
Lawrence Berkeley National Laboratory
LBL Publications

Title
Machine Learning Driven Sensitivity Analysis of E3SM Land Model Parameters for 
Wetland Methane Emissions

Permalink
https://escholarship.org/uc/item/8jn2t8vf

Journal
Journal of Advances in Modeling Earth Systems, 16(7)

ISSN
1942-2466

Authors
Chinta, Sandeep
Gao, Xiang
Zhu, Qing

Publication Date
2024-07-01

DOI
10.1029/2023ms004115

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8jn2t8vf
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Machine Learning Driven Sensitivity Analysis of E3SM
Land Model Parameters for Wetland Methane Emissions
Sandeep Chinta1 , Xiang Gao1 , and Qing Zhu2

1Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA, USA, 2Climate and
Ecosystem Sciences Division, Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract Methane (CH4) is globally the second most critical greenhouse gas after carbon dioxide,
contributing to 16%–25% of the observed atmospheric warming. Wetlands are the primary natural source of
methane emissions globally. However, wetland methane emission estimates from biogeochemistry models
contain considerable uncertainty. One of the main sources of this uncertainty arises from the numerous uncertain
model parameters within various physical, biological, and chemical processes that influence methane
production, oxidation, and transport. Sensitivity Analysis (SA) can help identify critical parameters for methane
emission and achieve reduced biases and uncertainties in future projections. This study performs SA for 19
selected parameters responsible for critical biogeochemical processes in the methane module of the Energy
Exascale Earth System Model (E3SM) land model (ELM). The impact of these parameters on various CH4

fluxes is examined at 14 FLUXNET‐ CH4 sites with diverse vegetation types. Given the extensive number of
model simulations needed for global variance‐based SA, we employ a machine learning (ML) algorithm to
emulate the complex behavior of ELM methane biogeochemistry. We found that parameters linked to CH4

production and diffusion generally present the highest sensitivities despite apparent seasonal variation.
Comparing simulated emissions from perturbed parameter sets against FLUXNET‐CH4 observations revealed
that better performances can be achieved at each site compared to the default parameter values. This presents a
scope for further improving simulated emissions using parameter calibration with advanced optimization
techniques.

Plain Language Summary Methane is a critical greenhouse gas, and wetlands are the largest natural
source of it. Accurately predicting methane emissions fromwetlands is key to tackling climate change. But these
predictions, made through computer models, are seldom spot‐on. Why? Because there are many factors in the
models that lead to uncertain predictions. A major source of this uncertainty arises from the empirical model
parameters. Just as tuning a radio dial ensures clear reception, models need properly adjusted parameters for
accurate predictions. A sensitivity analysis was performed to determine which parameters are most crucial for
accurate predictions. Instead of running the complex numerical model every time, machine learning was
employed to create a faster and simpler version. Using this approach, five parameters were pinpointed as
particularly sensitive, significantly impacting the predictions. The comparison of model‐predicted methane
emissions with real‐world measurements showed that the model performed well in some cases but needed
tweaking in others. Refining these sensitive parameters with more real‐world observations could make better
predictions in the future.

1. Introduction
Methane (CH4) is the second most influential greenhouse gas after CO2 and responsible for approximately 20% of
the warming potential as a result of anthropogenic activities since the start of the Industrial Revolution (Etminan
et al., 2016). However, CH4 is more powerful at trapping radiation. The warming potential of CH4 is estimated to
be 28 times higher than that of CO2 over a 100‐year period and is even more potent over a 20‐year period, at 84
times higher (Bridgham et al., 2013; IPCC, 2013). Atmospheric CH4 concentrations have more than doubled since
pre‐industrial times, and this upward trend continues to persist (Dlugokencky et al., 2009; Jackson et al., 2020;
Nisbet et al., 2019). In 2021, the estimated annual growth rate of atmospheric CH4 concentration reached a record
high since 1984 (Lan et al., 2023) exceeding more than three times the average annual growth rate observed from
2007 to 2015 (Poulter et al., 2017). Such an increase significantly contributes to the radiative forcing of the
atmosphere and further amplifies global warming. Moreover, CH4 has a large natural emission component from
permafrost in the northern latitudes. Thawing permafrost initiates a self‐reinforcing cycle: initial warming leads to
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increased emissions, which in turn cause further warming and continued thaw. Despite methane's relatively short
atmospheric lifetime of 12.4 years (Balcombe et al., 2018), its warming potential makes it an essential cog in the
wheel for measures to reduce climate change (Shindell et al., 2012).

CH4 emissions originate from a broad spectrum of natural and anthropogenic sources. The substantial contrib-
utors among anthropogenic sources are agriculture, fossil fuel extraction, and livestock farming (Bridgham
et al., 2006; Ciais et al., 2013; Jackson et al., 2020; Kirschke et al., 2013; Saunois et al., 2016). Wetlands
contribute to more than 30% of total emissions and are the most significant contributor to emissions among natural
sources. Wetlands are diverse ecosystems consisting of swamps, marshes, and rice paddies, enabling CH4 pro-
duction through microbial metabolic processes within their anaerobic environments (Bodelier & Laan-
broek, 2004; Turetsky et al., 2014). It is challenging to measure and accurately predict CH4 emission from
wetlands due to their intricate nature and spatiotemporal variability (Rosentreter et al., 2021). In addition, the role
of wetlands in the total CH4 budget and their impact on inter‐annual variability and changes in the CH4 growth
rate is still poorly understood (Poulter et al., 2017). This issue arises from various factors ranging from soil
properties, temperature, vegetation types, and water table dynamics that control CH4 production, consumption,
and transfer in wetlands (Bousquet et al., 2006; Melton et al., 2013). Global warming could aggravate the CH4

emissions from wetlands as they are susceptible to climatic conditions and land‐use changes (Gurevitch &
Mengersen, 2019). To address climate change effectively, it is critical that we enhance our ability to model and
predict wetland CH4 emissions. This requires comprehensive, process‐based models that encompass all relevant
factors and processes.

Biogeochemistry models inherently introduce uncertainties in modeling CH4 emissions due to several factors.
Model uncertainty arises because each biogeochemistry model simplifies real‐world processes through a com-
bination of its structure, complexity, physics, usage, and the tuning of model parameters. These simplifications
vary considerably among models, leading to a wide range of accuracies in representing methane emission pro-
cesses. A large number of model parameters relating to diverse physical, biological, and chemical processes
associated with CH4 dynamics induce parameter uncertainty. These parameters generally take fixed values, but
they are not unambiguously known and usually must be prescribed based on the best available knowledge.
Parameter uncertainty is commonly assessed by sensitivity analysis (SA) based on sampling within the theo-
retical, plausible ranges of parameters, which is the primary focus of this study (Müller et al., 2015; Ricciuto
et al., 2021; Riley et al., 2011). Other sources of uncertainty include spatial variability of wetlands, scarcity of
observations for calibration, initial and boundary conditions, and meteorological forcing to drive the model (Papa
et al., 2013; Xu et al., 2012).

SA quantifies the influence of different input parameters on the model's output, thus helping to identify which
parameters significantly contribute to overall parameter uncertainty. Several studies (Chinta et al., 2021; C. Wang
et al., 2020) implemented SA in understanding parameter uncertainties in complex earth system models. Ricciuto
et al. (2018) applied SA to the Energy Exascale Earth System Model (E3SM) land model (ELM) parameters with
respect to carbon cycle output. Fisher et al. (2019) examined parameter controls on vegetation responses in the
Community Land Model (CLM) using SA. Yuan et al. (2021) examined the effects of warming and elevated CO2

on peatland CH4 emissions using a similar approach. Ricciuto et al. (2021) used SA to show that production and
substrate parameters are vital for regulating temporal patterns of surface CH4 fluxes. Song et al. (2020a, 2020b)
performed SA for a microbial functional group‐based CH4 model and observed that CH4 emissions are sensitive
to the parameters that regulate dissolved organic carbon and acetate production. However, a major challenge in
SA is the computational demand for conducting a vast number of ELM simulations (the Monte Carlo method) to
efficiently explore the parameter space. This approach is particularly infeasible for complex biogeochemistry
models. To address this, machine learning (ML)‐based emulators, also known as meta‐models or surrogate
models, which mimic complex earth system models, are employed. These emulators can approximate model
behavior accurately with fewer simulations. Müller et al. (2015) constructed an ML‐based emulator using radial
basis functions (Gutmann, 2001) for CH4 parameter estimation in CLM4.5bgc. Dagon et al. (2020) also
implemented an emulator using artificial neural networks (Gurney, 2018) in CLM biophysical parameter esti-
mation. Emulators based on Gaussian process regression or kriging (Rasmussen & Williams, 2006) were also
applied by Gao et al. (2021) to quantify the sensitivity of soil moisture to uncertain model parameters in CLM.

Although SA and ML have been successfully employed in various areas of earth system modeling, their potential
in improving CH4 emissions modeling still needs to be explored. Our study addresses several primary research
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questions, including: (a) which critical parameters dominate the sensitivity of various model‐simulated CH4

emissions? (b) what are temporal (seasonal vs. annual) and spatial (site‐to‐site or vegetation type to vegetation
type) characteristics of such parametric sensitivity? and (c) is there any potential to improve model‐simulated
methane emissions? We integrated various advanced techniques to tackle these scientific questions. SA is
employed to examine the influence of different input parameters on various components of CH4 emissions, while
ML is used to emulate the ELM biogeochemistry model with feasible computational cost desired by global SA.

2. Methodology
2.1. FLUXNET‐CH4 Data for Wetland CH4 Emission

FLUXNET‐CH4 is a global network of sites that provides continuous, high‐frequency, and quality‐checked eddy
covariance CH4 flux measurements (Delwiche et al., 2021; Knox et al., 2019). This data helps get a deeper
understanding of the variability of CH4 emissions worldwide and also help validate CH4 emissions from
biogeochemistry models. The network currently encompasses 81 sites across various vegetation types. From the
initial 81 sites, we excluded crop sites due to the complexities introduced by irrigation management, such as
quantifying the volume of water required for irrigation. Additionally, sites with less than 2 years of continuous
observational data were omitted. Considering the computational expense of simulating all locations, we chose a
subset of sites in our study with a diverse mix of vegetation types across various climate zone classifications.

Table 1 presents the list of 14 sites selected for this study, along with their locations and vegetation types. The
geographical locations of these sites are presented on a map in Figure S1 of Supporting Information S1. The
vegetation types include needleaf evergreen temperate tree (NETT, 4 sites), broadleaf deciduous temperate tree
(BDTT, 1 site), broadleaf deciduous boreal shrub (BDBS, 1 site), arctic c3 grass (AC3G, 1 site), cool c3 grass
(CC3G, 6 sites), and warm c4 grass (WC3G, 1 site). The PFT number corresponds to that specified in the ELM
biogeochemistry model. The corresponding Köppen climate classification of the 14 FLUXNET‐CH4 sites is
provided in Table S1 of Supporting Information S1.

2.2. Model Description and Parameter Selection

The Energy Exascale Earth System Model (E3SM) land model version 2 (ELMv2) (Golaz et al., 2022) is used in
this study, which is branched from Community Land Model (CLM) version 4.5 (CLM4.5) (Oleson et al., 2013).
The model underwent several updates associated with the biogeochemical representation of global carbon, ni-
trogen, and phosphorus cycles (Zhu et al., 2019). Some of the other relevant updates include the introduction of
the multiple agent nutrient competition, dynamic allocation, modifications to the photosynthesis physiology

Table 1
Geographical and Vegetation Details of the Simulated FLUXNET‐CH4 Sites

Site ID Site name Latitude Longitude PFT PFT name

RU‐Fy2 Fyodorovskoye dry spruce 56.45 32.90 1 Needleaf evergreen temperate tree

DE‐SfN Schechenfilz Nord 47.81 11.33 1

CH‐Dav Davos 46.82 9.86 1

US‐Ho1 Howland Forest (main tower) 45.20 − 68.74 1

US‐PFa Park Falls/WLEF 45.95 − 90.27 7 Broadleaf deciduous temperate tree

RU‐Cok Chokurdakh 70.83 147.49 11 Broadleaf deciduous boreal shrub

SE‐Deg Degero 64.18 19.56 12 Arctic c3 grass

DE‐Zrk Zarnekow 53.88 12.89 13 Cool c3 grass

CH‐Cha Chamau 47.21 8.41 13

DE‐Hte Huetelmoor 54.21 12.18 13

US‐OWC Old Woman Creek 41.38 − 82.51 13

US‐WPT Winous Point North Marsh 41.46 − 83.00 13

CN‐Hgu Hongyuan 32.85 102.59 13

US‐MRM Marsh Resource Meadowlands Mitigation Bank 40.82 − 74.04 14 Warm c4 grass
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scheme, N2 fixation, and phosphatase modules. Several studies (Golaz et al., 2019, 2022; Ricciuto et al., 2018)
described these updates from CLM4.5 in great detail. The CH4 biogeochemistry model (Riley et al., 2011)
explicitly represents several processes, such as CH4 production, ebullition, aerenchyma transport, aqueous and
gaseous diffusion, CH4 oxidation, and mass balance for unsaturated and saturated soils with the following
governing equation:

∂(RC)
∂t

=
∂FD
∂z

+ P(z,t) − E(z,t) − A(z,t) − O(z,t) (1)

where R represents gas in aqueous and gaseous phases, C represents the concentration of CH4 with respect to
water volume (mol m− 3), FD represents aqueous and gaseous diffusion (mol m− 2 s− 1), P represents CH4 pro-
duction (mol m− 3 s− 1), E represents ebullition (mol m− 3 s− 1), A represents aerenchyma transport (mol m− 3 s− 1),
O represents oxidation (mol m− 3 s− 1), z represents vertical dimension (m), and t represents time (s). The model
indirectly accounts for the role of wetland plant functional types (PFTs) in methane production by using het-
erotrophic respiration rates as a proxy. While wetland PFTs are not explicitly represented, their influence is
captured through the impact they have on the soil's organic carbon content, which is a key determinant of het-
erotrophic respiration. This respiration, primarily driven by microbial activity decomposing organic matter,
provides a substrate for methanogenesis. These rates, in turn, are adjusted for environmental factors like soil
temperature, pH, and redox potential, which are critical in determining the actual availability of substrates for
methane production, hence linking PFTs to methanogens. Ebullition occurs when the CH4 partial pressure, as a
function of temperature and depth below the water table, exceeds 15% of the local pressure. Bubbles are added to
the saturated columns' surface flux and placed immediately above the water table interface in unsaturated col-
umns. Aerenchyma transport is modeled as gaseous diffusion driven by a concentration gradient between the
specific soil layer and the atmosphere and, if specified, by vertical advection with the transpiration stream. CH4

oxidation is represented with double Michaelis–Menten kinetics (Arah & Stephen, 1998), dependent on the
gaseous CH4 and O2 concentrations. Gaseous diffusivity in soils depends on temperature‐dependent molecular
diffusivity, soil structure, porosity, and organic matter content. Aqueous diffusivity in the saturated part of the soil
depends on temperature‐dependent molecular diffusivity and porosity. Gaseous diffusion is assumed to dominate
above the water table interface and aqueous diffusion below it.

These processes in the CH4 biogeochemistry model are represented as functions of climate, vegetation, soil
conditions, and empirical parameters. The default values of these parameters are typically assigned based on the
best available knowledge from a limited experimental or theoretical investigation. The parameter selection in our
study is based primarily on the 16 major parameters affecting ELM's methane biogeochemistry as identified by
Riley et al. (2011). From this list, we exclude parameters related to pH and redox potential, as they are assigned
static values and thus have a negligible impact on the temporal dynamics of CH4 emissions. The seasonal
inundation factor within the wetland inundation fraction parameterization is also omitted. The minimum and
maximum thresholds to initiate and terminate ebullition are maintained at fixed values of 0.15. To simplify our
calibration, we concentrate exclusively onCe,max. We adopted 12 of the 16 parameters from Riley et al. (2011). As
previously mentioned, ELM's CH4 production utilizes soil heterotrophic respiration flux as a proxy for metha-
nogen CO2 substrate availability. Therefore, it is crucial to also test the sensitivity of CH4 emissions to soil
respiration parameters. The selection of these respiration parameters is guided by Koven et al. (2013), which
includes all seven turnover parameters (representing substrate availability) of the century‐type soil decomposition
cascade. Table 2 presents the 19 ELM parameters used in this study, which pertain to various processes such as
production, substrate availability, ebullition, diffusion, aerenchyma transport, and oxidation. For parameters with
an unknown uncertainty range, ±50% of the default value is used.

2.3. Numerical Experiment Design

Site‐level single‐point ELM simulations are performed for the 14 FLUXNET‐CH4 sites. Each simulation follows
the same 3‐step modeling protocol. In the first step, an accelerated spin‐up (as described in Ricciuto et al. (2018))
is performed for 300 years with CO2 concentration set to the value of the year 1901. Climatic Research Unit and
Japanese reanalysis (CRU JRA) v2.2 data (Harris, 2021) at a six‐hourly frequency and 0.5° × 0.5° resolution is
used for meteorological forcing. For each site, forcing data from the nearest grid point is used. The forcing data
and N2 depositions are cycled over the years 1901–1920. The second step involves a regular spin‐up for 200 years
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with the same CO2, N2 deposition configuration and forcing data as in accelerated spin‐up but without accel-
erating soil turnover. The third step is a 120‐year transient run from 1901 to 2020. This step utilizes time‐varying
historical CO2 concentrations and CRU JRA forcing data and nitrogen depositions of the years 1901–2020. Each
three‐step simulation, spanning from the accelerated spin‐up to the transient run, took 6 CPU hr on a single core of
an Intel Broadwell E5‐2697A v4 CPU (2.60 GHz), using approximately 4 GB of the 128 GB RAM allocated to a
32‐core node. Five model output variables are considered for sensitivity analysis: CH4 emission, CH4 production,
diffusive surface CH4 flux, ebullition surface CH4 flux, and aerenchyma surface CH4 flux. The values of these
fluxes are averaged for 2001–2020. CH4 emission is the sum of diffusion, ebullition, and aerenchyma surface
fluxes. To provide an overview of the methodology before discussing the details, Figure 1 presents a flowchart of
the processes implemented in this study.

Table 2
List of 19 ELM Parameters Used and Their Default Values, Ranges, and Brief Description

Mechanism Parameter Default Range Units Description

Production Q10 2 [1.5 4] ‐ CH4 production Q10

β 0.2 [0.1 0.3] ‐ Effect of anoxia on decomposition rate

fCH4
0.2 [0.1 0.3] ‐ Ratio between CH4 and CO2 production below the water table

Substrate availability zτ 0.5 [0.1 0.8] m e‐folding depth for decomposition

τcwd 3.33 [2 20] Year− 1 Corrected fragmentation rate constant CWD

τl1 0.054 [0.027 0.081] Year Turnover time of litter 1

τl2‐l3 0.204 [0.102 0.306] Year Turnover time of litter 2 and litter 3

τs1 0.137 [0.0685 0.2055] Year Turnover time of soil organic matter (SOM) 1

τs2 5 [0.0685 0.2055] Year Turnover time of soil organic matter (SOM) 2

τs3 222.22 [111.11 333.33] Year Turnover time of soil organic matter (SOM) 3

Ebullition Ce,max 0.15 [0.075 0.225] mol m− 3 CH4 concentration to start ebullition

Diffusion fD0
1 [1 10] m− 2 s− 1 Diffusion coefficient multiplier

Aerenchyma p 0.3 [0.15 0.45] ‐ Grass aerenchyma porosity

R 2.9 × 10− 3 [1.45 × 10− 3 4.35 × 10− 3] m Aerenchyma radius

rL 3 [1.5 4.5] ‐ Root length to depth ratio

Fa 1 [0.5 1.5] ‐ Aerenchyma conductance multiplier

Oxidation KCH4
5 × 10− 3 [5 × 10− 4 5 × 10− 2] mol m− 3 CH4 half‐saturation oxidation coefficient (wetlands)

KO2
2 × 10− 2 [2 × 10− 3 2 × 10− 1] mol m− 3 O2 half‐saturation oxidation coefficient

Ro,max 1.25 × 10− 5 [1.25 × 10− 6 1.25 × 10− 4] mol m− 3 s− 1 Maximum oxidation rate (wetlands)

Figure 1. Flowchart of the methodology implemented showing the main steps and sequence of operations.
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2.4. Gaussian Process Regression‐Based Emulators

Gaussian process regression (GPR), a machine learning algorithm, is employed to develop an emulator that
approximates the model behavior. GPR is widely used as an emulator due to its robustness and flexibility
(Rasmussen & Williams, 2006; J. Wang, 2020). This algorithm is particularly suitable when the relationship
between inputs and output is complex and non‐linear. Several studies (Baki et al., 2022b; Chinta & Balaji, 2020;
Gong et al., 2015; C.Wang et al., 2014) established the superiority of GPR as an emulator for earth systemmodels
compared to other ML algorithms. GPR is defined by the mean function, m(x), and covariance function, k(x,x′),
where x and x′ are points in the input space. The expected value of the function at point x is given by the mean
function, whereas the covariance function gives the correlation between the function values at two different
points. For a Gaussian process f(x) ∼ GP(m(x),k(x,x′)), the joint distribution of any finite number (n) of function
values f = [f (x1),f (x2), ...,f (xn)]T follows a multivariate Gaussian distribution:

P( f |X) =N( f |μ,K) (2)

where X is the observations or training data, μ = [m(x1),m(x2), ...,m(xn)]T is the mean vector, and K is the
covariance kernel matrix with Kij = k(xi,xj).

The main advantage of GPR is the presence of a covariance function, which helps encode our assumptions about
the function to be learned. The mean function is typically set to a constant value, often zero or the average of the
training data. For our study, we standardize the outputs of ELM to have an average of zero. Standardization is
done by computing the mean and standard deviation of the entire training data set, then subtracting the mean and
dividing by the standard deviation for each data point. The resulting training data will have a mean of 0 and a
standard deviation of 1. This step is crucial to ensure the stability and accuracy of our analysis. GPR has several
options to choose from for a covariance kernel function. We employed one of the widely used kernel functions in
our analysis, which combines a constant kernel with a radial basis function (RBF) kernel. This kernel function can
be mathematically represented as:

k( x,x′) = σ2f exp(−
1
2l2

∥x − x′∥2) (3)

where x and x′ represent two points in the input space, the two hyperparameters for this kernel are σ2f (signal
variance) and l (length‐scale). The signal variance controls the average distance of function values from their
mean, while the length scale determines the smoothness of the function. This kernel function provides the GPR
with the flexibility to capture complex patterns in the data. The hyperparameters of the kernel function can be
learned from the training data using such techniques as maximum likelihood estimation. Once validated, the
trained GPR emulator can not only predict the corresponding output for a new point in the input space but also
quantify the degree of uncertainty in this prediction. This is a decisive advantage of GPR over other ML
algorithms.

Emulators were designed to take 19 parameter values as input and produce five CH4 flux values as outputs. For
each of the five CH4 fluxes, an individual emulator was developed at every site, resulting in a total of five
emulators per site. To generate the training data for emulators at each site, a total of 190 simulations were per-
formed with different combinations of parameter values. The selection of 190 simulations aligns with the
guidelines proposed by Loeppky et al. (2009) that a training data size of 10 times the number of parameters (19) is
sufficient to construct a robust emulator. The parameters were not altered individually but were collectively
modified instead in each simulation to represent different scenarios within the model's parameter space. These
190 sets of parameter combinations were generated using Latin Hypercube Sampling (LHS), a technique that
effectively and efficiently samples a multidimensional distribution of parameters (McKay et al., 1979) across
given parameter ranges (Table 2). LHS is recognized as superior to simple random sampling, particularly in
scenarios with a large number of dimensions (Iman et al., 1981). It offers improved representativeness and ef-
ficiency in parameter sampling, ensuring a more uniform and thorough exploration of the parameter space.

The emulators were constructed using the training data from the 190 ELM simulations. A single prediction from a
GPR emulator was achieved in just 0.72 milliseconds, in contrast to the 6 CPU hr required for the actual
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simulation. To assess the adequacy of the emulator at untried points, an additional 50 sets of LHS parameter
values are sampled, and corresponding ELMmodel simulations are performed at each site to test the performance
and robustness of the constructed emulator. We use the coefficient of determination, R2, between the model‐
simulated and emulator‐estimated CH4 fluxes as the evaluation metric. The closer to 1 the values are, the
more accurate the emulator is. Once the emulator was validated, it was used for performing SA.

2.5. Sobol Sensitivity Analysis

The Sobol sensitivity analysis method (Sobol, 2001), a variance‐based approach to identify the sensitive model
parameters, is used in this study. This method was successfully implemented in several studies (Baki et al., 2022a;
Gao et al., 2021; Reddy et al., 2023; Ricciuto et al., 2018) to conduct SA for various Earth system model pa-
rameters. The Sobol method decomposes the total variance in the model output, with each flux considered
separately, into variances corresponding to input parameters. There are two essential features of this method.
First, it is a global method, as the sensitivity is evaluated across the whole input parameter space. Second, this
method can quantify the primary or first‐order effects of sensitivity for each parameter and the interaction effects
between parameters. These features ensure a comprehensive understanding of the sensitivity analysis of the
parameters is obtained.

The total output variance, V, is decomposed as

V =∑
n

i=1
Vi + ∑

1< i< j< n
Vi,j + ... + V123...n (4)

where n is the total number of parameters. The total output variance V is systematically decomposed into indi-
vidual and interactive components. First, we account for the variances attributed to each parameter independently,
denoted as Vi for the ith parameter. Then, we consider the variances resulting from the pairwise interactions
between parameters, represented as Vij for the interactions between ith and jth parameters. This process hierar-
chically accounts for increasingly complex interactions among groups of parameters, culminating in V123…n,
which represents the variance from the interaction of all n parameters together. This method ensures that the total
variance V encapsulates not only the individual effects of each parameter but also the collective influence of their
interactions at different levels. As shown below, the Sobol indices are obtained by dividing the respective var-
iances by the total variance.

Si =
Vi
V
; Sij =

Vij
V
; …; S12…n =

V12…n

V
(5)

where Si is the Sobol index for the first‐order (main) effect from the ith parameter. Total order Sobol index of ith
parameter, which is the sum of its main and all interaction effects, STi is given as:

STi = Si + Sij + ... + S12..i..n (6)

Despite the detailed insights provided, this method requires multiple model runs to cover the entire parameter
space for estimating the sensitivity indices accurately (Saltelli et al., 2008). GPR emulators developed in the
previous steps were used to evaluate the main and total sensitivity indices for the five CH4 fluxes at different sites
using the Sobol method. This decomposition of the total effects of each parameter into main and interaction
effects is a critical attribute of the Sobol SA method, enhancing our understanding of parameter sensitivity across
various contexts.

2.6. Metrics for Comparing Simulated Emissions With FLUXNET‐CH4 Measurements

It is important to understand how the simulated emissions from perturbed parameter sets compare with observed
emissions. The model simulated monthly‐averaged CH4 emissions from the 190 parameter sets are compared
against FLUXNET‐CH4 observations at each site, and root mean square error (RMSE) is evaluated.
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
T

t=1
(simt − obst)2

T

√
√
√
√
√

(7)

where simt and obst are the simulated and observed values of monthly CH4 emission from the simulated site at
time t, respectively. T is the number of months. We calculated a normalized root mean square error (nRMSE) for
each of the 190 initial sets of parameter values. This normalization was performed by comparing each nRMSE to
the RMSE obtained from the default parameter run. The nRMSE for a given set, i, is computed as:

nRMSEi =
RMSEi
RMSEdef

(8)

In this equation, RMSEi represents the RMSE for the specific set of parameter values, while RMSEdef denotes the
RMSE derived from the simulation with default parameter values. A parameter set with an nRMSE value less than
one indicates improved performance (lower RMSE) in comparison to the default.

3. Results
3.1. Sensitivity Analysis ‐ Main Effects and Interaction Effects

Emulators for five CH4 fluxes (CH4 emission, CH4 production, diffusive surface CH4 flux, ebullition surface CH4

flux, and aerenchyma surface CH4 flux) were developed at each site using the initial 190 simulations. These
emulators were then evaluated by comparing the emulator‐predicted fluxes with the ELM‐simulated counterparts
from 50 independent test simulations at each site. We present results for one of the sites, specifically the CH‐Cha
site (PFT‐13: Cool c3 grass), as shown in Figure 2. The emulators performed well for all the fluxes with R2 values
ranging from 0.84 to 0.95. Similarly, for fluxes at other sites, the emulators also performed reasonably well, with
R2 values above 0.80, as shown in Figure S2 of Supporting Information S1. Overall, the emulator captures well
the model behavior for various fluxes across the entire parameter uncertainty space over the sites with different
vegetation types and is considered to be accurate and robust. Therefore, the GPR‐based emulators can be reliably
applied to derive the Sobol SA indices and further quantify the main and interaction effects of the fluxes relative to
each parameter.

The main effect (first‐order Sobol index) of a parameter represents the influence of that parameter alone on the
considered flux, disregarding any interaction effects with other parameters. Heatmaps for two sites, CH‐Cha
(PFT‐13: Cool c3 grass) and SE‐Deg (PFT‐12: Arctic c3 grass) are displayed in Figure 3. Each cell of the
heatmap represents the value of the main effect for its corresponding parameter (x‐axis) and flux (y‐axis), with the
color intensity indicating the strength of the parameter sensitivity. The heatmaps for both sites were remarkably
similar, reflecting parallel sensitivity trends across the parameters at these two sites. The CH4 production pa-
rameters Q10 and fCH4

(ratio between CH4 and CO2 production below the water table) displayed pronounced
sensitivity for all fluxes. The diffusion parameter fD0

(diffusion coefficient multiplier) was a predominantly
sensitive parameter for diffusion, whereas the oxidation parameters Ro,max (maximum oxidation rate—wetlands)
and KCH4

(CH4 half‐saturation oxidation coefficient—wetlands) emerged as sensitive parameters for aerenchyma
transport across these two sites. Apart from these five parameters, the remaining parameters had negligible in-
fluences on all fluxes for these two sites. Results corresponding to other sites are presented in Section 3.2. Figure 4
illustrates the total effect Sobol indices, encapsulating main (blue) and interaction effects (red), for various CH4

fluxes relative to each parameter at the two sites mentioned above. The main effect values are the same as those
represented in the heatmaps (Figure 3). Main effects were more prominent than interaction effects for all pa-
rameters, highlighting the dominant influence that individual parameters exert on the different CH4 fluxes. For all
fluxes at these two sites, no parameter exhibited a higher interaction effect value compared to its main effect.
Other sites share a similar characteristics of total effects (not shown).

3.2. Sensitivity for Multiple Sites Across Vegetation Types

Figure 5 illustrates the distribution of main effect sensitivity indices for each parameter, corresponding to
different CH4 fluxes across the 14 FLUXNET‐CH4 sites. These boxplots comprehensively represent the variation
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in sensitivity indices for multiple sites across vegetation types. The production parameter Q10 has the highest
sensitivity among the parameters for all the fluxes, suggesting its significant role in modulating various CH4

fluxes. Q10 also presents the overall largest variability (inter‐site spread) in sensitivity across all the fluxes except
for emission, suggesting that the sensitivity of Q10 may be highly dependent on climate conditions (geographical
locations) and vegetation types. Another production parameter fCH4

was also found to be a fairly sensitive
parameter for all the fluxes. In contrast to the earlier heatmaps for CH‐Cha and SE‐Deg (Figure 3) where fD0

did
not influence emission, it was a sensitive parameter with even higher sensitivity than Q10 for some sites. The
diffusion flux was sensitive to the diffusion parameter (fD0

). Apart from these three parameters, other parameters
like Ro,max, KCH4

were sensitive parameters for aerenchyma. Additionally, zτ (e‐folding depth for decomposition)
was a sensitive parameter for some fluxes (Figures 5b, 5d, and 5e). Also, some parameters (fD0

and Ro,max in
Figure 5c) were sensitive at one or two sites, represented as outliers in the figure. It is important to note that
roughly 13 parameters consistently showed negligible influence on various fluxes with little inter‐site variability.
The heterogeneity of CH4 flux dynamics and associated parametric sensitivities is underscored by the inter‐site
spread and the presence of outliers in sensitivity indices across the sites. These characteristics underline the
heterogeneity of CH4 flux dynamics and associated parametric sensitivities across the sites (vegetation types).
Further examination of parametric sensitivities at additional sites with similar vegetation types may provide a
more generalized understanding of these patterns.

3.3. Contribution of Parameters to Variance in CH4 Fluxes

Figure 6 shows the contribution of different parameters to the variance in CH4 fluxes at the 14 FLUXNET‐CH4

sites, grouped by the vegetation types. Only those parameters that contribute a minimum of 5% to the variance at
any site have been included in the analysis. The results are in agreement with those shown in Figure 5, with the

Figure 2. Accuracy of the GPR model based on test data (50 independent simulations) for different CH4 fluxes at the CH‐Cha site (PFT‐13: Cool c3 grass). The
horizontal axis denotes the model output, and the vertical axis represents the GPR fit.
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production parameters Q10 and fCH4
, along with the diffusion parameter fD0

being the most influential parameters
for different CH4 fluxes across multiple sites. Some sites had a combination of Q10 and fCH4

as sensitive pa-
rameters for emission, whereas other sites had fD0

and KO2
as sensitive parameters. The production parametersQ10

and fCH4
emerged as sensitive parameters for production at all sites. Apart from these two parameters, substrate

availability parameters zτ, τl2‐l3 (turnover time of litter 2 and litter 3), and τs2 (turnover time of soil organic matter
2) emerged as sensitive parameters for production at some sites. Theoretically, substrate availability plays an
important role in methane production as it determines the quantity and rate at which methanogenic microbes
produce methane in anaerobic conditions. The diffusion parameter fD0

and the production parameters Q10 and fCH4

emerged as sensitive parameters for diffusion at most of the sites. Ro,max, and zτ emerged as sensitive parameters
for diffusion at some sites. Ebullition was sensitive to the production parameters Q10 and fCH4

at most sites.
Ebullition parameter, Ce,max (CH4 concentration to start ebullition), and aerenchyma parameters R (aerenchyma
radius) and Fa (aerenchyma conductance multiplier) emerged as sensitive parameters for ebullition at some sites.
Although R primarily affects aerenchyma, when aerenchyma and ebullition are dominant pathways for CH4 to
escape, a change in R will affect how much CH4 is emitted through aerenchyma, and consequently, the amount of
CH4 left over for emission through ebullition. The production parameters Q10 and fCH4

, oxidation parameters
Ro,max, KCH4

and aerenchyma parameter R were sensitive parameters for aerenchyma at most of the sites.

Although some parameters are relevant to a particular process, they could still affect other processes through
competition and feedback, depending on the coexistence of certain processes at the time of calculation. The
sensitivity can be explained in groups. First, it is reasonable to see production‐related parameters dominate the
sensitivity because CH4 production is the biggest flux and directly determines how much CH4 will be available to
emit. Then we see oxidation parameters sometimes show up as sensitive parameters because oxidation sometimes
is ignorable (saturated condition) but sometimes could consume a large fraction of newly produced CH4 (partially
saturated). The third group is emission pathway parameters, ebullition, diffusion, and aerenchyma are three
emission pathways determined by environmental conditions, vegetation activity, and vertical concentration

Figure 3. Heat map of main effect sensitivity indices for different CH4 fluxes (EM: Emission, PROD: Production, DIFF: Diffusion, EBUL: Ebullition, AERE:
Aerenchyma) with respect to 19 parameters (shown in Table 1) at (a) CH‐Cha and (b) SE‐Deg sites.
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gradient. These three pathways are either dynamically competing or totally independent, depending on whether an
emission pathway is favored under certain conditions like vegetation or climate zones.

Across all sites, the top 5 or 6 parameters (parameters with high sensitivity for a particular flux) typically
accounted for over 90% of the variance in CH4 fluxes. However, in certain instances, even fewer parameters were
responsible for a substantial portion of the variance. Notably, 13–14 parameters consistently showed a negligible
effect on the CH4 fluxes across these sites. For the four sites characterized by PFT‐1 vegetation (Needleleaf
evergreen temperate tree), the sensitive parameters remained largely consistent. This consistency prevailed
irrespective of the individual climate classifications of these sites (as detailed in Table S1 of Supporting

Figure 4. The main effects and interaction effects (differences between the total and main effects) of 19 parameters for different CH4 fluxes for two sites CH‐Cha (PFT‐
13: Cool c3 grass) and SE‐Deg (PFT‐12: Arctic c3 grass).
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Information S1). This observation implies that, for Needleleaf evergreen temperate tree sites, the climate clas-
sification has minimal impact on parameter sensitivity. In contrast, the six sites with PFT‐13 vegetation (Cool C3
grass) displayed more variability. While the first three of these sites shared a common sensitivity pattern, the next
three differed in their sensitivities. This variation can be linked to their respective climate classifications as the

Figure 5. Boxplots showing the distribution of main effect sensitivity indices for each parameter across 14 FLUXNET‐CH4
sites. The boxplot shows the median (orange line), interquartile range, minimum, and maximum after excluding outliers. An
outlier, represented by a circle, is a data value outside 1.5 times the interquartile range above the upper quartile and below the
lower quartile.
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Figure 6. Total effect sensitivity indices of parameters in the percentage of the variance in various CH4 fluxes, grouped by vegetation types of 14 FLUXNET‐CH4 sites.
Only those parameters with at least 5% contribution at any site are included. The height of each color represents the percentage of the total effect Sobol index of that
parameter with respect to the sum of the total effect Sobol indices of all parameters at that site, namely, the percentage of the total variance in CH4 fluxes attributable to
that parameter, including its interactions with other parameters. The sites (each bar) in the subfigures are ordered as presented in Table 1, which is PFT 1 (RU‐Fy2, DE‐
SfN, CH‐Dav, US‐Ho1), PFT 7 (US‐Pfa), PFT 11 (RU‐Cok), PFT 12 (SE‐Deg), PFT 13 (DE‐Zrk, CH‐Cha, DE‐Hte, US‐OWC, US‐WPT, CN‐Hgu), PFT 14
(US‐MRM).
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first three sites are under a temperate climate, and the latter three are categorized as a continental climate. This
suggests a stronger influence of climate classification on parameter sensitivity for Cool C3 grass sites.

In light of these findings, it is evident that while vegetation type plays a role in determining parameter sensitivity,
climate classification can modulate this effect, especially for certain vegetation types. Further analysis of more
sites with the same vegetation types, particularly for the vegetation types with only one site in our study, is
necessary to gain a more solid understanding of how a combination of climate conditions and vegetation types
affect parametric sensitivity.

3.4. Seasonal Characteristics of Parametric Sensitivity in CH4 Emission

Given the established seasonal variability in methane emissions from wetlands (Knox et al., 2021; Sakabe
et al., 2021; Zhang et al., 2020), we are interested in how the parametric sensitivity of methane emissions
fluctuates across months. Figure 7 shows the monthly variation in the main effects of selected parameters for
methane emission at two FLUXNET‐CH4 sites, CH‐Cha and SE‐Deg Parameters with a minimum value of 0.05
for the main effect in at least 1 month were included.

A distinct pattern was observed for the monthly sensitive parameters. For CH‐Cha (PFT‐13: Cool c3 grass), the
production parameters Q10 and fCH4

were predominantly sensitive from December to March, whereas for SE‐Deg
(PFT‐12: Arctic c3 grass), their sensitivity extended from November to June. In contrast, during the remaining
months, the sensitivity was primarily associated with fD0

and KO2
. The observed monthly fluctuations in parameter

sensitivity can be linked to seasonal temperature variations, given that parameters Q10 and fD0
are directly

temperature‐dependent (Riley et al., 2011). Other factors influencing the seasonal variation in methane emissions
include gross primary productivity, ecosystem respiration, net ecosystem exchange, latent heat turbulent flux, soil
temperature, water table depth, incoming shortwave radiation, and wind direction (Knox et al., 2021). This pe-
riodic parameter sensitivity behavior on the month scale is distinctive from the 20‐year annual mean in which
neither fD0

nor KO2
were dominant sensitive parameters (Figure 3). Long‐term averages may obscure some

Figure 7. Monthly fluctuation in main effect sensitivity indices of parameters of CH4 emission for 2 FLUXNET‐CH4 sites. Only those parameters with a minimum value
of 0.05 for the main effect (first‐order Sobol index) for at least 1 month at the specific site are included.
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features inherent in a short temporal scale by smoothing out variations from
changing parameter values over shorter durations. Examining monthly av-
erages reveals nuanced parametric sensitivity patterns that might be missed in
long‐term aggregates.

3.5. Parameter Ranking Based on CH4 Emission Flux Sensitivity

While Section 3.4 underscores the nuances captured by examining monthly
averages, Section 3.5 aims to complement this by offering a broader
perspective. Here, we present the hierarchical ranking (Figure 8) of para-
metric sensitivities to CH4 emission, derived from the 20‐year average across
all sites. Although this long‐term aggregation potentially smooths over short‐
term variations, as noted earlier, it serves a crucial different purpose. It allows
us to capture overarching trends in parameter sensitivity across the 14
FLUXNET‐CH4 sites corresponding to different vegetation types and climate
zones. The total effect Sobol indices of parameters were averaged across all

sites to offer a comprehensive perspective on their overall influence across diverse vegetation types. This
averaging allows for capturing the general trends in parameter sensitivity and can help in identifying parameters
of universal importance. Furthermore, normalizing these averaged values ensures that the results are presented on
a consistent scale from 0 to 100, facilitating comparisons. Five parameters Q10, fD0

, fCH4
, zτ, and KO2

‐ collectively
accounted to approximately 95% of the normalized score, while all the remaining parameters show little to
negligible effect on CH4 emission.

3.6. Comparison of Simulated Emissions With FLUXNET‐CH4 Data

Sensitivity analysis was strictly a modeling exercise designed to understand how different parameters influence a
model's output. Comparing the simulated emissions from perturbed parameter sets with observed emissions is
essential. This comparison works as an elementary assessment that allows us to understand whether there exists a
potential to improve the simulated emissions corresponding to observations by adjusting the parameter values
within their ranges. We compared the average monthly ELM‐simulated methane emissions from 190 parameter
sets to FLUXNET‐CH4 observed emissions at each site (Figure 9a). It is important to note that the observation
data available at each site is not across the same timeline (Table S1 in Supporting Information S1). So, the
simulated emissions were only compared for the available duration of observations for each site. The ELM
simulations over‐predicted (under‐predicted) the emissions for ten (four) out of the 14 sites. All four sites that
under‐predicted the emissions belonged to PFT‐13: Cool c3 grass. The magnitude of monthly averaged observed
emissions varies greatly across sites. A larger range in the emissions resulting from perturbed parameter values
indicates greater parameter uncertainty. This variability reflects how sensitive the model's output is to changes in
the input parameters, and suggests that the model's predictions could be significantly affected by our confidence
in those parameters. This variability in emissions is not uniform across sites. Some sites have higher variability
whereas others have lower variability.

A comparison of nRMSE values (Figure 9b) shows that there are always partial parameter sets at each site that
have nRMSE values less than 1, indicating an improved performance with lower RMSE compared to using the
default parameter values (see Section 2.6 for details). The median nRMSE values were higher than 1 at some sites,
such as CH‐Dav, RU‐Cok, and CN‐Hgu, suggesting potential challenges in accurately predicting methane dy-
namics at these sites. In contrast, sites like US‐Ho1, SE‐Deg, and DE‐Hte‐Cha present lower median nRMSE
values, indicating improved simulations of CH4 emissions over the default could be potentially achieved. The
minimum nRMSE values, provided in brackets for each site, underscore the extent to which CH4 emissions with
alternative parameters may outperform those with the default at each site, for example, via parameter calibration
We also analyze the distribution of RMSE and bias across 190 simulations at each site (Figures S3 and S4 in
Supporting Information S1). The values of the identified sensitive parameters can be adjusted within their
respective ranges (Table 2) to minimize the difference between the model simulated and the observed CH4

emissions at each FLUXNET‐CH4 site. This adjustment can be achieved systematically by employing an
advanced optimization technique like Bayesian calibration (Gattiker et al., 2016f; Kennedy & O’Hagan, 2001).

Figure 8. Parameters ranked according to their sensitivity of annually
averaged CH4 emission across 14 FLUXNET‐CH4 sites. The percentage
values over each bar represent the normalized score for that parameter.
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4. Discussion
4.1. Key Parameters Influencing Methane Emission

Sensitivity analysis revealed that five parameters Q10, fD0
, fCH4

, zτ, and KO2
are among the most sensitive pa-

rameters for methane emissions from the chosen wetland sites. Q10 represents the temperature‐dependent
methane production. A higher Q10 suggests that an increase in temperature will lead to more methane

Figure 9. (a) Box plots (190 ELM simulations) depicting the average monthly emission across 14 FLUXNET‐CH4 sites, grouped by their vegetation types. The boxplot
shows the median (orange line), interquartile range, minimum, and maximum after excluding outliers and individual circles marking outlier data points. Average
monthly emissions of observation (red) and default (green) parameter ELM simulations are also presented. (b) Same as (a) but for nRMSE. The green dashed line
signifies an nRMSE value of 1, corresponding to the RMSE from the default parameter simulation for the respective site. The value in brackets below each site label
denotes the minimum nRMSE value from a set of 190 simulations for that particular site.
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production and emissions. This, in turn, can indirectly enhance diffusion, as increased methane production creates
larger concentration gradients. The parameter fCH4

is the ratio between CH4 and CO2 production below the water
table. A higher ratio means a greater dominance of methane in production and emission relative to CO2. The
diffusion coefficient multiplier, fD0

, is equally important. This parameter directly alters the rate of methane
movement through gas or liquid. A higher value of fD0

suggests more rapid methane diffusion. As the methane
transport increases, it could lead to higher emissions. The e‐folding depth, zτ, determines the depth at which
microbial decomposition diminishes exponentially. A greater e‐folding depth suggests methane production can
happen deeper, possibly causing a delay in its release or changing emission patterns due to its travel through
various soil and water layers. The parameter KO2

indicates the oxygen concentration at which methane oxidation
is halved. Higher KO2

values suggest that more methane is oxidized into CO2, leading to reduced methane
emissions. The minimal impact of the other parameters on CH4 emissions indicates that while they might be
important at specific sites, their overall contribution is less significant when averaged across all sites. This dif-
ferentiation between universally influential parameters and those with localized effects can guide model de-
velopers to focus on the specific sensitive parameters for further improving CH4 emission modeling based on
different research objectives.

Numerous studies have highlighted the sensitive parameters influencing methane emissions. Müller et al. (2015)
performed a one‐at‐a‐time sensitivity analysis on 21 parameters within the CLM4.5bgc model, at 16 different
sites comprising 6 wetlands and 10 rice paddies. Their findings pointed to Q10, fCH4

, and KO2
as the most sensitive

parameters across all sites, with fD0
emerging as sensitive in three specific sites. Similarly, Riley et al. (2011)

undertook a sensitivity analysis in the CLM4Me model, identifying Q10, alongside oxidation and aerenchyma
parameters, as critical for methane emission. Song et al. (2020a, 2020b) utilized the Sobol sensitivity analysis
method for the Integrated Biosphere Simulator (IBIS) model, finding parameters related to production and
oxidation to be most influential. Additionally, Zhu et al. (2014) conducted a sensitivity analysis on the TRIPLEX‐
GHG model, singling out Q10 as one of the most sensitive parameters among those examined. These studies
collectively underscore the importance of certain key parameters across different models and environmental
settings in determining methane emissions. Despite the variation in models, sensitivity analysis methods, and the
environmental contexts of the sites considered, there is a consensus in our results and those of other studies
regarding the high sensitivity of production and oxidation‐related parameters. In our study, the diffusion
parameter fD0

emerged as sensitive, which contrasts with its lesser sensitivity in some studies mentioned above.
This highlights the nuanced differences in sensitivity analyses and the importance of considering a wide range of
parameters and contexts to understand methane emission dynamics fully.

4.2. Scope for Parameter Optimization and Limitations

Adjusting the sensitive parameter values to reduce the simulation error with respect to observations using
advanced optimization techniques like Bayesian calibration helps reduce parameter uncertainty. Bayesian cali-
bration involves using Markov Chain Monte Carlo (MCMC) methods to draw multiple parameter samples from
the prior distribution, which is usually a uniform distribution. GPR‐based emulators are then developed to take the
values of sensitive parameters as input and generate the corresponding emission values. The comparison of these
outputs with FLUXNET‐CH4 observed emissions, facilitated through an objective function, aids in refining the
parameters through an iterative approach (Chinta et al., 2023). After the end of the calibration process, the
calibrated parameters are represented by their posterior distributions. Drawing samples from these distributions
allows for ensemble simulations that more closely align with observed data. This process significantly improves
the model's accuracy and reliability in simulating methane emissions and reduces uncertainty. This step, although
not covered in our current study, suggests a significant potential for future research. This approach would foster
greater confidence in future CH4 emission projections, It is important to note that apart from parameter uncer-
tainty, other sources of uncertainty such as uncertainties in forcing data, the accuracy of observational data, and
inherent limitations within the model structure could also influence the simulated emissions. Along with aiming to
reduce parameter uncertainty using Bayesian calibration, future research could further enhance the accuracy of
model simulations by investigating these other forms of uncertainty. This comprehensive examination would
contribute to a more robust and reliable modeling approach, ensuring that the simulations more accurately reflect
real‐world complexities.
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This study offers significant insights into the sensitivity analysis of methane emissions. However, several inherent
limitations need consideration. The presented results may be dependent on the choice of meteorological forcing
data. The spatial scale discrepancy between the model simulations (0.5°) and the point‐based observations may
also lead to some biases in the results. Despite its computational benefits, the emulator might not fully capture the
complex and non‐linear dynamics of the ELM biogeochemistry model, potentially leading to minor discrepancies
between the emulator's predictions and the actual ELM‐simulated outputs. Additionally, using the Monte Carlo
approach for generating large samples in the Sobol analysis introduces inaccuracies due to finite sample size (H.
Wang et al., 2020). While the monthly fluctuations in parameter sensitivity were examined, the diurnal fluctu-
ations were not explored. Notably, methane emissions exhibit significant diurnal variability (Knox et al., 2021),
which could present another layer of complexity to the analysis. Future analyses could consider incorporating a
broader range of sites spanning diverse vegetation types. This would ensure a more exhaustive assessment of
parameter sensitivity across different ecosystems. Errors from external factors outside the methane biogeo-
chemistry model, like heterotrophic respiration and net primary productivity, impact simulated methane emis-
sions (Riley et al., 2011), which in turn affects the sensitivity analysis results. Despite these limitations, the
findings from this study offer significant insights into the parametric sensitivity of various CH4 emissions.

5. Conclusions
This study carried out a sensitivity analysis of 19 ELM model parameters with respect to methane emission from
natural wetlands at 14 FLUXNET‐CH4 sites with diverse vegetation types. Machine learning‐based emulators
were employed to emulate the ELM model in consideration of computational demands. The GPR‐based emu-
lators were shown to represent the model simulations reasonably well across all the sites. These emulators were
used to calculate the Sobol sensitivity indices for various CH4 fluxes. Five parameters Q10 (CH4 production), fD0

(diffusion coefficient multiplier), fCH4
(ratio between CH4 and CO2 production below the water table), zτ (e‐

folding depth for decomposition), and KO2
(O2 half‐saturation oxidation coefficient) were identified as sensitive

parameters across various fluxes and sites. These five sensitive parameters accounted for approximately 95% of
the total variance in emission. The remaining 14 parameters had negligible impact on emissions across all sites.
Seasonal characteristics of parameter sensitivity to methane emissions showed specific features that long‐term
annual averages might overlook. The Comparison of the model simulations against FLUXNET‐CH4 observa-
tions revealed a potential for improving simulated emissions via parameter calibration. Future studies will focus
on extending this sensitivity analysis to more FLUXNET‐CH4 sites to better understand how parametric sensi-
tivities depend on vegetation types and climatic conditions. The identified sensitive parameters can be system-
atically adjusted to reduce the simulation error with respect to observed methane emissions using Bayesian
calibration and ML‐based emulators. In addition, the availability of high‐quality observations from a diverse
range of wetlands will greatly benefit this exercise.

Data Availability Statement
The E3SM code is available at https://github.com/E3SM‐Project/E3SM (Golaz et al., 2022). FLUXNET‐CH4

data is available for download at https://fluxnet.org/data/fluxnet‐ch4‐community‐product/ (Delwiche et al., 2021;
Knox et al., 2019). CRU JRA v2.2 data is available at https://catalogue.ceda.ac.uk/uuid/4bdf41fc10af4-
caaa489b14745c665a6 (Harris, 2021). The data and code are available at https://doi.org/10.5281/zenodo.
12738074 (Chinta, 2024).
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