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M.D. Ph.D.2, Vignesh A. Arasu, M.D. Ph.D.2,4,5, Nola M. Hylton, PhD.2, Luca Marinelli, Ph.D.1, 
David C. Newitt, Ph.D.2

1GE Global Research, Niskayuna, NY, USA

2Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 
USA

3Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA

4Department of Radiology, Kaiser Permanente Medical Center, Vallejo, CA, USA

5Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA

Abstract

Background: Multi-b-valued/multi-shell diffusion provides potentially valuable metrics in breast 

magnetic resonance imaging (MRI) but suffers from low signal-to-noise and has potentially long 

scan times.

Purpose: To investigate the effects of model-based denoising with no loss of spatial resolution 

on multi-shell breast diffusion MRI; to determine the effects of down-sampling on multi

shell diffusion; and to quantify these effects in multi-b-valued (three directions per b-value) 

acquisitions.

Study Type: Prospective (“fully-sampled” multi-shell) and retrospective longitudinal (multi-b).

Subjects: One normal subject (multi-shell) and ten breast cancer subjects imaging at four 

time-points (multi-b).

Field Strength/Sequence: 3T multi-shell acquisition and 1.5T multi-b acquisition.

Assessment: The “fully-sampled” multi-shell acquisition was retrospectively down-sampled to 

determine the bias and error from down-sampling. Mean, axial/parallel, radial diffusivity, and 

fractional anisotropy (FA) were analyzed. Denoising was applied retrospectively to the multi-b

valued breast cancer subject dataset and assessed subjectively for image noise level and tumor 

conspicuity.

Statistical Tests: Parametric paired t-test (p<0.05 considered statistically-significant) on mean 

and coefficient of variation of each metric – the apparent diffusion coefficient (ADC) from all 
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b-values, fast ADC, slow ADC and perfusion fraction. Paired and two-sampled t-tests for each 

metric comparing normal and tumor tissue.

Results: In the multi-shell data denoising effectively suppressed FA (−45% to −78%), with small 

biases in mean diffusivity (−5% in normal, +23% in tumor, and −4% in vascular compartments). 

In the multi-b data, denoising resulted in small biases to the ADC metrics in tumor and normal 

contralateral tissue (by −3% to +11%), but greatly reduced the coefficient of variation for every 

metric (by −1% to −24%). Denoising improved differentiation of tumor and normal tissue regions 

in most metrics and time-points; subjectively, image noise level and tumor conspicuity were 

improved in the fast ADC maps.

Data Conclusion: Model-based denoising effectively suppressed erroneously high FA and 

improved the accuracy of diffusivity metrics.

Keywords

Denoising; diffusion imaging; breast imaging

INTRODUCTION

For decades, diffusion-weighted imaging (DWI) has been known to be sensitive to tissue 

microstructural and perfusion changes. In oncology, DWI-based biomarkers have been 

proposed to provide non-contrast-enhanced, quantitative information for tumor detection and 

staging, and for depicting changes due to treatment (apoptosis and necrosis)(1). Specifically, 

in breast cancer imaging, DWI can provide additional quantitative tumor characterizations 

(eg. hyper-cellularity and hyper-vascularization) that are complementary to the morphology 

and uptake dynamics provided by standard contrast-enhanced MRI(2, 3). To that end, 

single b-value-encoded DWI, as well as multi-b-valued DWI acquisitions with three or 

fewer diffusion-directions per b-value, have become routine add-on sequences in breast 

MRI exams. In clinical trials involving DWI(4), more advanced diffusion acquisitions 

may provide additional parameters for quantitative analysis. These acquisitions may utilize 

a greater number of scan directions, longer scan time, and more advanced modelling 

techniques such as intravoxel incoherent motion (IVIM)(5, 6) that provides both diffusion 

and perfusion metrics. Reduced mean diffusivity has been observed in hyper-cellular, 

malignant lesions; and changes in perfusion fraction have been hypothesized to occur 

due to tumor angiogenesis. While diffusion tensor imaging (DTI), which requires six or 

more diffusion-directions, is more routinely used in brain and peripheral nerve imaging, 

its use in breast MRI has been limited. This is due in part to the much lower diffusional 

anisotropy in breast parenchyma(7). Studies using DTI to obtain fractional anisotropy 

(FA) have found differentiation of tumors from normal tissue(7), and benign tumors from 

malignant tumors(8, 9); however, these studies have had conflicting results in determining 

the additional value of DTI over standard DWI in differentiating benign from malignant 

tumors.

While multi-b-valued DWI and DTI acquisitions can provide additional information for 

breast tumor characterization, they require significantly longer scan times, proportional to 

both the number of b-values and number of directions per b-value. In neuroimaging, multi
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shell diffusion imaging(10, 11) using multiple b-values and tens to hundreds of directions 

per b-value has become routinely utilized, especially in research applications. With multiple 

b-values and multiple directions per b-value, these multi-shell acquisitions can provide 

anisotropy measures as well as higher-order diffusional metrics such as diffusional kurtosis 

(12, 13), neurite density(14), and axonal diameter(15); the premise is that these anisotropy 

and higher-order metrics provide improved depiction of the underlying tissue characteristics. 

Furthermore, acquiring additional low b-value diffusivity provides perfusion fraction, which 

can be a differentiating diffusivity biomarker for treatment response (16) and potentially 

differentiate malignant from benign tumors (6) due to differences in the underlying tissue 

vascularity.

The application of multi-shell diffusion acquisition in breast imaging may provide similar 

benefits, but has been less popular for several reasons. In addition to the longer scan 

time, breast DWI typically has increased B0-susceptibility effects (distortion and blurring) 

due to proximity to the large chest cavity. There are also SNR challenges from poor 

B1 homogeneity, and additional bulk-motion and eddy-current effects that result in mis

registration that biases diffusivity results. Together, these challenges make higher-order 

diffusivity maps more susceptible to image and fitting noise, which can lead to reduced 

interpretability of diffusion maps and to quantitative inaccuracy of the calculated metrics. 

For example, it has been well-established that fractional anisotropy (FA) will be erroneously 

overestimated when SNR<25(17). In breast DWI, these effects are especially acute in 

regions with fatty tissue that are signal-suppressed by either fat saturation pulses or 

spectral-spatial water excitation, and in tissue boundary regions that are susceptible to 

mis-registration artifacts.

While many approaches to address B0-susceptibility (18, 19), B1-inhomogeneity (20) and 

registration challenges (21) have been made in breast DWI, DWI remains an inherently 

SNR-limited technique because of the high sampling bandwidth of the fast EPI readout. To 

address the SNR limitations, it may be desirable to apply denoising. Denoising typically 

relies on statistics obtained from a neighborhood of pixels, to tease out compartments for 

true signal vs. noise via iterative optimization techniques. Approaches using non-central 

chi/Rician noise distributions for signal magnitude (22), as well as Gaussian distribution for 

complex data (23) to reduce the thermal noise have been proposed. While these methods do 

improve the image quality, SNR and diffusivity metrics obtained, they utilize spatial kernels 

that invariably cause spatial smoothing and consequently compromised spatial resolution. 

Another promising approach utilizing principal components analysis (24) also uses kernels, 

but is more robust to smoothing as no explicit assumptions are made about edges and 

smoothness; this approach has been extended recently to include denoising of individual 

coil channels (25) with promising results. However, distortions and motion result in mis

registration of diffusion images, which can cause strong signal biases that can potentially 

be interpreted as signal rather than artifact. Another recent denoising approach instead 

utilizes multi-compartment diffusivity signal models (26). Here, denoising is applied only 

in the diffusion direction, so there is no spatial kernel and hence no trade-offs in terms of 

spatial resolution. This approach utilizes multiple compartments and is applicable primarily 

to multi-b-valued diffusion acquisition. It has shown promising results in removing outliers 
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in diffusion kurtosis imaging in the brain, as well as in improving nerve conspicuity in 

peripheral nerve imaging(27).

The goal of this work was to adapt the model-based diffusion denoising technique (26), for 

breast DWI, where the diffusivity, anisotropy and type of signal compartments are inherently 

different compared to the brain. Multi-shell diffusion (with more than six directions in a 

given shell) breast MRI acquisition was used to (i) more broadly determine the effects 

of denoising on both mean diffusivity and fractional anisotropy. Also, (ii) the effects of 

down-sampling by reducing the number of diffusion-encoding directions were evaluated. 

Multi-b-valued DWI with only three directions per b-value from a breast cancer patient 

cohort were denoised retrospectively, to (iii) quantify the effects of denoising on diffusivity 

and perfusion metrics, determine if denoising improves the separability of tumor from 

normal tissue, and determine if denoising improved linear fitting of longitudinal tumor 

metrics.

METHODS

Model-based denoising: breast DWI

The model-based diffusion denoising method(26) had been proposed with multi-shell 

diffusion brain MRI to provide 3–4 times acceleration and improved diffusivity maps. 

Because the algorithm is applied on a pixel-by-pixel basis across the diffusion directions, 

there is no possibility for any loss in spatial resolution. The method uses a generalized, 

multi-compartment model with J×N anisotropic and K isotropic tissue fractional 

compartments (faniso, fiso), whereby the N anisotropic diffusion directions are predefined 

similar to those used in spherical deconvolution (28, 29). Each of the J anisotropic 

compartments have pre-defined axial/parallel and radial/orthogonal diffusivities λ∥, λ⊥ , 

whereas each of the K isotropic compartments has just a mean diffusivity λ  defined. For a 

maximum b-value, b and for each normalized gradient vector q, the model’s signal estimate 

s  is defined as

s b, q = ∑
j = 1

J
∑

n = 1

N
faniso,  j,  nexp − λ , jb qTun

2 λ ⊥ , jb 1 − qTun
2

+ ∑
k = 1

K
fiso,  kexp −λkb .

(1)

To adapt the method for breast multi-b diffusion, where tissue anisotropy is less than that 

in the brain and where fewer diffusion-encoding directions are typically used, a model 

with far fewer compartments (J=1, K=20) and reduced anisotropy (N=40) was proposed. 

In multi-b-valued acquisition, b-values smaller than the maximum b-value are created 

by q-vectors with a squared magnitude that is less than one. The composition of the 

compartments and optimization parameters for denoising are described in Table 1. The 

anisotropic compartment was approximated as normal fibroglandular tissue (NFT), and 

isotropic compartments as tumor, vascular and fat using mean diffusivity and fractional 

anisotropy (FA) values surveyed in the literature (6, 7, 30) as a guide, whereby NFT has 

Tan et al. Page 4

J Magn Reson Imaging. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



been reported to be more anisotropic than tumor tissue. The assumed fractional anisotropy 

(0.8) in the model was higher than that reported in the literature for NFT (~0.3); this 

approach parallels that used for spherical deconvolution in the brain (assumed FA=1 vs. 

actual white matter FA ~ 0.6–0.9), since the summation of many anisotropic compartments 

would lower the net anisotropy.

As a by-product of the model, the sum of fractional values belonging to each compartment 

could provide future utility for quantification and visualization of the total fraction of 

diffusion signal from each compartment, as shown in Fig. 1. These compartments parallel 

the restricted (R), hindered (H) and free (F) compartments used typically in models of the 

brain (31, 32), albeit obtained with different ranges of diffusivity and anisotropy.

Imaging: Multi-shell DWI

To determine the potential for applying the denoising algorithm for accelerating a multi

shell breast DWI acquisition by utilizing fewer multi-shell directions, a “fully-sampled” 

30-directions acquisition was performed prospectively on a normal subject, age 58 years, on 

a 3T MRI system (Signa Premier, GE Healthcare, Chicago, IL, USA) using a 16-channel 

breast coil (InVivo, Gainesville, FL, USA), 128×104 matrix, slice thickness=3 mm, TR/

TE=4460/59.7 ms, number of averages/shots=2/2, scan time=10 minutes. The b-values (and 

number of directions per b-value) were 100 sec/mm2 (3 directions), 600 sec/mm2 (11 

directions), and 800 sec/mm2 (16 directions). The data was retrospectively down-sampled 

to 12–29 directions total to determine the effects of denoising at different direction counts. 

Down-sampling was done by removing selected b=600 sec/mm2 and b=800 sec/mm2 data 

while approximately preserving the ratio of b=600:800 sec/mm2. This allowed for at least 

six diffusion directions to be acquired in the b=800 sec/mm2 shell directions (out of a total 

of 12 directions in the most down-sampled case), which was necessary for computing the 

diffusion tensor at the highest b-value. The b=100 sec/mm2 data was excluded from down

sampling as there were only 3 directions in that shell. Because the diffusivity directions were 

generated with random seeding followed by charge dispersion per-shell (33) and then across 

all shells, the down-sampling could be considered to be random and adequate for resolving 

the diffusion tensor, with the exception of 12-direction data (see Discussion). Besides, breast 

tissue is not considered to be highly anisotropic as compared to white matter fiber bundles 

which require far more diffusion-encoding directions for resolving fiber crossings. The 

diffusivity maps calculated included mean diffusivity (MD), axial/parallel diffusivity (PD), 

radial diffusivity (RD) and fractional anisotropy (FA).

Multi-b DWI in breast cancer subjects

Denoising analysis was performed on multi-b DWI acquisitions from a subset of ten patients 

enrolled at one site of the ACRIN 6698 trial. (34) ACRIN 6698 was HIPAA-compliant 

and performed under individual site IRB approval, and all patients gave informed consent 

prior to enrolling. Inclusion criteria included biopsy-confirmed diagnosis of stage II–III 

invasive breast cancer and clinically or radiologically measurable disease in the breast with 

a tumor longest diameter (LD) >2.5 cm. For our 10 subject cohort age ranged from 35 

to 66 years (median age = 47 years) and pre-treatment enhancing lesion size measured by 

dynamic contrast-enhanced (DCE)-MRI functional tumor volume (FTV) ranged from 4.8 
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– 119.9 cc (median FTV=12.0 cc). Each subject underwent 4 MRI studies over the course 

of neoadjuvant chemotherapy (NAC) for invasive breast cancer (T0: pre-NAC, T1:after 3 

weeks NAC, T2: after 6 weeks NAC, T3: post NAC/pre-surgery). The acquisitions were 

obtained from a 1.5T scanner (Signa HDx, GE Healthcare, Waukesha WI) with one b=0 

acquisition and three-directions per b-value={100, 600, 800} sec/mm2, FOV=34–35 cm, 

slice thickness=4 mm, TR/TE=7500/67.6–67.9 ms. The analyzed metrics included: ADC 

(utilizing b=0 and all b-values), ADCslow (b>0 data), ADCfast (b=0 and 100 only), and 

perfusion fraction(16). With only three orthogonal diffusion directions per b-value the 

diffusion tensor (and hence FA) could not be obtained. Tumor and contralateral NFT 

were manually segmented using the original mono-exponential ADC maps and the b = 

800 sec/mm2 directional images. To reduce spatial-bias of diffusivity in large FOV breast 

imaging, gradient nonlinearity correction was applied(4).

Statistical Analysis

To compare undenoised vs denoised results, parametric paired t-test (p<0.05 for statistical 

significance) was performed on the mean difference and coefficient of variation (CV) of 

each metric; the hypotheses are that denoising does not bias diffusion metrics, and will 

reduce the CV (due to improved precision).

To evaluate whether denoising improved separability of tumor and NFT, a paired t-test 

was used to compare every metric (p<0.05 indicating significance); the hypothesis was that 

denoising would increase the separability of tumor and NFT metrics. This was tested across 

all time-points (N=40) and for every time-point (N=10). In addition, a two-sample t-test at 

each time-point (N=10) was performed to determine if the separability of tumor and NFT 

could also be observed when the subjects were pooled. To evaluate whether denoising might 

alter the longitudinal interpretability of diffusivity only in the tumors, a linear fit of each 

metric to the elapsed time from baseline was performed (constant + rate × elapsed time 

from baseline scan); the hypothesis was that denoising would not alter the fit, but would 

increase the R-squared value under the assumption that tumor diffusivity metrics underwent 

a monophasic change following neoadjuvant chemotherapy.

For subjective assessment, three radiologists with 9 to 18 years of experience reading 

breast MRI scans rated the ADCslow, ADCfast and perfusion fraction images from the first 

time-point for two metrics - image noise level and tumor conspicuity. Scores of −1, 0 

and +1 were used to indicate preference for undenoised, no preference, and preference for 

denoised images respectively. DWI images from two of the subjects were used for training 

and calibration among the three readers. Assessments were performed independently by 

all three readers on the remaining 8 subjects in a different randomized order. A central 

slice depicting the tumor was chosen, and the undenoised and denoised image maps were 

presented (also in a randomized order) to the readers along with co-localized T1-weighted 

post-contrast-enhanced and subtraction images from the DCE acquisition. The mean scores 

and 95% confidence interval (CI) were computed for each image and metric. To determine 

inter-rater agreement, Fleiss’ κ (considering classification only) and Kendall’s coefficient 

of concordance (considers both classification and ordinality) were used, grouping results 

by metric because of the small dynamic range of the scores. Interpretation was as follows: 
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<0 indicated poor agreement, 0.01–0.20 slight agreement, 0.21–0.40 fair agreement, 0.41–

0.60 moderate agreement, 0.61–0.80 substantial agreement, and 0.81–1.00 almost perfect 

agreement.

RESULTS

Effects from down-sampling and denoising on multi-shell diffusion

Fig.2 shows the effects of denoising at three sampling factors: full-sampling (30-directions), 

and down-sampling to 21-directions and 12-directions. The plots reflect the voxel-wise 

distribution of the diffusivity metrics due to denoising for each of the three compartments 

– NFT, tumor and vascular. To aid in visualizing each compartment, pixels belonging 

primarily to each compartment (with fractions exceeding 0.8 in the NFT compartment, 0.3 

in the tumor compartment, or 0.8 in the vascular compartment) were colored in red, green 

or blue, respectively. On aggregate, denoising in the “fully-sampled” data resulted in a 

mostly proportional distribution of MD, PD and RD, with some extent of skewing towards 

a negative bias in NFT and vascular, and positive bias in tumor. In all three compartments, 

denoising reduced FA. With the 21-direction data, the same effects were observed, except 

that the spread and skew of the distributions were increased. With the 12-directions data, 

there were further increases in the spread of the distributions, along with a pronounced bias 

in the vascular FA to about 0.4–0.6.

Fig.3 shows the quantitative differences between denoised and undenoised metrics for each 

of the compartments, and at all of the tested number of diffusion directions (12 to 30). 

Denoising on the “fully-sampled” resulted in varying levels of bias in the diffusivity metrics. 

In MD the bias was −4.9% for NFT, +22.7% for tumor, and −3.5% for vascular; in PD 

the biases were all negative and were −18.4% for NFT, −11.7% for tumor, and −14.2% 

for vascular; in RD the biases were positive and were +6.9% for NFT, +45.6% for tumor, 

and +3.6% for vascular. As a result of the negative bias in PD and positive bias in RD, 

denoising resulted in significantly large negative biases in FA in all compartments (−44.9% 

for NFT, −78.2% for tumor, and −65.9% for vascular). With decrease in the number of 

diffusion directions, the trend for changes in bias (mean difference) and precision (standard 

deviation) appeared to be gradual, with bias not necessarily always increasing but precision 

was almost always reduced (standard deviation increased). However, at 12-directions there 

was a pronounced departure from the gradual trends in both bias and precision of most 

metrics; notably a flip in the polarity of the bias in MD of NFT (+6.1%), a close to zero 

bias in RD in all three compartments, and a reversal in the trend of FA suppression in the 

vascular compartment.

Fig.4 shows the error resulting from all down-sampling factors in all four metrics and 

fractional compartments, with the denoised “fully-sampled” data as a reference. In all 

metrics (MD, PD, RD and FA) standard deviation increased with down-sampling. However, 

the biases introduced by down-sampling in MD, PD, and RD for the NFT and tumor 

compartments were small (<5%). The same metrics in the vascular compartments had larger 

biases (>5%). The magnitudes of the changes in FA bias and precision were larger than 

those in MD, PD and RD. The errors in the resulting compartment fractions were also 

compared; the biases from down-sampling were small in the restricted (NFT, <6%) and free 
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(vascular, <2%) compartments, and were somewhat larger in the hindered (tumor, <20%) 

compartment. Interestingly, in all three compartments, the errors in compartment fraction 

changes had very high precision (small standard deviations) relative to the magnitudes of the 

biases.

Fig.5 shows the breast DWI maps before and after denoising, with 12-directions (down

sampled) and with 30-directions (fully-sampled). The quantitative effects on the diffusivity 

metrics, especially in FA, could be observed by comparing the undenoised and denoised 

images.

Multi-b DWI in breast cancer subjects

As summarized in Table 2, denoising resulted in very small changes (<3%) to ADC and 

ADCslow for tumors (increase) and contralateral NFT (decrease), with the polarity of the 

bias in ADC the same as that of MD in the multi-shell data analysis. Denoising increased 

ADCfast by +11.4% and +9.9% in tumor and NFT respectively. Denoising increased the 

perfusion fraction by 12.5% in tumor and 36.9% in NFT, but the values for perfusion 

fractions were small to begin with (0.075, 0.057 in tumor and NFT respectively). For every 

metric and in both tumors and NFT, the coefficient of variation (CV) within the ROIs were 

significantly reduced (p<0.001). In particular, the CV reduction was substantial in both 

ADCfast (−12.7% to −14.3%) and perfusion fraction (−18.0% to −24.4%).

Fig.6 shows diffusivity maps from one subject, which compare the effects of denoising 

on ADC, ADCslow and perfusion fraction maps. The arrows in Fig. 6 point to vascular 

structures on the undenoised and denoised ADCfast and perfusion maps.

Table 3 summarizes results aggregated from all time-points. In every metric, paired t-tests 

show that tumor metrics were significantly different from NFT metrics in both denoised and 

undenoised maps. This was despite denoising not always increasing the absolute difference 

between tumor and NFT (ADC and ADCslow). However, the p-values were always lower in 

denoised than undenoised; in particular, the perfusion fraction p-value was 0.01 undenoised 

and <0.001 denoised.

In the longitudinal analysis (also in Table 3), ADC and ADCslow had small linear rates (~2.1 

μm2/s/day) with relatively low adjusted R-squared values (0.22–0.25) that didn’t change 

much with denoising. For ADCfast, denoising increased the temporal rate with a much 

larger increase in adjusted R-squared from 0.01 to 0.18. The adjusted R-squared values for 

perfusion was very small (0.02) and was further reduced by denoising.

Fig.7 shows the distribution of the metrics at each time point. In the paired t-tests, 12 of 16 

metric time-points, NFT and tumor regions were significantly different in both denoised and 

undenoised. In 2 of 16 time-points (perfusion fraction T0 and T2), significant differences 

were only in the denoised maps. In 13 of 16 metric time-points, p-values were lower in 

denoised than in undenoised. The two-sample t-test results were similar to the paired t-tests, 

except that 12 of 16 metric time-points had lower p-values in denoised than undenoised.

For the subjective assessments, the readers preferred the image noise level in the denoised 

ADCfast image (mean: +0.96, 95% confidence interval or CI: +0.87 to +1.0) but preferred 

Tan et al. Page 8

J Magn Reson Imaging. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the undenoised ADCslow (mean: −0.46, 95% CI: −0.71 to −0.21) and perfusion fraction 

images (mean: −0.67, 95% CI: −0.99 to −0.35). Tumor conspicuity was preferred in the 

denoised ADCfast (mean: +0.33, 95% CI: +0.13 to +0.54) and was neutral in both ADCslow 

(mean: −0.08, 95% CI: −0.20 to +0.04) and perfusion fraction (all readers rated 0). The 

inter-rater agreement for image noise level was moderate (κ=0.53, p<0.001) to almost 

perfect when ordinality was considered (concordance=0.86, p<0.001); for tumor conspicuity 

it was fair (κ=0.21, p=0.04) to moderate (concordance=0.52, p=0.04).

DISCUSSION

A model-based denoising scheme for breast DWI was demonstrated in multi-shell and 

multi-b-valued acquisitions. The denoising scheme was shown to be highly effective at 

suppressing erroneously high FA without compromising spatial resolution, similar to that 

observed in multi-shell diffusion denoising in the peripheral nerves(27). In this breast DWI 

work, the FA reductions were particularly conspicuous in the fatty tissue regions with low 

signal due to fat-suppression and in tissue boundary regions (fat-air, fat-NFT interfaces for 

instance). Erroneously high FA bias is a common DTI post-processing issue(35), especially 

in tissue boundary regions where misregistration due to either motion or eddy currents can 

severely bias FA calculation. Unlike denoising of additive thermal noise, where methods that 

offset noise-bias or PCA-denoising may apply(24), such misregistration artifacts are more 

like measurement outliers. These are more suited to correction by the proposed model-based 

technique used here. When combined with PCA-based denoising(27), the model-based 

denoising could provide a powerful means for correcting both additive noise and outlier 

artifacts to improve quantitative analysis and visualization of diffusivity maps.

Another important result from this work was the demonstration of reduced coefficient 

of variation in every diffusivity metric, especially ADCfast and perfusion fraction in the 

multi-b-valued DWI cohort. On its own, a reduced coefficient of variation may imply 

that denoising either improved precision, or that it homogenized the metrics; which in 

turn might result in tumor and NFT metrics becoming less differentiable. The results 

of this work suggest that the former was the more likely situation. This is because in 

comparing tumor and NFT regions in the patient multi-b-valued acquisitions, the statistical 

separation between tumor and NFT was increased by the denoising technique in almost 

every metric and on a per-subject and per-time-point basis, even when the mean differences 

between the metrics were unchanged. In addition, the improved separation between tumor 

and NFT could imply that denoising could improve large cohort tumor characterization 

studies. The precision-improving effects of denoising were particularly noted in ADCfast and 

the perfusion fraction, which require multi-b-valued acquisitions and were typically very 

noisy. Subjectively, denoising improved the ADCfast maps in both image noise level and 

tumor conspicuity. Although the subjective results were mixed (perceived noise levels in 

ADCslow and perfusion maps were lower), it is likely due to the subtle effects and lack of 

strong anatomical features in the diffusion maps. Although not subjectively evaluated, the 

improved coefficient of variation in ADCfast and perfusion fraction may provide improved 

visualization of mammary vessels, as well detection of microvasculature components that 

could be used to separate malignant from benign tumors.
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Another potential benefit of denoising is better characterization of tumor response to 

chemotherapy through longitudinal breast DWI studies. For example in the ACRIN 6698 

Trial, mean tumor ADC demonstrated excellent repeatability(36) but it provided only 

moderate power for predicting treatment outcome(34). While the current work was not 

powered for investigating treatment effects, we did observe that linear fitting of the 

longitudinal data was improved by denoising for ADCfast; the adjusted R-squared value was 

improved by a factor of ten. A simple linear fit was applied as only four time points were 

available in this retrospective cohort, and due to the lack of any a-priori expectations for the 

longitudinal behavior of the different investigated metrics. In this work it was observed that 

the longitudinal pattern of diffusivity change was only mildly temporally-linear in ADC and 

ADCslow.

Denoising on both multi-shell and multi-b DWI resulted in some bias in the diffusivity 

metrics. In particular, the application of denoising resulted in a larger observed bias in 

multi-shell MD than that in the multi-b DWI ADC, albeit the biases were both negative. 

MD and ADC could be deemed comparable as they were both isotropic diffusivity measures 

utilizing all available b-values. The primary reason for the disparity in bias was likely 

not fundamental, but rather due to differences in the segmentation techniques in the two 

analyses: in the multi-b DWI careful manual segmentations of both tumor and NFT were 

performed, whereas in the multi-shell data all pixels were included. The latter processing 

would include noisy regions with low signal intensities and regions with misregistration 

artifacts, which would likely increase the denoising-related bias. A secondary factor was 

that higher b-values were weighted more heavily in the multi-shell acquisition vs. equal 

weighting across all b-values in the multi-b DWI. This reasoning was supported by the 

observation of higher precision (lower standard deviation) in the fractional compartments 

when the number of diffusion-encoding directions were reduced; this implied the differences 

due to down-sampling were caused by the diffusion data itself rather than by the denoising 

model. Furthermore, previously reported comprehensive simulations(26) demonstrated that 

this denoising scheme did not bias diffusivity measurements.

A benefit of multi-shell diffusion acquisitions is the ability to derive both the isotropic 

metrics, such as ADCslow, ADCfast, and perfusion fraction, and the metrics associated with 

the diffusion tensor (FA, PD, RD, etc.). The longer scan time of the multi-shell acquisition 

over 3-direction DWI could be addressed by applying denoising to multi-shell data with 

fewer diffusion directions. With the b-values chosen in this work, a 13 direction multi-shell 

acquisition with three b=100, four b=600 and six b=800 directions would avoid the situation 

of the outer shell having only five directions, which would be numerically inadequate for 

resolving the six elements in the diffusion tensor, even though all b-values were utilized in 

our diffusion fit. With 13 total diffusion directions, the scan time with the same multi-shell 

parameters would be under 4.25 minutes (as compared to the ten minute fully-sampled 

scan). Further acceleration by a factor of about two could be achieved with simultaneous 

multi-slice(37), allowing the acquisition of additional b-values to provide improved fitting 

for investigation of intravoxel incoherent motion metrics.

The model-based denoising also provides fractional values of the modelled tissue 

compartments, which could provide useful visualization and quantification. As an example, 

Tan et al. Page 10

J Magn Reson Imaging. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



signal from NFT, tumor or vascular could be visualized separately (Fig. S1). For 

quantification, the tumor compartment and vascular compartment could be used for 

segmentation and also to indicate the likelihood for malignant angiogenesis. For future 

work, the vascular compartment from denoising could also be compared to perfusion 

fraction obtained by fitting.

Limitations

In this work, there were several study design limitations. Firstly, no fully-sampled multi

shell tumor data was acquired because of the long scan time, so the down-sampling effects 

on the tumor compartment were not validated. Secondly, because this was an entirely 

retrospective study, the parameters used in the data were not optimized and limited the 

interpretability of the comparisons that were made. For instance, two multi-b-schemes were 

acquired; a multi-shell for the down-sampling evaluation, and multi-b DWI for the patient 

cohort analysis. Also, the effects of down-sampling were determined on 3T data while the 

multi-b was acquired at 1.5T. More importantly, because this was retrospective, optimized 

accelerated multi-shell patient data was not acquired. Therefore, the possibility for scan time 

reduction was not experimentally validated. A prospective study design would also have 

allowed for collection of complex raw data that could have allowed for removal of Rician 

noise bias, rather than the magnitude coil-combined image data in this study.

Another limitation of this study was that the NFT ROIs were not segmented in the fully

sampled multi-shell data to compare against the NFT ROIs from the multi-b DWI. This was 

done to satisfy the goal of including a majority of pixels for analysis in the multi-shell data 

in order to more fully quantify the effects of down-sampling from the fully-sampled dataset, 

rather than using only on a small subset of pixels selected manually to characterize NFT 

and tumor ROIs. Furthermore, to maintain consistency in the analysis, the classification for 

pixels were kept constant (classified from the fully-sampled case).

The clinical utility of the denoising technique was not demonstrated in this work. For 

instance, trace-weighted images, the most commonly available DWI, were not analyzed. 

Also, the analysis of the longitudinal data was not compared against dynamic contrast

enhanced breast MRI or with the knowledge of the tumor type or outcome from the 

chemotherapy. Therefore, the assumption of a monophasic linear longitudinal change was 

merely to evaluate improvements made by denoising to the longitudinal stability of the 

diffusion measurements. Future work would utilize an optimized 13 directions multi-shell 

acquisition for longitudinal imaging of breast cancer subjects.

Alternative diffusion acquisition techniques may provide accelerated acquisition or higher

order diffusivity information. For example, q-space imaging(38) can reduce the number 

of diffusion directions by sampling multiple diffusivity directions; double-diffusion 

encoding(39) and oscillating gradient encoding(40) can provide length-scale selective 

information. Nevertheless, the advantages of applying the proposed denoising technique 

could be realized in any of these newer acquisition techniques, and more importantly could 

be realized via retrospective application to existing image data providing the individual 

diffusion direction images are available; complex coil-by-coil data that is seldom stored is 

not required.
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CONCLUSION

In summary, an effective denoising method for multi-b-valued breast diffusion imaging was 

demonstrated, which could be used in conjunction with a multi-shell diffusion acquisition 

scheme to provide improved precision of diffusion tensor- and multi-b-based metrics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Visualization of fractional compartments – restricted (normal fibroglandular tissue), 

hindered (tumor, thick arrows point to tumors) and free (vascular, thin arrows point to 

mammary vessels), in (a) subject 2 (66 yr., invasive ductal carcinoma [IDC], FTV=7.9 cc), 

and (b) subject 3 (37 yr., IDC, FTV=62.2 cc).
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Figure 2. 
Effects of denoising shown as scatterplots for 12-directions multi-shell (top row), 21

directions multi-shell (middle row) and 30-directions multi-shell. Each plot shows the 

denoised metric, MD’ for instance vs. the original metric MD. The colors indicate pixels 

with fractional compartments being strongly anisotropic normal fibroglandular tissue (red), 

strongly isotropic tumor tissue (green), or strongly isotropic vascular (blue).
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Figure 3. 
Normalized differences between denoised and undenoised metrics for normal fibroglandular 

tissue (NFT, top row), tumor (middle row) and vascular (bottom row) compartments and 

at different down-sampled number of diffusion directions down from “fully-sampled” 30

directions data.
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Figure 4. 
Error of down-sampling against “fully-sampled” 30-directions multi-shell DWI in normal 

fibroglandular (NFT) compartment (top row), tumor compartment (middle row) and vascular 

compartment (bottom row). The MD, PD, RD and FA metrics are shown, as well as 

the compartment fractions for restricted (R), hindered (H) and free (F) diffusivity, which 

correspond respectively to the NFT, tumor and vascular compartments.
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Figure 5. 
Effects of denoising on multi-shell DWI images down-sampled to 12-directions (top rows) 

and fully-sampled at 30-directions (bottom rows), showing maps for mean diffusivity (MD), 

axial/parallel diffusivity (PD), radial diffusivity (RD) and fractional anisotropy (FA) in 

columns.
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Figure 6. 
Maps from subject 1 (57 yr., IDC, FTV=12.0 cc), standard and denoised, with segmented 

tumor (solid line) and contralateral fibroglandular tissue (dashed line), showing significant 

reduction in image texture and outliers in the b=100 sec/mm2 and perfusion fraction maps. 

The lateral mammary vessel was better visualized after denoising (arrow).
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Figure 7. 
Distribution (mean and standard deviation) across N=10 subjects across all four time-points 

(T0 to T3) in tumor and normal regions of interests, showing reduced variance in most 

metrics and time-points resulting from denoising. Statistically significant (p<0.05) paired 

t-test differences between tumor and normal regions in both undenoised and denoised are 

indicated with *, and statistically significant differences in denoised only are indicated with 

**. Two-sampled t-test differences are indicated with ^ (undenoised and denoised) and ^^ 

(denoised only).
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Table 1.

Generalized, multi-compartment diffusion model for breast diffusivity with compartments J and N 
representing the number of assumed diffusivities and the number of directions respectively in anisotropic 

compartment, or K for the number of assumed diffusivities in isotropic compartments. In this work, the 

parameters for denoising optimization were number of iterations = 52, Nesterov’s iteration parameter = 3.5.

Anisotropic or 
Isotropic

Tissue Compartment Range of mean diffusivity (μm2/s) Fractional 
anisotropy

# Compartments
(J × N) or (K)

Anisotropic Normal fibroglandular tissue 
(NFT)

1800 0.8 1 × 40

Isotropic Tumor 400 to 2000 0.0 8

Isotropic Vascular 2400 to 30000 0.0 8

Isotropic Fat 50 to 300 0.0 4
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Table 2.

Differences (denoising minus no denoising) in multi-b-value metrics of normal fibroglandular tissue (NFT) 

and tumors, and their coefficient of variation as compared statistically using the pair-wise, non-parametric 

Wilcoxon signed-rank test.

Metric NFT Tumor

Mean 
difference

% Mean 
difference (p-

value)

%Change in 
CV

(p-value)

Mean 
difference

% Mean 
difference (p-

value)

%Change in 
CV

(p-value)

ADC (b=0, 100, 
600, 800)

−14.7 μm2/s −0.7 (p=0.01) −1.2 (p<0.001) +9.5 μm2/s −1.0
(p<0.001)

−0.7 (p<0.001)

ADCslow (b=100, 
600, 800)

−48.5 μm2/s −2.5 (p<0.001) −2.7 (p<0.001) −12.0 μm2/s −0.8 (p=0.012) −1.5
(p<0.001)

ADCfast (b=0, 100 
only)

+205 μm2/s +9.9 (p<0.001) −12.7 (p<0.001) +154 μm2/s +11.4 (p<0.001) −14.3 (p<0.001)

Perfusion fraction +0.012 +36.9 (p=0.002) −24.4 (p<0.001) +0.045 +12.5
(p=0.003)

−18.0 (p<0.001)
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Table 3.

Results from per-exam paired t-test of NFT minus tumor metrics (mean and p-value), and longitudinal analysis 

of tumor metrics with linear fitting (slope and adjusted R-squared value).

Metric

Paired t-test of NFT-Tumor

Undenoised Denoised

NFT Mean Tumor Mean p-value NFT Mean Tumor Mean p-value

ADC (μm2/s) 1646μm2/s 1179μm2/s <0.001 1631μm2/s 1188μm2/s <0.001

ADCslow (μm2/s) 1536μm2/s 1113μm2/s <0.001 1488μm2/s 1101μm2/s <0.001

ADCfast (μm2/s) 2157μm2/s 2362μm2/s <0.001 1550μm2/s 1703μm2/s <0.001

Perfusion fraction 0.0748 0.0573 0.013 0.0867 0.0618 <0.001

Metric

Longitudinal Comparison (const + rate × time)

Undenoised Denoised

const rate Adj. R-Squared const rate Adj. R-Squared

ADC (μm2/s) 1027 2.1/day 0.217 1039 2.1/day 0.221

ADCslow (μm2/s) 952 2.2/day 0.246 956 2.0/day 0.230

ADCfast (μm2/s) 1480 0.9/day 0.0143 1553 2.1/day 0.180

Perfusion fraction 0.061 −0.054/day 0.021 0.061 0.012/day −0.022
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