
UC Irvine
UC Irvine Previously Published Works

Title
Delivering Guaranteed Display Ads under Reach and Frequency Requirements

Permalink
https://escholarship.org/uc/item/8jm768f8

Authors
Hojjat, Ali
Turner, John
Cetintas, Suleyman
et al.

Publication Date
2014

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8jm768f8
https://escholarship.org/uc/item/8jm768f8#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

A Unified Framework for the Scheduling of Guaranteed Targeted

Display Advertising under Reach and Frequency Requirements

Ali Hojjat, John Turner

Paul Merage School of Business, UC Irvine

{hojjats, john.turner}@uci.edu

Suleyman Cetintas, Jian Yang

Yahoo Labs, Sunnyvale, CA

{cetintas, jianyang}@yahoo-inc.com

Abstract

Motivated by recent trends in online advertising and advancements made by online pub-

lishers, we consider a new form of contract which allows advertisers to specify the number of

unique individuals that should see their ad (reach), and the minimum number of times each

individual should be exposed (frequency). We develop an optimization framework that aims for

minimal under-delivery and proper spread of each campaign over its targeted demographics. As

well, we introduce a pattern-based delivery mechanism which allows us to integrate a variety

of interesting features into a website’s ad allocation optimization problem which have not been

possible before. For example, our approach allows publishers to implement any desired pacing

of ads over time at the user level or control the number of competing brands seen by each

individual. We develop a two-phase algorithm that employs column generation in a hierarchical

scheme with three parallelizable components. Numerical tests with real industry data show

that our algorithm produces high-quality solutions and has promising run-time and scalability.

Several extensions of the model are presented, e.g., to account for multiple ad positions on the

webpage, or randomness in the website visitors’ arrival process.

Keywords: Online Advertising, Guaranteed Targeted Display Advertising, Reach, Frequency,

Uniform Delivery, Column Generation, Cutting Stock, Quadratic Programming.

1 Introduction

Since its advent, internet advertising has drawn a lot of attention due to its interactivity, ease of

customization, world-wide reach, and effective targeting abilities. This segment has grown from $9.6

billion in 2004 to $49.5 billion in 2014, exceeding all other forms of advertising such as broadcast

and cable television, radio, newspaper, and consumer magazines (IAB 2015). Efficient serving of

advertising is a key problem for online publishers such as Yahoo, Facebook, and Google. A large

publisher may have hundreds of millions of page visits per day, and tens of thousands of concurrent

advertising campaigns to manage, many of which have been booked and guaranteed well in advance.

Each page visit poses a split-second opportunity to the publisher to choose one or more ads to show

to the user. Even a few percent improvement in drawing the correct ad for each user can improve

annual publisher revenues by tens of millions of dollars1 while enhancing user experience.

In all existing forms of online advertising contracts, campaigns specify an aggregate impression

goal or a budget limit and do not differentiate between 2 impressions of the same ad served to a

1

single user, or 1 impression served to each of 2 distinct users. However, industry trends show that

advertisers are becoming more concerned about who they reach (Warc 2015) and traditional media

measurement metrics of reach (how many unique individuals were exposed to the ad), frequency

(how many times, on average, each individual was exposed to the ad), and Gross Rating Points

(GRP) are increasingly being adopted by online advertisers (eMarketer 2009). Alongside the

tremendous growth of online video streaming sites (such as YouTube, Netflix, etc.), video ads

have gained much attention and are used to complement TV ad campaigns, which makes classic

reach and frequency metrics important in designing and measuring online campaigns (eMarketer

2014). People-based marketing has been a popular catchphrase in the industry over the past year

and advertising companies are exerting major efforts to measure and track individuals (c.f., Kattula

et al. 2015). The exponential growth in the use of portable devices has made mobile advertising

the fastest growing segment of online media (with 110% CAGR), and more advanced identifier

technologies (such as Apple’s IDFA and Google’s Advertising ID) have made it easier for publishers

to track individuals over time across multiple devices. Online ads are becoming more relevant and

personalized than ever before, and promotion is shifting toward storytelling where the advertising

message is broken into small bite-sized pieces. The recent case study of Adaptly (2014) on Facebook

shows that creative sequencing of ads at a personal level substantially increases view-through and

subscription rates.

Motivated by these industry trends, in our paper, we consider an entirely new form of advertising

campaign, under what we call a Reach and Frequency (R&F) contract, which allows campaigns to

explicitly specify the viewer demographics eligible to see their ad (targeting), the number of unique

individuals that should see the ad (reach), and a required number of times that each individual

should be exposed to the ad (frequency) for him/her to be considered as reached. The publisher

receives revenue for the number of unique individuals reached at the specified frequency.

We develop an optimization model for a publisher to optimally plan and serve R&F contracts

which maximizes retained revenue (i.e., minimizes under-delivery), and has several important

features for both the advertiser and the publisher. First, our model produces plans that are well-

dispersed within each campaign’s targeted demographic (advertisers expect the publisher to not

deliver the campaign to only a small, potentially easy-to-serve, subgroup of targeted users). Second,

our modeling approach explicitly takes into account the user-level sequence of ads over time. This

allows advertisers to implement sequenced (storyboarded) ad campaigns, as well as to specify their

desired rate of re-exposure (i.e., whether impressions of an ad should be served to a user upon

consecutive visits to promote recall, or evenly paced over time). Third, our model can maximize

the diversity of campaigns seen by each user, or restrict the number of competing brands shown to

each user (e.g., Pepsi and Coke). To the best of our knowledge, none of these user-level features

are explicitly considered in the existing models for planning online advertising.

Our optimization model includes several features which make it attractive for implementation

for publishers. First, it exhibits promising run-time and scales well to industry-size problems, due

to the fact that each component of our model is parallelizable. Second, because of the combinatorial

2

explosion of targeting dimensions and the long-tailed nature of user behavior, it is prohibitive for

any publisher to produce an ad delivery plan that includes every possible user type. Using duality

theory, we show that a near-optimal allocation rule can be determined for user types which have

never been seen before or not explicitly considered when the plan was produced.

Our paper contributes to the literature of operations research and online advertising in a variety

of aspects. To the best of our knowledge, our work is the first to introduce R&F contracts

and consider the optimal scheduling of online advertising under explicit reach and frequency

specifications. As well, our model is the first that explicitly incorporates user-level quality metrics,

such as diversity and pacing of ads over time for each user, into the publisher’s ad planning problem.

We introduce a new mechanism for ad serving, which we call pattern-based ad delivery, that pre-

generates an explicit sequence of ads for each user to see over time. This mechanism is essential to

our ability to plan at the user level while keeping the dimensionality of the optimization problem

manageable. Our novel pattern-based method, called Hierarchical Column Generation (henceforth

Pattern-HCG), gives rise to a fresh application of column generation in the form of an iterative

algorithm with two phases and three inter-related components. We conduct a comprehensive set of

tests to evaluate the performance of our methodology on real industry data obtained from Yahoo.

Since prior work in planning online advertising is impression-based, we propose two heuristics which

serve as benchmarks for our Pattern-HCG algorithm. First, we describe an adaptation of frequency

capping, which is an existing industry practice within the context of impression-based ad planning

that limits the number of times each individual is exposed to the same ad. Next, we develop

a pattern-based greedy heuristic (henceforth Pattern-G) which avoids some of the computational

complexities of Pattern-HCG such as the need for column generation or additional iterations for

parameter-tuning. Our experiments demonstrate that Pattern-HCG achieves a 10% reduction

in under-delivery compared to Pattern-G, and a 45% reduction in under-delivery compared to

frequency capping.

This paper is organized as follows. We begin with an overview of the relevant literature in

§2. In §3, we further elaborate on reach and frequency planning and appropriate quality metrics.

To contrast our work with current practice, we describe an existing model for the planning of

impression-based campaigns with several important features, as well as the frequency capping

heuristic. In §4, we formally introduce how patterns can be used to serve advertising and describe

our Pattern-G heuristic. In §5, we present our Pattern-HCG method. As well, we highlight

structural similarities and differences between our R&F ad planning problem and the classic cutting

stock problem, and point out the shortcomings of using a direct application of column generation

without hierarchical decomposition. Finally, we conduct a thorough set of numerical experiments

in §6 to demonstrate the performance and robustness of our methodology. Concluding remarks,

insights and directions for future research appear in §7. Proofs of all theorems along with several

extensions of the model and supplementary discussions are included in the appendices.

3

2 Literature Review

Reach and frequency are well-established marketing metrics for planning and evaluating the

effectiveness of advertising campaigns. There is an extensive body of empirical research that

examines the impact of ad repetition on user recall. These studies commonly agree that initial

exposures to a message first increase attitude toward the product due to positive habituation (wear-

in effect), but too many exposures lead to tedium/boredom and lower attention, and therefore

decrease attitude toward the product (wear-out effect). The two effects produce an S-shaped

response function, i.e., an inverted-U relationship between the n’th exposure and incremental

message impact (see Campbell and Keller 2003 and references therein). Chandler-Pepelnjak and

Song (2003) demonstrate how historical campaign performance can be used to determine the most

efficient or most profitable campaign-specific frequency rates. There is also a rich literature that

employs dynamic optimal control to determine the optimal rate of advertising expenditures over

time in order to maximize a single advertiser’s net present profit, in a finite or infinite horizon

setting (see Sethi 1977, and Feichtinger et al. 1994 for comprehensive reviews). Our model does

not recommend appropriate reach and frequency levels for advertisers. Instead, we take these

parameters as given and solve the publisher’s allocation problem which simultaneously seeks to

meet all advertisers’ reach and frequency requirements using the available supply of impressions.

Mathematical modeling of the ad allocation problem as a transportation problem, i.e.,

bipartite graph with supply and demand nodes that represent viewer types and ad campaigns,

has been a very useful modeling approach and quite successful in practice. Langheinrich et al.

(1999) is among the first to use a linear transportation problem to maximize the total click-

through rate. Tomlin (2000) suggests using a nonlinear entropy term in the objective to obtain

more dispersed and thus robust solutions. Chickering and Heckerman (2003) use hierarchical linear

programming (LP) to produce a uniformly-spread schedule with maximum overall click-though and

demonstrate the effectiveness of this approach through experiments on msn.com. Nakamura and

Abe (2005) propose a number of improvements to the base LP formulation, including lower bounds

for decision variables, importance weights for contracts, using the Gittins index in place of click-

through estimates coupled with an interior-point algorithm to address the exploration-exploitation

tradeoff, and clustering viewer types with similar click-through rates to increase prediction accuracy

and reduce LP dimensionality. More recently, Turner (2012) uses a quadratic objective to spread

impressions across viewer types, which directly minimizes the variance of the number of impressions

served. Bharadwaj et al. (2012) consider CPM contracts (for which click-through does not play a

role) and minimize a weighted objective composed of linear under-delivery and quadratic spreading

metrics. They develop an efficient algorithm, called SHALE, to solve their formulation with minimal

memory usage and better run-time than commercial solvers on industry-size instances.

Column generation (CG) is a classical method for solving mathematical programs with an

exponential number of variables in which the number of positive variables in the solution is expected

to be relatively small. This method has been used extensively for efficiently solving the cutting stock

problem (see Gilmore and Gomory 1961), as well as problems in vehicle routing, crew/job/machine

4

scheduling, multi-commodity flow problems, traffic assignment, graph coloring, clustering, and

many others (see Lübbecke and Desrosiers 2005, and Desaulniers et al. 2005 for thorough reviews).

There are a few papers that employ CG in the context of online advertising. Abrams et al. (2008)

develop a column-based formulation for the allocation of sponsored search. In their model, a column

corresponds to an ordered arrangement of ads into webpage slots which will be shown to a user all at

once when the page is loaded. The expected revenue of showing any particular arrangement is pre-

calculated using generalized second price auction rules. The optimization problem determines the

number of times each arrangement should be displayed in response to each search query to maximize

publisher’s revenue, subject to expected query inventory and the advertisers’ budget. Salomatin

et al. (2012) combine the planning of guaranteed and non-guaranteed advertising by allowing the

arrangement (column) to contain both auction-type and guaranteed ads. They maximize total

revenue collected across both types of campaigns minus any under-delivery penalties. Contrary to

the above modeling approaches, columns of our model represent the sequence of ads for each user

over time, allowing us to focus on reach and frequency as measured for each individual user over a

given horizon.

Finally, a number of authors consider the revenue optimization of online advertising in a

variety of settings (e.g., see Roels and Fridgeirsdottir 2009; Mookerjee et al. 2012; Najafi Asadolahi

and Fridgeirsdottir 2014; Balseiro et al. 2014). Although every publisher’s goal is revenue maxi-

mization, our focus here is on the allocative efficiency of guaranteed campaigns which, when done

well, leads to high profits.

3 The Ad Allocation Problem

The general problem setting in which our problem is couched is one of matching supply with

demand, where demands are known and units of supply arrive incrementally over a fixed time

horizon. Formally, the publisher observes a sequence of impression arrivals a = 1..A (we assume one

ad-serving opportunity per arrival, which is consistent with how dynamically-generated webpages

often request ads, as well as how video ads are requested from an ad server one at a time; for

completeness, we also consider the case of multiple impressions per arrival in Appendix C). Each

impression arrival a corresponds to a user ja and a timestamp ta indicating the time of the arrival.

Over a fixed planning horizon (e.g., one week), the number of impression arrivals A is uncertain,

as is the entire sequence (t1, j1), (t2, j2), . . . , (tA, jA). On the demand side, the publisher has a

given set of ad campaigns, denoted K. Each campaign k ∈ K specifies a desired reach of rk unique

users, where each user is required to see the ad fk times (i.e., the ad’s frequency) to count as being

reached. We must choose which ad k to assign to each impression arrival a, bearing in mind that

only a subset of users Γ̃(k) may be matched with ad k; this is known as targeted advertising. How

we assign impression arrivals to ad campaigns determines which users are counted as reached. Let

yak = 1 when we assign ad k to arrival a, and yak = 0 otherwise. Then, zjk = 1(
∑

a=1..A:
ja=j

yak ≥ fk)
indicates whether or not user j was reached, and evaluates to 1 iff user j is exposed to campaign

5

k at least fk times.

There are a number of objectives which are relevant in this general setting. We distinguish

between aggregate quality objectives QA(z) which measure the quality of the assignment as a

function of who was reached (i.e., the zjk variables), and disaggregate quality objectives QD(y)

which measure the quality of the assignment as a function of the specific sequence of ads assigned

to each user (i.e., the yak variables, as the zjk variables may not retain enough information to

compute the disaggregate quality metric). Publishers seek both aggregate and disaggregate quality;

however, aggregate quality is more important since it is closely tied to contractual obligations

with direct revenue consequences. We propose a bi-criteria optimization problem with QA(z) as

the primary objective and QD(y) as the secondary objective. Formally speaking, if we denote

Y = {y ∈ {0, 1}A :
∑

k∈K yak ≤ 1, ∀a = 1..A; yak = 0, ∀a = 1..A, k ∈ K : ja /∈ Γ̃(k)}
as the set of feasible assignments of ads to impressions, and Q∗A = maxy∈Y QA(z(y)) as the

maximum value achievable for the aggregate quality objective, then we are interested in solving

y∗ = arg maxy∈Y {QD(y) : QA(z(y)) = Q∗A}. As defined, the primary (aggregate) objective

dominates the secondary (disaggregate) objective; thus, no improvement in the secondary objective

can be made that sacrifices the value of the primary objective.

In some cases, as we will soon see, it is important to use a randomized policy that produces

different assignments yak when run multiple times on the same impression arrival sequence. In

this case, the impression assignment yak as well as the reach indicator variables zjk are random

variables, as they are both functions of the random draws ξ = {ξ1, . . . , ξA} made by the policy.

Formally, let π̃ denote a randomized policy that chooses y given a sequence of random draws ξ,

i.e., y = π̃(ξ), and define Π = {π̃(ξ) ∈ Y ∀ξ} as the set of all functions π̃ that produce feasible

y solutions for all possible random draws ξ. Then, Q∗A = maxπ̃∈ΠEξ[QA(z(π̃(ξ))], where the

value of the aggregate quality objective for the given impression arrival sequence is optimized in

expectation over all random choices ξ the policy makes, and an optimal randomized policy is a

solution to π̃∗ = arg maxπ̃∈Π{Eξ[QD(π̃(ξ))] : Eξ[QA(z(π̃(ξ))) = Q∗A}.
One of the simplest aggregate quality objectives corresponds to minimizing the cost of under-

delivery, i.e., the cost incurred by the publisher for exposing fewer individual users than advertisers

requested. Using uk = (rk −
∑

j zjk)
+ to denote the under-delivery (i.e., reach shortfall) for

campaign k, where x+ = max(x, 0), we credit shortfalls to the advertiser at the make-good cost rate

ck. Consequently, we can minimize the cost of under-delivery
∑

k ckuk by equivalently maximizing

the aggregate quality objective QA(z) = −
∑

k ck(rk −
∑

j zjk)
+. Because publishers commonly

treat revenue from guaranteed ads as booked in advance, it is quite natural to maximize retained

revenue (i.e., total revenue collected minus any adjustments due to under-delivery costs), which is

equivalent to this aggregate quality objective up to the addition of a scalar constant.

More complex aggregate quality objectives are often used in practice, e.g., to maximize the

extent to which exposures are well-spread across the individual users which comprise an adver-

tiser’s target market. As described more fully in Ghosh et al. (2009), advertisers prefer when

ads are served in a representative manner; strictly speaking, this means all users j within ad-

6

vertiser k’s target market Γ̃(k) share the same probability θk of being reached, where θk =

rk/|Γ̃(k)|. Perfect representativeness is generally difficult to achieve; consequently, we follow Ghosh

et al. (2009) and propose minimizing the L2 distance from the perfectly-representative solution.

Formally, non-representativeness of campaign k may be defined as 1
2θk

∑
j∈Γ̃(k)(Eξ[zjk(π̃(ξ))] −

θk)
2, where the scaling factor 1/(2θk) is for mathematical convenience and balancing the rel-

ative magnitude of multiple non-representative terms in the full objective. Notice that non-

representativeness compares the probability that an individual j is reached by campaign k under

randomized policy π̃ with the target probability θk. By construction, the policy π̃ that minimizes

non-representativeness is generally not deterministic (e.g., if θk = 0.5 and there are only two users

j ∈ Γ̃(k) = {1, 2} that match the campaign’s targeting, then producing {z1k = 1, z2k = 0} half

the time and {z1k = 0, z2k = 1} the other half of the time constitutes a randomized policy with

Eξ[z1k] = Eξ[z2k] = θk = 0.5 and non-representativeness of 0; in contrast, it is easy to verify that

any non-randomized policy yields non-representativeness of 1). The aggregate quality objective

QA(z) = −
∑

k
wk
2θk

∑
j∈Γ̃(k)(Eξ[zjk(π̃(ξ))] − θk)

2 −
∑

k ck(rk −
∑

j zjk(π̃(ξ)))+, when maximized

using campaign-specific weights wk, can be used to produce solutions that have both low under-

delivery and low non-representativeness. We use this form of aggregate quality objective in our

model, which is equivalent to that of Bharadwaj et al. (2012).

For the disaggregate quality objective QD(y), there are a number of good candidates publishers

can use to ensure each individual user sees ads that (i) are either well-paced over time or purposely

delivered successively in a blitz, (ii) are diverse, and/or (iii) do not have competing brands shown

to the same user. Although desired, disaggregate quality is typically not explicitly managed by

existing ad serving systems. We consider a number of disaggregate quality objectives, which we

formally define later. In some cases, it is possible to write QD(y) as a linear function of the zjk

variables. For example, diversity can be measured using QD(y) =
∑

j,k zjk, where
∑

k zjk is the

number of distinct ad campaigns shown to a user j. As we will show, such disaggregate quality

objectives are particularly convenient since they are computationally easy to optimize.

3.1 Problem Variants

In the general setting just presented, we purposely refrained from characterizing the uncertainty of

the impression arrival process. Indeed, one could define a number of problem variants consistent

with the above general setting by formalizing different characterizations of the arrival process.

More specifically, define Ω as the set of all possible impression arrival sequences that may arise; i.e.,

for each arrival sequence ω ∈ Ω, the total number of arrivals A(ω), as well as the times and users

corresponding to each arrival (t1(ω), j1(ω)), (t2(ω), j2(ω)), . . . , (tA(ω)(ω), jA(ω)(ω)) are dependent on

ω. There are a number of assumptions that can be made regarding what is known about (i) the

set of instances that we may encounter (i.e., do we know anything about the set Ω that ω will be

drawn from, or the probability associated with drawing a specific ω from Ω?), and (ii) once given

an instance ω, to what extent do we initially observe ω or some partial information about ω?

At one end of this spectrum, fully-online problems consider the input sequence ω to be chosen

7

fully adversarially (e.g., Mehta et al. 2007). In such settings, the set of possible instances Ω is

as broad as the problem description allows. An adversary picks the worst-case ω ∈ Ω, and we

are not given any initial information about what ω was picked. Moreover, since we do not have

a stochastic characterization of Ω to work with, we cannot hope to learn any structure of ω as

we observe arrivals over time. At the other end of this spectrum, deterministic or fully-offline

problems consider the input sequence ω to be fully specified in advance. In such settings, knowing

the set of possible instances Ω and a probability distribution over Ω is only useful for characterizing

the worst-case or average performance of a particular policy over all possible instances ω ∈ Ω. In

between fully-online and fully-offline, there are a number of other characterizations of the input

sequence. Mehta (2012) is a good reference that describes the differences between a number of

so-called input models which have been studied in the context of online bipartite matching and

impression-based ad allocation problems. These include the random permutation input model (in

which the adversary picks ω ∈ Ω, which is then randomly permuted and no information about

ω is initially provided; see Goel and Mehta 2008; Devanur and Hayes 2009; Feldman et al. 2010;

Agrawal et al. 2014), the Unknown-IID input model (in which each arrival a’s user ja is drawn

independently from an unknown stationary distribution of arrival types, with no information about

ω or its distribution over Ω initially provided, but algorithms may learn this distribution over time;

see Devanur et al. 2011), and the Known-IID input model (which is the same as Unknown-IID

except the distribution of arrival types is known in advance, so the algorithm does not need to

learn it; see Feldman et al. 2009; Manshadi et al. 2012). Perhaps the closest input model to that of

ours is that of Vee et al. (2010) who study an impression-based bipartite matching problem they call

online assignment with forecast. They endow their algorithm with the ability to obtain a sample of

the set of impression types that will arrive online (i.e., a sample of the future). Using our notation,

in their input model ω ∈ Ω is adversarially chosen, and then some information about the specific ω

that will arrive is revealed to the algorithm. More specifically, a subset of users which will arrive, but

not the entire sequence, is revealed. We follow their approach in a number of aspects; in particular,

their emphasis on having access to coarse point forecasts and solving a deterministic optimization

problem. However, we note that their algorithm is entirely impression-based, and is not suited for

serving R&F campaigns. Finally, we note that although the aforementioned input models are often

useful constructs for theoretically analyzing the worst-case optimality gap consistent with a given

input model, they are all in some way abstractions of reality (e.g., none of them allow for any kind

of nonstationarity or forecast errors). Indeed, there are a number of open questions that remain to

be settled about how to best model and forecast impression arrival sequences in practice, especially

in the context of R&F ads which additionally need to keep track of the specific users that re-visit

over the time horizon.

3.2 Model Overview

Our proposed method, which we name Pattern-based Hierarchical Column Generation (Pattern-

HCG), was designed to cope with many practical issues. For input, we provide it with only coarse

8

point forecasts of the impression arrival process. This makes it particularly attractive to use in

practice, since in the simplest use case, historical web logs can be sampled to directly provide

the necessary characterization of the impression arrival process. More specifically, Pattern-HCG

requires a point forecast svi of the number of users that will arrive over the planning period that

are members of demographic i and have browsing behavior v, as well as conservative estimates

Lv of the number of times users with browsing behavior v are expected to arrive. Even though

Pattern-HCG uses only deterministic inputs, we show it is robust to misspecifications in these

forecasts. Most importantly, the set of viewer types indexed by (v, i) does not need to cover all

users j that will arrive; it is sufficient to explicitly forecast only the larger, easier-to-forecast ones.

Our computational results validate the practicality of our approach out-of-sample on real data, and

indicate that our solutions are robust to forecast errors. Furthermore, in Appendix D we extend

our deterministic model to explicitly incorporate stochasticity of the number of visits made by each

user.

Our Pattern-HCG method first solves an offline deterministic optimization problem, and then

uses a robust online phase to process the impression arrival sequence and assign ads to impressions

as they arrive. This is consistent with how the best-known online algorithms for non-adversarial

input work (see references in §3.1). At the beginning of the planning period, we provide Pattern-

HCG with a set of ad campaigns K, a set of demographics I, and a set of viewers’ browsing types

V, as well as reach and frequency targets (rk, fk) for each campaign k ∈ K, under-delivery penalty

rates ck and non-representativeness weights wk for each campaign k ∈ K, point forecasts svi for

the number of users of each demographic-and-browsing type (v, i), sets Γ(k) of viewer types (v, i)

that each campaign k targets, and conservative estimates Lv of arrival counts for users of each

browsing type v. Using this data, we solve a complex bi-criteria optimization problem using a

novel iterative procedure with three inter-related components. This produces a plan which tells us

(1) the proportion xvik of users in each viewer type (v, i) that should be reached by campaign k, (2)

a set of patterns Pvi for each viewer type (v, i) such that each pattern defines an exact pre-generated

sequence of ads that may be presented to a user, and (3) the number of times yvip that users of

type (v, i) should be assigned pattern p ∈ Pvi. (Since we have already used yak as a variable in this

section, we will superscript the vector form of yvip with P to denote “pattern,” i.e., yP = {yvip}, to

distinguish it from y = {yak}. Rest assured that there will be no ambiguity later on, since the use

of yak is restricted to this section of the paper). In our online phase, we assign patterns to specific

users, randomly drawing patterns at rates consistent with x and yP . Our online phase is also able

to construct near-optimal patterns on the fly for users that arrive and cannot be classified as any

of the viewer types (v, i) that we explicitly forecasted and optimized for during the offline phase.

Using the main decision variables x and yP of our model, we can now re-cast the aggregate

and disaggregate quality objectives as functions of x and yP . Aggregate quality Q̃A(x) remains a

function of who is reached (in expectation) x, and disaggregate quality Q̃D(yP) remains a function

of the specific sequence of ads assigned to each user, now represented by yP . Using X to represent

the set of all (x,yP ,P) which are mutually consistent and feasible (to be defined more rigorously

9

later), and defining Q̃∗A = max(x,yP ,P)∈X Q̃A(x), then the bi-objective optimization problem that

we seek to solve can be written abstractly as max(x,yP ,P)∈X{Q̃D(yP) : Q̃A(x) = Q̃∗A}. To solve

this bi-objective problem, we use a tailored optimization method that is in line with the spirit of

preemptive (lexicographic) goal programming (see Jones and Tamiz 2010).

Within the context of Pattern-HCG, we can further simplify the general forms of the non-

representativeness and under-delivery measures we presented in Section 3, and re-interpret them

in this more specific context. Most importantly, by aggregating users into audience segments

and explicitly determining the rate at which users within an audience segment are reached, the

non-representativeness objective is represented in such a way that we no longer need to consider

expectations over multiple replications of the policy to measure it. Treating the proportion xvik

as the probability that each user j within viewer type (v, i) should be reached, which can be done

without loss of optimality, yields Eξ[zjk(π̃(ξ))] = xvik. Consequently, non-representativeness of

campaign k simplifies to 1
2θk

∑
j∈Γ̃(k)(Eξ[zjk(π̃(ξ))]− θk)2 = 1

2θk

∑
(v,i)∈Γ(k) svi(xvik − θk)2. Written

this way, non-representativeness measures how well exposures are spread across different targeted

viewer types (v, i). By requesting a representative allocation, an advertiser ensures the publisher

does not fulfill their entire campaign using some obscure, potentially easy-to-serve subgroup of

targeted users. Indeed, if an advertiser targets all users in the USA, they don’t expect to only get

users in California. Thus, this non-representativeness objective spreads ads across all viewer types

(v, i) the advertiser chooses to target, yet makes sure that larger viewer types receive proportionally

more ads than smaller ones.

Next, to simplify our under-delivery measure, recall that under-delivery of campaign k was

previously defined as (rk −
∑

j zjk(π̃(ξ)))+, a random quantity that depends on the random draws

of the policy. We approximate the number of users that campaign k reaches,
∑

j zjk(π̃(ξ)),

with Eξ[
∑

j zjk(π̃(ξ))] =
∑

(v,i)∈Γ(k) svixvik. This approximation is very good since, by the law

of large numbers, the sum of a large number of random draws approaches its mean, and the

number of random draws made is typically very large (e.g., in the millions)2. Consequently, the

aggregate quality objective we use in Pattern-HCG has both non-representativeness and under-

delivery components and is formally defined as Q̃A(x) = −
∑

k
wk
2θk

∑
(v,i)∈Γ(k) svi(xvik − θk)

2 −∑
k ck(rk −

∑
(v,i)∈Γ(k) svixvik)

+. Finally, we note that formally speaking, similar law-of-large-

numbers approximations apply to our disaggregate quality metrics, Q̃D(yP), as well.

The offline phase of our Pattern-HCG method involves a novel pattern-based optimization

scheme which iterates between three components: (1) an aggregate reach planning problem which

aims to maximize aggregate quality, (2) a pattern assignment problem that maximizes disaggregate

quality by assigning patterns to user types in such a way that aggregate quality is maintained, and

(3) a pattern generation problem which sequences ads into new patterns for the pattern assignment

problem to use.

The aggregate reach planning component of Pattern-HCG is modeled after the formulation of

Bharadwaj et al. (2012). Their model involves impression-based campaigns that do not differentiate

between 1 person seeing 2 ads vs. 2 people seeing 1 ad each, and therefore cannot directly plan

10

R&F campaigns. However, the structure of their formulation leads to two very important practical

properties which we retain in our model. First, their quadratic non-representativeness penalty

function, in conjunction with the specific constraints in our formulation, creates a closed-form

relationship between the primal and dual solutions of the reach planning problem. This property

is known as generalizability (see Vee et al. 2010). Generalizability is important when there are a

large number of demographics, and only the most important subset of demographics (e.g., those

with enough historical data to accurately forecast) are used to produce the optimal ad allocation.

If an arriving user belongs to a demographic that was not explicitly used to construct the optimal

ad allocation, then we still can allocate ads near-optimally to this user using the generalizability

property. In ad planning models where the aggregate quality metric is linear (e.g., only revenue

maximization is considered), this unique mapping between dual and primal solutions does not exist,

and the allocation plan is not generalizable. Second, by following the structure of their formulation,

we are able to exploit a fast parallelizable primal-dual algorithm developed by those authors called

SHALE, which we have adapted to our model and repeatedly call as a subroutine throughout

our Pattern-HCG method. We note that different functional forms for the aggregate quality metric

(e.g., linear) can be adopted in our framework; however, one would give up both the generalizability

property and the ability to use SHALE as an efficient method for solving the aggregate reach

planning component of Pattern-HCG. This would be acceptable, for example, if there are only a

small number of demographics, since in that case one need not worry about generalizablity and

the reach planning math program would be small enough to solve using a commercial solver on a

single machine without SHALE.

The remainder of this section lays the foundation for our Pattern-HCG model from the ground

up, and is organized as follows. First, in §3.3 we describe the model of Bharadwaj et al. (2012),

on which the aggregate reach planning component of Pattern-HCG is based, as well as our basic

notation. Then, in §3.4 we show how a heuristic used in practice, called frequency capping, may be

used to deliver R&F ads in conjunction with an impression-based ad planning model such as the

one by Bharadwaj et al. (2012), and point out some of the major differences and distinct issues that

arise in R&F planning. We then formally introduce patterns in §4, along with a greedy pattern-

generating algorithm, and finally put all the pieces together and introduce our Pattern-HCG model

and algorithm in §5. A mathematical notation table is provided in Appendix A for quick reference.

3.3 Allocation of Impression-based Ad Campaigns

A typical method to plan and serve impression-based ads has both an offline phase for matching

forecasted impression supply with advertisers’ impression demand, and an online phase for assigning

specific ads to arriving users in accordance with the offline impression-based plan. The offline

optimization problem is re-solved periodically with updated supply forecasts and each campaign’s

actual progress (see Chen et al. 2012; Yang et al. 2010).

The offline planning phase has at its core a bipartite graph. Each advertising campaign is

modeled as a demand node, indexed by k ∈ K, and the publisher’s traffic (measured by impressions)

11

 A:

 B:

 C:

𝑑̂𝐴 = 900

𝑠̂1 = 9000

𝑠̂2 = 3600

0.1

0.2

0.2

0.4 𝑑̂𝐵 = 2520

𝑑̂𝐶 = 3600

Figure 1: Example Bipartite Graph with Impression-based Ad Campaigns

is partitioned based on user characteristics such as age and gender, geographical location, and

behavioral attributes, into supply nodes, indexed by i ∈ I. Figure 1 shows an example with 2

supply nodes and 3 advertising campaigns. The arcs model the targeting criteria, i.e., which user

types can be served with ads from which campaigns. Letting T ⊆ I ×K denote the set of arcs, we

use Γ̂(k) = {i : (i, k) ∈ T } to denote the set of all user types targeted by (eligible for) campaign k,

and Γ̂(i) = {k : (i, k) ∈ T } to denote the set of all campaigns that target (can be delivered to)

type-i users. Each supply node i represents ŝi impressions and each campaign k demands a total of

d̂k impressions. We further define Ŝk =
∑

i∈Γ̂(k) ŝi as the total volume of impressions that satisfy

the targeting criteria of campaign k. The problem is then to find the optimal fraction of impressions

from each supply node i that should be allocated to each campaign k ∈ Γ̂(i), denoted x̂ik, so as to

maximize the quality (or analogously, minimize the cost) of the allocation. Such an optimization

problem is known as a transportation problem in the operations research literature. Throughout

the paper we use the caret (ˆ) to differentiate between quantities that we measure in impressions,

as opposed to their analogs (without caret) which we measure as a number of unique users.

The model of Bharadwaj et al. (2012), shown next, plans impression-based guaranteed ads using

a transportation formulation with a quadratic objective that minimizes both under-delivery and

non-representativeness. We will refer to this as the Impression Allocation (IA) problem:

(IA): Minimize:
∑

k,i∈Γ̂(k)

ŝi

2θ̂k
ŵk

(
x̂ik − θ̂k

)2

+
∑
k

ĉkûk (1a)

s.t.
∑
i∈Γ̂(k)

ŝix̂ik + ûk ≥ d̂k ∀k (1b)

∑
k∈Γ̂(i)

x̂ik ≤ 1 ∀i (1c)

x̂ik, ûk ≥ 0 ∀i, k (1d)

Demand constraint (1b) states that the total number of impressions allocated to each campaign k

must either exceed its demand d̂k, or otherwise the slack variables ûk capture the magnitude of the

impression shortfall, called under-delivery. Supply constraint (1c) states we cannot allocate more

than 100% of supply from each node i. The objective function (1a) penalizes non-representativeness

and under-delivery. Each campaign has an under-delivery cost of ck per impression, and a weight

12

ŵk for the importance of achieving a representative allocation. In this impression-based model,

a perfectly-representative allocation is one that distributes the demanded impressions of every

campaign uniformly across its total eligible supply; i.e., for each impression arrival eligible for

campaign k, it assigns the impression to campaign k with probability θ̂k = d̂k/Ŝk. As before, non-

representativeness quadratically penalizes the deviations from this ideal, and the weights ŝi/2θ̂k are

for mathematical convenience and to balance the relative magnitude of each term in the objective.

Finally, note that
∑

i ŝi−
∑

k(d̂k−ûk) impressions will not be allocated to any guaranteed campaign.

Although not explicitly modeled here, these excess impressions may still get matched to lower-

priced non-guaranteed ads in a secondary channel that operates as a spot market to clear excess

impressions.

At ad-serving time (i.e., online phase), the optimal solution from (IA) is used as follows: Upon

a visit of a type-i user, we randomly draw an eligible ad k ∈ Γ̂(i) with probability x̂∗ik. For

example, Figure 1 illustrates a 3-campaign 2-demographic example where the numerical solution

x̂∗ik is shown on the arcs. Upon a visit from a type-1 user, we draw campaign A (Coca-Cola) with

probability x̂∗1A = 0.1, campaign B (Pepsi) with probability x̂∗1B = 0.2, and campaign C (Subway)

with probability x̂∗1C = 0.4. There is a 30% chance we do not draw any guaranteed campaign,

in which case we assume the user is served a non-guaranteed ad. More ads will be drawn, with

the same probabilities, if the webpage has multiple ad slots, since each ad slot corresponds to one

impression. Due to the large traffic volume most online publishers have, this random drawing of

ads typically achieves the desired proportions x̂∗ik within a short time, while naturally exposing

each user to a variety of ads.

The solution illustrated in Figure 1 satisfies all campaign demands with perfect representative-

ness. Note campaign B (Pepsi) is uniformly spread over the two targeted demographics 1 and 2 as

it grabs 20% of each. This translates into (0.2)(9000) = 1800 impressions of the larger demographic

1, and (0.2)(3600) = 720 impressions of the smaller demographic 2. In other words, campaign B

receives 2.5 times more impressions from demographic 1, as it is 2.5 times larger than demographic

2. A total of (0.3)(9000) + (0.8)(3600) = 5580 impressions are left unallocated as excess.

The structure of (IA) admits the generalizability property, making it possible to optimize (IA)

using only a subset of the largest supply nodes, while still allowing us to recover a near-optimal

value for any decision variable x̂ik corresponding to a supply node i that was not explicitly present

when (IA) was solved. Specifically, Bharadwaj et al. (2012) show that the primal solution to (IA)

can be written as a function of the dual variables of the supply (β̂i) and demand (α̂k) constraints

in closed-form: x̂∗ik = max{0, θ̂k(1 + (α̂∗k − β̂∗i)/ŵk)}. Moreover, the supply duals (β̂∗i) themselves

can be calculated directly from the demand duals {α̂∗k for k ∈ Γ̂(i)} without referring to the supply

forecast ŝi. Therefore, one only needs to have the vector of optimal demand duals, α̂∗k (i.e., a single

value for each campaign) to be able to reconstruct the optimal primal solution, x̂∗ik, in real-time

during the serving period. This means that if a type-i user arrives and the supply node i was

excluded from (IA) when it was solved, we can use the α̂∗k values of the campaigns that target this

type-i user to determine corresponding near-optimal x̂ik values.

13

Algorithm 1 Frequency Capping Heuristic (FreqCap)

• OFFLINE: Solve the impression allocation problem (IA) using d̂k = fkrk as the demand parameters.

• ONLINE: Upon a visit from user j from demographic i:

– If it is the first visit from user j in the planning period: Initialize qjk = 0 for all k ∈ Γ̂(i), where qjk
counts the number of times user j has been exposed to campaign k.

– Among the campaigns that target this user k ∈ Γ̂(i) and have not reached their target frequency
(qjk < fk): Randomly draw an eligible ad according to implicit probabilities x̂∗ik.

– Increment the frequency counter for the selected campaign k′: qjk′ ← qjk′ + 1.

For a major online publisher with many campaigns and user types, (IA) can easily have hundreds

of millions of decision variables. Therefore, using a specialized efficient algorithm to solve (IA) can

be crucial. Bharadwaj et al. (2012) develop such an algorithm, called SHALE, that iterates over

the dual variables α̂k and β̂i and converges asymptotically to the optimal dual solution. In §5.1, we

extend SHALE to solve the aggregate reach planning component of our R&F allocation problem.

3.4 Frequency Capping

Within the context of delivering impression-based ad campaigns, many publishers use a concept

called frequency capping to limit the number of impressions each individual user sees of a given

ad. The idea is straightforward. Each campaign k is assigned a maximum frequency fk, and the

solution to (IA) is used to serve ads in the same manner as described in the previous section, with

one small modification. Once a user j of type i sees fk impressions of ad k, then x̂∗ik is treated as if

it is zero; i.e., no additional ads of campaign k are shown to this user. Frequency capping prevents

any single user from being dramatically over-exposed to an ad just because they happen to spend

a lot of time on the publisher’s website. As well, frequency caps tend to increase reach, since the

publisher must use impressions from a larger group of individuals to satisfy the impression demands

d̂k. Within the ad planning literature, we note that Chandler-Pepelnjak and Song (2003) discuss

how a campaign’s historical performance can be used to find the most efficient or most profitable

frequency cap. As well, Buchbinder et al. (2011) develop online algorithms for the publisher to

serve impression-based campaigns with minimal under-delivery in the presence of frequency caps.

Because frequency capping is already an existing feature in many impression-based ad-serving

systems, it makes a good benchmark to test whether this level of control is sufficient to capably

deliver R&F campaigns. In essence, we may consider frequency capping the status quo baseline,

with any improvements made in delivering R&F campaigns measured above this baseline. Deliv-

ering R&F campaigns using (IA) and a frequency capping heurisitic is accomplished by converting

the reach and frequency requirements into total impression demands using d̂k = fkrk, and then

treating fk as a frequency cap. The method is formally defined in Algorithm 1.

Despite the apparent similarities that frequency capping has to our problem, note that our

frequency requirements, fk, define the minimum number of exposures required for the publisher to

14

receive payment from an advertiser, whereas a frequency cap, as implemented in current practice,

defines the maximum number of exposures beyond which the publisher will no longer receive a

payment. Indeed, our numerical experiments in §6 show that using frequency capping for serving

R&F campaigns causes a significant portion of traffic to be wasted, i.e., assigned to users that do

not hit the minimum frequency requirement, in which case served impressions are non-billable.

This not only leads to considerable under-delivery, but also results in a substantial loss of revenue

for the publisher: had the publisher known that the frequency target would not be attained, s/he

would have preferred to serve those arrivals with non-guaranteed ads or other R&F campaigns that

could reach their frequency target.

We now point out an important distinction between waste and excess. In the allocation of

impression-based ad campaigns, waste does not exist. Each impression is either allocated to

a guaranteed campaign and is billable, or is considered excess and served to a non-guaranteed

campaign. In either case, the impression generates some revenue. But in the case of allocating

R&F campaigns, an impression served to campaign k may either result in a payment (if later that

particular user sees the campaign the required fk times), or is wasted without payment. When the

number of visits made by each user is random, any allocation policy is prone to some waste. But

to allocate R&F ads well, we should expect that a good policy will need to keep waste in check.

As we will see shortly, by clustering users based on their browsing behavior and explicitly planning

the sequence of ads that a user sees on successive arrivals, using patterns of a well-chosen length,

we can achieve very low waste.

4 Serving Ads using Patterns

We define a serving pattern as a sequence of ads arranged over a fixed number of slots, where each

slot corresponds to a single ad shown to a user. A particular campaign may appear in multiple

slots in a pattern, and a pattern may not necessarily contain all campaigns. Any unassigned slots

are treated as excess impressions and may be used to serve non-guaranteed ads. At serving time,

when an individual arrives for the first time in the planning period, s/he is assigned a particular

pattern. Upon subsequent visits, the `th arrival of the user will be served using the ad in the `th

slot of his/her assigned pattern. Arrivals of a user beyond his/her assigned pattern’s length are

also considered excess and may be served non-guaranteed ads. For ease of exposition, we assume

the publisher’s webpage has a single ad position. That is, the pattern plans for a single impression

upon each arrival, and therefore can be expressed as a one-dimensional array. For an extension to

two-dimensional patterns which model multiple impressions per user arrival, see Appendix C.

In addition to keeping waste in check and making it easier to control under-delivery and

representativeness of R&F campaigns (i.e., aggregate quality), using explicit patterns also allows

the publisher to control disaggregate quality (i.e., user-level pacing, diversity of ads, competition

constraints). Figure 2 illustrates a few examples of patterns composed of three guaranteed cam-

paigns {A,B,C}. All patterns are of length 8. In the first two patterns, campaign C appears twice

15

 A C B C A C B C

 A B B A C C C C

 A B C A B C . .

Figure 2: Examples of patterns with three campaigns {A,B,C}

as often as campaigns A or B. The first pattern illustrates uniform pacing (assuming arrivals are

also uniform over time), whereas the second pattern delivers campaigns B and C upon successive

arrivals, e.g., to strengthen user recall. The last pattern spreads 2 impressions of each campaign

uniformly throughout the first 6 slots and leaves the last two slots as excess.

To serve ads using patterns, the publisher should be able to forecast the number of visits that

they will get from each user, so a pattern of appropriate length can be constructed for him/her.

Assume users are classified according to their browsing behavior, such that all users of the same

visit type, v ∈ V, share a common probability distribution, φv(`), that gives the probability of such

a user making exactly ` visits over the serving period. We can then say that each user of type v

will make at least Lv(ε) = Φ−1
v (ε) visits with probability 1 − ε, where Φ denotes the CDF of φ.

With a reasonably small ε, we can use the resulting Lv(ε) (henceforth referred to in short as Lv)

as the anticipated number of visits, and thus an appropriate pattern length, for any user of type v.

Although we take a deterministic modeling approach and henceforth assume that a type-v

user makes exactly Lv visits and sees the entire pattern assigned to him/her, our computational

experiments in §6 on real industry data show that our solutions are robust to forecast errors

and randomness in user arrivals when Lv is chosen as described. For completeness, we present an

extension of our model in Appendix D that explicitly takes into account randomness in user arrivals,

i.e., the probability distribution φv(·), when sequencing ads into patterns. As can be expected, a

probabilistic model takes longer to solve than a deterministic one.

Patterns can either be generated on the fly as-needed, or pre-generated in advance. The greedy

pattern-based method we introduce in the subsequent section shows how we can generate patterns

on the fly using the solution to a reach-based variant of the Impression Allocation problem (IA).

Afterward, in §5 we will show how we pre-generate and then serve optimal patterns using our

Pattern-HCG method.

4.1 Reach-and-Frequency Ad Allocation Using Greedily-Constructed Patterns

Recall from §3.3 that to plan and serve impression-based ads, we first solved a math program to

match the supply of impressions with the demand of impressions (offline phase), and then used

the resulting optimal allocation to serve ads to users upon arrival in real-time (online phase). Our

greedy pattern-based method also has offline and online phases.

In the offline phase, we solve a variation of (IA) which we call the Reach Allocation problem

(RA). The math program (RA) differs from (IA) in three main aspects. First, the ad allocation is

represented by unique individuals, rather than impressions. Second, supply nodes partition users by

16

both demographic and predicted number of visits, rather than only demographic. Third, the supply

constraints become more complex, to model the relationship between individuals and impressions.

To formally define (RA) we need some additional notation. Noting that campaigns requiring

a frequency of fk can only be assigned to users that visit at least fk times, we define our eligible

matching sets as Γ(k) = {(v, i) : (i, k) ∈ T , Lv ≥ fk} and Γ(v, i) = {k : (i, k) ∈ T , fk ≤ Lv}.
Let svi denote the number of unique users of visit type v within demographic i that will arrive

over the planning horizon, and let Sk =
∑

(v,i)∈Γ(k) svi denote the total number of unique users

that satisfy the targeting criteria of campaign k. For a perfectly representative allocation, each

campaign k should grab a θk = rk/Sk proportion of type-(v, i) ∈ Γ(k) users. Consequently, ck and

wk are the cost per unit of under-delivery and non-representativeness penalty weight, respectively

for campaign k, that apply when under-delivery and representativeness are measured in individuals

rather than impressions. Our decision variables are now xvik, which measures the proportion of

type-(v, i) users that should be reached by (i.e., exposed to fk impressions of) campaign k; and

uk, which measures the under-delivery of campaign k (i.e., the shortfall in attaining campaign k’s

reach target rk). Our Reach Allocation problem (RA) is as follows:

(RA): Minimize:
∑
k

∑
(v,i)∈Γ(k)

svi
2θk

wk (xvik − θk)
2

+
∑
k

ckuk (2a)

s.t.
∑

(v,i)∈Γ(k)

svixvik + uk ≥ rk ∀k (2b)

∑
k∈Γ(v,i)

fk
Lv
xvik ≤ 1 ∀v, i (2c)

0 ≤ xvik ≤ 1 ∀v, i, k ∈ Γ(v, i) (2d)

uk ≥ 0 ∀k (2e)

Demand constraint (2b) requires the total number of unique users reached by each campaign k to

meet or exceed rk, or otherwise the slack variables uk capture the magnitude of under-delivery.

Supply constraint (2c) is structurally different from its counterpart (1c) in (IA). A näıve

translation of (1c) yields
∑

k∈(v,i) xvik ≤ 1. However, we can immediately see that such a constraint

would be too strict. Indeed, if campaigns A and B each require only one impression (i.e., fA = fB =

1), and every user of type (v, i) arrives at least twice, then it is possible to reach each individual by

both campaigns, i.e., xviA = xviB = 1, which violates
∑

k∈(v,i) xvik ≤ 1. Instead, we write the supply

constraint in the impression space, and translate users reached into impressions. By multiplying

through by Lvsvi, the supply constraint (2c) is equivalent to
∑

k∈Γ(v,i) fksvixvik ≤ sviLv. In this

expanded form, the left-hand side represents all impressions allocated from supply node (v, i), where

each of the svixvik individuals served campaign k are exposed to fk impressions. The right-hand

side reflects the total number of impressions from supply node (v, i) that are available for R&F

campaigns, and is computed as the number of individuals svi of type (v, i), multiplied by the pattern

length Lv (measured in impressions) used for this user type. Finally, we note that since (2c) does

not imply xvik ≤ 1 as its counterpart (1c) in (IA) did, we now explicitly enforce the upper-bounds

xvik ≤ 1 using constraint (2d) to ensure xvik can be interpreted as a proportion.

Figure 3 provides a solution to an instance of (RA), as well as one possible extension of this

17

 A:

 B:

 C:

𝑟𝐴 = 450

𝑓𝐴 = 2

𝑠1 = [
500
800
200

]

𝑟𝐵 = 630

𝑓𝐵 = 4

𝑟𝐶 = 600

𝑓𝐶 = 6

𝑠2 = [
0
600
0
]

(a) Bipartite graph, supply of users in {low,med,high}-
visiting classes within each demographic, reach and
frequency parameters, and the optimal reach allocations
obtained by solving (RA).

A A

B B B B

A B B A B B

C C C C C C

C C A C C A C C

B C C B C C B C C B

× 150 (30%)

× 60 (30%)

M
ed

 V
is

it
in

g
Lo

w
 V

is
it

in
g

H
ig

h
 V

is
it

in
g

× 150 (30%)

× 240 (30%)

× 480 (60%)

× 60 (30%)

(b) A pattern-based assignment of ads for demo-
graphic 1 that match the optimal reach allocations
given by (RA). {Low,Med,High}-visiting users
make {4,6,11} visits each, respectively.

Figure 3: Example Bipartite Graph and Pattern-Based Solution of R&F Campaigns

solution to specific patterns. In this example, the publisher receives visits from s1 = 1500 unique

individuals of demographic 1, of which {500, 800, 200} users are classified as {low,med,high}-
visiting, and make {4, 6, 11} page visits, respectively, for a total of ŝ1 = 9000 impressions. All

s2 = 600 users of demographic 2 are med-visiting and make exactly 6 visits each, producing a

total of ŝ2 = 3600 impressions. Campaigns A, B, and C require {450, 630, 600} unique users to see

{2, 4, 6} impressions, respectively, to be considered reached. Note that the demands and supplies,

when translated into impressions (e.g., using d̂k = fkrk), match those of our earlier example from

Figure 1.

In Figure 3(a), the values on the arcs show the optimal solution x∗vik obtained by solving (RA).

This solution satisfies all campaigns’ reach requirements and achieves perfect representativeness.

Among the s1 = 1500 users of demographic 1, 30% (450 individuals) are reached by campaign A

(i.e., each see fA = 2 impressions of the Coca Cola ad), 30% (450 individuals) are reached by

campaign B (i.e., each see fB = 4 impressions of the Pepsi ad), and 60% of med- and high-

visiting users (600 individuals) are reached by campaign C (i.e., each see fC = 6 impressions of the

Subway ad). Note that low-visiting users arrive only 4 times which is not enough to be allocated to

campaign C. Finally, among the s2 = 600 users of demographic 2, 30% of med-visiting users (180

individuals) are reached by campaign B.

Figure 3(b) demonstrates one possible pattern-based assignment corresponding to the reach

fractions x∗vik within demographic 1. For the 500 low-visiting users who make 4 visits each, we

assign 30% (150 individuals) a pattern with only campaign-A impressions, and another 30% (150

individuals) a pattern with only campaign-B impressions. For the 800 med-visiting users who

make 6 page visits each, we assign 30% (240 individuals) a pattern with impressions from both

campaigns A and B, and 60% (480 individuals) a pattern with only campaign-C impressions. For

the 200 high-visiting users who make 11 visits each, we assign 30% (60 individuals) a pattern

with campaigns A and C, and 30% (60 individuals) a pattern with campaigns B and C. Note that

whenever campaign k is in a pattern, exactly fk impressions are allotted to campaign k. Finally,

18

Algorithm 2 Pattern-based Greedy Heuristic (Pattern-G)

• OFFLINE: Solve the reach allocation problem (RA).

• ONLINE: Upon a visit from user j from of type (v, i):

– If it is the first visit from user j in the planning period: Initialize an empty pattern, Pj = {}. Follow a
random permutation of eligible campaigns k ∈ Γ(v, i) and conduct a Bernoulli experiment with success
probability x∗vik to determine whether the user should be reached by each k ∈ Γ(v, i). If campaign k
is selected, add fk impressions of k to the pattern Pj . However, if adding k makes the pattern longer
than Lv, instead stop without adding k and store Pj .

– Randomly draw one impression from Pj to show to the user. Remove that impression from Pj .

{200, 80, 80} individuals of {low,med,high}-type are not served any R&F campaign, and all of their

page visits are excess impressions. Similarly, all unfilled slots in the illustrated patterns are excess

impressions.

Our greedy heuristic, defined in Algorithm 2, uses the solution obtained from (RA) and con-

structs and assigns a pattern to a user upon his/her first visit. It creates a pattern for a type-(v, i)

user by randomly selecting full blocks of fk impressions from campaigns k ∈ Γ(v, i) according to a

Bernoulli process with success probabilities x∗vik, until the Lv slots are full. If the user sees the full

pattern, s/he sees exactly fk impressions required to be counted as reached, and no impressions

are wasted. The greedy heuristic does not explicitly optimize disaggregate quality metrics such

as user-level pacing or diversity. However, we do pay some attention to disaggregate quality by

serving impressions from the pattern in random order; this spreads out each selected campaign’s

ads and thus provides some amount of user-level pacing. Finally, we note that (RA) maintains

enough similarity to (IA) that it is generalizable and we can adapt SHALE to solve it efficiently;

we will discuss this further in §5.

Because Pattern-G constructs patterns on-the-fly, its patterns may not make efficient use of all

Lv impressions from users of type v. Consequently, although Pattern-G aims to meet the reach

fractions x∗vik prescribed by the optimal solution of (RA), it could fall short when the combinatorial

problem of packing blocks of fk impressions into patterns is difficult. In the following section, we

introduce a method which explicitly considers the packing problem of pattern generation, and

pre-generates optimal patterns.

5 Pattern-based Hierarchical Column Generation

Column generation as developed by Gilmore and Gomory (1961) was designed to solve a single-

objective optimization problem known as the cutting stock problem. Using notation analogous to

our R&F planning problem, in the cutting stock problem a manufacturer must produce rk strips of

length fk to satisfy the demands of all customers k ∈ K by cutting standard-sized length-L pieces

of stock material (e.g., rolls of metal or paper) into strips of varying lengths. The objective is

either to minimize the number of stock rolls used, or minimize the amount of material scrapped;

19

when over-production is not an option, these two are equivalent (see Appendix I). Determining

how to cut strips from rolls is in general a combinatorially challenging problem. For example,

given L = 10 with two desired strip lengths fA = 3 and fB = 4, the only pattern with zero scrap

is {3, 3, 4}. Consequently, if demand for 3-unit strips is exactly double that of 4-unit strips, i.e.,

rA = 2rB, then we can satisfy the demands without producing any scrap. However, for any other

demand levels, some scrap will be produced, and we would need to consider using other patterns,

such as {3, 3, 3, 1} and {4, 4, 2}. Column generation is a duality-based technique that tackles the

combinatorially challenging problem of implicitly considering all possible ways that patterns can

be constructed to decide which patterns to use, and how many times to use each pattern. We use

the duality-based constructs from classical column generation to produce patterns for sequencing

ads to users. However, our R&F planning problem is more complex than the classical cutting stock

problem, and consequently our Pattern-HCG method is also substantially more complex.

We begin this section by highlighting the main structural differences between the cutting stock

problem and our R&F ad planning problem. In our context, the set of arrivals from each unique

user constitutes a stock roll. However, rather than there being only one type of roll as in the

cutting stock problem, we have one roll type for each user type (v, i). Roll length is determined by

the anticipated number of visits Lv, while the user’s demographic i can be thought of as providing

the roll with some other attribute, e.g., its color. Moreover, whereas the cutting stock problem

assumes an infinite number of rolls are available, we have svi forecasted users of type (v, i), which

constitutes a fixed capacity for each roll type. Like the cutting stock problem, we aim to produce

rk strips of length fk, so that rk users can be exposed to fk impressions. However, in our case, since

each block of fk impressions assigned to advertiser k must come from a different user, we can only

ever cut a strip of type k once from the same roll. In contrast, the cutting stock problem allows

multiple strips of type k to be cut from the same roll.

With regards to the objective function, we note that our problem has a primary objective

(maximize aggregate quality) and a secondary objective (maximize disaggregate quality). Recall

that our proposed aggregate quality metric not only minimizes under-delivery, but also maximizes

representativeness. Maximizing representativeness involves spreading impressions across targeted

demographics, and is analogous to not only cutting a total of rk strips of length fk, but also striving

to deliver to the customer a well-balanced mix of different-colored strips, which to the best of our

knowledge, has not been considered in the cutting stock literature. Furthermore, most disaggregate

quality metrics that apply to R&F planning are different from what is relevant to a cutting stock

problem. First, note that what we consider excess is scrap (or trim loss) within the context of the

cutting stock problem and there is no corresponding concept of waste. Having excess impressions,

especially toward the end of a pattern, can increase the robustness of our solution to uncertainty

in the number of arrivals for a given user, and thus reduce waste. Therefore, minimizing excess

(equivalent to minimizing scrap or the number of rolls, which are the usual objectives in cutting

stock) is not an ideal objective for our R&F planning model. A somewhat less popular objective

in cutting stock is to minimize the number of cuts in the patterns (which saves labor and machine

20

time). In our case, the number of cuts corresponds to the number of campaigns, i.e., the diversity

of ads served to a user; which is something we would prefer to maximize instead. Finally, some

disaggregate quality metrics require us to model each unit of stock as if they are ordered; for

example, to spread impressions to a user over time, we care about the actual sequence and not

just the number of times the user is exposed. In contrast, the cutting stock problem’s stock units

are not ordered in any particular manner. Thus, there are several distinct differences between the

standard cutting-stock problem and our more involved R&F ad planning problem.

In Hojjat et al. (2014) we studied a variant of the R&F ad planning problem that is closer

in structure to the classical cutting stock problem. In that conference paper, we also had ad

campaigns that require rk users to see fk impressions, and viewer types (v, i) that correspond to

heterogeneous rolls with different lengths and colors. But in contrast to the problem studied in this

paper which has both primary and secondary objectives, the problem in Hojjat et al. (2014) had

only a single objective, defined as the weighted sum of under-delivery, non-representativeness, and

pattern-related costs. For that problem, we proposed a two-step solution procedure modeled after

classical column generation, with a master problem for pattern assignment and a related pattern-

generating subproblem. Although theoretically correct, the model presented in Hojjat et al. (2014)

suffered a number of practical issues. In particular, our master problem in that paper did not retain

enough of the structure of (RA) to allow us to uniquely characterize the primal solution as a function

of the dual solution (for details, see Appendix E). As a result, the solution was not generalizable,

and second, we could not use SHALE as a fast algorithm to solve the master problem. Recall

that generalizability is important when dealing with a large number of demographics, and so is

having a fast algorithm for solving the large master problem which is solved numerous times in our

iterative procedure. Third, the emphasis on a single objective function in Hojjat et al. (2014) meant

that every iteration of column generation was focused on improving disaggregate pattern quality,

which was computationally expensive. In contrast, by focusing on the aggregate and disaggregate

pattern quality objectives at different stages, our Pattern-HCG method spends several iterations

first in a faster feasibility-seeking phase, before finishing with an optimality-seeking phase where

disaggregate pattern quality is addressed in a distributed parallelizable fashion. Fourth, and lastly,

including the disaggregate pattern quality terms in the composite objective of Hojjat et al. (2014)

led to a difficult-to-resolve scaling issue. From our experience, applying a low weight to pattern

quality resulted in low-quality patterns which did not justify the high computational effort in

generating them. And applying a high weight to pattern quality induced high under-delivery and

low representativeness, which have a direct revenue consequence for the publisher. Re-casting

the problem as one with primary aggregate quality and secondary disaggregate quality objectives

alleviates the need to figure out what the appropriate scaling factor is that balances these two

competing objectives.

In the following, we introduce our new approach which retains the benefit of generating patterns

using column generation, but does not suffer from the four issues just mentioned. We begin by

describing the three distinct components of Pattern-HCG: reach allocation, pattern generation, and

21

pattern assignment. Then, we describe how we coordinate these components in an iterative fashion.

5.1 Reach Allocation

The reach allocation component of Pattern-HCG chooses the proportion of users xvik of each

type (v, i) to assign to each campaign k so as to maximize aggregate quality (i.e., minimize non-

representativeness and under-delivery). It is modeled by the following quadratic program, which

has decision variables xvik and uk:

(RA-δ): Minimize
∑
k

∑
(v,i)∈Γ(k)

svi
2θk

wk (xvik − θk)
2

+
∑
k

ckuk Duals (All ≥ 0) (3a)

s.t.
∑

(v,i)∈Γ(k)

svixvik + uk ≥ rk ∀k αk (3b)

∑
k∈Γ(v,i)

fk
Lv
xvik ≤ δvi ∀v, i βvi (3c)

0 ≤ xvik ≤ 1 ∀v, i, k ∈ Γ(v, i) γLvik, γ
U
vik (3d)

uk ≥ 0 ∀k ϕk (3e)

This formulation improves upon our earlier reach allocation problem (RA) by introducing impres-

sion utilization factors δvi ∈ [0, 1] for each supply constraint (v, i). Note that the supply constraint

(3c) is a generalization of our earlier supply constraint (2c) from (RA) which assumed δvi = 1. When

δvi = 1, all sviLv impressions of supply node (v, i) are eligible to be assigned to R&F campaigns.

But, more generally, (1 − δvi)% of the impressions from supply node (v, i) are set aside as excess,

leaving δvi(sviLv) eligible for R&F campaigns. As we will see in §5.4, due to the combinatorial

difficulty of packing groups of ad exposures into patterns, the patterns we construct often have

some inevitable amount of excess (i.e., slots not assigned to any R&F campaign). This corresponds

to trim loss or scrap in the cutting stock problem which cannot be avoided unless the size and

length of orders allow for a perfect cut from stock rolls. Consequently, the impression utilization

factors δvi are used by our method to control how optimistic or pessimistic (RA-δ) should be in

apportioning impressions to campaigns.

We now establish the relationship between the optimal primal and dual solutions of (RA-δ).

The proof of the following theorem is based on the Karush-Kuhn-Tucker (KKT) conditions, and is

provided in Appendix F.

Theorem 1. The optimal primal and dual solutions of (RA-δ) satisfy the following relationships:

1. The optimal primal solution x∗vik can be computed from the optimal dual solution {α∗k, β∗vi}, and

is given by: x∗vik = gvik(α
∗
k, β
∗
vi) ≡ min

[
1,max

[
0, θk + θk

wk

(
α∗k −

fk
Lv
β∗vi
)]]

.

2. For each campaign k, we have α∗k ∈ [0, ck]. Furthermore, either α∗k = ck, or the demand

constraint binds with no under-delivery, i.e.,
∑

(v,i)∈Γ(k) svix
∗
vik = rk. The optimal solution

never over-delivers a campaign.

3. For each supply node (v, i), we have β∗vi ∈
[
0, maxk∈Γ(v,i)

wk+α∗k
fk

Lv

]
. Furthermore, either β∗vi = 0

or the supply constraint binds, i.e.,
∑

k∈Γ(v,i)
fk
Lv
x∗vik = δvi.

22

Algorithm 3 The Modified SHALE Algorithm

• INITIALIZE: Set all αk = 0 (or any other value in [0, ck] that satisfies the assumptions in Theorem 2).

• REPEAT:

– STEP 1: (Parallelize) For each (v, i), find βvi such that:
∑
k∈Γ(v,i)

fk
Lv
gvik(αk, βvi) = δvi.

Binary search over interval
[
0, maxk∈Γ(v,i)

wk+αk

fk
Lv

]
. If no solution exists, set βvi = 0.

– CHECK: If suitable optimality gap, iteration or time limit is attained, terminate.

– STEP 2: (Parallelize) For each k, find αk such that:
∑

(v,i)∈Γ(k) svigvik(αk, βvi) = rk.

Binary search over interval [0, ck]. If no solution exists, set αk = ck.

4. The optimal solution to (RA-δ) is unique.

In Algorithm 3, we generalize the SHALE algorithm of Bharadwaj et al. (2012) and use it

to efficiently solve (RA-δ). The algorithm iterates through the dual space, and converges to the

solution to the KKT system of (RA-δ). Step 1 attempts to improve βvi, and invokes parts 1 and

3 from the theorem to find the unique value of βvi which satisfies the KKT conditions under the

assumption that all αk’s are optimal. Similarly, Step 2 attempts to improve αk, and invokes parts

1 and 2 of the theorem to find the unique value of αk which satisfies the KKT conditions under

the assumption that all βvi’s are optimal. Overall, SHALE can be viewed as an algorithm which

maintains stationarity and dual feasibility throughout, while striving for primal feasibility and

complementary slackness. More specifically, primal feasibility always holds immediately following

Step 1. If at that point complementary slackness is also attained, then optimality is achieved and

the algorithm terminates.

Bharadwaj et al. (2012) provide a proof of convergence for SHALE, and show that the algorithm

makes smooth progress towards bucketing campaigns into two groups: those with either zero or non-

zero under-delivery at the optimal solution. Specifically, they show that after 1
ε |K|maxk{ck/wk}

iterations, SHALE produces a primal solution that, for each campaign k, either αk = ck (under-

delivery is being priced in), or at least (1 − ε)% of the demand (i.e., reach) rk is satisfied. We

provide a generalized proof of convergence in Appendix G which does not rely on all αk values

being initialized to zero at the start of the algorithm, as in Bharadwaj et al. (2012). This is

important for us, since Pattern-HCG solves (RA-δ) multiple times with δvi values monotonically

decreasing at each iteration. Warm-starting using the optimal αk values from the previous iteration

provides significantly faster convergence.

Theorem 2 (Convergence of Modified SHALE). Given a vector of impression utilization factors δ,

the Modified SHALE Algorithm converges to the optimal dual solution for (RA-δ) as long as either

(i) all αk values are initialized to zero, or (ii) we initialize αk = α′k, ∀k ∈ K where α′ is the optimal

dual solution to (RA-δ′) for which δ′ ≥ δ componentwise.

Finally, we state how we use Theorem 1 to produce a near-optimal primal solution xv′i′k for a

user of type (v′, i′) which was not explicitly considered as a supply node when (RA-δ) was solved.

23

Corollary 1 (Generalizability). For any unexpected user visit of type (v′, i′), we can identify the

set of targeted campaigns Γ(v′, i′) and use the corresponding α∗k ∈ Γ(v′, i′) to estimate β∗v′i′ using

Step 1 of the Modified SHALE Algorithm3. From part 1 of Theorem 1, a corresponding primal

solution is xv′i′k = gv′i′k(α
∗
k, β
∗
v′i′). Moreover, by construction, the supply constraint is satisfied,

hence {xv′i′k : k ∈ Γ(v′, i′)} is feasible.

Assuming generalized arrivals do not account for a significant portion of the publisher’s traffic,

the dual solution α∗k obtained by solving (RA-δ) will be close to the true optimum (i.e., that of

(RA-δ) with supply nodes for all generalized arrivals). Therefore, the generalized solution proposed

in Corollary 1 is near optimal.

5.2 Pattern Assignment

The pattern assignment component of Pattern-HCG determines how patterns should be assigned

to users of each demographic and visit-type to maximize disaggregate quality while ensuring that

the pattern assignment is consistent with the reach allocation from (RA-δ). Let Pvi denote the

set of all patterns that can be assigned to users of type (v, i). It suffices to initially assume that

Pvi contains all patterns of length Lv that can be constructed by picking a subset of campaigns

K′ ⊆ Γ(v, i) that fit within the pattern (i.e., K′ satisfies
∑

k∈K′ fk ≤ Lv), and then permuting

the
∑

k∈K′ fk impressions from the chosen campaigns into the Lv slots of the pattern. Let πvip
be the cost (i.e., lack of disaggregate quality) of pattern p ∈ Pvi, and bkp be a binary parameter

that indicates whether or not fk impressions of campaign k are in pattern p. The following linear

program determines the optimal number of times each pattern p should be assigned to type-(v, i)

users, denoted yvip, in order to minimize pattern assignment cost (i.e., maximize disaggregate

quality):

(PA): Ψvi := Minimize
∑
p∈Pvi

πvipyvip Duals: (4a)

∑
p∈Pvi

bkpyvip = svix
∗
vik ∀k ∈ Γ(v, i) ᾱvik (free) (4b)

∑
p∈Pvi

yvip ≤ svi β̄vi ≥ 0 (4c)

yvip ≥ 0 ∀p ∈ Pvi − (4d)

Constraint (4b) ensures the number of type-(v, i) users reached by campaign k equals the number

(RA-δ) determined should be reached by campaign k. Since the optimal solution to (RA-δ) is

unique (part 4 of Theorem 1), maintaining the aggregate quality attained by (RA-δ) is equivalent

to matching each and every variable x∗vik. Constraint (4c) ensures we do not assign more patterns

than there are users available (as each user can be assigned at most one pattern). Producing a

pattern assignment involves solving one such linear program for each user type (v, i).

The set of all possible patterns for any given user type (v, i) can be exponentially large; thus,

solving (PA) involves considering a linear program with an exponential number of variables. The

column generation technique allows us to implicitly, rather than explicitly, consider all possible

24

patterns. The idea stems from the fact that most patterns will not be part of the optimal pattern

assignment. For any such pattern p′ where y∗vip′ = 0, we can exclude p′ from Pvi and still obtain the

same optimal solution. Consequently, we can solve (PA) to optimality by explicitly considering only

a small subset of patterns in the pattern pool Pvi, as long as the pool contains all patterns that are

part of the optimal pattern assignment. Although it would seem like an insurmountable problem

to determine a small yet sufficient set of patterns, column generation is an iterative technique that

does just that. It begins by initializing the pattern pool Pvi with a small set of patterns that can

produce a feasible solution to (PA). Then, at each iteration, a pattern generation problem is solved

to identify the patterns which, at the margin, improve the value of the solution; these patterns

are added to the pattern pool. This is repeated until no improving pattern exists, at which point

(PA) is solved to optimality while the pattern pool Pvi contains many fewer patterns than the

explicit set of patterns represented by all combinations of campaigns that fit within a pattern and

all permutations of their impressions.

5.3 Pattern Generation

The pattern generation component of HCG is used to produce new patterns. It uses the dual

solution from the current pattern assignment to determine, at the margin, what pattern is most

beneficial to add to each pattern pool Pvi. The reduced cost of the yvip variable in (PA) is given

by πvip −
∑

k∈Γ(v,i) ᾱ
∗
vikbkp + β̄∗vi, where {ᾱ∗vik, β̄∗vi} is the current dual solution for user type (v, i).

Therefore, the pattern generation problem, which constructs a new pattern for user type (v, i), is:

(PG): ψvi := Minimize π(b) −
∑

k∈Γ(v,i)

ᾱ∗vikbk (5a)

s.t.
∑

k∈Γ(v,i)

fkbk ≤ Lv (5b)

bk ∈ {0, 1}, ∀k ∈ Γ(v, i) (5c)

The binary variables bk, k ∈ Γ(v, i), determine whether or not campaign k is included in the new

pattern. Since including k requires fk slots of the pattern, constraint (5b) ensures the total number

of slots used is within the pattern length Lv. For any fixed vector of decisions b = (bk)k∈Γ(v,i),

the function π(b) determines the cost (i.e., lack of disaggregate quality) of the new pattern. The

second part of the objective,
∑

k∈Γ(v,i) ᾱ
∗
vikbk, is linear in the decision variables bk. Dual values ᾱ∗vik

computed previously by (PA) are constants here, and measure how important it is to select each

campaign k ∈ Γ(v, i) in order to achieve the reach allocation x∗vik of (RA-δ).

The complexity of (PG) depends on the choice of function π(b). For any π(b) which is linear in

the bk variables, (PG) can be formulated as a binary knapsack problem, which is theoretically NP-

hard but admits a Fully Polynomial-Time Approximation Scheme (FPTAS) and can be solved very

quickly using dynamic programming in O(|Γ(v, i)|L2
v) time (see Martello and Toth, 1990, Ch.2).

Some examples of disaggregate quality metrics that can be implemented using a linear π(b) include

maximizing the diversity of ads and/or the number of excess slots within a pattern. Using a linear

π(b) metric, we can solve more than 1000 instances4 of (PG) per second on a single 2.4GHz CPU.

25

Another useful disaggregate quality metric is user-level pacing, i.e., how well-spread impressions

of the same campaign are over time. But since pacing is a metric that not only depends on the set

of campaigns within the pattern, but also on how impressions are sequenced within the pattern,

it cannot be implemented using a linear π(b). Such a pacing metric π(b) involves an inner-

optimization problem to uniformly arrange impressions over pattern slots given the set of chosen

campaigns b. Using CPLEX, solving an instance of an extended formulation of (PG) that has

additional binary variables and constraints to keep track of the specific sequence of impressions

within the pattern can take tens of seconds. This is an order of magnitude slower than solving

a binary knapsack problem via dynamic programming as we do when π(b) is linear, but it is

important to note that (PA) and (PG) are solved independently for each supply node (v, i), and

thus can be run in parallel across many machines. This slower runtime for each instance of (PG)

is still within practical limits given that large publishers in industry have thousands of parallel

computing nodes at their disposal. For the explicit functional forms of π(b) and the corresponding

models for the disaggregate quality metrics concerning (i) diversity of ads served to each user, (ii)

optimal amount of excess in the patterns, and (iii) user-level pacing of ads over time, please see

Appendix B.

5.4 The Pattern-HCG Algorithm

Pattern-HCG combines the three components of the preceding subsections (reach allocation, pattern

assignment, and pattern generation) in an integrated, iterative fashion. At a high level, the idea is

to first solve (RA-δ) to produce an aggregate reach allocation with maximum aggregate quality, and

then use column generation to generate and assign patterns to maximize disaggregate quality while

maintaining the aggregate quality attained by (RA-δ). In the process, there are two substantial

challenges that must be overcome. First, we need a way to construct an initial set of patterns so

we can start with a feasible solution to (PA). Second, while searching for feasible patterns we may

learn that (PA) is infeasible for some user types (v, i). When that happens, we re-solve (RA-δ)

with a lower δvi, and iterate. Consequently, the full Pattern-HCG algorithm has two phases: (1)

a feasibility phase in which the focus is on aggregate quality and δvi values are iteratively tuned

to ensure that the solution to (RA-δ) can be translated into a pattern assignment by (PA) for

every user type, and (2) a pattern improvement phase which focuses exclusively on optimizing the

secondary, disaggregate quality objective without sacrificing the value we obtained for the primary,

aggregate quality objective at the end of the feasibility phase.

The feasibility phase begins by initializing the impression utilization factors δvi to 1 for all

user types (v, i). We construct a reach allocation by solving (RA-δ), and then we solve a modified

26

version of the pattern assignment problem (PA) for each user type (v, i):

(PA-F): Ψ
(F)
vi := Minimize

∑
p∈Pvi

yvip Duals: (6a)

∑
p∈Pvi

bkpyvip = svix
∗
vik ∀k ∈ Γ(v, i) ᾱ

(F)
vik (free) (6b)

yvip ≥ 0 ∀p ∈ Pvi − (6c)

Since we ignore disaggregate pattern quality in the feasibility phase, the pattern costs πvip of (PA)

do not factor into the objective. Instead, we relax the supply constraint (4c) and minimize its

left-hand side, i.e., the number of users allocated by this pattern assignment,
∑

p∈Pvi
yvip. Unlike

(PA) which has a supply constraint, (PA-F) is always feasible, as we now show. For each campaign

k ∈ Γ(v, i) we can create a pattern p(k) containing exactly fk impressions of campaign k and no

other campaigns; that is, bk,p(k) = 1 and bk′,p(k) = 0 for all k′ 6= k. Using only such single-campaign

patterns, (PA-F) has a trivial solution y∗v,i,p(k) = svix
∗
vik with dual values ᾱ

∗(F)
vik = 1, ∀k ∈ Γ(v, i).

We initialize the pattern pool Pvi with only these single-campaign patterns, and from this initial

solution, continue to solve (PA-F) using column generation. The corresponding pattern generating

problem is the following binary knapsack problem with |Γ(v, i)| items, which can be solved very

quickly and efficiently via dynamic programming:

(PG-F): ψ
(F)
vi := 1−max

{ ∑
k∈Γ(v,i)

ᾱ
∗(F)
vik bk

∣∣∣ ∑
k∈Γ(v,i)

fkbk ≤ Lv, bk ∈ {0, 1}, ∀k ∈ Γ(v, i)
}

If (PG-F) concludes with ψ
∗(F)
vi < 0, the resulting pattern improves (PA-F); we add it to Pvi

and re-solve (PA-F). Otherwise, we found the optimal solution to (PA-F), and have two cases to

consider.

If (PA-F) converges to optimality with Ψ
∗(F)
vi > svi, we know the corresponding pattern assign-

ment problem (PA) is infeasible; i.e., it is impossible to implement the solution x∗vik from (RA-δ)

using svi users. In this case, δvi over-estimates the attainable impression utilization, i.e., 1 − δvi
under-estimates the fraction of impressions that must remain as excess. Consequently, we decrease

δvi, re-solve (RA-δ) to produce a new reach allocation x∗vik, and resume solving (PA-F) and (PG-F).

To derive a good updating rule for δvi, note that the total number of impressions used (i.e., assigned

to R&F ads) in pattern p is given by
∑

k fkbkp. Therefore, the total number of impressions used in

(PA-F) at optimality is given by:

∑
p∈Pvi

 ∑
k∈Γ(v,i)

fkbkp

 y∗vip =
∑

k∈Γ(v,i)

fk

 ∑
p∈Pvi

bkpy
∗
vip

 =(6b)=
∑

k∈Γ(v,i)

fksvix
∗
vik.

Not surprisingly, this impression count is closely tied to the solution from (RA-δ) and is known

before solving (PA-F). Given that each of the Ψ
∗(F)
vi users provides Lv impressions, the effective

impression utilization rate at the optimal solution to (PA-F) is given by
∑

k∈Γ(v,i) fksvix
∗
vik/LvΨ

∗(F)
vi .

Based on this analysis, we suggest the following update rule:

δvi ← sviX
∗
vi/Ψ

∗(F)
vi − ε, (7)

27

where X∗vi =
∑

k∈Γ(v,i)
fk
Lv
x∗vik is the left-hand side of constraint (3c) at optimality, and ε > 0 is

used to accelerate convergence.

On the other hand, if for all user types (v, i), (PA-F) converges to optimality with Ψ
∗(F)
vi ≤ svi,

we have a feasible solution to all corresponding (PA) problems, and we switch to the pattern

improvement phase. In this phase, for each user type (v, i), we solve (PA) and collect the optimal

dual values ᾱ∗vik and β̄∗vi. Then we solve (PG) to construct a pattern with minimal reduced cost.

If ψ∗vi + β̄∗vi < 0, the resulting pattern is beneficial; we add it to Pvi (with parameters bkp = b∗k and

πvip = π(b∗)) and re-solve (PA). On the other hand, if ψ∗vi+ β̄∗vi ≥ 0, the current solution to (PA) is

optimal and we stop. Note that solving (PG) is harder than (PG-F) if π(b) is not linear, however,

in the pattern improvement phase we no longer solve the large-scale math program (RA-δ). Again,

remember that iterations between (PA-F) and (PG-F), or (PA) and (PG), can be parallelized across

user types (v, i).

Finally, at ad serving time, when a type-(v, i) user arrives for the first time, s/he is assigned

pattern p ∈ Pvi with probability y∗vip/svi. Subsequent visits of the same user are served the sequence

of ads in his/her assigned pattern. If an unexpected user type (v′, i′) arrives, a near-optimal reach

allocation xv′i′k is computed using Corollary 1, and a pattern is generated using the online part of

Pattern-G algorithm. The full Pattern-HCG method is presented in Algorithm 4.

Remark 1: The value of δvi always decreases following update rule (7). This follows since X∗vi ≤ δvi
due to constraint (3c), and Ψ

∗(F)
vi > svi whenever δvi is updated. Further, note that a decrease in

impression supply at some supply node can only increase the demand burden of other supply nodes.

As a result, we may need to solve (RA-δ) and update the δvi values several times before we converge.

Remark 2: A decrease in δvi implies forcing additional excess in supply node (v, i). If additional

supply is not available in other supply nodes or using supply from other nodes would have a

significant impact on representativeness, a δ update may cause under-delivery to increase for some

campaigns. In this case, the total volume of the publisher’s traffic left as excess (i.e., left for non-

R&F ads) increases. However, it is also possible that after re-solving (RA-δ) with a lower δ, total

under-delivery is maintained by shifting excess supply from one node to another.

Remark 3: (PA-F), which minimizes the number of users, also minimizes total excess, and

thus attains the maximum impression utilization rate possible. Therefore, our update rule is

conservative. See Appendix I for a proof of this behavior in the more general case of the cutting

stock problem.

Remark 4: Re-solving (RA-δ) after a δ-update is quite fast, since we can warm-start SHALE

using the solution from the last time we solved (RA-δ). See Theorem 2 for details.

Remark 5: We can construct bounds for the impression utilization factors δvi. Let δmin
vi =

mink∈Γ(v,i){fk}/Lv, which is derived from the pattern consisting of only the campaign with the

smallest fk, and let δmax
vi = maxbk∈{0,1}{

∑
k∈Γ(v,i)

fk
Lv
bk :

∑
k∈Γ(v,i) fkbk ≤ Lv}, which can be

computed by solving a binary knapsack problem with |Γ(v, i)| variables. A geometric illustration of

the range [δmin
vi , δmax

vi] and how the δvi values affect the feasibility of (PA) is provided in Appendix H.

28

Algorithm 4 Pattern-based Hierarchical Column Generation (Pattern-HCG)

• OFFLINE:

FEASIBILITY PHASE:

– Initialize: δvi ← 1 for all user types (v, i).

– [1]: Solve the Reach Allocation problem (RA-δ) using Modified SHALE (Algorithm 3)

– Parallelize: For each user type (v, i):

∗ [2F]: Solve the Pattern Assignment problem (PA-F) and obtain the optimal dual values ᾱ
∗(F)
vik .

∗ [3F]: Solve the Pattern Generation problem (PG-F). If ψ
∗(F)
vi < 0, add the generated pattern to Pvi

and go to [2F]. Otherwise, continue.

∗ If Ψ
∗(F)
vi > svi, decrease δvi according to update rule (7).

– If δvi was decreased for any user type (v, i), go to [1]. Otherwise, continue.

PATTERN IMPROVEMENT PHASE:

– Parallelize: For each user type (v, i):

∗ [2]: Solve the Pattern Assignment problem (PA) and obtain the optimal dual values ᾱ∗vik, β̄∗vi.

∗ [3]: Solve the Pattern Generation problem (PG). If ψ∗vi + β̄∗vi < 0, add the generated pattern to
Pvi and go to [2]. Otherwise, stop.

• ONLINE: Upon a visit from user j of type (v, i):

– If it is the first visit from user j in the planning period:

∗ Set the number of arrivals qj ← 1.

∗ If user type (v, i) was explicitly considered as a supply node in the offline phase: Randomly draw
a pattern p from the pattern pool Pvi with probability y∗vip/svi, and denote the chosen pattern as
pj . Otherwise, construct a generalized solution xvik using Corollary 1, and use the online portion
of Pattern-G (Algorithm 2) to generate a corresponding pattern pj .

– Display the qj’th ad in pattern pj to user j. Set qj ← qj + 1.

29

Remark 6: We expect over time, a publisher may learn appropriate δvi values, and initialize

with δvi < 1 to speed up convergence. Nevertheless, among our numerous synthetic test cases and

real industry data, we never encountered a case where it takes beyond 10 (mostly 4-6) rounds of

adjustments before the reach allocation from (RA-δ) is attainable at 95% of the supply nodes.

6 Computational Experiments

Prior work in planning guaranteed targeted display advertising is impression-based; that is, it

assumes publishers do not differentiate between serving 2 impressions to 1 person, or 1 impression

each to 2 people. Consequently, there are no established benchmarks in the literature for comparing

the performance of our methodology. In what follows, we compare Pattern-HCG with the frequency

capping heuristic (FreqCap) of §3.4, which can be viewed as a reasonable proxy for how an existing

impression-based ad serving system would deliver R&F campaigns, as well as with our Pattern-G

heuristic from §4.1, which also serves ads using patterns but constructs patterns greedily on-the-

fly rather than optimally in advance. We compare FreqCap, Pattern-G, and Pattern-HCG under

different levels of sellthrough, i.e., the ratio of aggregate demand to aggregate supply (Test 1),

different degrees of forecast error (Test 2), and different levels of generalized arrivals (Test 3). We

also perform an out-of-sample test (Test 4) by isolating the data of a particular time period for

estimation and optimization, and use other cross-sections of data for evaluating performance. We

show that Pattern-HCG consistently produces 10% lower under-delivery than Pattern-G, and more

than 45% lower under-delivery than FreqCap. With regard to non-representativeness, Pattern-

HCG marginally outperforms Pattern-G, but both pattern-based methods outperform FreqCap by

40%.

6.1 Data5

Our dataset was taken from a single major vertical of Yahoo.com (e.g., Yahoo Mail, Yahoo News,

or Yahoo Finance) and contains the following:

• The graph structure, composed of 3,844 user demographics and 925 campaigns, with 122,767

arcs (targeting specification). On average, each viewer type is targeted by 36 campaigns and

each campaign targets 122 viewer types.

• The user visit history of the webpage over a period of 6 weeks. The data provides the number of

page visits from each unique individual (14.7 million users), in each week, along with the exact

timestamp of all visits and the demographic of each user.

Per Yahoo’s recommendation, we eliminated all users that made more than 3500 visits per week.

Such users are likely to be web robots (i.e., software imitating a user) or computers shared among

many individuals, and thus are not appropriate for serving R&F campaigns. This eliminated 0.1%

of users and accounted for 10% of the impression traffic. We classified the remaining users into three

groups V = {low,med,high}-visiting using k-means clustering on the average number of page visits

30

across the 6-week period. Users with average visit count below 15 (55% of users) were considered

low-, those with average visit count between 15-35 (25% of users) were considered med-, and those

with average visit count above 35 (20% of users) were considered high-visiting. Then, for users of

each type v ∈ {low,med,high}, we used the 40th percentile of the page visit distribution (i.e., the

threshold that is exceeded 60% of the time by users within the cluster) as the anticipated number

of visits for each type-v user, and found appropriate pattern lengths of Lv = {10, 19, 56} for the

three visit types, respectively. Note that using the 40th percentile for pattern lengths implies a

60% chance that each user will see all pattern slots and no ad impression planned for that user will

end up as waste. Although we could chose lower percentiles to increase the probability of pattern

completion, we have found lower percentiles to be overly conservative, in part due to the fact that

patterns generally have some excess slots at the end anyway. We then calculated the user supply

parameters svi by counting the number of users from each supply node i with visit type v that

appeared in a particular week6, and the impression supply parameters ŝvi by counting the total

number of arrivals that these svi users made. For the FreqCap algorithm, we set ŝi =
∑

v ŝvi.

Since we are only now proposing R&F campaigns, the dataset does not include relevant demand-

side data. To create the demand parameters rk, we examined existing impression-based campaign

data at Yahoo and the distribution of θk parameters. From this distribution we randomly drew a θk

value for each demand node. Then, in no particular order, we iterated through the demand nodes

and assigned to each node k a θk-fraction of the remaining supply from each node (v, i) ∈ Γ(k)

to produce an initial estimate for rk; such a construction parallels the so-called High Water Mark

algorithm discussed in Bharadwaj et al. (2012). Finally, we scaled and rounded the rk values

to yield a sellthrough of approximately 88%. We generated frequency targets fk independently

at random between 1 and 25, following a positively-skewed bell-shaped distribution that peaked

around a frequency of 6. In all tests, we used penalty weights wk = 1 and ck = 3 for all campaigns,

as per Yahoo’s suggestion, avoiding under-delivery (which has a direct revenue consequence) is

more important than maximizing representativeness.

6.2 Results

All algorithms were implemented in Matlab R© and run in a parallelized environment with 32 cores

at 2.3GHz each. The runtimes observed under Pattern-HCG are as follows. Each round of solving

the reach allocation problem (RA-δ) using Modified SHALE took 30-60 seconds, and each round of

pattern generation and assignment took about 25 minutes (about 4 seconds per supply node (v, i),

though 54% of nodes completed their CG within 1 second). Typically, it took only 4-6 iterations of

the feasibility phase to produce patterns that attained the reach assignment from (RA-δ) at 95% of

the supply nodes. Therefore, on average, each run of Pattern-HCG took about two hours. In the

final solution, we observe close to 130,000 unique patterns, ranging from 1 to 121 with an average

of 12 patterns for each user type (v, i). In contrast, the offline phase of Pattern-G solves (RA-δ)

only once, and consequently takes only 30-60 seconds. More details about each test and the results

appears below.

31

(a) Non-representativeness Penalty (b) Under-delivery Fraction
∑

k uk

/∑
k rk

Figure 4: Performance of our three methods at different levels of sellthrough SR&F .

Test 1: Performance at Different Sellthrough Levels

Sellthrough, defined as the ratio of aggregate demand to aggregate supply, is a well-known per-

formance metric in marketing and retail operations. It measures supply scarcity, and how hard

it is to satisfy demand. We consider two sellthrough measures, STot =
∑

k fkrk
/∑

v,i ŝvi, which

is measured in terms of the total impression traffic, and SR&F =
∑

k fkrk
/∑

v,i Lvsvi which is

measured in terms of the proportion of impression traffic that is eligible for R&F campaigns. In our

dataset,
∑

v,i Lvsvi
/∑

v,i ŝvi ' 0.43; therefore, the two measures are related via STot = 0.43SR&F .

To vary sellthrough, we scale all rk values by a constant factor. In this section, we assume perfect

supply forecasts to isolate the effect of a change in sellthrough.

Figure 4 compares the non-representativeness and under-delivery we observed for each method

at different levels of sellthrough SR&F . As expected, performance generally declines as sellthrough

increases and the instance becomes more constrained. Note that with ample supply (very low sell-

through), Pattern-HCG (solid black line) has only marginally better under-delivery than Pattern-G

(dashed red line); however, the performance gap widens at higher sellthrough levels. Indeed, for

SR&F ≥ 0.4 Pattern-HCG produces 10% less under-delivery than Pattern-G, which at SR&F = 0.7

constitutes a reduction in under-delivery by nearly half and at SR&F = 0.88 constitutes a reduction

of nearly one-third. Beyond a certain sellthrough level (about 55%), additional reach cannot be

packed into the limited pattern space, and therefore, under-delivery of both pattern-based methods

increase linearly, with a mild slope. In contrast, the performance of FreqCap is clearly inferior

to both Pattern-G and Pattern-HCG, but somewhat paradoxically its under-delivery improves as

sellthrough increases. This is due to the fact that higher sellthrough requires a higher proportion of

supply to be allocated, thereby increasing the probabilities xik that any campaign k is drawn upon

a user visit. This increases the probability that all fk impressions of campaign k are successfully

delivered to the user.

Figure 5 demonstrates the proportion of impressions, out of the full supply
∑

v,i ŝvi served to

32

(a) FreqCap (b) Pattern-G (c) Pattern-HCG

Figure 5: At different levels of sellthrough STot (horizontal axis), we show the proportion of impressions
assigned to Non-R&F campaigns (yellow), assigned to R&F campaigns that were wasted (red), and assigned
to R&F campaigns that were billable (green). Dotted lines show the boundaries of regions in the subfigures
to the left, allowing easy comparisons left-to-right.

R&F campaigns (lower region), impressions wasted due to R&F campaigns not reaching their target

frequency (middle region), and impressions left as excess for non-R&F planning (top region), at

each sellthrough level. We use STot for measuring sellthrough here as it makes the plots easier

to interpret: The total impression demand increases along the 45-degree line, starting from the

origin. The union of the two green and red areas shows the fraction of R&F impression demand,∑
k fkrk, allocated by (IA), (RA), and (RA-δ), respectively in subfigures (a), (b), and (c). The

deviation below the 45-degree line can be interpreted as planned under-delivery,
∑

k fkuk, measured

in impressions.

Figure 5(a) shows that FreqCap allocates the most number of impressions to R&F campaigns,

but nearly 2/3 of these impressions fall short of the target frequency at the user level, and

therefore end up as waste. Figure 5(b) shows that Pattern-G, which uses a pattern-based allocation

mechanism, does a much better job of reducing waste than FreqCap, with waste below 3% at all

levels of sellthrough. Finally, Figure 5(c) shows that Pattern-HCG is able to keep waste low while

additionally increasing the proportion of impressions successfully served to R&F campaigns (the

green region is larger). Although from this figure it does not seem like there is a large difference

between how Pattern-HCG and Pattern-G deliver R&F impressions, the difference is enough for

Pattern-HCG to achieve substantially less reach under-delivery than Pattern-G (recall Figure 4).

Note that STot = 0.43 implies SR&F = 1 which is the absolute maximum sellthrough we can hope

to serve without under-delivery, and this is only possible when: 1) campaigns’ targeting criteria

does not restrict our ability to allocate the entire user traffic, 2) the frequency requirements can be

perfectly packed into pattern lengths without excess, and 3) the problem is relaxed to allow each

user to be reached multiple times by the same campaign. Consequently, a sellthrough of STot ' 0.3

should be considered quite high, practically speaking.

33

Test 2: Robustness to Forecast Errors

Our offline optimization methodology produces a serving plan according to the forecasted supply of

users, svi. The actual number of users that visit the publisher’s website, denoted s
(a)
vi , is uncertain

and may differ from the forecast. Therefore, it is important to check the robustness of our solutions

to forecast error. In this test, we use the actual observed traffic svi and ŝi to produce a plan

under our three algorithms. Then, we evaluate the performance of these solutions under random

arrival streams that are created in the following way. First, we add Gaussian noise to every supply

node’s forecast, i.e., s
(a)
vi ← (1 + c · εvi)svi where εvi is a standard normal random variable (with a

mean of zero and a standard deviation of one), and c is the desired coefficient of variation (CV)

of the Gaussian noise, which we take to be identical for all supply nodes. We vary c to produce

arrival streams that have different degrees of forecast error. Negative supply values, if produced,

are truncated to zero and then we normalize the arrival stream to keep the aggregate level of traffic

invariant. This way, we isolate effect of variability in the sizes of supply nodes from changes in

sellthrough, which we tested separately in Test 1. Finally, we probabilistically round each generated

user count s
(a)
vi to a neighboring integer (e.g., 5.3 is rounded to 5 with probability 0.7, and to 6 with

probability 0.3), to yield integer s
(a)
vi values while keeping the aggregate supply stable. We generate

the number of visits for each user using the empirical probability distributions φv(·) obtained from

the dataset after clustering user visit types. This is our only computational test in which we do not

use the observed arrival stream from the data to evaluate the performance of our solution. Note

that following the truncation and normalization steps, the CV parameter c is no longer a reliable

measure of forecast noise. Instead, we use Mean Absolute Percentage Error (MAPE) to measure

how the random arrival stream s
(a)
vi differs from the forecast svi:

MAPE =
1

|I||V|
∑
(v,i)

|svi − s(a)
vi |

svi
.

Figure 6 shows the performance of each method in terms of non-representativeness and under-

delivery, under different degrees of forecast error. Forecast MAPE, along the horizontal axis, ranges

from 0 to about 1.3. Note that a MAPE of 1 indicates that on average, the actual number of users

observed in each supply node differed by 100% from its forecast. Each dot corresponds to a different

random instance of the arrival stream7. The curves are basic moving averages which illustrate the

overall trend.

At our baseline sellthrough of 88%, we find that the average under-delivery of Pattern-HCG

(solid black line) is consistently half that of Pattern-G (dashed red line), and one-fifth that of Fre-

qCap (solid blue line), and that this relationship roughly holds at all all degrees of forecast MAPE.

The non-representativeness penalty obtained by Pattern-G is comparable to that of Pattern-HCG;

both outperform FreqCap by a consistent 30% at all levels of forecast noise. Our experiments show

that the under-delivery and non-representativeness performance of all algorithms is quite robust to

forecast error.

34

(a) Non-representativeness Penalty (b) Under-delivery Fraction
∑

k uk

/∑
k rk

Figure 6: Performance under noisy forecasts, as a function of mean absolute percentage error (MAPE).
Each dot corresponds to a different random arrival stream.

Test 3: Robustness to Graph Sampling Error (Generalizability)

As described in §3, generalizability is important when there are a large number of demographics,

and only the most important subset of demographics (e.g., those with enough historical data to

accurately forecast) are used to produce the optimal ad allocation. If an arriving user belongs to a

demographic that was not explicitly used to construct the optimal ad allocation, we use Corollary 1

to produce a near-optimal solution and serve ads accordingly. Figure 7 plots the under-delivery

and non-representativeness performance of FreqCap, Pattern-G, and Pattern-HCG under different

levels of generalized arrivals. The horizontal axis shows the proportion of supply nodes we omitted

uniformly at random from the original graph when solving our offline plans. In each case, we scale

the supply of remaining nodes up to keep the sellthrough level constant at 88% which allows us to

isolate the effect of generalizability. We then test the performance of the obtained solution on the

full arrival stream observed in the data (i.e., there is no forecast error, s
(a)
vi = svi).

With regard to under-delivery, Pattern-HCG (solid black line) outperforms Pattern-G (dashed

red line) by 10% when no generalized arrivals occur. This performance gap decreases as the

proportion of generalized arrivals increases, and is minimal once the proportion of generalized

arrivals reaches 90%, i.e., only 10% of the full graph is represented by the sample used at plan-

ning/optimization time. Again, FreqCap exhibits subpar performance with 5 times higher under-

delivery than Pattern-HCG. With regard to non-representativeness, Pattern-HCG outperforms

Pattern-G by 10-30% and FreqCap by 30-50%.

Test 4: Out of Sample Testing

In practice, there are several sources of uncertainty at the planning stage. These include the number

of users svi of each type (v, i), the number of visits that each individual user makes, as well as the

aggregate volume of users and impressions across all user types, which affects sellthrough. For this

35

(a) Non-representativeness Penalty (b) Under-delivery Fraction
∑

k uk

/∑
k rk

Figure 7: Performance under generalized arrivals. The horizontal axis shows the fraction of supply nodes
omitted from the graph at optimization/planning time.

(a) Non-representativeness Penalty (b) Under-delivery Fraction
∑

k uk

/∑
k rk

Figure 8: Performance measured in weeks 1-6, using data from week 4 for parameter estimation and
optimization.

test, we split our dataset by weeks, numbered 1 through 6. We then use the data from week 4

to estimate parameters and obtain the optimal solutions using FreqCap, Pattern-G, and Pattern-

HCG. Then we apply the week-4 solutions to the arrival streams from each of the other weeks

{1,2,3,5,6}. This provides us with 5 out-of-sample instances of s
(a)
vi along with a number of visits

per each user to test our solutions from week 4. Results are shown in Figure 8. This test can be

thought of as a robustness check to confirm the viability of our approach in practice. It assumes

that the most näıve forecasting system is employed by the publisher, i.e., one that uses a historical

observation from another period as its forecast. We observe that the relative performance gaps are

consistent among the three methods across all 6 weeks, with Pattern-HCG consistently performing

best.

36

7 Conclusions

In line with recent industry trends and growing attention to reach, personalized marketing, and

storyboarding, we introduced and modeled, for the the first time, guaranteed reach and frequency

contracts for online targeted display advertising, and proposed a novel mechanism for ad planning

and delivery that employs pre-generated patterns to schedule the exact sequence of ads for each

individual user. We showed that our model can be implemented efficiently using a two-phase

algorithm that employs column generation in a hierarchical scheme with three parallelizable com-

ponents. Our optimization framework strives for aggregate quality of ad delivery (i.e., retained

revenue and uniform spread of campaigns among their target audience) as a primary objective,

as well as disaggregate quality (e.g., diversity and pacing of ads over time as delivered to each

individual) as a secondary objective. Exponential growth of mobile device usage and new identifier

technologies that allow publishers to accurately track individuals over time contribute to making

our modeling approach relevant and practical.

Based on our computational testing on real industry data, we conclude that our use of column

generation for constructing patterns together with our mechanism for tuning impression utilization

factors results in significantly better performance (10% and 45% less under-delivery and better

representativeness compared to our pattern-based greedy heuristic and frequency capping, respec-

tively). In practice, if time is limited, one may employ the feasibility phase of our Pattern-HCG

method and make a limited number of δ-adjustments, and then jump to a reasonable solution

using Pattern-G. Nevertheless, we expect that the runtime of Pattern-HCG is within practical

applicability for offline planning in the industry, assuming proper parallelization and specialized

coding for large instances. Even though our main model is deterministic, our computational tests

show that our solution is indeed robust to forecast error and randomness in user arrivals. Our

probabilistic model, presented in Appendix D, that explicitly models the randomness of user arrivals

in the pattern generation process, can create more robust solutions with longer, less conservative,

pattern lengths at the expense of additional computation times.

There are a number of open questions that are left for future research. First, it would be

interesting to derive a competitive ratio (i.e., worst-case optimality gap) under some relevant input

model. However, doing so would also require developing a new input model that is structurally

useful (i.e., leads to elegant theoretical proofs) which is tailored for the R&F ad planning problem.

The existing input models (e.g., for a survey see Mehta 2012) are all impression-based and do not

specify how to characterize the uncertainty of the arrival stream for specific users. Moreover, if

sufficiently suitable characterizations of the arrival process can be identified which have parameters

which are relatively easy to estimate from data, it may also be of interest to develop a Stochastic

Dynamic Programming (DP) model for the R&F ad planning problem. There are a number of

issues that would need to be overcome when modeling this problem as a Stochastic DP. First, such

a model would have an exponentially large state space, since an optimal dynamic policy would need

to know, at each impression arrival, the number of times each user j has seen each ad campaign k

up to the current point in time. Second, our problem has both primary and secondary objectives;

37

this would be challenging to handle with DP. Third, many of our objective functions such as

representativeness (aggregate quality) and user-level pacing (disaggregate quality) are non-linear

multivariate functions that measure how ads are delivered over the full planning period. They

are non-separable in individual impression assignments; i.e., they do not easily decompose into

increments of reward or cost that accumulate after each impression assignment. Sniedovich (2010)

offers some suggestions to tackle non-separable objectives, but the methods he describes either

involve state-augmentation (which would grow the already exponential state space) or iteratively

solving the DP numerous times (which increases solution times). It would be interesting to develop

some clever modeling approaches to skirt these and other challenges.

Finally, we note that our pattern-based approach for serving web advertisements which allows

for personalized planning can also be applied to other forms of technology-enabled advertising,

including digital TV, online videos, and in-game advertising. Moreover, our Pattern-HCG method

can be adapted to other planning and allocation problems with primary (aggregate) and secondary

(disaggregate) goals, where optimizing with respect to the primary objective is structurally similar

to a transportation problem (bipartite allocation).

Endnotes

1. Facebook, Google, and Yahoo had net U.S. display ad revenues of $5.29, $3.03, and $1.23 billion in 2014

(eMarketer 2015).

2. Denoting qk = Eξ[
∑
j zjk(π̃(ξ))] =

∑
(v,i)∈Γ(k) svixvik and µk = qk/Sk, we have V ar(

∑
j∈J zjk(π̃(ξ))) =∑

(v,i)∈Γ(k) svixvik(1 − xvik) ≤
∑

(v,i)∈Γ(k) sviµk(1 − µk) = qk(1 − µk), where the first equality follows from

the fact that
∑
j∈J(v,i) zjk(π̃(ξ)) ∼ Binomial(svi, xvik), and the inequality is due to Jensen’s Inequality.

The Coefficient of Variation (CV) of the number of users that will be reached,
∑
j∈J zjk(π̃(ξ)), is therefore√

qk(1− µk)/qk =
√

1/qk − 1/Sk. This CV is always less than or equal to 1, and in most cases, much, much

smaller. For example, with only qk = 100 users planned to be allocated to campaign k, the CV is already

below 0.1; with qk = 1 million users, the CV is below 0.001.

3. We also need an estimate for δv′i′ to compute βv′i′ . Any value within the bounds defined in Remark

5 of Section 5.4 would be reasonable. Our numerical experiments show that picking δv′i′ = δmax
v′i′ and then

applying Pattern-G produces a good solution.

4. This runtime corresponds to the problem instances we study in §6, which have |Γ(v, i)| between 1 and 442

with an average connectivity of 36 campaigns per viewer type, and three pattern lengths Lv ∈ {10, 19, 56}.
5. We intend to publish our dataset, e.g., through Yahoo Labs Webscope, so it is accessible to the operations

research community for future developments and benchmarking. The process of clearing the release of

the data is still ongoing at the time of this submission. The reported dataset and results are subject to

anonymization and deliberately incomplete to not reflect the real portfolio of Yahoo at any particular time.

6. We use week 4 as it gave us a slightly higher number of supply nodes with svi > 0, i.e., a more complete

graph, compared to other weeks.

7. The assignment of patterns to users is a random process (pattern p is chosen for a user of type (v, i) with

probability y∗vip/svi) and differs in each run of the simulation, which has a slight impact on the performance.

For each arrival stream, the solution was simulated multiple times to accurately report the performance.

38

References

Abrams, Z., S. S. Keerthi, O. Mendelevitch, and J. A. Tomlin (2008). Ad delivery with budgeted advertisers:

A comprehensive LP approach. Journal of Electronic Commerce Research 9 (1), 16–32.

Adaptly (2014, May). A research study on sequenced for call to action vs. sustained call to action. Available

online at: http://adaptly.com/wp-content/uploads/2014/11/Adaptly-Refinery29-White-Paper-2014.pdf.

Agrawal, S., Z. Wang, and Y. Ye (2014). A dynamic near-optimal algorithm for online linear programming.

Operations Research 62 (4), 876–890.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1993). Network Flows: Theory, Algorithms, and Applications.

Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Araman, V. F. and K. Fridgeirsdottir (2010). A uniform allocation mechanism and cost-per-impression

pricing for online advertising. Working paper .

Balseiro, S. R., J. Feldman, V. Mirrokni, and S. Muthukrishnan (2014). Yield optimization of display

advertising with ad exchange. Management Science 60 (12), 2886–2907.

Besbes, O. and C. Maglaras (2012). Dynamic pricing with financial milestones: feedback-form policies.

Management Science 58 (9), 1715–1731.

Bharadwaj, V., P. Chen, W. Ma, C. Nagarajan, J. Tomlin, S. Vassilvitskii, E. Vee, and J. Yang (2012).

SHALE: An efficient algorithm for allocation of guaranteed display advertising. In Proceedings of the 18th

ACM international conference on knowledge discovery and data mining, pp. 1195–1203.

Bollapragada, S., M. R. Bussieck, and S. Mallik (2004). Scheduling commercial videotapes in broadcast

television. Operations Research 52 (5), 679–689.

Brusco, M. (2008). Scheduling advertising slots for television. Journal of the Operational Research

Society 59 (10), 1363–1372.

Buchbinder, N., M. Feldman, A. Ghosh, and J. S. Naor (2011). Frequency capping in online advertising. In

Algorithms and Data Structures, pp. 147–158. Springer.

Campbell, M. C. and K. L. Keller (2003). Brand familiarity and advertising repetition effects. journal of

Consumer Research 30 (2), 292–304.

Chandler-Pepelnjak, J. and Y.-B. Song (2003). Optimal frequency – the impact of frequency on conversion

rates. Atlas Digital Insights. Available online at: http://advertising.microsoft.com/wwdocs/user/en-us/

researchlibrary/researchreport/OptFrequency.pdf.

Chen, P., W. Ma, S. Mandalapu, C. Nagarjan, J. Shanmugasundaram, S. Vassilvitskii, E. Vee, M. Yu, and

J. Zien (2012). Ad serving using a compact allocation plan. In Proceedings of the 13th ACM Conference

on Electronic Commerce, pp. 319–336.

Chickering, D. M. and D. Heckerman (2003). Targeted advertising on the web with inventory management.

Interfaces 33 (5), 71–77.

39

http://adaptly.com/wp-content/uploads/2014/11/Adaptly-Refinery29-White-Paper-2014.pdf
http://advertising.microsoft.com/wwdocs/user/en-us/researchlibrary/researchreport/OptFrequency.pdf
http://advertising.microsoft.com/wwdocs/user/en-us/researchlibrary/researchreport/OptFrequency.pdf

Desaulniers, G., J. Desrosiers, and M. M. Solomon (2005). Column generation, Volume 5. New York:

Springer.

Devanur, N. R. and T. P. Hayes (2009). The adwords problem: online keyword matching with budgeted

bidders under random permutations. In Proceedings of the 10th ACM conference on Electronic commerce,

pp. 71–78. ACM.

Devanur, N. R., K. Jain, B. Sivan, and C. A. Wilkens (2011). Near optimal online algorithms and fast

approximation algorithms for resource allocation problems. In Proceedings of the 12th ACM conference

on Electronic commerce, pp. 29–38. ACM.

eMarketer (2009, July). The great GRP debate. Available online at: http://www.emarketer.com/Articles/

Print.aspx?R=1007174.

eMarketer (2014, June). How do you combine TV and digital video? Available online at: http://www.

emarketer.com/Articles/Print.aspx?R=1010900.

eMarketer (2015, March). Facebook and twitter will take 33% share of us digital display market by 2017.

Available online at: http://www.emarketer.com/Articles/Print.aspx?R=1012274.

Feichtinger, G., R. F. Hartl, and S. P. Sethi (1994). Dynamic optimal control models in advertising: recent

developments. Management Science 40 (2), 195–226.

Feldman, J., M. Henzinger, N. Korula, V. S. Mirrokni, and C. Stein (2010). Online stochastic packing applied

to display ad allocation. In European Symposium on Algorithms, pp. 182–194. Springer.

Feldman, J., A. Mehta, V. Mirrokni, and S. Muthukrishnan (2009). Online stochastic matching: Beating

1-1/e. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pp.

117–126. IEEE.

Ghosh, A., P. McAfee, K. Papineni, and S. Vassilvitskii (2009). Bidding for representative allocations for

display advertising. In Workshop on Internet and Network Economics (WINE), pp. 208–219. LNCS 5929,

Berlin: Springer.

Gilmore, P. C. and R. E. Gomory (1961). A linear programming approach to the cutting-stock problem.

Operations Research 9 (6), 849–859.

Goel, G. and A. Mehta (2008). Online budgeted matching in random input models with applications to

adwords. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pp.

982–991. Society for Industrial and Applied Mathematics.

Hojjat, A., J. Turner, S. Cetintas, and J. Yang (2014). Delivering guaranteed display ads under reach

and frequency requirements. In Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp.

2278–2284.

Interactive Advertising Bureau (2015, April). IAB 2014 full-year internet advertising revenue report.

Available online at: http://www.iab.net/research/industry_data_and_landscape/adrevenuereport.

Jones, D. and M. Tamiz (2010). Practical goal programming, Volume 141. Springer.

40

http://www.emarketer.com/Articles/Print.aspx?R=1007174
http://www.emarketer.com/Articles/Print.aspx?R=1007174
http://www.emarketer.com/Articles/Print.aspx?R=1010900
http://www.emarketer.com/Articles/Print.aspx?R=1010900
http://www.emarketer.com/Articles/Print.aspx?R=1012274
http://www.iab.net/research/industry_data_and_landscape/adrevenuereport

Kattula, J., J. Lewis, and J. Dailey (2015). Behind the buzz: People-based marketing defined. Atlas Solutions,

LLC. Available online at: https://atlassolutionstwo.files.wordpress.com/2015/05/atlas_white_paper_

people-based_marketing_may_2015.pdf.

Kubiak, W. and S. Sethi (1991). A note on “level schedules for mixed-model assembly lines in just-in-time

production systems”. Management Science 37 (1), 121–122.

Kubiak, W. and S. P. Sethi (1994). Optimal just-in-time schedules for flexible transfer lines. International

Journal of Flexible Manufacturing Systems 6 (2), 137–154.

Langheinrich, M., A. Nakamura, N. Abe, T. Kamba, and Y. Koseki (1999). Unintrusive customization

techniques for web advertising. Computer Networks 31 (11), 1259–1272.

Lübbecke, M. E. and J. Desrosiers (2005). Selected topics in column generation. Operations Research 53 (6),

1007–1023.

Manshadi, V. H., S. O. Gharan, and A. Saberi (2012). Online stochastic matching: Online actions based on

offline statistics. Mathematics of Operations Research 37 (4), 559–573.

Martello, S. and P. Toth (1990). Knapsack problems: algorithms and computer implementations. John Wiley

& Sons, Inc.

Mehta, A. (2012). Online matching and ad allocation. Theoretical Computer Science 8 (4), 265–368.

Mehta, A., A. Saberi, U. Vazirani, and V. Vazirani (2007). Adwords and generalized online matching. Journal

of the ACM (JACM) 54 (5), 22.

Mookerjee, R., S. Kumar, and V. S. Mookerjee (2012). To show or not show: Using user profiling to manage

internet advertisement campaigns at chitika. Interfaces 42 (5), 449–464.

Najafi Asadolahi, S. and K. Fridgeirsdottir (2014). Cost-per-click pricing for display advertising.

Manufacturing & Service Operations Management, Forthcoming .

Nakamura, A. and N. Abe (2005). Improvements to the linear programming based scheduling of web

advertisements. Electronic Commerce Research 5 (1), 75–98.

Roels, G. and K. Fridgeirsdottir (2009). Dynamic revenue management for online display advertising. Journal

of Revenue & Pricing Management 8 (5), 452–466.

Salomatin, K., T.-Y. Liu, and Y. Yang (2012). A unified optimization framework for auction and guaranteed

delivery in online advertising. In Proceedings of the 21st ACM International Conference on Information

and Knowledge Management, pp. 2005–2009.

Sethi, S. P. (1977). Dynamic optimal control models in advertising: a survey. SIAM review 19 (4), 685–725.

Sniedovich, M. (2010). Dynamic programming: foundations and principles. CRC press.

Tomlin, J. A. (2000). An entropy approach to unintrusive targeted advertising on the web. Computer

Networks 33 (1), 767–774.

Turner, J. (2012). The planning of guaranteed targeted display advertising. Operations Research 60 (1),

18–33.

41

https://atlassolutionstwo.files.wordpress.com/2015/05/atlas_white_paper_people-based_marketing_may_2015.pdf
https://atlassolutionstwo.files.wordpress.com/2015/05/atlas_white_paper_people-based_marketing_may_2015.pdf

Vee, E., S. Vassilvitskii, and J. Shanmugasundaram (2010). Optimal online assignment with forecasts. In

Proceedings of the 11th ACM conference on Electronic commerce, pp. 109–118.

Warc (2015, August). Marketers rely on ‘broken’ cookies. Available online at: http://www.warc.com/

LatestNews/News/EmailNews.news?ID=35181.

Yang, J., E. Vee, S. Vassilvitskii, J. Tomlin, J. Shanmugasundaram, T. Anastasakos, and O. Kennedy (2010).

Inventory allocation for online graphical display advertising. arXiv preprint arXiv:1008.3551 .

42

http://www.warc.com/LatestNews/News/EmailNews.news?ID=35181
http://www.warc.com/LatestNews/News/EmailNews.news?ID=35181

A Table of Notation

Sets and Indices

k ∈ K Advertising campaigns.

i ∈ I User demographics, based on targeting attributes.

v ∈ V User visit-types, based on the minimal number of visits expected from the user (see: Lv).

p ∈ Pvi Patterns created for users of visit-type v and demographic i.

` ∈ {1, ..., Lv} Slots in the pattern (resp., number of visits made by a user of visit-type v).

T Targeting: (i, k) ∈ T implies user demographic i meets the targeting criteria of campaign k.

Γ̂(i) = {k | (i, k) ∈ T } Set of campaigns that target user demographic i.

Γ̂(k) = {i | (i, k) ∈ T } Set of user demographics that meet the targeting criteria of campaign k.

Γ(v,i) = {k | (i, k) ∈ T , fk ≤ Lv} Set of campaigns eligible for type-(v, i) user, i.e., demographic i

is targeted and the frequency fk is within the number of visits, Lv, anticipated from this user.

Γ(k) = {(v, i) | (i, k) ∈ T , Lv ≥ fk} Set of user types (v, i) targeted by campaign k and

anticipated (with high probability) to make more visits than the frequency requirement fk.

Parameters

d̂k Demand: Number of impressions desired by campaign k (impression-based contract).

rk Reach: Number of unique users desired to be reached by campaign k (R&F contract).

fk Frequency: Number of times a user must see campaign k’s ad to be counted as reached.

ck(ĉk) Cost per unit of under-delivery for campaign k measured in users (impressions).

wk(ŵk) Penalty weight for non-representativeness of campaign k measured in users (impressions).

ŝi Supply of impressions from users of demographic i.

svi Supply of unique users of demographic i with visit-type v.

Ŝk =
∑

i∈Γ(k) ŝi Total impression traffic eligible for campaign k.

Sk =
∑

(v,i)∈Γ(k) svi Total user traffic eligible for campaign k.

θ̂k = d̂k/Ŝk Ideal representative fraction of impressions i ∈ Γ(k) for campaign k.

θk = rk/Sk Ideal representative fraction of users (v, i) ∈ Γ(k) for campaign k.

φ
(`)
v Probability that a type-v user will make exactly ` ∈ {1, ..., L̄v} visits.

Φv(`) =
∑`

`′=0 φ
(`′)
v is the CDF of φ

(`)
v .

Lv = Φ−1
v (ε) (integer): Appropriate pattern length for a user with visit-type v. Any user of

visit-type v visits at least Lv times and sees the entire pattern with a high probability 1− ε.
We also refer to Lv as the anticipated number of visits from a user with visit-type v.

bkp (binary): 1 if fk impressions of campaign k are included in pattern p, and 0 otherwise.

We use b to denote the entire decision vector
(
bk
)
k∈Γ(v,i)

in a sub-problem (v, i).

πvip Unit cost of using pattern p ∈ Pvi (captures poor pacing, lack of diversity, and/or excess).

This is measured using a function π(b) described in Appendix B.

δvi Proportion of type-(v, i) impressions usable when serving with patterns (after trim loss).

δmin
vi and δmax

vi give a priori lower- and upper-bounds on the value of δvi.

The values of the δvi parameters are tuned within our algorithm.

Decision Variables

Impression Allocation (IA)

x̂ik Proportion of impressions of demographic i allocated to campaign k.

ûk Under-delivery of campaign k (number of impressions assigned to k short of its demand d̂k).

Reach Allocation (RA)

xvik Proportion of users of type (v, i) to be reached by campaign k.

uk Under-delivery of campaign k (number of unique users assigned to k short of its reach target rk).

Pattern Assignment (PA)

yvip Number of users of type (v, i) served using pattern p ∈ Pvi.

Pattern Generation (PG)

bk (binary): 1 if we include (fk impressions of) campaign k in this pattern, and 0 otherwise.

Becomes the parameter bkp once the generated pattern is stored (with index p).

43

B Pattern Quality Metrics

In this section we elaborate on possible choices for the cost measure π(b) and their impact on the

complexity of solving the pattern generation problem (PG). For example, we can define π(b) to

produce patterns that: 1) are diverse, to expose the user to a large variety of ads; 2) have some

amount of excess, making the plan robust to uncertainty in the number of visits from each user, or

3) are well-paced, that is, if campaign k is included in the pattern, then its fk impressions should

be uniformly spread across the pattern’s Lv slots. Additionally, we show how to ensure campaigns

from competing brands do not appear in the same pattern.

1. Maximizing diversity

Diversity is measured as the number of campaigns in the pattern. The following linear cost measure

penalizes lack of diversity:

πdiversity(b) = −
∑

k∈Γ(v,i)

bk

As discussed in §5.3, (PG) is efficiently solvable when π(b) is linear.

2. Maximizing or minimizing excess

The following linear cost measure penalizes the slack of capacity constraint (5b), and thus the

amount of excess in the pattern:

πexcess(b) =

Lv − ∑
k∈Γ(v,i)

fkbk

 c̄vi

The parameter c̄vi captures the opportunity cost of replacing a more expensive guaranteed R&F

ad with a non-guaranteed ad for a user of type (v, i).

During Pattern-HCG’s pattern improvement phase, the total amount of excess at each supply

node (v, i) stays fixed at Lvsvi −
∑

k∈Γ(v,i) fksvix
∗
vik which is determined by the reach allocation

problem (RA-δ). However, optimizing the number of excess slots within patterns affects both the

number of unique patterns in each supply pool Pvi, as well as the number of times each pattern is

used. Specifically:

• Maximizing excess creates patterns that are less likely to waste impressions. Excess provides

a buffer that makes the pattern robust to uncertainty in the number of visits made by each

user. As well, although in expectation non-guaranteed ads have lower value than R&F, it could

happen that due to a particular user’s recent browsing behavior (e.g., shopping for a particular

item), this user’s impressions become very valuable in the non-guaranteed marketplace. To hedge

against such opportunities, the publisher may wish to reserve excess impressions for each user.

• Minimizing excess creates patterns that are better-packed with R&F campaigns. As a result, we

tend to use fewer patterns, i.e., pattern pools are smaller, reducing the memory load on the ad

44

server. As well, we need fewer unique users to deliver the reach allocation x∗vik, making the plan

more robust to uncertainty in the supply of unique users, svi.

So there are pros and cons to having excess and the choice of maximizing or minimizing excess

should depend on the solution structure desired by the publisher, and the stability of user traffic

and number of visits per user. We expect this to vary from one publisher to another. In both cases,

πexcess is a linear function of the decision variables bk and thus (PG) is efficiently solvable. That said,

we expect that a probabilistic model, such as the one we propose in Appendix D which explicitly

takes into account the randomness of user arrivals when generating patterns, would eliminate the

need for considering either minimization or maximization of excess as a pattern quality metric.

3. User-level pacing of ads

The existing research that explicitly considers smooth/uniform delivery of campaigns focuses on

the cumulative impressions received by each campaign in aggregate (Araman and Fridgeirsdottir

2010), budget depletion, or financial milestones (Besbes and Maglaras 2012) and is not at the

individual user level. We now discuss several approaches for measuring and optimizing the extent

to which impressions of a campaign are well-spread at individual user level. This is accomplished

by measuring and optimizing the spread of a campaign over the slots of a pattern. The function

πpacing(b) which penalizes deviations from a uniform spread, by itself involves solving an inner op-

timization problem to sequence the fk impressions of the campaigns in the pattern (i.e., campaigns

with bk = 1). This inner optimization problem has been studied in two streams of papers which

we now review. These two approaches differ based on how they define uniformity and how they

measure and penalize non-uniformity of the arrangement, which leads to differences in solution

structure and computational complexity. For convenience, we use our notation to describe their

models.

Kubiak and Sethi (1991) consider the optimal scheduling of a multi-product assembly line in

which each product k has a fixed known demand fk and is expected to be produced at a constant rate

fk/Lv throughout the production horizon Lv. Within the context of our problem, let zk` ∈ {0, 1}
be a decision variable that indicates whether an impression from campaign k ∈ Γ(v, i) is put in

pattern slot ` ∈ {1...Lv}, and let z̄k` =
∑`

`′=1 zk`′ be the cumulative number of times that campaign

k appears in the first ` slots. For the fk impressions of campaign k to be spread exactly uniformly

the across Lv slots, we need the cumulative count z̄k` to grow at a constant rate fk/Lv, i.e., by the

time we reach slot ` of the pattern, z̄k` should equal the target cumulative count T` = fk
Lv
`. Kubiak

and Sethi (1991) quadratically penalize the deviation between z̄k` and the target cumulative count

T`. For any fixed b, the following math program, with decision variables zk`, produces a maximally-

45

paced pattern by minimizing non-uniformity as measured by Kubiak and Sethi:

πpacing(b) = Minimize
∑

k∈Γ(v,i)

Lv∑
`=1

(∑̀
`′=1

zk`′ − bkT`

)2

(8a)

Lv∑
`=1

zk` = bkfk ∀k ∈ Γ(v, i) (8b)∑
k∈Γ(v,i)

zk` ≤ 1 ∀` = 1, ..., Lv (8c)

zk` ∈ {0, 1} (8d)

Constraint (8b) ensures we include exactly fk impressions of campaign k if campaign k is supposed

to be in the pattern (i.e., bk = 1), and zero impressions otherwise. Constraint (8c) ensures that

each slot in the pattern is occupied by at most one campaign. The target cumulative count T` in

the objective is multiplied by bk to ensure we only penalize non-uniform pacing for campaigns that

are in the pattern (when bk = 0, all zk`’s are zero thanks to constraint (8b)).

Kubiak and Sethi (1994) show that this quadratic program can be transformed in polynomial

time into an assignment problem, i.e., a weighted bipartite matching, with
∑

k∈Γ(v,i) fk supply

nodes and Lv demand nodes. Assignment problems are fundamental to combinatorial optimization

and network flow theory for which many efficient solution techniques are available, e.g., the best

implementation of the Hungarian Algorithms has O
(
L3
v

)
runtime (see Ahuja et al., 1993, Ch.12).

However, in our case, we are not interested in solving (8) in isolation but rather we wish to solve (8)

as an inner-optimization within (PG). Unfortunately, we cannot transform (8) into an assignment

problem when the b vector is also a decision variable. Instead, to integrate (8) into (PG), we use

(8a) as the objective and include the constraints (8b,c,d) in (PG). This adds O(Lv|Γ(v, i)|) binary

variables and O(Lv + |Γ(v, i)|) constraints to (PG). Using CPLEX, solving each instance of this

extended formulation, which is a quadratic mixed integer program, takes only a few seconds. This

is slower than solving a binary knapsack problem via dynamic programming (as we do when π(b)

is linear), but it is important to note that (PA) and (PG) are solved independently for each supply

node (v, i), and can be run in parallel across many machines. So, the additional runtime of (PG)

can be compensated for by using more parallel computing nodes. The runtime of a few seconds for

(PG) is within practical limits given that large publishers in industry have thousands of computing

nodes at their disposal.

One possible limitation to Kubiak’s model (8) is that the target cumulative curve for each and

every campaign, T` = fk
Lv
`, starts from time zero (i.e., the first slot in the pattern). One could

modify the model by introducing additional variables, Ik, which allow the math program to decide

from which slot the target cumulative curve starts, making the target curve T` =
(fk
Lv
` − Ik

)+
.

Alternatively, the publisher can fix the starting points Ik as parameters using historical exposure

time, to provide continuity of pacing from one planning period to the next. In either case, the

runtime of (PG) in extended form is not appreciably affected by these modifications. In fact, the

target cumulative count T` can be defined as any general function of ` to achieve any desired pacing

46

pattern. Another useful case is T` = fk
Lv
t`, where the parameter t` is the anticipated arrival time

of the user’s `th visit. If the approximate timing of user visits can be forecasted by the publisher,

then we can construct patterns that deliver ads uniformly across time, as opposed to across serving

opportunities.

A more recent, but more complex, model is due to Bollapragada et al. (2004) who consider the

problem of uniformly arranging TV advertisements across commercial breaks. They formalize the

problem as arranging fk balls of different colors, indexed by k, into Lv slots (
∑

k fk ≤ Lv) such

that balls of the same color are as evenly spaced as possible. In their model, the space between

any two consecutive balls of the same color k is expected to be Lv/fk. Any deviation from this

distance is penalized linearly in the objective. Let the binary variable zjk` model whether the jth

impression of campaign k is placed in slot ` of the pattern, and let Zjk =
∑Lv

`=1 `zjk` be the slot

number in which the jth impression of campaign k appears. Using Bollapragada’s model, our inner

optimization problem is defined as:

πpacing(b) = Minimize
∑
k

fk∑
jk=2

∣∣∣∣Zjk − Z(j−1)k −
Lv
fk
bk

∣∣∣∣ (9a)

fk∑
jk=1

Lv∑
`=1

zjk` = fkbk ∀k (9b)

∑
k

fk∑
jk=1

zjk` ≤ 1 ∀` = 1, ..., Lv (9c)

Zjk =

Lv∑
`=1

`zjk` ∀k, jk = 1, ..., fk (9d)

Zjk ≥ Z(j−1)k + 1 ∀k, jk = 2, ..., fk (9e)

zjk` ∈ {0, 1}, Zjk : Integers (9f)

Constraints (9b) and (9c) perform the same function as (8b) and (8c). Constraint (9d) establishes

the relationship between variables zjk` and Zjk , and constraint (9e) ensures that the jth impression

of campaign k is placed after the (j − 1)th impression. Bollapragada et al. (2004) show that this

problem can be cast as a minimum-cost network flow problem which is somewhat faster to solve than

the integer program (9), but not appreciably faster due to the exponential number of arcs in the

resulting network graph. The authors then develop a customized branch-and-bound algorithm and

propose many heuristics for obtaining good solutions in reasonable time. In a subsequent paper,

Brusco (2008) develops an enhanced branch-and-bound algorithm for (9) as well as a simulated

annealing heuristic that also handles more general Lp-norm penalty functions.

In the extended formulation of subproblem (PG) which incorporates Bollapragada’s (9a) as the

objective and (9b-f) as constraints, there are O(Lv
∑

k∈Γ(v,i) fk) additional binary variables and

O(Lv +
∑

k∈Γ(v,i) fk) additional constraints. From our experience, Bollapragada’s model results in

much slower (and less predictable) runtimes than Kubiak’s. Qualitatively speaking, the uniformity

of patterns produced by one model does not exhibit any obvious visual advantage over the other.

This suggests that for the goal of maximally pacing ads, one should prefer to extend (PG) using

47

(8) rather than (9).

4. Competing campaigns

Campaigns of competing brands may target similar user demographics, and such advertisers may

wish to stop their audience from being exposed to their competition’s ads. For any set of competing

campaigns C ⊆ K, the publisher can include a constraint of the form
∑

k∈C bk ≤ 1 in (PG) so at

most one of the competing campaigns is included in the pattern. Such constraints are well-known

in the integer programming literature as SOS1 constraints, for which effective methods are known

and embedded into integer programming solvers.

Final Remarks

One may also consider a weighted combination of multiple measures:

π(b) = λ1πpacing(b) + λ2πdiversity(b) + λ3πexcess(b).

Furthermore, to maintain linearity of π(b) which speeds up the solution time of (PG), the publisher

may exclude the pacing term from π(b) to maintain the knapsack structure of (PG), and instead

use one of the quick greedy heuristics proposed by Bollapragada et al. (2004) as a post-processing

step to rearrange the impressions within the generated patterns.

C Multiple Ad Positions and Two-dimensional Patterns

Throughout the paper we assume the publisher’s webpage has a single advertising position, where

an ad can be shown. Therefore, our patterns are designed to deliver a single ad impression upon

each user visit. In this section we discuss the changes to our model that apply when the publisher’s

page has multiple ad positions. This involves creating patterns that are two-dimensional. Each

column in the pattern holds the ads that are shown simultaneously to a user upon a single visit.

For instance, Figure 2 can be viewed as a 3× 8 pattern. On the first visit, campaign A is shown in

all three ad positions of the webpage; for the second visit, the user is shown campaign C in position

1, and campaign B in both positions 2 and 3; and so on.

Before we discuss how two-dimensional patterns can be constructed, we would like to point

out many practical cases in which one-dimensional patterns are still appropriate even when the

webpage has multiple ad positions. We use h = 1, ...,H to index the ad positions.

1. When ad positions are different and sold separately to advertisers: For example, each ad cam-

paign uses a specific size of graphic that is designed for a specific position on the page which the

advertiser has booked (e.g., the wide banner ad on the top, or the tall skyscraper ad on the right

side of the page). In this case, the publisher’s ad allocation problem decomposes by ad position.

The publisher needs to solve H separate problems and maintain a separate pattern pool Pvih

48

for each user type (v, i) and each ad position h. Upon a user’s first visit, s/he is assigned to H

patterns, independently sampled from the optimal solutions obtained for each ad position.

2. When advertisers do not strictly require the frequency to be delivered across separate user visits:

In this case, showing multiple instances of the same campaign in different ad positions upon

a single visit will count toward the frequency requirement. To model this case, we simply

create one-dimensional patterns of length HLv, and we use H impressions at a time, upon each

user visit. Note that if the pattern quality measure includes a pacing cost function (πpacing),

impressions of the same campaign will be well-spread throughout the pattern, making it unlikely

for the same ad to appear in multiple positions on the page (see Appendix B for a discussion of

how we implement πpacing). The pacing model of Bollapragada et al. (2004) will try to arrange a

campaign so that consecutive impressions are HLv/fk > H slots apart. In the pacing model of

Kubiak and Sethi (1991), as discussed in Appendix B, we can assign arrival times t` to pattern

slots such that the first H slots in the pattern are assigned t` = 1, the following H slots are

all assigned t` = 2, and so on. This will more significantly discourage multiple instances of the

same campaign from appearing in multiple ad positions on the page.

3. Newsfeed ads, video ads, and dynamic webpages: Many of modern webpages are designed in a

dynamic fashion so that the delineation of when a page loads, or when a user navigates from

one page to another is less clear. For instance, the banner ad in Yahoo Mail is reloaded with a

new ad every time the user scrolls down for at least 1 page through the email list. Similarly, ads

on Facebook (and many websites with native advertising) load within the news feed as the user

scrolls down the page. Video ads, which are the fastest growing segment of online advertising,

also demonstrate the same behavior. A sequence of video ads can be shown to the user during

a long movie (similar to commercial breaks on TV), or multiple banner ads can be overlaid on a

video clip at different points in time (common practice on YouTube). Finally, most ads served

through Google AdSense are automatically reloaded with new advertising every 20-30 seconds.

In all these cases, a one-dimensional pattern is appropriate for serving ads, especially since the

number of ads required is not known beforehand and depends on the amount of user interaction

(scrolling action or time spent on the page).

If none of the above conditions are met, we propose the use of two-dimensional patterns. The only

changes to our mathematical framework will be a division by H in the left-hand side of constraint

(3c), and a reformulation of (PG) so it constructs two-dimensional patterns. As before, assume the

pattern has length Lv with columns indexed by ` which correspond to the number of visits made

by a type-v user. The pattern also has a height H with rows indexed by h, which correspond to

the number of positions on the webpage. Upon the user’s `th visit, all H slots in the `th column

of the pattern appear in the corresponding H ad positions on the webpage, and therefore, are seen

by the user at the same time.

Let the binary variable bkh denote whether campaign k is included in row h of the pattern.

Note that bkh = 1 implies all fk impressions of k appear in ad position h on the webpage. However,

49

once a solution b∗kh is found, the publisher can shuffle the ads within the pattern column (i.e.,

across ad positions on the page) without affecting any of the pattern quality metrics discussed in

Appendix B. Sub-problem (PG) can be cast as:

Minimize π(b) −
∑

k∈Γ(v,i)

ᾱ∗vikbk (10a)

s.t.
∑

k∈Γ(v,i)

fkbkh ≤ Lv ∀h = 1, ...,H (10b)

bk ≡
H∑
h=1

bkh ≤ 1 ∀k ∈ Γ(v, i) (10c)

bkh ∈ {0, 1}, ∀k ∈ Γ(v, i), ∀h = 1, ...,H (10d)

Constraint (10b) is analogous to (5b) and ensures each row of the pattern is filled with at most

Lv impressions. As we discussed above, the publisher would only use two-dimensional patterns

when showing multiple impressions of the same ad upon a single visit does not count toward the

frequency requirement of the campaign. Constraint (10c) serves to ensure that a campaign is not

assigned to more than one ad position. It also implies that the campaign does not appear more

than once throughout the pattern.

It is straightforward to see how the cost functions from Appendix B can be adapted to two-

dimensional patterns. We would use πexcess(b) = (HLv−
∑

k fkbk)c̄vi. The diversity cost measure

πdiversity(b) stays unchanged, and the pacing cost function πpacing(b) decomposes into separate

inner-optimization problems for each row of the pattern (i.e., each ad position on the page).

If the cost function π(b) is linear in bk (as it is, when pattern quality is measured by excess

and/or diversity), then (10) becomes an instance of a binary multiple knapsack problem. This

problem is known to be NP-hard for which dynamic programming is no longer an efficient pseudo-

polynomial solution technique. Appropriate algorithms for multiple knapsack problems are dis-

cussed in Martello and Toth (1990, Ch.6).

D Modeling Random Arrivals

A core assumption in our methodology of serving ads using predefined patterns that span across time

is that each user visits the publisher’s website at least as many times as the number of slots in his/her

assigned pattern. Otherwise, the pattern will not be delivered completely and the campaigns which

do not hit their target frequency will not “reach” that user as planned in the optimization model.

We suggested earlier in §4 that the publisher may cluster users based on browsing behavior, such

that all users of the same visit-type v have the same probability distribution φv(·) for the number

of visits over the planning period. Recall that we defined pattern lengths as Lv = Φ−1
v (ε), where

1−ε was the desired minimum probability that the user of type v makes at least Lv visits and views

the whole pattern. However, this approach may be overly conservative and exclude a significant

portion of the publisher’s traffic from being used for R&F campaigns. For instance, if the number

of visits from a particular user type follows a Poisson distribution with rate parameter 30 (over the

50

planning horizon), we can only plan for 20 visits from the user if we aim for 95% assurance that

the user fully sees the pattern. Therefore, on average 10 visits (E[max(0, X − 20)] = 10.049 when

X ∼ Poiss(30)), i.e., 1/3 of the impression traffic from this user type is not considered for R&F

planning. In this section we develop a probabilistic pattern generation mechanism that explicitly

incorporates the visit frequency distribution of users. We follow with numerical experiments that

illustrate the significant improvement in the utilization of supply and reducing under-delivery when

our probabilistic model is employed. This comes at a price, however, since the pattern-generating

sub-problem becomes more complex and thus harder to solve.

Let φ
(`)
v denote the probability that a user of visit-type v makes exactly ` ∈ {1, . . . , L̄v} visits.

Parameter L̄v models the maximum number of visits ever expected from a type-v user and is greater

than the anticipated number of visits, Lv, which occurs with a high probability 1−ε. To prepare for

all possible number of visits from the user, we now consider designing patterns of the full length L̄v.

As before, we use the binary variables bk to denote whether campaign k is included in the pattern.

For each slot ` = {1, . . . , L̄v} in the pattern, let zk` ∈ {0, 1} denote whether the slot is occupied by

campaign k, and let z̄k` =
∑`

`′=1 zk`′ denote the cumulative number of times campaign k appears

in the first ` slots. Binary indicator variable Ik` measures whether or not all fk impressions of

campaign k are positioned in the first ` slots. That is, Ik` = 0 if z̄k` < fk and Ik` = 1 as soon as

z̄k` = fk.

Note that b̄kp =
∑L̄v

k=1 φ
(`)
v Ik` gives the probability that campaign k will reach its frequency

requirement fk on a type-v user, should s/he be assigned pattern p. For each campaign k, we have

a binomial process, where we make yvip trials (user assignments of the pattern), each having a

success (reach) probability of b̄kp. Thus,
∑

n b̄kpyvip gives the expected number of times that k is

reached within user class (v, i). The pattern assignment problem (PA) becomes:

(PA-R): Ψ
(R)
vi := Minimize

∑
p∈Pvi

πvipyvip Duals: (11a)

∑
p∈Pvi

b̄kpyvip = svix
∗
vik ∀k ∈ Γ(v, i) ᾱ

(R)
vik (free) (11b)

∑
p∈Pvi

yvip ≤ svi β̄
(R)
vi ≥ 0 (11c)

yvip ≥ 0 ∀p ∈ Pvi − (11d)

where the optimal reach proportions x∗vik from (RA-δ) are sought in expectation. The only change

from (PA) is the substitution of bkp from (4b) with b̄kp in (11b). The pattern generating subproblem

takes the following form:

51

(PG-R): ψ
(R)
vi := Maximize

∑
k∈Γ(v,i)

ᾱ
∗(R)
vik

(L̄v∑
k=1

φ(`)
v Ik`

)
︸ ︷︷ ︸

b̄k

− π(b) (12a)

∑
k∈Γ(v,i)

zk` ≤ 1 ` = 1, ..., L̄v (12b)

L̄v∑
`=1

zk` = fkbk ∀k ∈ Γ(v, i) (12c)

k∑
`′=1

zk`′ ≤ fk − 1 + Ik` ∀k ∈ Γ(v, i), ` = 1, ..., L̄v (12d)

k∑
`′=1

zk`′ ≥ fkIk` ∀k ∈ Γ(v, i), ` = 1, ..., L̄v (12e)

bk, zk`, Ik` ∈ {0, 1} (12f)

The first set of constraints (12b) ensure that at most one campaign occupies each slot. The second

set of constraints (12c) require each campaign k to appear exactly fk times throughout the pattern

if we choose to include k in the pattern (bk = 1), and zero otherwise (if bk = 0). The left-hand

side in (12d) and (12e) are the cumulative impression counts z̄k`. Constraints (12d) enforce Ik` = 1

when z̄k` = fk, whereas constraints (12e) enforce Ik` = 0 if z̄k` < fk. The above binary program

has O(L̄v|Γ(v, i)|) variables and constraints. As soon as ψ
∗(R)
vi + β̄

∗(R)
vi ≥ 0, the optimal solution to

(PA-R) has been found. Otherwise, we add the pattern constructed by (PG-R) to Pvi with reach

probability parameters b̄kp =
∑L̄v

k=1 φ
(`)
v Ik` and re-solve (PA-R) to obtain new dual values ᾱ

∗(R)
vik

and β̄
∗(R)
vi . Again, for possible functional choices for π(b), we refer the reader to Appendix B.

When no pattern quality measure is used, or during feasibility phase of Pattern-HCG when

π(b) is non-existent, it is easy to show that the optimal solution always places all fk impressions of

each campaign in successive slots. This is due to the fact that every deviation from such structure

will only decrease the chance of (at least) one campaign from being fully observed by the user, b̄k,

and therefore worsens the objective value (12a).

Computational Experiments:

In this section, we examine how efficiently the random supply of impressions (coming from a

random number of arrivals per user) can be allocated using our probabilistic model, compared to

our deterministic model of §5, and how this affects under-delivery and non-representativeness.

For efficiently solving the binary integer subproblem (PA-R), we used CPLEX 12.6 API for

Matlab R© and due to compatibility issues we could no longer take advantage of parallelization

and so conducting the test on Yahoo data was impractical. Instead, we created a small synthetic

graph with roughly 500 supply nodes and 30 demand nodes. In each supply node, we assumed

three user visit-types V = {low,med,high} whose number of visits follows a Poisson distribution

52

Visiting Rates Random Arrival Deterministic Pattern Under-delivery Non-representat.

(Poisson) Pattern Lengths Finish Probability (1− ε) Det. Rand. Det. Rand.

λ = {8.7, 18, 27} L̄ = {20, 35, 45} 25% 0.255 0.085 245.9 305.1

λ = {11, 21, 31} L̄ = {25, 40, 50} 50% 0.174 0.043 259.6 189.8

λ = {14, 25, 36} L̄ = {30, 45, 55} 80% 0.138 0.034 271.8 125.4

λ = {16, 28, 39} L̄ = {35, 45, 60} 90% 0.123 0.032 266.8 116.3

λ = {17, 30, 41} L̄ = {35, 50, 65} 95% 0.113 0.030 276.2 111.9

Table 1: Test cases and results under random arrival scenario. Deterministic pattern lengths are set to
L = {10, 20, 30} in all cases.

at different rates, specified by the vector λ = {λlow, λmed, λhigh}. Deterministic pattern lengths,

L = {Llow, Lmed, Lhigh}, employed by our model are fixed at {10, 20, 30} and we vary the arrival

rate parameters λv so that the probability of each type-v user visiting at least Lv times is set close

to a desired threshold (see the third column in Table 1). For example, Poisson random variables

with mean parameters λ = {8.7, 18, 27} all have about a 25% chance of exceeding {10, 20, 30},
respectively. The pattern lengths for the random arrival model, L̄v (second column in Table 1) are

chosen to cover at least 99% of the support of the corresponding Poisson distribution (e.g., looking

at the first row in Table 1, Poisson random variables with rates λ = {8.7, 18, 27} have only a 0.001

chance of exceeding L̄ = {20, 35, 45}, respectively).

We specifically generated our synthetic instance such that the supply of users is enough to

satisfy the reach requirements from all campaigns. Therefore, the only factor that may cause

under-delivery is whether or not users make enough visits for the frequency requirements to be

met. The quality of the solution depends highly on how well the fk impressions of each campaign

are arranged into the slots of a pattern so it is robust to truncation. Our probabilistic model

explicitly takes into account the user visit distribution φv(·) when constructing patterns. For our

comparison to be conservative, in our deterministic solution of §5, we moved all excess impressions

to the end of every pattern, and positioned all impressions of the same campaign sequentially. The

orders of different campaigns in the patterns were selected purely at random.

Our experiments, shown in Table 1, demonstrate a significant improvement in performance

when our probabilistic model is employed. Note that the random arrival model also provides a

structural advantage over the deterministic model: Since pattern lengths L̄v are higher than that

of Lv, campaigns with high fk may fit into L̄v but not Lv for low-visiting types v. Therefore, the

connectivity of each supply node |Γ(v, i)| is larger in the probabilistic model. Note that when users

of all visit types are expected to complete Lv visits with 95% chance (last row in Table 1), we

observe almost no under-delivery (3%) using our probabilistic solution, whereas the deterministic

solution yields 11% under-delivery due to under-utilizing the (quite ample) impression supply. Note

that in this case, for low-visiting users with average visit frequency of λlow = 17, our deterministic

and probabilistic models use pattern lengths of Llow = 10 (too low) and L̄low = 35, respectively.

53

E Monolithic Formulation of the R&F Planning Problem

In §5, we enumerated a number of practical issues with our earlier model presented in the conference

paper Hojjat et al. (2014). In this section we elaborate on some of those deficiences, in particular

the inability of our model from Hojjat et al. (2014) to uniquely characterize the primal solution as

a function of the dual solution. For convenient reference, we present our earlier model using the

notation in this manuscript, and derive some additional properties of that model which were not

discussed previously. The following math program, translated from Hojjat et al. (2014), combines

reach allocation and pattern assignment into a single “monolithic” component, and has decision

variables xvik, uk, and yvip:

Minimize
∑
k

∑
(v,i)∈Γ(k)

sviwk
2θk

(xvik − θk)
2

+
∑
k

ckuk +
∑
v,i

∑
p∈Pvi

πvipyvip (13a)

s.t. xvik =
1

svi

∑
p∈Pvi

bkpyvip ∀v, i, k ∈ Γ(v, i) (13b)

∑
(v,i)∈Γ(k)

svixvik + uk ≥ rk ∀k (13c)

∑
k∈Γ(v,i)

fk
Lv
xvik ≤ 1 ∀v, i (13d)

∑
p∈Pvi

yvip ≤ svi ∀v, i (13e)

0 ≤ xvik ≤ 1 (13f)

yvip ≥ 0, uk ≥ 0 (13g)

The solution assigns a xvik-fraction of the users of type (v, i) to campaign k, falls short of campaign

k’s reach target by uk users, and assigns pattern p to users of type (v, i) exactly yvip times. The

objective combines both aggregate and disaggregate quality metrics into one composite function.

The first two terms reflect the aggregate quality metric used within this paper, i.e., by minimizing

non-representativeness and under-delivery. The third term reflects disaggregate quality, i.e., by

minimizing the total cost of selected patterns. As in this paper, wk is the weight given to the non-

representativeness term which quadratically penalizes deviations from the perfectly-representative

solution, i.e., one that assigns campaign k a θk = rk/
∑

(v,i)∈Γ(k) svi proportion of (v, i)-users.

Under-delivery uk is penalized at the marginal cost ck, and pattern p has cost πvip when assigned

to a user of type (v, i).

Constraint (13b) links the reach allocation variable xvik to the pattern assignment variables yvip,

and can be viewed as a summary statistic of pattern assignment that indicates what proportion

of type-(v, i) users are reached by campaign k. Note that the parameter bkp is 1 if campaign k

is in pattern p, and 0 otherwise. Constraints (13c) and (13d) are supply and demand constraints

from (RA). Constraint (13e) ensures that the total number of patterns assigned to (v, i)-users

does not exceed the number of unique users available (recall each user is assigned a single pattern).

Constraints (13f) and (13g) provide bounds on the variables. Although xvik represents a proportion,

as we argued in §5.1, we do not need constraints of the form
∑

k∈Γ(v,i) xvik ≤ 1 because a user can

54

be reached by more than one campaign as long as the pattern length Lv is sufficiently large.

We now show that a number of structural properties hold, which allows us to simplify the above

formulation. We begin by pointing out that the upper bound in constraint (13f) is redundant. To

see this, note that for any given user type (v, i) we have:

xvik =
1

svi

∑
p∈Pvi

bkpyvip ≤
1

svi

∑
p∈Pvi

yvip ≤ 1.

The first equality follows by definition of constraint (13b). The next inequality follows since each

bkp value is at most 1. Finally, the last inequality follows from constraint (13e).

Next, we show that the user-based supply constraint (13e) is always tighter than the impression-

based supply constraint (13d). In other words, (13d) is dominated by (13e), making (13d) redun-

dant. To see this, note that for any given user type (v, i) we have:

∑
k∈Γ(v,i)

fk
Lv
xvik =

∑
k∈Γ(v,i)

fk
Lv

 1

svi

∑
p∈Pvi

bkpyvip

 =
1

svi

∑
p∈Pvi

(∑
k∈Γ(v,i) fkbkp

Lv

)
yvip ≤

1

svi

∑
p∈Pvi

yvip ≤ 1.

The first equality follows by definition of constraint (13b). The second equality is a simple

rearrangement of terms. The next inequality is due to fact that a pattern assigned to a type-

(v, i) user has Lv slots, and since reaching each campaign k occupies fk slots,
∑

k∈Γ(v,i) fkbkp ≤ Lv
must always hold for any pattern p ∈ Pvi. The last inequality follows from constraint (13e).

Finally, after dropping the redundant constraints (13d) and (13f) and eliminating xvik by

substitution using constraint (13b), we can represent the monolithic formulation of Hojjat et al.

(2014) in the following simplified form:

(FP): Minimize
∑
k

∑
(v,i)∈Γ(k)

sviwk
2θk

 ∑
p∈Pvi

bkp
svi

yvip − θk

2

+
∑
k

ckuk +
∑
v,i

∑
p∈Pvi

πvipyvip Duals(All ≥ 0)

∑
(v,i)∈Γ(k)

∑
p∈Pvi

bkpyvip + uk ≥ rk ∀k αk

∑
p∈Pvi

yvip ≤ svi ∀v, i βvi

yvip ≥ 0, uk ≥ 0 γvip, ϕk

The Lagrangean of problem (FP) is:

L =
∑
k

∑
(v,i)∈Γ(k)

sviwk
2θk

 ∑
p∈Pvi

bkp
svi

yvip − θk

2

+
∑
k

ckuk +
∑
v,i

∑
p∈Pvi

πvipyvip

+
∑
k

αk

rk − ∑
(v,i)∈Γ(k)

∑
p∈Pvi

bkpyvip − uk

+
∑
v,i

βvi

 ∑
p∈Pvi

yvip − svi

−∑
v,i

∑
p∈Pvi

γvipyvip −
∑
k

ϕkuk

55

The stationarity condition ∂L
∂yvip

= 0 yields the reduced cost function for the variable yvip:

γvip =
∑

k∈Γ(v,i)

 wk
θksvi

∑
p′∈Pvi

bkp′yvip′ − wk − αk

 bkp + πvip + βvi. (14)

An immediate and important observation is that the stationarity condition does not establish a

mapping from the dual variables αk and βvi to a unique solution for the primal variable yvip; i.e.,

we cannot rearrange (14) in a way that isolates yvip as a function of αk and βvi. In contrast,

Theorem 1 shows that such a mapping from the dual variables to a unique primal solution exists

for this paper’s (RA-δ) formulation. Consequently, the Modified SHALE method, which we use to

efficiently solve (RA-δ) in a parallelized manner, cannot be applied to (FP). Moreover, even after

making the substitution xvik = 1
svi

∑
p∈Pvi

bkpyvip to recover the reach allocation using constraint

(13b), the reduced cost function (14) simplifies to

γvip =
∑

k∈Γ(v,i)

(
wk
θk
xvik − wk − αk

)
bkp + πvip + βvi,

which still does not admit a mapping from the dual variables αk and βvi to a unique solution

for the primal variable xvik. Consequently, even if we could solve (FP) efficiently, its solution is

not generalizable in the way that the solution to (RA-δ) is. These structural limitations greatly

diminish the attractiveness of solving (FP) using column generation in practice.

For completeness, we conclude this section by deriving the pattern generating problem corre-

sponding to (FP), and describe how column generation can in theory be used to solve (FP). At a

high level, the idea is to start with a small pool of patterns, solve (FP), and then use the current

optimal primal/dual solution as feedback to construct new patterns which can improve the current

solution. We then add these improving patterns to our pattern pools Pvi and solve (FP) again,

repeating this procedure until no improving pattern can be constructed.

Given a primal/dual solution {y∗vip, α∗k, β∗vi} to (FP), the following pattern generating problem

finds a pattern with minimum reduced cost:

(FPS) ψvi := Minimize π(b) +
∑

k∈Γ(v,i)

 wk
θksvi

∑
p∈Pvi

bkpy
∗
vip − wk − α∗k

 bk

s.t.
∑

k∈Γ(v,i)

fkbk ≤ Lv

bk ∈ {0, 1}, ∀k ∈ Γ(v, i)

The variables here are bk, not to be confused with the parameters bkp which remain constant. We

use b = {bk : k ∈ Γ(v, i)} to denote the vector of all decision variables. Recall that several pattern

cost functions π(b) were introduced in Appendix B.

If ψ∗vi + β∗vi < 0 for any supply node (v, i), it is beneficial to add the new pattern p′ to Pvi with

bkp′ = b∗k and πvip′ = π(b∗), and the solution to (FP) will be improved. On the other hand, if

56

ψ∗vi + β∗vi ≥ 0 for all (v, i), the solution to (FP) is optimal. To initialize the pattern pools Pvi, one

can initially solve (FPS) with αk = βvi = yvip = 0, which is primal/dual feasible.

The column generation scheme which alternates between solving (FP) and (FPS) is quite slow.

Due to a lack of generalizability, we cannot use the efficient SHALE algorithm to solve (FP), which

needs to be solved multiple times. Moreover, the pattern cost π(b) is always a part of the objectives

of (FPS) and (FP). Although (FPS) parallelizes by supply node (v, i), solving (FPS) can still be

computationally expensive when π(b) is nonlinear in the bk variables, e.g., when π(b) measures

user-level pacing (see Appendix B). In contrast, our Pattern-HCG algorithm has a feasibility phase

followed by a pattern improvement phase. During the feasibility phase, we iterate between solving

(RA-δ) efficiently using Modified-SHALE and generating and assigning patterns using (PG-F) and

(PA-F). Not only do (PG-F) and (PA-F) parallelize by (v, i), but (PG-F) is a binary knapsack

problem that is independent of π(b) and is very quick to solve. Finally, during the pattern-

improvement phase, we no longer need to solve (RA-δ), and pattern assignment (PA) and generation

(PG), which now involve the π(b) metric, converge quickly since they are both parallelized by supply

node (v, i) and do not need to interact with the variables from (RA-δ). In summary, for a number of

structural reasons, Pattern-HCG is much more efficient than the standard implementation of column

generation applied to the monolithic formulation presented in this section. In essence, because

pattern generation and pattern assignment components must alternate in a column generation

scheme, and reach allocation and pattern assignment are merged together into one component in

(FP), the pattern assignment step is bogged down by needing to be re-solved with the large math

program that constitutes the reach allocation. Our Pattern-HCG decouples reach allocation from

pattern assignment, allowing each of these components to be solved efficiently.

F Proof of Theorem 1 (Generalizability of RA-δ)

Theorem. The optimal primal and dual solutions of (RA-δ) satisfy the following relationships:

1. The optimal primal solution x∗vik can be computed from the optimal dual solution {α∗k, β∗vi}, and

is given by: x∗vik = gvik(α
∗
k, β
∗
vi) ≡ min

[
1,max

[
0, θk + θk

wk

(
α∗k −

fk
Lv
β∗vi
)]]

.

2. For each campaign k, we have α∗k ∈ [0, ck]. Furthermore, either α∗k = ck, or the demand

constraint binds with no under-delivery, i.e.,
∑

(v,i)∈Γ(k) svix
∗
vik = rk. The optimal solution

never over-delivers a campaign.

3. For each supply node (v, i), we have β∗vi ∈
[
0, maxk∈Γ(v,i)

wk+α∗k
fk

Lv

]
. Furthermore, either β∗vi = 0

or the supply constraint binds, i.e.,
∑

k∈Γ(v,i)
fk
Lv
x∗vik = δvi.

4. The optimal solution to (RA-δ) is unique.

Proof. We use the Karush-Kuhn-Tucker conditions to derive the results. Without loss of generality,

we assume δvi > 0 for all supply nodes (v, i); if δvi = 0 we simply delete supply node (v, i), which

would have an effective supply of 0, as a preprocessing step. The full Lagrangian of (RA-δ) is given

57

by:

L(x, u;α, β, γ, ϕ) =
∑
k

∑
(v,i)∈Γ(k)

sviwk
2θk

(xvik − θk)
2

+
∑
k

ckuk +
∑
k

αk

(
rk −

∑
(v,i)∈Γ(k)

svixvik − uk
)

+
∑
v,i

βvisvi

(∑
k∈Γ(v,i)

fk
Lv
xvik − δvi

)
+
∑
v,i

∑
k∈Γ(v,i)

(
(γUvik − γLvik)xvik − γUvik

)
−
∑
k

ϕkuk

=
∑
v,i

∑
k∈Γ(v,i)

(
sviwk
2θk

(xvik − θk)
2 −

(
sviαk −

fk
Lv
sviβvi + γLvik − γUvik

)
xvik − γUvik

)

+
∑
k

(
(ck − αk − ϕk)uk + rkαk

)
−
∑
v,i

sviδviβvi.

Dual Feasiblity:

• αk, βvi, γUvik, γLvik, ϕk ≥ 0.

Stationarity:

• (ST1): ∂L
∂xvik

= sviwk
θk

(xvik − θk) + svi
fk
Lv
βvi − sviαk + γUvik − γLvik = 0

→ x∗vik = θk + θk
wk

(
α∗k −

fk
Lv
β∗vi +

γL∗vik−γ
U∗
vik

svi

)
.

• (ST2): ∂L
∂uk

= ck − αk − ϕk = 0 → α∗k = ck − ϕ∗k.

Complementary Slackness:

• (CS1): Either γU∗vik = 0 or x∗vik = 1, and either γL∗vik = 0 or x∗vik = 0.

• (CS2): Either ϕ∗k = 0 or u∗k = 0.

• (CS3): Either α∗k = 0 or the demand constraint is binding:
∑

(v,i)∈Γ(k) svix
∗
vik + u∗k = rk.

• (CS4): Either β∗vi = 0 or the supply constraint is binding, i.e.,
∑

k∈Γ(v,i)
fk
Lv
x∗vik = δvi.

Proof of Part 1. Conditions (ST1) and (CS1) together imply that x∗vik = θk + θk
wk

(
α∗k −

fk
Lv
β∗vi
)

whenever this quantity falls within (0, 1), because the variable x∗vik is not at its lower or upper

bound and γL∗vik = γU∗vik = 0. If this quantity is negative, then γU∗vik = 0 and γL∗vik will be just

high enough to make x∗vik = 0. Similarly, if this quantity is greater than 1, then γL∗vik = 0 and

γU∗vik will be just high enough to reduce its value to exactly 1. Therefore: x∗vik ≡ gvik(α
∗
k, β
∗
vi) =

min
[
1,max

[
0, θk+ θk

wk

(
α∗k−

fk
Lv
β∗vi
)]]
≡ sat

[
0, 1, θk+ θk

wk

(
α∗k−

fk
Lv
β∗vi
)]

. The “sat” function notation

is common in optimal control theory.

Proof of Part 2. Condition (ST2) together with dual feasibility implies that α∗k ∈ [0, ck]. Under-

delivery can only occur when uk > 0 which by (CS2) requires ϕ∗k = 0, which from (ST2) implies

α∗k = ck. If 0 < α∗k < ck, then ϕ∗k > 0 per (ST2), and u∗k = 0 per (CS2), and from (CS3) we can

conclude that the demand constraint is binding with no under-delivery:
∑

(v,i)∈Γ(k) svix
∗
vik = rk.

For the case of α∗k = 0, we know from (CS2) that u∗k = 0 but (CS3) implies
∑

(v,i)∈Γ(k) svix
∗
vik ≥ rk

58

which suggests that the demand constraint may not be binding. However we can show that over-

delivery will never occur and the constraint is in fact binding at α∗k = 0. For that, we establish also

that
∑

(v,i)∈Γ(k) svix
∗
vik ≤ rk when α∗k = 0:

∑
(v,i)∈Γ(k)

svix
∗
vik =

∑
(v,i)∈Γ(k)

svigvik(0, β∗vi)

=
∑

(v,i)∈Γ(k)

svi min

[
1,max

[
0, θk

(
1− 1

wk

fk
Lv
β∗vi

)]]

≤
∑

(v,i)∈Γ(k)

svi max

[
0, θk

(
1− 1

wk

fk
Lv
β∗vi

)]

=
∑

(v,i)∈Γ(k)

sviθk max

[
0, 1− 1

wk

fk
Lv
β∗vi

]
≤

∑
(v,i)∈Γ(k)

sviθk = rk. (15)

The first inequality follows from the definition of min[·], and the second inequality is due to the fact

that max
[
0, 1− 1

wk

fk
Lv
β∗vi

]
is a quantity between 0 and 1. The last equality is due to the definition

of θk = rk/
∑

(v,i)∈Γ(k) svi. Note that in case of truncation θk = min
[
1, rk/

∑
(v,i)∈Γ(k) svi

]
, we still

have
∑

(v,i)∈Γ(k) sviθk ≤ rk which is the desired result.

Proof of Part 3. It is clear that x∗vik = gvik(α
∗
k, β
∗
vi) = 0 if β∗vi ≥

wk+α∗k
fk

Lv. Therefore, if

β∗vi ≥ maxk∈Γ(v,i)
wk+α∗k
fk

Lv (a strictly positive quantity), then
∑

k∈Γ(v,i)
fk
Lv
x∗vik = 0 < δvi, which

implies that the supply constraint does not bind and a strictly positive β∗vi value is invalid.

Therefore, it should always be that β∗vi ≤ maxk∈Γ(v,i)
wk+α∗k
fk

Lv. The second statement in part

3 is due to condition (CS4).

Proof of Part 4. We showed in part 2 of the theorem that over-delivery never occurs. Therefore,

we can eliminate uk variables from (RA-δ) by replacing uk = rk −
∑

(v,i)∈Γ(k)svixvik.

(RA-δ) ≡ Minimize
∑
k

∑
(v,i)∈Γ(k)

svi
2θk

wk (xvik − θk)
2

+
∑
k

ck
(
rk −

∑
(v,i)∈Γ(k)

svixvik
)

(16a)

s.t.
∑

(v,i)∈Γ(k)

svixvik ≤ rk ∀k (16b)

∑
k∈Γ(v,i)

fk
Lv
xvik ≤ δvi ∀v, i (16c)

0 ≤ xvik ≤ 1 ∀v, i, k ∈ Γ(v, i) (16d)

The constraint (16b) corresponds to uk ≥ 0. It is easy in this form to see that the objective function

is strictly convex: The Hessian matrix is diagonal with elements sviwk/θk > 0 which make it strictly

positive definite. The constraints are linear and therefore define a convex feasible set. A strictly

convex function has a unique global minimum over a convex set.

59

G Proof of Theorem 2 (Convergence and Optimality of Modified

SHALE)

Theorem. Given a vector of impression utilization factors δ, the Modified SHALE Algorithm

converges to the optimal dual solution for (RA-δ) as long as either (i) all αk values are initialized

to zero, or (ii) we initialize αk = α′k, ∀k ∈ K where α′ is the optimal dual solution to (RA-δ′) for

which δ′ ≥ δ componentwise.

Proof. We present the proof in two parts. First, we prove that the algorithm converges by showing

that, when initialized properly, the αk values strictly increase following each Step-2 update (unless

the value is maxed-out at ck). Since each αk is bounded above by ck, the algorithm must converge.

Second, we prove optimality by showing that the resulting solution satisfies all KKT conditions.

Since the problem (RA-δ) is convex, any solution that satisfies all KKT conditions must be optimal.

Following the convergence and optimality proof, we also discuss the optimality gap when the

algorithm is terminated early before full convergence.

Convergence:

Let αtk and βtvi denote the dual values computed in iteration t of SHALE, and let rk(αk,β) =∑
(v,i)∈Γ(k) svixvik =

∑
(v,i)∈Γ(k) svigvik(αk, βvi) denote the volume of satisfied demand (reach) for

campaign k given the current dual vectors αt and βt in iteration t. Therefore, rk(α
t−1
k ,βt) gives

the satisfied demand following the β updates in Step-1 of iteration t, and rk(α
t
k,β

t) shows this

quantity following the α updates in Step-2. We have:

∣∣∣rk(αtk,β
t)− rk(αt−1

k ,βt)
∣∣∣ =

∣∣∣∣∣ ∑
(v,i)∈Γ(k)

svigvik(αtk, β
t
vi)− svigvik(αtk, β

t
vi)

∣∣∣∣∣
≤

∑
(v,i)∈Γ(k)

svi

∣∣∣∣∣gvik(αtk, β
t
vi)− gvik(αtk, β

t
vi)

∣∣∣∣∣
=

∑
(v,i)∈Γ(k)

svi

∣∣∣∣∣ sat
[
0, 1, θk +

θk
wk

(
αtk −

fk
Lv
βtvi

)]
− sat

[
0, 1, θk +

θk
wk

(
αt−1
k − fk

Lv
βtvi

)]∣∣∣∣∣
≤

∑
(v,i)∈Γ(k)

svi

∣∣∣∣∣ θkwk
(
αtk − αt−1

k

)∣∣∣∣∣
=

rk
wk

∣∣∣αtk − αt−1
k

∣∣∣ (17)

where the first inequality is due to the triangle inequality, and the second inequality follows from the

fact that for any two numbers a and b,
∣∣min

[
1,max[0, a]

]
−min

[
1,max[0, b]

]∣∣ ≤ |a− b|. (Equality

occurs when both a and b are within [0, 1], and in all other cases the length of interval [a, b] is being

truncated by the min[1,max[0, ·]] operation, either from above (at 1) or below (at 0), or both). The

last equality follows from the definition of θk = rk/
∑

(v,i)∈Γ(k) svi.

Condition 1 (Sufficient Condition for Convergence): There exists an iteration t0, such that

60

following the Step-1 (β updates) we observe rk(α
t0−1
k ,βt0) ≤ rk for all k ∈ K. That is, no campaign

is over-delivered.

In the Step-2 (α updates) we either set αtk = ck (the value of αk is maxed-out and campaign k will

face under-delivery), or whenever possible, we set αtk such that rk(α
t
k,β

t) = rk. In the latter case,

if Condition 1 holds at iteration t0, then (17) suggests:

rk(α
t
k,β

t)− rk(αt−1
k ,βt) = rk − rk(αt−1

k ,βt) ≤ rk
wk

(αt0k − α
t0−1
k)

⇒ αt0k ≥ αt0−1
k + wk

(
1−

rk(αt0−1
k ,βt0)

rk

)
≥ αt0−1

k (18)

That is, no αk value will decrease in the Step-2 update, when Condition 1 holds. Note that every

gvik(·) term and therefore rk(·) is non-decreasing in αk. Therefore, αtk ≥ α
t−1
k implies rk(α

t
k,β

t) ≥
rk(α

t−1
k ,βt) and vice versa. Hence, we can remove the absolute values from both sides of (17) when

rk(α
t
k,β

t) = rk ≥ rk(αt−1
k ,βt) which is assumed to hold by Condition 1.

We now show that following the β update in Step-1 of iteration t0 + 1, Condition 1 will hold for

iteration t0 + 1 as well, proving that αk values will again strictly increase or max-out at ck in t0 + 1

and all subsequent iterations. Note that every gvik(·) term and therefore rk(·) is non-increasing in

β. At the beginning of Step-1 of iteration t0 + 1 one of the following could happen for each supply

node (v, i):

1. The supply constraint is binding:
∑

k∈Γ(v,i)
fk
Lv
gvik(α

t0
k , β

t0
vi) = δvi. This happens if no αk from

campaigns k ∈ Γ(v, i) that target (v, i) has been changed in the past iteration. In this case, no

update to βvi value is necessary: βt0+1
vi = βtvi ≥ 0.

2. The supply constraint is non-binding and not violated:
∑

k∈Γ(v,i)
fk
Lv
gvik(α

t0
k , β

t0
vi) < δvi. We

know from (18) that all αt0k ≥ α
t0−1
k and that gvik(·) is non-decreasing in αk. Therefore, it must

have been that
∑

k∈Γ(v,i)
fk
Lv
gvik(α

t0−1
k , βt0vi) < δvi, i.e., the supply constraint was not binding

following the Step-1 update of iteration t0 and βt0vi = 0. To make the supply constraint bind, we

need to decrease the βvi value even further, which is not possible since negative values are not

allowed for βvi. Therefore, the βvi value remains at zero with no change: βt0+1
vi = βt0vi = 0, and

the supply constraint remains non-binding.

3. The supply constraint is violated:
∑

k∈Γ(v,i)
fk
Lv
gvik(α

t0
k , β

t0
vi) > δvi. This is the most likely

situation for any supply constraint that was binding after Step-1 in iteration t0. In this

case, we can always increase βvi as much as necessary to decrease the left-hand side until∑
k∈Γ(v,i)

fk
Lv
gvik(α

t0
k , β

t0+1
vi) = δvi. In this case we will have βt0+1

vi > βt0vi . We should point

out that the upper-bound for βvi suggested in Part 3 of Theorem 1 is the threshold beyond

which the left-hand side of the supply constraint (v, i) becomes zero, which ensures feasibility

for any δvi > 0. Therefore, it is not restrictive and is only deduced to eliminate uninfluential βvi

values from the search space.

61

Overall, we observe that no βvi value will decrease in the Step-1 update. Therefore:

rk(αt0k ,β
t0+1) =

∑
(v,i)∈Γ(k)

svigvik(αt0k , β
t0+1
vi) ≤

∑
(v,i)∈Γ(k)

svigvik(αt0k , β
t0
vi) = rk(αt0k ,β

t0) ≤ rk (19)

which is the Condition 1 for Iteration t0 + 1. This implies that all αt0+1
k ≥ αt0k in Step-2 of iteration

t0 +1, per (18), and therefore all α and β values will monotonically increase in all iterations t ≥ t0,

and Condition 1 will be maintained throughout. Since αk is bounded above by ck, the algorithm

must converge.

In summary, Condition 1 requires that no campaign is over-delivered. Then in each αk update,

we seek to eliminate under-delivery for each campaign k by increasing αk as much as possible (and

αk maxed-out at ck implies we could not fully eliminate under-delivery and uk > 0). As a result of

increasing αk value, we increase xvik for all (v, i) ∈ Γ(k) which may consequently violate the supply

constraint for some of those viewer types. In the subsequent βvi update, we increase βvi (decrease

xvik for all k ∈ Γ(v, i)) to recover supply feasibility at those nodes. If the supply constraint has

leftover excess and βvi > 0 (obviously violating complementary slackness), instead, we decrease

βvi (increase xvik for all k ∈ Γ(v, i)) as much as possible (considering non-negativity) and try to

allocate as much supply as available. We showed that once Condition 1 holds, and at least one

round of β updates has been performed to correct complementary slackness, then we never need

to decrease βvi values as they will continue to take their lower-bound of 0 when the corresponding

supply constraint non-binding.

Initialization (Satisfying Condition 1):

Now we show that with proper initialization of αk values, we can make Condition 1 hold from

the first iteration. This is trivial when all α0
k = 0. The maximum rk(α

0
k,β

1) is attained when all

β1
vi = 0, therefore rk(α

0
k,β

1) ≤
∑

(v,i)∈Γ(k) svigvik(0, 0) =
∑

(v,i)∈Γ(k) sviθk = rk. The original proof

of convergence for the SHALE algorithm, provided in Bharadwaj et al. (2012), only explores the

initialization of α0
k = 0, which is assuming the worst case values for βvi, i.e., when they are all set

to zero.

In our framework, we claim that to solve (RA-δ) following an adjustment (reduction) in δvi

values, we can initialize our modified SHALE algorithm using the current optimal α values prior

to adjustment. To see this, assume that the current optimal dual solution to (RA-δ′) is α∗k(δ
′)

and β∗vi(δ
′). Clearly, rk(α

∗
k(δ
′),β∗(δ′)) ≤ rk (see (15) in Appendix F that shows over-delivery

never occurs in the optimal solution). Assume we need to solve a new instance (RA-δ) in which

δvi ≤ δ′vi for all (v, i). Initializing α0
k = α∗k(δ

′), note that if at any node (v, i) we happen to have∑
k∈Γ(v,i)

fk
Lv
gvik(α

0
k, β
∗
vi(δ

′)) ≤ δvi ≤ δ′vi, then we naturally obtain β1
vi = β∗vi(δ

′). In the case of∑
k∈Γ(v,i)

fk
Lv
gvik(α

0
k, β
∗
vi(δ

′)) > δvi we need to increase the βvi value to decrease the left-hand side

until the constraint binds:
∑

k∈Γ(v,i)
fk
Lv
gvik(α

0
k, β

1
vi) = δvi. In this case, we have β1

vi > β∗vi(δ).

Overall, we can conclude that β1
vi ≥ β∗vi(δ) for every (v, i). From (19) we obtain that rk(α

0
k, β

1) ≤
rk(α

∗
k(δ), β

∗(δ)) ≤ rk which meets Condition 1 for iteration t0 = 1.

62

Optimality:

We now show that the solution obtained from Modified SHALE satisfies all KKT conditions for

the problem (RA-δ). Since (RA-δ) is a convex problem, the solution must be optimal.

Dual feasibility is always maintained by limiting the search space for αk and βvi to non-negative

values. The stationarity condition (ST1) for variable xvik together with complementary slackness

conditions (CS1) for the basic bounds 0 ≤ xvik ≤ 1 are also maintained in every step by the

virtue of setting xvik = gvik(αk, βvi). The stationarity condition (ST2) for slack variables uk, and

the complementary slackness conditions (CS2) for uk ≥ 0 and (CS3) for the demand constraint of

campaign k are all achieved following the αk update in Step-1 of the algorithm. The complementary

slackness condition (CS4) for the supply constraint for the viewer type (v, i) is achieved following

the βvi updates in Step-2 of the algorithm.

As a part of proving the convergence of the algorithm, we showed that no campaign will

experience over-delivery in any iteration subsequent to meeting Condition 1. We also showed

that the primal solution always satisfies the supply constraints after the Step-1 β updates. So,

after the α values converge, the final adjustment of β’s will ensure complete primal feasibility, dual

feasibility, complementary slackness, and stationarity.

Performance Gap:

The optimality bound, due to Bharadwaj et al. (2012), is based on the argument that for any t ≥ t0,

if for some k with αtk 6= ck we have rk(α
t−1
k , βt) ≤ (1 − ε)rk, then (18) implies αtk ≥ αt0−1

k + wkε.

That is, αk increases by at least wkε. If α0
k = 0, then at most ck/(wkε) of such adjustments will be

made on αk. This suggests that after a worst-case scenario of t ≥ |K| ·maxk{ck/(wkε)} iterations,

all campaigns for which αk is not maxed-out at ck (i.e., are chosen be delivered fully in the optimal

solution) should be delivered within an ε-fraction of their rk.

H Geometric Illustration of δ Updates

In the essence, our δ updates during the feasibility phase of Pattern-HCG try to ensure the

feasibility of all user-supply constraints (4c) in (PA) by appropriately adjusting the impression-

supply constraints (3c) in the aggregate planning problem (RA-δ). In this section we provide a

geometric comparison of these two types of constraints, show how we can easily calculate a lower-

and upper-bound for each δvi, and point out the possibility of more advanced updating rules than

(7) which could improve the performance of Pattern-HCG.

In solving (PA) we take the approach of relaxing the user-supply constraint (4c) so a feasible

solution is guaranteed and easy to construct to initialize our column generation procedure. However,

note that the constraint set (4b) together with the impression-supply constraints (3c) from (RA-δ),

63

imply:

∑
k∈Γ(v,i)

fk
Lv
xvik =

∑
k∈Γ(v,i)

fk
Lv

(1

svi

∑
p∈Pvi

bkpyvip

)
=

1

svi

∑
p∈Pvi

(∑
k∈Γ(v,i) fkbkp

Lv

)
yvip

=
1

svi

∑
p∈Pvi

ρvipyvip ≤ δvi

where ρvip =
∑

k∈Γ(v,i) fkbkp/Lv is the utilization ratio of pattern p ∈ Pvi and is less than one (as

per (5b)). Figure 9 illustrates the implied constraint
∑

p∈Pvi
ρvipyvip ≤ sviδvi (red lines), against

the original symmetric constraint
∑

p∈Pvi
yvip ≤ svi (solid black line), for a particular supply node

with two possible patterns (we suppress the (v, i) subscripts for readability).

Let δmin
vi and δmax

vi respectively denote the minimum (non-empty) and maximum impression

utilization rates possible for supply node (v, i). Obviously, δmin
vi = mink∈Γ(v,i){fk}/Lv, i.e., the

pattern consisting of only the campaign with smallest fk; and δmax
vi can be determined by solving

a binary knapsack problem maxbk∈{0,1}{
∑

k∈Γ(v,i)
fk
Lv
bk :

∑
k∈Γ(v,i) fkbk ≤ Lv} which finds the best

packing of campaigns k ∈ Γ(v, i) possible over Lv slots. The parameter δvi which shows the achieved

average level of impression utilization in node (v, i) should therefore fall within the range [δmin
vi , δmax

vi].

The two red dashed lines on Figure 9(a) illustrate the implied constraint
∑

p∈Pvi
ρvipyvip ≤ sviδvi

when δvi is exactly at δmin
vi or δmax

vi .

In the absence of the user-supply constraint (4c), i.e., the solid black line, our approach is

to adjust the δvi values until the implied constraints
∑

p∈Pvi
ρvipyvip ≤ sviδvi push the optimal

solution of (PA) to satisfy
∑

p∈Pvi
yvip ≤ svi. Considering the slope differences between these two

types of constraints, Figure 9(b) shows that a certain portion of the feasible region (hatched in

blue) may be cut off. This may cause the solution produced by Pattern-HCG to be suboptimal

with respect to the primary aggregate quality objective. The degree of this suboptimality depends

on the relative values of ρvip across all nodes and cannot be characterized in closed form. Setting

δvi = δmin
vi at all nodes of (RA-δ) causes all (PA) problems to be feasible (i.e., the δ-adjusted

impression supply constraints dominate all user supply constraints) and the resulting solution

provides the worst-case suboptimality of our approach. To numerically assess this optimality gap,

we solved some instances using both Pattern-HCG as well as the monolithic formulation presented

in Appendix E. Since we were interested in assessing the optimality gap of the primary aggregate

quality objective, we ignored disaggregate pattern quality by setting π(b) = 0. Note that generally

speaking the monolithic formulation, which has a composite objective that sums together aggregate

and disaggregate pattern quality terms, solves a different problem than our R&F planning problem

which has both a primary aggregate quality objective and a subordinate disaggregate quality

objective. However, when π(b) = 0 the monolithic formulation directly maximizes aggregate

pattern quality, and thus can be used to find a solution to our R&F ad planning problem that

is optimal for the primary aggregate pattern quality objective. The monolithic formulation solves

the reach allocation and pattern assignment components simultaneously, whereas Pattern-HCG

solves them sequentially coupled with δ-updates which leads to sub-optimal solutions. However,

64

𝑦1

𝑦2

(𝑖𝑖) (𝑖)

𝑠

𝑠

𝑠 /𝜌1

𝑠 /𝜌2

(a) Dashed lines (i) and (ii) illustrate the
translated impression supply constraint if δ
is set to δmax and δmin, respectively. It is
never beneficial to set δ outside this range.

𝑦1

𝑦2

𝑠

𝑠

𝑠 /𝜌1

𝑠 /𝜌2

(b) Current optimal solution (star symbol),
the implied constraint following the δ update
(dashed red line), and the area which is cut
off from the feasible region (hatched).

Figure 9: Geometric illustration of user supply constraint (solid black line) vs. the translated impression
supply constraint adjusted by δ (red lines). The solid red line illustrates the case of δ = 1.

our numerical tests on realistic yet smaller instances that match our industry data suggest that

the solution produced by Pattern-HCG is only 1-3 percent suboptimal with respect to the primary

aggregate quality objective. Overall, we feel this is reasonable given the many advantages that our

hierarchical formulation has over the monolithic formulation, as described in §5 and Appendix E.

Moreover, we note that in §5.4 we adopted the simplest update rule for δ values, and that more

advanced update rules may tighten the optimality gap. For instance, we noticed if we update only

a fraction (and not all) of the δvi values at each iteration (especially, if chosen based on the smallest

βvi value, i.e., to have the least impact on the objective of (RA-δ)), the optimality gap can be

further reduced.

I Equivalence of the Scrap-minimizing and Roll-minimizing Cutting-

stock Problems

In this section we show that when over-production is not allowed, i.e., demand constraints are

expressed as equality, the cutting stock (pattern assignment) problem that minimizes scrap (excess)

is equivalent to one that minimizes the number of stock rolls (individual users) used. We used this

property in §5.4 to argue that our update rule for δ values is conservative.

Consider the classic cutting stock problem where a manufacturer has an infinite stock of metal

rolls (or rods) of fixed length L, and there is a demand rk for pieces of length fk < L. The

manufacturer may minimize scrap (pieces of roll that are not of usable length and must be scrapped)

by generating a number of cutting patterns, and determining the number of times to use (i.e., cut

stock from) each pattern. Using akp to denote the number of times piece k (of length fk) is cut

from a roll when pattern p is used, πp = L −
∑

k akpfk to denote the amount of scrap produced

from each roll cut using pattern p, and variables yp to denote how many rolls are cut using pattern

65

𝑝 = 1
𝑦1
∗ = 1 A B

𝑝 = 2
𝑦2
∗ = 1 A C

𝑝 = 3
𝑦3
∗ = 1 A D

(a) Waste-Minimizing Solution

𝑝 = 1
𝑦1
∗ = 1 A

𝑝 = 2
𝑦2
∗ = 1 B C D

(b) Roll-minimizing Solution

Figure 10: Comparison of optimal solutions to a cutting stock problem when demand constraints are
expressed as inequalities (i.e., over-production is allowed)

p, the pattern assignment math program is: min
{∑

p πpyp |
∑

p akpyp ≥ rk, yp ≥ 0
}

.

Substituting the definition of πp into the objective function, we get:

∑
p

πpyp =
∑
p

(
L−

∑
k

akpfk

)
yp =

∑
p

Lyp −
∑
p

(∑
k

fkakp

)
yp

≡ L

(∑
p

yp

)
−
∑
k

fk

(∑
p

akpyp − rk

)
(differs only by a constant,

∑
k fkrk)

Therefore, if the demand constraints are expressed as equality constraints and do not allow for

over-production (as is the case in our Pattern Assignment problem), the scrap-minimizing objective∑
p πpyp is equivalent to the objective that minimizes the number of raw rolls

∑
p yp (in our case,

the number of unique users) used, and vice versa.

However, when the demand constraints are written in inequality form (allowing demand to be

exceeded) the scrap-minimizing problem, as written above, may use more raw rolls to improve

the packing at the expense of over-producing some of the final goods. For example, consider four

products of lengths fA = 4, fB = fC = fD = 1 that each have a single unit of demand rk = 1.

With raw rolls of length L = 5, Figure 10 shows that the scrap-minimizing solution may use each

of the following three patterns {AB,AC,AD} once. Three rolls are used to achieve zero scrap,

but 2 units of product A are produced in excess of the amount demanded. In contrast, the roll-

minimizing solution may use each of the following two patterns {A,BCD} once, scrapping 3 units

of raw material, but only 2 rolls are used rather than 3 (Note that neither problem has a unique

solution; the solutions illustrated here are among the possible optimal solutions which we may get

following a column generation procedure).

Finally, we note that if the over-production of goods is undesired (e.g., cannot be sold), the scrap-

minimizing objective should be defined as
∑

p πpyp +
∑

k fk

(∑
p akpyp − rk

)
, which also counts

over-production as scrap. With this objective, the scrap-minimizing problem is again equivalent

to the roll-minimizing problem. Now, the roll-minimizing solution {A,BCD} which scraps 3 units

is cheaper than the solution {AB,AC,AD} which over-produces product A by 2 units and thus

creates 8 units of scrap.

66

	Introduction
	Literature Review
	The Ad Allocation Problem
	Problem Variants
	Model Overview
	Allocation of Impression-based Ad Campaigns
	Frequency Capping

	Serving Ads using Patterns
	Reach-and-Frequency Ad Allocation Using Greedily-Constructed Patterns

	Pattern-based Hierarchical Column Generation
	Reach Allocation
	Pattern Assignment
	Pattern Generation
	The Pattern-HCG Algorithm

	Computational Experiments
	DataWe intend to publish our dataset, e.g., through Yahoo Labs Webscope, so it is accessible to the operations research community for future developments and benchmarking. The process of clearing the release of the data is still ongoing at the time of this submission. The reported dataset and results are subject to anonymization and deliberately incomplete to not reflect the real portfolio of Yahoo at any particular time.
	Results

	Conclusions
	Table of Notation
	Pattern Quality Metrics
	Multiple Ad Positions and Two-dimensional Patterns
	Modeling Random Arrivals
	Monolithic Formulation of the R&F Planning Problem
	Proof of Theorem 1 (Generalizability of RA-)
	Proof of Theorem 2 (Convergence and Optimality of Modified SHALE)
	Geometric Illustration of Updates
	Equivalence of the Scrap-minimizing and Roll-minimizing Cutting-stock Problems

