Title
Multiple mechanisms of H-channel dysfunction in inherited and acquired epilepsy

Permalink
https://escholarship.org/uc/item/8jp0w0td

Journal
EPILEPSIA, 47

ISSN
0013-9580

Authors
Budde, Thomas
Baram, Tallie Z
Poolos, Nicholas P

Publication Date
2006

License
CC BY 4.0

Peer reviewed
Multiple mechanisms of h-channel dysfunction in inherited and acquired epilepsy

Thomas Budde, Tallie Z. Baram, and Nicholas P. Poolos

(1Physiology, Westfälische Wilhelms-Universität Münster, Münster, Germany; 2Pediatrics, University of California at Irvine, Irvine, CA; and 3Neurology, University of Washington, Seattle, WA)

Hyperpolarization-activated cyclic nucleotide-gated ion channels (better known as h- or HCN channels) are gaining increasing attention for their influence on the excitability of CNS neurons. Recently it has become apparent that dysfunction of h-channels may play a role in both inherited and acquired epilepsies, so that pharmacological manipulation of h-channels may have antiepileptic efficacy. In this workshop, we will review the expanding evidence for an “h-channelopathy” in epilepsy, and explore how the multiple molecular mechanisms of h-channel regulation may suggest new therapeutic strategies. Thomas Budde will discuss the involvement of h-channels in animal models of absence epilepsy and the underlying molecular defects responsible for generation of epileptic discharges; Tallie Z. Baram will review the mechanisms by which experimental febrile and other developmental seizures alter the expression of the HCN channels; Finally, Nicholas Poolos will discuss pharmacological targeting of h-channel dysfunction by post-translational modification.

Epilepsia, Vol. 47, S4, 374, 2006