naab et al. 2006; Deason et al. 2013a). Local studies, limited to heliocentric

distances D <∼ 10 kpc, have measured the full 3D kinematics of halo stars. This has

revealed a strongly radially biased velocity anisotropy with β = 1−σ2tan/σ2rad ≈ 0.5−0.7

(e.g., Smith et al. 2009; Bond et al. 2010), in seemingly good agreement with the

predictions of simulations (e.g., Bullock & Johnston 2005; Cooper et al. 2010).

In Deason et al. (2013b) (hereafter D13), we exploited the long time-baselines

and exquisite photometry of deep, multi-epoch HST fields to measure the proper mo-

tions (PMs) of main sequence turn-off (MSTO) stars in the distant Milky Way halo.

Our pilot program used 5–7 year baseline HST/ACS fields towards M31 to measure

PMs of N ∼ 13 halo stars in the foreground. Our PMs are extremely accurate, with

random errors of ∼ 5 km s−1. These 13 halo stars provided the first direct bound on the

tangential velocity moments of the halo in this extreme radial regime, and provide new

insights into halo structure. From the PMs measured for 13 Milky Way halo stars at

18 <∼ r <∼ 30 kpc in our M31 HST fields, D13 inferred approximate isotropy between

radial and tangential motions: β = 0.0+0.2
−0.4. This differs by 3σ from local measures of

the velocity anisotropy, which find strongly radial orbits. This trend of decreasing ra-

dial anisotropy with galactocentric distance conflicts with numerical simulations, which

predict an outward increase in radial anisotropy.

In D13, we had no line-of-sight (LOS) information for these stars: we relied on
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Figure 2.1: Visual representation of the evolution of our sample, from the 23 CMD-
selected halo star candidates from D13 to our sample of 13 stars. The different symbols
represent the classification of the stars based on their proper motions: red triangles are
M31 star candidates, while blue squares are Milky Way stars (see Fig. 3 of D13). The
pink circle denotes the object classified as a potential Milky Way disk star in D13.

the LOS velocities of other halo tracers (blue horizontal branch (BHB) stars, K giants)

in different regions of the sky to form our argument. With spectroscopic information,

we circumvent the need to rely on independent, and perhaps biased, tracers. In this

paper, we present the LOS velocities for our halo star candidates, and use this 3D kine-

matic information to estimate the parameters of the velocity ellipsoid and the velocity

anisotropy.

The paper is arranged as follows. In Section 2.2, we describe the target se-

lection, proper motion measurements, spectroscopic observations and LOS velocity ex-

traction. In Section 2.3, we describe our method for estimating the parameters of the

velocity ellipsoid. Our results are presented in Section 2.4, and discussed in Section 2.5.

We summarize our findings in Section 2.6.
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spectra (S/N per Å=26) is shown in purple and a lower signal-to-noise spectrum (S/N
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2.2 Dataset

2.2.1 HST Imaging: Proper Motions

A detailed description of the target selection can be found in D13, but we

summarize the key points here. Our objects were selected from three HST observing

programs: GO-9453, GO-10265 (PI: T.Brown), and GO-11684 (PI: R.P. van der Marel).

The combination of these three programs provide deep, multi-epoch optical imaging of

three fields in M31 (M31 Spheroid, M31 Disk and M31 Stream). These observations

were used to measure the proper motion of M31 (Sohn et al. 2012), and during the

course of this study, proper motion catalogs for individual stars in the three HST fields

were created.

D13 selected Milky Way halo star candidates in color-magnitude space, using

photometry from Brown et al. (2009): all stars fall within mF606W −mF814W ∼ −0.3

and 21.5 <∼ mF814W
<∼ 25.5. In this region of the color-magnitude diagram (CMD) we

expect minimal contamination from the Milky Way disk and M31’s red giant branch

(see Section 2.2 and Figure 1 of D13). Proper motions were then used to classify the

objects as M31, Milky Way halo and Milky Way disk stars. The average uncertainty in

the proper motion measurements is σµ ∼ 0.05 mas yr−1.

2.2.2 Keck/DEIMOS Spectra

Spectroscopic Sample

Figure 2.1 demonstrates how our initial sample from D13 evolved into the

sample used in this analysis. In D13, we presented proper motions for the 23 candidate

11



halo stars selected from color-magnitude diagrams (CMDs): 11, 9, and 3 stars in the

M31 Spheroid, M31 Disk and M31 Stream fields, respectively. Based on the proper

motions, 13 of these stars were classified as Milky Way halo stars, 9 as M31 stars, and

1 as a potential Milky Way disk star (see Figure 3 of D13). The symbols in Figure

2.1 represent the proper motion classification: Milky Way halo star candidates are blue

squares, M31 star candidates are red triangles, and the pink circle denotes the potential

Milky Way disk star. We obtained spectra for 19 of the original 23 stars; we were not

able to obtain spectra for all of the halo star candidates due to conflicts in the spectral

direction on the DEIMOS slitmask. Three additional stars were too faint to measure

velocities. After removing known variables in M31 (Brown et al. 2004; Jeffery et al.

2011), we were left with our final sample of 13 objects. It is worth noting that this is

not the exact same sample of 13 stars used in the kinematic analysis of D13: one of the

objects we used in D13 was very faint (mF814W = 24.05) and without strong spectral

features, so we were unable to measure its velocity. We include the object classified as

a potential disk star in D13 in our analysis (as its LOS velocity is consistent with halo

kinematics).1 The properties of our 13 stars are summarized in Table 2.1.

Observations

Observations were taken on September 28–30, 2014 on the Keck II telescope

with the DEIMOS spectrograph (Faber et al. 2003). Over the course of the run, the

seeing varied from 0.45′′ − 0.9′′. We observed one slitmask in each of the three fields

with the 600 line/mm grating. The central wavelength was 7200 Å, resulting in a

1As outlined in Section 2.2.2, we find that this star is likely a member of TriAnd.
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wavelength range of ∼ 4500−9300 Å, where the exact wavelength range for each object

varies depending on its position on the mask. The spectral resolution at Hα (6563

Å) is R ∼ 2000 (measured at the FWHM). In order to limit the flux losses due to

atmospheric dispersion, we tilted our slits such that the position angle of the slit was

consistent with the median parallactic angle of the observing block. The masks in the

Spheroid and Disk fields were observed for a total of 5.9 hours, and the Stream field

mask was observed for 5.3 hours. The slitmasks were then processed by a modified

version of the spec2d pipeline developed by the DEEP2 team at UC Berkeley (Cooper

et al. 2012). Two spectra from our sample are plotted in Figure 2.2; the top spectrum

in Figure 2.2, shown in purple, has one of the higher signal-to-noise ratios of our sample

(S/N per Å=26 at Hα), while the lower spectrum, shown in blue, is an example of one

of our lower signal-to-noise objects (S/N per Å=8 at Hα). The noise spectrum from the

lower signal-to-noise object is shown at the bottom of the figure in pink.

Velocity Measurements

Line-of-sight (LOS) velocities are measured from one-dimensional spectra using

the Penalized Pixel-Fitting method (pPXF) of Cappellari & Emsellem (2004). The

program determines the best fit composite stellar template for a given target using a

penalized maximum likelihood approach. The 31 stellar templates employed in this

analysis are described in detail in Toloba et al. (2016); the templates have high signal-

to-noise ratios (100–800 Å−1), and span a range of spectral types (from B1 to M8) and

luminosity classes (from dwarfs to supergiants).

Errors in the raw velocity are determined through 1000 Monte Carlo simula-
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tions. In each simulation, we perturb the flux of the spectrum by adding noise to each

pixel based on the uncertainty of the flux measurement in that pixel. The amount of

noise added is drawn from a Gaussian distribution with width equal to the flux uncer-

tainty. We then measure the velocity of each perturbed spectrum, and the error on the

LOS velocity is taken to be the biweight standard deviation of the Gaussian distribution

of velocities of perturbed spectra.

A-band telluric corrections are measured using the same method, and heliocen-

tric LOS velocities are calculated by applying the A-band and heliocentric corrections to

the raw velocities. The final uncertainty in the heliocentric LOS velocity is determined

by adding in quadrature the errors on the raw velocity and the A-band correction.

Figure 2.3 shows a cumulative histogram of the LOS velocities for our sample of

halo stars, in the frame of the Galactic Standard of Rest (GSR). Observed heliocentric

velocities are converted to Galactocentric ones by assuming a circular speed of 240

km s−1 (e.g., Reid et al. 2009; McMillan 2011; Schönrich 2012) at the position of the

sun (R0 = 8.5 kpc) with a solar peculiar motion (U, V,W )=(11.1, 12.24, 7.25) km s−1

(Schönrich et al. 2010). Here, U is directed toward the Galactic center, V is positive in

the direction of Galactic rotation and W is positive towards the North Galactic Pole.

In Figure 2.3, we see evidence for a “hot halo” population: there are no sharp

increases where we expect to see contamination from the Milky Way Disk (along this

line of sight, 〈vdisk〉 ∼ 145 km s−1) or M31 (〈vM31〉 ∼ −150 km s−1). The blue curve

shows the cumulative distribution function (CDF) for the σLOS value with maximum

posterior probability (see Section 2.3), with the shaded blue region indicating the 68%
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confidence region. In contrast, as an example of substructure that is dynamically cold

in LOS velocity, an approximate CDF for the Triangulum-Andromeda Stream (TriAnd;

located along the line-of-sight towards M31) is shown in red (v0 ∼ 50 km s−1, σ ∼ 15

km s−1; e.g., Deason et al. 2014; Sheffield et al. 2014). D13 suggested that the presence

of a cold stream or TriAnd could be the reason for the relative increase in tangential

pressure seen in this sample. However, our LOS velocity measurements confirm that this

is not the case: the significant dispersion in the LOS velocity distribution demonstrates

that our sample is not dominated by members of a cold stream nor by TriAnd.

While the LOS velocity distribution confirms that our sample isn’t dominated

by TriAnd, TriAnd members could still be biasing our measurement of the anisotropy.

Given that our sample is in the same part of the sky and occupies the same region

of CMD space as TriAnd (cf. Martin et al. 2014), we estimated the TriAnd contam-

ination in our sample by fitting a double Gaussian to the LOS velocity distribution.2

The resulting fit revealed that we expect 2-3 TriAnd stars in our sample, though the

underlying hot halo LOS dispersion only changes by ∼ 5% (see Table 2.2). The two

stars that most likely belong to TriAnd based on their LOS velocities also happen to

lie directly over the TriAnd overdensity as seen in CMDs (see Figure 1 of Martin et al.

(2014)). The third star with the LOS velocity closest to that of TriAnd lies off the CMD

overdensity. We therefore conclude that two of our stars are likely members of TriAnd.

The CDF for the double Gaussian best-fit is shown in pink in Figure 2.3.

Figure 2.4 summarizes our 3 dimensional kinematic sample, showing the Galac-

2We computed the ratio of evidence (or Bayes factor) to compare the single and double Gaussian
models, and found that neither model was strongly favored over the other.
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tic proper motion components of the 13 halo stars color coded by LOS velocity. Our

sample does not contain any members of M31, as all of these stars have proper motions

too large to be associated with M31. As in Figure 2.3, Figure 2.4 shows no obvious

clumpiness in any kinematic component, indicating that our sample is dominated by a

“hot halo” population. However, it is intriguing that the two stars likely belonging to

the TriAnd overdensity (shown as triangles in Figure 2.4) have relatively large proper

motions. In the following sections, we consider the halo velocity ellipsoid both with and

without the potential TriAnd stars.

18



V
e
lo
c
it
y
E
ll
ip
so

id
[k
m

s−
1
]

G
a
la

ct
ic

co
o
rd

in
at

es

F
u
ll
S
a
m
p
le

〈v
2 L
O
S
〉1
/
2

=
91

+
2
7

−
1
4
〈v

2 b
〉1
/
2

=
88

+
2
8

−
1
7

〈v
2 l
〉1
/
2

=
13

8+
4
3

−
2
6

〈v
l〉

=
−

67
±

37

E
xc
lu
d
in
g
T
ri
A
n
d

〈v
2 L
O
S
〉1
/
2

=
96

+
3
3

−
1
5
〈v

2 b
〉1
/
2

=
82

+
3
5

−
1
6

〈v
2 l
〉1
/
2

=
10

3+
5
0

−
1
7

〈v
l〉

=
−

50
+
3
7

−
4
0

S
p

h
er

ic
al

p
ol

ar
co

or
d

in
a
te

s

F
u
ll
S
a
m
p
le

〈v
2 r
〉1
/
2

=
95

+
2
5

−
1
4

〈v
2 θ
〉1
/
2

=
85

+
2
9

−
1
7

〈v
2 φ
〉1
/
2

=
13

5+
4
1

−
2
0

〈v
φ
〉=

65
±

38

E
xc
lu
d
in
g
T
ri
A
n
d

〈v
2 r
〉1
/
2

=
10

0+
3
0

−
1
5
〈v

2 θ
〉1
/
2

=
83

+
3
5

−
1
5

〈v
2 φ
〉1
/
2

=
11

8+
5
0

−
2
1

〈v
φ
〉=

53
±

39

V
e
lo
c
it
y
A
n
is
o
tr
o
p
y

F
u
ll
S
a
m
p
le

β
=
−

0.
3+

0
.4

−
0
.9

√ 〈v2 t
〉

〈v
2 r
〉

=
1.

6
+
0
.5

−
0
.4

√ 〈v2 φ
〉

〈v
2 θ
〉

=
1.

4+
0
.6

−
0
.4

E
xc
lu
d
in
g
T
ri
A
n
d

β
=

0.
1
+
0
.4

−
0
.9

√ 〈v2 t
〉

〈v
2 r
〉

=
1.

4
+
0
.6

−
0
.3

√ 〈v2 φ
〉

〈v
2 θ
〉

=
1.

3+
0
.6

−
0
.3

P
o
si
ti
o
n

l
=

12
1◦

b
=
−

21
◦

〈D
〉=

20
±

1
±

7
k
p

c
〈r
〉=

25
±

1
±

7
k
p

c

T
ab

le
2.

2:
S

u
m

m
ar

y
o
f

ou
r

m
ai

n
re

su
lt

s.
W

e
gi

ve
th

e
ve

lo
ci

ty
el

li
p

so
id

in
G

al
ac

ti
c

an
d

sp
h

er
ic

al
co

or
d

in
at

e
sy

st
em

s
an

d
th

e
re

su
lt

in
g

ve
lo

ci
ty

an
is

ot
ro

p
y,

b
ot

h
fo

r
w

h
en

w
e

in
cl

u
d

e
al

l
13

st
ar

s
an

d
fo

r
w

h
en

w
e

ex
cl

u
d

e
th

e
2

st
ar

s
th

at
ar

e
li

ke
ly

T
ri

A
n

d
m

em
b

er
s.

W
e

a
ls

o
gi

ve
th

e
a
p

p
ro

x
im

at
e

lo
ca

ti
on

of
ou

r
th

re
e
H
S
T

fi
el

d
s

in
th

e
p

la
n

e
of

th
e

sk
y,

as
w

el
l

as
th

e
av

er
ag

e
h

el
io

ce
n
tr

ic
a
n

d
G

a
la

ct
o
ce

n
tr

ic
d

is
ta

n
ce

s
fo

r
ou

r
sa

m
p

le
(w

h
ic

h
ar

e
u

n
ch

an
ge

d
to

w
it

h
in

0.
5

k
p

c
w

h
en

T
ri

A
n

d
m

em
b

er
s

ar
e

ex
cl

u
d

ed
).

F
or

th
e

la
tt

er
q
u

a
n
ti

ti
es

w
e

li
st

tw
o

u
n
ce

rt
ai

n
ti

es
,

th
e

fi
rs

t
b

ei
n

g
th

e
er

ro
r

in
th

e
m

ea
n

,
an

d
th

e
se

co
n

d
b

ei
n

g
th

e
ro

ot
-m

ea
n

-s
q
u

ar
e

sp
re

ad
of

th
e

sa
m

p
le

.

19



10
0

20
0

30
0

40
0

σ
L
O

S
 (

k
m

/s
)

10
0

20
0

30
0

40
0

σ
l (

k
m

/s
)

15
0 0

15
0

〈
vl
〉
 (km/s)

10
0

20
0

30
0

40
0

σ
b 
(k

m
/s

)

10
0

20
0

30
0

40
0

σLOS (km/s)

10
0

20
0

30
0

40
0

σl (km/s)

10
0

20
0

30
0

40
0

σb (km/s)

Figure 2.5: Projections of the posterior probability distribution for our four free param-
eters, when the full sample of 13 objects was used. Contours are shown at 0.5, 1, 1.5
and 2 σ, respectively. The top panel in each column shows the 1D marginalized PDF for
each parameter, with peaks and 68 % confidence intervals indicated by dashed vertical
lines. We acknowledge the use of triangle.py (Foreman-Mackey et al. 2014) to produce
this figure.
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2.3 Velocity Ellipsoid Parameter Estimation

We use a model of the halo probability distribution function (PDF) to estimate

the parameters of the halo velocity ellipsoid (〈vl〉, 〈vb〉, 〈vLOS〉, σl, σb, σLOS) from

the observables (mF814W,mF606W −mF814W, µl, µb, l, b, vLOS). The method described is

nearly identical to that in D13, though we have made modifications to incorporate the

available LOS velocities. We summarize the key points here; see Section 3 of D13 for

further details.

First, we determine the PDF for the heliocentric distance to each star. Contin-

uous, double-Gaussian PDFs of absolute magnitude as a function of color were derived

using IMF, metallicity, and age weighted VandenBerg et al. (2006) isochrones. We as-

sume a Salpeter IMF, a Gaussian metallicity distribution with mean [Fe/H] = −1.9 and

dispersion σ = 0.5 (e.g., Xue et al. 2008), and a Gaussian age distribution with mean

〈T 〉 = 12 Gyr and dispersion σ = 2 Gyr (e.g., Kalirai 2012). Possible systematics arising

from these assumptions are explored in D13 (see Section 4.2). The resulting absolute

magnitude PDF is given by:

G(MF814W|mF606W− mF814W) = G1(A1,M1, σ1,MF814W)

+G2(A2,M2, σ2,MF814W), (2.1)

where G(A,M, σ, x) = A exp
[
− (x−M)2 /(2σ2)

]
and A, M and σ (amplitude, mean

and sigma) are polynomial functions of mF606W −mF814W color. See Section 3.1 and
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Figures 5 and 6 in D13 for more detail. This absolute magnitude PDF is then translated

into a distance PDF for each star in our sample using the distance modulus: D =

D(MF814W,mF814W).

We then compute the velocity distribution function: Fv = Fv(vLOS, D, µl, µb).

We assume that the velocity distributions in both tangential and radial directions are

Gaussian, with constant values of the ellipsoid parameters over the physical range

spanned by our data. We convert observed heliocentric (vl, vb) velocities to the Galac-

tocentric frame as outlined in Section 2.2.2. In the direction of M31, the velocity of

the sun projects to: (vl, vb) = (−139.5, 83.7) . The 3-dimensional velocity probability

distribution is given by:

Fv(vl, vb, vLOS) =
1

(2π)3/2 σlσbσLOS

exp

[
−(vl − 〈vl〉)2

2σ2l

]

×exp

[
−(vb − 〈vb〉)2

2σ2b

]
exp

[
−(vLOS − 〈vLOS〉)2

2σ2LOS

]
.

(2.2)

The halo PDF at fixed mF606W − mF814W color, in increments of absolute

magnitude, apparent magnitude, Galactic PM, LOS velocity and solid angle (Ω), F (y),

where y is defined as y = y(MF814W,mF814W, µl, µb, vLOS,Ω), is given by:

F ∆y = Fv ρD
5G cos(b)∆y. (2.3)

Here, ρ = ρ(D, l, b) is the density distribution of halo stars (we assume the

broken power law profile derived by Deason et al. (2011)), G = G(MF814W|mF606W −
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mF814W) is the absolute magnitude PDF in Eqn. 2.1 and

∆y = ∆MF814W∆mF814W∆µl∆µb∆vLOS∆Ω (2.4)

is the volume element.

We marginalize over absolute magnitude, and define the likelihood function:

L =
∏

F̄ (σl, σb, σLOS, vl,0, vb,0, vLOS,0,x), (2.5)

where F̄ =
∫
F dMF814W.

We sample the marginalized posterior probability distribution with emcee

(Foreman-Mackey et al. 2013), a python implementation of the Goodman & Weare

(2010) affine-invariant Markov chain Monte Carlo (MCMC) ensemble sampler. We set

〈vb〉 = 〈vLOS〉 = 0, but allow for net motion in Galactic longitude, which approximates

the net rotational velocity (vφ) of the halo. We assume a flat prior on the mean velocity

in galactic longitude 〈vl〉 and a flat prior between 0 and 450 km s−1 on the dispersions.

Projections of our posterior probability are shown in Figure 2.5.

2.4 Results

Figure 2.5 shows projections of the samples of the posterior, with marginalized

one-dimensional PDFs for each parameter shown in the top panel of each column. We

find the following values for the velocity ellipsoid parameters, with 68% confidence

limits: 〈vl〉 = −66+37
−37 km s−1, σLOS = 91+27

−14 km s−1, σl = 117+42
−19 km s−1, and
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σb = 88+28
−17 km s−1. Here we have quoted the peaks of the 1D marginalized PDFs, and

the limits enclose 68% of the points on either side of the peak.

We convert our velocity ellipsoid quantities to spherical polar coordinates using

a Monte Carlo method. Our galactocentric polar coordinate system is defined such that

the sun is located on the negative x axis, and the polar angle φ is the angle from the

negative x axis to the positive y axis (l = 90 degrees), such that φ is positive in the

direction of Galactic rotation. To make the conversion from vl, vb, vLOS to vr, vθ, vφ,

we generate a random sample of ∼ 25, 000 stars drawn from the halo density distribution

(Deason et al. 2011):

ρ(rq) ∝


r−αin
q rq ≤ rb,

r−αout
q rq > rb.

(2.6)

where rq = x2 + y2 + z2q−2, q = 0.59 is the halo flattening parameter, rb = 27 kpc,

αin = 2.3, and αout = 4.6. The stars are placed along the line-of-sight and have heliocen-

tric distances ranging from 10 to 100 kpc. The stars are assigned a velocity distribution

based on a random selection from our MCMC samples. Each star’s velocity compo-

nents vr, vθ, vφ are calculated from the generated positions and vl, vb, vLOS velocities.

The second moments in spherical polar coordinates are computed from the resulting

Galactocentric velocity distributions.

By repeating this process 105 times, we compute PDFs for the second moments

for the galactocentric velocity ellipsoid parameters. The uncertainties on these parame-

ters are computed in the same way as the heliocentric velocity ellipsoid parameters: the

limits enclose 68% of the points on either side of the peak. Our results are summarized
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in Table 2.2. Using the PDFs for the galactocentric second moments, we compute the

PDF for the anisotropy parameter (Binney & Tremaine 2008):

β = 1−
〈v2θ〉+ 〈v2φ〉

2〈v2r 〉
. (2.7)

We find β = −0.3+0.4
−0.9, where we again quote the peak of the PDF and limits

that enclose 68% of the points on either side of the peak. If we repeat this analysis

excluding the two likely TriAnd members, we find β = 0.1+0.4
−0.9. Both of these values

are consistent with the value found in D13 (βD13 = 0.0+0.2
−0.4), though our new values

have larger error bars because we measured the LOS velocity distribution directly. Our

values for the ellipsoid parameters in this case are also quoted in Table 2.2.
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2.5 Discussion

Our value of β is consistent with isotropy, and lower than local measurements

by at least 1σ, which find a radially biased anisotropy (β = 0.5− 0.7). The significant

dispersion in the observed LOS velocity distribution (Figure 2.3) rules out the possibility

that our sample is dominated by cold substructure.

Figure 2.6 shows the radial anisotropy profile of the Milky Way stellar halo.

Our measurement is consistent with the observed “dip” in the anisotropy profile, seen

in multiple studies that measured the velocity anisotropy of distant halo stars along

different lines of sight using only LOS velocity distributions (Sirko et al. 2004; Kafle

et al. 2012; Deason et al. 2012; King et al. 2015). This dip is also coincident with the

observed break in the halo density profile around 16 kpc <∼ r <∼ 26 kpc (Deason et al.

2011; Sesar et al. 2011; Watkins et al. 2009). In this section, we discuss some of the

possible explanations of this result.

2.5.1 A Galactic Shell

In D13, we argued that the presence of global substructure, such as a shell (or

multiple shells), is one explanation for both the steep fall-off in stellar density beyond

the break radius and the decrease in anisotropy at that radius. Deason et al. (2013a)

argued that a break in the Milky Way stellar density profile could be created by the

build-up of stars at apocenter from either one relatively massive accretion event or

several, synchronous accretion events. In this scenario, we would expect the stars to

have an increase in tangential motion relative to radial motion at the turnaround radius,

27



and thus a more isotropic β, just as we observe. This picture is consistent with what we

find for likely TriAnd members: TriAnd is a large, cloud-like overdensity of stars likely

at apocenter (Johnston et al. 2012), and including TriAnd in our sample makes β more

tangentially biased. Chemical abundances for these stars may help to characterize the

progenitor (or progenitors) of this shell (see Section 2.5.3).

Several of these cloud-like overdensities, such as TriAnd, the Virgo overdensity

(VOD), the Hercules-Aquila overdensity (HerAq) and the Eridanus-Phoenix overdensity

(EriPhe) are all located at approximately 20 kpc. Li et al. (2015) recently suggested

that EriPhe, HerAq and the VOD could all be associated, and potentially fell in to the

Milky Way as a group; TriAnd could also be a member of this group. A group infall

event could explain the presence of all these overdensities at ∼ 20 kpc, the observed

break in the density profile and the relative increase in tangential motion at this radius.

2.5.2 Dual Stellar Halo: In-Situ Star Formation

The break in the stellar density profile could also be an indication that the

Milky Way has a “dual stellar halo,” containing populations of different origins (Carollo

et al. 2007; Carollo et al. 2010; Beers et al. 2012). Simulations predict that the stellar

halo is composed both of accreted stars and stars that form in-situ (e.g., Zolotov et al.

2009; Font et al. 2011; McCarthy et al. 2012; Tissera et al. 2012; Cooper et al. 2015).

In-situ stars have two flavors. The first are stars that form in the halo itself from

gas accreted from the IGM or satellites; it remains unknown to what extent these

populations and their properties are a result of the choice of hydrodynamics scheme.

Secondly, stars can form in the disk of the Milky Way and then be kicked up into the
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halo due to merger events (these stars are sometimes called “heated disk stars”). In

simulations, these stars can comprise a significant fraction of the stellar population (and

sometimes even dominate) within r <∼ 30 kpc. It’s possible that our observed isotropy

is a kinematic signature of a heated disk population. McCarthy et al. (2012) showed

that these in-situ stars can have significant prograde rotation and therefore increased

tangential pressure support from angular momentum, and we find a significant signal

of prograde rotation (〈vφ〉 ∼ 70 km s−1). However, this scenario does not explain why

measurements of the velocity anisotropy in the solar neighborhood find radially biased

orbits, in the region of the halo where we would expect even more heated disk stars.

Distinguishing between accreted and in-situ populations with kinematics alone remains

challenging, and model predictions remain unclear. To better determine if our objects

were accreted or formed in-situ, we need chemical abundances (see Section 2.5.3).

2.5.3 Future Work

Chemistry

Chemical information is key for disentangling the Milky Way’s accretion his-

tory. Iron abundances of accreted populations are related to the masses of the dwarf

progenitors (e.g., see Johnston et al. 2008; Kirby et al. 2013). If our 13 stars are accreted

halo stars, measuring iron abundances may help to determine whether a single accretion

event or several are responsible for the shell-type structure we observe, and we can use

the abundances to estimate the mass(es) of the progenitor(s).

The chemical information in our stellar spectra is also our best hope of deter-
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mining the relative contributions of different stellar halo formation mechanisms. Stars

that form in the disk of the Milky Way in simulations are found to have a higher average

[Fe/H] than accreted stars (Font et al. 2011; Tissera et al. 2012; Cooper et al. 2015). In

addition, Zolotov et al. (2010) showed that in-situ stars are alpha-enriched relative to

accreted stars at a given [Fe/H] at the high [Fe/H] end of the metallicity distribution

function. These results are due to the fact that in-situ stars form in a deeper potential

well than the accreted population. Several studies have used abundances in an effort

to disentangle these populations locally (e.g. Nissen & Schuster (2010), with F and G

main sequence stars within 335 pc; Sheffield et al. (2012) with M Giants out to 10 kpc).

However, no such studies exist using main sequence stars outside the solar neighbor-

hood. By measuring the iron and alpha abundances of distant main sequence halo stars,

we can begin to assess the relative importance of different physical processes leading to

the formation of the Milky Way’s stellar halo.

HALO7D

In order to better understand the global halo properties, we need more than

N ∼ 13 stars! Through the HALO7D observing program (begun in Spring 2014),

we will obtain deep (8–24 hour integrations) spectra of hundreds of distant MSTO

halo stars with measured HST proper motions using Keck II/DEIMOS. We will target

N ∼ 350 stars in the four CANDELS fields (Grogin et al. 2011; Koekemoer et al. 2011):

GOODS-N, GOODS-S, COSMOS, and EGS. All four of these fields are characterized

by deep, multi-epoch HST imaging, and cover a total area of approximately 1000 square

arcminutes. With this dataset, we will:
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1. Measure LOS velocities of all stars, as well as [Fe/H] and [α/Fe] for those stars

with sufficient signal to noise.

2. Measure the velocity anisotropy along four new lines of sight.

3. Measure the anisotropy as a function of galactocentric distance exclusively with

stars that have 3D kinematic information.

4. Use chemical abundances to disentangle the Milky Way’s accretion history and

determine the relative contributions of stellar halo formation mechanisms.

HALO7D is an ongoing observational program with results forthcoming (Cun-

ningham et al., in prep).

2.6 Conclusions

We present line-of-sight (LOS) velocities for N = 13 Milky Way halo stars

with measured HST proper motions (PMs). Our sample is the first sample of halo stars

with measured 3D kinematics outside of the solar neighborhood. The LOS velocities

were measured from deep (5-6 hour) integrations on Keck II/DEIMOS. We combine the

LOS velocity measurements with the proper motions to estimate the parameters of the

velocity ellipsoid using an MCMC ensemble sampler. We find the velocity distribution

in Galactic longitude l to have a mean 〈vl〉 = −67+37
−37 km s−1 and a dispersion σl =

117+42
−20 km s−1. We find the dispersions in Galactic latitude b and the LOS to be

σb = 88+28
−17 km s−1 and σLOS = 91+27

−14 km s−1, respectively.
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Using our estimates of the ellipsoid parameters, we find β = −0.3+0.4
−0.9, con-

sistent with isotropy and with the result from D13, but lower than solar neighborhood

measurements, which find a radially biased β, by at least 1σ. If we exclude likely

TriAnd members from our sample, we find β = 0.1+0.4
−0.9. These values are also con-

sistent with other observational studies (using only LOS velocities) that have found

a decrease in β around the observed break radius in the Milky Way density profile

(16 kpc <∼ r <∼ 26 kpc). These two findings in tandem suggest the presence of a shell-

type structure in the halo at this radius, potentially formed by several destroyed dwarfs

with similar apocenters. It is also possible that we are observing a population dominated

by in-situ stars rather than an accreted population.

We need more observations and chemical information for distant halo stars to

better understand the origin of the Milky Way stellar halo and its accretion history. We

will achieve this with the HALO7D observing program, which will increase our sample of

stars with 3D kinematics by a factor of ∼ 30. The velocities and abundances measured

from these observations will vastly improve our understanding of the Galaxy’s accretion

history and the origin of the stellar halo.
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Chapter 3

HALO7D I: The Line of Sight

Velocities of Distant Main

Sequence Stars in the Milky Way

Halo

3.1 Introduction

When a dwarf galaxy falls in to the Milky Way (MW) potential and is tidally

disrupted, its stars become members of the MW stellar halo. The orbital timescales of

these stars are long compared to the age of the Galaxy; thus, long after these debris

have lost their spatial association, they remain linked by their kinematic (and chemical)

properties. Six dimensional (6D) phase-space information and chemical abundances of
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halo stars can therefore be used to unravel the accretion events that have contributed to

the mass assembly of the MW. With the Halo Assembly in Lambda-CDM: Observations

in 7 Dimensions (HALO7D) survey, we are measuring 3D kinematic information and

chemical abundances (as well as constraints on 3D positions) for distant main sequence

(MS) MW halo stars.

The HALO7D dataset consists of Keck II/DEIMOS spectroscopy and Hubble

Space Telescope (HST ) measured PMs measured of distant (D ∼ 10–100 kpc) MW main

sequence turnoff (MSTO) stars. In this paper, the first in the HALO7D series, we present

the spectroscopic component of this dataset. In a companion paper (Cunningham et al.

2018b, in preparation; hereafter, Paper II), we present the PM dataset and analysis of

the 3D kinematic sample.

This paper is organized as follows. In section 3.1.1, we motivate the HALO7D

survey, and place our survey in context with other MW halo studies. In section 3.1.2,

we introduce Velociraptor, our hierarchical Bayesian method for measuring the LOS

velocities for our faint targets. In Section 3.2, we describe the HALO7D fields, target

selection and observations. In Section 3.3, we present the details of the Velociraptor

method. In Section 3.4, we present the LOS velocity distributions for the four HALO7D

fields, estimate their velocity dispersions, and compare our results with those derived

from other tracers. In Section 3.5, we compare our resulting LOS velocity distributions

with predictions from simulations. We summarize our findings in Section 3.6.
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3.1.1 HALO7D: A Deep, Pencil Beam Complement to Gaia

Our current picture of the stellar halo has largely been shaped by its giant

population. Giants and evolved stars, such as red giant branch (RGB) stars, blue

horizontal branch (BHB) stars, and RR Lyrae variables, have many advantages as halo

tracers, particularly because of their bright absolute magnitudes. Giants have enabled

the mapping of the stellar halo out to great distances: Slater et al. (2016) used K-

giants to measure the density profile out to 80 kpc, Hernitschek et al. (2018) measured

the density profile of the MW stellar halo out to 150 kpc with RR Lyrae from Pan-

STARRS1, and Deason et al. (2018a) used BHBs in the Hyper Suprime-Cam survey to

measure the density profile out to ∼200 kpc. These tracers have also revealed a wealth

of substructure in the distant halo (see Sesar et al. 2017 and Conroy et al. 2018 as some

recent examples).

Until recently, our kinematic knowledge of the stellar halo beyond D ∼ 10 kpc

has been limited to one component of motion (the line-of-sight (LOS) velocity) for these

bright tracers. While progress has been made on measuring the LOS velocity dispersion

profile (e.g., Xue et al. 2008 with SDSS BHBs; Cohen et al. 2017 with RR Lyrae),

there has been little knowledge of the tangential motion of these stars until this year —

from the second Gaia mission data release (Gaia Collaboration 2018). Increasing our

knowledge of the tangential motions of stars, in order to better map our Galaxy and

understand its formation and structure, is the primary science goal of the Gaia mission

(Perryman et al. 2001).

Giants and evolved stars represent the upper echelon of a stellar population.
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While they are bright, they are very rare: MS stars are the dominant population in every

stellar population. In addition, it is difficult (perhaps impossible) to uniformly select

giants across all age and metallicity populations in the halo. For example, RR Lyrae

only can evolve in metal poor populations, while M giants are only found in metal rich

populations (see Price-Whelan et al. 2015 for a discussion on how the relative numbers

of RR Lyrae and M Giants in a population can be used to constrain the metallicity of a

progenitor). While MS stars are fainter than giants, they are also more numerous, and

all populations, regardless of age or metallicity, contain MS stars.

While MS stars are ideal tracers thanks to their presence in all stellar popu-

lations, they are challenging to observe, because they are faint. Because of its limiting

magnitude of G ∼ 20, beyond D ∼ 15 kpc in the halo, Gaia will not provide proper

motions for distant halo MS stars. The only instrument presently capable of measuring

the proper motions (PMs) of distant (D > 20 kpc) MW MS stars is HST. HST is a pow-

erful instrument for precision astrometry, due to its stability, high spatial resolution and

well-studied geometric distortions and point spread functions (PSFs) (e.g., Anderson &

King 2006). Multi-epoch HST imaging has been exploited to make extremely accurate

PM measurements of resolved stellar systems in the Local Group (LG), including the

Magellanic Clouds (Kallivayalil et al. 2006a, 2006b, 2013), MW globular clusters (Sohn

et al. 2018), MW dwarfs Draco and Sculptor (Sohn et al. 2017), and M31 (Sohn et al.

2012).

The first individual MW stars with measured HST PMs were published by

Deason et al. (2013b) (hereafter D13). These faint stars (21 < mF606W < 24.5) had
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their PMs measured serendipitously during the Sohn et al. (2012) M31 PM study. The

third component of the motion for these stars, the LOS velocity, was measured by

Cunningham et al. (2016), using the DEIMOS spectrograph on the Keck II telescope,

making this sample of 13 stars the first sample of stars with measured 3D kinematics

outside the solar neighborhood. D13 and C16 confirmed that we can measure kinematic

properties of distant MS stars with these two world class telescopes. However, these

studies were limited to only 13 stars across three HST pointings. More stars and lines

of sight through the halo are required to use MS star kinematics to investigate the

formation of the Galaxy.

The HALO7D survey aims to address the current lack of distant MS stars with

measured 3D kinematics. This dataset is unique even in the era of Gaia, measuring 6D

phase space information for MS stars as faint as mF606W ∼ 24.5. In order to obtain spec-

tra of these stars with sufficient signal-to-noise (S/N) for LOS velocity and abundance

measurements, deep spectroscopy with a large telescope is required. HALO7D comple-

ments the HST proper motions with deep spectra (8–24 hour integrations) observed

with Keck II/DEIMOS. However, spectra of individual stars at this depth is unprece-

dented, and new techniques are required to make measurements with these data. For

the interested reader, we motivate this new technique in the next subsection; for those

interested in the survey details, please skip ahead to Section 3.2.

3.1.2 Need for Velociraptor: Challenges of Deep Slit Spectroscopy

HST can measure proper motions for exceedingly faint stars. The deep spec-

troscopy required to observe to these same magnitudes presents a significant challenge!
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To achieve the depth of our survey, targets were observed over multiple nights, and, in

some cases, over years. In order to combine our different spectroscopic observations of

a given target into a single measurement of the star’s velocity, we required a new ap-

proach that took into account the fact that different observations of the same star will

have different velocities. The Velociraptor software employs Bayesian hierarchical

modeling in order to combine multiple, often noisy, observations of a star, each with

different zero-point offsets, into a single posterior probability distribution for the star’s

velocity.

One origin of zero-point offset is slit miscentering. Because stars are point

sources, they do not fill the full width of the slit during observations (thanks to the

exquisite seeing on Mauna Kea). If the star is not perfectly centered in the slit, the

wavelength solution for the object is slightly offset from the wavelength solution given

by the calibration of arc lamps (e.g., Sohn et al. 2007; Simon & Geha 2007). This

wavelength solution difference corresponds to an apparent velocity shift that can be

measured from the velocity of the telluric A-band absorption feature. Velocities of

telluric features should be 0 km s−1 if the wavelength solution is correct. We refer to

this velocity offset as the A-band correction (vAband)3, and it is subtracted from the raw

velocity (vraw, the velocity of stellar absorption features in an observed spectrum), along

with the heliocentric correction (vhelio, due to the Earth’s motion around the Sun) to

3While it has not been treated as such in the literature, we note that the effect of this slit miscentering
is closer to a wavelength shift than a velocity shift. In this work, we measure stellar velocities using
both the Hα and Ca triplet absorption features. Because these absorption features are approximately
equidistant in wavelength from the telluric A-band feature, we can safely treat the A-band correction
as a velocity offset, as others have done in the past. However, if one were to measure velocities using
only Hα or Ca, or if one were to also use lines farther in the blue or red, then it is better to treat the
A-band correction as a wavelength shift.
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yield the corrected velocity in the heliocentric frame:

v = vraw − vAband − vhelio. (3.1)

The offset in the slit can be due to astrometric errors or slight mask misalign-

ment. As such, the A-band correction varies from object to object on a given mask, and

varies from observation to observation of the same object. For a star observed through

a 1 arcsecond slit with Keck II/DEIMOS, configured with the 600ZD grating, vAband

can be up to ≈ ±60 km s−1. Given that the velocity dispersion of the halo is on the

order of 100 km s−1, and that velocity dispersions of streams and dwarfs can be less

than 10 km s−1, it is essential to take into account this velocity offset before combin-

ing spectra from different observations. In addition, when the spectra in question are

noisy, the measurements of vAband are also noisy, and their uncertainties need to be

incorporated in to the ultimate measure of the corrected velocity uncertainty. In order

to best leverage our signal to get accurate velocity measurements of our stars, along

with correct uncertainties, we employ Bayesian hierarchical modeling to measure the

velocities of individual spectroscopic measurements and their differing zero-point offsets

simultaneously.

For the details of the model implemented by Velociraptor, we refer the

reader to Section 3.3. Fake data testing and further details are discussed in the Ap-

pendix.
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3.2 Data: The HALO7D Keck Program

In this section, we describe the properties of HALO7D Keck II/DEIMOS spec-

troscopic program. We describe our choice of survey fields in Section 3.2.1; our target

selection procedure is outlined in Section 3.2.2; and observations are described in Sec-

tion 3.2.4. The extragalactic “piggy-back” programs are briefly described in 3.2.3. In

Section 3.2.5, we describe how we selected the halo star candidates used for dynamical

modeling from the spectroscopically observed targets.

3.2.1 Survey Fields

For a 3D kinematic study of distant halo stars, we aimed to survey high lat-

itude fields that were characterized by many, contiguous, multi-epoch HST pointings.

Deep, multi-epoch imaging is required in order to measure proper motions of distant

main sequence stars (D13), while the large field of view of DEIMOS enables efficient

spectroscopic follow-up of many contiguous HST pointings. The fields targeted by the

Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS; Grogin

et al. 2011; Koekemoer et al. 2011; PIs: S. Faber, H. Ferguson) were therefore a natural

choice. The HST footprints of the CANDELS fields were designed with spectroscopic

follow-up in mind, and they have been observed by HST many times over the course of

HST ’s operation.

HALO7D surveyed four out of the five CANDELS fields: EGS, COSMOS,

GOODS-N, and GOODS-S (the fifth field, UDS, only has one epoch of HST imaging).

The coordinates of the four HALO7D fields are listed in Table 3.1; their relatively high
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latitudes, resulting in minimal foreground contamination from MW disk stars, makes

them ideal for both extragalactic and MW halo studies. Figure 3.1 shows the footprints

of the four HALO7D fields. Tiling patterns for one epoch of HST imaging are shown

in grey; the HALO7D Keck/DEIMOS mask pointings are shown in purple (see Section

2.3).

3.2.2 Halo Star Candidate Selection

Halo star candidates were selected using u, F606W (broad V filter) and F814W

(broad I filter) photometry, from the catalogs listed in Table 3.1. Star candidates were

identified based on image morphology (using the SExtractor parameter class_star;

Bertin & Arnouts 1996) measured in WFC3 F160W images (the images used for source

detection for CANDELS; see catalog references in Table 3.1 and references therein for

more details on source detection and photometry). In order to select as many stars as

possible, we used the fairly generous stellarity cut of class_star> 0.5 (a more typical

stellarity threshold for a study interested in including as many galaxies as possible would

require that stars have class_star> 0.98). We also excluded all targets which have

non-zero measured redshifts.

To determine our selection boxes for optimally selecting halo stars, we used

the Besançon Galaxy Model (Robin et al. 2003). Figure 3.2 shows color magnitude

diagrams (CMDs) generated from the Besançon model from a 1-square degree field

centered on the coordinates of the EGS field. Green points are disk members and halo

stars are shown in magenta. In order to target as many halo star candidates as possible

with minimal disk contamination, we targeted faint, blue stars. Figure 3.2 shows the
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Figure 3.1: Footprints of the four HALO7D fields. Black points are the positions of
halo star candidates selected from the CANDELS catalogs. Filled points were observed
with DEIMOS, while empty circles denote halo star candidates that were not observed.
Green points in EGS and COSMOS are halo star candidates selected from the IRAC
and UltraVista catalogs, respectively. DEIMOS mask outlines are drawn in purple.
Grey squares indicate one epoch of HST imaging that is used for measuring PMs of
these same stars (see Paper II).
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HALO7D selection boxes in blue; our highest priority selection boxes are shown with

solid lines, and the dashed line indicates our lower priority selection box.

Figure 3.3 shows the CMDs for the four HALO7D fields, and our selection

boxes in blue. Magnitudes in the F606W and F814W bands are in the STMAG system.

The u band photometry is from ground based imaging, and magnitudes are in the AB

system. In COSMOS and EGS, we used CFHT u band photometry; in GOODS-S, we

used CTIO U band photometry; and in GOODS-N, we used KPNO U band photometry

(see references in Table 1).

Targets were assigned a priority for selection on a scale from 1-4 (with 4 being

highest priority) based on the selection boxes:

• Priority 4: Target falls in both solid selection boxes.

• Priority 3: Target falls in one of the solid boxes.

• Priority 2: Target falls in both dashed boxes.

• Priority 1: Target falls in one of the dashed boxes.

Additional Target Selection

In the COSMOS and EGS fields, the CANDELS catalogs (developed from

WFC3) did not overlap the full area with multi-epoch ACS imaging. To select targets

in these regions (which contain stars that can have measured PMs), we used additional

catalogs. In EGS, we used the ACS F606W/F814W fluxes published in the Barro et al.

(2011) photometric catalog, and used the same prioritization scheme as described above.

Sources in this catalog were identified using IRAC 3.6+4.5 µm imaging. Stars were

44



identified by combining eight stellarity criteria based on photometric and morphological

properties; see section 3.1 of Barro et al. (2011) for more detail. We included all targets

with a total sum of stellarity criteria greater than 2, meaning that it was classified as

star-like by at least two of the eight stellarity criteria (greater than 3 would be typical,

but we again made our selection generous in the interest of not excluding stars).

In COSMOS, we selected targets from the Ks selected catalog of the COS-

MOS/UltraVISTA field from Muzzin et al. (2013). Stars are classified in this catalog

using u∗−J, J−Ks colors; see section 3.3 and Figure 3 in Muzzin et al. (2013). To select

HALO7D targets, we used the CFHT u band and the Subaru V band fluxes (Capak

et al. 2007), using the same selection box as in the top panels of Figure 3.3.

3.2.3 Extragalactic Targets

Because the stellar halo is so diffuse, we typically placed only ∼ 25 halo star

candidates on a given DEIMOS mask. DEIMOS masks can contain up to ∼ 150 slits:

this provided an opportunity to obtain deep spectra for extragalactic targets as well as

Galactic targets. These data have been used to study galactic winds in z ∼ 1 (Yesuf

et al. 2017, Yesuf et al., in prep); quiescent galaxies at z ∼ 0.7 (Conroy et al., in prep);

internal galaxy kinematics (Wang et al., in prep); and dwarf galaxies (Guo et al., in

prep).

3.2.4 Observations

Spectra were obtained on the Keck II telescope with the DEIMOS spectrograph

(Faber et al. 2003). Observations took place over the course of three years, beginning
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Figure 3.2: CMDs for stars in the Besançon Galaxy Model, in a 1 deg2 field of view
centered on the coordinates of EGS. The green density maps show the CMD locations of
the disk stars, with the number of disk stars in each CMD bin indicated by the colorbar.
Halo stars are shown in magenta; only one out of five halo stars are shown for clarity.
The HALO7D selection boxes are shown in blue. Stars were assigned priority based on
their positions in these two CMDs: stars were assigned top priority if they fell within
both solid selection boxes, and lowest priority if they fell into only one of the dashed
selection boxes.
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in March 2014 and ending in April 2017. While this program was intended to be com-

pleted over 19 nights in three semesters of observing, due to poor weather, observations

extended through four spring semesters of observations plus several fall nights.

Observations were conducted with the same DEIMOS configuration as de-

scribed in C16, and we summarize the key details here. For HALO7D observations,

DEIMOS was configured with the 600 line/mm grating centered 7200 Å, resulting in

a typical wavelength range of 5000-9500 Å. In the interest of limiting flux losses due

to atmospheric dispersion, we divided our nights into observing “blocks” of 1-2 hours

each, and tilted the slits on our masks so that their position angles were consistent with

the median parallactic angle of the observing block. Our typical exposure time was 20

minutes.

Our goal was to expose each mask for 8 “effective” hours: we sought to achieve

the signal to noise as a function of apparent magnitude predicted by the DEIMOS

exposure time calculator for 8 hours of exposure (grey dashed lines in Figure 3.4).

Signal to noise (computed at Hα) for each mask as a function of apparent magnitude

is shown in Figure 3.4; in practice, we achieved a typical ∼ 5 − 6 effective hours of

exposure on most masks.

DEIMOS mask footprints are shown on top of HST pointings in each of the

four fields in Figure 3.1. We observed eight masks in EGS, four masks in GOODS-N,

two masks in GOODS-S, and four masks in COSMOS; properties of our observed masks

are listed in Table 3.2. For one of our mask pointings in GOODS-N, we observed the

same mask for twice as long as the other masks, but switched the list of extragalactic
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targets after an effective 8 hours was reached (GN3/GN4 masks have same pointings

and MW target lists, but different extragalactic targets).

The slitmasks were then processed by the spec2d pipeline developed by the

DEEP2 team at UC Berkeley (Cooper et al. 2012). Table 3.3 summarizes the progression

of the HALO7D sample, from all CMD-identified halo star candidates to stars used for

kinematic analysis in the subsequent sections. As seen in Figure 3.1, we weren’t able to

observe all of our CMD selected candidates; this is reflected in the difference between

the columns 2 and 3 of Table 3.3. In addition, as with any observational program, we

suffered the occasional loss due to errors in the reduction (e.g., the object is too near

the edge of the mask, bad columns, etc.; column 6 of Table 3.3). There were also targets

that did not achieve sufficient S/N in their spectra for a measured velocity (column 7

of Table 3.3). Finally, there were also contaminants to our sample of CMD-selected

MS stars that we identified spectroscopically; we discuss these contaminants in the next

subsection.

3.2.5 Spectroscopically Confirmed Contaminants

Following observations, all successfully reduced spectra were visually inspected

in order to identify obvious contaminants in the MSTO sample. There were two sources

of contamination that were identified spectroscopically and removed from the sample:

extragalactic contaminants (column 4 of Table 3.3) and Galactic disk contaminants

(column 5 of Table 3.3).

Extragalactic contaminants include quasars and emission line galaxies; our

galaxy contamination rate was the highest amongst targets selected from the Barro
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band magnitude. Grey dashed lines indicate the predicted signal to noise with 8 hours
of exposure time.

et al. (2011) catalog, for which we had the most generous stellarity cut.

Our spectroscopically confirmed Galactic disk contaminants are white dwarf

(WD) stars and red disk stars. We identified two types of WDs in our sample; we

found WDs with very broad Balmer features as well as WDs with strong continua but

no absorption features (these objects have disk-like PMs; see Paper II). The red disk

stars contain obvious titanium oxide features in their spectra. The red stars in our

sample made it into our selection boxes because they are located on the sky close to

blue galaxies, which resulted in blended colors for the ground-based u band photometry

used for target selection. While we model contamination from blue disk main sequence

stars in Section 3.4, we exclude the WD and red stars from our sample for dynamical

modeling. In the following Section, we describe in detail how we measure LOS velocities

for our target spectra. To skip straight to the results, we refer the reader to Section 3.4.
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3.3 Hierarchical Bayesian LOS Velocities: Velociraptor

In this section, we describe in detail the model implemented by the Veloci-

raptor software. As explained in Section 3.1.2, different observations of the same star

will have different raw velocities, due to the motion of the Earth around the Sun as

well as slit miscentering. We demonstrate this effect in Figure 3.5, which shows the Hα

region and the telluric A-band region for two spectra of a relatively bright HALO7D

target (mF606W = 19.1) observed on different nights. The raw spectra are clearly not

at the same velocity: while ∼ 5 km/s of this velocity offset is due to the Earth’s motion

around the Sun, the remaining 50 km/s offset is entirely due to the misalignment of the

object in the slit.

As such, applying these corrections prior to co-adding or stacking spectra is

essential in order to accurately estimate the velocity of a star. However, because the

A-band correction is measured from an absorption feature, if the spectrum is faint and

noisy, the estimate of the A-band correction will also be noisy.

In order to address these challenges, we present the Velociraptor technique.

Velociraptor implements a Bayesian hierarchal model, modeling the raw velocities

and A-band corrections of all observations of a star simultaneously. Standard practice

would be to stack spectra and then measure a velocity, usually using a cross correlation

method (e.g., spec1d; Newman et al. 2013) or a maximum-likelihood method (such as

the Penalized Pixel Fitting method of Cappellari & Emsellem 2004). However, stacking

before measuring a velocity neglects the A-band corrections (and associated uncertain-

ties) of different observations. Bayesian hierarchical modeling provides a natural, fully
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Figure 3.5: Illustration of the velocity offset caused by slit miscentering. Blue and
pink lines show spectra of the same star taken during different observing runs; lefthand
panels show the Hα region of the spectrum, and righthand panels show the telluric
A-band region. Top panels show the raw spectra, in the observed frame, uncorrected
for heliocentric motion as well as slit miscentering; the Hα lines and telluric absorption
lines are clearly misaligned. The lower panels show the spectra with heliocentric and
A-band corrections applied.

probabilistic framework for incorporating all available information in the spectra while

properly accounting for uncertainties.

In Section 3.3.1, we define terminology used to describe our model. We then

explain how we model individual spectroscopic observations in Section 3.3.2. Section

3.3.3 describes the hierarchical model employed to measure the velocity of a star from

multiple observations. Details of fake data testing, including sample trace and corner

plots, can be found in the Appendix.
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3.3.1 Definitions

We begin by explicitly defining some terminology and symbols used in the

description of our method.

Spectral Regions: a segment of a spectrum, a few hundred Ångstroms in wave-

length, centered on an absorption feature. We use the letter j to denote a specific

spectral region; for example, Fj(λ) denotes the flux as a function of wavelength for

spectral region j.

Pixels: Each spectral region contains pixels i = 1, ..., I. The value Ij denotes

the total number of pixels in spectral region j.

λi → xij : For evaluating polynomials, we rescale the wavelength array of a

given spectral region j onto the range [-1,1]:

xij(λi) =
2(λi − λmin,j)

λmax,j − λmin,j
− 1. (3.2)

So, xij denotes the value that λi takes when rescaled onto the range de-

termined by the range of spectral region j: [λmin,j , λmax,j ]. Using this definition,

x0,j = x(λmin,j) = −1, and xI,j = x(λmax,j) = 1.

Observations: Each spectrum has k = 1, ...,K observations. Therefore, each

observation has its own vraw,k, vAband,k, vhelio,k.

Distributions: We use standard statistical notation to express random vari-

able distributions, which will include normally-distributed (x ∼ N(µ, σ2)) and Gamma-

distributed (x ∼ Gamma(a, b)). We also make use of inverse-gamma distributions in this

work; the inverse-gamma distribution is the conjugate prior for the variance of a normal
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distribution. If a random variable x is distributed according to an inverse-gamma distri-

bution with parameters a, b (i.e., x ∼ Inv −Gamma(a, b)), the corresponding probability

density function is

p(x|a, b) =
ba

Γ(a)
x−(a+1) exp {−b/x}, (3.3)

where Γ(a) denotes the gamma function.

3.3.2 Single-Mode: Modeling a Single Spectrum

We first present our Bayesian method of estimating the velocity of a star from

a single spectrum. To estimate a stellar velocity, we use the spectral regions that

contain the most velocity information. We typically use 3 regions: the region around

Hα (6500−6650 Å) and the Calcium triplet region (CaT; 8450−8700 Å) to estimate the

raw velocity, and the telluric A-band region (7500− 7750 Å) for the A-band correction.

To model a region of the spectrum, we first begin with a template. Our

templates consist of bright velocity standards that were observed with a very similar

configuration to our science spectra. The templates used in this analysis are described

in detail by Toloba et al. (2016); they have high signal-to-noise ratios (100–800 Å−1),

and span a range of spectral types (from B1 to M8) and luminosity classes (from dwarfs

to supergiants).

For the HALO7D targets, we use the template HD105546. While this star

is a horizontal branch star, its color is consistent with the color range of our targets,

and its spectrum has absorption in Hα and CaT. In order to estimate the raw velocity
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of our template star, we use a simple model of a polynomial with inverted Gaussians

for the absorption lines. Because the template star was trailed through the slit during

observation, it does not suffer from slit miscentering, so its A-band correction is 0

km/s. We verify that no additional correction to the wavelength solution is required by

checking the consistency of the velocities measured at Hα and CaT.

We use the spectrum of HD105546, shifted to the rest frame, to estimate the

velocity of Hα and CaT regions of the HALO7D target. We use the same spectrum in

the observed frame (i.e., unshifted) to estimate the A-band velocities of the HALO7D

targets. We model the different regions of the target spectrum separately, while de-

manding that the velocities at Hα and CaT be the same.

To model a spectral region, we allow the velocity, absorption line strength, and

continuum level to vary. Our vector of parameters, which we denote as θLine, are the

velocity vLine, the absorption line strength C, and the Legendre polynomial coefficients

bl which control the continuum level. Given that we look at narrow spectral regions, we

find l = 1 (i.e., a straight line with varying slope and intercept) sufficient to model the

continuum.

As a function of scaled wavelength x, our model M(x, θLine) can be written as:

MLine(x, θLine) =
∑
l

blPl(x)× TvLine(x) + C

1 + C
, (3.4)

where Pl are the Legendre polynomials and TvLine(x) is the template flux,

shifted to velocity vLine.

The likelihood of the observed spectral flux FLine given the model parameters
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is thus:

p(FLine|θLine) =

I∏
i=0

N(FLine(xi)|MLine(xi, θLine), σ
2
i ), (3.5)

where, for i = 1, ..., I pixels, xi is the rescaled wavelength value, FLine(xi) is the flux

at that rescaled wavelength, M(xi, θLine) is the model flux, and σi is the noise in that

pixel (as returned by the spec2d pipeline).

We can write down the posterior probability distribution for our model param-

eter making use of Bayes’ Theorem. Bayes’ Theorem gives the probability of a vector

of model parameters θ given a vector of of data y:

p(θ|y) =
p(y|θ)p(θ)
p(y)

, (3.6)

where p(y|θ) is the likelihood of the data given the parameters; p(θ) is the prior prob-

ability of the parameters; and p(y) is the probability of the data (in practice, this

term serves as a normalization). In order to sample from the posterior distribution for

our model parameters θLine, we must specify their prior distributions: p(θLine|FLine) ∝

p(FLine|θLine)p(θLine).

Our prior distributions are listed in Table 3.4; we generally assume reference

(i.e., Jeffreys) priors. For the absorption line parameters C, we assign a Gamma distri-

bution prior to the quantity C + 1. The Gamma distribution is defined over the range

x > 0, and is a common prior choice for scale parameters. Because of our chosen pa-

rameterization, if C < −1 the line becomes an emission line. In addition, as C becomes
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large, the absorption line becomes indistinguishable from the continuum. We therefore

assign a Gamma(2, 2) prior to C + 1 in order to constrain the possible allowed values

for C.

The total posterior probability of the full vector of spectrum parameters θspec

is given by the product of the posterior probabilities of the different lines used:

p(θspec|F) ∝
J∏
j=1

p(FLine,j |θLine)p(θLine), (3.7)

where θspec = (vraw, vAband, C1, .., CJ , bl,1, ..., bl,J) is the full vector of parameters de-

scribing the spectrum. Here we are denoting F = {FLine,1, ..., FLine,J} as the set of

fluxes over all spectral regions. When modeling three spectral regions, θspec contains 11

free parameters.

In order to sample from the posterior, we use emcee (Foreman-Mackey et al.

2013), a python implementation of the Goodman & Weare (2010) affine-invariant

Markov chain Monte Carlo (MCMC) ensemble sampler. We first initialize our walkers

by estimating the parameters one at a time. Results from extensive fake data testing,

including sample trace and corner plots, can be found in the Appendix.

3.3.3 Hierarchical Modeling

In order to combine spectra from different observations, we employ Bayesian

hierarchical modeling. While Bayes’ Theorem (Equation 3.6) gives the probability of a

vector of model parameters θ given a vector of of data y, it is often desirable for the

parameters themselves to be drawn from a distribution, whose values we would like to
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estimate. These hyperparameters (ϕ), are incorporated into Bayes’ Theorem as follows:

p(θ, ϕ|y) ∝ p(y|θ, ϕ)p(θ|ϕ)p(ϕ). (3.8)

p(θ|ϕ) is the probability of the hyperparameters given parameters θ and p(ϕ)

is the hyperprior.

For our model for multiple observations of a star, we have two hyperparam-

eters: v, which is the “true” velocity of the star, and σv, the dispersion of velocity

measurements (this term serves to model additional uncertainty/noise not captured by

the reduction pipeline). For the velocity of a star with K observations with spectra

F1, ...,FK , the full posterior is given by

p(v, σv, θspec,1, ..., θspec,K |F1, ...,FK) =

p(v1, ..., vK |v, σv)×
K∏
k=1

p(θspec,k|Fk)p(v, σv), (3.9)

where vk = vraw,k − vAband,k − vhelio,k is the corrected velocity for observation k, and

p(v, σv) is the prior distribution on the hyperparameters.

For these measurements, we can consider the fact that we have substantial

prior information about the extent to which these velocities should agree: we know that

we are observing the same star with each observation. Therefore, it does not make sense

for σv to be arbitrarily large, and a standard non-informative prior is not necessarily

the best choice. We assign σ2v to be drawn from an Inverse-gamma distribution with
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parameters a = 7, b = 72. This prior distribution has a mean of b/(a − 1) = 12, a

mode of b/(a+ 1) = 8, and variance b2/((a− 1)2(a− 2)) = 28.8. This prior distribution

therefore assigns highest probability to σv in the range of 3 − 4 km/s, but does allow

for σv to take on higher values if demanded by the data.

Given the complexity of our model, we use emcee to sample from the posterior.

All our model parameters and prior distributions, for each level of the model, are listed

in Table 3.4.

A demonstration of this technique is shown in Figure 3.6, for a HALO7D tar-

get with mF606W = 22.0. This target was observed seven times, in varying conditions,

over the course of Spring 2015. Each of the histograms in the top panel represents the

posterior distribution for the corrected velocity for each of these seven observations. The

varying widths of these PDFs reflect the varying quality in observing conditions across

the different nights of observing. These posterior samples were derived using emcee

to sample the posterior distribution given in Equation 3.7. However, once we link the

observations by combining them with the hierarchical model, the posterior distribu-

tions for the individual velocities converge (lower panel). The posterior distribution

for the corrected velocity of the star is shown in black: this posterior incorporates all

information, as well as sources of uncertainty, from the seven observations.

The resulting velocity uncertainties for the HALO7D targets as a function of

mF606W apparent magnitude are plotted in Figure 3.7. Velocity errors are computed as

half the difference between the 84th and 16th posterior percentiles: verr = (v84−v16)/2.

At the bright end of our sample, our velocity uncertainties are as low as 1-2 km/s;
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225 200 175 150 125 100
vLOS (km/s)

Figure 3.6: Histograms of posterior samples for the corrected velocity of a HALO7D
target (mF606W = 22.0) from seven observations. The top panel shows the posterior
samples for the velocities when the spectra are modeled independently: note that these
are the PDFs for v = vraw − vAband − vhelio. The bottom panel shows the PDFs for the
individual observations once they have been combined into the hierarchical model. The
final PDF for the corrected velocity (thick black line), incorporating all observations,
thus folds in all information and uncertainty from all observations of a star.
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Figure 3.7: Velocity uncertainties for the HALO7D sample as a function of mF606W

apparent magnitude. Velocity uncertainties are the 16th and 84th percentiles of the
posterior distributions.

velocity uncertainties remain below 10 km/s for stars brighter than mF606W = 22. Stars

at the faint end of our sample reach velocity uncertainties as high as ∼ 50 km/s.

For more details on testing our method on fake data, including sample trace

and corner plots, please see the Appendix.

3.4 Results

3.4.1 LOS Velocity Distributions

We use the velocities measured from Velociraptor to study the LOS velocity

distributions of the stellar halo. Heliocentric LOS are converted to the Galactocentric

Standard of Rest (GSR) frame by assuming a circular speed of 240 km s−1 at the position

of the Sun (R0 = 8.5 kpc), with solar peculiar motion (U, V,W ) = (11.1, 12.24, 7.25) km
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s−1 (Schönrich et al. 2010).

Figure 3.8 shows cumulative histograms for the LOS velocity distributions (in

the GSR frame) for the four HALO7D fields. To capture the effects of our velocity

uncertainties, we have plotted 100 realizations of the velocity cumulative distribution,

each time drawing a new value for every velocity from its posterior. Therefore, the

apparent thickness of a given step in the histogram is an indication of the uncertainty

of that measurement. We also show traditional histograms of the LOS velocities in

Figure 3.9.

Based on the histograms, we see that our samples across all four fields are

dominated by a “hot halo” population; while their could be hints of substructure in these

fields, we find that none of our fields are dominated by kinematically cold substructure,

which would appear as narrow (5 − 15 km/s) peaks in the velocity distributions. We

leave the discussion of the search and characterization of potential substructure in these

fields to future work, where we will also utilize PMs and abundances.

To estimate the LOS velocity dispersion of the halo, σLOS , we model the LOS

velocity distributions as a two component mixture model, with a halo component and a

disk component. We model the halo velocity distribution as a normal distribution with

unknown mean and variance: v ∼ N(〈vLOS〉, σ2LOS).

We model the disk velocity distribution along each line of sight as a skew-

normal distribution, with skew parameter α, location parameter ζ, and scale parameter

ω. The likelihood of an observed velocity vi given disk parameters is given by:
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p(vi|α, ζ, ω) =
2

ω
φ

(
vi − ζ
ω

)
Φ

(
α

(
vi − ζ
ω

))
, (3.10)

where φ(x) is the standard normal PDF and Φ(x) is the standard normal CDF. We fix

the parameters of the disk velocity distribution, but leave the fraction of disk contami-

nation as a free parameter. We denote our disk PDF as gdisk(vi) = p(vi|α, ζ, ω).

To determine the parameters of our disk model, we use the Besançon Galaxy

Model (Robin et al. 2003). We use synthetic catalogs of 1 square degree areas centered

on the coordinates of our survey fields (the larger area gives us better statistics for our

simulated disk and halo populations). We then determine the velocity distribution of

the (non-WD) disk contaminants within the HALO7D selection boxes, and fit a skew

normal to this distribution. The resulting parameters for the disk distributions can be

found in Table 3.5; they are also plotted in Figures 3.8 and 3.9.

For this mixture model of disk and halo, the likelihood of a given LOS velocity

observation vi, with error σv,i, is given by

p(vi|fdisk, 〈vLOS〉, σLOS , gdisk) = fdisk × gdisk(vi)

+(1− fdisk)×N(vi|〈vLOS〉, σ2LOS + σ2v,i).

(3.11)

In order to sample from the posterior distribution for our model parameters,

we first must assign prior distributions. We assign a standard uniform [0, 1] prior on

the fraction of disk contamination, and we assign the Jeffreys prior to the mean and

dispersion for the halo LOS velocity distribution (p(〈vLOS〉, σLOS) ∝ 1/σLOS).
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Our posterior is thus:

p(〈vLOS〉, σLOS , fdisk|v) ∝ p(〈vLOS〉, σLOS)p(fdisk)

×
Nstars∏
i=1

p(vi|〈vLOS〉, σLOS , fdisk).

(3.12)

We use emcee to sample from this posterior. We used 500 walkers, ran the

sampler for 1000 steps, and discarded the first 800 steps as burn-in. Median posterior

values, along with error bars from the 16/84 percentiles, are quoted for the three model

parameters in Table 3.5.

Posterior draws are overplotted on the histograms in Figures 3.8 and 3.9. Each

pink line in Figure 3.8 is the CDF corresponding to a draw from the posterior for 〈vLOS〉

and σLOS . In Figure 3.9, the amplitude of the disk PDFs reflects the uncertainty in the

disk contribution. Thicker pink and green lines indicate the distributions corresponding

to the median posterior values.

Histograms of posterior samples for our three free parameters are shown in

Figure 3.10. The left panel shows the posterior distributions for 〈vLOS〉; all fields have

mean LOS velocity consistent with 0 km/s. The middle panel of Figure 3.10 shows the

posterior samples for σLOS ; posterior PDFs for σLOS are consistent across the four fields.

The widths of the individual PDFs vary according to the sample size in a given field,

but the PDFs substantially overlap. In the COSMOS field, we estimate σLOS = 123+12
−11

km/s; in GOODS-N, σLOS = 110+16
−13 km/s; for GOODS-S, σLOS = 122+30

−21 km/s; and

in EGS, we find σLOS = 118+11
−9 km/s.

67



The right panel of Figure 3.10 shows posterior samples for fdisk in the four

fields. We note that no color or distance information is incorporated into our estimates

of the disk contamination, and that this estimate is based on LOS velocities alone. Our

estimates of our disk contamination will be more accurate once PM and photometric

information are incorporated. EGS and GOODS-N show 0 − 10% disk contamination,

consistent with the predictions from Besançon (see Table 3.5). COSMOS, our lowest

latitude field, shows a slightly higher level of disk contamination (∼ 25%, while predicted

to be ∼ 11%). The posterior distribution for disk contamination in GOODS-S, our field

with the smallest sample size, is very broad, with a posterior median of 30%, much

higher than the 7% predicted by Besançon. We note that this high posterior median is

largely due to the small sample size, and that the disk contamination in GOODS-S is

poorly constrained based on LOS velocities alone.

3.4.2 Comparison with Other Tracers

In this section, we compare our results for the HALO7D LOS velocity distribu-

tions with other studies conducted over a similar distance range (though using different

tracer populations). In order to compare our measurements of σLOS with other stud-

ies, we first need to estimate the distance range probed by our sample. We estimate

these distance distributions in a similar method to that of D13 and C16, using weighted

isochrones to derive the PDF for the absolute magnitude MF814W of a star given its

mF606W −mF814W color.

We weight the VandenBerg et al. (2006) isochrones according to a Salpeter

IMF, an age and a metallicity distribution typical of halo stars. We assume that the
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Figure 3.8: Cumulative LOS velocity histograms in the four HALO7D fields. Velocities
are given with respect to the Galactic Standard of Rest (GSR). Black lines indicate
the CDFs for the data: for each of the 100 black lines, velocity values were drawn
from the posterior distributions for the measurements. The width of each step thus
demonstrates the velocity uncertainty for that data point. The CDF for the disk model
is shown in green, and the CDF for the halo model, using the posterior median val-
ues for 〈vLOS〉, σLOS is shown in pink. Blue lines show the CDF for the mixture of
the disk and halo populations, for 100 draws from the joint posterior distribution for
fDisk, 〈vLOS〉, σLOS .
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Figure 3.9: LOS velocity histograms in the four HALO7D fields. Shown in pink are the
resulting velocity distributions from 50 draws from the posteriors for 〈vLOS〉 and σLOS .
The green line indicates the disk distribution. The parameters of the disk velocity
distribution are fixed; only the fraction to the total contribution is allowed to vary.
Bold lines show the corresponding distributions for the median posterior values of fdisk,
〈vLOS〉 and σLOS .
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Figure 3.10: Posterior samples for the mean LOS velocity (right), LOS velocity disper-
sion (middle) and the fraction of disk contamination (right) for all four fields. All fields
have mean LOS velocity consistent with 0 km/s, and dispersions consistent with one
another.

age and metallicity distributions are Gaussian, with 〈T 〉 = 12 Gyr, σT = 2 Gyr (e.g.,

Kalirai 2012), 〈[Fe/H]〉 = −1.9 and σFe/H = 0.5 (e.g., Xue et al. 2008). We model the

resulting weighted CMD with a kernel density estimate (KDE), using a kernel bandwidth

of 0.025. The resulting PDFs for MF814W , for six different colors, are shown in Figure

3.11.

Using the PDF for absolute magnitude as a function of color in conjunction

with the halo density profile (Deason et al. 2011), we derive the PDF for the log distance

distribution to our sample:

p(logD|mF814W ,mF606W , ρ) ∝ p(logD|ρ)×

Nobj∑
n=1

p(MF814W (logD)|mF606W,n −mF814W,n),

(3.13)
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where p(logD|ρ) is the probability of logD given the Deason et al. (2011)

density profile, and p(MF814W (logD)|mF606W,n−mF814W,n) is the probability of object

n having absolute magnitude MF814W (logD) given its color mF606W,n−mF814W,n.4 We

then estimate the mean distance to each field 〈D〉 =
∫
D × p(logD)d logD. Each of

the four fields has an average distance 〈D〉 ∼ 20 kpc. Figure 3.12 shows the cumulative

logarithmic distance PDFs of our samples across the four fields, and average distances to

each field are listed in Table 3.5. We note that no kinematic information is incorporated

into our distance estimate, and that information from 3D kinematics will improve our

distance estimates in subsequent work.

Figure 3.13 shows the LOS dispersions of the four HALO7D fields plotted as a

function of mean galactocentric radius (where we have converted heliocentric distance

〈D〉 to Galactocentric radius 〈r〉). Points indicate the median of the σLOS posterior

samples, and error bars indicate the 16 and 84 posterior percentiles. We compare our

results to the velocity dispersion profiles measured in other studies. The figure also

shows measured velocity dispersion profiles from SDSS blue horizontal branch (BHB)

stars (Xue et al. 2008, black dashed line); BHB and blue straggler (BS) stars from

the Hypervelocity Star Survey (Brown et al. 2010; grey dashed line); and the SEGUE

K-giant survey (Xue et al. 2016; connected black dots). The measured LOS velocity

dispersions in the HALO7D fields using MSTO stars are consistent with other studies

that have measured the LOS velocity dispersion profile over our distance range.

4In the COSMOS field, in the area where we used additional catalogs for selection, we used the
Subaru B and V photometric measurements from Capak et al. (2007) and converted these to STMAG
F606W as directed by Sirianni et al. (2005). We used the F814W magnitudes as published in the
Leauthaud et al. (2007) catalog.
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Figure 3.11: Normalized PDFs for absolute magnitude for six different choices of
mF606W − mF814W color. These PDFs are derived from the KDE constructed from
the VandenBerg et al. (2006) isochrones, weighted by a Salpeter IMF and the approxi-
mate age and metallicity distributions of the halo.
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Figure 3.12: Cumulative distance distributions for the four HALO7D fields. Distance
distributions are computed as given by Equation 3.13, using colors and assuming a MW
stellar density profile (Deason et al. 2011). All fields have 〈D〉 ∼ 20 kpc.
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Figure 3.13: LOS velocity dispersions of the four HALO7D fields, plotted as a func-
tion of mean Galactocentric radius. Vertical errorbars show the 16-84% quantiles of
the marginalized posterior. We compare our LOS dispersions with results from other
studies: the black dashed line indicates best-fit LOS dispersion profile from Xue et al.
(2008), measured from BHBs in SDSS. The grey dashed line indicates the best-fit dis-
persion profile from Brown et al. (2010) study, using BHB and BS stars as tracers. The
black connected points show the resulting dispersion profile from the SEGUE K-giant
survey Xue et al. 2016. The HALO7D dispersions are consistent with predictions from
other tracers.
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3.5 Comparison with Simulations

In all four lines of sight, we see the “hot halo” population; none of our fields

appear to be obviously dominated by substructure that is cold in LOS velocity. In

addition, the measured LOS velocity dispersions across the four fields are all consistent

with one another, and are consistent with measurements made using other tracers. In

this section, we interpret our LOS velocity distributions and the results from our velocity

dispersion analysis in the context of simulations.

We perform mock HALO7D surveys on the eleven Bullock & Johnston (2005)

halos (hereafter BJ05), using the synthetic survey software Galaxia (Sharma et al. 2011).

The publicly available Bullock & Johnston simulations are high resolution N-body sim-

ulations of accreted dwarf galaxies onto a Milky Way-like parent galaxy. The parent

galaxy has a time-dependent analytical potential with halo, disk and bulge components.

Because there is no stellar disk in these simulations, there is no “in-situ” stellar halo

component in these galaxies. Galaxia can accept N-body simulations as input, and it

generates synthetic catalogs with smooth, continuous distributions of stars over any

given volume.

We first use Galaxia to observe one square degree areas centered on the coordi-

nates of the four HALO7D fields in all eleven BJ05 halos. We create catalogs of synthetic

fields that are larger than our survey fields, because we are interested in exploring the

underlying LOS velocity distributions along these lines of sight; the larger area provides

us with more samples from these distributions. We then selected stars that fell within

the HALO7D CMD selection boxes, in order to study the velocity distributions over the

76



EGS
GOODS-S
GOODS-N
COSMOS

Halo02Halo02Halo02Halo02 Halo05Halo05Halo05Halo05 Halo07Halo07Halo07Halo07

Halo08Halo08Halo08Halo08 Halo09Halo09Halo09Halo09 Halo10Halo10Halo10Halo10 Halo12Halo12Halo12Halo12

500 0 500

Halo14Halo14Halo14Halo14

500 0 500

Halo15Halo15Halo15Halo15

500 0 500

Halo17Halo17Halo17Halo17

500 0 500

Halo20Halo20Halo20Halo20

LOS Velocity (GSR) (km/s)

Figure 3.14: LOS velocity distributions from one square degree “observations” of the
BJ05 accreted stellar halos generated with Galaxia. Different colored histograms denote
the observations in the different HALO7D fields. Seven out of the eleven BJ05 halos
show consistent velocity distributions across the four fields. Three halos show consis-
tency across three fields with one field dominated by substructure. Halo17 shows four
distinct LOS distributions across the four fields.
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Figure 3.15: Examples of posterior samples from our dispersion analysis on our mock
datasets. Each panel shows histograms of posterior samples for the 1D marginalized
posterior distributions for the velocity dispersion (same as second panel of Figure 3.10)
for a single mock HALO7D dataset. Each colored histogram represents a different
HALO7D field. The first two panels show examples of consistent estimates of the
LOS velocity dispersion for Halo07 and Halo09. The third panel shows an example of
posterior estimates for Halo17: here, the cold peaks in GOODS-N and GOODS-S have
caused the estimates of σLOS to be lower in these fields than in the other two fields.
The fourth panel shows results from a mock dataset analysis for Halo20, in which the
kinematically cold substructure at 400 km s−1) and at 0 km s−1 result in a higher
dispersion estimate in the EGS field.
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Figure 3.16: Age vs orbit circularity for the accretion events making up Halo07, Halo09,
Halo17 and Halo20. Points are scaled by accretion event mass. Grey crosses indicate
still-bound satellites. Colored points indicate the “dominant” satellites in the mock
HALO7D samples. For Halo07 and Halo09, the same satellite is dominant across all
four fields. In Halo17, one satellite dominates two fields while the other two fields are
dominated by distinct satellites. For Halo20, three out of the four HALO7D fields are
dominated by the most massive satellite, while the EGS field is dominated by a low
mass, recent accretion event. The recent accretion events in Halo17 and Halo20 are
responsible for the variable velocity distributions, while early, massive accretion results
in consistent velocity distributions for Halo07 and Halo09.
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Figure 3.17: Fraction of stars contributed to a given line of sight as a function of
accretion time, for Halo07 (gold), Halo09 (magenta), Halo17 (purple) and Halo20 (light
blue). Point sizes are scaled by the mass of the accretion event. Only events that
contribute > 10% of the stars are shown. Different shape orientations denote different
sightlines. Halo09’s most massive satellite dominates the mock HALO7D sample along
all sightlines, contributing 20-40% of the stars. The second most massive accreted
satellite, which was accreted at the same time, also contributes 10-20% along all four
sightlines. In Halo07, several relatively massive accretion events that were accreted
around the same time all contribute between 10-20% of the stars in the four sightlines.
These two accretion histories give rise to consistent velocity distributions along the
different sightlines. In contrast, Halo17 has experienced recent accretion of low mass
satellites. These recent accretion events dominate the four HALO7D sightlines, and
create cold peaks in the LOS velocity distributions. In the case of Halo20, the most
massive satellite contributes strongly to the samples across all four sightlines; however,
as with Halo17, two lower mass, recent accretion events contribute > 15% of the stars
along the EGS sightline, creating two cold peaks in the velocity distribution.
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same distance range as our survey.

Figure 3.14 shows the LOS velocity distributions for the four HALO7D fields

in the eleven BJ05 halos. Each panel represents a different BJ05 halo, while each colored

histogram shows the LOS velocity distribution for a given HALO7D field. In seven out

of the eleven halos, the four LOS velocity distributions are all “hot”, and appear to be

consistent with one another. In three of the remaining halos, three of the fields have

consistent LOS velocity distributions with one field having a strong cold peak (Halo08,

Halo14, and Halo20). The only halo with four different velocity distributions across

the four lines of sight is Halo17. Therefore, even if our survey had many more stars

and no measurement uncertainties, based on the BJ05 velocity distributions, it would

not be surprising to find that none of our four fields were dominated by kinematically

cold substructure (especially given the fact that we expect more coherent substructure

in the BJ05 halos than in the MW because of their assumption of a smoothly growing

potential; see Section 2.5 of BJ05).

However, our survey is limited by small numbers (especially in GOODS-N and

GOODS-S), and large measurement uncertainties at faint apparent magnitudes. There-

fore, to make a valid comparison to our observations, we need to incorporate these

effects. In order to assess how these different LOS velocity distributions respond to our

observations and dispersion analysis procedure, we generate mock HALO7D datasets.

We draw numbers of samples from the true underlying LOS velocity distributions cor-

responding to the sample sizes of our observations (e.g., we draw 88 stars from the EGS

distribution, 25 stars from the GOODS-S distribution, etc.). We then assign velocity
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uncertainties to each star, based on a fit of the relation between apparent magnitude

and LOS velocity error shown in Figure 3.7. We generate 30 sets of mock HALO7D

observations for each BJ05 halo.

3.5.1 Dispersion Estimates

As can be seen in the middle panel of Figure 3.10, the posterior distributions

for the LOS velocity dispersions in the four HALO7D fields substantially overlap, and

the posterior median for each distribution lies within the 95% credible region of the

other 3 distributions. For the purposes of this analysis, we define this result as having

“consistent” estimates for the dispersion across all four fields. A specified posterior

distribution is “consistent” with another posterior distribution if its posterior median

lies within the 95% credible region of the other posterior distribution.

For each mock catalog, we evaluate the posterior distributions for the mean

and dispersion along each sightline just as in Section 3.4.1 (though here we omit the

disk model). Four examples of the resulting 1D marginalized posterior distributions

for the velocity dispersions are shown in Figure 3.15. We find that the result of four

consistent (as defined by our metric) posterior distributions for the velocity dispersions

is relatively rare: in only 38 out of the 330 mock datasets did we find consistency across

the four distributions. Out of 30 mock datasets per halo, the four distributions were

consistent 5 times for Halo02, 7 times for Halo07, 3 times for Halo8, 6 times for Halo09,

2 times for Halo10, 8 times for Halo12, 7 times for Halo15. The first two panels of

Figure 3.15 show examples of consistent velocity dispersion estimates (in Halo07 and

Halo09). For Halo05, Halo14, Halo17, and Halo20, none of the mock HALO7D datasets
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yielded consistent dispersion estimates across all four fields. Example velocity dispersion

posterior distributions for Halo17 and Halo20 are shown in the righthand panel of Figure

3.15.

Unsurprisingly, the halos that never achieved consistency across the four fields

all contain cold peaks in their velocity distributions. It is important to note that these

peaks do not necessarily have the same affects on the dispersion estimates. In the cases

of Halo14 and Halo17, the cold peaks near 0 km s−1 decreased the dispersion estimates

in these fields relative to those without strong peaks (as in the third panel of Figure

3.15). However, in the case of Halo20, which has a peak at 0 km s−1 as well as a peak at

400 km s−1 in its EGS field, the dispersion estimate in this field was consistently higher

than the estimates in the other fields (as in the far righthand panel of Figure 3.15).

In spite of having a strong cold peak at 0 km s−1 in the EGS field, Halo08’s

posterior distributions were consistent for 3 out of the 30 mock datasets. This is because

the stars responsible for the cold peak are all located at a far and common distance of

∼ 90 kpc; as a result, the velocity errors are sufficiently large for stars at these distances

that the dispersion estimate is not strongly affected by the presence of the cold peak. In

contrast, the two most dominant accretion events affecting Halo20’s velocity distribution

in EGS have mean distances of 16 kpc (responsible for the peak at 400 km s−1) and 10

kpc (responsible for the peak at 0 km s−1). With our large LOS velocity errors for stars

at this distance, these stars do not strongly affect the resulting dispersion estimates.

Based on our dispersion analysis alone, we cannot make claims about the presence or

lack thereof of substructure in our sample, and leave the detection and characterization
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of potential substructure in HALO7D to future work.

3.5.2 Accretion Histories

We now look at four halos more closely: Halo07 and Halo09, which both

achieved our metric for consistency numerous times, and Halo17 and Halo20, whose

mock datasets never met our metric for consistency across the four fields. The accre-

tion histories of these halos are shown in Figure 3.16, in the space of accretion time vs.

J/Jcirc, with point sizes scaled by the mass of the accretion event. Lines indicate the

regions of this plane dominated by the different morphological types discussed in John-

ston et al. (2008); early, more radial accretion events tend to have mixed morphologies,

whereas recent, circular accretion events tend to have great circle morphologies (see

their Figure 3).

Accretion events that contribute the highest numbers of stars to one of the

mock HALO7D fields are shown as pink points. In the case of Halo07 and Halo09, debris

from the same accretion event contributes the most stars in all four of the HALO7D

fields (hence only one accretion event in each halo is highlighted in pink). In contrast, in

Halo17, debris from the same accretion event dominates the mock COSMOS and EGS

distributions, but two different (and less massive) events contribute the most stars to

the GOODS-N and GOODS-S fields. For Halo20, three out of the four HALO7D fields

are all dominated by debris from the same, massive early accretion event; however, in

the COSMOS field, the largest fraction of stars comes from a recent, low mass accretion

event. The total fractions of stars contributed by accretion events that contribute > 10%

of the stars along a given sightline are shown in Figure 3.17; point sizes are again scaled
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by mass, with the different triangle orientations indicating the different sightlines.

Neither Halo07 nor Halo09 have velocity distributions visibly dominated by

kinematically cold substructure. In the case of Halo09, the most massive accretion

event experienced by the halo (m = 2.14× 1011M�) contributes the most to the mock

HALO7D samples along all four lines of sight (contributing 20 − 40 %). The second

most massive accretion event, accreted at the same time, also contributes 10 − 20% of

the stars in each line of sight (pink points in Figure 3.17). These massive, coincident

accretion events are responsible for the hot velocity distributions that had consistent

estimates of their dispersions. Debris from the most massive satellite accreted by the

halo also dominated all four lines of sight in Halo02, Halo05, and Halo12.

Halo07 also experienced several coincident accretion events, though the events

occurred earlier in its accretion history (tacc ∼ 9 Gyr) and were on average lower mass

than the events experienced by Halo09. The three most massive of these events (m =

0.5−1.5×1011M�) each contribute 10−20% of the stars in each of the four fields (gold

points in Figure 3.17). We therefore see that accretion from several relatively early,

coincident accretion events, even of lower mass, can also result in consistent estimates

of the velocity dispersion across multiple lines of sight.

In contrast, Halo17’s velocity distributions are not consistent across the four

mock HALO7D fields. Figure 3.16 shows that Halo17’s accretion history is characterized

by several recent accretion events (tacc ∼ 6.5 Gyr) on fairly circular orbits; Figure 3.17

shows that these recent accretion events strongly dominate the HALO7D sightlines,

with the most massive recent event dominating two sightlines (fsample ∼ 30− 50%) and
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the other two sightlines are strongly dominated by two different less massive events

(fsample = 70− 80%). The recent accretion experienced by this halo results in cold LOS

velocity distributions along two of the four HALO7D sightlines. As a result, when we

estimate the dispersion of mock observations in these fields, the cold peaks result in

lower estimates of the dispersion in GOODS-N and GOODS-S compared to COSMOS

and EGS.

In the case of Halo20, the most massive accretion event in its accretion history

(m = 1.65 × 1011M�, tacc ∼ 10 Gyr) contributes the most stars to the GOODS-N,

GOODS-S and COSMOS fields. However, in Halo20’s EGS field, two lower mass (m ∼

1 − 2 × 1010M�), recent (tacc ∼ 6.5 Gyr) accretion events create distinct cold peaks

in the LOS velocity distributions (represented by the small blue triangles in the lower

left-hand corner of Figure 3.17).

To summarize, early, massive accretion events, as well as several, early, syn-

chronous accretion events, give rise to consistent, hot velocity distributions along differ-

ent halo sightlines, which lead to consistent estimates of the velocity dispersion across

multiple lines of sight. Recent accretion can lead to sightlines dominated by kinemati-

cally cold substructure, even when these accretion events are low mass. Depending on

the velocity of the substructure, as well as the number of accretion events causing peaks

in the velocity distribution, this can lead to lower estimates of σLOS (as is in the case

for Halo17) or higher estimates of σLOS (as for Halo20) along these sightlines.

While it is challenging to distinguish between the accretion histories of Halo09

and Halo07 with kinematics alone, we note that the chemical abundances will be dif-
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ferent for these two scenarios. An accretion history like Halo09’s should give rise to a

higher average [Fe/H] than Halo07’s accretion history, because of the mass-metallicity

relation (e.g., Kirby et al. 2013).

In their analysis of the BJ05 halo density profiles, Deason et al. (2013a) found

that halos with early, massive accretion events had breaks in their density profiles (like

the density profile of the MW; e.g., Watkins et al. 2009, Deason et al. 2011, Sesar et al.

2011), whereas galaxies with prolonged accretion epochs had single power-law density

profiles (like M31; e.g., Gilbert et al. 2012). Recent results from Gaia have discovered the

remnant of an early, massive accretion event, known as the “Gaia-Sausage” (Belokurov

et al. 2018) or “Gaia-Enceladus” (Helmi et al. 2018), which is both relatively metal rich

and strongly radially biased in its orbital distribution. Deason et al. (2018b) find that

the apocenters of these “Sausage” stars are at r ∼ 20 kpc, coincident with the MW’s

break radius; this is also the approximate mean distance to our sample. Studying the

LOS velocity distributions of the simulated BJ05 halos, we find that the consistent LOS

velocity distributions of the HALO7D fields provides yet another piece of evidence that

the MW likely experienced a massive, early accretion event. Proper motion information

and abundances will help us to determine if our sample is dominated by Gaia-Sausage

stars.

3.6 Conclusions

In this paper, we presented the spectroscopic component of the HALO7D sur-

vey; a Keck II/DEIMOS spectroscopic survey of distant, MSTO MW halo stars in the
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CANDELS fields. We described the survey observing strategy, mask layouts, and target

selection. We also presented a new method of measuring velocities from stellar spec-

tra from multiple observations, utilizing Bayesian hierarchical modeling. We used the

measured LOS velocities to estimate the parameters of the LOS velocity distributions

in the four HALO7D fields.

We summarize our conclusions as follows:

1. When performing slit spectroscopy of point sources, it is essential to consider

the apparent velocity shift due to slit miscentering when measuring velocities

from individual spectra or when combining multiple spectroscopic observations.

The hierarchical Bayesian approach presented in this work (implemented in Ve-

lociraptor) allows for the parameters of individual observations to be modeled

simultaneously, leveraging the available signal while properly propagating uncer-

tainties.

2. All four HALO7D fields are dominated by the “hot” halo population, and have

consistent LOS velocity distributions. The estimates of the velocity dispersions

are consistent with estimates derived using other tracer populations.

3. We performed mock HALO7D observations using the synthetic survey software

Galaxia to observe the Bullock & Johnston (2005) halos. We found that an early,

massive accretion event, or several early events, can result in consistent estimates

of the velocity dispersion along the different sightlines. This consistency in the

velocity dispersion estimates arises because the same satellite (or the same few

satellites) dominate the halo population along all sightlines. The consistent esti-
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mates of σLOS in HALO7D therefore could indicate that the MW experienced an

early, massive accretion event (or perhaps several events), whose stars are domi-

nating the samples of all four fields. However, we emphasize that our dispersion

analysis alone does not confirm or deny the presence of substructure: we intend

to study substructure in HALO7D in future work when we can make use of PM

and abundance information.

This paper is the first in the HALO7D series; our spectroscopy and the multi-

epoch HST imaging will enable us to measure proper motions and abundances for

these same stars. HALO7D is a deep complement to the Gaia mission: these stars in

this dataset will be the faintest stars with measured 3D kinematics until LSST. With

upcoming proper motions and abundances, we can continue to use the HALO7D dataset

to improve our understanding of the Galaxy’s formation.
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Chapter 4

HALO7D II: The Halo Velocity

Ellipsoid and Velocity Anisotropy

with Distant Main Sequence

Stars

4.1 Introduction

The Milky Way (MW) stellar halo’s kinematic structure contains key clues

about the Galaxy’s formation and mass assembly. According to the Lambda Cold Dark

Matter (ΛCDM) paradigm for the evolution of the universe, the MW has built up its

halo of dark matter over cosmic time by accreting smaller dark matter halos, some of

which host dwarf galaxies. The remnants of these accreted dwarfs are found in the Milky
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Way’s stellar halo, and the velocities of these stars retain a link to their initial conditions

because of their long dynamical times. The HALO7D project aims to investigate the

MW’s formation by studying the chemical and phase-space structure of the stellar halo’s

distant, main sequence (MS) stars.

One kinematic quantity that has long been of interest in MW formation studies

is the velocity anisotropy β (Binney & Tremaine 2008), which provides a measure of

the relative energy in tangential and radial orbits:

β = 1−
〈v2φ〉+ 〈v2θ〉

2〈v2r 〉
. (4.1)

Systems with β = 1 are on completely radial orbits, while a population of stars on

perfectly circular orbits has β = −∞.

The velocity anisotropy parameter β plays a key role in the spherical Jeans

(1915) equation:

MJeans(< r) = −rσ
2
r

G

(
d ln ρ

d ln r
+

d lnσ2r
d ln r

+ 2β

)
. (4.2)

Jeans modeling has been used to estimate the mass of the Galaxy in many studies

(e.g., Dehnen et al. 2006, Gnedin et al. 2010, Watkins et al. 2009, Deason et al. 2012,

Eadie et al. 2017, Sohn et al. 2018, Watkins et al. 2019 and references therein). However,

estimates of the MW’s mass have long been plagued by the mass-anisotropy degeneracy,

owing to the lack of constraints on the tangential velocity distributions. It has only

recently become possible to directly measure the tangential motion of kinematic tracers
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outside of the solar neighborhood. Previous studies have estimated β from line-of-sight

(LOS) velocities alone (e.g., Sirko et al. 2004; Kafle et al. 2012; Deason et al. 2012,

King et al. 2015), taking advantage of the fact that, because of our position within the

Galaxy, the LOS velocity distribution contains information about the tangential velocity

distributions. However, as pointed out by Hattori et al. (2017), studies of stars beyond

r ∼ 15 kpc with only LOS data (where vLOS ≈ vr) result in systematic underestimates

of β.

Fortunately, measuring tangential properties of tracers is now possible, thanks

to the Hubble Space Telescope (HST ) and the Gaia mission. The first estimate of β

outside the solar neighborhood using directly measured 3D kinematics was presented

by Cunningham et al. (2016), hereafter C16, using 13 MS stars with PMs measured

from HST and radial velocities measured from Keck spectra. We found β = −0.3+0.4
−0.9,

consistent with isotropy and lower than solar neighborhood estimates, which find a

radially biased β ∼ 0.5 − 0.7 (Smith et al. 2009, Bond et al. 2010). However, the

uncertainties on this measurement were substantial (primarily due to the small sample

size), and in order to better constrain β and the MW mass, more tracers are required.

Studies have recently used the PMs of globular clusters (GCs) as kinematic

tracers to estimate β and the mass of the MW. Sohn et al. (2018) used their own HST

PM measurements of 16 GCs to find β = 0.609+0.130
−0.229 in the Galactocentric distance

range of RGC = 10–40 kpc, and a corresponding MW virial mass of MMW,virial =

2.050.97−0.79 × 1012M�. Watkins et al. (2019) used PM determinations of 34 GCs in the

range RGC = 2.0–21.1 kpc based on Gaia DR2 (Gaia Collaboration et al., 2018a) and
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found β = 0.48+0.15
−0.20 consistent with Sohn et al. (2018), and a corresponding virial mass

of MMW,virial = 1.411.99−0.52 × 1012M�.

While studies have sought to estimate a single value β in order to estimate the

mass of the MW, studies of β can have additional power in constraining the MW’s ac-

cretion history. For example, the anisotropy radial profile β(r) can contain information

about the Galaxy’s assembly history. In Deason et al. (2013b) and C16, we argued that

our isotropic measurement of β, which is lower than solar neighborhood measurements

and also distant halo estimates (Deason et al. 2012), indicates a “dip” in the β profile,

and that this dip could indicate the presence of a shell.

Loebman et al. (2018) provided theoretical perspective on this question, by

studying the β profiles in three suites of simulations, including accretion-only and cos-

mological hydrodynamic simulations. They found that both types of simulations predict

radially biased 〈β〉 ∼ 0.7 beyond 10 kpc. Only one of the 17 simulations studied had

tangentially biased β over a large range of radii at z = 0; this extended β dip was the

result of a major merger at z ∼ 1. While the other 16 simulations had radially biased

β at z = 0, Loebman et al. (2018) found that temporal dips in the β profile could

arise. They found that recently accreted material can result in short-lived dips in β,

while the passage of a massive satellite can induce a longer-lived dip in the β profile

from the in-situ component of the stellar halo. This latter scenario could explain the

observed “dip” along the line of sight towards M31, as recent studies of the Triangulum

Andromeda overdensity have suggested that its origin may be the disk rather than an

accreted satellite (Price-Whelan et al. 2015; Bergemann et al. 2018), and that the event
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that disturbed the orbits of these disk stars may be the passage of the Sagittarius dwarf

(Laporte et al. 2018).

The anisotropy variation across different subpopulations in the halo can also

be used to disentangle accretion events. Using 7D measurements from the Gaia DR1

and SDSS of local MS stars, Belokurov et al. (2018) found that the relatively metal-rich

stars ([Fe/H] > −1.7) show strongly radially biased velocity anisotropy (i.e., “sausage”

stars, named thus because of the elongated radial velocity distribution relative to the

tangential velocity distribution), while the metal-poor stars display an isotropic velocity

distribution. They argue that presence of this radially biased, relatively metal-rich

population in the inner halo indicates that the MW experienced a relatively massive,

early accretion event. Evidence for this scenario has been bolstered with results from

Gaia DR2 (Helmi et al. 2018, Deason et al. 2018b). Lancaster et al. (2019) showed

that the kinematics of the BHBs in Gaia DR2 can be modeled by a mixture of two

populations: one strongly radially biased and one isotropic. Debris from a massive,

radialized dwarf that dominates the inner halo, known as the Gaia-Sausage, Gaia-

Enceladus, or Kraken, is speculated to be responsible for this signature.

Thanks to the Gaia mission, it is now possible to estimate the β of stars in the

MW; however, even with Gaia DR2, uncertainties remain substantial at large radii, and,

even in the the final data release, Gaia will provide PMs only for stars brighter than

G ∼ 20. As a result, Gaia will only provide PMs for MS stars out to D ∼ 15 kpc in the

halo. Beyond D ∼ 15 kpc, studies of tangential motion of the stellar halo using Gaia

PMs will be limited to giants and evolved stars (e.g., Bird et al. 2018, Lancaster et al.
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2019). While giants make excellent tracers due to their bright apparent magnitudes, it

is impossible to uniformly select giants from all age and metallicity populations in the

halo. Giants are also rare; averaging over large areas of the sky (and thus potential

inhomogeneities in the halo) is often required when estimating halo properties with

giants.

The HALO7D project seeks to complement the Gaia mission by measuring 3D

kinematics of distant MW halo MS stars. HALO7D includes both Keck spectroscopy

and HST PMs for MW halo star candidates in the magnitude range 19 < mF606W <

24.5. This dataset provides a deep, densely sampled view of the garden variety stars of

the MW halo. In the first HALO7D paper (Cunningham et al. 2019; hereafter Paper I),

we presented the spectroscopic component of the HALO7D dataset. In this paper, the

second in the HALO7D series, we introduce the proper motion component of HALO7D,

and use our full 3D kinematic sample to study the halo velocity ellipsoid and anisotropy.

In this work, we seek to use the HALO7D dataset to estimate the parameters

of the velocity ellipsoid, and velocity anisotropy, of distant halo MS stars. This paper

is organized as follows. In Section 4.2, we describe the HALO7D dataset and present

the HALO7D PM samples. In Section 4.3, we describe our methodology for estimating

the halo velocity ellipsoid parameters from our observables. In Section 4.4, we present

our resulting posterior distributions for ellipsoid parameters and velocity anisotropy. In

Section 4.5, we compare our results to previous work and other studies. In Section 4.6,

we investigate the spatial and radial variation of β for two halos from the Latte suite

of simulations. We conclude in Section 4.7. Details on our computational method for
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deriving PM uncertainties are given in Appendix B.1; a description of how we tested

our ellipsoid parameter model with fake data is given in Appendix C.
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Figure 4.1: The multi-epoch HST/ACS footprints of the four HALO7D fields. Different
colors indicate the positions of each ACS chip in the different HST programs used to
measure PMs in this work. HALO7D spectroscopic targets are indicated by black points;
filled points indicate targets for which we successfully measured a PM, whereas empty
circles indicate targets for which we could not measure a PM.
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4.2 Dataset

HALO7D consists of Keck/DEIMOS spectroscopy and HST measured PMs of

MW MSTO stars in the EGS, COSMOS, GOODS-N and GOODS-S fields. Coordinates

of the HALO7D fields are listed in Table 4.1. We begin this section by summarizing

some of the key details on target selection, survey properties, and radial velocity mea-

surements that are discussed in detail in Paper I; the remainder of this section is devoted

to a discussion of the proper motion measurements.

4.2.1 Keck/DEIMOS Spectroscopy

The HALO7D spectroscopic program was described in detail in Paper, I, but

we summarize the key details here.

Candidate halo stars were identified from color-magnitude diagrams. To min-

imize disk contamination, we selected blue, faint (19 < mF606W < 24.5) objects with

star-like morphologies. Stars were observed with Keck II/DEIMOS, configured with the

600ZD grating centered at 7200 Å, beginning in April 2014 with the final observations

taking place in April 2017. We targeted each DEIMOS mask for a minimum of 8 hours

of total integration time, and up to 24 hours.

The radial velocities for these stars were measured using a new Bayesian hier-

archical method, called Velociraptor. In order to build up sufficient signal to noise

on our targets, stars were observed many times, sometimes over the course of years.

Different observations of the same star will have different raw velocities; this is due to

the motion of the Earth around the sun (the heliocentric correction) as well as offsets
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in wavelength solution due to slit miscentering (the A-band correction). We used a

Bayesian hierarchical model in order to combine these different observations into a sin-

gle estimate of the star’s velocity. For further details on this technique, we refer the

reader to Paper I.

4.2.2 HST Proper Motions

The measurement methodology in this work builds from existing HST PM

measurement techniques, relying on the key concept that distant galaxies can be used

to construct an absolute stationary reference frame (e.g., Mahmud & Anderson 2008).

Sohn et al. (2012, 2013, 2017) present detailed descriptions of the state-of-the-art PM

measurement techniques used to measure the PMs of Local Group systems with HST

data. These techniques have been used to measure the PMs of M31 (Sohn et al. 2012),

dwarf galaxies Leo I (Sohn et al. 2013), Draco and Sculptor (Sohn et al. 2017); MW GCs

(Sohn et al. 2018); and several MW streams (Sohn et al. 2016). The PMs of individual

MW halo stars measured with HST were first published by Deason et al. (2013b);

subsequently, the PMs of individual stars belonging to MW streams were published by

Sohn et al. (2015) and Sohn et al. (2016).

However, the previous Sohn PM studies have typically used only a few HST

pointings in each study; in that work, they were able to carefully select galaxies by

eye that are suitable for use in the reference frame. In order to measure PMs over the

full area of the CANDELS fields, we required an approach that could identify “good”

galaxies (with well-measured positions) and “bad” galaxies (with poorly measured po-

sitions) without relying on visual inspection. We therefore built upon existing PM

99



20
10

0
10

20
PM

W
 (m

as
/y

r)

201001020

PMN (mas/yr)

C
O

SM
O

S
H

AL
O

7D
 S

pe
ct

ro
sc

op
ic

 T
ar

ge
t

R
ed

 S
ta

r 
w

/ T
iO

W
hi

te
 D

w
ar

f

20
10

0
10

20
PM

W
 (m

as
/y

r)

201001020

PMN (mas/yr)

G
O

O
D

S-
N

20
10

0
10

20
PM

W
 (m

as
/y

r)

201001020

PMN (mas/yr)

G
O

O
D

S-
S

20
10

0
10

20
PM

W
 (m

as
/y

r)

201001020

PMN (mas/yr)

E
G

S

1
0

1
101

Q
SO

s

20
10

0
10

20
PM

W
 (m

as
 y

r
1 )

201001020

PMN (mas yr1)

B
es

an
co

n 
C

O
SM

O
S

D
is

k
H

al
o

20
10

0
10

20
PM

W
 (m

as
 y

r
1 )

201001020

PMN (mas yr1)

B
es

an
co

n 
G

O
O

D
S-

N

20
10

0
10

20
PM

W
 (m

as
 y

r
1 )

201001020

PMN (mas yr1)

B
es

an
co

n 
G

O
O

D
S-

S

20
10

0
10

20
PM

W
 (m

as
 y

r
1 )

201001020

PMN (mas yr1)

B
es

an
co

n 
E

G
S

F
ig

u
re

4
.2

:
T

op
p

a
n

el
s:

P
ro

p
er

m
ot

io
n

d
ia

gr
am

s
of

th
e

fo
u

r
H

A
L

O
7D

fi
el

d
s.

B
la

ck
p

oi
n
ts

in
d

ic
at

e
st

ar
s

th
at

w
er

e
in

th
e
H
S
T

im
a
ge

s
th

at
w

er
e

n
o
t

H
A

L
O

7
D

sp
ec

tr
os

co
p

ic
ta

rg
et

s
—

p
ri

m
ar

il
y

M
W

d
is

k
st

ar
s.

H
A

L
O

7D
sp

ec
tr

os
co

p
ic

ta
rg

et
s

ar
e

sh
ow

n
in

p
in

k
.

L
ig

h
t

b
lu

e
p

oi
n
ts

in
d

ic
a
te

sp
ec

tr
os

co
p

ic
al

ly
co

n
fi

rm
ed

W
D

s,
w

h
il

e
re

d
M

W
d

is
k

st
ar

co
n
ta

m
in

an
ts

ar
e

sh
ow

n
in

or
an

ge
.

In
th

e
E

G
S

P
M

d
ia

g
ra

m
,

th
e

in
se

t
sh

ow
s

P
M

s
an

d
er

ro
rb

ar
s

fo
r

si
x

sp
ec

tr
os

co
p

ic
al

ly
co

n
fi

rm
ed

q
u

as
ar

s
ob

se
rv

ed
in

th
e

E
G

S
fi

el
d

.
L

ow
er

p
an

el
s:

P
M

d
ia

gr
am

s
fr

o
m

th
e

B
es

an
ço

n
G

al
ax

y
M

o
d

el
,

fr
om

1
sq

u
ar

e
d

eg
re

e
fi

el
d

s
ce

n
te

re
d

on
th

e
co

or
d

in
at

es
of

th
e

H
A

L
O

7
D

fi
el

d
s.

G
re

y
cr

os
se

s
in

d
ic

at
e

B
es

an
ço

n
d

is
k

st
ar

s,
w

h
er

ea
s

m
ag

en
ta

cr
os

se
s

ar
e

B
es

an
ço

n
h

al
o

st
ar

s.

100



techniques in this work, implementing a Bayesian mixture model that identifies “good”

and “bad” galaxies probabilistically and incorporates this uncertainty into the ultimate

measurement of the PMs of the stars in the set of images.

Measuring Proper Motions

In order to measure PMs for the HALO7D targets, we first had to identify

the HST programs and filters to use for PM measurements. The GOODS, COSMOS,

and EGS fields have all been observed multiple times with various setups (detectors +

filters). Among them, we selected data that provide astrometric quality sufficient for

measuring absolute PMs of individual halo stars. Specifically, data used for our PM

measurements meet the following conditions: (1) observations must be obtained with

either ACS/WFC or WFC3/UVIS; (2) observations must be in one of the broad-band

filters F606W, F775W, F814W, or F850LP; (3) time baseline of the multiple epochs

must be at least 2 yr; (4) combined exposure time in the shallower epoch must be at

least one orbit long; and (5) individual exposure time must be at least 300 s long. The

details of the HST programs used for the PM measurements are listed in Table 4.2; the

footprints from these programs are shown in Figure 4.1.

Once the HST programs and filters were chosen, the *_flc.fits images were

downloaded from MAST. These images are corrected for imperfect charge transfer ef-

ficiency using the algorithms described in Anderson & Bedin (2010). The *_flc.fits

images are processed by a custom-made FORTRAN routine called flt2xym4rd, which

takes a list of RA, Dec positions for objects, identifies them in an flc image, and mea-

sures them with a library PSF (see Anderson & King 2006, AK06), determining for
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each a position, flux, and stellarity index. The routine then uses the WCS header of

each exposure and the distortion solution in AK06 to convert the source positions into

an RA-Dec frame. This routine is run on all the exposures that cover a particular field.

In this analysis, we measure the PMs on a star-by-star basis. For every target

star, the first step is to identify all images that contain the star of interest. The single-

exposure catalogs from the flt2xym4rd output are then fed into another custom-made

routine, xid2mat, which takes the single-exposure catalogs in pairs and transforms one

catalog into the frame of the other, using the galaxy positions as the basis for the

transformation. This transformation makes an initial assessment of which galaxies have

consistent positions between the two frames, though the ultimate weighting of the galax-

ies is done in a Bayesian fashion.

We then specify one image as the reference image: the reference image has the

maximum amount of overlap with the other images across epochs containing the star

of interest. All overlapping images are mapped onto the reference image frame with

xid2mat using a six-parameter linear transformation:


A B xt

C D yt

0 0 1




u

v

1

 =


uref

vref

1

 , (4.3)

where (u, v) are the vectors of distortion corrected positions of objects in one image

and (uref , vref ) are the vectors of positions in the reference image. The parameters

xt, yt represent any linear translation offset between the two images, while parameters

A,B,C,D incorporate scale, rotation, and off-axis linear camera distortion terms. The

102



positions of stars are used to match frames within an epoch, and the positions of “good”

galaxies are used to match images across epochs. For more details on why these trans-

formations are required in comparing HST images, please see section 3.6.4 in Anderson

& van der Marel (2010).

When the images across epochs have been matched via the linear transforma-

tion, the change in the positions of the stars across epochs provides an initial estimate

of their PMs. In order to get full posterior probability distributions for the PMs, and

incorporate all sources of uncertainty (such as uncertainty in star and galaxy positions,

as well as which galaxies should be including in the stationary reference frame), we use

a Bayesian mixture modeling approach. We leave as free parameters the positions of all

stars and galaxies, the image transformation parameters, and the proper motions of all

stars. We model the galaxies in our reference frame as being a mixture of “good” and

“bad” galaxies (with poorly measured positions). Within an epoch, we use the positions

of stars to precisely align the images.

Table 4.1 lists the resulting median PM errors in each of the HALO7D fields.

Our PM errors are not a function of the magnitudes of our stars, but rather our ability

to define the stationary reference frame for a given target. This is determined by how

many images there are containing a given star, how much these images overlap across

epochs, and how many “good” galaxies there are in the images. For a full description

of the Bayesian model for this problem, as well as the details of the Gibbs sampling

algorithm we used to sample from the full posterior, we refer the reader to Appendix

B.1.
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Figure 4.5: Proper motion diagrams of the four HALO7D fields, in Galactic coordinates,
color coded by LOS velocity in the Galactocentric frame. Solid black lines indicate the
solar reflex motion along each sightline; the squares indicate the implied mean PM
along each line of sight for D = 5, 10, 20, 50 kpc (with mean PM at larger distances
approaching (µl cos(b), µb) = (0, 0). Dotted lines indicate µl cos(b) = 0 mas yr−1, µb =
0 mas yr−1.
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Proper Motion Diagrams

Figure 4.1 shows positions of the HALO7D spectroscopic sample as black

points; filled circles indicate targets for which we successfully measured PMs, and open

circles are stars for which we couldn’t measure a PM. As can be seen in Figure 4.1, the

HST pointings from different epochs are not well aligned; this is because we are using

archival data for HST programs that were not designed with astrometry in mind. As a

result, some of the HALO7D targets only have one epoch of HST imaging. This usually

arises when the target is on the edge of the field, or if the target falls in the ACS chip

gap in one of the epochs.

PM diagrams for the four HALO7D fields are shown in the top panels of Figure

4.2. PMs are plotted in PMW = −µα cos(δ), PMN = µδ. The PMs of HALO7D halo

star candidates are shown in pink. Our PM method returns PMs and uncertainties for all

point-like objects in the specified reference image that have multi-epoch coverage; PMs

for objects that were not HALO7D spectroscopic targets are shown as black points. Most

of these points are MW disk stars, though a few will be point-like distant galaxies. As

explained in Paper I, our spectroscopically confirmed disk contaminants are white dwarfs

(WDs) and red stars with titanium oxide absorption features. These disk contaminants

are shown as light blue and orange points, respectively. The black, light blue and orange

points occupy a larger area of PM space than the pink points; because they are mostly

disk members, they are at closer distances than the HALO7D halo star candidates and

thus have higher proper motions. The PM diagrams as predicted by the Besançon

Galaxy Model (Robin et al. 2003), for one square degree fields centered on our field
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coordinates, are shown in the lower panels of Figure 4.2 for reference.

In addition, in the EGS field, we had six spectroscopically confirmed quasars

for which we could also measure PMs. These PMs are shown in the inset of the upper

lefthand panel of Figure 4.2; reassuringly, all quasar PMs are consistent with 0 mas

yr−1.

As an additional verification of our technique, we compare our measured PMs

with those reported in the second data release of the Gaia mission (Gaia Collaboration

et al. 2016, 2018b). The bright end of our sample corresponds to the faint end of the

Gaia sample; though most of the halo star candidates used for dynamical modeling in

this work do not have reported Gaia PMs, using the full catalog of stars (including stars

not targeted for spectroscopy), we find a sizable sample of stars with reported PMs in

both datasets.

Figure 4.3 shows the comparison of the HST PMs against the Gaia PMs,

when available, for sources brighter than v ∼ 21. Figures are zoomed in to highlight

the regions of PM space where there is the highest target density in each field; there

are more sources with measured PMs in both catalogs that lie outside the plotted

range. We note that the number of sources available for comparison is not necessarily

proportional to the area of the field, due to Gaia survey incompleteness at the faint end

as a result of the Gaia scanning law (hence the few overlapping targets in COSMOS).

The two datasets show excellent agreement, with the Gaia measurements generally

having larger errorbars. We leave a more detailed comparison of the two datasets

(including an exploration of their respective systematics) to future work.
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Field Program P.I. Filter Dates

COSMOS GO-9822 Scoville F814W 12/2003–05/2004
GO-12440 Faber F814W 12/2011–02/2012
GO-12461 Riess F814W 02/2012 – 04/2012

GOODS-N GO-9583 Giavalisco F775W 11/2002–05/2003
GO-9727 Perlmutter F775W 04/2004–08/2004
GO-9728 Riess F775W 06/2003–09/2004
GO-10339 Riess F775W 10/2004–04/2005
GO-11600 Weiner F775W 9/2009–04/2011

GOODS-S GO-9425 Giavalisco F606W, F850LP 07/2002–02/2003
GO-9978 Beckwith F606W, F850LP 09/2003 – 01/2004
GO-10189 Riess F606W, F850LP 09/2004 – 08/2005
GO-10340 Riess F606W, F850LP 07/2004 – 09/2005
GO-11563 Illingworth F606W, F850LP 08/2009 – 02/2011

GO-12060/1/2 Faber F606W, F850LP 08/2010 – 02/2012

EGS GO-10134 Davis F814W 06/2004 – 03/2005
GO-12063 Faber F814W 04/2011 – 05/2013
GO-12547 Cooper F814W 10/2011 – 02/2013

Table 4.2: Summary of the HST programs used for the PM measurements in this paper.

Color magnitude diagrams (CMDs) for the four HALO7D fields are shown

in Figure 4.4. Gray crosses indicate all star candidates, and HALO7D targets with

successful PM measurements and LOS velocity measurements are shown as circles color

coded by the magnitude of their PMs (|PM |2 = (µl cos b)2 + µ2b). As expected, bluer,

fainter stars tend to have lower PMs (as they are more distant), whereas brighter, redder

stars have higher PMs (and are more nearby). For the reader interested in the full color

range of the CMD, we refer them to Figure 3 of Paper I.

Our 3D kinematic sample is summarized in Figure 4.5; PM components in (l, b)

are plotted against each other for the four HALO7D fields, color coded by LOS velocity

as measured in Paper I. In EGS, we see an interesting covariance between µl and vLOS ;

there appears to be a trend of increasing LOS velocity with increasing µl. However, we
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note that this is not a signature of rotation. EGS is located at a Galactic longitude

l = 96 degrees; along this line of sight, vl ≈ −VX , and VY = vLOS cos(b) − vb sin(b).

Given that vφ = x
Rp
VY − y

Rp
VX , a covariance between VX , VY arises naturally if we

assume a Gaussian velocity distribution for vφ. As we’ll see in Section 4.4, the fact

that vLOS and µl increase together is consistent with zero net rotation along this line

of sight.

4.3 Modeling The Halo Velocity Ellipsoid

We use our 3D kinematic sample to estimate the parameters of the halo velocity

ellipsoid in spherical coordinates. In this work, we use only objects for which we have

both a successful PM measurement and a successful LOS velocity measurement; we leave

the analysis of stars with PM measurements but without LOS velocities to future work.

Our method is very similar to the ones used in Cunningham et al. (2016) and Deason

et al. (2013b), though in this work we have used notation and language consistent with

a Bayesian construction of the problem.

For each star i located in field k, we have data yi = {vLOS , µl, µb}, with

associated explanatory variables xi = {mF606W,i,mF814W,i, lk, bk}. We model our sample

as being drawn from a mixture of two distributions: the disk distribution (with fixed

parameters), and the halo distribution.

The free parameters in our model are the absolute magnitudes (and, by ex-

tension, the distances) to each star M = {MF814W,1, ...,MF814W,N} (we denote the

corresponding distances D = {D1, ..., DN}); the fraction of disk contamination along
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a given line-of-sight f = {fDisk,1, ..., fDisk,k}; and the halo velocity ellipsoid parameters

θHalo = {〈vφ〉, σr, σφ, σθ}.

4.3.1 Disk Model

For the disk model, we work in cylindrical coordinates (Rp, φ, z). We assume

exponential density profiles in both Rp and z, with a disk scale length of hR = 3 kpc

and a disk scale height of hz = 1 kpc.

For the disk velocity distributions, we assume distributions in Rp and z that

are Gaussian with zero net motion, and have dispersions of σRP = 45 km s−1 and

σz = 20 km s−1. For the tangential component, we assume that the rotational velocities

are described by a skewed normal distribution with mean 〈vT 〉 = 242 km s−1, scale

parameter 46.2 km s−1, and shape parameter of −2. These parameters are derived

based on the predicted marginalized velocity distributions from galpy5 (Bovy 2015),

using the quasi-isothermal distribution function discussed in Binney (2010) and Binney

& McMillan (2011) and the MWPotential2014 (see Bovy 2015 for details). While they

are not free parameters in our model, for simplicity in notation, we denote the disk DF

parameters as θDisk.

While this disk model is quite simple, we find that this model is effective at

identifying stars in our sample that are disk-like (see Section 4.4.3). These stars are

more likely to have higher proper motions, brighter apparent magnitudes, redder colors,

and heliocentric LOS velocities closer to 0 km s−1.

5http://github.com/jobovy/galpy
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4.3.2 Halo Model

For the halo distribution, we work in spherical coordinates. We assume the

broken halo density profile derived in Deason et al. (2011), with break radius rb = 27

kpc and slopes αin = 2.3, and αout = 4.6. The probability that a star has a distance Di

given the density profile is given by:

p(Di|ρ, l, b) ∝ ρ(rq(Di, l, b))×D2
i , (4.4)

where the factor of D2
i arises from the spatial volume element in spherical coordinates.

We assume independent Gaussian velocity distributions for the three spherical

components of motion, and assume 〈vr〉 = 〈vθ〉 = 0 km s−1. We define our vector of

halo ellipsoid parameters to be θHalo = {〈vφ〉, σr, σφ, σθ}. We denote joint velocity PDF:

Fv,Halo(vr,i, vφ,i, vθ,i) = N(vr,i|0, σ2r + σ2vr,i)×

N(vφ,i|〈vφ〉, σ2φ + σ2vφ,i)×N(vθ,i|0, σ2θ + σ2vθ,i),

(4.5)

where vr,i, vφ,i, vθ,i are the Galactocentric velocities corresponding to data yi and dis-

tance Di. The corresponding uncertainties on these velocities are denoted by σ2vr,i, σ
2
vφ,i

,

σ2vθ,i. Proper motions in Galactic coordinates are converted to physical velocities using

the fact that tangential velocity is proportional to distance: vT = 4.74047µD, where µ

is the proper motion in mas yr−1 and D is in kpc. Tangential velocities are converted

to the Galactocentric frame by correcting for the projection of the Sun’s velocity along

a given line-of-sight. We convert (vLOS , vl, vb) to spherical coordinates (vr, vφ, vθ) by
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assuming a circular speed of 240 km s−1 at the position of the Sun (R0 = 8.5 kpc), with

solar peculiar motion (U, V,W ) = (11.1, 12.24, 7.25) km s−1 (Schönrich et al. 2010).

We note that in order to evaluate the probability of θHalo given our observables,

we need to consider the Jacobian matrix from the coordinate transformation from the

observed frame to the Galactocentric frame:

p(yi|Di, θHalo) ∝ Fv,Halo ×D2
i cos b, (4.6)

where the factor of D2
i cos b arises due to the change in variables.

4.3.3 Absolute Magnitudes

Finally, as in Deason et al. (2013b), Cunningham et al. (2016), and in Paper

I, we additionally constrain the absolute magnitude to a given star MF814W,i using

information on its mF606W −mF814W color.

We weight VandenBerg et al. (2006) isochrones in the HST filters according to

the approximate age and metallicity distributions of the MW halo. We then generate a

KDE to get the probability distribution function G(MF814W |mF606W,i,mF814W,i).

4.3.4 Full Posterior

We now summarize how we sample from the full posterior distribution, for pa-

rameters θHalo,M, f given observables y,x. We can write down the likelihood under this

model for a star with data yi, explanatory variables xi = {mF606W,i,mF814W,i, lk, bk},

given our model parameters:
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p(yi|θHalo,MF814W,i, fDisk,k, xi) =

p(MF814W,i|mF606W,i,mF814W,i)×Di

×
[
fDisk,k × p(yi|θDisk, Di)p(Di|ρDisk, lk, bk)+

(1− fDisk,k)× p(yi|θHalo, Di)p(Di|ρHalo, lk, bk)
]
,

(4.7)

The extra factor of Di arises due to the change of variables from absolute

magnitude to distance: MF814W ∝ log(D). The full likelihood, using stars from k =

1, ...,K fields containing N∗,k stars, is given by the product of the likelihoods of each

individual data point:

p(y|θHalo,M, f,x) =

K∏
k=0

N∗,k∏
i=0

p(yi|θHalo,MF814W,i, fDisk,k, xi). (4.8)

Likelihood in hand, we can write down the posterior distribution for our model

parameters using Bayes Theorem:

p(θHalo,M, f|y) ∝ p(y,M|θHalo, f)× p(θHalo, f), (4.9)

where p(θHalo,M, f) is the prior distribution on model parameters. We assume stan-

dard reference priors on θHalo (i.e., Jeffreys priors: p(〈vφ〉) ∝ const and p(σ) ∝ 1/σ

for all dispersions). We assume uniform priors on the fDisk parameters (p(fDisk,k) =

1, fDisk,k ε [0, 1]).
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Figure 4.6: Summary of posterior results for spherically averaged samples. Left-hand
panels: histograms of marginalized posterior samples for the four parameters of the
halo velocity ellipsoid. Each of the estimates shown combines targets from all four
survey fields. The estimates using the full HALO7D sample are shown in purple, while
the blue histograms show the resulting estimates from three apparent magnitude bins.
Upper righthand panel: CDFs of the distances of the full sample and the three apparent
magnitude bins. Lower righthand panel: posterior distributions for β.

In order to sample for our model posterior parameters, we compute Equation

4.9 over a grid in absolute magnitude for every star. We then use emcee (Foreman-

Mackey et al. 2013) to sample from our full posterior, marginalizing over the absolute

magnitude of every star in each step of the chain. We test this modeling procedure on

fake data; for details on how we generated fake data and tested our model, we refer the

reader to Appendix C.
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tangential (square points) velocity distributions, as a function of mean Galactocentric
radius. Different colors indicate the results from the analysis of the full sample (purple)
as well as the three apparent magnitude bins (same colors as in Figure 4.6).

4.4 Results

In this section, we present posterior distributions for the halo velocity ellipsoid

parameters. We first present the results using the full HALO7D sample, and then split

our sample into three apparent magnitude bins. Finally, we consider the samples from

each field separately.

4.4.1 Spherically Averaged Estimates

We first estimate the velocity ellipsoid parameters using the full HALO7D

sample of 188 stars. The parameters in this model are the four ellipsoid parameters;

the disk contamination in each of the four fields; as well as the absolute magnitude

(and therefore distances) to each star. The resulting 1D marginalized distributions for

the ellipsoid parameters are shown as the purple histograms in Figure 4.6. The left-
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hand panels show histograms of posterior samples for the four halo velocity ellipsoid

parameters θHalo = {〈vφ〉, σr, σφ, σθ}. Using the full sample of stars, we do not see a

strong signature of halo rotation (〈vφ〉 = −13±6 km s−1). We use the posterior samples

of the ellipsoid parameters to derive a posterior estimate for the velocity anisotropy β;

the resulting posterior distribution is shown as the purple histogram in the lower right-

hand panel of Figure 4.6. We find that β is radially biased: at our mean sample distance

of 〈r〉 = 23 kpc, β = 0.68+0.04
−0.05, consistent with estimates of β in the solar neighborhood

(e.g., Bond et al. 2010).

In addition to modeling the full sample of stars, we also split our sample into

three apparent magnitude bins. Because our distance estimates to each individual star

are uncertain and probabilistic, we cannot divide our sample into different radial ranges;

we therefore split the sample in apparent magnitude to study the radial variation of β.

The resulting marginalized posterior distributions for the three apparent magnitude

bins are shown as the blue histograms in Figure 4.6. Estimates using stars with 19.0 <

mF606W < 21.0 are shown in light blue; the estimates from stars with 21.0 < mF606W <

22.5 are shown as gray blue; and 22.5 < mF606W < 24.5 are shown in dark blue. The

cumulative distribution functions (CDFs) for the distances to each of the three samples

are shown in the upper right-hand corner of Figure 4.6, along with the CDF for distance

of the full sample.

Figure 4.7 shows the second moments of the velocity distributions as a function

of the average Galactocentric distance to the sample. We see a trend of decreasing

velocity dispersion with distance, in both tangential and radial motion. However, when
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Figure 4.8: Summary of posterior results for the four fields. Left-hand panels: his-
tograms of marginalized posterior samples for the four parameters of the halo velocity
ellipsoid. Each colored histogram represents a different HALO7D field. Upper right-
hand panel: CDFs for the distances of the stars in the four fields. Lower righthand
panel: posterior distributions for β.

we compute the posterior distribution for β (blue histograms in lower right-hand panel

of Figure 4.6), we find that all three estimates are consistent with the estimate of β

from the full sample: β is radially biased for all of our spherically-averaged samples.

4.4.2 Individual Fields

In the case of modeling fields individually, the free parameters in our model

include the velocity ellipsoid parameters, the distance to each star in the field, as well

as the fraction of disk contamination in the field.

Posterior samples for the ellipsoid parameters in each of the four fields are
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shown in Figure 4.8. The left-hand panels show histograms of posterior samples for the

four halo velocity ellipsoid parameters θHalo = 〈vφ〉, σr, σφ, σθ. The upper right-hand

panel shows the cumulative distribution for the distances to the four fields, and the lower

right-hand panel shows the resulting posterior distribution for the velocity anisotropy.

When the four fields are treated separately, we see variation in the estimates

of the velocity ellipsoid parameters. While the PDFs for GOODS-S are the broadest,

because it has the smallest sample size, the GOODS-S distribution also shows a signature

of rotation (〈vφ〉 = −40+18
−17 km s−1). The resulting estimate for β is consistent with

isotropy, though also very broad, due in part to the small sample size in this field,

but also due to the fact that circular orbits correspond to β = −∞. In contrast, the

estimates in the EGS field show no rotation, and the resulting estimate of β is strongly

radially biased (βEGS = 0.77+0.05
−0.06).

4.4.3 Disk Contamination

The marginalized 1D posterior distributions for the disk contamination in each

of the four HALO7D fields are shown in Figure 4.9. The posteriors for fDisk when the

fields are treated individually are the thick black histograms; the colored histograms

show the estimates in a given field for the spherically averaged estimates.

Our estimates for disk contamination are low (on the order of or less than 10%);

this is consistent with the predicted disk contamination levels predicted by the Besançon

Galaxy Model (Robin et al. 2003; see Paper I). Because GOODS-N and GOODS-S

have smaller sample sizes than EGS and COSMOS, their posterior distributions for

fDisk are broader, but the posterior modes are still around 10%. As is to be expected,
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Figure 4.9: Posterior distributions for the disk contamination in the four HALO7D
fields for each of the models. Black histograms indicate the posterior distributions for
the fraction of disk stars when the fields are modeled individually. Colored histograms
indicate the full sample (purple histograms) and the spherically averaged estimates in
different apparent magnitude bins (as in Figures 4.6 and 4.7).
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the disk contamination is highest for the brightest apparent magnitude bin (light blue

histograms).

4.4.4 The β Radial Profile

Figure 4.10 summarizes all of our estimates of the velocity anisotropy, as a

function of mean distance. Our spherically averaged estimates are plotted as circles,

while the estimates of our individual fields are shown as squares. Gray points are

results from other studies that used 3D kinematics to estimate β: gray triangles show

the estimates of β from MW GCs, using PMs from both HST (Sohn et al. 2018) and

Gaia (Watkins et al. 2019). The gray diamond shows the 3D estimate of β in the solar

neighborhood from SDSS (Bond et al. 2010), and the gray square shows the C16 estimate

of β along the line of sight towards M31. Gray crosses show the recent estimates of β

from Lancaster et al. (2019) using Gaia DR2 PMs of blue horizontal branch stars.

Our spherically averaged estimates of β, which find radially biased β ∼ 0.6−

0.7, are consistent with one another and with other studies that have estimated β

averaging over different parts of the sky. However, our field-to-field estimates (including

the estimate from C16) show substantial variation, from strongly radially biased (EGS)

to isotropic (GOODS-S) to mildly tangentially biased (M31). While the GOODS-S

and M31 fields each have lower posterior estimates for β, these two fields also have the

smallest sample size. Because of the way β is defined, estimates of β are sensitive to

sample size and measurement uncertainties. We therefore assess how much our sample

size should concern us by testing fake data. We generate 100 fake datasets (in the

method described in Appendix C), from velocity distributions that have βTrue = 0.75,
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each containing 20 stars. Out of the 100 tests, only one of the fake datasets had a

posterior distribution for β with median βMed ≤ 0.14 (for the full distribution of β

posterior medians, see Figure C.3 in Appendix C). We do not see small sample size

resulting in a systematic underestimate of β. Therefore, while the small sample size

does contribute to the large uncertainty on β in this field, based on our fake data

testing, we do not expect that the observed isotropic β is purely due to sample size.
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Figure 4.10: The Milky Way’s radial anisotropy profile, β, as measured from 3D kine-
matics. Colored points indicate results from this work, while grey points indicate find-
ings from previous work and other studies. The grey diamond shows the anisotropy
estimate from Bond et al. (2010), using main sequence stars from SDSS, and the grey
square shows the estimate from Cunningham et al. (2016), using 13 MW MSTO stars
along the line of sight towards M31. Gray crosses show the estimates of β from Lancaster
et al. 2019, using the overall estimate of β consisting of the mixture of a metal-rich,
radially biased population and an isotropic, metal-poor population, from BHBs in Gaia
DR2. The two recent estimates for β from MW globular clusters, using HST PMs and
Gaia PMs, are shown with triangles (Sohn et al. 2018, Watkins et al. 2019). Square
shaped points are results from individual fields, while our spherically averaged results
are shown as circles. When using small fields to estimate anisotropy, β varies from
mildly tangential (e.g., GOODS-S, M31) to strongly radial (e.g., EGS). However, the
spherically averaged estimates are all consistently β ∼ 0.6 (and consistent with solar
neighborhood and GC estimates), and the posterior means increase as a function of
mean sample distance.
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4.5 Comparison with Other Studies

In this paper, we use the HALO7D dataset to estimate the parameters of the

MW stellar halo velocity ellipsoid. We study the full HALO7D sample, the sample

divided into three apparent magnitude bins, and the individual HALO7D fields. When

averaging over the four HALO7D fields, we find consistent estimates for β ∼ 0.6− 0.7.

Our spherically averaged results for β are consistent with results from other recent esti-

mates of β using GCs as tracers (Sohn et al. 2018, Watkins et al. 2019). However, when

we treat the four HALO7D fields separately, our estimates for the ellipsoid parameters,

and thus β, show significant variation.

In their study of β profiles of simulated galaxies, Loebman et al. (2018) found

that β profiles are generally increasingly radially biased as a function of radius. However,

recently accreted material can cause short-lived (< 0.2 Gyr) dips in the β profiles, and

longer-lived (> 0.2 Gyr) dips arise due to the disruption of the in-situ stellar halo by

the close passage of a massive satellite. These “dips” in the in-situ stellar halo are more

metal-rich than dips caused by the accreted stellar halo.

Several studies using LOS velocities alone have observed tangentially biased

“dips” in the β profile (Sirko et al. 2004; Kafle et al. 2012, King et al. 2015); these dips

occur approximately at the observed break in the MW density profile (Deason et al.

2011, Sesar et al. 2011, Watkins et al. 2009). The kinematic structure around the break

radius rb ∼ 27 kpc is of interest in order to understand its origin. In their study of the

Bullock & Johnston (2005) purely accreted stellar halos, Deason et al. (2013a) found

that the buildup of stars at apocenter from a relatively early, massive accretion event,
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or a few synchronous events, can cause broken density profiles.

As pointed out by Hattori et al. (2017), studies of stars beyond r ∼ 15 kpc

using only LOS velocities are subject to underestimates of β. However, recent studies

using Gaia PMs have found decreases in β around the break radius as well. Using blue

horizontal branch stars in Gaia DR2, Lancaster et al. (2019) found that β decreases

just beyond the break radius, from β ∼ 0.6 at 20 kpc to β ∼ 0.4 at 40 kpc (gray crosses

in Figure 4.10). They argue that this is due to sharp decline in the fraction of stars

belonging to a radially biased population that dominates the inner halo (i.e., the Gaia-

Sausage) beyond its apocenter radius (which Deason et al. 2018b showed coincides with

the MW break radius). Using LAMOST K-Giants with Gaia DR2 PMs, Bird et al.

(2018) found strongly radially biased (β ∼ 0.8) inside of r ∼ 25 kpc, with β gradually

decreasing beyond this radius, down to β = 0.3 at 100 kpc; however, Lancaster et al.

(2019) also showed that the magnitude of the decrease observed in the Bird et al. (2018)

study could be due to their treatment of measurement uncertainties.

When averaging over multiple fields, we do not see a dip in the β profile, nor a

global decrease in β beyond the break radius. While our estimates are around the MW

break radius, the posterior medians of our spherically averaged estimates are consistent

with one another. Increasing β as a function of radius is predicted by simulations (e.g.,

Abadi et al. 2006, Sales et al. 2007, Rashkov et al. 2013, Loebman et al. 2018). However,

we need to probe to larger distances beyond the break radius to see if this prediction

is consistent with the data, or if β starts to decrease (as seen by Bird et al. 2018 and

Lancaster et al. 2019).

127



When we treat our different lines-of-sight separately, we see potential evidence

for a dip in β towards GOODS-S and M31. Based on the Loebman et al. (2018) findings,

these sightlines could be dominated by material that has been recently accreted or kicked

up by the passage of Sagittarius. As discussed in the Introduction, several overdensities

previously believed to be accreted structures now show evidence of a potential disk

origin, having been kicked out of the disk due to the passage of Sagittarius (e.g.,Price-

Whelan et al. 2015; Laporte et al. 2018; Bergemann et al. 2018). One such overdensity

discussed in those works is TriAnd, located along the line of sight towards M31, which

is also the lowest latitude of the HALO7D fields.

Measuring abundances for stars in the HALO7D fields from their Keck spectra

(McKinnon et al., in prep) will help to distinguish between the kicked-up disk scenario

and the recent accretion scenario as the origin for the observed “dips” in β in GOODS-S

and M31. Chemical abundances will also help to assess the origin of the strongly radially

biased β estimate in EGS (βEGS ∼ 0.8). Belokurov et al. (2018) discovered the “Gaia-

Sausage” as a metal-rich ([Fe/H] > −1.7), radially biased (β ∼ 0.9) population in Gaia

DR1. Given that the estimate of β in EGS is more radially biased than the estimates

of β in the other fields, it is possible that the sample of stars in EGS is dominated by

Sausage stars. Chemical abundances will be essential in assessing to what extent the

Sausage is contributing to the HALO7D sample.
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4.6 Comparison with Simulations

When we treat the four HALO7D fields separately, we see variation in the

estimates of the velocity ellipsoid parameters (and the resulting velocity anisotropy).

In this section, we explore the spatial variation of velocity anisotropy in two halos

from the Latte suite of FIRE-2 cosmological zoom-in baryonic simulations of Milky

Way-mass galaxies (introduced in Wetzel et al. 2016), part of the Feedback In Realistic

Environments (FIRE) simulation project.6 These simulations were run using the Gizmo

gravity plus hydrodynamics code in meshless finite-mass (MFM) mode (Hopkins 2015)

and the FIRE-2 physics model (Hopkins et al. 2018). In this work, we discuss halos m12i

(initially presented in Wetzel et al. 2016) and m12m (initially presented in Hopkins et al.

2018), making use of the publicly available z = 0 snapshots (Sanderson et al. 2018).7

The properties of the halos of these galaxies have been shown to agree reasonably well

with the properties of the MW and M31, including the stellar-to-halo mass relation

(Hopkins et al. 2018); satellite dwarf galaxy stellar masses, stellar velocity dispersion,

metallicities, and star-formation histories (Wetzel et al. 2016, Garrison-Kimmel et al.

2018, Escala et al. 2018, Garrison-Kimmel et al., in prep); and stellar halos (Sanderson

et al. 2017, Bonaca et al. 2017). In particular, the high resolution of the Latte simulations

(star particles have initial masses m ≈ 7000M� and gravitational force softening of 4 pc)

means that they resolve satellite dwarf galaxies down to Mstar & 105M�, thus resolving

the galaxies that are expected to contribute the majority of mass to the formation of

the stellar halos (e.g., Deason et al. 2015).

6FIRE project website: http://fire.northwestern.edu
7z = 0 snapshots available at http://ananke.hub.yt
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Despite the high resolution of the Latte simulations, at large distances in the

halos the typical spacing between star particles can be large compared to the sizes of

the HALO7D fields (less than a square degree). Therefore, a detailed comparison of

exactly how our selection effects, observational errors and field sizes are affecting our

results is beyond the scope of this work. In addition, such a comparison may be of

limited usefulness, given that variation observed across areas as small as the HALO7D

fields could be due to structures below the simulation resolution limit (i.e., debris from

accreted satellites with Mstar < 105M�). As a first step, we explore the spatial variation

in the velocity anisotropy computed directly from the star particles in the simulation,

using 30 larger fields, each spanning 36 degrees in longitude and 60 degrees in latitude.

Figure 4.11 shows the m12i simulation (left panels) and m12m (right panels).

The top panels show the positions of star particles (black points), in Aitoff projection,

within the distance range 35 < D < 50 kpc; the lower panels show star particles in

the distance range 50 < D < 70 kpc. While these radial ranges are farther out than

the HALO7D data, we choose these ranges to avoid the thick disks in these simula-

tions, which are extended and kinematically hotter than the MW (Sanderson et al.

2018, Loebman et al, in prep). Star particle positions are plotted in Galactic coor-

dinates. Galactocentric frames are defined in the method described in Section 3 of

Sanderson et al. (2018), and positions are converted to Galactic coordinates using the

astropy.coordinates package (Astropy Collaboration et al. 2013; Astropy Collabora-

tion et al. 2018). We use the default options in astropy.coordinates for the position of

the Sun (R� = 8.3 kpc; Gillessen et al. 2009). The “sky” in each halo has been divided
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into patches, and the resulting velocity anisotropy computed from the star particles

in each patch is shown by the colored points. We note that we compute the velocity

anisotropy using all the star particles within a given area on the sky and radial range;

we do not exclude particles in bound satellite galaxies. This choice likely affects the

resulting β maps, and we plan to explore the affects of excluding and including bound

satellites on β estimates in future work.

The velocity anisotropy β shows variation across the sky of a given halo, as well

as with radius. In addition, these maps of velocity anisotropy are very different across

the two halos: within 35 < D < 50 kpc all patches in m12i are radially biased, but many

of the patches of m12m are tangentially biased β. At 50 < D < 70 kpc, both m12i and

m12m show some tangentially biased patches and radially biased patches. The overall

means and spreads of β values measured across the two halos are quite different: m12i

has a mildly radially biased 〈β〉 ∼ 0.3 with a standard deviation of 0.2, whereas m12m

has tangentially biased 〈β〉 ∼ −0.3 with a standard deviation of 0.7. The magnitude

of the β variation observed in these two simulated galaxies is very similar to the range

of β values measured across the HALO7D fields; in both Figures 4.10 and 4.11, we see

variation in β over the range of [−1, 1].

The differences in the β maps across these two halos are likely linked to their

different accretion histories. Over these radial ranges in the simulated halos, the major-

ity of the material mapped in Figure 4.11 is accreted, and the accreted debris in the two

halos have visibly different spatial and kinematic properties. We intend to explore in

future work what characteristics of a galaxy’s accretion history, such as accretion times,
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initial orbital conditions, and masses of accreted satellites, are primarily responsible for

the observed β variation patterns. Based on the Loebman et al. (2018) findings, patches

with tangentially biased β could be indicating recently accreted material. Further study

of the accretion histories of these simulated galaxies will help us to understand what

accretion events and accretion histories give rise to different β variation patterns in

galaxy halos, and what characteristics of the MW’s assembly history we might be able

to constrain through mapping its spatial β variation.

The β variation we observe in HALO7D and the Latte simulations also could

have implications for the validity of MW mass estimates derived from Jeans modeling.

The fundamental assumption underlying Jeans modeling is that the tracers are virialized

and in dynamical equilibrium. The spatial maps and β variation observed in the Latte

halos reveal that this assumption is clearly violated in the simulations. The variation

in β observed with HALO7D indicates that this assumption is invalid in the MW halo

as well; our results are evidence that the halo is not phase-mixed at 〈r〉 ∼ 23 kpc. Just

how significantly the violation of the assumption of dynamical equilibrium will affect

estimates of the MW mass remains to be determined. The systematic uncertainty of

traditional spherical Jeans mass modeling in recovering halo masses has been observed

in a number of simulations (e.g., Wang et al. 2018, Kafle et al. 2018, Eadie et al. 2018);

we leave the full characterization of the effects of β variation on different approaches of

MW mass estimates on the Latte halos to future work.
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4.7 Conclusions

In this paper, we present the proper motions of distant, main sequence turnoff

MW halo star candidates as measured with HST. These PMs are measured as a part

of the HALO7D project, and have LOS velocities measured from Keck spectroscopy

(Paper I). Using the 3D kinematic sample from HALO7D, we estimate the parameters

of the halo velocity ellipsoid and velocity anisotropy. We estimate these parameters

treating the individual survey fields separately as well as spherically averaging over all

fields.

We summarize our main results as follows:

1. Using the full HALO7D sample of 188 stars, we estimate the velocity anisotropy

β = 0.68+0.04
−0.05 at 〈r〉 = 23 kpc. This estimate is consistent with other recent

estimates of β.

2. We estimate β from the HALO7D sample split into three apparent magnitude bins

to explore the radial dependence. While estimates of velocity dispersions decrease

as a function of mean sample distance, the overall estimates of β are consistent

across apparent magnitude bins. Posterior medians increase as a function of mean

sample distance, consistent with predictions from simulations.

3. When we treat our stars from the four HALO7D fields separately, estimates of the

halo velocity ellipsoid parameters show variation from field to field. This variation

could be evidence for recent accretion; it is also possible that the isotropic and

tangentially biased β values from GOODS-S and M31 (respectively) are due to

134



the presence of kicked-up disk stars. The observed variation in β is evidence that

the halo is not phase-mixed at r ∼ 23 kpc.

4. We map the velocity anisotropy in two stellar halos from the Latte suite of FIRE-2

simulations and see variation in β across the skies of these two halos over a similar

range to the variations observed in the HALO7D fields. In the simulated galaxies,

the degree of, and patterns in, these variations are clearly tied to their different

accretion histories. A more detailed study of the full accretion histories of these

galaxies will shed light on the types of signatures that different accretion events

can leave in β maps.

Fortunately, many of the questions raised in this work are answerable in the

near future. Abundances from HALO7D spectra will provide key insights as to the

origin of the observed β variation. In addition, β variation in the MW can be mapped

with the Gaia dataset and, ultimately, LSST. Thanks to the quality of current and

upcoming data, coupled with high resolution cosmological hydrodynamical simulations,

we are rapidly progressing in our knowledge of our Galaxy’s structure and formation.
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Chapter 5

Conclusions

5.1 Summary

In this dissertation, I have presented observations, kinematic measurements,

and first kinematic results from the HALO7D survey. In Chapter 2, I described how

we made the first estimate of the velocity anisotropy β outside the solar neighborhood

using 13 stars located along the line of sight towards M31. I argued that this observed

decrease in velocity anisotropy could indicate the presence of a shell.

In Chapter 3, I described the spectroscopic observations for the HALO7D

survey. I presented a new method of measuring LOS velocities from a stellar spectrum

making use of Bayesian hierarchical modeling for combining multiple observations. I

modeled the LOS velocity distributions as a mixture of disk and halo populations, and

found consistent estimates of the LOS velocity dispersions across the four HALO7D

fields. These estimates were also consistent with the estimates of σLOS from other

studies. By performing our same analysis procedure on mock observations of the Bullock
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& Johnston (2005) simulations, we found that a single massive accretion event, or several

coincident accretion events, can give rise to consistent velocity distributions across all

four sightlines.

In Chapter 4, I described the HALO7D PM measurements using deep, multi-

epoch HST imaging. I described the new technique to measure PMs utilizing Bayesian

mixture modeling to select galaxies for use in the reference frame and galaxies that

should be excluded from the reference frame. I then discussed using the 3D kinematic

sample from HALO7D to estimate the parameters of the velocity ellipsoid. I found very

consistent estimates of β = 0.6− 0.7 when spherically averaging over the four HALO7D

fields; however, when treating the fields separately, I found variation in the estimates of

β. When comparing to the Latte simulations, I found that these stellar halos also show

variation across the sky in β, and that the maps of the two halos are very different,

because of their accretion histories.

The next step for the HALO7D survey is to measure abundances (McKin-

non et al., in prep). With abundances, we can start to make statements about halo

formation, including in-situ/accreted populations and masses of accreted dwarfs. In

addition, abundances would provide a key dimension of information for identifying and

characterizing substructure in the HALO7D dataset.

However, the results from HALO7D raise many interesting questions that can

be addressed with larger MW surveys and simulations. Below, I describe several ways

in which we can further investigate the questions raised by the results of my dissertation

work.
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5.2 Future Directions

In my study of the halo kinematic structure with the HALO7D dataset (C18b),

I found that velocity anisotropy not only changes as a function of radius, but also can

vary across the sky. I found that the Latte suite of simulations also showed both spatial

and radial variation in β, and that the extent to which β varies within a given halo

is likely linked to its accretion history (Figure 2b). This evidence that the halo is not

phased-mixed, even at 〈r〉 = 23 kpc, is problematic for many MW mass estimation

methods that rely on Jeans modeling. However, this observational result came from

five small fields. In order to assess the extent to which our assumption of constant β

(or constant β(r) ) in mass modeling is violated, we must: a) study the variation of β

a over larger area of the sky; b) measure β over additional deep pencil beams; and c)

use simulations to understand the link between β variation and accretion history, and

to quantify the impact of the observed β variation on MW mass estimates.

5.2.1 Mapping Velocity Anisotropy with Gaia

The Gaia dataset contains astrometric measurements for an outstanding 1 bil-

lion stars; for the first time, we now have the ability to estimate 3D kinematic properties,

like velocity anisotropy β, over the full sky.

I propose to construct a map of velocity anisotropy in the MW halo using the

Gaia dataset. This problem is far from trivial. First, because of the way β is defined

(−∞ < β < 1), errorbars on estimates of β are asymmetric and sensitive to sample

size and measurement uncertainties. Second, Gaia measurement uncertainties are large

138



at halo distances, and most of the halo stars will not have useful distance constraints

from parallaxes. Finally, selection of halo star candidates in halo kinematics studies is

always challenging. Halo stars are often identified through Toomre diagrams, which is

a kinematic classification (e.g., Bonaca et al. 2017, Helmi et al. 2018); members of the

Sagittarius are also often removed from halo star samples based on kinematic cuts (e.g.,

Bird et al. 2018). However, kinematic selection in kinematic analysis leads to biased

results.

Bayesian hierarchical mixture modeling provides a natural framework to ad-

dress the challenges in this analysis. This modeling strategy enables the straightforward

incorporation of measurement uncertainties; returns full posterior probability distribu-

tions for model parameters (namely, β); and allows for multiple populations through

mixture modeling. This framework is a natural extension of the HALO7D analysis I per-

formed in my thesis. For HALO7D, I modeled the parameters of the velocity ellipsoid

in a Bayesian context, incorporating measurement uncertainties (including unknown

distances) and disk contamination through a mixture model. I propose to use these

tools and modeling frameworks that I developed for HALO7D to spatially map β with

the Gaia dataset. These same techniques can be applied to kinematic measurements

from other future astrometric datasets (e.g., LSST, WFIRST). Using Bayesian statisti-

cal modeling to map β variation in Gaia will be the most detailed study of the velocity

structure in the MW halo to date.
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5.2.2 The Milky Way Halo Main Sequence with HST Proper Motions

The full-sky Gaia β map proposed above will be unprecedented. However,

there will be limitations to working exclusively with the Gaia dataset. Because of its

limiting magnitude of G ∼ 20, beyond D ∼ 15 kpc in the halo, Gaia will only measure

PMs for giants and evolved stars. While giants make great tracers because of their

bright apparent magnitudes, giants are also rare; averaging over large areas of the sky

(and thus potential inhomogeneities in the halo) is often required when estimating halo

properties with giants. For dense sampling in halo populations, it is essential to also

have PMs of main sequence (MS) stars; beyond D ∼ 15 kpc, these PMs can only be

measured with HST (Deason et al. 2013b; C18b).

To complement the above proposed Gaia β map, we could use HST PMs to

map the velocity structure of the halo using MS stars in deep pencil beams. I used

multi-epoch HST data in the CANDELS fields to measure PMs of halo stars as faint as

v ∼ 24.5 (C18b). However, there are many more HST pointings that have multi-epoch

coverage that have yet to be analyzed for PMs.

Specifically, data used for our PM measurements must meet the following

conditions: (1) observations must be obtained with either ACS/WFC or WFC3/UVIS;

(2) observations must be in one of the broad-band filters F606W, F775W, F814W, or

F850LP; (3) time baseline of the multiple epochs must be at least 2 yr; (4) combined

exposure time in the shallower epoch must be at least one orbit long; and (5) individual

exposure time must be at least 300 s long. Based on a preliminary search, we can double

the sample of MW halo stars with measured HST PMs using exclusively archival data.
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These deep pencil beams will enable the detection of fluctuations in β that will be

unresolved by Gaia.

The HST PM sample also provides an exciting opportunity to measure precise

PMs for the most distant stars in our Galaxy. Using color and PM information, we

could identify a population of candidate MW halo giant stars with HST PMs. Figure

3 demonstrates how incorporating PM information into giant candidate selection vastly

reduces the contamination from nearby MW dwarfs. In the magnitude range of 20 <

V < 22.5, these stars span distances 50–250 kpc, reaching well beyond the limit of 100

kpc for Gaia giants. In addition, these targets are well within the magnitude range for

follow-up ground based spectroscopy; with LOS velocities and abundances, this project

will yield the most distant sample of stars with measured 3D kinematics in the MW.

5.2.3 Anisotropy Variation in Cosmological Simulations

In order to understand what the spatially varying β implies about the MW’s

assembly, and to asses its impact on the estimates of the MW mass, one must look to

theory. In order to interpret the results of C18b (as well as the above proposed projects),

we could use the Latte simulations (introduced in Wetzel et al. 2016). The Latte suite

of FIRE-2 cosmological zoom-in baryonic simulations of MW-mass galaxies have very

high resolution, such that satellite dwarf galaxies are resolved down to Mstar & 105M�,

thus resolving the galaxies that are expected to contribute the majority of mass to the

formation of the stellar halos (e.g., Deason et al. 2015).

Investigating the connection between β variation and accretion history in the

Latte simulations is a way forward in understanding what the observed β variation
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tells us about our Galaxy’s formation. Using the simulations, we can determine the

properties of the accreted satellites that leave signatures in the β maps, such as their

accretion times, initial orbital conditions, and masses. In addition, the connection

between β variation and the overall accretion history properties can be quantified, such

as the mass spectrum of accreted dwarfs and the distribution of accretion times. By

addressing these questions in the simulations, we will learn what characteristics of the

MW’s assembly history can be constrained with the results from the above proposed

observational projects.

The simulations also provide the opportunity to explore the implications of β

variation on MW mass estimation methods. The fundamental assumption underlying

Jeans modeling is that the tracers are virialized and in dynamical equilibrium. The

C18b results show that this assumption is clearly violated in both the halo and the

Latte simulations. However, what remains to be determined is how significantly the

violation of the assumption of dynamical equilibrium will affect estimates of the MW

mass.

We can determine the effects of the assumptions of Jeans modeling on the

inferred masses and shapes of the Latte halos, given their observed β variation patterns.

Other options for MW mass modeling can also be tested, such as the clustering of

stream stars in action space (Sanderson et al. 2017) and mass-scaling methods (e.g., Li

et al. 2017, Callingham et al. 2019) perform relative to Jeans modeling. The systematic

uncertainty of traditional spherical Jeans mass modeling in recovering halo masses has

been observed in a number of simulations (e.g., Wang et al. 2018, Kafle et al. 2018, Eadie
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et al. 2018); however, this has yet to be tested at the resolution of Latte. Testing mass

estimation methods on the Latte halos, and observing their sensitivity to β variation,

has the potential to reconcile the disparate estimates of the Galaxy’s mass.
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Appendix A

Testing Velociraptor

In this appendix, we discuss the testing of the Velociraptor technique described

in Section 3.3 on fake data. To create fake spectra for testing, we degraded our tem-

plate spectrum to a variety of signal to noise ratios. In order to realistically reproduce

the noise due to the sky background for one of the HALO7D exposures, we took the

noise array for an extremely faint extragalactic target that had no visible continuum or

emission lines for a 20 minute exposure.

For signal to noise ratios of 3, 5, 10, and 30, we generated 180 individual spectra

for each S/N. We tested Velociraptor in “single mode” (i.e., working with individual

observations only) for 90 of these spectra for each S/N. The mean recovered velocities,

and the standard deviations of these velocities, are shown in the top panel of Figure

A.1. For the spectra with S/N=3, approximately one third of the fake sample had

failed velocity measurements (i.e., chains did not successfully converge); the errorbars

in Figure A.1 reflect the statistics for the successful measurements.
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All projections of the posterior for one of our fake spectra can be seen in the

corner plot in Figure A.2. The input values for the fake spectrum are shown as blue

lines; the model successfully recovers the parameters of the fake data. The absorption

line coefficients C and the continuum levels for a given spectral region are covariant; this

is expected because of the way in which we parametrized the absorption line strength

(see Equation 3.4).

Trace plots for 20 of the emcee walkers for the 11 parameters of single mode

are shown in Figure A.3. The true parameter values that were used to generate the fake

data are shown as thick black dashed lines. The traces are well mixed and converge

successfully over the runtime of the sampler.

To test Velociraptor in hierarchical mode, we combined six fake spectra at a

given signal to noise ratio, and ran Velociraptor 30 times at each S/N. The resulting

mean recovered velocities, and their standard deviations, are shown in the middle panel

of Figure A.1, where here the signal to noise ratio plotted on the x−axis refers to the

signal to noise of the individual observations.

Trace plots and a corner plot for the corrected velocity, the variance of velocities

σ2v , and the raw velocity parameters for six observations, each with S/N=5, are shown

in Figures A.5 and A.4. We run emcee for 5,000 steps, and discard the first 3,000 as

burn in. For the purposes of displaying the corner plot, we have “thinned” our chain,

including every 50th sample for each walker.
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Figure A.1: Results from testing Velociraptor on fake data. Top panel: errorbars show
the mean recovered velocity, and the standard deviation of the recovered velocities,
for 90 runs of Velociraptor in single-mode, as a function of signal to noise. Middle
panel: resulting distributions of recovered velocities when Velociraptor is run with six
observations in hierarchical mode. Note that here the x-axis refers to the signal to noise
of a single observation. Lower panel: velocity error (computed as half the difference
between the 84th and 16th percentiles) in single-mode (purple) and hierarchical mode
with six observations (orange).
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Figure A.3: Traces for all 11 single-mode parameters, for a fake spectrum generated to
have S/N=10. For clarity, we show traces for only 20 randomly selected walkers. Black
dashed lines indicate the true values of the model parameters used to generate this fake
spectrum.
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Figure A.4: Corner plot for the corrected velocity, the additional uncertainty σ2v , and
the six raw velocities for six fake spectra that each have S/N=5. Note that we are only
showing projections here for 8 out of the 68 parameters in this model. This particular
run of Velociraptor ran for with 800 walkers for 500 steps. For this figure, we excluded
the first 3000 steps as burn-in, and thinned the chain, showing every 50th sample.
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Figure A.5: Traces for the corrected velocity, the additional uncertainty σ2v , and the six
raw velocities for six fake spectra that each have S/N=5. For clarity, we show traces for
only 20 randomly selected walkers. Truths are shown as black dashed lines. Because of
the complexity of the model and the large number of free parameters, the chains do not
mix efficiently, and the sampler needs to be run for many iterations. Note that the true
value for σ2v is not recovered in this case, because all of our fake spectra were generated
to have exactly the same velocity.
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Appendix B

Bayesian Mixture Modeling for

PM Measurements

In this appendix, we provide the details of the Bayesian mixture model used to

derive estimates of PMs. We first describe our model in Section B.1, and then the Gibbs

sampling algorithm used to sample from the posterior distribution for model parameters

in Section B.1.2.

B.1 Proper Motion Model

To map one image onto another, we perform a six-parameter linear transfor-

mation:
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
A B xt − δu

C D yt − δv

0 0 1




u

v

1

 =


uref

vref

1

 , (B.1)

where δu, δv represent the change (in pixels) of a star from one image to another due

to proper motion (so, for galaxies, δu = δv = 0).

In our model, we treat stars and galaxies separately. For stars:

Au+Bv + xt − δu ∼ N(uref , σ
2
∗)

Cu+Dv + yt − δv ∼ N(vref , σ
2
∗)

uimref , vimref ∼ N(uref , vref , σ
2
∗)

, (B.2)

where uimref , vimref are the measured positions in the defined reference image, whereas

uref , vref are the positions of the object in the reference epoch, which are free param-

eters. Because stars’ central positions are well measured, we define σ∗ = 0.02 pixels.

δu, δv represent the shift in pixels from image 1 to image 2, which can be converted to

proper motions North and West, respectively:

PMN =
δu× 50 mas/pix

∆t
; (B.3)

PMW =
δv × 50 mas/pix

∆t
, (B.4)

where ∆t is measured in years. We describe the galaxy positions as a two-component
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Gaussian mixture model. Defining a fixed location in an image as the galaxy’s precise

position is not trivial and sometimes fails, given that galaxies are resolved sources with

complex morphologies. We therefore consider “good” galaxies (i.e., galaxies with well

measured positions) and “bad” galaxies (galaxies with poorly measured positions).

Au+Bv + xt ∼ N(uref , σ
2)

Cu+Dv + yt ∼ N(vref , σ
2)

uimref , vimref ∼ N(uref , vref , σ
2)

. (B.5)

For “good” galaxies, σ = 0.1 pixels, whereas for “bad” galaxies, σ = 3 pixels.

An example of the initial classification of “good” and “bad” galaxies is shown

in Figure B.1. Figure B.1 shows the change in positions in pixels, in the distortion-

corrected frame, for objects in two HST images, taken seven years apart. Black points

show the positions of galaxies initially classified as “good”; these are clustered at (0, 0),

because they were used in the reference frame for the linear transformation. Positions of

galaxies initially classified as “bad” are shown as grey crosses. In our Bayesian mixture

model, we allow galaxies to move in and out of the reference frame probabilistically.

Pink points show the change in the positions of the stars in the images. These stars

have a mean motion and scatter relative to the stationary reference frame of distant

galaxies; these relate to the dynamical quantities of interest estimated in this study.
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Figure B.1: An example of the linear transformation method on two images, j8pu44cvq
(taken in 2004) and jboa38c2q (from 2011). Axes represent the change in pixels, in the
distortion-corrected frame (u, v), for objects in the two images, after applying the six
parameter linear transformation. Grey crosses indicate the change in positions for the
galaxies initially classified as “bad”; black points are the positions of “good” galaxies
used in the reference frame. The change in positions of the “good” galaxies are clustered
at (0, 0). Pink stars show change in the positions of the stars in these two images.
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B.1.1 Gaussian Mixture Models written with Indicator Variables

Mixture models can be expressed in different ways. For a two component

mixture model, the likelihood of a given data point can be written as

p(x|θ) = λN(x|θ1, σ21) + (1− λ)N(x|θ2, σ22) (B.6)

Where λ is the fraction of objects in the underlying population that belong to

distribution 1. However, sums in probability calculations make posterior sampling more

difficult. To improve our sampling efficiency, we can re-write the above equation using

indicators zj :

p(x, z|θ) = (λN(x|θ1, σ21))z1((1− λ)N(x|θ2, σ22))z2 . (B.7)

In this construction, for a given step in the MCMC chain, the indicator zih = 1 if

datapoint xi is associated with component h and zih = 0 otherwise.

Our full posterior thus takes the form:
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p(θ|u1...uk, v1...vk, uimref , vimref ) ∝

Nim∏
k=1

Nstars∏
j=1

exp

{
1

2σ2∗
(Aujk +Bvjk + xt,k − δujk − uref )2

+
1

2σ2∗
(Cujk +Dvjk + yt,k − δvjk − vref )2

}

×
Ngals∏
j=1

(
fg,k exp

{
1

2σ2g
(Aujk +Bvjk + xt,k − uref )2

+
1

2σ2∗
(Cujk +Dvjk + yt,k − vref )2

})zg,jk
×
(

(1− fg,k) exp

{
1

2σ2b
(Aujk +Bvjk + xt,k − uref )2

+
1

2σ2b
(Cujk +Dvjk + yt,k − vref )2

})zb,jk

(B.8)

where fg,k is the fraction of good galaxies in image k, and zjg is the indicator

for galaxy j in image k. By construction, if a galaxy has a “good” position in image k,

zg,jk = 1 and zb,jk = 0 (i.e. a galaxy can only belong to one mixture component at a

time).

B.1.2 Gibbs Sampling Algorithm

To sample from the posterior distribution for our parameters, we use Gibbs

sampling. In a Gibbs sampler, we sample directly from the conditional posterior dis-

tributions for each parameter. Gibbs samplers can only be used if the full conditional

distributions of the parameters can be written in closed form, which is usually only the

case when conjugate priors (or, in special cases, reference priors) have been used.

Our Gibbs sampling algorithm consists of the following steps:
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1. Initialize the transformation parameters for each image using standard linear-least

squares. If the image is in the same epoch as the reference image, use the star

positions to match frames. Otherwise, use the positions of the “good” galaxies.

Initial values for PMs are averaged over the images, and initial values for the

reference positions are those in the reference image.

2. For each star, we draw from the conditional posterior distributions for PMN and

PMW, as well as the conditional posterior distributions for the reference positions.

The conditional distributions for proper motions are:

PMW ∼ N(
50 mas/pix

k
∑

∆t2k

Nim,k∑
k=1

δuk ×∆tk, (50 mas/pix)2 × σ2∗∑
∆t2

) (B.9)

PMN ∼ N(
50 mas/pix

k
∑

∆t2k

Nim,k∑
k=1

δvk ×∆tk, (50 mas/pix)2 × σ2∗∑
∆t2

) (B.10)

3. For each galaxy, we first loop over each image, including the reference image, and

draw an indicator. We allow a galaxy to be “good” in some subset of images and

“bad” in another. We draw the indicator for a given galaxy as a Bernoulli variable

with probability:

fgal ×N(u|uref , σ2g)×N(v|vref , σ2g)
fgal ×N(u|uref , σ2g)×N(v|vref , σ2g) + (1− fgal)×N(u|uref , σ2b )×N(v|vref , σ2b )

(B.11)

We then draw from the conditional posterior distributions for the reference frame
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Parameter µ/V V −1

A
∑ uj×uref,j

σ2
j

−B
∑ uj×vj

σ2
j
− xt

∑ uj
σ2
j

+
∑ δujuj

σ2
j

∑ u2j
σ2
j

B
∑ vj×uref,j

σ2
j
−A

∑ uj×vj
σ2
j
− xt

∑ vj
σ2
j

+
∑ δujvj

σ2
j

∑ v2j
σ2
j

C
∑ uj×vref,j

σ2
j
−D

∑ uj×vj
σ2
j
− yt

∑ uj
σ2
j

+
∑ δvjuj

σ2
j

∑ u2j
σ2
j

D
∑ vj×vref,j

σ2
j
− C

∑ uj×vj
σ2
j
− yt

∑ uj
σ2
j

+
∑ δvjvj

σ2
j

∑ v2j
σ2
j

xt A
∑ uj

σ2
j

+B
∑ vj

σ2
j

nobj/σ
2
j

yt C
∑ uj

σ2
j

+D
∑ vj

σ2
j

nobj/σ
2
j

Table B.1: Parameters of the conditional posterior distributions for the image transfor-
mation parameters. Conditional posteriors for all 6 image transformation parameters
are normal distributions with mean µ and variance V . Sums are over all objects in an
image. σj=0.02 for stars,σj=0.1 for “good” galaxies, and σj=3. for “bad” galaxies.

positions of each object.

4. Finally, we loop over each image, drawing from the conditional posterior distribu-

tions for the image parameters (A,B,C,D, ut, yt, fgal) (see Table B.1). The fgal

parameters are drawn from beta distributions:

p(fgal,k|...) ∼ Beta(ngoodgals,k + 1, nbadgals,k + 1) (B.12)

where ngoodgals,k, nbadgals,k are computed by summing the indicators for each pop-

ulation at that step in the chain.
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Appendix C

Fake Data Testing for Ellipsoid

Model

In this Appendix, we discuss how we tested our method for estimating the

parameters of the velocity ellipsoid using fake data.

To create fake data for a given line of sight for this model, we:

1. Generate samples from our kernel density estimate for MF81W vs MF606W −

MF814W based on the weighted VandenBerg et al. (2006) isochrones.

2. Assign each draw an apparent magnitude, drawn from a uniform distribution in

mF814W over the range [19, 24.5].

3. Given the resulting distances from the draws in apparent and absolute magnitudes,

we use Monte Carlo acception/rejection to keep draws consistent with the MW

density profile of Deason et al. (2011).
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4. Assign stars velocities in spherical coordinates, based on random draws from nor-

mal distributions.

5. Convert D,Vr, Vφ, Vθ to µl, µb, vLOS using the astropy.coordinates package.

Given that we do not use astropy.coordinates to perform the velocity transfor-

mations in our ellipsoid modeling code, this step provides an additional check on

our coordinate transformations.

6. Draw fake measured values from normal distributions centered on µl, µb, vLOS ,

with dispersions corresponding to measurement uncertainties. For the purposes

of this testing, we assign PM uncertainties of 0.2 mas yr−1 and LOS velocity

uncertainties based on a fit of the relation between apparent magnitude and LOS

velocity error shown in Figure 7 of Paper I.

We generate fake disk stars using a similar method, except drawing stars from

the density profile and velocity distributions for our disk model. Figure C.1 shows the

posterior distribution for the halo ellipsoid parameters when our analysis is performed

on a fake dataset. This particular fake dataset contains 100 halo star and 50 disk stars

in the GOODS-N field. Values for the parameters used to generate the data are shown

in blue.

Results from testing 30 fake halo datasets, each with 100 stars, are shown in

Figure C.2. Top panels show histograms of posterior medians for each simulated dataset;

bottom panels are histograms of the errors measured in each dataset (computed as half

the difference of the 84 and 16 percentiles). The errors in the posterior distributions are

reasonable given the observed spread in posterior medians. The resulting distribution
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of posterior medians for β are shown in the lefthand panel of Figure C.3.
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Figure C.1: Resulting projections of posterior samples for fake GOODS-N data. This
fake sample contained 100 halo stars and 50 disk stars. The true values of the distribu-
tions used to generate the data are shown in blue.
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C.1 Sensitivity to Sample Size

In order to assess how the sample size of the GOODS-S field is affecting the

estimate of β in that field, we generated 100 fake datasets, each containing 16 stars.

These datasets were generated from velocity distributions that have βTrue = 0.75. Figure

C.3 shows the distribution of the resulting posterior medians for β when we model this

fake dataset. Out of the 100 fake datasets, only one had a posterior median with

β < 0.14.
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Figure C.2: Top panel: Distributions of posterior medians for the halo velocity ellipsoid
parameters recovered from 30 fake datasets, each with 100 stars. Parameter values
used to generate the fake data are shown as blue vertical dashed lines. Bottom panel:
histograms of the the error estimates for each parameter.
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Figure C.3: Histograms of posterior medians for the estimates of β from fake data test-
ing. Lefthand panel: distribution of β estimates from 30 fake datasets, each containing
100 stars, with PM uncertainties of 0.2 mas yr−1. Righthand panel: the estimates of β
from 100 fake datasets, each containing 20 stars, with PM errors of 0.20 mas yr−1. For
both sets of fake datasets, radial velocity uncertainties were assigned as a function of
apparent magnitude (see Figure 7 of Paper I). None out of the 100 fake datasets yielded
a posterior median estimate of β < 0.14; the minimum posterior median estimate was
βmin = 0.20.
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