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Abstract 

Capturing the effects of fatigue and, more generally, the effects 
of physical and mental states on human performance has been 
a topic of research for many years. Recent models, especially 
those developed in a cognitive architecture, have shown great 
promise in capturing these effects by providing insight into the 
specific cognitive and other components involved in task 
performance (like perception and motor movement). In 
particular, separate models have been developed to account for 
both time-of-day and time-on-task effects related to fatigue. In 
this paper, we present a novel unified model, developed in the 
ACT-R cognitive architecture, that captures both time-of-day 
and time-on-task effects with a single set of mechanisms and 
parameters. We demonstrate how this unified model accounts 
for quantitative and qualitative aspects of fatigued performance 
from two experiments, one focused on time-on-task effects 
under conditions of moderate fatigue, the other focusing on 
time-of-day effects under conditions of severe fatigue in a 
study of long-term (88-hour) sleep deprivation. 

Keywords: Fatigue; sleep deprivation; cognitive architectures 

Introduction 
One of the most significant physiological states that affects 
human cognition is fatigue. Decades of research have 
investigated the effects of fatigue, sleep deprivation, and 
time-on-task in a number of important areas, including 
industrial disasters (e.g. Mitler et al.,1988), transportation 
accidents (e.g. Lauber & Kayten, 1988; Dinges, 1995), and 
motor vehicle crashes (e.g. Horne & Reyner, 1999; Pack et 
al., 1995). These studies have explored in depth the question 
of how fatigue modulates cognition and performance, and 
how we might quantify the effects of fatigue using 
mathematical or computational models and formalisms. 

Of the many aspects of cognitive fatigue, there are two 
main factors that affect sustained attention and task 
performance: (1) sleep-related factors which are a function of 

sleep history and the time of the day when the task is being 
performed (circadian rhythm); and (2) task-related factors 
which are a function of the type of the task and how long the 
person has been doing the task, or time-on-task (Figure 1). 
Fatigue can also vary widely in its level of intensity: mild to 
moderate time-of-day or time-on-task effects may affect 
performance significantly (e.g., Pattyn et al, 2008; Bakan, 
1955; Mackworth, 1948; Parasuraman, 1979), but severe 
fatigue that occur with long-term sleep deprivation can have 
even more drastic impacts on performance (e.g., Doran, Van 
Dongen, Dinges, 2001; Dorrian, Rogers, & Dinges, 2005). 

 

 
Figure 1: Main factors contributing to fatigue 

in sustained-attention tasks. 
 

Mathematical models of fatigue come in various forms, 
and can provide very good insight into the fluctuations in 
overall performance, accounting for moderate time-of-day 
and time-on-task effects (e.g. Fisk & Schneider, 1981; 
Giambra & Quilter, 1987; Mackworth, 1964) as well as 
effects of long-term sleep deprivation (e.g., Achermann, 
2004; Borb & Achermann, 1999; Hursh et al., 2004; Jewett 
& Kronauer, 1999; McCauley et al., 2013). Such 
mathematical models aim to model the overall level of fatigue 
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at different points in time, but do not provide a detailed 
account of cognitive (and other) processes involved. Building 
on this work, recent models have focused on modeling 
fatigue within a computational cognitive architecture (e.g. 
French & Morris, 2003; Jones, Laird, & Neville, 1998; 
Gunzelmann, Gross, Gluck, & Dinges, 2009; Gunzelmann, 
Moore, Salvucci, & Gluck, 2011; Walsh, Gunzelmann, & 
Van Dongen, 2017; Veksler & Gunzelmann, 2018) to offer 
deeper insight into relationship between fatigue and the basic 
information processing mechanisms inherent to a task. 

In this paper, we present a new unified model of fatigue 
that accounts for both sleep-related and task-related factors, 
and accounts for performance under both moderate and 
severe fatigue. In particular, we extend the work of Veksler 
and Gunzelmann (2018) and Walsh et al. (2017) by first 
examining the underlying theoretical foundations of both 
types of fatigue based on recent empirical work. We then 
utilize these ideas to propose an updated formulation of 
fatigue within the ACT-R cognitive architecture, testing its 
predictions against two data sets that demonstrate the benefits 
of a unified model. 

Theoretical Foundations 
The central idea of our modeling work is the concept of 
microlapses, introduced by Gunzelmann et al. (2009) to 
account for changes in behavioral performance related to 
fatigue. Microlapses can be viewed as an implementation of 
the “state instability” hypothesis (Doran et al., 2001): that a 
person's fatigue may be characterized as the switching 
between sleep and awake states, which may fluctuate second 
by second and can eventually progress to a physiological 
sleep state. Microlapses, however, incorporate the idea that 
switches between sleep and awake states may be more rapid 
(i.e., tens of ms), with transitions into, and remaining within, 
a “sleep” state becoming more likely as fatigue increases. 

The concept of microlapses relies on the computational 
mechanisms of a procedural system in a cognitive 
architecture. A procedural system implemented as a 
production system is the central core of most well-established 
cognitive architectures like ACT-R (Anderson, 2007). ACT-
R’s production system implements a serial bottleneck in 
cognitive processing, representing cognition as a sequence of 
recognize-decide-act cycles that require about 50 ms each to 
execute. Under fatigue, microlapses cause the execution 
phase of the cycle to fail, leading to delays in completing, or 
even failure to complete, a task. As we will see, this 
theoretical foundation allows for an elegant model of fatigue 
that can account for both sleep- and task-related factors, and 
for performance across a range of degrees of fatigue. 

Modeling Time-of-Day Effects 
The first building block for our unified model is the model of 
sleep-related fatigue described in Walsh et al. (2017). Their 
model relied on ACT-R’s concept of utility, namely that each 
                                                             
1 The names of some variables and constants have been changed 
from the original formulation for increased clarity. 

production rule (effectively a 50-ms unit of action) has an 
associated utility that determines its usefulness in being 
activated, and this utility can be compared to those of other 
rules to determine the next action. By manipulating the utility 
of the productions and the utility threshold, the system is able 
to produce microlapses: if the utility 𝑈" of the selected 
production is less than a set utility threshold 𝑈𝑇, a microlapse 
occurs. Because 𝑈" values are noisy, changes in 𝑈" and 𝑈𝑇 
thus influence the probability of microlapses occurring. 

To account for sleep-related factors, Walsh et al. (2017) 
used a biomathematical model to quantify the overall impact 
of time awake and circadian rhythms. First, let us assume that 
we have a biomathematical model value 𝐵%(𝑡) that, given a 
sleep schedule 𝑆 (i.e., the prior hours for which the person 
was asleep and awake), provides the level of fatigue at a 
given time of day 𝑡. As mentioned earlier, several such 
models have been developed in the past; Gunzelmann et al. 
use the formulation provided by McCauley et al. (2013), 
which we include here as well. Using this value, we can 
specify a fatigue scale factor 𝐹+", 𝑡  that will scale a 
production’s overall utility proportionally based on the 
biomathematical model’s predictions:1 

𝐹+", 𝑡 = 1 − 𝑐+", ∗ 𝐵%(𝑡)	

We also include a fatigue constant 𝑐+", to scale the 
biomathematical value, and we will consider this constant as 
one parameter to estimate in our model fitting later. 

The next component of the model represents the 
accumulated effect of microlapses, and incorporates the fact 
that when a microlapse occurs, another microlapse is more 
likely to occur immediately after. This component is 
formulated as follows: 

𝐹345 𝑛 = 𝑐345 7	

Here, 𝑛 is the number of consecutive microlapses that have 
occurred—thus, 𝑛 = 0 after a normal production has fired, 
but would increase by 1 for each consecutive microlapse 
thereafter until another normal production firing. 𝑐345 is 
assumed to be a constant between 0 and 1, and thus the value 
𝐹345(𝑛) is also a value between 0 and 1 that decreases with 
larger values of 𝑛. As described by Walsh et al. (2017), 
𝐹345(𝑛) can quickly decay to the point that will be too low to 
fire any production; however, there is a counterbalancing 
effect that resets 𝐹345(𝑛) by setting 𝑛 = 0 (akin to awakening 
the model) when a stimulus is presented. 

Integrating these factors together, following Gunzelmann 
et al. (2009), Walsh et al. (2017) defined a fatigued utility 
𝐹𝑈"(𝑡, 𝑛) as a modified value of production 𝑖’s base utility 
𝑈"(𝑡) scaled by both 𝐹+",(𝑡) and 𝐹345(𝑛): 

𝐹𝑈" 𝑡, 𝑛 = 𝐹+", 𝑡 ∗ 𝐹345 𝑛 ∗ 𝑈" 𝑡 + 𝜖	

The final term ϵ adds noise to the final fatigued utility, where 
the noise is sampled from a logistic distribution. This 
component is carried over from the standard utility function 
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in ACT-R, which includes this parameter to generate 
stochasticity in model behavior. Once this fatigued utility is 
computed, its value is compared to a utility threshold 𝑈𝑇 𝑡 , 
computed using the biomathematical model and a specified 
initial utility threshold 𝑈𝑇>: 

𝑈𝑇+", 𝑡 = 1 − 𝑑+", ∗ 𝐵%(𝑡)	

𝑈𝑇 𝑡 = 𝑈𝑇+", 𝑡 ∗ 𝑈𝑇>	

These equations introduce another constant, d+",, that scales 
the biomathematical model value. 

Modeling Time-on-Task Effects 
As an extension to the above model of time-of-day effects, 
Veksler and Gunzelmann (2018) developed a model to 
capture the effects of time-on-task. Using the same core 
mechanisms as Walsh et al. (2017) described earlier, they 
replaced the biomathematical factor 𝐹+", 𝑡  with a time-on-
task factor 𝐹ABA 𝑇  defined as follows: 

𝐹C,C 𝑇 = (1 + 𝑇)5DED	

𝐹𝑈" 𝑡, 𝑇, 𝑛 = 𝐹C,C 𝑇 ∗ 𝐹345 𝑛 ∗ 𝑈" 𝑡 + 𝜖	

Here, 𝑇 represents the total time-on-task, or time spent 
performing the same task. Veksler et al. used a similar 
formulation to revise the computation of the utility threshold: 

𝑈𝑇C,C 𝑇 = (1 + 𝑇)3DED	

𝑈𝑇 𝑇 = 𝑈𝑇C,C 𝑇 ∗ 𝑈𝑇>	

The constants 𝑐C,C and 𝑑C,C are assumed to be between –1 and 
0, and thus their respective functions decrease as the time-on-
task 𝑇 increases. 

A Unified Model of Fatigue 
The foundational components above provide the basis for our 
own unified model, and at first glance, one might expect that 
we could simply combine the equations and have a unified 
account directly. Unfortunately, a simple combination does 
not work well either theoretically or experimentally. We thus 
explore how we might combine these accounts and then 
proceed with a specification of the final unified model. 

Developing a Unified Model 
Examining the formulations for the time-of-day and time-on-
task models above, the most straightforward approach to a 
unified model would be to simply multiple the respective 
factors together—that is, computing fatigued utility as:	

𝐹𝑈" 𝑡, 𝑇, 𝑛 = 𝐹+", 𝑡 ∗ 𝐹C,C(𝑇) ∗ 𝐹345 𝑛 ∗ 𝑈" 𝑡 + 𝜖	

This approach multiples the biomathematical component 
𝐹+", 𝑡  with the time-on-task component 𝐹C,C 𝑇  to derive 
the total fatigued utility. In fact, this formulation has been 
tried with limited success in earlier work: Khosroshahi et al. 
(2016) used it to account for time-of-day effects on 
performance in psychomotor vigilance and driving. 

Unfortunately, however, we have attempted to use this 
formulation to account for a broader set of time-of-day and 
time-on-task effects (discussed more later), and found this 
approach lacking for several reasons. Using this formulation, 
it was impossible to find a set of parameter values that 
produces acceptable results simultaneously for both time-on-
task and time-of-day effects—especially when the latter is 
drawn out to long periods of sleep deprivation. For example, 
consider how the model might account for lapses in the 
psychomotor vigilance task (PVT), where participants simply 
see a visual stimulus and press a button in response, and 
where a lapse is defined as a response time greater than 
500 ms. Using the formulation above, the model can nicely 
fit the number of lapses in the early stages of fatigue, namely 
during the first day or two without sleep; however, this 
produces a model that rarely suffers the sleep attacks 
(response times greater than 30 s) suffered by humans after 
48-88 hours of sleep deprivation. On the flip side, if the 
model parameters were fitted to produce a human-like 
frequency of sleep attacks, the lapses under moderate fatigue 
would be much too large. 

In summary, this was not an issue of parameter fitting—the 
model formulation itself was fundamentally flawed. Closer 
analysis of the model revealed its theoretical flaw: increasing 
values of the biomathematical model 𝐵% 𝑡  over time would 
actually scale down the time-on-task effect—effectively 
making the time-on-task effects smaller as the model became 
more fatigued. This effect is counterintuitive, and indeed, we 
did not find any evidence to support it in our available data 
or in the literature. In addition, in their study of time-on-task 
effects, Veksler et al. (2018) found no correlation between 
either prior night’s sleep or wake-up time and the difference 
in response times between the first and last blocks of a 35-
minute task—indicating an additive, not multiplicative, 
relationship between time-of-day and time-on-task (see 
Kribbs & Dinges, 1994; Gunzelmann et al., 2010). 

Yet another observation about the naïve combined model, 
and about the earlier time-on-task model, relates to the 
model’s 𝐹345 𝑛  equation. Recall that this factor incorporates 
the idea of cascading microsleeps, such that when a 
microsleep occurs, another is more likely to happen in the 
subsequent cycle. In the original formulation, because 
𝐹345 𝑛 = 𝑐345 7 and 0 < 𝑐345 < 1, there is a rapid initial 
drop for small 𝑛 followed by a leveling off to an asymptote 
near zero. Instead, based on our observations of sleep attacks, 
a better formulation would allow for only a slight drop for 
small 𝑛, but as 𝑛 gets larger, the microsleeps would rapidly 
deteriorate into a sleep attack. 

The Unified Model 
Given the reasoning above, we created our unified model 
based on the earlier models of time-of-day and time-on-task 
while reflecting the evidence above. In particular, we 
modified the formulations of several equations as follows. 
First, we changed the decrement factor to a negated 
exponential function to introduce a steep drop in fatigue as 
microsleeps accumulate: 
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𝐹345 𝑡, 𝑛 = − 𝑒 5HIJ∗7 + 2	

Next, we modified the biomathematical factor to eliminate 
the initial 1 in a way that forces it to reduce the overall utility: 

𝐹+", 𝑡 = −𝑐+", ∗ 𝐵%(𝑡)	

We then introduced the additive effect between time-of-day 
and time-on-task into the computation of fatigued utility: 

𝐹C,C 𝑇 = (1 + 𝑇)5DED	

𝐹𝑈" 𝑡, 𝑇, 𝑛 = 𝐹345 𝑡, 𝑛 ∗ 𝐹+", 𝑡 + 𝐹C,C 𝑇 + 𝑈" 𝑡 + 𝜖 	

Analogous changes were applied to the utility threshold: 

𝑈𝑇+", 𝑡 = −𝑑+", ∗ 𝐵%(𝑡)	

𝑈𝑇C,C 𝑇 = (1 + 𝑇)3DED	

𝑈𝑇 𝑡, 𝑇 = 𝑈𝑇+", 𝑡 + 𝑈𝑇C,C 𝑇 + 𝑈𝑇>	

These changes all together represent our unified model that 
accounts for both time-of-day and time-on-task effects. The 
next section aims to validate this model across two 
experimental data sets. 

Model Evaluation 
To validate our model, we rely on two studies that employ 
arguably the most common task in fatigue-related studies, 
namely the psychomotor vigilance task (PVT: Dinges and 

Powell, 1985). As mentioned, the PVT involves an extremely 
simple stimulus-response. PVT has been used extensively in 
sleep-related studies because of its sensitivity to sleep and 
circadian-based fatigue and its procedural simplicity and the 
consistency of individual performance (e.g., Gunzelmann, 
Moore, Gluck, Van Dongen, Dinges, 2008; Dorrian et al., 
2005). PVT is thus a highly sensitive sustained attention task 
which can be an independent measure of fatigue (Van 
Dongen et al., 2011). 

A typical PVT trial lasts 10 minutes and requires a button 
response every 2-10 seconds. The visual stimulus is a 
millisecond counter displayed on the screen, which starts at 0 
at stimulus onset and counts forward as time passes; when the 
person presses the response key, the counter stops, thus 
providing feedback for performance. The main dependent 
measure in the PVT is the number of lapses, where a lapse is 
defined as a reaction time of more than 500 ms. Researchers 
have also measured the median response time (RT) of alert 
responses (reaction times between 150 and 500 ms), false 
starts (incorrect keypresses or reaction times less than 
150 ms), and sleep attacks where the participant does not 
respond for 30 seconds or more. 

It is worth noting that we used a single set of parameter 
values for the models in both studies. Our unified model 
contains 7 free parameters in total (see Table 1). Another 
parameter that was treated as a free parameter in previous 
models is cycle time, which controls the amount of time to 
evaluate and select a production during each cognitive cycle. 

 

 
Figure 2: Human and model results for the PVT across 88 hours of sleep deprivation (Study 1). 
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We used the default value of 50 ms (Anderson, 2007) to keep 
the consistency with ACT-R theory. To reduce the chance of  
overfitting, we searched the parameter values to first fit 
parameters related to the time-on-task effect and then used 
the same values to fit parameters related to the time-of-day 
effect. Table 1 shows the list of free parameters and our best 
estimates for each parameter.  
 
Table 1: ACT-R unified fatigue model free parameters and 

their estimations. 

 

PVT Model 
Because the fatigue mechanisms described here are general 
to any production system or task, we require a model 
specifically of the PVT to test the fatigue mechanisms. For 
this purpose, we developed an ACT-R model that performs 
the PVT in as straightforward a manner as possible, with 
three main production rules, following the original model by 
Walsh et al. (2017):  

1. Attend: shift visual attention to the stimulus 
2. Encode-and-Respond: completes the visual encoding of 

the stimulus and initiates the response keypress 
3. Wait: wait for the next stimulus 

To capture the false starts in the PVT model, Walsh et al. 
(2017) used procedural partial matching: when enabled, 
productions whose conditions do not perfectly match the 
current state get a chance to be selected with a similarity 
difference (a negative value) added to their utility: 

𝑈"L = 𝑈" + 𝑆𝐷" + 𝜖	

𝑆𝐷" is the similarity difference which is added to the utility 
value when the conditions for the production are not met. At 
each cycle, the production with the greatest value 𝑈" is 
selected when its utility exceeds the utility threshold. By 
enabling the procedural partial matching, Walsh et al. (2017) 

                                                             
2 Base utility is defined as the standard utility value for all 
productions. 

eliminated the need of a separate production (false-response); 
encode-and-respond can be selected at any time and when it 
is selected before the stimulus appears, false starts occur 
(which happens rarely because of the similarity difference 
added to it). 
 In the design of PVT in Walsh et al. (2017), UOL was treated 
as a single free parameter meaning that one value was 
estimated and used for all the productions. The ACT-R's 
procedural learning (Anderson, 2007) was also disabled due 
to the nature of PVT and similar sustained attention tasks 
(Van Dongen et al., 2003) and the similarity difference was 
set to negative value of the production utility to simplify 
matters. Here we follow a similar design to stay consistent 
with earlier studies. 

Study 1: Time-of-Day Experiment and Results 
The first study for our model evaluation is a study of long-
term sleep deprivation conducted by Doran et al. (2001). The 
study included 13 healthy participants who experienced 88 
hours of total sleep deprivation. During periods of 
wakefulness for the duration of the study, participants 

Parameter Definition Estimates 

𝑐345 Utility decrement factor . 006 

𝑐+", Utility biomathematical 
factor 

. 028 

𝑐C,C Time-on-task 
decrement factor 

. 12 

𝑈" Base utility2 1.56 

𝑑+", Threshold 
biomathematical factor 

. 01 

𝑑C,C Threshold time-on-task 
decrement factor 

. 04 

𝑈𝑇> The initial threshold 1.15 

  
Figure 3: Human and model PVT results across the 
5-min blocks of the 35-min experiment (Study 2). 
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completed a battery of performance evaluation tasks every 2 
hours, including a 10-minute PVT. Although Gunzelmann et 
al. (2009) modeled the same experiment, our effort here is 
different in two ways: (1) the older model used different 
parameter values for each day, whereas we are constraining 
our model to a single set of parameters; and (2) the older 
model did not include the time-on-task factor; although time-
on-task was not a focus of the study, it is important for us to 
know that the model can produce a good fit while 
incorporating this factor (see also Gunzelmann et al. 2011). 

To model this study, we ran iterations of the PVT model 
for 10-minute periods and matched the sleep schedule of the 
model to the 88-hour sleep deprivation experimental 
protocol. Parameters were estimated to produce the best fit 
across the four PVT measures; a single set of parameter 
values was used across the entire experiment. Figure 2 shows 
the human data and model’s performance for all four 
measures: lapses (𝑅V = 0.68, 𝑅𝑀𝑆𝐸 = 7.92), median 
reaction times (𝑅V = 0.55, 𝑅𝑀𝑆𝐸 = 34.41), false starts 
(𝑅V = 0.56, 𝑅𝑀𝑆𝐸 = 3.42), and sleep attacks (𝑅V = 0.77, 
𝑅𝑀𝑆𝐸 = 0.64). Overall, the model accounted for all the 
major aspects of the data; it slightly underpredicted lapses in 
days 1-2, and slightly overpredicted RT in days 4-5, but in 
general, the model captured most of the fluctuations in 
performance across all four measures. 

Study 2: Time-on-Task Experiment and Results 
The second study for our model evaluation is a study 
examining time-on-task effects conducted by Veksler and 
Gunzelmann (2018). In the study, 20 participants performed 
a 35-minute PVT instead of the usual 10 minutes; by 
extending the typical PVT duration, they were able to draw 
out how the effects of time-on-task on PVT are similar to 
those of sleep loss. As mentioned earlier, Veksler and 
Gunzelmann modeled the time-on-task effects in this 
experiment, but at the time did not incorporate the 
biomathematical model, and used a different set of 
parameters than earlier models. To include biomathematical 
modeling in our simulations, we assumed 8 hours the night 
before the experiment, waking at 7:30am and performing the 
experiment at 10:00am. 

The results of the model compared to the human data are 
shown in Figure 3. For this evaluation, we compared the 
performance of the model with the experimental results 
across seven 5-minute blocks of PVT. The model was able to 
capture the changes across the blocks for median reaction 
times (𝑅V = 0.85, 𝑅𝑀𝑆𝐸 = 9.67), lapses (𝑅V = 0.53, 
𝑅𝑀𝑆𝐸 = 1.27), and false starts (𝑅V = 0.55, 𝑅𝑀𝑆𝐸 = 0.69). 
The model shows a slight overprediction of lapses in the 
middle blocks, but in general, the model performs well for 
these three measures, especially considering that this is the 
same model with the same parameters as the previous study. 

General Discussion 
In this paper, we introduce a unified computational model 

that accounts for two of the most important aspect of fatigue, 

namely time-of-day and time-on-task effects on behavior and 
performance. Our result once again accounts for the 
microlapse hypothesis (Gunzelmann et al. 2009) and the fact 
that microlapses could account for both sleep loss and time-
on-task effects in sustained attention (following Veksler et 
al., 2018). We were also able to capture both the time-of-day 
and time-on-task effects with the same parameters; going 
forward, we are interested in understanding how these 
parameters might generalize to other tasks, and how they 
might vary across individuals. It is also notable that the 
mechanisms here are complex, with a number of free 
parameters that are sensitive to changes in setting. 
Nevertheless, we believe that as we continue to fit additional 
experiments with this unified model, we can reduce the space 
of free parameters and can find parameter values that cut 
across a variety of task domains, providing an even more 
general model with easier estimation of parameters.  

In conclusion, by validating that the unified model can 
account for the negative consequences in behavioral 
performance of both time-of-day and time-on-task effects, we 
have demonstrated that both phenomena have similar natures 
and as a result could be modeled with a single set of 
mechanisms. Although PVT as a testbed for our modeling 
seems to be a simple task, this research will give us a strong 
foundation to expand the model to more complex domains. 
We are also interested in extending this model beyond the 
sleep-loss and time-on-task to moderate levels of fatigue 
(e.g., sequential sleep limitation), which would further 
bolster the model’s generalizability to complex real-world 
task domains. 
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