
UC San Diego
Technical Reports

Title
Online Learning Algorithms for Dynamic Power Management

Permalink
https://escholarship.org/uc/item/8jk9j2h9

Authors
Ma, Zhen
Gupta, Rajesh

Publication Date
2006-04-08
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8jk9j2h9
https://escholarship.org
http://www.cdlib.org/


Online Learning Algorithms for Dynamic Power Management

Zhen Ma Rajesh Gupta

Department of Computer Science & Engineering

University of California at San Diego, La Jolla, CA 92093

{zhma,gupta}@cs.ucsd.edu

Abstract

Dynamic Power Management (DPM) is a major tech-

nique to reduce energy consumption for battery-operated

embedded systems. Online DPM algorithms refer to strate-

gies that switch the system to optimal power state accord-

ing to the idle period lengths at runtime. In this paper, we

propose an online learning based power management tech-

nique, which combines a low-overhead stochastic learning

automaton and threshold based DPM algorithms. The sim-

ulation results show that the hybrid algorithm can achieve

on an average of 5% and up to 20% energy savings than

the online probability-based approach while introduces on

an average of 14% lower average latency than any other

algorithm that has similar energy savings.

1 Introduction

Energy efficiency is a major concern in battery-operated

real-time embedded systems. Power management can be

achieved by switching the system components (such as hard

disks, wireless interface, embedded processors, etc.) into

power states that are sufficient to meet their performance

requirements. When the system is idle, it can be put into

a low power state. However, a wakeup energy and la-

tency are required to transition the system back to the ac-

tive power state. Based on the characteristics (power dis-

sipation, wakeup energy/latency overhead) of each power

state and the observation of the idle period lengths, DPM

algorithm should make optimal power state transition deci-

sions to minimize the total energy consumption under per-

formance constraints.

An offline DPM algorithm which knows the idle period

length in advance can determine whether the length of idle

period is long enough such that the power savings can out-

weigh the wakeup energy overhead and thus choose an op-

timal state for the idle period. On the contrary, online dy-

namic power management should make critical decisions

without knowing the lengths of upcoming idle periods. In

[5], Hwang et. al. use the weighted exponential aver-

age of the previous idle period lengths to predict the up-

coming idle period length. Chung et. al. [1] propose a

prediction scheme for multiple power state systems, which

applies an adaptive learning tree to guide power state tran-

sition decisions. These prediction algorithms were catego-

rized as single-value prediction algorithms in [4, 6], for they

predict the next idle length as a single value to guide the

power management. However, such algorithms cannot cap-

ture the nondeterministic feature of the upcoming idle peri-

ods. The corresponding state decided by the predicted sin-

gle value may have a high penalty probability. Markov de-

cision process (MDP) based power management were pro-

posed in [9, 12, 11] to derive optimal power management

policy, which is more applicable for offline policy genera-

tion due to its high optimization overhead and its limitation

in that it assumes the workloads follow predefined distribu-

tions. Chung et. al. [2] propose an online version of this

approach which switches between the interpolations of pre-

computed offline policies, but this assumes the interpolation

can well approximate the optimal DPM policy.

In order to find a better DPM policy that utilizes the sta-

tistical information from previous workload, Irani et. al. [6]

propose an Online Probability-Based Algorithm (OPBA)

which learns the idle length distribution and periodically

updates the thresholds for power state transitions to mini-

mize the expected energy consumption. Kachroo et. al. [7]

introduce Stochastic Learning Automaton (SLA) for DPM.

An SLA uses the current probabilities for each power state

to make state transition decision, evaluates the decision at

a later time and update the probabilities by reinforcement

learning schemes to learn from its previous mistakes.

Most of the online DPM algorithms are based on the fact

that the upcoming idle period length or the optimal deci-

sion for the upcoming idle period is most relevant to the

recent history. The efficiency of the online DPM algorithms

depends on how well it can utilize the idle period infor-

mation in the histogram. In this paper, we apply various

reinforcement learning algorithms to improve online deci-

sion making for power state transitions with low computa-



tional overhead. We also propose a hybrid online learning

algorithm which combines a stochastic learning automaton

with dynamic thresholds computed by OPBA. To under-

stand and extensively explore the algorithmic aspects, we

use real hard disk traces to compare our proposed approach

with existing DPM algorithms. We then show how the pro-

posed approach is robust across variations in the workloads

and can be effective in practice. With this new approach,

we achieve on an average of 5.4% and up to 20% energy

savings than OPBA. In addition, the hybrid algorithm intro-

duces on the average of 14% lower average latency than the

other algorithms that has similar energy savings.

The rest of the paper is organized as follows: Section

2 summarizes the Online Probability-based Algorithm and

the Stochastic Learning Automata approach and points out

their limitations respectively. Section 3 proposes the hybrid

learning approach and the associated SLA design. The ex-

perimental results are presented in Section 4, followed by a

brief conclusion in Section 5.

2 Dynamic Power Management by Online

Learning

In this section, we first present the system model for

DPM. We then summarize two best existing DPM algo-

rithms in the literature by online learning and point out their

limitations, which motivate our proposed algorithm.

2.1 System Model

Consider a system that has k + 1 power states denoted

by S0, · · · , Sk. The power consumption for state i is de-

noted by αi, where αi > αj given i < j. For simplicity, we

assume power-up is only allowed to the active power state

(S0) while it is allowed to transition to any lower power

state from any power state. The total energy consumed in

transitioning from Si to S0 is denoted by βi, where βi < βj

given i < j. In case the time and energy overhead incurred

in transitioning to lower power states is non-negligible, they

can be incorporated by folding them into the correspond-

ing power-up parameters [6]. A power manager is a con-

troller which observes the idle period lengths and runs the

DPM algorithm to make power state transition decisions.

For each DPM algorithm, we should consider three factors:

energy consumption, average latency and implementation

overhead. The energy consumption is our objective met-

ric for energy minimization, while the average latency is

the latency introduced by DPM. A more aggressive DPM

algorithm usually introduces more latency to the system

due to its aggressiveness to transition the system to low

power states. Thefore, DPM is a tradeoff between energy

and latency. In addition, the DPM algorithm must be im-

plemented efficiently. A complicated DPM algorithm may

make more accurate predictions and thus make better trade-

off for energy and latency, but it usually has higher compu-

tational and space complexity than a simple DPM algorithm

and thus introduces overhead on the power manager itself.

2.2 Online Probabilitybased Algorithm

Irani et. al. [6] introduce an probabilistic analysis

approach that models the upcoming input sequence by a

probability distribution that is learnt based on historical

data. Assume a system has k + 1 power states denoted by

S0, · · · , Sk. The power consumption for state i is denoted

by αi. Assume the low power states only transition to the

active power state (S0) when it receives a new service re-

quest. The total energy consumed in transitioning from Si

to S0 is denoted by βi. Assume the idle interval is generated

by a fixed, know distribution whose density function is π. τi

(i ∈ {1, 2, · · · , k}) is the threshold at which time the system

will transition from Si−1 to Si. The expected energy cost

for the algorithm is given as:

k
∑

i=0

∫ τi+1

τi

π(t)[αit + βi]dt (1)

This approach is called Probabilistic Lower Envelope

Algorithm (PLEA), which assumes the workload is known

a priori. PLEA makes no assumption about the form of the

learnt workload distribution and is proved that for any dis-

tribution, the expected cost of PLEA is within a factor of
e

e−1
of the expected cost for the optimal offline algorithm.

The online version of this approach is called Online

Probability-Based Algorithm (OPBA). OPBA defines a

learning window which is used to summarize the workload

history to a histogram. The histogram is then used to gen-

erate a new DPM policy periodically in a certain frequency.

Instead of using a continuous probability distribution π in

PLEA, OPBA uses a discrete probability distribution as the

follows: (1) Divide the idle length range [0,∞) to n in-

tervals. Let ri be the left endpoint of the ith interval. (2)

Associate each interval with a counter ci which records the

number of idle periods in the history window (with a size of

w) whose length fall into interval [ri, ri+1). (3) The proba-

bility the idle period has length ri is ci/w. The threshold τi

is taken to be

argminrt
{

t−1
∑

j=1

(
cj

w
)rj(αi−αi−1)+

n
∑

j=t

(
cj

w
)[rt(αi−αi−1)+(βi−1−βi)]}

(2)

OPBA provides an efficient way to solve the online DPM

problem in that it dynamically updates the transition thresh-

olds based on the idle length distribution. eHowever,

(1) The optimal window size and the threshold update

frequency are time-dependent on the actual non-stationary

2



workload. With a fixed window size, the history informa-

tion has same weight on each entry in the histogram. The

algorithm may not adapt to bursty behaviors in service re-

quests distribution, where old history should decay quickly

enough to calculate optimal thresholds.

(2) Although OPBA may converge to a low threshold

value when the idle periods in the history are longer than

the break-even times, similar to other threshold based tech-

niques, OPBA wastes the energy before reaching the thresh-

olds. It is proved in [3] that it is always more costly to

transition through a sequence of power states than to imme-

diately switch to the lowest power state in the sequence for

any idle period length. Therefore it may be more effective

to shutdown the system or transition to a deep low power

state immediately when the system becomes idle.

(3) Threshold candidates are fixed. The granularity of

threshold optimization should tradeoff with computation

overhead of the algorithm.

2.3 Stochastic Learning Automata

A stochastic learning automaton is a finite state machine

that interacts with a stochastic environment and tries to

learn the optimal action offered by the environment via a

learning process. An SLA can be used as a decision tool:

the automaton selects one of the possible states according

to a state probability matrix; the chosen action will trigger

the environment to response with a feedback. Based on the

feedback, the automaton will update the state probability

matrix by means of a reinforcement learning scheme.

An SLA can be described precisely in terms of following

entities [8]:

- The state of the automaton at any instant t, denoted by

φ(t), is an element of the finite set

Φ = {φ1, φ2, ..., φs} (3)

- The output or action of an automaton at the instant t,
denoted by α(t), is an element of the finite set

A = {α1, α2, ..., αr} (4)

- The transition probability matrix at any instant t, de-

noted by P (t) which guides the choice of action at t







P11, . . . , P1r

...
...

...

Ps1, . . . , Psr






(5)

where Pij(t) is the probability of choosing action j when

the state at t is i.

- The input (which reflects the feedback from the envi-

ronment) of an automaton at the instant t, denoted by β(t),
is either 0 or 1. 0 means the feedback is bad; 1 means the

feedback is good.

- Ψ is an updating scheme, or a reinforcement learning

algorithm, which generates P (t + 1) from P (t).
Classical SLA reinforcement algorithms include General

Linear-Reward-Penalty (LRP) Scheme, Symmetric Linear

Reward-Penalty (SLRP) Scheme, Linear Reward-Inaction

(LRI) Scheme and some non-linear schemes [8]. All

these algorithms update the probability vector based di-

rectly on the environment feedback. Basically, when the

input(environment feedback) is 1, these algorithms reward

the chosen action by increasing its selection probability; the

algorithm penalize it by decreasing its selection probability

otherwise.

Kachroo et. al. [7] apply classical reinforcement learn-

ing algorithms and non-linear schemes[8] for DPM. The ex-

periment results show that the SLA approach presents bet-

ter results with respect to energy consumption and latency,

compared to learning tree based approach [1], exponential-

average approach [5] and OPBA [6]. However,

(1) All these classic learning algorithms update the prob-

ability matrix prob based directly on the environment feed-

back. Such algorithms may have high possibilities to con-

verge to wrong decisions and before they learn the mistakes,

the idle length distribution may change rapidly such that the

new optimal decision is wrong again.

(2) The SLA design in [7] has high computational over-

head. It is critical to keep the computation time of both

probability updating and action selection low to support en-

ergy constrained real-time systems. In [7], for power state

Si (i = 1, 2, . . . , k) , there are k− i+2 allowable state tran-

sitions from Si: Si, Si+1, Si+2, . . . , Sk and S0. The allow-

able state transitions from S0 include every state. So the size

of the action set is k+1+
∑k

i=1
(k−i+2) = 0.5(k2+5k+2).

The experiments in [7] show that the optimal learning al-

gorithms are the non-linear learning algorithms, which re-

quires more computation time than linear ones to update the

probability for each action.

(3) The power state transition decisions are frequently

made every 1ms,10ms or 100ms. Frequent action selec-

tion may enhance the chances to make the system in opti-

mal power states, but the power manager needs to compare

the probability matrix with a random generated number for

each action selection, which consumes possibly unneces-

sary computation time and power.

3 Proposed Algorithm

In this section, we propose a stochastic learning automa-

ton to guide online DPM with low computational over-

head. This approach differs from [7] in that: (1) the algo-

rithm makes only one decision for each idle period, instead

of making decisions at every timer tick, which avoid un-

necessary decision makings; (2) the algorithm applies lin-

ear learning algorithms instead of non-linear ones, which

3



has relatively low computational overhead; (3) We further

combine dynamic thresholds computed by OPBA with the

stochastic learning automaton, which reduces the energy

cost and latency effect introduced by wrong decision made

by the automaton. This hybrid algorithm works as follows:

Let prob be the vector that denotes the probability to tran-

sition the system from the active state to each low power

state. When the system becomes idle, it generates a ran-

dom number in the range of [0, 1]. By comparing the ran-

dom number with prob, it makes a stochastic decision. The

system will then transition to the power state according to

the SLA decision. When the idle period exceeds the peri-

odic updated OPBA thresholds for lower power states than

the SLA decision, the hybrid algorithm works the same as

OPBA. The SLA can eliminate the energy wasted before

the threshold in the OPBA only approach, while the OPBA

threshold may reduce the possible energy loss due to wrong

decisions made by the SLA. We consider three hybrid algo-

rithms: LRP-OPBA, AELA-OPBA, SELA-OPBA, where

the learning algorithm for the SLA is LRP, AELA, SELA

(presented in next section) respectively.

3.1 Stochastic Learning Algorithm

As we mentioned in the previous section, the critical part

for the SLA design is to choose a learning algorithm that has

fast convergence speed and adaptability to non-stationary

workloads. In this section, we discuss our choice among

the various classic reinforcement learning algorithms. We

also apply two enhanced stochastic learning algorithms in

our proposed algorithm.

3.1.1 Reinforcement Learning Algorithms

Classic learning algorithms include Linear Reward-Penalty

(LRP), Linear Reward-Inaction (LRI) and some non-linear

learning algorithms [8]. With respect to their Markovian

representations, learning automata are classified into two

main categories: ergodic automata and automata possess-

ing absorbing barriers. When the reward probabilities of

actions are time-variant (non-stationary environment), er-

godic automata are preferred, because they are capable of

being adapted to the environmental changes.

The LRI algorithm is not ergodic. It is possible to get

stuck in absorbing states. This makes it sensitive to the start-

ing conditions and probabilities, and also to non-stationary

environments. Such occurs when action probabilities tend

to one, so that if the environment changes, the probabil-

ity vector may not adapt to the new optimum for a long

time. Because we target for non-stationary workloads, we

do not consider LRI as a candidate for learning algorithms.

The non-linear learning algorithms are more complicated

updating schemes than linear ones. Since the implementa-

tion must introduce little overhead for embedded systems,

non-linear algorithms are not favorable.

In this paper, we apply three Linear Reward-Penalty

(LRP) based learning algorithms to update the probability

vector in SLA.

The LRP algorithm works as the follows: Let ak be the

last action that transitions the system from the active state

to state k. Let b be the optimal action the offline algorithm

would choose. Let α and β be the reward factor and penalty

factor respectively, which are values in the range [0, 1]. Let

nS be the number of power states. When a new service

request arrives, we compute the offline decision b by simply

comparing the last actual idle period length and the break-

even time for each low power state. The automaton will

evolve by updating the probability vector and adapt to the

changing idle length distribution in the following way:

• If b = ak, prob[ak] = prob[ak] + α(1 − prob[ak]);
prob[aj ] = prob[aj ] - α ∗ prob[aj ] (j 6= k).

• if b 6= ak, prob[ak] = prob[ak] - βprob[ak];
prob[aj ] = prob[aj ] + (β/(nS − 1) − β ∗ prob[aj ])
(j 6= k).

The probability vector p(n) in LRP has been shown to

converge in distribution to a normal random variable for

small step sizes. The scheme is also ergodic, so that this

distribution function is independent of the initial probability

vector p(0). This feature is advantageous for non-stationary

environments, as the automaton does not get stuck in ab-

sorbing states and so is better able to track the changing

optimal probability vector.

3.1.2 Average Estimator Learning Algorithm

The Average Estimator Learning Algorithm (AELA) uses

a running estimate of the mean reward by looking back

into a history window and the environment feedback, rather

than looking only on the environment feedback. Simulation

results show that the average estimator learning algorithm

has better performance than the above classic learning al-

gorithms [10].

We associate W for each action to the SLA as the learn-

ing window size to record the reward history for each action.

After each idle period, we use LRP to update the most

recent reward to each element in the probability vector. We

then delete the oldest reward in the learning window of ak

and insert the reward/penalty by the Linear Reward-Penalty

algorithm as the newest reward/penalty value for action ak.

We calculate the deterministic reward estimate Dk for ak.

Dk =

∑w−1

0
ri

W
(6)

where ri (i = 0,1,. . . ,w− 1) are the rewards received during

the last w times that action ak was chosen.

4



In AELA-OPBA, we use this deterministic reward esti-

mate to update the transition probabilities.

3.1.3 Stochastic Estimator Learning Algorithm

Papadimitriou [10] points out that the performance of

AELA decreases when they operate in a non-stationary

stochastic environment, because of the existence of old and

consequently invalid, feedback information in the estima-

tor. He further proposes the Stochastic Estimator Learning

Algorithm (SELA) which varies the average deterministic

reward by a small stochastic factor and shows improved per-

formance. The simulation results [10] show that it achieves

a high choice probability of the optimal action and high rate

of adaptation to environmental changes in non-stationary

environments.

We modify SELA for DPM. It works as the follows: we

calculate the stochastic reward estimate before updating the

transition probabilities. We associate each action an oldness

number mk, which keeps track of the time passed from the

last time the action was chosen. We denote mj as the old-

ness number of an opposite action of k. We update the old-

ness vector as in Line 4. The stochastic reward estimate Sk

is then defined as:

Sk = Dk + N(0, σ2) (7)

where σ = min(βmk, σmax)

N(0, σ2) is a random number selected with a normal

probability distribution, with a mean of 0 and a variance of

σ2. β is an internal automaton’s parameter that determines

how rapidly the stochastic estimates become independent

from the deterministic ones. σmax is the maximum per-

mitted value of σ. N(0, σ2) gradually makes the estimate

deviate from the history records in a non-stationary stochas-

tic environment. It may reduce the effect of those old and

invalid records in the history window.

Algorithm 1 Stochastic Estimator Learning Algorithm

1: Compute the optimal offline action b;

2: Update the reward histogram based on the comparison

of b and ak;

3: Compute the new deterministic estimate of the mean

reward of each action as is given by equation (6);

4: Update the Oldness Vector by setting mk = 0 and

mj=mj + 1 for all j 6= k;

5: For each action, compute the new stochastic estimate

of mean reward us as is given by equation (7);

6: For each state, prob[s] = prob[s] + us;

7: Normalize the prob vector such that ΣnS
s=1prob[s] = 1

3.2 Implementation Consideration

In order to use online DPM algorithm in a practical em-

bedded system, it must be implemented efficiently. OPBA

and SLA based approach are the two best online algorithms

for DPM in the literature in terms of energy savings and

latency effects. To compute each threshold, OPBA has to

search among n values to minimize (6). The time com-

plexity of OPBA to update the thresholds is O(kn) with an

efficient implementation [6], where k + 1 is the number of

states and n is the number of bins in the histogram. The

cost of implementation depends on the number of bins and

the threshold update frequency. Note at each update time,

OPBA has to find the best threshold for each power state by

searching the best threshold among the n candidates to min-

imize the expected energy consumption equation defined in

[6]. The time complexity of SLA based approach depends

on the complexity of the learning algorithm and the number

of actions used in the SLA as we described in Section 2.

Our hybrid algorithm applies relatively simple SLA learn-

ing schemes rather than non-linear learning algorithms. Un-

like [7], we only make decision when a new idle period ap-

pears and update probabilities when an idle period ends and

do not make transitions at each time tick. In addition, we re-

duce the number of actions from 0.5(k2 + 5k + 2) to k +1.

On the other hand, we may also reduce the update frequency

and number of bins in the OPBA part, for the SLA helps to

make decisions.

In order to evaluate the energy efficiency of our hybrid

algorithms, simulation setup and results are described in the

next section.

4 Experiments

We evaluate the SLA, OPBA and the hybrid algorithms

with traditional prediction techniques by simulation. The

algorithm test suite include:

(1) Optimal Offline Algorithm (OPT): This algorithm is as-

sumed to know the length of the idle period in advance and

devises an optimal shutdown schedule accordingly. Note

that the latency of OPT is 0, while other DPM algorithms

may consume less energy at the cost of introducing higher

latency.

(2) DET: The offline algorithm PLEA, which applies fixed

thresholds for multiple power states. Details see [6].

(3) Last Period (LAST): This simple algorithm uses the last

period as a predictor for the next idle period.

(4) Exponential Average(Exp-Avg): Proposed by Hwang et.

al. [5], this policy uses a weighted sum of the last idle pe-

riod T n−1

idle and the last prediction T n−1

pred to predict the new

idle period T n
pred:

T n
pred = λT n−1

idle + (1 − λ)T n−1

pred (8)

5



Table 1. IBM Mobile Harddrive Power Model
State P (W ) Estartup(J) Lwakeup(ms)

Sleep 0 4.75 5000

Standby 0.2 1.575 1500

Idle 0.9 0.56 40

Active 1.9 0 0

Table 2. Competitive ratio and average latency

Algorithm Competitive Ratio Average Latency (ms)

OPT 1.000 0

DET 1.429 917.816

OPBA 0.991 1660.372

Hybrid 0.937 1401.588

LAST 1.754 1737.017

LAST-P 1.009 1054.688

EXP 0.996 1560.543

EXP-P 1.139 1135.512

TREE 1.003 1966.419

TREE-P 2.156 1313.641

LRP 0.964 1632.380

LRP-P 2.611 744.617

AELA 0.962 1659.522

AELA-P 2.423 807.788

SELA 1.031 2280.945

SELA-P 2.276 1841.996

where λ is a value in the range of (0,1).

(5) Adaptive Learning Tree (Tree)[1]: the approach uses an

adaptive learning tree to predict the power state for the next

idle period based on the recent history of idle period lengths.

(6) Linear Reward-Penalty (LRP): SLA approach using

LRP algorithm.

(7) Average Estimator Learning Algorithm (AELA): SLA

approach using AELA algorithm.

(8) Stochastic Estimator Learning Algorithm (SELA): SLA

approach using SELA algorithm.

(9) Online Probability-Based Algorithm (OPBA)[6].

(10) LRP-OPBA.

(12) AELA-OPBA.

(13) SELA-OPBA.

In addition, for Last, Exp-Avg, Tree, LRP, AELA,

SELA, we consider two versions of each algorithm as in

[6, 7]: preemptive-wake-up and on-demand-wake-up, re-

spectively. (Last-P, Exp-Avg-P, Tree-P, LRP-P, AELA-

P, SELA-P are the preemptive-wake-up versions.) The

preemptive-wake-up versions consider reducing the latency

introduced by the DPM algorithms by predictively waking

up the system before a new service request arrives.

All history based algorithms have the same window size

0.8

0.9

1

1.1

1.2

1.3

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n

e
rg

y
 c

o
m

p
e

ti
ti

v
e

 r
a

ti
o

OPBA

Hybrid

EXP

LRP

TREE

AELA

Figure 1. Energy comparison for each trace

on OPBA, Hybrid, EXP, TREE, LRP, AELA

of 100 for learning. The OPBA threshold update frequency

is set to 10. We use the concept of competitive ratio as

the normalized comparison (normalized by the offline al-

gorithm) for energy savings. We also compare the latency

effects for each DPM algorithm.

To compare the competitive ratios for energy savings

and latency effects, we use the mobile hard-drive power

model from IBM and the disk traces collected from auspex

file server archive. The mobile hard-drive has four power

states as illustrated in Table 1, where columns P , Estartup,

Lwakeup represent the power consumption of each power

state, the startup energy and the wakeup latency from each

low power state to the Active state. Note that [6, 3, 7]

use the same data and power model to evaluate DPM al-

gorithms.

The auspex file server archive include 16 traces with dif-

ferent lengths. We report the average of the results for each

individual trace weighted by length. Table 2 shows the com-

petitive ratio and average latency (ms) for each algorithm.

For the three hybrid algorithms, the experiment results are

very similar for LRP-OPBA and AELA-OPBA, but AELA-

OPBA has 6% less average latency. The performance of

SELA-OPBA has a large variation across different traces

and has worse average energy savings than the other two.

We only include the results for AELA-OPBA (named as

Hybrid) in the figures and the corresponding discussions.

The experiment results show that the hybrid algorithm is

the best algorithm in terms of both energy and latency. It has

a consistent better energy efficiency than OPBA with 15.6%

lower latency and has on average of 5% and up to 20% more

energy savings (Table 2 and Figure 1) than OPBA for the

auspex hard disk traces. As compared to the SLA algo-

6



Energy vs. latency "on demand wakeup" algorithms 

1300

1500

1700

1900

2100

2300

2500

0.800 1.000 1.200 1.400 1.600 1.800

average energy competitive ratio

a
v

e
ra

g
e

 l
a

te
n

c
y

 (
m

s
) OPBA

Hybrid

EXP

DET

LRP

TREE

AELA

LAST

SELA

Figure 2. Comparison for "ondemand

wakeup" algorithms

rithms (LRP and AELA) and EXP that have similar energy

savings, the hybrid algorithm reduce the latency on the av-

erage of 14%.

Figure 2 and Figure 3 compare the average energy com-

petitive ratio vs. average latency of OPBA and the hybrid al-

gorithm with each“on-demand wakeup” algorithm and each

“preemptive wakeup” algorithm respectively.

The hybrid algorithm has the advantage of Last, Exp-

Avg, Tree and SLA (LRP, AELA, SELA) to avoid energy

wasted before reaching the thresholds and the advantage of

threshold based algorithms (Timeout, DET, OPBA) to have

low misprediction rate and low average latency. System

level dynamic power management is an engineering design

decision which should be tailored to meet the energy and

latency requirements and minimize implementation over-

head. The learning algorithms and the hybrid algorithms

enrich the design space for actual engineering optimization

between energy and latency constraints.

5 Conclusions

In this paper, we propose a hybrid algorithm which

combines the online probability based algorithm and the

stochastic learning automata based algorithm to improve

online dynamic power management for battery-operated

embedded systems. The choice of learning algorithms re-

lies on how the recent history of idle period lengths can be

used to predict the upcoming idle period length. LRP and

AELA give the same weight to each entry in the histogram,

while SELA adds a stochastic noise factor to deviate the

information retrieved from the recent history. Our hybrid

algorithm enhances the OPBA algorithm by directly transi-

Energy vs. latency for OPBA, Hybrid and "preemptive 

wakeup" algorithms 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.000 0.500 1.000 1.500 2.000 2.500 3.000

average energy competitve ratio

a
v

e
ra

g
e

 l
a

te
n

c
y

 (
m

s
) OPBA

Hybrid

EXP-P

LAST-P

LRP-P

TREE-P

AELA-P

SELA-P

Figure 3. Comparison for OPBA, Hybrid &

"preemptive wakeup" algorithms

tioning the system to the state predicted by an SLA, so that

it can avoid the energy spent before the OPBA reaches the

optimal state. Both OPBA and SLA based algorithms re-

duce the latency effects than other online DPM algorithms.

The hybrid algorithm has a consistent on an average of 5%

and up to 20% more energy savings than OPBA, while in-

troduce on the average of 14% lower latency than any other

algorithm that has similar energy savings.

References

[1] E. Chung, L. Benini, and G. DeMicheli. Dynamic power

management using adaptive learning tree. In Proceed-

ings of the 1999 IEEE/ACM International Conference on

Computer-Aided Design, 1999.

[2] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G. D.

Micheli. Dynamic power management for nonstationary ser-

vice requests. IEEE Transactions on Computers, 2002.

[3] T. Erbes, S. Shukla, and P. Kachroo. Stochastic learning

feedback hybrid automata for power management in embed-

ded systems. In Technical Report No:2004-03, FERMAT

Group, Virninia Polytechnic Institute and State University,

2004.

[4] R. K. Gupta, S. Irani, and S. K. Shukla. Formal methods

for dynamic power management. In Proceedings of the

2003 IEEE/ACM International Conference on Computer-

Aided Design, 2003.

[5] C. Hwang and A. Wu. A predictive system shutdown method

for energy saving of event-driven computation. ACM Trans-

actions on Design Automation of Electronic Systems, 2000.

[6] S. Irani, S. Shukla, and R. Gupta. Online strategies for dy-

namic power management in systems with multiple power-

saving states. ACM Transactions on Embedded Computing

Systems, 2003.

7



[7] P. Kachroo, S. Shukla, T. Erbes, and H. Patel. Stochastic

learning feedback hybrid automata for power management

in embedded systems. In IEEE International Workshop on

Soft Computing in Industrial Applications, 2003.

[8] K. Narendra and M. Thathachar. Learning Automata: An

Introduction. Prentice Hall, Englewood Cliffs, NJ, 1989.

[9] G. A. Paleologo, L. Benini, A. Bogliolo, and G. D. Micheli.

Policy optimization for dynamic power management. In

Proceedings of the 35th Design Automation Conference,

1998.

[10] G. Papadimitriou. A new approach to the design of rein-

forcement schemes for learning automata: Stochastic esti-

mator learning algorithms. IEEE Transactions on Knowl-

edge and Data Engineering, 1994.

[11] Q. Qiu, Q. Wu, and M. Pedram. Stochastic modeling of

a power-managed system: construction and optimization.

IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2001.

[12] T. Simunic, L. Beniani, and G. D. Micheli. Event-driven

power management of portable systems. In Proceedins

of the 12th International Symposium on System Synthesis,

1999.

8




