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ABSTRACT OF THE THESIS

Real-Time Adaptation of Visual Perception

by

Avadhesh Rathi

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, December 2022

Dr. Hyoseung Kim, Chairperson

Autonomous driving has taken a leap in recent years due to the significant im-

provements in convolutional neural networks and advanced video processing algorithms.

Despite these advancements, the criticality of the application has been of major concern as

any error can lead to loss of life. When designing an autonomous vehicle, amongst all the

different stages of perception, planning and control, perception takes the most amount of

time. Understanding the scene accurately and in time is important and has been a challenge

due to computationally heavy algorithms and machine learning models used. Recent studies

have focused on this issue and proposed various approaches that utilize multiple sensors and

expensive setups for perception. However, these systems do not adapt and scale to utilize

the underlying resources to their fullest.

In this thesis, we present a simple yet effective approach that focuses on reducing

the latency for real-time visual perception in autonomous vehicles. We take input from a

single camera and perform lane and object detection. By dividing the input frame into

critical and non-critical regions and utilizing both CPU and GPU resources for the work-

vi



loads, we obtain both fast and accurate results. In addition, we propose an adaptive scaling

algorithm that tunes the input image resolution based on the processing time to ensure a

real-time processing timeline. To test our approach, we build a small prototype of the car

using Jetson Nano equipped with a wide-angle camera and a motor driver to control four

DC motors on each wheel. We conduct a case study on this prototype using a real-world

dataset and compare it against conventional approaches. The results suggest that our pro-

posed system recognizes the objects in the frame with minimal latency and good accuracy

as compared to the other approaches.
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Chapter 1

Introduction

1.1 Motivation

With recent advancements in the field of deep learning, there has been a surge

in the number of smart and intelligent products around us. Throughout this period, the

autonomous driving application has been and is still a very hot topic due to a variety of

benefits: reduce traffic congestion, decrease accidents and save lives, increase safety and

make transportation more accessible. The idea of driver-less cars has been a fascinating

research topic [15, 2, 13]. And the increasing amount of computing power through various

processing platforms like GPU (Graphics Processing Unit) and TPU (Tensor Processing

Unit) has further boosted this. These units are capable of performing tons of operations

in parallel and have dedicated architecture for machine-learning applications [22, 24, 23].

With all these advancements, perception has still been an area of concern in autonomous

driving [10, 15]. Understanding and evaluating the scene around the car fast and accurately

is critical to the application.
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A ton of factors have to be taken care of when deciding the motion of the vehicle as

it is very crucial to the safe and reliable operation of an autonomous vehicle [27]. Multiple

sensors are used around the car to get a complete understanding of the scene. These sensors

continuously capture information in various formats and are the primary decision-making

factors. Most of the implementation relies on multiple sensors facing what is in front of the

car to gather a 3D sense of nearby objects and understand them. These include expensive

sensors like LiDAR (Light Detection and Ranging). In [14], the authors introduce various

hardware support and computation algorithms for ADAS (Autonomous Driving Assistance

System) and discuss the pros and cons.

Modern techniques are developing different image processing and computer vi-

sion mechanisms to compensate for the expensive LiDAR sensors without compromising

accuracy but it has been challenging due to excessive latency. Perception has always been

compute heavy but has various aspects to it. In this thesis, we present a fast and simple

yet innovative approach to understanding the scene on embedded edge computing devices

like Nvidia Jetson Nano. We focus on two important aspects of visual perception – lane

detection and object detection – and propose an approach that concentrates on reducing

the latency in perception without compromising the accuracy. By efficiently utilizing both

CPU and GPU cores for processing different regions of the image based on their criticality,

we attain this desired goal. We also introduce an adaptive scaling mechanism that auto-

matically tunes the resolution of the input frames and finds the best-suited value for that

particular computing platform while ensuring that processing rates are not compromised.
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1.2 Thesis Outline

The thesis is organized into different chapters as follows:

• Chapter 2 discusses the previous work done in the domain of perception for au-

tonomous driving applications. This chapter provides insights into different approaches

already proposed by different authors and focuses on the benefits and drawbacks.

• Chapter 3 describes the entire system design of the thesis and a deep dive into each

of the design choices made with the reasons behind them. It also presents the imple-

mentation from both hardware and software perspectives.

• Chapter 4 focuses on the evaluation criteria and methodology. It presents a case

study using the KITTI dataset [6] to evaluate our proposed system and compare

them against conventional approaches. Finally, the chapter discusses the results and

draws a conclusion based on them.

1.3 Contribution

The main contributions of this thesis work are as follows:

• Propose a novel runtime mechanism that utilizes both the GPU and CPU resources

of an embedded edge device efficiently to reduce the end-to-end delay of perception

algorithms, without compromising on the accuracy.

• Propose a simple yet effective approach to identify the critical region in the scene.
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• Propose an adaptive scaling algorithm that makes the system dynamically adjust its

performance based on onboard computational capabilities.
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Chapter 2

Related Work

In this chapter, we discuss previous research and studies in related areas and

compare them against our approach. We divide the previous work into different sections

based on the area of research.

2.1 Small-scale cars

There have been numerous research papers that center their work on building

autonomous vehicles using cheap computing platforms and lightweight algorithms and ma-

chine learning models. The authors of [20] propose building a Level-4 autonomous driving

vehicle using a single off-the-shelf card. Though they utilize low-cost boards like Jetson

AGX Xavier, they get the input data from a cluster of expensive sensors like LiDARs.

In [1], the authors propose a low-cost neural network-based car, called DeepPicar, which

utilizes a Raspberry Pi and camera input for lane detection only. The paper conducts a

thorough study on inferencing the lane detection model with different workloads but fails
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to fully utilize the computing resources on the Raspberry Pi to include other important

autonomous driving functionalities. In our proposal, we focus on low-cost embedded edge

devices and present an approach for a fast and accurate perception in autonomous driving

by utilizing all available onboard resources.

2.2 Perception

Various methods of perception have been developed over the years. Based on the

level and scale of implementation, different techniques are used, ranging from convolutional

neural networks to traditional image processing and computer vision mechanisms. [14]

summarizes the different sensors and prediction algorithms used for perception. LiDARs

have been very popular and advantageous for depth estimation. Authors in [9] propose a

method to 3D object detection, classification and tracking using point clouds formed by

LiDARs. Here, accuracy is of more interest than latency. In another research, DeepDriving

[5], the authors propose mapping the input image to a small number of key perception

indicators that directly relate to the affordance of road/traffic state for driving. Though

the perception map generated shows good resemblance to the actual scene, it does not detect

the type of object. Also, since the proposed CNN model uses the AlexNet architecture, it

has around 62 million parameters that hinders a real-time processing.

In our implementation, since we use an edge device for processing, we focus on

computationally lightweight methods. Also, we use only lane and object detection for the

perception. One of the first neural network based lane detection mechanism was proposed

by Pomerleau et al. [18]. Recent advancements have come up with more and more accurate
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lane detections. For example, authors in [21] use an edge-cloud computing mechanism for

fast and accurate results. For our implementation, we take the motivation from [1] and use

the NVIDIA’s DAVE-2 model whose CNN architecture is originally proposed in [4]. There

are 9 layers, including 5 convolutional layers and 3 fully connected layers. Calculating the

total number of parameters/weights, it comes to be around 250,000 which computes fast

on edge devices. In addition, this model has been tested on NVIDIA’s real autonomous

driving car as mentioned in [4].

Object detection is an important part of perception and detections from single

image has evolved with the advancements in machine learning. The various object detection

algorithms are proposed to perform multiple detection from the single image, the algorithm

- region based CNN (R-CNN) [8] divides the whole input image into 2000 sub-regions based

on selective search algorithm and pass each region into the CNN model to extract feature

which is further given to output dense layer to predict its class and it also predicts four

values which correspond to the bounding box of the object in an image. Next, fast R-CNN

[7] was proposed to tackle the limitation of R-CNN which takes a long time to classify

2000 regions from a single image. To reduce the time taken we pass the complete input

image into CNN and then take the proposed sub-regions from the output feature maps.

These are then passed to the pooling layer followed by fully-connected layer to warp the

region into square-features, eventually working into softmax and regressor layer to classify

the image and get the bounding box coordinates. Then, the YOLO(You Only Look Once)

[19] algorithm was introduced which takes whole input image for predictions instead of the

above region-based proposed methods. In this algorithm, the entire image is divided into
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a S × S grid and then m bounding boxes from each grid are selected, which are used to

detect the class of an object and predict the offset value of bounding boxes. YOLOv4 [3],

a newer version is used as the object detection mechanism in this thesis.

2.3 Latency and Accuracy

Many researchers have centered their work on identifying the deficits or time con-

suming parts of the perception and proposed different methodologies. RTOD [11], a real-

time object detector with minimized end-to-end delay for autonomous driving points out

the contentions and delays in object detection and presents zero-slack and contention-free

pipeline mechanisms. Although the results show a good improvement in inference rates,

the authors do not consider dividing the workloads or implementation on different architec-

tures for comparison. In another paper - DNN-SAM [12], the authors propose a dynamic

Split-and-Merge Deep Neural Network execution and scheduling framework that splits the

input image into mandatory and optional sub-tasks and processes them individually based

on the criticality, merging the results later. Expensive sensors like LiDAR and fusion cam-

eras are used for critical region identification, resulting in good accuracy but high latency.

Also, since a scheduler is designed to run the tasks, it is not guaranteed that the optional

sub-tasks might always be scheduled due to less or no available time slice. Apart from

these, there has been study to improve computation of image data and neural networks on

GPU. [17] studies the effect of co-scheduling multiple image processing tasks on the GPU

and improve it. Similarly, [26] presents a system solution that optimizes the execution of

DNN workloads on GPU in a real-time multi-tasking environment. These papers focus
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on the conflicts and issues while using GPU but not on type of task in consideration or

an application specific usage. In our work, we focus on obtaining an optimal balance of

accuracy and latency by utilising all the hardware resources and dividing workloads into

parallelizable tasks.
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Chapter 3

System Design

This chapter focuses on the implementation details and the design choices. We

first introduce the overall system design, followed by the perception methodologies used,

and then present a runtime mechanism to execute individual perception workloads of the

system on CPU and GPU resources based on their criticality and execution time. Along

with this, we propose an approach to determine the critical region in the frame.

3.1 Overall Design

This section describes the overall design of our system. Autonomous driving as

an application has stringent timing constraints and has to be accurate in analyzing the

surroundings. In this thesis, we present an approach to reducing the end-to-end delay of

analyzing the scene for an autonomous driving application without compromising on the

accuracy. We develop a small-scale prototype to implement and test our approach which

can easily be ported to other platforms and also be subjected to real-world environments.
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Figure 3.1: Hardware Block Diagram

The small-scale prototype consists of a computing platform, a single camera sensor

mounted in the front of the car, a motor driver to drive the four DC motors on each wheel

and a power bank to power the main board. Fig 3.1 shows the hardware block diagram of

our implementation. All the hardware components can be spotted. In order to choose each

of these, we take inspiration from NVIDIA’s Jetbot [16] and use the following components

for implementation:

• Jetson Nano: This is the computing platform used. It has 128-core Maxwell ar-

chitecture GPU, quad-core ARM CPU, 4GB 64-bit LPDDR4 RAM and can process

videos of up to 4k resolution at 30fps. This makes it both cost and performance effi-

cient. For compute-heavy applications like autonomous driving, the GPU capabilities

become very useful.

• IMX219 Camera sensor: This camera has a wide angled view that covers 160°of

the field. As our work involves the usage of a single camera, we utilize this to capture

as much information as possible and process it conveniently on the Jetson Nano.
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• Adafruit DC Motor + Stepper FeatherWing: This motor driver can control

four DC motors or two Stepper motors at once which fits in well for the purpose. It

also comes with the Adafruit Motor library for ease of use.

Figure 3.2: Overview of System Flow

Next, we move on to the system design. Fig 3.2 shows the block diagram of the

system flow. The entire flow focuses on the visual perception of input camera frames and is

divided into three parts handled by three different threads running in parallel. The block

‘GStreamer Camera Pipeline’ is responsible for continuously updating the frame object

‘Image Frame’ shared by all the threads. Each of the threads is responsible for a task that

helps in understanding the scene. The first thread labeled ‘Thread 1’ takes the input frame
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and runs the lane detection model, giving the steering angle as the output. This output is

utilized for controlling the motors as well as by ‘Thread 3’ for identifying the critical region

in the frame. The second thread, labeled as ‘Thread 2’ in the block diagram takes the

input image and runs the object detection model on the entire frame at a higher resolution

initially. Based on the time taken for this inference, the resolution of the image fed to

the model is adjusted. This is called the ‘Adaptive Scaling Algorithm’. It automatically

finds the optimal resolution that achieves the ‘Target FPS’ (Processing rate that does not

compromise on latency, yet providing accurate results). Once the resolution is settled, this

thread keeps on inferencing the object detection model continuously. The third thread,

labeled ‘Thread 3’ runs another instance of the object detection model, but on the critical

region of the image. All these threads keep running simultaneously providing an accurate

and fast perception system for the autonomous driving application.

It can also be noticed that the threads 1 and 2 run on CPU but the thread 3

utilizes the GPU resources. The next sections of this chapter explain these design choices

and the reason behind them in much more detail.

3.2 Perception Algorithms

Perception - understanding and interpreting the scene, is one of the most important

parts in autonomous vehicles. Modern systems use a variety of sensors like RADAR and

LiDAR to accurately represent the scene. Information such as depth, distance and direction

can be easily provided by such sensors but it does not replicate human vision, meaning it

fails to interpret the type of object, the sign and signals important to drive safely in most
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scenarios. For such reasons, camera sensors are paired with them or used as a stand-alone

as it provides much richer information of the scene.

A camera sensor can help in detecting a lot of information including traffic light

identification and classification, lane detection, and last and the most important - for object

detection and classification. As mentioned earlier, in our implementation, only a single

camera is used to capture the frames from the front of the car. Since our work focuses on

optimizing the visual perception by utilizing the available resources, a single wide-angled

camera serves the purpose. The wide angle of 160° on IMX219 helps in gathering as much

as possible information from the scene.

In order to analyse the scene, we need to identify the lane and objects in the frame.

Since the implementation is a small-scale working model, it is important for the car to stay

on track while analyzing the objects on the way. Therefore, we utilise the lane and object

detection mechanisms for our approach.

3.2.1 Lane Detection

For lane Detection, we use the DAVE-2 model as suggested before, shown in Fig

3.3. The weights of the network are trained to minimize the mean-squared error between

the steering output by the network and the ground truth (actual angle of rotation required

to stay in the lane). Since the model is trained on the video stream from the dashboard of

the car to output the steering angle, it fits in very well in the implementation of a working

model for the prototype. The output steering angle is restricted between -30° and 30° as it

is sufficient for accuracy and performance, allowing movement in all directions.
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Figure 3.3: CNN Architecture of DAVE-2 Model [4]

Now in order to imitate and make the lane detection model work for our use case

(on small scale), we need the dataset that suits. As the dataset used in [4] is from real-world

and we need to make the car to move on a track taped on the floor, we retrain the model

using the dataset used and provided by the authors in [1]. Retraining the DAVE-2 model

using the suggested hyper-parameters, epochs and batch size in [1], we obtain an accurate

way of detecting the lane.
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3.2.2 Object Detection

Next we move on to the next section of perception - the object detection. Since

the advancement of convolution neural networks (CNN), massive research has been done in

the field of object detection which has shown many practical applications in autonomous

vehicles, robots, and much more. Various deep-learning methods have been proposed since

then like R-CNN, fast R-CNN, faster R-CNN and You Only Look Once (YOLO). The reason

for YOLO to be widespread and used in many real-world applications is for its accurate and

high inference computation time compared to above deep learning based object detection

methods.

Different versions of YOLO - The first version of YOLO (YOLOv1), performed

detections without processing the image multiple times hence justifying its name. They

divide the input image into predefined multiple grids (S × S) and if the center of an object

falls into that grid, it is then responsible for the detection. Each grid cell then predicts the

class probabilities and the bounding boxes, B. For each of the bounding boxes, the model

outputs four coordinates - x, y (center coordinates of the box) and h, w (height and width of

the box) along with confidence score C. Hence total predictions, pred = S×S× (B ∗5 +C)

for a single input image. The architecture for this version of YOLO has 24 convolutional

layer and 2 dense prediction layer and the Tiny-YOLO version contains only 9 convolutional

layer. The major problem of this version is if the grid contains multiple objects then the

model will not predict all of them.

After various versions of YOLO, the recent version YOLOv4 [3] is used in our

method. This paper introduces various new modules which increase the performance of ob-
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Figure 3.4: Overview of YOLOv4 Object Detector [3]

ject detection like weighted-residual-connections (WRC), Cross-Stage-Partial-connections

(CSP), Cross mini-Batch Normalization (CmBN), Self-adversarial-training (SAT) and Mish-

activation. It also adopts the dropblock regularization block and mosiac data-augmentation

mechanism. Figure 3.4 shows the complete architecture of YOLOv4 where the input image

is passed into the backbone (RESNET-based backbone used for our method) which is fur-

ther passed into the Neck module (contains FPN/Bi-FPN block) and finally given to the

YOLO dense prediction module. The authors of YOLOv4 have shown the impact different

resolution images has on the fps and accuracy. They show that for the same backbone archi-

tecture, the fps reduces and accuracy increases as the resolution of the image is increased.

We utilize this property of YOLO throughout our proposed system.
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3.3 Critical Region Identification

Autonomous driving as an application is very critical as it requires an appropriate

level of control and accuracy while understanding and evaluating the scene. Due to that,

identifying the critical parts of the frame - for example, calculating the time left to avoid a

potential collision with some object right in front of the car or recognising both nearer as

well as farther objects in the frame, becomes an essential part of the process.

A lot of computation and memory resources go into this. Most of the implementa-

tions use expensive sensors like LiDAR and RADARs or computationally expensive depth

estimation algorithms to realise the critical part of the scene. For our implementation

though, we utilize the existing resources to come up with a simple yet efficient way. We

define the critical region as the area right in front of the car, the region that covers most of

the relevant information of the scene. Since we have a lane detection model that identifies

the lane and provides the steering angle as the output, we already have the information

needed to find the critical region. In other words, we utilize the angle to identify the region

in front of the car (critical region). For example, if the lane detection model gives out the

steering angle as 30°, then the critical region is identified as the bottom right part of the

frame as the car is now set to turn right. An example is shown in Fig 3.4. Since the lane

detection model outputs angle between -30° and 30° the critical region is appropriately

identified for each and every angle in between which makes it more precise.

Once the critical region is identified, it is cropped and processed separately as

explained in the later sections of this chapter. There are multiple reasons for choosing the

proposed way of identifying the critical section:
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Figure 3.5: Critial Region Identified for Steering Angle of 20°. [6]

• The region right in front of the car changes at a faster rate and may contain smaller

objects (also the farther ones) that the might be difficult to identify in the entire

frame.

• The Jetson Nano platform being resource constrained, we need to be decisive on what

to utilize the resources on. Since we also run the YOLOv4 object detection model on

the cropped region, we cannot afford to spend more time on identifying it.

• The output from the lane detection model is very well utilized for this purpose. This

reduces the unnecessary processing time needed for any other approach, thus giving

a high throughput.

3.4 Runtime Mechanism with Adaptive Scaling

The previous sections mentioned about the perception algorithms used in our

system and the proposed critical region identification method. In this section, we propose

a runtime mechanism that constructs perception into multi-threaded tasks and executes
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them in parallel in order to achieve better performance. For the sake of understanding the

scene accurately and in a timely manner, we divide the entire perception workload into the

following tasks:

• The first task is to inference the lane detection model and obtain the steering angles

to drive the car as well as identify the critical region.

• The second task is to inference the object detection model on the entire input frame

and identify the bigger objects in the frames captured by the wide-angled camera.

• The third task is to inference the same object detection model on the critical region,

thus identifying the smaller objects right in front of the car.

We can challenge the reasoning behind dividing the tasks as above by considering

the alternative approaches. Firstly, since the lane detection model is independent of the

YOLOv4, it can run in parallel. Next, let us consider that the system just focuses on

inferencing the object detection on the entire frame at the best resolution possible without

compromising on the throughput i.e. the fps. Though the Jetson Nano platform has good

computing capabilities, the YOLOv4 being compute heavy still poses some strain on it.

And as mentioned in [3], in order to decrease the inference time, we need to reduce the

resolution of the input frame. But by doing that, we fail to recognise some of the smaller

objects that might be in the critical region of the frame. Hence, we drop this approach.

On the contrary, if the system is designed such that it only inferences the object

detection on the identified critical region, we fail to analyse the entire scene. In this case,

any potential hazard incoming from outside the frame remains unrecognised until it arrives

in the critical region and by the time it is recognised, it might be too late to prevent a
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potential accident. As a consequence, we do not opt for this approach as well. Instead, we

decide to run both the tasks in two separate threads. These threads do not compete for

any shared resource and can run independently. By dividing the tasks, we do not miss on

analysing any essential part and rather get a deeper understanding of the scene.

Focusing on the implementation of the proposed approach, we first identify the

dependency of the threads on each other. All the thread functions need the most recently

captured frame as their input. In order to fulfil this, we assign a global variable accessible

to all the threads which keeps updating regularly. Also, to avoid any write while read, we

maintain two variables that update alternatively and point the global variable to it. Since

the third thread identifies the critical region based on the output of the lane detection

model, we declare a shared variable that updates the same way as the frame. For all

this implementation, we use the POSIX thread (pthread) library due to its effectiveness in

achieving parallel and distributed processing.

Adaptive Scaling Algorithm. As mentioned in 3.1, there is an added mechanism that

provides for the adaptability of the perception methodology - ‘Adaptive Scaling Algorithm’.

This algorithm finds the best resolution that the image can be processed at without com-

promising on the latency. The algorithm starts with a high resolution (set at 512 × 512)

and calculates the average frames per second (fps) achievable at that resolution and keeps

changing it until an optimal fps (set at 1 fps) is attained. Due to this added functionality,

the entire system can be ported to a different computing platform. If a better platform is

used, then the target fps can also be increased for a faster processing rate and the algorithm

can do the rest, settling for the resolution that works best and fully utilizes the computing
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capabilities. This adaptability is possible due to YOLOv4’s property that it takes less time

to process a lower resolution image and vice versa.

3.5 CPU and GPU workloads

The Jetson Nano has 128 core GPU and multi-core CPU. Due to its GPU capa-

bilities, the device provides for a faster inference of CNN models. As seen in the previous

section, we divided the system into different tasks. It is now an important factor to decide

which task runs on what processing unit as that decides the overall performance of the

system. Carefully analysing the tasks, we propose the following:

• The first task (inferencing the lane detection model) is made to utilize the CPU.

• The second task is running the object detection model on the entire frame. We assign

this task to another CPU core.

• The last task is inferencing object detection on the critical region, which we assign to

the GPU.

In our proposed methodology, we make sure that the third task utilizes the GPU

completely with the other two tasks running independently on the CPUs. In section 3.4, we

mentioned that the critical region covers most of the scene as it focuses on the region right

in front of the car. This means to say that it is important to process the critical region at a

faster rate and a higher resolution as compared to the entire scene as any potential hazard

is most likely to be caused in this part of the scene. Assigning all the GPU resources to

process the critical region ensures this. On the contrary, the entire scene is just a repetition
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of the critical region with some extra peripheral vision. Thus, it is fair to process it on

the CPU with the highest resolution possible without compromising the processing rate.

Designing the system this way ensures that both the farther as well as the closer objects in

the frame are recognised as soon as possible.

It can be noticed that with this approach, the smaller objects in the peripheral

regions of the scene are not recognised as the resolution at which the entire frame is processed

is insufficient (Due to the constraint on the processing rate and limited computing capability

on the CPU). But in order to resolve it, if we were to assign both the tasks two and three

to the GPU, they would share the resources which will reduce the overall processing rate of

the scene and eventually lead to higher latency. Thus, we make a trade off, rather a good

one as most of the scene except the critical region is low priority most of the time.
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Chapter 4

Evaluation and Results

In this chapter, we evaluate our proposed model using real world dataset, compare

it against the other approaches and present the results. We first mention the inference

timings of the lane and object detection model on the Jetson Nano at different resolutions.

Then we go ahead and select a dataset to conduct a case study using an evaluation criteria.

Lastly, we compare the results obtained with different approaches and compare it with our

proposal.

4.1 Prototype Implementation and Testing

This section presents the hardware implementation of the small-scale prototype

used to test our proposal and compare it with the other approaches. Fig 4.1 shows the

prototype of our implementation. All the hardware components shown in Fig 3.1 can be

seen here. Once the car is deployed as shown, we then test the lane detection model using

a taped track on floor as shown in Fig 4.2. The track is built similar to the one used for
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training the lane detection model in [1]. Testing the car on this track, we obtain good

results i.e. the car stays in the lane at all times. Realising that the lane detection model

works well, this forms the foundation for the next steps of evaluation done in the rest of

this chapter.

Figure 4.1: Prototype of the Car
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Figure 4.2: Testing the Car on Track

4.2 Inference Timings

As mentioned before, we know that the Jetson Nano has both GPU and CPU cores

for computation. We run the program that fetches the image frames on demand from the

Gstreamer camera pipeline and feeds it to the lane as well as object detection (YOLOv4)

models. We then run it on different resolutions of input image and note the time taken

and processing rate. Once we run this on the CPU, we repeat on the GPU to decide the

resolution and the corresponding fps to be used for our implementation. Table 4.1 shows

the results for the YOLOv4. The lane detection (DAVE-2 model) takes same time i.e. 2

ms for all resolutions of an input frame. This inference time is very less compared to the

inference time for the YOLOv4, which makes it easy to be computed on the CPU.
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Image Resolution CPU GPU
Time taken Processing rate Time taken Processing rate

[ms] [fps] [ms] [fps]

1024 × 1024 29000 0.03 1480 0.67

512 × 512 7200 0.14 400 2.5

256 × 256 1800 0.55 140 7.14

128 × 128 650 1.5 100 10

64 × 64 250 4 90 11.11

Table 4.1: Time and processing rates for YOLOv4

Looking at the values above, we see that the time taken by the YOLOv4 is directly

proportional to the resolution of the input image and inversely proportional to the processing

rate. We also see that the time taken to process a 1024×1024 resolution image on the CPU is

way too long. Hence, for the Adaptive Scaling Algorithm presented in the previous chapter,

we set the initial resolution to the next lower value i.e. 512 × 512. Similarly, it can also be

noted that the maximum processing rate in fps attained by the object detection on CPU

is 1.5 fps at a resolution of 128 × 128. If we go lower than this, we heavily compromise on

the accuracy of the results as 64× 64 is a very low resolution for the objects to be detected.

Thus, while choosing the ’Target fps’ in the Adaptive Scaling Algorithm, we settle for 1 fps

as a lower processing speed than this can cause an undesirable delay and potential accident.

It must also be noted that these values are for a low-power computing platform like the

Jetson Nano. This can be easily scaled up to a better platform like Jetson TX2 which has

powerful computation resources - 256 core Pascal GPU architecture with 256 CUDA cores

and 8GB of 128-bit LPDDR4 RAM.

Another choice we make is deciding the resolution at which the critical region is

inferenced on the GPU. Looking at the table 4.1 above, we see that the processing rate at
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128×128 is 7.14 fps whereas at 256×256, it is 10 fps. Since the difference in the processing

rate is less compared to the low accuracy that we will face by using the lower resolution, we

settle for the 256 × 256 resolution when running the object detection on the critical region

of the scene.

4.3 Case Study

This section presents the case study conducted to compare our proposed model to

other similar approaches.

4.3.1 Dataset Selection

In order to perform this case study, we utilise a real-world autonomous driving

dataset - the KITTI Vision benchmark Suite [6] developed by Karlsruhe Institute of Tech-

nology and Toyota Technological Institute. This is one of the most popular datasets for use

in mobile robotics and autonomous driving application. The dataset consists of hours of

videos recorded with different sensor modalities, including high-resolution RGB, grayscale

stereo cameras and 3D laser scanners. The full benchmark suite consists of many tasks like

stereo, optical flow, visual odometry, 3D object detection and 3D tracking. The dataset is

captured and synchronised at 10 fps.

For this case study, we use the raw dataset from the suite. There are multiple

categories in raw dataset as well that include city, residential, road, campus, person and

calibration. We choose a video from the road category because of the simplicity. The video

consists of 435 frames stored as individual images with each having a resolution of 1242×375
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pixels. There a total of 9 Cars and 1 cyclist approaching towards the autonomous car from

far away and passing by, throughout the video. As the dataset is originally recorded at 10

fps, we maintain that and fetch the image frames at the same rate, replacing the GStreamer

camera pipeline that was used before.

4.3.2 Evaluation Criteria

Having selected the dataset to be used for the case study, we set up an evaluation

criteria that forms the basis of the study. As mentioned, the video consists of multiple

cars that arrive in the scene at different frames. We define frame in which the car becomes

visible and evident to the human eye as ‘Frame of Sight’. If this frame is processed for

object detection using YOLOv4 at a high resolution, it must be able to detect the car.

Next, we define the frame in which the first object detection results are obtained as the

‘Frame of Detection’, meaning the earliest detection of the object of interest using any

of the perception approaches mentioned next. Once we feed the video, we note down the

Frame of Detection and compare it with the Frame of Sight. This way, we can calculate

the latency with which the object was detected. If there are multiple objects in the frame,

then the accuracy can also be determined. Once evaluated, we compare the results with

different perception approaches explained next.

Our approach consists of running the lane detection model along with two instances

of the object detection model (one on CPU and other on GPU). To challenge this approach,

we choose some other approaches that may or may not arguably be as good as our proposed

methodology. The other methods used for comparison are:
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• For the first approach, we run the YOLOv4 model on GPU at a low resolution (128×

128) along with the lane detection model. This approach can process images at a

faster rate due to the low resolution but will fail to recognise the smaller objects in

the frame i.e. objects that are farther.

• For the second approach, we run the YOLOv4 model on GPU as well but at a higher

resolution (512×512) along with the object detection model. This approach can easily

recognise the farther objects i.e. at an early stage but will drop a lot of frames in

between due to the high processing times.

• This approach is very similar to our proposal. The only difference is that both the

YOLOv4 inferences i.e. the entire frame as well as the critical region is processed on

the GPU with the lane detection model on the CPU. In this approach, due to shared

GPU resources, there is a increase in the processing time, reducing the processing

rate.

• The last is our approach.

4.3.3 Evaluation and Results

Before we start evaluation, we select a clip from our selected video dataset. As

specified before, there are a total of 435 frames in the video clip. For this case study, we

choose a clip where two cars approaching back to back appear. These two cars become

visible (to the human eye) at frame 250 as shown in Fig 4.3. This frame is ‘Frame of

Sight’. Any detections that happen in the approaches mentioned above are compared to

this frame to arrive at a conclusion. In addition to this, we randomly choose the starting
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frame of the clip as frame 231. This starting frame number might not seem of much

relevance but does matters as it decides the offset when some frames are dropped due to

the processing times being higher than the frame rate of the clip in some approaches. But

since this is a case study, we randomly choose the starting frame number and proceed with

the evaluation. The results do not get affected much and the conclusion remains same as

seen next because of different processing rates and latencies.

Figure 4.3: Frame of Sight (frame 250). [6]

We now feed the clip to the different approaches discussed in the previous subsec-

tion. The results for each of the approaches is as follows:

• In the first approach (Fig. 4.4), the clip is processed for almost every frame as the

processing time ≈100 ms matches the input frame rate of 10 fps. Thus, there are no

frames dropped. This is good but the low resolution makes it hard for the cars to be

recognised early. The Frame of Detection for this case is at frame 268, where both

the cars are recognised. The frame number input is frame 267. Detection time in

recognising the cars is a lot in this approach, found to be ≈1800 ms.
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Figure 4.4: Input Frame for First Detection in Approach 1. [6]

• In the second approach (Fig. 4.5), the clip is processed every ≈430 ms, meaning once

a frame is input, it takes ≈430 ms to process it. During the time this input frame

is processed and the objects in the frame are recognised, approximately three (430

ms/100 ms - 100 ms) frames are dropped. This is the drawback of this approach.

On the positive side, this approach takes frame 253 as the input and recognises both

the cars at frame 257, which is way earlier than the previous approach, reducing the

detection time to ≈700 ms. Due to the high resolution, the latency remains high but

is still significantly reduced compared to previous approach.

Figure 4.5: Input Frame for First Detection in Approach 2. [6]
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• The third approach (Fig. 4.6) involves processing both the instances of YOLOv4 on

the GPU. Due to this, the resources are shared which leads to the drop in the pro-

cessing rates of both the full frame as well as the critical region to ≈5 fps. Comparing

this to the frame rate of the clip (10 fps), there is a drop of every alternate frame.

In this approach, the cars are recognised at frame 254 where the input frame number

was 252, further reducing the detection time to ≈400 ms. Due to decent resolution,

the latency is reduced compared to the previous approach.

Figure 4.6: Input Frame for First Detection in Approach 3. [6]

• Our approach (Fig. 4.7) dedicates all the GPU resources to the processing of the

critical region and using CPU for processing the full frame and running the lane

detection model. The critical region processes at a rate of 7 fps, meaning it drops a

frame for every 3 input frames. This is better than the previous approaches. Both

the cars appearing at frame 250 are recognised at frame 253, where the input frame

is 252. Here, the detection latency is the least i.e. ≈300 ms. This result is better

than all the previous approaches in terms of latency, proving to be the best method

for fast and accurate perception in autonomous driving application.
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Figure 4.7: Input Frame for First Detection in Approach 4. [6]

Figure 4.4 - 4.7 shows the input frames in which the desired two cars are first

detected for each of the approaches mentioned. Table 4.2 summarizes the results for a

quick comparison. In all the approaches, the desired accuracy is achieved as both the

objects are recognised as cars. On the other hand, the latency reduces from approach 1

through 4 with our work taking the least amount of time to detect the cars.

Approach taken Input Frame Frame of Detection Processing Rate Detection Latency

[fps] [ms]

1 267 268 10 ≈ 1800

2 253 257 2.5 ≈ 700

3 252 254 5.1 ≈ 400

4 (Our Work) 252 253 7 ≈ 300

Table 4.2: Results for the Case Study
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Chapter 5

Conclusions

Real-time perception for autonomous driving has evolved a lot over the past few

years and employs various aspects of understanding the scene, including but not limited

to lane detection, object detection, depth estimation, critical region identification etc, for

which often expensive setups are used. In this thesis, we propose a fast and accurate visual

perception of the scene that uses lane and object detection. By utilising a single camera

input, we inference only convolutional neural networks for scene processing and present an

approach that fully utilises the hardware resources to get an optimal balance of accuracy

and latency. We also present an adaptive scaling algorithm that makes the system hardware

independent and can be deployed on better or worse computing platforms.

In the case study, we make use of real-world dataset to compare our approach with

similar other variations. Conducting the study, we see that our proposed model detects the

objects in the scene the earliest and with good accuracy.
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5.1 Future Work

As of the current work and implementation, we only focus on the lane and object

detection aspects of visual perception in autonomous driving. But more robust features

like depth estimation are also needed for real-world scenarios. For that, two cameras can

be used instead of one (utilising the second camera port on Jetson Nano) for stereo vision

as there are multiple fast and accurate depth estimation techniques using stereo cameras.

The critical region identification can then be done based on outputs from both the lane as

well as depth estimation. Further, since the system is scalable, it can be ported to different

platforms and compared for real-time operation. Also, with added functionality, further

division of tasks based on their inter-dependency as well as assigning them to CPU/GPU

for optimal accuracy and latency can be explored.
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