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ABSTRACT OF THE DISSERTATION

Low-Cost Strategies for Accurate Free Energy Prediction of Organic Molecular
Crystals

by

Cameron J. Cook

Doctor of Philosophy, Graduate Program in Chemistry
University of California, Riverside, December 2022

Dr. Gregory Beran, Chairperson

Consistent, accurate in silico characterization of organic molecular crystals would

greatly benefit the discovery of new materials. This thesis presents several strategies that

have been developed for assessment of thermodynamic stability, quantifying finite temper-

ature effects, and prediction of mechanical properties for organic molecular crystals.

Finite temperature contributions to crystal stability are approximated using hybrid

semi-empirical and first principles density functional theory for lattice dynamics. This

model approximates the phonon density of states using a composite density functional tight

binding (DFTB) and density functional theory (DFT). This composite method is applied

to oxalyl dihydrazide (ODH) polymorphs and is able to correctly rank the five crystals in

relative thermodynamic stability. Absolute values of the thermodynamic state functions are

predicted within 1 kJ/mol of their pure DFT values. The combined DFT/DFTB phonon

densities of state (pDOS) result in similar accuracy compared to conventional DFT but

require far less computational effort.
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The thermal expansion of resorcinol, naphthalene, BTBT, and pentacene are

also predicted using the DFT/DFTB pDOS along with the quasiharmonic approximation

(QHA). The solid state phase diagram for the polymorphic α- and β-resorcinol forms was

evaluated, with a predicted transition temperature of 368 K at ambient pressure, in excel-

lent agreement with the literature.

Finally, crystal structure prediction (CSP) was performed for 9-methyl anthracene

(9MA), a photomechanical crystal. These crystals undergo a photochemical reaction in the

solid state, causing abrupt changes in crystal structure ultimately converting light energy

to mechanical work. CSP was used to identify potential polymorphs of the reactant and

product 9MA as well as their energetic relationships. The predicted product crystals were

verified experimentally. Theoretical work densities for 9MA, 9-tert-butyl anthracene ester,

and 9-carboxylic acid anthracene were also predicted to be on the order of ∼107 J/m3,

making these types of systems incredibly promising for photoactuators.
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Chapter 1

Introduction

Molecules in crystalline form can arrange in a variety of different ways, an effect

known as polymorphism. Polymorphism in organic molecular crystals has proven to be a

significant factor in the systematic, rational design of these materials. Desired properties

in several applications, whether it be solubility for pharmaceuticals, mobility of charge

carriers for semiconductors, or π-stacking motifs for photoactuators, depend intrinsically

on the packing pattern of the constituent molecules. While in some cases polymorphism is

viewed as an obstacle in crystal engineering, it can also be exploited to tune the properties

of a material.

Polymorphism has impacted the pharmaceutical industry for decades; a crucial

step in drug development involves the experimental screening of polymorphs, a process

that can be time-intensive and hard to perform exhaustively. Perhaps the most infamous

(and expensive) consequence of undetected polymorphism was the case of ritonavir. It

was found that the form crystallized in the lab initially (Form I) was thermodynamically
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meta-stable, causing an eventual transition into its “true” most stable polymorph (Form

II) after it had been released. This new form had much lower solubility which hindered

bioavailability. Form II, being much more stable, rapidly became the only form isolated

during manufacturing. This ultimately led to a year-long recall of the drug before kinetic

control was established to ensure no Form II was present. This cost the manufacturers an

estimated $250 million in lost sales.15,16 Even more: a study conducted by van de Streek

and Neumann predicts that an additional 15 to 45% of current small molecule drugs on the

market still exist in a meta-stable form rather than their true energetic minimum.17

Issues such as these fueled the desire to develop methods for systematically de-

termining a molecule’s crystal structure that could complement experimental polymorph

screening. These efforts can be expensive, and an exhaustive screen is difficult to guar-

antee. A purely computational approach could aid in molecular crystal design, but would

have to be conducted with little to no crystallographic information available initially. If

a reliable physical model were attainable that could predict how constituent molecules ar-

range in the crystal, using nothing but the molecular structure, it could help anticipate

problematic forms or, conversely, provide a road map to targeting other forms with more

desirable properties. The development and application of such crystal structure prediction

models for computational screening of polymorphs using atomistic simulations has become

a boon for crystal engineering.

Crystal structure prediction (CSP) has matured in applications to several areas

of research. CSP was used to identify novel low-density organic molecular crystals for gas

storage,18 and it has shown promise in identifying high-mobility organic semiconducting
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crystals.19,20 It has also been used for insightful polymorph screening in the drug galu-

nisertib, a treatment of metastatic malignancies.21 The drug has ten known experimental

polymorphs, each of which was identified using CSP, as well as additional predicted low

energy forms yet to be isolated experimentally.22

A priori determination of crystal polymorphism using chemical intuition alone is

unlikely, and a complete characterization of all potential forms a molecule can pack in is

intractable. Modern CSP approaches operate in this gap, where we ask ourselves: Given

some fraction of the possible arrangements in a crystal this molecule can adopt, what is the

likelihood that several are viable?

With the considerable increase of computational power over the last decade, this

problem became more tractable and, by some accounts, essentially solved.23,24 Where we

were until recently limited to small, conformationally simple organic molecules, we can now

often predict crystal structures of more complicated and chemically interesting molecules

with relative confidence, albeit with significant computational effort.

An ideal CSP approach aims to predict the most stable polymorph out of all

possible forms given only a chemical diagram of its constituent molecules. Schematically

one would:

1. Choose a molecular geometry

2. Generate a crystallographic unit cell

3. Evaluate the free energy, G

Performing these three steps in their entirety (i.e. predicting all potential config-

urations and their free energies) yields the complete crystal landscape. The lowest energy
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configuration is taken to be the thermodynamic minimum, and higher energy forms are

meta-stable polymorphs. While conceptually straightforward, evaluation of the free energy

G for all potential configurations is difficult. Accurate evaluation of free energy for a single

configuration can be computationally demanding, molecular flexibility adds an exponential

complexity to the configuration space.

This thesis aims to clearly define these problems and to introduce alternative meth-

ods for free energy determination as well as perform additional applications for molecular

crystal structure prediction. These methods are then applied in later chapters to address

thermal expansion in small organic molecular crystals, quantify expansion-dependent charge

carrier mobility parameters in organic semiconducting crystals, and determining mechanical

properties of solid-solid photochemical reactions using CSP.

1.1 Crystal Structure Prediction: Current Applications and

Limitations

1.1.1 Free Energy Prediction

Even with the increases in algorithm efficiency and computational power, a fully

robust CSP approach remains elusive; the most successful applications require a balance

between accuracy and computational cost. A valuable benchmark for these approaches, as

well as an overview for the evolution of CSP over a span of 15 years, is outlined in the various

organic crystal structure prediction blind tests arranged by the Cambridge Crystallographic

Data Center (CCDC).25–30 A seventh blind test has also recently concluded and a formal

report is pending. These arranged blind tests offer significant insight on how participants
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in the field are approaching CSP, what strategies are successful, and where some strategies

falter. Generally a CSP problem can be broken down into two equally important parts:

searching the vast potential energy landscape for likely forms, and computing the energetic

rankings of the predicted forms. A thorough structure search is necessary for providing

candidates to the final ranking, and accurate rankings are imperative for predicting potential

experimental polymorphs. This thesis focuses primarily on providing additional tools for

energy ranking.

Where the initial searching procedure has become increasingly elegant, final en-

ergetic ranking of potential forms has largely been limited to progress in predicting zero

temperature electronic energies. This is due to the difficulty of including accurate thermody-

namic contributions to a crystal’s free energy. A molecular crystal is in its thermodynamic

ground state when its Gibbs free energy is minimized with respect to all atomic positions

and crystallographic unit cell parameters:

G(T, P, V ) = Uel + Fvib(T ) + PV (1.1)

where Uel is the electronic energy, Fvib(T ) is the Helmholtz vibrational free energy, and PV

are pressure-volume contributions. An ideal workflow for the evaluation of Equation 1.1 can

be found in Figure 1.1. Typical quantum chemical algorithms perform this minimization

by solving for the electronic energy Uel at 0 K and moving the atomic positions until the

energy reaches a local minimum on a high-dimensional potential energy surface. Crystal

polymorphism is a manifestation of the large amount of local minima on the free energy

surface.
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G(xxx) ≈ Uel(xxx) (1.2)

Uel(xxx) = Uel(x0x0x0) + gT0 ∆xxx+
1

2
∆xxxTH0H0H0∆xxx (1.3)

Most modern CSP approaches frequently exploit the approximation presented in

Equation 1.2, where xxx is a set of atomic positions. This allows for a relatively straightfor-

ward structure optimization to approximate the free energy, shown in Equation 1.3, where

g0g0g0
T andH0H0H0 are the gradient and Hessian, respectively.31 The approximation can sometimes

hold because Fvib(T ) and PV provide only a small percentage of the total energy at am-

bient pressure and temperature conditions, equating to only a few kJ/mol. Additionally,

polymorph ranking is assigned by taking the relative energy between two forms where en-

thalpic and entropic contributions can effectively cancel out. However it is also true that

polymorphs of a given crystal often differ by only a few kJ/mol, implying the potential

necessity for finite temperature contributions introduced by Fvib(T ). This was shown to be

the case in a study by Nyman and Day in 2015 where the energetics of 508 polymorphic

organic molecular crystals were thoroughly studied.32 It was found that 95% of these poly-

morphs had relative 0K lattice energies (Uel) within 7.2 kJ/mol of one another. Further,

9% of these polymorphs were found to re-order at room temperature after the inclusion of

finite temperature effects. This implies that an approximation of Gibbs free energy using

only the electronic lattice energies of the crystal, as is commonplace for CSP, yields the

incorrect minimum energy structure at typical experimental conditions nearly one tenth of

the time.
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Figure 1.1: Schematic outline of the requirements for crystal free energy assignment.

With this information it can be difficult to understand why polymorph ranking

in CSP has essentially remained a lattice energy minimization procedure rather than fully

implementing finite temperature effects. This has a particularly simple explanation: The

computational cost of including thermodynamic effects at real temperatures is prohibitively

expensive for the high-throughput nature of crystal structure prediction. Practical eval-

uation of Fvib(T ) requires lattice dynamics, which are considerably more costly than the

baseline crystal potential. To this end, we offer a low-cost method for evaluating the phonon

density of states (pDOS) necessary for these calculations. The method, as well as further

details regarding pDOS calculations for molecular crystals, are presented Sections 2.1 and

2.2. Additional applications of this method are introduced in Sections 2.3 - 2.4.

1.1.2 Applying CSP to Photomechanical Materials

The recent maturity of CSP also introduces potential for application to fields of

chemistry outside of pharmaceuticals. One field of particular interest is that of smart

materials, where molecular crystals are becoming increasingly prevalent.33–36 These mate-
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rials undergo physical changes when exposed to external stimuli such as heat, light, force,

or chemical environment, and experience a wide variety of movement including twisting,

bending, walking, etc. They have shown promise for applications in actuators, molecular

machines, optical sensors, and smart switches.37–39 Smart materials derived from molecular

crystals, as opposed to polymers or elastomers, offer a unique advantage due to the well-

defined crystal structure and large elastic moduli. Smart materials that use light to react

constituent organic molecules in crystals, or simply “photomechanical crystals”, will be the

primary focus in this work.

Photomechanical crystals are of particular interest because of their unique ability

to directly convert light energy to mechanical work. While the behavior of these crystals

after interacting with light is well studied, a detailed understanding of the underlying struc-

tural transformations is lacking. This is largely a result of technical hurdles for experimental

characterization techniques; crystal-to-crystal reactions in photomechanical systems yield-

ing a large enough product for single crystal analysis often accumulate internal strain as

the reaction progresses, fracturing the material.40,41 While chemical theory literature does

exist for these systems, it is largely focused on the energetics of the photochemical reac-

tion itself or serves as a supplement for experimental techniques when determining crystal

structure.42–44 A CSP-based approach using molecular information alone to glean crystal-

lographic details from the photomechanical process could aid in further device design.

CSP provides an avenue for in silico design that would be invaluable to crystal

engineering for photomechanical systems. This thesis introduces, to our knowledge, the first

example of CSP applied to photomechanical systems. Accurate CSP for photomechanical
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crystals could quickly identify potential product crystals for the photochemical reaction as

well as characterize the mechanical evolution of the reactant crystal. A detailed outline of

the CSP procedure used for the study of photomechanical crystals is found in Section 2.5

and 2.6, and the concepts behind the photochemical reaction and the benefits of predictive

atomistic modelling of photomechanical crystals are outlined in 2.7.

1.2 Outline of the Dissertation

The remainder of this thesis introduces several tools developed for easing the com-

putational load of organic molecular crystal structure prediction. Later chapters demon-

strate some successful applications of these tools for several physical quantities including

thermal expansion, highly accurate polymorph ranking, charge carrier mobility parameters,

and photomechanical crystal work output. Chapter 2 serves as a brief technical outline for

these methods as well as the computational details for the electronic structure calculations

used throughout.

Normal mode eigenvector matching, referred to simply as “mode-matching” is a

method used for cheaper phonon densities of state which is a crucial component in evaluat-

ing free energy at real temperatures. Mode-matching introduces a way for up-scaling cheap

phonon densities of states to closely match those of explicit evaluation with higher levels of

theory, resulting in cost savings of an order of magnitude with little additional error. This

is outlined in some detail in section 2.1, and further in Chapter 3. Thermodynamic prop-

erties of small organic molecular crystals can be accurately reproduced using this method

compared to explicit evaluation with density functional theory.
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More efficient evaluation of the pDOS allowed us to look at thermodynamic prop-

erties of organic molecular crystals more readily. Using mode-matching, we predicted the

thermodynamic properties of α- and β-resorcinol as a function of temperature. Coupling

mode-matching with the quasiharmonic approximation (detailed in section 2.3) results in an

affordable approach to predicting expensive thermodynamic quantities like thermal expan-

sion and solid-state phase diagrams. Quantitative accuracy for temperature dependent unit

cell parameters and phase transitions for the two polymorphs was achieved, demonstrated

further in Chapter 4.

Chapter 5 contains the application of the methods mentioned above to predict

thermal expansion in organic semiconducting crystals (OSCs). Carrier mobility in OSCs is

an important qualifier for device viability, which the intermolecular transfer integral is a

parameter for. This investigation determined that coupling mode-matching with thermal

expansion via the quasiharmonic approximation is sufficient for crystals outside of phar-

maceuticals, where intermolecular interactions like hydrogen bonding are less prevalent.

Charge transfer integrals at thermally expanded geometries were then computed, providing

an important parameter for carrier mobility as a function of temperature.

Finally, crystal structure prediction was used for the first time to solve for photome-

chanical product crystal structures in silico. 9-methylanthracene undergoes a photochemical

[4+4] reaction when excited at 370 nm, abruptly dimerizing cofacial monomer pairs and

generating internal strain in single crystals. This causes the crystals to abruptly fracture,

making characterization of the solid state reacted dimer (SSRD) difficult. Chapter 6 uses

CSP to identify this form as well as others on the crystal energy landscape. A topochem-
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ical reaction algorithm forming the SSRD from the monomer crystal is also introduced.

Lattice deformations from the reactant crystal to the product are used to determine the

magnitude of anisotropic work, a useful parameter in designing functional photoswitches.

This approach was also used for two additional anthracene derivatives, 9-carboxylic acid

antrhacene and 9-tert-butyl anthracene ester.
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Chapter 2

Technical Concepts and

Computational Details

This chapter serves as a technical overview for the methods developed and applied

in later chapters. Sections 2.1 - 2.3 introduce strategies for inclusion of finite tempera-

ture effects in polymorph free energy ranking. Section 2.4 outlines the technique used for

determining intermolecular charge transfer integrals used in predicting carrier mobility in

organic semiconducting crystals. Finally, sections 2.5 - 2.7 introduce a crystal structure

prediction procedure for photomechanical crystals and the quantification of potential work

output following the photochemical reaction. Computational details for electronic structure

calculations are found in section 2.8.

12



2.1 Lattice Dynamics

Neglect of the Fvib(T ) term from Equation 1.1, while often an acceptable approxi-

mation, is also attributed to the computational complexity of its determination. Introducing

vibrational free energy into the Gibbs free energy expression in the requires information on

the vibrational density of states. Vibrational calculations within the harmonic approxima-

tion involve atomic displacements and the evaluation of resulting forces forming the Hessian

matrix, whose size grows as 3N , where N is the number of atoms, for gas-phase calculations.

This issue is further exacerbated in the solid state where atomic displacements of the atoms

exert forces on neighboring molecules, and the center of mass translation of the molecules

themselves enact forces on neighbors creating “soft modes”. In the solid state, Fvib can be

derived from statistical mechanics:

Fvib(T ) = 3nNAkBT

∫ ∞

0
ln

[
2 sinh

(
ℏω

2kBT

)]
g(ω)dω (2.1)

where n is the number of atoms in the unit cell, NA is Avogadro’s number, g(ω) is the

phonon density of states (pDOS) as a function of frequency ω, ℏ is Planck’s constant, kB is

the Boltzman constant, and T is temperature.45

Within the harmonic approximation, the crystal potential can be approximated

via the second term of the Taylor expansion of overall potential with respect to atomic

displacements,

U = U0 +
∑
l,α

U l
αu

l
α +

1

2

∑
l,l′,α,β

U ll′
αβu

l
αu

l′
β + · · · (2.2)
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U ll′
αβ =

∂2U

∂ulα∂u
l′
β

(2.3)

where U is crystal potential and ulα is the displacement of atom l in direction α. U l
α

represents the nuclear gradient of the potential with respect to the displacement of atom

l, which equals zero when the structure has been optimized to a stationary point. U ll′
αβ is

the matrix of force constants describing the forces felt by atom l in the central unit cell

after the displacement of atom l′. Mass weighting and transforming the coordinates into

reciprocal space yields the dynamical matrix Dαβ, which can be diagonalized according to:

ω2uα =
∑
β

Dαβuβ where Dαβ =
1

√
mlml′

∑
n

U l,l′

α,β exp(−ik · rn) (2.4)

This dynamical matrix equation relates atomic displacement, force response, and result-

ing vibrational frequencies ω. The normal mode eigenvectors uα are normalized vectors

describing the collective movement of the atoms that result in the frequency of that mode.

Constructing the dynamical matrix for a molecular crystal involves 3N individual

atomic displacements (which can often be reduced by symmetry) and 3N ∗ M force eval-

uations, where M is the number of points needed to fit the harmonic potential. Further,

in order to capture long-range forces, one must look beyond the unit cell and consider the

effects of displacement on periodic images. This method, often referred to as the “supercell

method”, results in potentially several hundred force calculations for a single pDOS.

Here, a new method is introduced for evaluating the converged pDOS without

the need for the most computationally expensive quantum chemical calculations on the ex-

panded supercell. This involves evaluating Equation 2.4 with a reference quantum chemical
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method i.e. plane wave density functional theory, at k = 0, and evaluating the full supercell

with a cheaper method, i.e. density functional tight binding (DFTB). Both strategies will

be outlined in greater detail in Section 2.8. These will produce frequency eigenvalues and

normalized eigenvectors for each method at the Γ-point (where k = 0). The normal mode

Γ-point eigenvectors represent the movement of the atoms resulting in the corresponding

normal vibration ω. These vectors can be mapped onto one another, and their associated

frequencies can be shifted, such that the full pDOS of the “cheap” method can be upscaled

to that of density functional theory:

ωfinal
i (k) ≈ ωDFTB

i (k) +
(
ωDFT
i (Γ)− ωDFTB

i (Γ)
)

(2.5)

The shifted pDOS ωfinal
i (k) can then be introduced into 2.1 and a new vibrational contri-

bution to G(T, P, V ) can be evaluated. The performance and viability of this method is

detailed further in Chapter 3.

2.2 Acoustic Phonons

While DFTB allows for fast evaluation of optical mode phonon dispersion, the

lowest-frequency acoustic modes associated with lattice vibrations converge poorly. These

phonon modes are important to capture as they are readily populated even at ambient

temperatures, and are significant contributors to finite temperature effects like thermal

expansion. Therefore it is necessary to evaluate these separately. This is possible using the

theory of elasticity:
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T = CijklE (2.6)

where T and E are the stress and strain tensors respectively, and Cijkl is the fourth-rank

elastic constant tensor describing stress-strain relationships. The phase velocity surface can

be solved in terms of the 3× 3 Christoffel matrices given by

Γik =
∑
jl

n̂jCijkln̂l (2.7)

where n̂j is a direction cosine.46,47 The eigenvalues of this matrix yields the acoustic sound

velocity ν.

det |Γik − ρν2δik| = 0 (2.8)

Acoustic sound velocity can be related to vibrational frequency using the Debye

model, where the maximum Debye frequency is evaluated as

ωD =
2ν|kzb|

π
(2.9)

The maximum Debye frequency defines the frequency of an acoustic vibration at the Bril-

louin zone boundary, kzb. For inclusion in the shifted pDOS from Equation (2.5), the

acoustic phonon dispersion between the zone center and kzb is extrapolated sinusodally

ω = ωD sin

(
k

kzb

π

2

)
(2.10)
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Figure 2.1: Comparison of acoustic phonon dispersion evaluated via DFT elastic constants
vs. experimental acoustic in crystalline naphthalene at 6 K.

The ammended acoustic modes are replaced in the final pDOS, which is then inte-

grated and included into the overall Gibbs free energy. Treatment of the acoustic phonons

was verified for crystalline naphthalene in Figure 2.1. This approach introduces minimal

additional computational effort while providing a more well-converged pDOS.

2.3 Thermal Expansion

Static phonon calculations employ the harmonic approximation for simplicity,

which does not account for thermal expansion. Since all quantum chemical methods used

in this work are performed at 0K, this leads to a systematic under-estimation of crystal-

lographic cell volumes. Finite temperature thermodynamic contributions to crystal free

energy can also be significant enough to cause changes in relative stability of polymorphs.

Here, thermal expansion is evaluated implicitly using the quasi-harmonic approximation.

17



 0

 20

 40

 60

 80

 100

 460  480  500  520  540  560  580  600  620

(a) Electronic Energy

α

β

U
el

 (
kJ

/m
ol

)

Cell Volume (Å3)

 1030

 1040

 1050

 1060

 1070

 1080

 460  480  500  520  540  560  580  600  620

(b) Helmholtz Vibrational Free Energy, 300K

α

β

F
vi

b 
(k

J/
m

ol
)

Cell Volume (Å3)

 0

 20

 40

 60

 80

 100

 460  480  500  520  540  560  580  600  620

(c) Gibbs Free Energy, 1 atm & 300K

α

β

G
 (

kJ
/m

ol
)

Cell Volume (Å3)

Figure 2.2: The quasi-harmonic treatment of resorcinol combines (a) electronic DFT en-
ergies and (b) Helmholtz vibrational free energies as a function of volume, which are then
summed along with the PV term to obtain the Gibbs free energy. The predicted structures
for the given thermodynamic conditions correspond to the minima of the G(V ) curves. Data
shown here for 300 K and 1 atm.
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The quasi-harmonic approximation (QHA) represents one of the simplest ap-

proaches for incorporating some anharmonicity into the harmonic phonon treatment. It

typically works fairly well for molecular crystals up to moderately high temperatures below

the melting point.48,49 The QHA maps how the phonon frequencies and free energies vary

with the molar volume of the crystal. In the implementation here, the electronic energy

Uel is first computed as a function of volume by applying a series of positive and nega-

tive external isotropic pressures to the cell and relaxing the lattice parameters and atomic

positions. This allows the unit cell to relax anisotropically, softens the one-dimensional

potential energy curve compared to isotropic scaling of the lattice constants, and leads to

improved description of the expansion/contraction.50,51

Next, the phonon density of states and free energies are evaluated at the equi-

librium geometry and at several expanded and contracted volumes from the Uel(V ) curve.

Each explicit phonon DOS evaluation was performed using the mixed DFT/DFTB approach

described in Section 2.1, and care was taken to ensure the phonon DOS calculations were

performed across the range of volumes associated with the temperatures and pressures of

interest. After computing Fvib(T ) for each sampled structure at a chosen temperature, the

Fvib values as a function of volume were fitted to a second-order polynomial. Summing

Uel(V ), Fvib(V ), and PV for the given temperature and pressure produces G(T, P, V ). This

free energy is fitted to a double-Murnaghan equation of state, in which the compression and

expansion branches are fitted separately to the Murnaghan equation of state,52

G(V ) = G0 +
B0V

B′
0

[
(V0/V )B

′
0

B′
0 − 1

+ 1

]
− B0V0

B′
0 − 1

(2.11)
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and the two halves connect smoothly at the equilibrium volume V0. From the fit, one

obtains the optimal molar volume V0, free energy at that volume G0, the bulk modulus B0,

and the first derivative of the bulk modulus with respect to pressure, B′
0.

The effects of thermal expansion on cell volume and relative stability can be seen

in Figure 2.2. Initially the two forms are separated by ∼10 kJ/mol at their respective

equilibrium volumes as determined by Uel at 0 K as seen in Figure 2.2a. Applying the QHA

and evaluating G(T, P, V ) at 1 atm and 300 K (Figure 2.2c) stabilizes β by ∼7 kJ/mol

with respect to α, and shifts both of their equilibrium volumes by roughly 20 Å3, indicating

thermal expansion. This technique allows us to predict more accurate finite temperature

crystal structures and thermodynamic properties.

2.4 Transfer Integrals

Charge carrier mobility is an important property of organic molecular crystal based

semiconductors. Here we introduce an important parameter for bulk mobility: the electronic

transfer integral. This parameter is dependent on intermolecular separation in the crystal,

which is a function of crystallographic cell parameters and therefore a function of temper-

ature. The strategies introduced in this thesis are used to characterize the temperature

dependence of this parameter as the crystal expands and intermolecular interactions are

perturbed. Charge transport properties and their relationship to crystal structure is most

clearly conveyed in the tight-binding approximation:53

H =
∑
i

ϵia
+
i ai +

∑
i ̸=j

tija
+
i aj (2.12)
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where a+i and ai are the creation and annihilation operators for an electron on molecular

site i, respectively, ϵi is the electron site energy, and tij is the transfer integral.

Evaluation of tij from a single isolated dimer calculation can be approximated as

half of the orbital splitting energy, however this has been shown to yield inaccurate transfer

integrals as it neglects electronic polarization. Practical evaluation of tij instead involves

a projection of the isolated monomer’s frontier orbitals on those of the dimer.53,54 The

secular equation describing the dimer in the basis of monomer frontier orbitals is:

HC− ESC = 0 ; H =

 e1 J12

J12 e2

 (2.13)

Where H is the electronic Hamiltonian, C is a matrix of orbital coefficients, E is the dimer

energy, S is the overlap matrix, ei is the site energy of molecule i and Jij is the electronic

transfer integral derived from the isolated molecular constituents of the dimer:

Jij = ⟨Ψi|Hij |Ψj⟩ (2.14)

Here, Ψi is the frontier orbital on the ith molecule. Jij is physically equivalent to tij , however

it is represented in a non-orthogonal basis of the isolated monomers. This is corrected by

projecting the orbitals of the monomers onto the orbitals of the dimer, giving an accurate

transfer integral denoted Jeff
ij .53–57 The present study focuses on the hole mobility, where the

frontier orbitals of interest are the HOMO and HOMO-1 orbitals of the dimer, represented

by the HOMO’s of its constituent monomers.
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In a semiconducting crystal, Jeff
ij is evaluated for each unique pair of molecules

whose distance is close enough for considerable electronic coupling to occur. Exploiting

translational and space group symmetry allows one to evaluate only the symmetrically

unique subset of possible dimer pairs. While longer-range electron transfer can be important

in evaluating bulk mobility, the present study focuses on local transfer integrals, which will

be most sensitive to changes in crystal structure/volume.

Intermolecular charge transfer depends strongly on the degree of orbital overlap in

the dimer pair. Changes in the crystal structure alter this overlap. For example, increasing

intermolecular separation reduces the strength of interfacial π stacking interactions and the

orbital overlap. Subtle changes in relative orientations of molecules, such as a face-to-edge

angle in a herringbone-type packing, can also impact transfer integrals.55 Accordingly,

accurate knowledge of the unit cell is important when calculation transfer integrals and

carrier mobility.

2.5 Intramolecular Conformational Energy Correction

Conventional density functionals used in solid-state calculations describe highly

planar π conjugated regions of molecules poorly.42,58–60 The issue stems from delocaliza-

tion error in the approximate density functionals,61 which artificially stabilizes extended π

delocalization found in some organic molecules relative to nonplanar configurations.42,59,60

Issues arising from DFT delocalization error have been identified in several organic crys-

tals.62–69
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To address the delocalization error issues inherent in common density functioanls,

an intramolecular correction can be applied to periodic DFT lattice energies. This single-

point energy correction replaces the intramolecular energies of the molecular unit with

more accurate ones computed at the spin-component-scaled dispersion-corrected second-

order Møller-Plesset perturbation theory (SCS-MP2D)60 level,

Ecrystal = EDFT
crystal +

Z∑
i=1

(
ESCS-MP2D

molec,i − EDFT
molec,i

)
(2.15)

The molecular energies on the right-hand side are computed in the gas-phase using geome-

tries extracted directly from the DFT-optimized crystal. The sum runs over all Z molecules

in the unit cell, though space group symmetry can be exploited to compute the gas-phase

molecular energies only for the molecules in the asymmetric unit. This correction has been

employed successfully in several other systems.42,66–68

2.6 Crystal Structure Prediction

The CSP procedure in this work is conducted in a hierarchical fashion. First,

crystals are generated and optimized with a cheap force field, then minimized further with

an intermediate semi-empirical Hartree-Fock calculation, and finally minimized and ranked

using more accurate electronic structure calculations. This is done to ensure that the

landscape is adequately sampled and there is a wide variety of molecular conformations

considered while remaining generally affordable. The CSP procedure is outlined as follows:
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Figure 2.3: Intramolecular energy profile of ortho-acetaminobenzamide. The blue dot in-
dicates the molecular configuration of the experimentally stable β-form, and the black
indicates the α-form. Note how, although the β polymorph crystal lattice energy is more
stable, the intramolecular energy of α is considerably lower.

0. Generation of the molecular geometries: Initial gas-phase molecular structures

were constructed and optimized. For molecules with intramolecular flexibility, energy land-

scapes were constructed as to restrict the space in which to sample the crystals but to allow

some molecular flexibility for structural variety. These coincide with the red regions and

the blue/white regions of Figure 2.3, respectively.

1. Generation of Candidate Crystal Structures: Optimized monomers were then

used to seed randomly-generated crystals. The search assumed Z ′ = 1 and covered 11

common space groups: P1, P 1̄, P21, C2, Cc, P21/c, C2/c, P212121, Pca21, Pna21, and

Pbca.

Typically, several thousand structures for each space group are generated and op-

timized at the molecular mechanics level. This leads to duplicate structures quite frequently

that need to be removed from the set prior to further landscape refinement. Crystal struc-
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Figure 2.4: Primary steps in hierarchical crystal structure prediction for ortho-
acetaminobenzamide (ACBNZA). (A) is evaluated with CHARMM/GAFF, (B) with semi-
empirical HF-3c, (C) with periodic DFT, and (D) with an intramolecular conformational
energy correction.
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tures that exhibit relative energies of less than 1 kJ/mol, densities of less than 0.03 g/cm3,

and a root-mean-squared-deviation of atomic positions in a 15-molecule cluster of less than

0.25 Å are considered duplicates. One of the structures will be kept and the other discarded.

All unique crystals that lie within some energy window of the predicted global minimum

structure, 25 kJ/mol in this case unless otherwise indicated, of the predicted global min-

imum are subjected to the next round of refinement. An example landscape is shown in

Figure 1.4a.

2. Intermediate Structure and Energy Refinement: A second stage of crystal struc-

ture geometry and energy refinements is performed on the low-energy structures from Step

1 using the composite Hartree-Fock (HF-3c) model.70 HF-3c combines minimal-basis-set

HF with corrections for van der Waals dispersion, basis set superposition error, and a

short-ranged basis-set incompleteness correction. HF-3c was chosen because it should be

considerably more accurate than molecular mechanics, while still being 5–10-fold less com-

putationally demanding than larger-basis periodic density functional theory (DFT) meth-

ods. Structures refined with HF-3c are also tested for duplicates, pruned, and cut off once

more at 10 kJ/mol for further refinement. This step offers a significant correction over

molecular mechanics as seen in Figure 1.4b.

3. Final Periodic DFT Refinement: Periodic DFT geometry optimizations were then

carried out on the low-energy HF-3c structures. DFT procedures are further outlined in

Section 2.8. Final DFT landscapes provide the lattice energy used in the final ranking,

however require the intramolecular correction outlined in Section 2.5.
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4. Single-Point Intramolecular SCS-MP2D Energy Corrections to DFT: The

final stage of energy refinement is to correct for electron delocalization error. Spurious

stabilization of delocalized charge causes significant errors in conformational polymorphism

where the extent of π delocalization changes between polymorphs.65–69 Intramolecular

energies are re-evaluated with correlated wave functions and total crystal energy is expressed

using Equation 2.15.

2.7 Photomechanical Reactions

A photomechanical reaction is a type of chemical reaction in which light energy is

converted to mechanical work. This can take the form of twisting, stretching, and bending,

among other interesting forms of movement following the transformation from reactant to

product. These materials have promise in several fields relying on smart materials such as

wearable electronics, artificial muscles, actuators, and soft robotics.71 While these materials

have been well studied for some time, detailed study of microstructure has been lacking.

This thesis offers a solution in characterizing the structural transformation of photomechan-

ical systems computationally.

Photomechanical reactions in the solid state can occur in a variety of ways, in-

cluding intramolecular ring closure,36 bond rotation,72 [2 + 2] photodimerization, and [4

+ 4] photodimerization.73,74 Particular focus will be placed on the [4 + 4] mechanism,

which involves a ring formation across cofacial polycyclic aromatics, as shown in Figure 2.5.

Reactions of this type are of particular interest because of relatively large expansions of the

cell parameters and the stiff elastic moduli of these crystals.75 Unfortunately precise knowl-
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Figure 2.5: [4+4] photodimerization reaction of anthracene.

edge crystal structure of the product, also called the solid state reacted dimer (SSRD), is

difficult to glean. This reaction can result in rapid degradation of the SSRD crystal through

cracking or shattering, poor conversion to product because of thermal reversibility, or ex-

hibit positive photochromism preventing complete conversion to product. CSP can provide

a crucial pathway to SSRD determination, a key component in the evaluation of an array

of important macroscopic properties.

A new topochemical procedure for generating the SSRD from the unreacted monomer

crystal is developed here. First, some assumptions:

1. All reactant monomer pairs are converted

2. The reaction occurs instantaneously

These assumptions allow us to generate the SSRD with information from the

reactant crystal, i.e. the molecular packing and crystallographic cell parameters. The

cyclized photodimer product can be readily solved in the gas phase and used to substitute

the cofacial monomers in the reactant unit cell. Instantaneous conversion to the SSRD

results in the photodimerized product being present in the unit cell of the reactant, also
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called the “proto-SSRD”. This structure then is allowed to fully relax into the SSRD, and the

differences in unit cell vectors from proto-SSRD → SSRD define the strain for anisotropic

work:

Cproto = Ceq(χij + I) (2.16)

χij = Cproto(Ceq)
−1 − I (2.17)

ϵij =
1

2
(χij + χij) (2.18)

where Cproto and Ceq are the proto-SSRD and relaxed SSRD unit cell row vectors, respect-

fully, χij is the deformation, and ϵij is the symmetric strain. Anisotropic work is evaluated

and projected onto a unit sphere:

W (n̂) =
1

2
n̂⊺σijϵijn̂ (2.19)

where n̂ is the spherical polar unit vector and σij is the stress tensor. Accurate determination

of the SSRD allows us to evaluate anisotropic work W , which can serve as a descriptor for

photomechanical device viability. Full CSP provides insight on additional forms that may

be close by on the crystal landscape and quantify the thermodynamic stability relative to

reachable solution grown forms or even others that may be accessible via photochemical

processes. Further, this procedure can be heavily automated, showing significant potential

for crystal engineering.
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2.8 Computational Details

2.8.1 Density Functional Theory

Density functional theory (DFT) calculations were carried out using a variety

of different software packages. Geometry optimizations and phonon force calculations for

periodic molecular crystals were performed using the B86bPBE density functional and the

XDM dispersion correction, as implemented in Quantum Espresso v6.4.1.76,77 A plane-wave

cutoff of 50 Ry and Γ-centered Monkhorst-Pack k -point grids with a spacing of 0.06 Å−1

are used throughout unless otherwise specified.

Additional periodic DFT calculations, namely for organic semiconducting crystals

in Chapter 4, were performed with CRYSTAL17 using the Perdew-Burke-Erzhoff (PBE)

density functional with Grimme’s D3 dispersion correction and a 6-311G(2d,2p) atom-

centered basis.78,79

Finally, gas-phase DFT optimizations for initiating CSP procedures, dihedral scan-

ning, and evaluating charge transfer integrals were carried out with Gaussian09. The B3LYP

hybrid density functional with a 6-311+G(d) basis set was used unless otherwise indicated.

2.8.2 Semi-empirical Methods

Semi-empirical quantum mechanical methods served as both the “low level” deter-

mination of supercell phonon dispersion in free energy assignment as well as the intermediate

step during the crystal structure prediction ranking procedure.

Density functional tight binding (DFTB) was used for semi-empirical force calcu-

lations in the phonon mode matching procedure within the DFTB+ software package.80,81
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Harmonic phonon calculations were performed using the frozen-phonon method as imple-

mented in the Phonopy software package v2.4.2.82

Composite Hartree-Fock with a minimal basis set (HF-3c/MINIX) was used within

the CRYSTAL17 software package.70,83

2.8.3 CSP Sampling

Initial structures for CSP procedures were generated from optimized gas phase

molecules using the Pyxtal python module v0.2.9.84 Atomic coordinates and unit cell

parameters were them optimized using molecular mechanics using the Generalized Amber

Force Field (GAFF)85 within the CHARMM 45b2 software package.86

2.8.4 Moller-Plesset Perturbation Theory

The gas-phase SCS-MP2D molecular calculations were performed with Gaussian

basis sets and no periodic boundary conditions. They were extrapolated to the complete-

basis-set limit by combining HF/aug-cc-pVQZ87 with correlation energies extrapolated

from the aug-cc-pVTZ and aug-cc-pVQZ basis sets.88 The MP2 calculations were per-

formed with Psi4 v.1.3.2,89 while the spin-component scaling and dispersion corrections

in SCS-MP2D were evaluated using the MP2D software library, available on GitHub at

https://github.com/Chandemonium/MP2D.90,91
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Chapter 3

Accurate Phonon Densities of

State

Phonon contributions to organic crystal structures and thermochemical properties

can be significant, but computing a well-converged phonon density of states with lattice dy-

namics and periodic density functional theory (DFT) is often computationally expensive due

to the need for large supercells. Using semi-empirical methods like density functional tight

binding (DFTB) instead of DFT can reduce the computational costs dramatically, albeit

with noticeable reductions in accuracy. This work proposes approximating the phonon den-

sity of states via a relatively inexpensive DFTB supercell treatment of the phonon dispersion

that is then corrected by shifting the individual phonon modes according to the difference

between the DFT and DFTB phonon frequencies at the Γ-point. The acoustic modes are

then computed at the DFT level from the elastic constants. In several small-molecule

crystal test cases, this combined approach reproduces DFT thermochemistry with kJ/mol
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accuracy and 1–2 orders of magnitude less computational effort. Finally, this approach is

applied to computing the free energy differences between the five crystal polymorphs of

oxalyl dihydrazide.

3.1 Introduction

Organic molecular crystals are prevalent in pharmaceuticals, organic semiconduc-

tors, energetic materials, and many other organic materials. Different crystal packings of a

given molecule, known as polymorphs, can exhibit distinct physical properties, such as sta-

bility, solubility or charge-carrier mobility. Knowledge of the different possible polymorphs

and their relative stabilities, called the crystal energy landscape, can be valuable for design-

ing new materials with specific properties. However, reliable prediction of crystal energy

landscapes is hindered by the small, few kJ/mol or less free energy differences that often

separate different polymorphs.92–94 Further complications arise from how those relative

thermochemical stabilities can vary with temperature and pressure.95 Accurate computa-

tional models are often required to map out these solid form landscapes correctly.65,66,96–98

Polymorph free energies are dominated by the electronic lattice energy contribu-

tion. Indeed, lattice energy rankings have long been the primary metric employed when

ranking predicted crystal structures.96,99,100 However, it is also clear that the vibrational

contributions to the free energy can be important. Surveys suggest that Fvib contributions

are sufficiently large to reverse the lattice energy stability orderings in 10–20% of polymor-

phic systems at room temperature.92,101 Phonon contributions are crucial to understanding

why aspirin form I is thermodynamically preferred over form II,102 and they have proved
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necessary to predict the thermodynamically most stable polymorphs correctly for several

molecules in the blind tests of crystal structure prediction.97,98

More elaborate quasi-harmonic phonon treatments describe how the crystal struc-

ture and phonon frequencies change with temperature and pressure. Accounting for these

changes is important for predicting properties including lattice parameters/molar volumes,103–105

thermochemical properties,50,51,103,104,106–108 mechanical properties,109,110 vibrational spec-

tra,111,112 and nuclear magnetic resonance chemical shifts.113 Capturing those pressure- and

temperature-dependent changes in thermochemical properties proved essential to predicting

the phase diagram of methanol, for example.51 Beyond harmonic or quasi-harmonic treat-

ments, there is increasing evidence that dynamics plays an important role in the structures

and thermochemical stabilities of molecular crystals.114–117

Unfortunately, even within the harmonic approximation, computing a well-converged

phonon density of states for a chemically interesting organic crystal can be very computa-

tionally demanding. The most straightforward approach to computing harmonic phonon

modes relies on lattice dynamical calculations performed in large supercells to capture

phonon dispersion.118 Typically, the supercell should extend 10–15 Å in each direction,119,120

and it will often contain hundreds of atoms. Density functional perturbation theory avoids

the need for supercells and can compute the phonons at lower cost,121 but the calculations

remain computationally demanding.

One means of reducing the computational costs associated with evaluating the har-

monic phonon density of states (pDOS) and the vibrational partition functions is to compute

the phonons at a lower level of theory. For example, the use of DFT-optimized geometries
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and phonon frequencies together with single-point energies computed via correlated wave

function methods has proved effective.122

Alternatively, some researchers have explored the use of computationally inex-

pensive density functional tight binding (DFTB) models for predicting the structures and

phonons. DFTB is a semi-empirical quantum mechanical method that is based off of the

generalized gradient approximation (GGA) of DFT.123,124 It expresses the electronic energy

as a Taylor expansion about a reference DFT electron density ρ0. The present work focuses

on DFTB3, which includes terms through third-order in the expansion.125 For systems like

molecular crystals in which non-covalent interactions are important, DFTB3 must be paired

with a dispersion correction, such as Grimme’s D3 model.79 Hydrogen bonding corrections

can provide further improvements.126 The combination of a minimal basis set of Slater-

type orbitals and semi-empirical parameterization speeds DFTB by up to three orders of

magnitude over ab initio DFT.

In the context of molecular crystals, DFTB has proved effective for optimizing

crystal structures,127 and it predicts the thermal expansion in carbamazepine accurately.128

It can provide useful intermediate rankings of crystal structures in a multi-step, hierar-

chical crystal structure prediction,129 and it can provide good embedding environment for

DFT.130 On the other hand, existing DFTB approximations and parameterizations appear

insufficiently accurate for the final ranking stages of crystal structure prediction.129,131–134

On the X23 benchmark set of molecular crystals, for example, it exhibits a mean absolute

deviation in the lattice energies of 10 kJ/mol, compared to 5–6 kJ/mol for many dispersion-

corrected GGA density functionals.131,132 As the data presented below will demonstrate,
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DFTB performance is often noticeably worse than DFT for computing the phonon density

of states and the thermochemical properties derived from it.

Here, we propose a strategy for computing the harmonic pDOS that combines the

computational efficiency of DFTB with the greater accuracy of DFT. In this approach, a su-

percell harmonic phonon calculation is performed at the dispersion-corrected DFTB3 level

to capture the phonon dispersion, which is far more affordable than GGA DFT. However,

the limitations of DFTB semi-empirical parameterizations mean that there will often be

sizable errors in the phonon frequencies. Therefore, an additional Γ-point harmonic phonon

frequency calculation is performed on the crystallographic unit cell with DFT. By matching

the Γ-point modes between DFT and DFTB, we determine an additive offset for each indi-

vidual DFTB phonon frequency that enables shifting of the DFTB dispersion curves such

that they agree exactly with DFT at the Γ point. This simple shift improves the agree-

ment between the low-cost DFTB and full DFT pDOS considerably. This corrected DFTB

pDOS can be computed at least 1–2 orders of magnitude faster than the full supercell DFT

calculation while sacrificing only modest accuracy in the final predicted thermochemical

properties. Although the present study focuses purely on a harmonic phonon description,

the generalization of the ideas here to a quasi-harmonic treatment for the more reliable

treatment of temperature-dependent effects would be straightforward.
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3.2 Theory

3.2.1 Approximating the phonon density of states

The principal finite-temperature contributions to the Gibbs free energy of a crystal

arise from the Helmholtz vibrational energy, Fvib(T ). From statistical thermodynamics and

the harmonic approximation, one obtains,

Fvib(T ) = 3nNAkBT

∫ ∞

0
ln

[
2 sinh

(
ℏω

2kBT

)]
g(ω)dω (3.1)

where n is the number of atoms in the unit cell, NA is Avogadro’s number, g(ω) is the

phonon density of states as a function of frequency ω, ℏ is Planck’s constant, kB is the

Boltzman constant, and T is temperature.45 The density of states g(ω) is normalized to

unity (hence the factor of 3n in Eq 5.5) and is expressed as a kernel density estimate (KDE)

of the overall frequency distribution for all phonon modes ωi and all k by placing primitive

Gaussian functions of width 5 cm−1 at each discrete phonon mode about each sampled k-

point. Use of the KDE improves the convergence of thermodynamic properties with respect

to phonon sampling.101

To evaluate the phonon dispersion in reciprocal space that contributes to the

phonon density of states, it is necessary to generate a supercell consisting of multiple crys-

tallographic unit cells in order to describe how the phonon frequency changes with respect

to its interaction with neighboring cells. Doing so often dramatically increases the size of

the system to be modeled and can make the computational cost prohibitive with DFT or

other ab initio methods. The complexity introduced by phonon dispersion is often circum-
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vented by simply evaluating the frequencies at the Γ-point (zone center, k = 0) of the unit

cell, which can be accomplished without supercell expansion. However, this Γ-point-only

approximation omits potentially important contributions to the pDOS from the acoustic

modes and dispersion of the optical modes away from the zone center.

Before describing the proposed efficient approach for computing the pDOS, the

theory of lattice dynamics will be reviewed briefly. Within the harmonic approximation,

the crystal potential can be approximated via the second term of the Taylor expansion of

overall potential with respect to atomic displacements,

U = U0 +
∑
l,α

U l
αu

l
α +

1

2

∑
l,l′,α,β

U ll′
αβu

l
αu

l′
β + · · · (3.2)

U ll′
αβ =

∂2U

∂ulα∂u
l′
β

(3.3)

where U is crystal potential and ulα is the displacement of atom l in direction α. U l
α

represents the nuclear gradient of the potential with respect to the displacement of atom

l, which equals zero when the structure has been optimized to a stationary point. V ll′
αβ is

the matrix of force constants describing the forces felt by atom l in the central unit cell

after the displacement of atom l′. Mass weighting and transforming the coordinates into

reciprocal space yields the dynamical matrix Dαβ, which can be diagonalized according to:

ω2uα =
∑
β

Dαβuβ where Dαβ =
1

√
mlml′

∑
n

U l,l′

α,β exp(−ik · rn) (3.4)
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This dynamical matrix equation relates atomic displacement, force response, and result-

ing vibrational frequencies ω. The normal mode eigenvectors uα are normalized vectors

describing the collective movement of the atoms that result in the frequency of that mode.

The hybrid approach proposed here seeks to benefit from the low-computational

cost of DFTB while mitigating its comparatively lower accuracy. In particular, we capture

phonon dispersion via large supercell DFTB calculations. The low-cost of DFTB makes it

more feasible to converge the pDOS with respect to supercell size.132,135 To address the

accuracy limitations of the DFTB pDOS, an additive correction is applied to the frequencies

associated with each DFTB phonon mode. This shift is computed separately for each mode

i as the difference between the DFT and DFTB frequencies at the Γ-point,

ωfinal
i (k) ≈ ωDFTB

i (k) +
(
ωDFT
i (Γ)− ωDFTB

i (Γ)
)

(3.5)

Performing this frequency shift does require computing the DFT frequencies at the Γ point,

which is far more expensive than computing them with DFTB for the same unit cell. On

the other hand, the cost of the DFT Γ-point calculation can be orders of magnitude cheaper

than computing the DFT frequencies in a large supercell. Overall, this simple correction

approximates the DFT phonon density of states well at a fraction of the usual computational

cost.

The approximation in Eq 3.5 assumes that the dispersion in individual phonon

bands is similar regardless of whether they are computed with DFT or DFTB, and that the

simple additive correction is sufficient to improve the DFTB bands. That assumption is

imperfect—our own anecdotal examinations of the pDOS for a few systems suggest that the
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DFTB3-D3(BJ) bands with the 3ob-3-1 parameter set136 tend to exhibit greater frequency

dispersion across the Brillouin zone compared to their B86bPBE-XDM DFT counterparts.

Nevertheless, these discrepancies in individual phonon bands partially cancel in the total

pDOS, and the correction improves the overall phonon density of states considerably com-

pared to the target DFT calculations. Note too that this Γ-point shift does not work for

the three acoustic modes, since those phonon frequencies equal zero at k = 0, regardless

of the electronic structure treatment. The acoustic modes will be handled separately, as

described in Section 3.2.2.

Employing this proposed hybrid pDOS calculation strategy requires addressing a

few practical issues. First, the harmonic approximation requires that the crystal struc-

ture has been relaxed to an energy minimum at the same level of theory as the lattice

dynamics calculation. Accordingly, the crystal geometry is first optimized with DFT for

the Γ-point phonon calculation. The DFT-optimized unit cell is then relaxed with DFTB

for the supercell lattice dynamics calculation.

Second, applying Eq 3.5 requires identifying which DFT phonon modes correspond

to which DFTB modes. Due to differences in the optimized structures and the electronic

structure models, the phonon frequencies will differ both in magnitude and the ordering

obtained from the eigenvalue solver. The normal mode eigenvectors obtained from diago-

nalizing the Γ-point dynamical matrix (Eq 3.4) at each level of theory will also likely differ

quantitatively, though they should still correspond to qualitatively similar atomic motions.

Therefore, to match phonon normal modes between the two levels of theory, the overlap

matrix ⟨uDFTB
α (Γ)|uDFT

β (Γ)⟩ is computed as the set of all possible inner products between
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the DFT and DFTB normal modes at the Γ-point. The optimal mode match for each DFT

normal mode is then assigned based on the single largest overlapping DFTB normal mode

eigenvector (with each DFTB mode being allowed to match only one DFT mode).

Figure 3.1 plots a sample overlap matrix for the DFT (B86bPBE-XDM) and

DFTB3-D3(BJ) normal mode eigenvectors of phase I carbon dioxide at the Γ-point (see

Section 3.3 for computational details). With only 12 atoms in the unit cell and 33 normal

modes (excluding the acoustic modes), the overlap matrix can be visualized easily. For the

vast majority of modes, there exists a single, clear match between the two levels of theory.

The degree of the overlap can be smaller for degenerate modes, since the corresponding

eigenvectors are not unique. However, this does not present a problem in practice as long

as the correct subspaces are identified, since individual assignments within the subspace are

arbitrary. Once the DFTB bands have been fully assigned, they can be shifted according

to Eq 3.5 to construct the final approximate pDOS.

The overlap-based mode assignment has proved straightforward for all systems

studied thus far. It is conceivable that one might find a system for which the simpler DFTB

model performs poorly and for which assigning the modes becomes more difficult. As the

DFTB models and parameterizations are continually improved, however, the likelihood of

such difficulties will hopefully decrease even further.

3.2.2 Treatment of the acoustic modes

As noted above, the Γ-point shift cannot be applied to the three acoustic modes,

since those frequencies equal zero at the Γ point by definition, regardless of the model
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Figure 3.1: Sample normal mode overlap matrix computed between the DFTB3-D3(BJ)
and DFT (B86bPBE-XDM) normal mode eigenvectors for phase I CO2. Darker green
corresponds to a larger-magnitude overlap.

chemistry employed. Moreover, very large supercells are required to converge the acoustic

modes, which can become computationally expensive even with DFTB. Finally, it is unclear

how well DFTB will model the soft acoustic vibrations in molecular crystals, given that such

interactions were not a focus of the parameterization.

Instead, the acoustic modes here are solved for separately with DFT via the stress-

strain relationships from the theory of elasticity,47,137

T = λE (3.6)

where T and E are the stress and strain tensors respectively, and λ is the matrix of elastic

constants describing the stress-strain relationship.

Acoustic sound velocities ν are related to the elastic constants using the 3 × 3

Christoffel matrices Γik for each unique direction in the Brillouin zone. The eigenvalues

of these matrices describe the velocity of sound propagating through the crystal, which is
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associated with the frequency of the acoustic phonons.

det |Γik − ρν2δik| = 0 (3.7)

Acoustic sound velocity can be related to vibrational frequency using the Debye

model, where the maximum Debye frequency ωD is evaluated as

ωD =
2ν|kzb|

π
(3.8)

The maximum Debye frequency defines the frequency of an acoustic vibration at the Bril-

louin zone boundary, kzb. For inclusion in the shifted pDOS from Equation (3.5), the

acoustic phonon dispersion between the zone center and kzb is extrapolated sinusodally

ω = ωD sin

(
k

kzb

π

2

)
(3.9)

Once the acoustic mode dispersion has been evaluated, it is substituted in lieu of the DFTB

acoustic modes in the final density of states.

Figure 3.2 plots the acoustic modes for phase I carbon dioxide as computed di-

rectly from DFT in a 3× 3× 3 supercell and from the elastic constant approach described

above. Even in this 16.9 Å dimension supercell, the DFT acoustic modes retain significant

imaginary components away from the Γ point. The elastic constant approach eliminates

the imaginary components and broadly captures the k-point dependence of these modes,

though the elastic constant model underestimates the frequencies by up to ∼10–15 cm−1 and
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Figure 3.2: Comparison of the acoustic phonon mode dispersion curves for crystalline carbon
dioxide as computed directly from lattice dynamics (blue) versus those derived from the
elastic constants (red).

exhibits reduced dispersion across the Brillouin zone. Nevertheless, the room-temperature

Helmholtz vibrational free energies obtained from the acoustic mode contributions to the

phonon density of states differ by only 0.2 kJ/mol between the two models.

3.3 Computational Methods

Figure 3.3: The five species whose crystals are modeled here.

The atomic positions and lattice parameters of all crystals were fully relaxed start-

ing from experimental crystal structures. The structure of carbon dioxide phase I was
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obtained from Ref. 138, while crystal structures of acetic acid (ACETAC01),139 imidazole

(IMAZOL06),140 acetaminophen (HXACAN01),141 and the five polymorphs of oxalyl di-

hydrazide (VIPKIO01–VIPKIO05)142 were taken from the Cambridge Structural Database

using the reference codes indicated in parentheses above. Molecular structures of these

species are shown in Figure 3.3

The DFT geometry optimizations and finite displacements for the phonon calcu-

lations were performed using the B86bPBE density functional and the XDM dispersion

correction, as implemented in Quantum Espresso v6.4.1.76 The calculations employed a

40 Ry (acetic acid, due to the large supercell), 50 Ry (carbon dioxide, imidazole, and ac-

etaminophen), or 60 Ry cutoff (oxalyl dihydrazide). Core electrons were treated according

to the projector augmented wave (PAW) approach using PAW potentials for H, C, N, and

O produced with A. Dal Corso’s Atomic code v6.1. The DFTB3-D3 calculations were

performed using the DFTB+ program80,81 and the 3ob-3-1 Slater-Koster file parameter

set.136 Hubbard derivatives and empirical dispersion coefficients were set to the values

recommended in the documentation.

For assessing the approximations proposed here, the specific choice of density func-

tional and DFTB parameterization used to approximate the pDOS are somewhat arbitrary.

The B86bPBE-XDM functional used here has performed well in many earlier molecular

crystal studies.63,77,97,143 Similarly, the dispersion-corrected DFTB3-D3(BJ) parameteri-

zation should also perform well for organic species like those studied here.136 One might

further improve the quality of these models by switching to a hybrid density functional64,98

or by including hydrogen bonding corrections in DFTB, for example.126 Nevertheless, the
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Table 3.1: Supercell sizes used in the phonon calculations. Cells were chosen to achieve
∼15 Å or more in each direction, while also ensuring the supercell DFT calculations were
feasible for the smaller molecules.

Crystal Supercell
Carbon Dioxide 3×3×3

Acetic Acid 2×4×3
Imidazole 2×3×2

α Oxalyl Dihydrazide 4×3×2
β Oxalyl Dihydrazide 5×2×3
γ Oxalyl Dihydrazide 4×2×3
δ Oxalyl Dihydrazide 5×2×3
ϵ Oxalyl Dihydrazide 3×4×2

Acetaminophen 2×2×3

results here focus primarily on how well the shifted DFTB pDOS reproduces the target DFT

one and the impact of this on computed thermochemical properties, rather than carefully

examining how well these particular DFT results reproduce experiment.

The harmonic phonon calculations were performed with Phonopy v1.13.2,82 which

generates a series of finite displacements in accord with the supercell/frozen phonon method.

The DFT Γ-point calculations employ the relaxed crystallographic unit cell, while the DFTB

phonon dispersion calculations employ a supercell constructed by replicating the unit cell

after DFTB relaxation. To ensure good convergence of the force constants,135 supercells

were chosen to achieve dimensions of 15 Å or greater along each lattice vector. Table 3.1

lists the specific supercell sizes used. The dynamical matrix can then be diagonalized at

various wave vectors k. The Γ-point DFTB phonon frequencies used to match normal modes

between DFT and DFTB are obtained at k = 0 from the supercell phonon calculation, while

the remaining values at k ̸= 0 provide the raw DFTB3-D3(BJ) pDOS. High-symmetry k

paths were assigned according to the schemes in Ref. 144.
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The matching of the phonon normal modes between DFT and DFTB and the

elastic constant solver algorithm were performed using in-house Python3 code. Elastic

constants were solved in a similar manner to how they are implemented in Thermo PW

module of the Quantum Espresso suite.145 Thermo PW evaluates the elastic properties of

a crystal by calculating the stress response for a series of strained conformations. Various

magnitudes of each unique strain are applied, and the corresponding elastic constant is

determined through a quadratic fit. Six unique stress/strain relationships are typically

required to construct the elastic constant matrix, though this can often be simplified by

exploiting crystal symmetry.

The stress/strain relationships were calculated via DFT. Test calculations found

that DFTB3-D3(BJ) with the 3ob-3-1 parameterization gave elastic constants that differed

considerably from the DFT ones. Performing these calculations with DFT instead of DFTB

does not significantly increase the overall cost. The number of stress-strain relationships

is independent of unit cell size, and evaluating each of the six stress-strain relationships

involves four fixed-cell geometry optimizations of a slightly distorted crystallographic unit

cell (rather than a supercell). All benchmark DFT phonon calculations here include the

acoustic mode correction. To analyze how much this correction contributes, some DFTB

results below include it, while others do not (as specified below).

3.4 Results and Discussion

To begin, Figure 3.4 compares the B86bPBE-XDM phonon density of states for

the α polymorph of oxalyl dihydrazide against the DFTB3-D3(BJ) 3ob-3-1 ones before
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and after applying the Γ-point correction in Eq 3.5. These two models are referred to

as “DFT” and “DFTB” for the remainder of the paper. For computational simplicity,

the DFT and DFTB phonon dispersion calculations in this illustrative example employed

only a 4×1×1 supercell (4×3×2 would be more appropriate for quantitative accuracy).

As can be seen in Figure 3.4a, the raw DFTB pDOS differs noticeably from the DFT

one. The discrepancies are most obvious in the intramolecular bends and stretches in the

∼500-3500 cm−1 range. For example, a number of the DFTB bending modes in the 540-

595 cm−1 range occur at 870–900 cm−1 in the DFT pDOS. Considering all DFT phonon

modes above 500 cm−1, the mean and mean absolute difference between DFT and DFTB

are 54 and 84 cm−1, respectively. In other words, the DFTB model is systematically

underestimating the bending and stretching frequencies on average. Discrepancies in higher-

frequency intramolecular modes will primarily impact the enthalpy and free energy via the

zero-point vibrational energy. Close inspection of the pDOS in the low-frequency region

also reveals discrepancies between the two models that will primarily impact the entropy as

well as the temperature dependence of the enthalpy. In the region below 500 cm−1, DFTB

underestimates the DFT phonon frequencies by 22 cm−1 on average, or 26 cm−1 in mean

absolute error.

Figure 3.4b shows how the pDOS is dramatically improved after shifting the DFTB

phonon modes according to Eq 3.5 and correcting the acoustic modes. A few minor discrep-

ancies do remain: for example, the shifted DFTB peaks near 500 cm−1 should be broader

and less intense, while the opposite is true for several peaks in the ∼750–1750 cm−1 range.
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Figure 3.4: Comparison of the DFTB3-D3(BJ) phonon density of states for the α polymorph
of oxalyl dihydrazide (a) before and (b) after the phonon shifting procedure against a
supercell DFT (B86bPBE-XDM) calculation. The reference DFT pDOS is plotted in red,
while the DFTB one is in black. All results except the unshifted DFTB pDOS in (a) include
the corrected acoustic modes derived from DFT elastic constants.

Nevertheless, the shifted DFTB band positions and intensities as a whole exhibit far better

agreement with the target DFT ones.

For more insight into the performance of the shifted DFT frequencies, Figure 3.5

plots the phonon frequencies for four modes in the 440–500 cm−1 range for acetic acid. It

shows how the additive shift, which ranges from 10–25 cm−1 for these particular modes,

brings the DFTB phonon frequencies into perfect agreement with DFT at the Γ-point.

However, the level of agreement between the two models is moderately reduced elsewhere

in the Brillouin zone due to differences in the dispersion predicted by the two models.

Nevertheless, the shifted DFTB pDOS still mimics the target DFT one fairly well, and it

represents a noticeable improvement over the original, unshifted DFTB pDOS.
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Figure 3.5: A narrow region of the acetic acid phonon band structure (left) and density of
states (right) as evaluated by DFT and DFTB after frequency shifting.

Next, we compare the performance of the approximate strategies for computing

the room-temperature Helmholtz vibrational free energy against the DFT results obtained

for acetic acid. Figure 3.6 plots the errors in the vibrational free energy per molecule relative

what one obtains with supercell DFT (including elastic constant treatment of the acoustic

modes). DFT Γ-point frequencies underestimate the target vibrational free energy by 2.5

kJ/mol compared to the supercell result. Given that the net vibrational free energy contri-

bution to polymorph energy differences is often 1–2 kJ/mol,92,101 this error is potentially

significant.

DFTB Γ-point frequencies perform even worse, underestimating the target vi-

brational free energy by 6.8 kJ/mol. Including phonon dispersion via a supercell DFTB

calculation further reduces the error by about a third, to 4.4 kJ/mol. Once the DFT-

derived phonon frequency shift (Eq 3.5) is applied, however, the free energy error drops to
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Figure 3.6: Errors in the room-temperature Helmholtz vibrational free energies per molecule
(Fvib(300K)) computed with various approximate models relative to the full DFT supercell
evaluation.

2.0 kJ/mol. Adding the appropriate acoustic modes (Eq 3.9) computed from the elastic

constants brings the Helmholtz vibrational free energy to within 0.5 kJ/mol of the target

supercell DFT treatment (which includes the same acoustic mode contributions).

Figure 3.7 plots the errors in the DFTB vibrational enthalpy, entropy (multiplied

by temperature), and Helmholtz free energies for acetic acid as a function of temperature

before and after applying the frequency shift and acoustic mode correction. Note that the

pressure-volume work contribution to the enthalpy is negligible for a crystal at ambient

pressure, which means that the Helmholtz and Gibbs free energies are essentially identical.

Figure 3.7 highlights how the errors in the uncorrected DFTB model relative to the target

DFT result vary considerably with temperature. For example, the errors in Fvib computed

purely with DFTB range from -2.5 kJ/mol at 0 K to -4.3 kJ/mol at 300 K. The vibrational

enthalpy error decreases with increasing temperature, from -2.5 kJ/mol to -1.8 kJ/mol, but

this is more than compensated for by the growth of the error in the entropic contribution to
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Figure 3.7: Temperature-dependence of the errors in the predicted enthalpy (blue), entropic
(green), and free energy (red) energies for crystalline acetic acid. Errors are computed
relative to supercell DFT with the acoustic mode correction. Dotted lines correspond to
the raw DFTB results, while solid lines indicate DFTB after shifting the frequencies and
applying the acoustic mode fix.

the free energy. In contrast, after shifting the phonon frequencies and correcting the acoustic

modes, the errors become much smaller and vary by only half a kJ/mol between 0 K and

room temperature. The largest error in Fvib is only 0.5 kJ/mol, a nine-fold reduction from

the uncorrected value.

For further insight, Table 3.2 examines the predicted thermochemical properties

for five different crystals: carbon dioxide, acetic acid, imidazole, the α polymorph of oxalyl

dihydrazide, and acetaminophen form I. Benchmark supercell DFT phonon calculations

with acoustic mode corrections were performed for the three smaller crystals. Supercell

DFT phonon calculations were not performed for oxalyl dihydrazide and acetaminophen

due to computational expense.
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Table 3.2: Predicted vibrational thermochemical contributions (excluding the electronic
energy) for several molecular crystals, in kJ/mol per molecule, as computed with supercell
DFTB, frequency-shifted supercell DFTB, frequency-shifted supercell DFTB with corrected
acoustic modes (AM), and supercell DFT with corrected acoustic modes.

DFTB DFTB DFTB DFT
+∆ω +∆ω+AM + AM

Carbon Dioxide
Hvib(0K) 30.4 32.4 32.5 32.0
Hvib(300K) 42.4 43.3 43.3 43.1
TSvib(300K) 32.7 25.1 25.5 26.5
Fvib(300K) 9.5 17.5 17.8 16.5

Acetic Acid
Hvib(0K) 160.7 163.2 163.2 163.2
Hvib(300K) 175.5 177.3 177.3 177.3
TSvib(300K) 31.4 30.0 29.3 28.8
Fvib(300K) 144.1 147.3 148.0 148.4

Imidazole
Hvib(0K) 186.3 186.2 186.2 186.2
Hvib(300K) 200.9 199.8 199.8 199.8
TSvib(300K) 34.5 30.5 30.0 29.2
Fvib(300K) 166.3 169.2 169.7 170.6

α-Oxalyl Dihydrazide
Hvib(0K) 274.7 285.0 285.0 –
Hvib(300K) 300.6 307.7 307.8 –
TSvib(300K) 52.2 45.5 43.5 –
Fvib(300K) 248.4 262.2 264.3 –

Acetaminophen Form I
Hvib(0K) 411.4 414.7 414.7 –
Hvib(300K) 442.0 444.3 444.3 –
TSvib(300K) 64.9 60.4 60.2 –
Fvib(300K) 377.1 383.6 384.0 –

For the first three crystals which have benchmark supercell DFT results, uncor-

rected DFTB exhibits modest mean absolute errors (MAD) in the vibrational enthalpy

of 1.4 kJ/mol at 0 K and 1.2 kJ/mol at 300 K. In contrast, the frequency-shifted DFT

models (with or without corrected acoustic modes) perform far better for the enthalpies,

with a MAD of 0.1 kJ/mol. This MAD reflects a 0.4 kJ/mol error for carbon dioxide and

essentially zero error for the other two crystals. Because the enthalpy is dominated by the
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zero-point contribution and exhibits modest temperature dependence, the frequency shift

alone corrects most of the deficiencies of DFTB.

The vibrational entropy is more sensitive to the low-frequency phonon modes and

shows greater variation across the different models. Raw DFTB performs poorly, with

MAD of 4.7 kJ/mol in TSvib at 300 K. This error reduces substantially to 1.3 kJ/mol

upon shifting the frequencies and further down to 0.8 kJ/mol after correcting the acoustic

modes. Because the errors for the two corrected DFTB models are dominated by the

entropies, the errors in Fvib are similar. The final MAD error in the room-temperature free

energies is 0.9 kJ/mol once the DFTB frequencies have been shifted and the acoustic modes

corrected. Overall, the ∼1 kJ/mol errors in the absolute vibrational free energies represent

a several-fold improvement over raw DFTB, and they are promising for organic crystal

polymorphism problems for which some error cancellation often occurs when computing

relative polymorph stabilities. The issue of error cancellation in relative polymorph free

energies will be revisited below.

While benchmark DFT values were not obtained for oxalyl dihydrazide and ac-

etaminophen, the data in Table 3.2 shows similar convergence behaviors of the different

thermochemical quantities at the DFTB level. The frequency shift alters the DFTB en-

thalpies by up to 10 kJ/mol, while the acoustic mode correction has little impact. In

contrast, both the frequency shift and acoustic mode corrections are important for the en-

tropic contribution of oxalyl dihydrazide (and acetaminophen to a lesser extent). The final

corrected free energies differ from the raw, uncorrected DFTB values by about 16 kJ/mol

for oxalyl dihydrazide and 7 kJ/mol for acetaminophen. These errors are considerably
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larger than those found for the smaller three molecules discussed earlier, suggesting that

the proposed DFTB corrections may become increasingly large as molecular complexity

increases.

Next, we apply the pDOS approximation approach to the five polymorphs of ox-

alyl dihydrazide. This system is representative of polymorph problems where one might

be interested in understanding how free energy contributions alter the relative polymorph

stabilities. Oxalyl dihydrazide has five known polymorphs at ambient pressure, which are

denoted α, β, γ, δ, and ϵ.142 Additional high-pressure forms have been reported, though

they have not been fully characterized.146 The five ambient-pressure forms differ in their

hydrogen bonding networks, including differences in whether they form intra- or intermolec-

ular hydrogen bonds. The β polymorph is metastable and hard to crystallize; it is believed

to be the least stable polymorph. The γ form is the second least stable. The α, δ, and ϵ

forms are more stable than the other two, though the precise stability ordering among those

three is unclear. Oxalyl dihydrazide has become a notable test case for electronic structure

models due to its difficulty.65,96,147–149 The current consensus points to the following sta-

bility ordering (from most to least stable): α < ϵ < δ < γ < β, and this ordering will be

taken as the correct one here.

Figure 3.8 compares the relative oxalyl dihydrazide polymorph stabilities as com-

puted from pure B86bPBE-XDM electronic lattice energies (Uel) and from several different

Helmholtz vibrational free energy approximations. While the DFT electronic energy alone

predicts the correct stability ordering, the 12 kJ/mol range is moderately larger than the 10

kJ/mol energy window that typically separates experimentally observed polymorphs.92–94
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Figure 3.8: Relative stabilities of the five oxalyl dihydrazide polymorphs. The first column
presents relative DFT electronic lattice energies, while the subsequent ones correspond to
free energies as computed from Γ-point DFT frequencies, supercell DFTB, and supercell
DFTB corrected with the frequency shift and acoustic modes.

The DFT Γ-point approximation to the free energy narrows this range somewhat, stabiliz-

ing the γ form most noticeably. Using the raw DFTB supercell phonon treatment alters

the stabilities considerably, and it incorrectly suggests that the γ form is less stable than

the β one. Not until both the Γ-point frequency shift and the acoustic mode correction are

included do the free energies predict a stability ordering that is consistent with experiment.

Without further experimental information, it is not possible to assess the quantitative ac-

curacy of these stabilities, but it is reassuring to see that the proposed approximations for

the phonon density of states does produce the qualitatively correct polymorph rankings in

this difficult system.

It is also worth noting how the differences in the relative polymorph free energies

vary by only a few kJ/mol between models, while the absolute Fvib values in for α oxalyl

dihydrazide in Table 3.2 differ by 16 kJ/mol between the corrected and uncorrected DFTB
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results. In other words, considerable error cancellation occurs in the relative polymorph free

energies. Despite the error cancellation, the uncorrected DFTB results predict qualitatively

incorrect relative free energies. This emphasizes the importance of the DFTB correction for

capturing the small energy differences associated with polymorphism.

Finally, we examine the computational savings associated with the approximate

pDOS treatment explored here. Table 3.3 summarizes the relative computational costs

associated with evaluating the acetic acid pDOS. The 2×4×3 supercell used here contains

24 replicas of the crystallographic unit cell, for a total of 768 atoms. The cost of the DFTB

supercell phonon calculation is about 19 times that of a DFT Γ-point one. On the other

hand, that is far cheaper than the supercell DFT calculation, which costs 615 times that of

the DFT Γ-point one. The fixed-cell geometry optimizations required to evaluate the elastic

constants and acoustic modes have an effective cost of about three times the DFT Γ-point

frequency calculation for this system. In other words, the additional calculations required to

perform the pDOS correction comprise only a small fraction of the DFTB supercell phonon

calculation. Combining the DFT Γ-point calculation, the DFTB supercell one, and acoustic

mode correction brings the total computational cost to 22.9 times that of the DFT Γ-point

alone. This is 27 times faster than the supercell DFT calculation (including the acoustic

mode correction), with only 0.4 kJ/mol loss in accuracy in the vibrational free energy at

room temperature (cf Table 3.2).
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Table 3.3: Computational cost associated with computing the different phonon density
of states approximations for acetic acid, computed relative to the cost of a DFT Γ-point
frequency evaluation. The relative costs were derived from processor hours, rather than
wall time.

Model Relative Cost
DFT Γ 1.0
DFTB Γ 0.02
DFTB Supercell 18.6
Shifted DFTB Supercell 19.6
Shifted DFTB Supercell + Acoustic Modes 22.9
DFT Supercell 614.6
DFT Supercell + Acoustic Modes 617.8

3.5 Conclusions

Despite its computational efficiency advantages, the phonon density of states com-

puted from DFTB3-D3(BJ) with the 3ob-3-1 parameterization exhibits appreciable errors

relative to a DFT GGA treatment. In the systems examined here, these discrepancies in-

troduce errors ranging from a few kJ/mol to more than ten kJ/mol. Even with the error

cancellations that can occur in relative energies, it seems likely that thermochemical prop-

erties predicted from this DFTB model will be unable to provide the kJ/mol accuracy often

required for problems in organic polymorphism and crystal structure prediction.

This study demonstrated how a simple additive shift to the DFTB phonon fre-

quencies and careful treatment of the acoustic modes leads to a model that performs far

better with only moderate increase in computational cost. Unsurprisingly, the biggest im-

provements from the corrections manifest in the entropic contribution to the free energy,

since that term is particularly sensitive to the low-frequency phonon modes. However, siz-

able corrections were found for the absolute vibrational enthalpies as well, arising primarily

from the zero-point contribution.
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The correction proposed in this study is independent from the particular DFTB

approximation or density functional used here. The same ideas could be applied to any

pair of “high” and “low” level models. Improvements to existing DFTB models and pa-

rameterizations that are actively being pursued by the community could be useful in this

context, including extensions to hybrid and/or range-separated functionals and better de-

scriptions of non-covalent interactions.81 Alternatively, semi-empirical composite models

have found success in non-covalent interactions and certain aspects of crystal structure pre-

diction131,133,150–152 and could potentially be suitable here too. The most important criteria

in selecting the appropriate pair of models will be the accuracy of the high-level method, the

computational cost of the two methods, and the fidelity with which the low-level method

reproduces the shapes of the phonon dispersion curves. In the future, it will be interesting

to employ this approach more widely. Beyond basic harmonic free energy contributions, the

approach could readily be combined with quasi-harmonic calculations of phase diagrams,

spectroscopic properties, mechanical properties, etc.
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Chapter 4

Solid-state Phase Diagrams and

Thermal Expansion

The ability to predict not only what organic crystal structures might occur, but

also the thermodynamic conditions under which they are the most stable would be ex-

tremely useful for discovering and designing new organic materials. The present study

takes a step in that direction by predicting the temperature- and pressure-dependent phase

boundary between the α and β polymorphs of resorcinol using density functional theory

(DFT) and the quasi-harmonic approximation. To circumvent the major computational

bottleneck associated with computing a well-converged phonon density of states via the su-

percell approach, a recently developed approximation is employed which combines a super-

cell phonon density of states from dispersion-corrected third-order density functional tight

binding (DFTB3-D3(BJ)) with frequency corrections derived from a smaller B86bPBE-

XDM functional DFT phonon calculation on the crystallographic unit cell. This mixed

60



DFT/DFTB quasi-harmonic approach predicts the lattice constants and unit cell volumes

to within 1–2% at lower pressures. It predicts the thermodynamic phase boundary in al-

most perfect agreement with the experiment, though this excellent agreement does reflect

fortuitous cancellation of errors between the enthalpy and entropy of transition.

4.1 Introduction

Organic molecular crystal structure prediction (CSP) has progressed dramatically

in recent years, including many successful “blind” predictions.29,30,63,97,98,153–155 CSP is

increasingly being employed to understand pharmaceutical solid form landscapes,156–164 for

example. While polymorph stability rankings of experimentally known structures are often

predicted with reasonable accuracy, one of the long-standing challenges of CSP lies in un-

derstanding why crystal energy landscapes frequently include far more putative structures

than have been observed experimentally.165 In some cases, McCrone’s remark166 that the

number of crystal structures known for a compound is proportional to the time and money

spent searching for them seems to hold true. Nevertheless, the number of predicted struc-

tures greatly exceeds the number of experimentally known ones even for prolific polymorph

formers like ROY (5-methyl-2-[(2-nitrophenyl)-amino]-3-thiophenecarbonitrile),167,168 galu-

nisertib,162 and axitinib.169

One partial explanation for this failure to observe predicted polymorphs lies in

the idea that researchers simply have not yet provided the correct crystallization conditions

for these forms. Kinetics plays an important role in the phenomenon of polymorphism,

as exemplified by the recent reports of two new ROY polymorphs which were discovered
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via non-traditional crystallization techniques.170,171 Unfavorable kinetics has also been

invoked to explain why the predicted “global minimum” polymorph of galunisertib has not

been found experimentally despite years of effort,162 though recent work has also argued

that the high stability of that polymorph may be an artifact of density functional theory.66

In 2018, Price described current-generation crystal structure prediction approaches

that search for the global lattice energy minimum structure as “zeroth-order” CSP.172 The

next generation “thermodynamic” CSP would rank structures based on free energy as a

function of temperature and pressure, as well as on crystal size, solvent, and the presence

of heterogeneous templates or impurities. The free energy landscape can differ considerably

from the lattice energy one due to factors such as the phonon contributions or dynamic

behaviors that cause multiple lattice energy minima to coalesce116,173,174 into a single free

energy basin. Overall, thermodynamic CSP represents a greater challenge for computa-

tional chemistry: moving beyond predicting what polymorphs might form to predicting

the experimental conditions under which they will be most likely to form. This has been

realized already in select cases. For the drug candidate Dalcetrapib, for example, CSP pre-

diction of a stable, densely packed polymorph led to a subsequent successful high-pressure

crystallization of that form.159

Aiming toward the goal of predicting polymorph stability as a function of temper-

ature and pressure, the present work focuses on predicting the structures, thermochemical

properties, and thermodynamic phase boundary between two polymorphs of resorcinol. Pre-

dicting phase transition temperatures is particularly difficult for several reasons. Beyond the

fundamental challenge of predicting accurate lattice energies, one must also compute phonon
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contributions to the free energy. Vibrational contributions also typically induce thermal ex-

pansion of the crystal lattice, and accounting for how the resulting anharmonicities impact

free energies (e.g. via the quasi-harmonic approximation48,49,106) can be critical to predict-

ing even qualitatively correct phase boundaries.51 Further treatments of anharmonicity

and/or quantum effects can also be considered.114,115,117,120,173,175–181 Uncertainty analy-

sis indicates how the predicted thermal phase transition temperatures can exhibit strong

sensitivity to small errors.182 In particular, the more parallel the free energy curves are for

different phases, the greater the impact of small errors on the predicted phase boundary.

High-pressure phase boundaries can be moderately easier to predict, since thermal expan-

sion is reduced and packing density becomes a major factor in determining the enthalpy at

high pressures.

Despite these challenges, there have been a number of successful predictions of

phase boundaries in systems such as carbon dioxide,183–188 ice,189,190 nitrogen,191–196 methanol,51

benzene,115,173,176,197 and others.96,114 In methanol, for example, fragment-based calcu-

lations at the coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) level

coupled with the quasi-harmonic approximation predicted the phase diagram of the α, β,

and γ to within ∼0.5 kJ/mol accuracy over a range of several hundred Kelvin and a few

GPa.51

Unfortunately, that coupled cluster theory prediction of the methanol phase dia-

gram required a few hundred thousand central processing unit hours,51 and applying the

same techniques to pharmaceutical-sized molecules would be infeasible. Density functional

theory is considerably less computationally demanding, though it can still be expensive due
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to the high-cost of computing harmonic phonons with DFT. Instead, the current study uti-

lizes a quasi-harmonic model that combines density functional theory (DFT) treatment of

the lattice energies and a recently developed approach198 for obtaining the phonon density

of states from a mixture of DFT and density functional tight binding (DFTB). In particu-

lar, the high computational cost of the phonon calculation is exacerbated by the need for

large supercells to obtain well-converged phonon densities of states. The new approach first

computes the phonon density of states in a large supercell with DFTB at relatively low

cost, and then shifts the individual phonon bands based on the difference between DFT

and DFTB frequencies in a smaller crystallographic unit cell. This ensures DFT-quality

phonon modes at the Γ point, while the phonon dispersion is modeled with DFTB.

A number of earlier studies have found dispersion-corrected DFTB3 models to

be useful in molecular crystal applications,132,133,199 including for embedding models,130

intermediate screening steps in crystal structure prediction127,129 and for quasi-harmonic

calculations.128 This evidence suggests that the same DFTB3 models may be suitable

for the present phonon approximation as well. In testing on a few simple crystals using

dispersion-corrected, third-order DFTB3-D3(BJ) and the B86bPBE-XDM density func-

tional,198 the approximation introduced ∼1 kJ/mol errors or less into the total Gibbs free

energies compared to the DFT ones. Additional error cancellation occurred in the rela-

tive energy differences between different crystal polymorphs. At the same time, the mixed

DFT/DFTB approach reduced the computational effort required for evaluating the phonon

density of states by 1–2 orders of magnitude compared to a more conventional approach

based purely on DFT.
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Figure 4.1: The crystal structures of α and β resorcinol differ in the hydroxyl group orien-
tations and their intermolecular hydrogen bond networks.

The present study extends that earlier research by combining this phonon density

of states approximation with the quasi-harmonic approximation and then modeling the

crystal structures and phase transition of the α and β polymorphs of resorcinol at finite

temperatures and pressures. Resorcinol, also known as benzene-1,3-diol, has been studied

for many decades and is used in the synthesis of resins and pharmaceuticals. Crystalline

resorcinol can occur in several known polymorph phases. The α and β phases adopt the

same Pna21 space group, though they differ in their intramolecular conformations and

intermolecular hydrogen bonding patterns (Figure 4.1).2

The α polymorph is the thermodynamically preferred form at ambient conditions,

even though it is less dense than the β phase (i.e. contrary to the density rule.200). The α

phase converts to the β polymorph upon heating to ∼360–370 K, or at room temperature

upon compression at ∼0.4–0.5 GPa.1–3 The transition temperature and pressure depend

strongly both on the rate of heating and the rate of pressurization, implying that kinetics

plays a role in the phase transition.1,201–203 The experimental phase observations used
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here result from careful measurements which attempted to control for these kinetic factors

through sample equilibration and by using slower heating and pressurization rates.1,201

Three other phases of resorcinol are not considered here. The disordered γ poly-

morph and the ordered δ one form at several GPa of pressure, though neither crystal struc-

ture has been solved.1,202,203 In 2016, the structure of a new ϵ polymorph was reported

at atmospheric conditions through a combination of experimental powder x-ray diffraction

and crystal structure prediction, and there was even some evidence of another (as yet un-

confirmed) P21 phase.
204 However, this ϵ polymorph is believed to be metastable relative to

the α and β phases at all temperatures, so it is not considered here either. The next section

describes the approximation used for the phonon density of states and its incorporation into

the quasi-harmonic approximation.

4.2 Theory

4.2.1 Gibbs Free Energies

The thermodynamic stability of a crystal at a given temperature and pressure is

governed by the Gibbs free energy,

G(T, P ) = Uel + Fvib(T ) + PV (4.1)

where Uel is the electronic energy, Fvib(T ) is the Helmholtz vibrational free energy, and PV

represents the pressure-volume contribution. The electronic energies here will be computed

with DFT using periodic boundary conditions. Within the harmonic approximation, the
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Helmholtz vibrational free energy is computed as,

Fvib(T ) = 3nNakBT

∫ ∞

0
ln

[
2 sinh

(
ℏω

2kBT

)]
g(ω)dω (4.2)

where n is the number of atoms in the crystallographic unit cell, Na is Avogadro’s number,

ℏ is Plank’s constant, kb is the Boltzmann constant, T is the temperature, and g(ω) is the

phonon density of states (DOS) as a function of frequency ω.45

4.2.2 Efficient approximation for the phonon density of states

Because evaluation of the harmonic phonon DOS often forms the major compu-

tational bottleneck in computing the free energy, approximations that reduce the cost of

the phonon DOS can be very helpful. One of the simpler phonon DOS approximations is

to evaluate only the zone-center (Γ-point) phonons. However, this approximation neglects

contributions arising from dispersion of the optical phonon modes throughout reciprocal

space and the non-zero frequencies of the acoustic modes away from the Γ point. Acoustic

modes contribute significantly to the entropy and to the temperature dependence of the

enthalpy. They can be important when predicting thermodynamic phase boundaries, where

even small errors in the free energy can shift the transition temperature by a hundred de-

grees Kelvin or more. These contributions away from the Γ point are generally expected

to be most important in smaller unit cells for which the Γ-point phonon DOS is less-well

converged, and in cases where the unit cell shapes differ considerably between polymorphs,

thereby hindering error cancellation in the thermochemical energy differences.

67



Phonon contributions away from the Γ point can be captured by performing a

supercell lattice dynamics calculation49,82,135 or using density functional perturbation the-

ory.121 Unfortunately, the need for large supercells extending ∼10–15 Å or more in each

direction to converge the phonon density of states119,120,135 makes the supercell approach

far more expensive than a simple harmonic phonon calculation on the crystallographic unit

cell. To address this computational bottleneck, we recently proposed a strategy198 for ap-

proximating the phonon density of states which reduces the computational cost by ∼1–2

orders of magnitude while introducing only small errors into the resulting free energies. This

approach first performs the lattice dynamics calculation in a large supercell using density

functional tight binding (DFTB) to capture the optical mode phonon dispersion. However,

individual DFTB phonon bands will often be shifted considerably in frequency from the

DFT values due to the limitations of the DFTB model, which leads to substantial errors

in the resulting free energies. To improve the DFTB phonon DOS, the harmonic phonons

are computed at the Γ point using DFT. This DFT unit cell calculation is typically far

less computationally demanding than a large DFT supercell calculation would be. Each

DFTB normal mode is then assigned to the corresponding DFT mode based on overlap of

the normal mode eigenvectors, and an additive shift is applied to the frequencies of each

DFTB phonon band based on the difference between the DFT and DFTB frequencies at

the Γ point. The normal mode matching is similar to how eigenvector overlaps can be

used to identify common normal modes in a crystal structure at multiple different volumes,

for example.205 Previous testing in other crystals198 and for resorcinol here suggests that

the mode assignments based on maximal overlaps are generally straightforward. After re-
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ordering the phonon modes based on the matched pairs, the overlap matrix becomes highly

diagonally dominant, and virtually all of the diagonal overlap elements between the DFT

and DFTB normal mode eigenvectors exceed 0.5 (and they are often closer to unity).

This phonon mode matching procedure ensures that the Γ-point phonon values

match DFT, while the phonon dispersion away from the Γ point is modeled by DFTB.

Because this shift is not applicable to the three acoustic modes (their frequencies are always

zero at the Γ point), the acoustic mode frequencies are computed from DFT elastic constants

using the theory of elasticity.206 Finally, the phonon density of states is constructed using

a kernel density estimation (KDE) in which a 5 cm−1 wide normal distribution is placed

at the frequencies from each discretely sampled k-point. This KDE approach improves the

convergence of thermal properties with respect to reciprocal space sampling.206 In small-

molecule crystal benchmarks, this phonon DOS approximation approach introduced errors

of ∼1 kJ/mol or less into the total free energies compared to supercell DFT results. Further

error cancellation appears to occur for the relative free energies between crystal forms. See

ref 198 for further details.

To help visualize this approximation, Figure 4.2 plots a sample phonon DOS for

α-resorcinol before and after applying the frequency shift. These phonon densities of states

use the DFTB3-D3(BJ) model and the generalized gradient approximation (GGA) func-

tional B86bPBE-XDM that will be described in the Computational Methods section below.

As seen here, the correction shifts the phonon modes considerably. The most substantial

changes occur in the intramolecular stretching region above ∼1000 cm−1. Some of the

C-H stretching modes shift by hundreds of cm−1. However, there are also many less visi-
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Figure 4.2: Comparison of the DFTB3-D3(BJ) phonon density of states for α resorcinol
before and after applying the B86bPBE-XDM DFT Γ-point frequency shift.

ble changes to the density distribution in the lower-frequency region. Overall, the average

magnitude of the frequency shift is 78 cm−1, and these changes impact the thermochem-

istry considerably. The zero-point enthalpy increases by 2.4 kJ/mol per molecule, though

the shift in the thermal enthalpic contributions exhibits the opposite sign, and the total

enthalpy shift at 300 K is only 0.9 kJ/mol. The impact on the entropies is even larger.

The frequency shift reduces the entropy by 17.1 J/(mol K) at room temperature, which

reduces the entropic contribution TS to the free energy by 5.1 kJ/mol. The final free en-

ergy is shifted by 6.1 kJ/mol. Similar magnitude shifts occur for the β polymorph as well,

leading to partial cancellation of these corrections in the relative polymorph energy differ-

ence. Nevertheless, these results highlight the significant impact of applying the Γ-point

shift to the DFTB phonons. Finally, we note that this phonon DOS approximation is not

restricted to particular DFTB or GGA functional models used here; any combination of

a computationally inexpensive model with a more expensive, higher-accuracy model could

be used. As will be demonstrated in the Results and Discussion, the chosen combination
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works fairly well for resorcinol, but it is possible that the results could be improved further

with alternative model choices.

4.2.3 Quasi-harmonic approximation

Anharmonic contributions can also contribute appreciably to the predicted thermo-

chemical energies. The quasi-harmonic approximation (QHA) represents one of the simplest

approaches for incorporating some anharmonicity into the harmonic phonon treatment. It

typically works fairly well for molecular crystals up to moderately high temperatures below

the melting point.48,49 The QHA maps how the phonon frequencies and free energies vary

with the molar volume of the crystal. In the implementation here, the electronic energy

Uel is first computed as a function of volume by applying a series of positive and nega-

tive external isotropic pressures to the cell and relaxing the lattice parameters and atomic

positions. This allows the unit cell to relax anisotropically, softens the one-dimensional

potential energy curve compared to isotropic scaling of the lattice constants, and leads to

improved description of the expansion/contraction.50,51

Next, the phonon density of states and free energies are evaluated at the equi-

librium geometry and at several expanded and contracted volumes from the Uel(V ) curve.

Each explicit phonon DOS evaluation was performed using the mixed DFT/DFTB approach

described in Section 4.2.2, and care was taken to ensure the phonon DOS calculations were

performed across the range of volumes associated with the temperatures and pressures of

interest. After computing Fvib(T ) for each sampled structure at a chosen temperature, the

Fvib values as a function of volume were fitted to a second-order polynomial. This Fvib fit-

ting procedure appears to work well (e.g. see Figure 4.3b and Refs 51,108,113,122, though
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one could alternatively fit the individual phonon frequencies as a function of volume.128

Summing Uel(V ), Fvib(V ), and PV for the given temperature and pressure produces G(V ).

This free energy is fitted to a double-Murnaghan equation of state, in which the compression

and expansion branches are fitted separately to the Murnaghan equation of state,52

G(V ) = G0 +
B0V

B′
0

[
(V0/V )B

′
0

B′
0 − 1

+ 1

]
− B0V0

B′
0 − 1

(4.3)

and the two halves connect smoothly at the equilibrium volume V0. From the fit, one

obtains the optimal molar volume V0, free energy at that volume G0, the bulk modulus

B0, and the first derivative of the bulk modulus with respect to pressure, B′
0. The double-

Murnaghan form was chosen based on a prior study of crystalline methanol which found

it reproduced the ab initio free energy data more accurately than several other common

functional forms.50 Figure 4.3 plots sample electronic energy, Helmholtz vibrational free

energy, and combined Gibbs free energies versus volume for the two resorcinol polymorphs

at room temperature and ambient pressure.

The computational bottleneck lies in computing the electronic energy curve and

phonons. The subsequent steps described here to determine the optimal structure at a

particular temperature and pressure require minimal computational cost, which allows one

to map out G(T, P ) readily. Lattice parameters and atomic coordinates for the current

volume are interpolated from the values explicitly obtained in the geometry optimizations

used to generate Uel(V ).
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Figure 4.3: The quasi-harmonic treatment of resorcinol combines (a) electronic DFT en-
ergies and (b) Helmholtz vibrational free energies as a function of volume, which are then
summed along with the PV term to obtain the Gibbs free energy. The predicted structures
for the given thermodynamic conditions correspond to the minima of the G(V ) curves. Data
shown here for 300 K and 1 atm.
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The specific form of the quasi-harmonic approximation used here does make some

approximations. The thermal expansion is mapped onto a one-dimensional quasi-anisotropic

dependence on volume. Moreover, the atomic positions at each given volume/pressure

are optimized based on the electronic lattice energy, rather than the free energy. As a

result, contributions from zero-point vibrational energy and the ansiotropy of the thermal

expansion are only partially captured. Nevertheless, approaches similar to the one used

here have proved successful in many applications.49–51,98,103,105–108,113,120,122,205 Moreover,

Abraham and Shirts studied different quasi-harmonic approximations for predicting thermal

expansion and polymorph free energies in organic molecular crystals, including for the α and

β polymorphs of resorcinol. At room temperature, they found an approach similar to the one

used here differed from more complete quasi-harmonic approximation models by no more

than 0.5% in lattice parameters and ∼0.1 kJ/mol in the free energy difference between the

two polymorphs. That will not always be true: they found less faithful performance for an

approximation like the one used here when studying two polymorphs of piracetam, however,

and further work is needed to ascertain more clearly when more elaborate treatments such

as those found in Refs 175 and 207 will be required.

4.3 Computational Methods

4.3.1 DFT Structure optimizations

Experimental crystal structures for α- (RESORA03208) and β-resorcinol (RE-

SORA08209) at ambient pressure were taken from the Cambridge Structure Database (CSD).

The experimental α structure was solved at 120 K, while the β-form one was determined
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at room temperature. The atomic positions and lattice parameters for each structure were

fully relaxed to their electronic energy minima using planewave DFT. The electronic energy

surface Uel was mapped out over 37 volumes spanning 408–720 Å3 for α, and 39 volumes

spanning 408–638 Å3 for β, through a series of additional structure relaxations subjected

to positive and negative external isotropic pressures. Similar equation of state fits could

likely have been obtained with significantly fewer energy-volume data points as well.

These periodic DFT calculations were performed in Quantum Espresso v6.1210

using the B86bPBE density functional78,211 and the exchange-hole dipole method (XDM)

dispersion correction.77 This functional has performed well in many earlier molecular crystal

studies.63,77,97,143 Core electrons were treated according to the projector augmented wave

(PAW) approach, and PAW potentials for H, C, and O were produced using A. Dal Corso’s

Atomic code v6.1.76 Optimizations were carried out using a 50 Ry planewave energy cutoff.

Reciprocal space k-points were placed on a 1×1×3 Monkhorst-Pack grid212 for α−resorcinol

and on a 3× 1× 3 grid for β−resorcinol.

4.3.2 Phonon density of states and free energies

DFT and DFTB3-D3(BJ) harmonic vibrational frequencies were computed using

the finite displacement method as implemented in Phonopy v2.4.2.82 DFT Γ point phonons

were evaluated using the same B86bPBE-XDM density functional, k-point grid, and plane

wave cutoff as described in the optimization procedure.

To ensure stationarity of the DFTB potential energy, the atomic positions in the

unit cells were subsequently optimized with DFTB3-D3(BJ) prior to supercell expansion us-

ing the DFTB+ software, version 19.1.80,81 The DFTB3-D3(BJ) calculations employed the
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3ob-3-1 Slater-Koster parameterization,136 which has shown good performance for organic

species,124 and Grimme’s D3 dispersion correction.79 All other DFTB job parameters em-

ploy the default values recommended in the DFTB+ documentation. The optimized DFTB

structures were expanded to 3 × 3 × 4 supercells for both structures. For the equilibrium

structures, this corresponds to a minimum supercell dimension of 31 Å × 28 Å × 22 Å for α

and 23 Å × 38 Å × 21 Å for β, each consisting of 2,016 atoms. Similar results could proba-

bly been obtained with smaller supercells, but these large cells were chosen to ensure good

convergence of the phonon DOS, and they were affordable with DFTB3-D3(BJ). Finally,

the Helmholtz vibrational free energies were computed from the phonon DOS via numerical

integration of Eq 5.5. The quasi-harmonic approximation calculations and phase-diagram

predictions were managed via an in-house python script, which is available on GitHub

at https://github.com/cjcook41/Modematching. Inelastic neutron scattering spectra were

simulated using the OCLIMAX program, version 3.0.213

For perspective on the computational timings, optimizing the α polymorph geom-

etry from the experimental structure required 90 central processing unit (CPU) core hours

on an Intel Xeon E5-2680v3 processor. Computing the Γ-point phonons and the elastic

constants for a single structure (56-atom unit cell) required 139 and 446 CPU core hours,

respectively. Finally, the DFTB phonon frequency calculation on the 2,016-atom supercell

required 8,260 core hours.

76



Table 4.1: Comparison of predicted and experimental lattice parameters for the α and β
polymorphs of resorcinol. The quasi-harmonic approximation is employed for the finite-
temperature predictions, while the “no QHA” results utilize lattice energy minimization
without any phonon contributions.

Temperature a (Å) b (Å) c (Å) Cell Volume (Å3)
α-Resorcinol

B86bBPBE-XDM no QHA 10.37 9.32 5.58 539.91
B86bBPBE-XDM 120 K 10.45 9.40 5.65 554.27

Experiment208 120 K 10.47 9.41 5.67 557.95

β-Resorcinol
B86bBPBE-XDM no QHA 7.77 12.51 5.35 520.82
B86bBPBE-XDM 4 K 7.88 12.49 5.46 537.52

Experiment209 4 K 7.81 12.62 5.43 534.69
B86bBPBE-XDM 300 K 8.00 12.47 5.58 556.55

Experiment209 300 K 7.93 12.61 5.51 551.19

4.4 Results and Discussion

4.4.1 Assessment of thermal expansion

First, we investigate the quality of the predicted unit cell volumes for both poly-

morphs relative to experiment at ambient pressure. Table 4.1 shows the predicted and

experimental lattice parameters and unit cell volumes at select temperatures for α- and β-

resorcinol. The optimized B86bPBE-XDM lattice parameters obtained from pure lattice

energy minimization (i.e. without employing the quasi-harmonic approximation) are also

included for comparison with the QHA results.

The QHA thermal expansion of the unit cell proves key to the accurate prediction

of the experimental lattice parameters at all temperatures considered. Predicted cell vol-

umes and lattice parameters for α-resorcinol are in excellent agreement with experiment.208

Inclusion of the zero-point vibrational contribution and heating to 120 K causes a 2.7% vol-

77



ume expansion in α resorcinol. At 120 K, the QHA cell volume is only 0.7% smaller than the

experimental volume, whereas the purely electronic DFT structure without QHA phonon

contributions underestimates the volume by 3.2%. The 120 K QHA lattice constants are

also exhibit excellent agreement with those determined experimentally, with errors of 0.02 Å

or less.

In β-resorcinol, even at extremely low temperatures (4 K), QHA expansion leads

to a 3.2% increase in volume with respect to the electronic minimum. This expansion again

improves agreement with the experimental volume at 4 K, reducing the error from 2.6%

too small without the QHA to only 0.5% too large with the QHA. This low temperature

expansion primarily originates from the zero-point vibrational energy contributions, as the

thermal population of the density of states is quite low. At room temperature, further

expansion in the experimental cell means that the electronic energy minimum (no QHA)

structures are 5.5% too small in volume, while the QHA treatment overestimates the volume

by only 0.8%. In other words, the QHA treatment mildly exaggerates the expansion that

occurs over the 0–300 K temperature range in this system.

The errors in the individual lattice parameters are somewhat larger for β-resorcinol

than they were for the α polymorph, though they still exhibit reasonable agreement with

experiment. The a and c lattice constants are over-estimated by 0.07 Å and 0.03–0.06 Å,

respectively, while b is under-predicted by 0.13–0.14 Å. The opposing signs of these errors

leads to some error cancellation that leads to the excellent predicted cell volumes. The

QHA model does correctly predict the slight contraction of the b lattice constant with

increasing temperature seen in the experiments. This contraction of b and coupled with
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Figure 4.4: Comparison of the experimentally reported unit cell volumes (points) for α-
(red) and β-resorcinol (blue) at 0.09 GPA against those predicted from the quasi-harmonic
B86bPBE-XDM calculations (lines). The vertical lines indicate the temperature regimes
under which pure α, pure β, or a mixture of the two phases was observed experimentally.

expansion of a and c also highlights the importance of allowing anisotropic relaxation of the

cell constructing the initial E(V ) curves used in the QHA.214

Second, Figure 4.4 compares the predicted thermal expansion of both polymorphs

relative to experiment at 0.09 GPa.1 The quasi-harmonic B86bPBE-XDM calculations

underestimate the unit cell volume of α-resorcinol by about 1.5–2% throughout the temper-

ature range shown, while the β form volumes are overestimated by 1.2% on average. These

errors are reasonably consistent with the results in Table 4.1, especially when considering

that the α polymorph results are above room temperature here, compared to 120 K in Ta-

ble 4.1. This level of agreement between theory and experiment is also consistent with the

errors found for quasi-harmonic modeling in previous studies.50,98,103–106,109,112,215,216 The

quasi-harmonic model also reproduces the slope of the volume expansion with temperature

for both polymorphs fairly well in this temperature range. The opposite signs of the errors
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Figure 4.5: Comparison of predicted (lines) and experimental (points)1,2 volumes of (a) α
and (b) β resorcinol as a function of pressure. The quasi-harmonic approximation (QHA)
B86bPBE-XDM predictions at room-temperature agree best with experiment at low pres-
sure, while the B86bPBE-XDM and PBE-TS3 models without quasi-harmonic thermal ex-
pansion underestimate the volume at low pressures. All models overestimate the volumes
to some extent at higher pressures.

between the two phases does mean that the predicted volume difference between the two

phases is only about half the experimental difference, however.

Next we investigate the quality of the predicted room-temperature unit cells as

a function of pressure. Figure 4.5 compares the predicted volumes for both polymorphs

from 0 to 4 GPa against experimental data from Ref 1 and 2. The reported volumes from

the two experimental studies are in generally good agreement. The plot also includes data

from previous PBE-TS calculations from Ref 3 which did not employ the quasi-harmonic

approximation. For that reason, Figure 4.5 shows B86bPBE-XDM data with and with-

out quasi-harmonic thermal expansion. Without thermal expansion, the PBE-TS and

B86bPBE-XDM volumes are very similar at low pressure for both phases, though PBE-

TS predicts volumes that are consistently ∼5–10 Å3 larger than the B86bPBE-XDM ones.

Both underestimate the experimental unit cell volume considerably below 1 GPa.
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Upon applying the quasi-harmonic approximation with B86bPBE-XDM, the pre-

dicted unit cell volume expands by ∼3–5% for α and ∼3–7% for β, leading to much improved

agreement with experiment at pressures in the ∼0–1 GPa range. As usual, thermal expan-

sion occurs to a greater extent at lower pressures. Interestingly, all three computational

models predict the resorcinol crystals to be considerably less compressible at higher pres-

sures than the experiments, which leads to the cell volumes being considerably too large

by 4 GPa. The reasons behind this discrepancy are unclear, but the fact that it occurs

for all three models suggests that it is not due either to the specific generalized gradient

approximation (GGA) density functionals used or to the inclusion/exclusion of phonon con-

tributions. Regardless, the accuracy of the predicted volumes below 1 GPa is promising for

predicting the phase transition in that regime.

Good agreement between the QHA B86bPBE-XDM model and experiment2 is also

seen in the pressure dependence of the lattice constants, as shown in Figure 4.6. For the

α polymorph, the largest mean absolute error of 1.1% occurs for b, while a and c exhibit

errors of only 0.2% and 0.5%, respectively. For β-resorcinol, the mean absolute errors are

moderately larger at 1.3% for a, 0.9% for b, and 0.6% for c, but these still represent overall

good agreement with experiment.

4.4.2 Phase diagram and thermochemical properties

Having seen that the model reproduces the experimental crystal structures well at

lower pressures, we now investigate the thermodynamic phase-transition boundary in the 0

to 1 GPa regime. The experimentally observed phase behaviors depend on sample purity,

81



(a) α−Resorcinol

9.7
10.0
10.3
10.6
10.9

       

a

8.5
8.8
9.1
9.4
9.7

       

b

La
tti

ce
 C

on
st

an
t (

Å
)

5.2
5.5
5.8
6.1
6.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

c

Pressure (GPa)

B86bPBE−XDM
Experiment

(b) β−Resorcinol

7.2
7.5
7.8
8.1
8.4

      

a

12.0
12.3
12.6
12.9
13.2

      

b

La
tti

ce
 C

on
st

an
t (

Å
)

4.8
5.1
5.4
5.7
6.0

0.0 0.2 0.4 0.6 0.8 1.0

c

Pressure (GPa)

Figure 4.6: Comparison of room-temperature experimental (points)2 and predicted (lines)
quasi-harmonic B86bPBE-XDM lattice parameters of (a) α and (b) β resorcinol as a func-
tion of pressure. The first column of figures shows lattice parameters a, b, and c for the α
polymorph, while the second shows them for the β form.

heating or pressurization rate, and in some cases the thermal history of the sample.1,203

Early studies at ambient pressure reported the α → β phase transition to occur at 344 K217

or 347 K.218 Ebisuzaki et al201 reported the α to β phase transition at 369 ± 6K, followed

by melting of the β phase at 382.8 ± 0.1 K. They attributed their higher phase-transition

temperature to improved sample purity. Kichanov et al1 similarly reported the ambient-

pressure α → β phase transition at 363 K by monitoring the proton spin-lattice relaxation

time using free induction decay amplitudes. The phase transition temperature decreases

with increasing pressure, and by 0.4 GPa, it occurs at room temperature. Figure 4.7 plots

the experimentally observed phase behavior from Ref 1. Over much of the pressure region,

the precise thermodynamic phase boundary is not clear. Rather, the authors observed a

82



 0

 100

 200

 300

 400

 500

0.0 0.2 0.4 0.6 0.8 1.0

α

β

Mixed

α-0.50 kJ/mol

Predicted

α+0.50 kJ/m
ol

T
e

m
p

e
ra

tu
re

 (
K

)

Pressure (GPa)

Figure 4.7: Comparison of the experimentally observed1 and predicted phase-transition be-
tween α− and β-resorcinol. The solid red line corresponds to the predicted quasi-harmonic
B86bPBE-XDM result, while the dotted lines indicate how the boundary changes if the α
polymorph is artificially stabilized or destabilized relative to the β one.

long-lived mixed-state that contained seeds of the β phase nucleating within the α poly-

morph. The same mixed phase was also seen in earlier Raman studies.203

Figure 4.7 overlays the predicted quasi-harmonic B86bPBE-XDM thermodynamic

phase boundary between the α and β phases on top of the experimental one. At ambient

pressure, the phase transition is predicted to occur at 368 K, in nearly perfect agreement

with the more recent experimentally reported transition temperatures of 363 K and 369

± 6K. At 0.4 GPa, the transition is predicted to occur at 260K, in reasonable agreement

with the experimental observation of a room-temperature transition at that pressure. The

predicted slope of the phase-transition boundary with temperature and pressure appears

qualitatively consistent with the experimental observations.

For further insight, sensitivity analysis is performed on the phase boundary by arti-

ficially stabilizing or destabilizing the α phase relative to the β one by up to 0.5 kJ/mol. The

resulting phase boundaries are also plotted in Figure 4.7. Shifting the polymorph free en-
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Table 4.2: Comparison of predicted and experimental thermochemical data for the α to β
phase transition of resorcinol at ambient pressure and the predicted/observed phase tran-
sition temperature. a ∆Hα→β and ∆Sα→β were computed at 373 K, independent of the
predicted phase-transition temperature.

Method Source ∆Hα→β ∆Sα→β Temperature
(kJ/mol) (J/(mol K)) (K)

Experiment Ebisuzaki et al201 1.370 ± 0.007 3.71 ± 0.05 369 ± 6
Experiment Bret-Dibat et al219 1.2 ± 0.1 3.3 367 ± 0.4

B86bPBE-XDM this work 2.33 6.26 368
B86bPBE-XDM Γ this work 2.17 5.97 364
PBE-TS, no QHA Druzbicki et al3 0.97 4.16 373a

ergy difference by ±0.5 kJ/mol causes the predicted transition temperature at zero-pressure

to vary by ±80 K, or roughly from ∼290–450 K. The same shift alters the pressure-induced

phase transition by ±0.3–0.4 GPa at room temperature. In other words, the predicted

phase boundary is very sensitive to small errors in the Gibbs free energy, as has been noted

previously for other systems.51,182 In this light, the excellent agreement between theory

and experiment here reflects a combination of good model accuracy and fortuitous error

cancellation.

To analyze the thermodynamic behavior more closely, Table 4.2 decomposes the

free energy of transition at the phase transition temperature into its enthalpy and entropy

components. Compared to the experiments of Ebisuzaki et al201 and by Bret-Dibat et al,219

the predicted ∆Hα→β is overestimated by 1–1.2 kJ/mol, reflecting a spurious stabilization

of the α phase relative to the β one. The enthalpy error is largely compensated for by a

2.6–3.0 J/mol K overestimation of ∆Sα→β which over-stabilizes the β form relative to α at

finite temperatures. Cancellation between these two errors produces the Gibbs free energy

difference that leads to near perfect agreement in the predicted phase boundary.
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The error in ∆Hα→β arises from a combination of the electronic lattice energy

and phonon contributions, while the ∆Sα→β error stems primarily from the phonon con-

tributions. As a crude numerical experiment, we examined how these two thermochemical

quantities change when we shift the entire β-resorcinol phonon DOS toward higher frequen-

cies. A +25 cm−1 phonon DOS shift decreases ∆Hα→β by about 0.25 kJ/mol, and a 50

cm−1 shift decreases ∆Hα→β by only 0.4 kJ/mol. In other words, only a fraction of the

enthalpy error versus experiment likely stems from the phonon contribution; DFT errors

in the lattice energy components are probably responsible for the larger fraction of the

∆Hα→β error. On the other hand, a ∼25 cm−1 shift would be sufficient to bring ∆Sα→β

into excellent agreement with experiment. While the true phonon errors are surely more

nuanced than a simple shift of the entire phonon DOS employed here, these results do sug-

gest that the discrepancies between the predicted and observed thermochemical quantities

in Table 4.2 can readily be accounted for within the expected errors of DFT.

Druzbicki et al3 computed ∆Hα→β and ∆Sα→β at 373 K using a variety of density

functionals and the harmonic approximation. While most of the functionals they tested

gave larger errors than those seen here, PBE-TS performed very well, with enthalpies and

entropies of transition of 0.97 kJ/mol and 4.16 J/mol K at 373 K, despite neglecting thermal

expansion. On the other hand, it appears that despite the better agreement in the enthalpy

and entropy of transition, the error cancellation between the two is less effective: Although

their study did not report the temperature-dependence of ∆Hα→β and ∆Sα→β, using the

reported 373 K values would indicate a phase transition around 235 K, which is about 130 K

below the experimental transition temperature. Furthermore, these PBE-TS thermochem-
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Figure 4.8: Relative enthalpy, entropy (−T∆S), and Gibbs free energy differences for the
α → β phase change (in kJ/mol) using (a) the raw DFTB3-D3(BJ) phonon density of states
or (b) the phonon density of states obtained after performing the B86bPBE-XDM Γ-point
shift and acoustic mode corrections. The gray point in (b) indicates the phase transition at
407 K.

ical results were obtained for structures which did not account for thermal expansion and

therefore underestimate the molar volumes considerably (Figure 4.5).

Next, in order to assess the impact of the phonon DOS approximation used here, we

also examined the Gibbs free energies computed from the DFTB3-D3(BJ) phonon density

of states (without applying the DFT Γ-point shift or acoustic mode correction). In that

case, the two phases are incorrectly predicted to be monotropically related—i.e. α-resorcinol

is thermodynamically preferred at all temperatures and pressures, and there is no α → β

phase transition. As shown in Figures 4.8a and 4.8c, enthalpy favors the α form throughout

this temperature range for both phonon models, and the difference in ∆Hα→β between the

two models is less than 0.8 kJ/mol. However, the two models predict completely different

relative entropies. The polymorph entropy difference computed from the raw DFTB3-

D3(BJ) phonon DOS has the wrong sign—it predicts that the α phase entropy is always

greater than the β phase entropy (or in Figure 4.8, that −T∆Sα→β is positive). This error
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prevents the relative Gibbs free energy in Figure 4.8a from changing sign. After applying

both the DFT-based Γ-point shift and acoustic mode corrections, however, we see that

the relative entropy reverses sign such that the β phase is increasingly favored at higher

temperatures. At 368 K, the corrected entropy becomes sufficiently large to overcome the

enthalpy difference between the two phases, and the β polymorph becomes the stable phase.

In other words, entropy drives the temperature-dependent phase transition, and correcting

the DFTB3-D3(BJ) phonon DOS with the DFT Γ-point shift is essential to obtaining the

proper enantiotropic relationship between the two phases.

For completeness, we also examine the performance of B86bPBE-XDM employ-

ing only Γ-point phonons, omitting the DFTB phonon dispersion contribution. At room

temperature, the total Gibbs’ free energy of each phase is ∼3.5-3.75 kJ/mol smaller in mag-

nitude without phonon dispersion. Because phonon dispersion is most pronounced in the

low-frequency and acoustic modes, the majority of this difference stems from the decreased

entropy in the Γ-point-only model. Nevertheless, much of this difference cancels when com-

puting the thermochemical energy differences between the two polymorphs. As shown in

Figure 4.8b and 4.8c, the enthalpy, entropy, and free energy changes differ only by a few

tenths of a kJ/mol or less. Moreover, as shown in Table 4.2, the predicted ∆Hα→β and

∆Sα→β values agree marginally better with experiment, but the predicted phase transition

temperature at ambient pressure is nearly identical (364 K vs. 368 K with phonon disper-

sion). The strong similarity between the models with and without phonon dispersion here

likely reflects the similarity of the crystal packing between the two forms.
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For further evidence of the fortuitous nature of the agreement in the thermochemi-

cal properties, Figure 4.9 compares the simulated inelastic neutron scattering (INS) spectra

against the experimental ones from Ref 3 for the three different phonon DOS models: raw

DFTB, DFT Γ-point, and the mixed DFT/DFTB approach. For the ∼50-300 cm−1 region

where phonon dispersion is generally more appreciable, the combined DFT/DFTB phonon

DOS model gives improved agreement with the experimental spectra compared to the DFT

Γ-point phonon modes only. It does appear that the DFT/DFTB phonon DOS model un-

derestimates the acoustic mode frequencies moderately, leading to an erroneous peak below

∼50 cm−1. The Γ-point DFT model nominally appears more faithful to experiment in the

sub-50 cm−1 region by virtue of neglecting the acoustic mode contributions entirely. In

the high-frequency region above 300 cm−1, the differences between the DFT Γ-point and

DFT/DFTB models are smaller. In contrast to the DFT/DFTB or DFT Γ-point spectra,

the INS spectrum simulated from the raw DFTB phonon DOS exhibits poor agreement with

experiment, further demonstrating the need for correcting the DFTB phonon frequencies

as is done here.

Finally, we compare the predicted and experimental enthalpies of sublimation for

α-resorcinol. Many experimental values for the α-resorcinol sublimation enthalpy have

been reported.220–227 Table 4.3 lists the averaged 298 K value of 95.6 ± 0.6 kJ/mol ob-

tained by critical analysis of several studies225 along with the more recent measurement from

Gonçalves et al of 99.7 ± 0.4 kJ/mol.227 The theoretical sublimation enthalpy was com-

puted for using the standard ideal gas, rigid rotor, and harmonic oscillator partition function

expressions for the gas-phase species (see Ref 104 for details). The room-temperature pre-
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Figure 4.9: Inelastic neutron scattering spectra for α and β resorcinol in the low- and high-
frequency regions. The experimental spectra at 35 K are compared against quasi-harmonic
ones using the raw DFTB phonon DOS, the Γ-point DFT phonon spectra, and the combined
DFT/DFTB phonon DOS.3
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Table 4.3: Comparison between experimental and predicted sublimation enthalpies at 298 K.

Method Source ∆Hsub

(kJ/mol)
Experiment Verevkin & Kozlova225 95.6 ± 0.6
Experiment Gonçalves et al227 99.7 ± 0.4

B86bPBE-XDM this work 102.7

diction of 102.7 kJ/mol overestimates the experimental values by 3–7 kJ/mol, depending on

which experimental value is used. This error is consistent with earlier quasi-harmonic ∆Hsub

benchmarks in small-molecule crystals122 and DFT lattice energy benchmarks.96,119,215 On

the other hand, this error is several times larger than the error in ∆Hα→β in Table 4.2, high-

lighting once again the importance of error cancellation in predicting the phase boundaries

correctly. Errors in describing the intermolecular interactions in the crystalline phase are

fully exposed when computing the lattice energy or sublimation enthalpy, but they cancel

somewhat when examining energy differences between polymorphs.

4.5 Conclusions

Predicting phase boundaries between crystal polymorphs represents one of the

challenging problems in modeling the organic solid state due to the extreme sensitivity of

the results to small errors in the models. This challenge is compounded by the computational

expense associated with computing accurate electronic energies and well-converged phonon

densities of state over a range of temperatures and pressures in order to obtain the Gibbs

free energies. The present work shows how DFT and DFTB can be combined in a quasi-

harmonic model that accurately describes the crystal structures, thermochemistry, and
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phase boundaries for the α and β phases of resorcinol. The key approximation here lies in

using DFT Γ-point phonon frequencies to shift the DFTB phonon density of states. Overall,

the model reproduces experimental crystal structures to within 1–2% or better, especially

at lower pressures. It predicts the α → β phase transition boundary to within a few degrees

Kelvin. However, the phase transition temperature is shown to be very sensitive to small

changes in the relative free energy. The level of quantitative agreement in the transition

temperature reflects fortuitous error cancellation between the enthalpy and entropy, both

of which are overestimated by the model relative to experiment.

The mixture of DFT and DFTB used to compute the phonon density of states here

reduces the computational costs associated by orders of magnitude,198 making it much more

feasible to model the finite-temperature thermochemistry of chemically interesting organic

crystals without consuming exorbitant amounts of computer resources. At the same time,

DFTB3-D3(BJ) alone proved inadequate, and the DFT-derived correction to the DFTB

phonon density of states was essential to capturing the correct phase behavior in resorcinol.

Therefore, the combined DFT/DFTB approach appears to provide a good balance between

computational cost and accuracy. In this particular case, Γ-point DFT phonons perform

about the same as the mixed approach, though one would expect greater differences in

polymorphs where the crystal packing exhibits greater differences in conformation and/or

intermolecular packing.

In the future, it will be interesting to apply these same modeling procedures to

crystals of more complex species, such as small-molecule pharmaceuticals. The resorcinol

polymorphs here involve both hydrogen bonding and significant van der Waals dispersion
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interactions through the π system. In that regard, this system is reasonably representative

of many rigid-molecule organic crystals. On the other hand, the similar crystal packings

between the two polymorphs studied here may facilitate error cancellation to a greater

extent compared to other polymorphic systems. This system also lacks the greater confor-

mational flexibility of many larger molecules and pharmaceuticals that might complicate

quasi-harmonic treatments (though some recent research has suggested that limitations of

the quasi-harmonic approximation may not be well-correlated with conformational flexibil-

ity117).

To improve the accuracy of these approaches, it may be useful to improve the

quality of the DFT electronic energies via use of hybrid or other higher-quality density

functionals,98 inclusion of conformational energy corrections when needed,66 or perhaps

even employing post-DFT treatments where feasible.65,122Fortunately, the Γ-point “refer-

ence” frequencies used in the matching procedure are not restricted to DFT-GGA. This

provides a particular advantage over the density functional perturbation treatment, where

the implementation of hybrid density functionals is less straightforward.228 Incorporation

of additional phonon mode anharmonicity120 might also help improve the predicted ther-

mochemistry, especially for molecules with greater intramolecular conformational flexibility.

Regardless of the specific modeling choices made, one should take care to understand how

uncertainties in the computational models manifest in the final predictions and remain cog-

nizant of the role of error cancellation in making useful thermochemical predictions for the

organic solid state.
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Chapter 5

Organic Semiconducting Crystals

Classification of charge mobility in organic semiconductors is imperative in mod-

ern device design, but computational methods are often restricted to the zero- or low-

temperature regime. The thermal fluctuation of intermolecular charge transfer integrals

indicates that a finite-temperature approach is necessary in accurately predicting the pa-

rameters of charge carrier mobility. These effects can be captured using quasi-harmonic

techniques, which can predict the physical properties of thermally expanded organic molec-

ular crystals. In this work we characterize the temperature dependence of intermolecular

charge transfer integrals due to the thermal expansion of three popular Van der Waals

bound molecular semiconducting crystals.

5.1 Introduction

The search for efficient organic semiconductors (OSCs) in organoelectronics has

accelerated significantly in recent years. Market research predicts that the global annual
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semiconductor market is expected to grow from USD 53.3 billion in 2018 to 179.4 billion

by 2024, an annual growth rate of 22.4%.229 While the efficiency of organic semiconduc-

tors is still lacking compared to polycrystalline silicon, it has increased by several orders of

magnitude over the past decade. OSCs also pave the way for flexible electronics, fine-tuned

electronic properties via organic synthesis,10,230 and a more energy efficient manufactur-

ing processes. Steep increases in viability shows incredible promise in the field of organic

semiconductors.231

OSC efficiency of is most simply characterized by charge carrier mobility µ. This

quantity can be somewhat elusive to calculate directly, falling in either band-like high

mobility transport regimes as seen in metals and smaller-band-gap semiconductors,232,233

and thermally-activated charge hopping akin to Marcus transport as seen in larger-band-

gap semiconductors and electronic insulators.234,235 Higher-efficacy organic semiconductors

exist in an intermediate transient localization regime where mobility is limited by carrier-

phonon coupling, which is significant in Van der Waals bound organic crystals.236,237 The

evaluation of bulk mobility µ within the transient localization regime requires extensive

knowledge of the dynamics of the system. Regardless of the charge transport model, transfer

integrals are an important parameter in the determination of µ and can be characterized in

a more straightforward manner.

Changes in crystal packing and mechanical strain can significantly impact charge

transport parameters.13,238–242 Chemical modification of a species provides many possibil-

ities for tuning molecular electronic properties, but it can also impact intermolecular pack-

ing therefore bulk transport properties. For example, oxidation of the pentacene molecule
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disrupts the molecular π-conjugation and alters the intermolecular packing from the her-

ringbone motif to a slip-stacked crystal structure.230,243 Similar structure-based approaches

in optimizing carrier mobility have been focused on stifling intermolecular oscillations with

the introduction of bulky functional groups.236,241 A unifying concept in the strategies used

to boost the viability of OSCs is that even the most nuanced contortions of the crystal can

have major impacts on the intermolecular interactions governing bulk mobility. Thermody-

namic effects such as thermal expansion are known to alter crystal structure, however they

are less often studied in this context.

Temperature effects on carrier mobility is not unknown, however simulation of

transport properties is often limited in practice to experimentally determined structures at

finite temperatures due to the high cost of necessary lattice dynamics calculations. This

could be problematic for the assessment of carrier mobility parameters in structures deter-

mined via crystal structure prediction techniques, often ranking candidate crystals at the

electronic minimum. This work aims to establish a reliable and affordable thermal expan-

sion procedure using the quasiharmonic approximation for organic semiconducting crystals.

Further, we highlight the effects of thermal expansion on the carrier mobility parameters

in three common organic semiconductors: naphthalene, pentacene, and benzothieno[3,2-

b][1]benzothiophene (BTBT). Readily determined structural and electronic properties at

several temperatures could prove useful for device research and fabrication in real-life con-

ditions.
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5.2 Theory

5.2.1 Carrier Mobility and Transfer Integrals

Charge transport properties and their relationship to crystal structure is most

clearly conveyed in the tight-binding approximation:53

H =
∑
i

ϵia
+
i ai +

∑
i ̸=j

tija
+
i aj (5.1)

where a+i and ai are the creation and annihilation operators for an electron on molecular site

i, respectively, ϵi is the electron site energy, and tij is the transfer integral. The remainder

of this study focuses on the tij parameter, which is an important indicator of efficient charge

transfer.

Evaluation of tij from a single isolated dimer calculation can be approximated as

half of the orbital splitting energy, however this has been shown to yield inaccurate transfer

integrals as it neglects electronic polarization. Practical evaluation of tij instead involves

a projection of the isolated monomer’s frontier orbitals on those of the dimer.53,54 The

secular equation describing the dimer in the basis of monomer frontier orbitals is:

HC− ESC = 0 ; H =

 e1 J12

J12 e2

 (5.2)

Where H is the electronic Hamiltonian, C is a matrix of orbital coefficients, E is the dimer

energy, S is the overlap matrix, ei is the site energy of molecule i and Jij is the electronic
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transfer integral derived from the isolated molecular constituents of the dimer:

Jij = ⟨Ψi|Hij |Ψj⟩ (5.3)

Here, Ψi is the frontier orbital on the ith molecule. Jij is physically equivalent to tij , however

it is represented in a non-orthogonal basis of the isolated monomers. This is corrected by

projecting the orbitals of the monomers onto the orbitals of the dimer, giving an accurate

transfer integral denoted Jeff
ij .53–57 The present study focuses on the hole mobility, where the

frontier orbitals of interest are the HOMO and HOMO-1 orbitals of the dimer, represented

by the HOMO’s of its constituent monomers.

In a semiconducting crystal, Jeff
ij is evaluated for each unique pair of molecules

whose distance is close enough for considerable electronic coupling across interacting monomers.

Exploiting translational and space group symmetry allows one to evaluate only the symmetrically-

unique subset of possible dimer pairs. While longer-range electron transfer can be important

in evaluating bulk mobility, the present study focuses on local transfer integrals, which will

be most sensitive to changes in crystal structure/volume.

Intermolecular charge transfer depends strongly on the degree of orbital overlap in

the dimer pair. Changes in the crystal structure alter this overlap. For example, increasing

intermolecular separation reduces the strength of interfacial π stacking interactions and the

orbital overlap. Subtle changes in relative orientations of molecules, such as a face-to-edge

angle in a herringbone-type packing, can also impact transfer integrals.55 Accordingly,

accurate knowledge of the unit cell is important when calculation transfer integrals and

carrier mobility.

97



5.2.2 Quasi-Harmonic Approximation

The quasi-harmonic approximation (QHA) is employed here to predict the molecu-

lar crystal volume/atomic positions as a function of temperature. Standard DFT geometry

optimization produces the minimum electronic energy crystal structure. The volume of this

0 K structure will typically be several percent smaller than the room-temperature crystal

structure due to the neglect of zero-point vibrational energy and thermal expansion.113 Even

a few percent change in volume can impact certain bulk properties appreciably.244,245 To

obtain the finite-temperature structure, one should instead minimize the Gibbs free energy

G(T, P, V ) with respect to the atomic positions and lattice vectors for a chosen temperature

and pressure:

G(T, P, V ) = Uel(V ) + Fvib(T, V ) + PV (5.4)

where Uel(V ) is the electronic energy as a function of volume, Fvib(T, V ) is the Helmholtz

vibrational free energy, and PV is the pressure-volume contribution which is typically neg-

ligible at ambient pressures. For a given volume, the harmonic Helmholtz vibrational free

energy is computed as,

Fvib(T ) = 3nNAkBT

∫ ∞

0
ln

[
2 sinh

(
ℏωk

2kBT

)]
g(ωk)dωk (5.5)

where n is the number of atoms in the crystallographic unit cell, Na is Avogadro’s number,

ℏ is Planck’s constant, kB is the Boltzmann constant, T is temperature, and g(ω) is the

phonon density of states (pDOS) at that volume.
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The key difficulty in minimizing the Gibbs free energy stems from how the pDOS,

and therefore Fvib, varies with volume. A standard harmonic treatment of the phonons

neglects this volume-dependence and therefore does not predict any thermal expansion.

To capture the volume-dependence of the Gibbs free energy at finite temperatures and

pressures, the QHA is employed. In particular, the electronic energy of the crystal is

optimized with DFT at several different unit cell volumes. The harmonic phonon density

of states is computed for each structure using the approach described below in Sec 5.2.3.

From these calculations, Uel(V ), Fvib(T, V ) and therefore G(T, P, V ) can be interpolated as

a one-dimensional function of volume for any given temperature and pressure. Minimizing

G with respect to volume at the chosen temperature and pressure gives the optimal unit

cell volume. The final lattice parameters and atomic positions for that T and P are then

obtained from a constant volume DFT structure optimization at the optimal volume. The

QHA often models thermal expansion of organic molecular crystals well, at least for without

too much flexibility and at low or moderate temperatures.13,246,247

5.2.3 Phonon Calculations

Adequate convergence of phonon density of states g(ω), particularly including

phonon dispersion of the intermolecular modes, is important for predicting thermal expan-

sion accurately. This is often achieved via the supercell method, but performing a harmonic

phonon DFT calculation on large supercells can be computationally demanding. Instead,

we employ our recently-developed mixed DFT/density functional tight binding (DFTB)

approximation scheme,198 which is multiple orders of magnitude faster than a traditional

DFT calculation.
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The approximation begins by relaxing the atomic positions for the given volume

and computing the supercell phonons frequencies with semi-empirical DFTB, resulting in a

series of phonon dispersion curves. The low computational cost of DFTB makes obtaining a

well-converged pDOS from large supercell phonon calculations much more feasible compared

to DFT, but the accuracy of DFTB phonon band frequencies is often comparatively poor.

To improve the accuracy of the phonon frequencies, a DFT phonon calculation is also

performed on the crystallographic unit cell (Γ point). Using the crystallographic unit cell

instead of a supercell makes this DFT phonon calculation much more affordable. Then each

optical DFTB phonon band is shifted based on the difference between the DFT and DFTB

frequencies at the Γ point (k = 0):

ωfinal
i (k) ≈ ωDFTB

i (k) +
(
ωDFT
i (0)− ωDFTB

i (0)
)

(5.6)

To determine the frequency corrections, the DFT and DFTB phonon modes are matched

based on maximizing the overlap of the normal mode eigenvectors.198 In the end, the phonon

bands have the “correct” DFT phonon frequencies at the Γ point, but the dispersion of each

phonon band is obtained from DFTB.

Unfortunately, this mixed DFT/DFTB approach is not applicable to the acoustic

modes, since their frequencies are zero at the Γ point by definition. In our experience,

standard DFTB approximations describe the acoustic modes poorly away from the Γ point

(k ̸= 0). The low-frequency acoustic modes contribute significantly to thermal expansion,

so it is important to improve the description of these modes.
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Accordingly, the acoustic modes are evaluated from DFT-computed stress-strain

relationships and the theory of elasticity. Computing the DFT elastic constants and solving

for the eigenvalues of the Christoffel matrix yields the sound velocities in each plane of the

crystal. The sound velocities can be related to the acoustic mode frequencies via Debye

theory and a sinusoidal extrapolation of the acoustic modes to the Brillouin zone edges.

The final pDOS is the sum of contributions from the optical and acoustic modes. See ref

198 for details. This pDOS approximation has previously been validated for small-molecule

crystal thermochemistry,198 the finite-temperature and pressure structures of resorcinol, and

for predicting the polymorph phase diagram of resorcinol.245 Compared to DFT supercell

calculations, it introduces ∼1 kJ/mol errors into the absolute Helmholtz vibrational free

energies of small molecules, and the errors in the relative free energy differences between

polymorphs appear to be even smaller.

5.3 Computational details

5.3.1 Crystal optimizations

Initial crystal structures for the three systems studied here were pulled from

the Cambridge Structure Database (CSD): naphthalene (NAPHTA244), pentacene (PEN-

CEN04248), and BTBT (PODKEA9). For consistency with the computations, the exper-

imental naphthalene crystal was transformed to from the P21/a space group setting to

P21/c; all cell vector comparisons are with respect to the P21/c crystal. Pentacene can

adopt a variety of different polymorphs depending on the crystallization method; these are

often characterized by d(001)-spacings.248,249 The structure used to initialize the optimiza-
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tions here corresponds to Form II at 90K, which is also known as the 14.5 Å d-spacing

variant or the low temperature form. Variable cell optimizations were performed with den-

sity functional theory, using the Perdew-Burke-Erzhoff (PBE)78 density functional with

Grimme’s D3 dispersion correction79 and a 6-311G(2d,2p) basis. All optimizations were

carried out in the CRYSTAL17 module with an appropriate Monkhorst-Pack k-point grid

ensuring an energy-per-cell convergence of 0.001 eV, which has shown to be sufficient for

insulating and semiconducting systems.250 Fixed cell optimizations for determination of

elastic constants on the various strained volumes of each crystal were performed in Quan-

tum Espresso v.6.4210,251 with the PBE functional and D3 dispersion correction, with a 60

Ry planewave cutoff.

5.3.2 Phonon Density of States Calculations

Harmonic Γ-point phonons and eigenvectors were evaluated with Phonopy v2.4.0

and its CRYSTAL17 interface.252 DFTB Γ-point and supercell phonons were evaluated

with DFTB+. DFT/DFTB hybrid phonon density of state integrations, as well as QHA-

based cell volume optimizations, were carried out with our previously developed Mode-

Match v0.0.10 code.198,245 Integration q-points and band samplings were determined via

the scheme proposed by Setyawan et al.253 Elastic constants, sound velocities, and acoustic

frequencies were determined with ModeMatch v0.0.10.

5.3.3 Thermal Expansion

The QHA was applied to all crystals as described in our previous work.198,245 In

particular, the optimal unit cell volume was determined by fully relaxing the atomic posi-
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tions and lattice parameters with DFT. Four additional constant-volume optimizations were

performed on unit cells whose volumes were expanded or contracted from the equilibrium

volume by ±2% or ±4%. These constant-volume optimizations allow the lattice parameters

to vary subject to maintaining the overall target volume, thereby allowing quasi-anisotropic

compression/expansion. Phonon density of states calculations were then performed on each

of the five optimized structures via the mixed DFT/DFTB approach. The resulting phonon

frequencies were used to determine the Fvib as a function of volume and temperature, from

which the Gibbs free energy could be computed. A final fit to a Burch-Murnaghan equation

of state is used to the predicted G(T, P, V ), where compressed and expanded volumes are

fit separately to better model the anharmonic well. For a given temperature and pressure,

the minimum free energy and its corresponding cell volume VQHA were be extracted via

one-dimensional optimization. Final atomic positions and lattice parameters were obtained

via a final constant-volume optimization of the unit cell at VQHA computed for those ther-

modynamic conditions. The QHA procedure was performed using the ModeMatch v0.0.10

python module.

5.3.4 Transfer Integrals

Transfer integrals were evaluated for each unique dimer pair in the supercell up

to a cutoff of 10 Å, after which the values become small.254 To do so, 3× 3× 3 supercells

were constructed for the predicted finite-temperature QHA crystal geometries of interest.

The individual monomer and dimer orbital energies were determined with the hybrid-GGA

PBE0 density functional and the def2-TZVP basis set within the GAUSSIAN09 software
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package.255 Monomer basis set orthogonalization to the dimer pair and subsequent evalua-

tion of Jeff
ij was carried out with the open-source CATNIP module.256

5.4 Results and Discussion

5.4.1 Thermal Expansion

Naphthalene: Figure 5.1a plots how the lattice constants and cell volume of

naphthalene change with increasing temperature. Lattice constants a, b, and c expand

anisotropically, elongating by 3.8%, 2.5%, and 4.6%, respectively, between the DFT elec-

tronic energy minimum crystal structure and the quasi-harmonic DFT structure at 300 K.

A significant fraction of that expansion stems from the inclusion of zero-point vibrational

energy, as has been noted previously for other systems.104 Comparing against three sets

of temperature-dependent x-ray and neutron diffraction studies,4,7, 257 the predicted lattice

constants lie within ∼0.1 Å or better of experiment. The largest errors among the three

lattice constants occur for the a lattice parameter, whose value starts out 0.07 Å too large

relative to experiment at low temperature, but the rate of thermal expansion is too small

such that it underestimates the experimental value by 0.1 Å at room-temperature. The

errors for the b and c lattice constants are at least 2-3-fold smaller. In contrast to the three

lattice constants, the predicted temperature dependence of the β angle is poorly captured

by the model: its value lies within 0.7◦ of experiment at low temperature, but it is 2.5◦ too

small at room temperature. These β angle errors are still rather small, but they will impact

on the predicted transfer integrals as discussed in the next section.
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Figure 5.1: (a) Comparison of predicted and experimental lattice constants for napthalene
as a function of temperature. Lattice vectors a, b, and c are shown by the red, green, and
blue lines, respectively. Experimental values are shown in colored triangles. (b) P21/c
representation of the 6 K experimental structure as determined by Capelli et al.4 Colored
axes coincide with the color scheming in (a). Dashed magenta dashed lines indicate the
primary dimer pairs analyzed for charge transport parameters. (c) Comparison of the
predicted and experimental unit cell volumes as a function of temperature. Black and gray
dots represent experimentally observed unit cell volumes.4–7
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Nevertheless, the overall volume and its expansion with temperature are predicted

accurately. The quasi-harmonic predicted volumes are 1.6±0.3% too large on average (Fig-

ure 5.1c), due in large part to the under-estimated β angle. The predicted rate of expansion

with temperature agrees even better with experiment, with less than a percentage point

difference between the volume errors at low temperature and those near room temperature.

The predicted 6.5% total expansion between 5 K and room temperature, the largest seen

among the three systems investigated here, agrees well with the 5.9% thermal expansion

from the structures reported by Capelli et al.258 Such accuracy for the models is com-

petitive with previous quasi-harmonic molar volume predictions for naphthalene and other

crystals.13,104,122,216

BTBT The thermal expansion of BTBT is shown in Figure 5.2. The a, b, and c lattice

constants expand by 1.8%, 1.8%, and 3.8%, respectively, upon heating to room temperature.

This predicted lattice constants and their rate of expansion with temperature are again

generally consistent with experiment, with the largest errors occurring for the a constant.

Importantly, the subtle widening of the β cell angle with increasing temperature is captured

by the QHA calculations. This angle proves important for capturing the edge-face transfer

integral between molecules in the bc-plane.

The overall volume of the BTBT unit cell expands 4.3% between 0 K and 300 K,

as shown in 5.2c. The predicted QHA volumes reproduce to the experimental ones to

within 1%. This excellent accuracy of the predicted volumes at higher temperatures partly

reflects the error cancellation between the over-estimation of the a and b constants and the

under-estimation of c. Similar cancellations occurred for naphthalene as well. Compared
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Figure 5.2: (a) Comparison of predicted and experimental lattice constants for the BTBT
crystal as a function of temperature. Lattice constants a, b, and c are shown by the red,
green, and blue lines, respectively. Experimental values are shown in colored triangles.8–12

(b) Crystal structure of BTBT crystal structure, with the axes colored to match part
(a). Dashed magenta dashed lines indicate the primary dimer pairs analyzed for charge
transport parameters (c) Comparison of the predicted and experimental unit cell volumes
as a function of temperature, in Å3 per molecule. Black dots represent the volumes reported
in the temperature dependent study of Banks et al,8 while the gray points represent volumes
from other entries in the CSD.9–12
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to the temperature-dependent X-ray diffraction measurements of Banks et al8 at 100 K,

200 K, and 300 K (black points in Figure 5.2c), the predicted rate of thermal expansion

with increasing temperature appears slightly too large. On the other hand, it appears more

reasonable if one also considers additional reported unit cell volumes from the CSD.9–12

Pentacene Finally, we examine the thermal expansion of pentacene. Experimental unit

cell volumes for pentacene have been reported up to 400 K. However, we primarily focus

on temperatures up to room temperature for a few reasons: this temperature regime is

most relevant for organic semi-conductor devices, the performance of the quasi-harmonic

approximation deteriorates at higher temperatures in general, and finally the experimental

volume at 400 K lies outside the range of volumes explicitly sampled in generated the

energy-volume curve used in the QHA procedure (the range could be extended, but we

have not done so because of the other two reasons). As shown in Figure 5.3, the predicted

volumes generally reproduce the experimental lattice constants and volumes well up to room

temperature. The predicted volumes like within ∼1% of experiment up to 300 K, though

they increase to ∼2.1% at 400 K. Based on the predicted lattice constants in Figure 5.3a,

it appears that the rate of thermal expansion with temperature is mildly underestimated.

The lattice constants lie within ∼0.1 Å of experiment, while the three angles of the triclinic

unit cell are mostly within 1°. Only at 300 K does the β angle error grow to 2.2°.

Overall, the predicted quasi-harmonic finite-temperature structures using the mixed

DFTB/DFT phonon density of states agree well with experiment for all three systems.
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Figure 5.3: (a) Comparison of predicted and experimental lattice constants for the pen-
tacene crystal as a function of temperature. Lattice vectors a, b, and c are shown by the red,
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(b) Experimental 100K BTBT crystal structure as determined by Vyas et al. Colored axes
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troids, and magenta dashed lines are displayed to show the primary dimer pairs analyzed
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tronic minimum BTBT crystal. Black and gray dots coincide with experimentally observed
finite temperature cell volumes.
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Source Temperature (K) Volume %Err
expt248 90 661.9 –
expt259 180 677.3 –
expt248 293 685.2 –

Modematch QHA 90 666.3 0.65
Modematch QHA 180 672.2 -0.77
Modematch QHA 293 681.3 -0.61

Table 5.1: Thermal expansion of the pentacene Form II crystal.

5.4.2 Transfer Integrals

Having used the quasi-harmonic approximation to predict how unit cells change

as a function of temperature, we now investigate the impact of thermal expansion on the

predicted transfer integrals between adjacent molecules in the crystal.

Naphthalene

Naphthalene adopts a herringbone packing in the monoclinic P21/c space group.

Figure 5.4 presents the structures and transfer integrals for the three primary, symmetrically-

unique electron transfer dimer pairs. Dimer pair A exhibits a co-facial slipped-stack geom-

etry, while pairs B and C both exhibit tilted-T-shaped arrangements with different lateral

offsets. The co-facial interaction and shorter intermolecular center-of-mass separation in A

lead to it being the most significant hole transfer pathway.

Thermal expansion increases the intermolecular separations within the dimer pairs,

which in turn causes noticeable changes in the magnitude of intermolecular electronic cou-

pling Jeff as a function of temperature (Figure 5.4). The “No QHA” data points in Fig-

ure 5.4 correspond to the transfer integrals calculated with the dimer geometries taken from
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the fully-relaxed DFT crystal structure, without applying the quasi-harmonic approxima-

tion. In contrast, the 0 K data points include the impact of quasi-harmonic zero-point

vibrational expansion of the unit cell, and the higher-temperature values represent how

finite-temperature changes in the crystal structure and dimer geometries impact the trans-

fer integrals. As evidenced by the comparison between the “No QHA” and 0 K data, the

crystal expansion induced by zero-point vibrational effects decreases the Jeff appreciably.

contributions while still neglecting thermal expansion. NO QHA → 0K shows the most

significant reduction in Jeff which is consistent with this transition being the largest single

increase in volume. The reduction then accelerates from 0K → 300K coinciding with the

acceleration of lattice thermal expansion.

Angled points in Figure 5 indicate transfer integrals evaluated via fixed cell opti-

mized experimental structures. A reverse in the trend at 200K can be seen for the C dimer.

This is due to errors in the simulated high temperature β angle. Experimentally, this angle

widens to increased orbital overlap despite the growing lattice parameters. This is untrue

for the predicted structure, whose angle remains relatively constant causing all expansion

in the a direction to result in increased distance between the pair, causing a decrease in

Jeff
C .

The overall reduction in magnitude of the 3 primary transfer integrals is quite

significant from the electronic minimum to 300K range. The largest absolute decrease was

in the Jeff
A pair, whose constituent molecules lie on lattice points along cell vector b. Jeff

C ,

however, sees the most significant percentage decrease in hole transfer, reducing by 56% at

300K. This indicates that while thermal expansion universally decreases hole transfer by
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Figure 5.5: RMSDs of atomic positions in the dimers with respect to those pulled from the
experimental unit cell. Comparisons were done for the fully optimized unit cell at 0K (red)
and the QHA-determined finite temperature cells (green).

driving intermolecular separation, the relative impact is highly dependant on the type of

packing pattern in that direction. The cofacial dimer saw only a 19% (A) reduction in the

magnitude of the transfer integral as opposed to 32% (B) and 56% (C) in the face-to-edge

pairs.

The largest transfer integral JA
eff indicates that the most efficient bulk hole mo-

bility would lie in the b direction of the conventional cell. Predicted individual vector

expansions over-expand in this direction as indicated in Figure 1a. This could lead to po-

tential over-estimation of the transfer integral at low temperatures and under-estimation

at higher temperatures. However, the non-QHA estimation of this parameter is far below

experimental values, and would lead to a significantly overpredicted charge transfer in this

direction.

RMSD’s of the atomic positions in the three dimer pairs with respect to the exper-

imental fixed cell optimization were also determined, as shown in Figure 5.5. The largest

overall disparity was found at roughly 0.05Å in Pair B, coinciding with the green curve in
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Figure 5.4. This stays relatively consistent throughout the temperature, however, providing

qualitative agreement with the FC-optimized experimental crystal in this direction. Pair C,

where it seems as though our model fails to capture the positive temperature dependence of

Jeff
C , is in excellent agreement with the atomic positions at lower temperatures (accounting

for a correct 5K Jeff
C ). Due to the shape of the crystal contorting in this direction, how-

ever, the progressively worse description of the transfer integral for this pair is mirrored by

the RMSD’s as temperature increases. At 5K, the QHA-expanded crystal is correct within

0.006Å; this increases to 0.046Å at room temperature.

Dimer RMSD analysis was also carried out for pairs extracted from the variable

cell (no QHA) optimized crystal compaired to the experimental structures. For naphtha-

lene, T-dependent RMSD’s for the VC dimers significantly outpaced the QHA-expanded

counterparts at that temperature. This indicates that while our model did not correctly

expand β and subsequently underestimated J , the predicted structures are more accurate.

Agreement between the VC minimum and Jeff
C (300) is fortuitous; both the interplanar

angle and intermolecular separation are incorrect.

BTBT

BTBT is a monoclinic P21/c that packs in a herringbone pattern with two primary

carrier transfer directions, denoted Jeff
A and Jeff

B in Figure 5.6. The larger magnitude Jeff
A

relies on cofacial orbital overlap, decreasing by 10.2% from the DFT optimized minumum

to the predicted 300K structures. Jeff
B , as with the experimental naphthalene interaction
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of the same form, slightly increases at lower temperatures while decreasing at intermediate

to room temperature. There are two competing interactions at play: the increased distance

of the two monomers (decreasing overlap) and the variation of the intermolecular angle

(increasing overlap) which relies on the β lattice parameter. This results in an clear optimum

temperature of the hole transfer in this direction at around 100K resulting in the interplay

of these two orbital overlap descriptors.

As was done with naphthalene, fixed cell optimized dimers A and B were pulled

from experimental crystals and transfer integrals were determined, as indicated by the

unconnected angular points in Figure 5.6. While the reduction in Jeff
A is accurately modeled

both in magnitude and trend, a disparity is seen at 100 K → 300 K for JB, similar to

naphthalene. Both pairs are comprised of a face-to-edge interacting dimer whose interfacial

angle is dependent on predicted β.

RMSD analysis was also carried out for the BTBT dimers of interest, located in

Figure 5.7. A subtle but noteable deviation from the experimental crystal dimer is found in

the predicted B pair atomic structure as temperature increases. The molecular centers of

mass from 100 K → 300 K drift 0.016 Å further in the predicted QHA structure while β is

widened by 0.3° less compared to the same dimer from the experimental cell. This results in

a similar competing contribution to the transfer integral: the value is expected to dampen as

intermolecular separation increases and amplify with a narrower interfacial angle, reaching

a maximum in the face-to-face (π-stacking) orientation. While the absolute differences are

miniscule the sensitivity of J in the face-to-angle interactions is highly exaggerated from

the face-to-face counterparts.
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Pentacene

Pentacene has 3 primary transfer integrals each involving unique intermolecular

interfaces as shown in Figure 5.8. Pair A and B have a staggered and aligned face-to-edge

interactions, respectively, each with a comparable interfacial angle. Pair C is a staggered

face-to-face orientation. As was seen with the other crystals, predicted Jeff experiences

the most significant relative reduction in the face-to-edge pairs; Jeff
A and Jeff

B are reduced

by 15.3% and 16.9%, respectively. Jeff
C is reduced by a modest but non-negligible 4.7%

Due to our attempt at establishing trends in the impacts of temperature on charge

transport parameters as well as identifying potential shortcomings of thermally expanded

structures, fixed cell optimized pentacene comparisons were omitted. Experimental finite

temperature structures displayed somewhat erratic expansion (Figure 5.3), and experimen-

tal structures used in these comparisons before were performed in single studies with con-

sistent experimental procedures.4,13

5.5 Conclusions

Finite temperature contributions to G(T, P, V ) using DFT/DFTB phonon den-

sities of state are demonstrated to yield accurate thermal expansions of organic semicon-

ducting crystals with comparable cost to Γ-point only approximations. For example, full

QHA treatment with the method outlined here yields accurate cell volumes for naphthalene

with an approximate cost of 2000 CPU hours. Full DFT supercell phonons would require

an excess of 100,000 CPU hours for a similar treatment, i.e. five sampled volumes for
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QHA fitting. This severely inhibits the possibility for high throughput or more complicated

materials than simple anthracenes.

Evaluation of transfer integrals along cofacial interactions using QHA-predicted

unit cells was demonstrated to be successful. While small errors were discovered in over-

or under-prediction of cell vectors in the direction of the π-stacking and edge-to-edge inter-

actions, corresponding transfer integrals were impacted only slightly, and the temperature

evolution was correctly modeled. Complications in predicting the face-to-edge transfer in-

tegrals arose from accumulation of small errors in both lattice vector lenghts and unit cell

angles. The interplay of beneficial and detrimental intermolecular orbital overlap depending

on both orientation and separation became difficult to account for at T > 100K. This work

demonstrates that while subtle, the impact of finite temperatures on the crystal structure

of organic semiconductors does have considerable implications on the transport properties,

and should be recognized.
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Chapter 6

Photomechanical Crystal Structure

Prediction

Photomechanical molecular crystals have garnered attention for their ability to

transform light into mechanical work, but difficulties in characterizing the structural changes

and mechanical responses experimentally have hindered the development of practical or-

ganic crystal engines. This study proposes a new computational framework for predicting

the solid-state crystal-to-crystal photochemical transformations entirely from first princi-

ples, and it establishes a photomechanical engine cycle that quantifies the anisotropic me-

chanical performance resulting from the transformation. The approach relies on crystal

structure prediction, solid-state topochemical principles, and high-quality electronic struc-

ture methods. After validating the framework on the well-studied [4+4] cycloadditions in

9-methyl anthracene and 9-tert-butyl anthracene ester, the experimentally-unknown solid-

state transformation of 9-carboxylic acid anthracene is predicted for the first time. The
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results illustrate how the mechanical work is done by relaxation of the crystal lattice to

accommodate the photoproduct, rather than by the photochemistry itself. The large ∼107

J/m3 work densities computed for all three systems highlight the promise of photome-

chanical crystal engines. This study demonstrates the importance of crystal packing in

determining molecular crystal engine performance and provides tools and insights to design

improved materials in silico.

6.1 Introduction

Organic photomechanical crystals transform light into mechanical work via the

changes in solid-state structure that result from a photochemical reaction.260 These struc-

tural changes can induce elongation, bending, twisting, photosalience, and other behav-

iors.71,261–263 While numerous examples of photomechanical behaviors can be found in

the literature,35,264–271 a predictive understanding of the relationships between molecular

structure, crystal packing, photochemical transformation, and the mechanical work output

remains elusive. Such understanding is vital for the rational design of photomechanical

engines based on molecular crystals.

In principle, determining the work output of a light-induced crystal-to-crystal

transformation should be straightforward. In practice, photomechanical crystals present

specific challenges that have so far prevented the development of a comprehensive theoret-

ical framework. First, it is often difficult to determine the structure of the product crystal

after photoreaction. Performing solid-state photochemical reactions in bulk crystals often

causes them to shatter, complicating diffraction experiments.?, 35, 272 If the photoproduct
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absorbs strongly at the excitation wavelength (positive photochromism), then a photosta-

tionary state is reached and complete conversion is impossible. To circumvent this problem,

one might isolate the photoproduct in solution and recrystallize it. Unfortunately, the prod-

uct crystal grown in this manner may have a different crystal packing from that formed by

direct photoconversion in the solid-state.273 Finally, if the reaction is thermally reversible

(T-type), the photoproduct may be too short-lived for practical structure determination.

Even if the photoproduct crystal structure can be determined experimentally, this

leads to a second, more fundamental challenge: how does the transformation from the

reactant to the product crystal actually occur? As with gas expansion cycles in thermody-

namics, this process should consist of a series of well-defined steps, each of which can be

associated with an energy change. To simplify the problem, we will concentrate on complete

conversion of the reactant to product that gives rise to crystal expansion and contraction.

It should be noted that the most commonly reported mode of photomechanical crystal ac-

tuation involves bending due to partial conversion that yields a reactant-product bimorph

structure.274–276 In principle, a bending crystal can be divided into subdomains that un-

dergo expansion/contraction after complete conversion, so this approach should be general

and adapatable to bending as well.

The significant experimental and conceptual challenges in this field motivated us to

turn to computational chemistry to predict the structures, transformations, and properties

of photomechanical crystals entirely from first-principles. Organic molecular crystal struc-

ture prediction has advanced considerably in recent years, thanks in large part to the devel-

opment of accurate and computationally efficient electronic structure models for the solid
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state,96,105,277,278 which have considerably enhanced researchers’ abilities to predict the

thermodynamically most stable polymorphs.63,65,66,68,97,98,120,143,155,158,160,161,163,279–284

As a result, successful examples of crystal structure predictions in the Blind Tests,29,30,153

pharmaceuticals,159,164,285–287 and organic materials288–295 are accumulating rapidly.

Successful application of crystal structure prediction to photomechanical crystals

would enable first-principles design and optimization of this promising class of materi-

als. Unfortunately, this effort faces two major challenges. First, instead of generating the

landscape of candidate structures for a single species, as in traditional crystal structure

prediction, predicting a solid-state photomechanical response requires understanding the

structures and transformations between two distinct crystal energy landscapes (reactant

and product). Second, energetic stability cannot be the primary criterion for identifying

the photochemical polymorph produced by the solid-state reaction. High photon energy

and the steric constraints created by the solid-state reaction environment can drive the re-

action toward a high-energy, thermodynamically metastable product.42 In other words, the

conventional crystal structure prediction goal generating a modest number of low-energy

polymorphs is replaced by the challenge of identifying the relevant structure(s) from a much

larger pool of higher-energy candidate structures.

Here, we develop a new, first-principles methodology for predicting solid-state

molecular crystal photomechanical transformations that overcomes these difficulties. It

generates structures using crystal structure prediction, employs a crystalline topochem-

ical hypothesis to predict the solid-state photochemical transformations, and establishes

a photomechanical engine cycle that characterizes the anisotropic work produced by the
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Figure 6.1: (a) Structures of 9-methyl anthracene (9MA), 9-anthracene carboxylic acid
(9AC), and 9-tert-butyl anthracene ester (9TBAE). (b) [4+4] photodimerization reaction of
9MA. The solid-state photochemical transformations have been established experimentally
for 9MA and 9TBAE, but not for 9AC.

structural changes. This theoretical approach is validated on two well-characterized [4+4]

anthracene derivative photodimerization systems (9MA and 9TBAE, Figure 6.1). This

negative photochromic reaction permits complete conversion of the crystals to a stable pho-

todimer form, avoiding mixtures and facilitating comparison to theory. We also use the

theory to predict the photodimer crystal structure of a T-type reversible crystal (9AC) that

has not yet been measured experimentally but may be more practical for actuator applica-

tions. The large ∼107 J/m3 work densities computed for all three systems demonstrate the

exceptional promise of organic molecular crystal engines. Moreover, our findings demon-

strate how molecular crystal packing plays a key role in determining the anisotropic work
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generated, emphasizing the value of theoretical tools capable of characterizing the stress

and strain generated in these transformations.

6.2 Methods

Crystal Structure Prediction for 9MA:After optimizing the gas-phase monomer

and photodimer structures using B3LYP/6-311+G(d)296 in Gaussian09,255 candidate crys-

tal structures for the monomer and photodimer were generated from first-principles via a

hierarchical crystal structure prediction protocol. For each species, 55,000 crystal structures

from 11 common space groups were randomly generated using PyXtal,84 assuming a single

molecule in the asymmetric unit (Z ′=1). These crystal structures were relaxed using the

Generalized Amber Force Field (GAFF)85 in CHARMM 45b286 and clustered to eliminate

duplicates.

Next, all 281 monomer crystal structures lying within 10 kJ/mol of the lowest-

energy structure, and all 255 photodimer crystal structures within 25 kJ/mol were further

relaxed with the semi-empirical HF-3c method70 as implemented in CRYSTAL17.83 The

higher energy cutoff for the photodimer landscape was chosen due to the relative sparsity of

structures compared to the monomer landscape and the expectation that the SSRD could

lie relatively high in energy. HF-3c refinement and another round of structure clustering

reduced the landscape to 63 monomer structures within 10 kJ/mol and 42 photodimer

structures within a 15 kJ/mol energy window. Final refinement of those crystal structures

was performed using planewave density functional theory (DFT), using the van der Waals-

corrected B86bPBE-XDM functional77,78,211 in QuantumEspresso.210

125



Energy relationships between the monomer and photodimer landscapes were com-

puted according to,

2 9MA −→ (9MA)2. (6.1)

However, conventional density functionals used in solid-state calculations describe

the anthracene photodimerization poorly.42,58–60 The issue stems from delocalization error

in the approximate density functionals,61 which artificially stabilizes extended π delocaliza-

tion found in the anthracene monomer by dozens of kJ/mol relative to the photodimer with

sp3-hybridized carbon centers and more localized electron density (Figure 6.1).42,59,60 Is-

sues arising from DFT delocalization error have been identified in a number of other organic

crystals as well.62–69

To address the delocalization error issues inherent in B86bPBE-XDM (and other

density functionals) for these systems, an intramolecular correction is applied to all pe-

riodic DFT lattice energies. This single-point energy correction replaces the intramolec-

ular energies of the monomer or photodimer with more accurate ones computed at the

spin-component-scaled dispersion-corrected second-order Møller-Plesset perturbation the-

ory (SCS-MP2D)60 level,

Ecrystal = EDFT
crystal +

Z∑
i=1

(
ESCS-MP2D

molec,i − EDFT
molec,i

)
(6.2)

The molecular energies on the right-hand side are computed in the gas-phase using ge-

ometries extracted directly from the DFT-optimized crystal. The sum runs over all Z

molecules in the unit cell, though space group symmetry can be exploited to compute the
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gas-phase molecular energies only for the molecules in the asymmetric unit. This correction

has been employed successfully in several other systems.42,66–68 SCS-MP2D reproduces the

benchmark coupled cluster single, doubles, and perturbative triples (CCSD(T)) anthracene

photodimerization reaction energy to within 1.2 kJ/mol.60 Further computational details

regarding the crystal structure prediction procedure are outlined in Section 2.6.

Topochemical Identification of the Solid-State Reacted Structures: Char-

acterizing the photomechanical transformation and the associated work performed requires

identifying the solid-state reacted dimer (SSRD) crystal structure which results from the

solid-state reaction. This is done topochemically, replacing the reacting monomer pairs in

the monomer crystal structure with photodimers placed at the same center of mass posi-

tions and oriented to maximize overlap with the original monomer pair according to the

following algorthim:

1. Identify the reacting monomer pair based on having the shortest center-of-mass dis-

tances.

2. Extract the Cartesian coordinates of the monomer pair from the crystal and orient it

to align its principle axes of inertia along the Cartesian xyz axes.

3. Construct the gas-phase photodimer (e.g. via gas-phase DFT geometry optimization),

and orient it based on its own principle axes of inertia.

4. Perform an initial alignment of the monomer pair and photodimer by applying all

possible inversion and reflection symmetry operations to the photodimer to determine

which operation(s) minimize the root-mean-square deviation (rmsd) in atomic coor-
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dinates between the monomer and the photodimer. To avoid issues with aspects such

as methyl rotations, hydrogen atoms are excluded from the rmsd calculation.

5. Optimize the alignment between the monomer pair and photodimer by rotating the

photodimer about its three Cartesian axes to minimize the heavy-atom rmsd with

respect to the monomer pair (i.e. performing three 1-D optimizations).

6. Once the optimal overlap between the monomer pair and photodimer has been found,

rotate the resulting photodimer dimer coordinates into the monomer’s original axes

of inertia coordinate frame.

7. Translate the dimer to the original monomer pair center-of-mass location.

8. Apply space group symmetry operations to populate symmetry-equivalent molecules

in the unit cell.

Constrained DFT geometry optimization of the replaced molecules within the

fixed monomer lattice parameters produces the “proto-SSRD,” while subsequent variable-

cell relaxation produces the equilibrium SSRD structure. Similarly, one can construct the

“proto-Monomer” for the reverse dissociation reaction by substituting monomers into the

photodimer unit cell.

Work Density Calculations: The elastic work density is evaluated from the

DFT-computed Cartesian stress (σ) and strain (ϵ) tensors for the proto-SSRD/proto-Monomer

relative to their fully-relaxed equilibrium structures. Tight DFT geometry-optimization

criteria were employed to improve convergence of the stress and strain tensors. The ori-

entational dependence of the work density was computed by projecting it onto different
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crystallographic directions defined by the unit vector n̂.

W (n̂) =
1

2
n̂⊺σϵn̂ (6.3)

After scanning over all directions n̂, the absolute value of the work densities are plotted as a

heat map on the surface of a sphere. Examination of the 9MA proto-SSRD relaxation finds

the stress to vary nearly linearly with strain, supporting the assumption of elastic work.

See Section 2.7 for further details.

6.3 Results and Discussion

6.3.1 1. Crystal structure prediction of key intermediates for the pho-

tomechanical cycle

The crystal energy landscape for photomechanical materials based on the an-

thracene [4+4] photodimerization will typically contain at least three notable structures:

the reactant crystal, a polymorph of the photochemical product crystallized from solution

(referred to as the solution-grown dimer, or SGD), and the SSRD polymorph generated

through the solid-state crystal-to-crystal photochemical reaction. The SSRD is central to

the photomechanical process, and we hypothesize that the SGD and SSRD crystal structures

will match only in rare cases. Our first task is to identify and characterize these structures.

The monomer reactant and SGD product will frequently be the thermodynamically most

stable polymorphs on their respective landscapes, while the SSRD lies quite a bit higher in

energy.
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Figure 6.2: Predicted crystal energy landscape for the 9MA monomers and photodimers
after DFT refinement and the single-point intramolecular SCS-MP2D energy correction.
The monomer, SGD, and SSRD structures are indicated. Overlays comparing the predicted
(green) and experimental (gray) monomer, SGD, and SSRD structures, along with their
corresponding rmsd15 values are also shown.

A) 9MA

For 9MA, the initial force-field-level crystal structure prediction landscapes contain

the experimental monomer and SGD structures, though the monomer lies ∼6 kJ/mol higher

than the most stable predicted monomer crystal, while the SGD is the second-most stable

form on its landscape at +0.1 kJ/mol. However, further refinement of the landscapes with

increasingly accurate levels of theory shifts the 9MA monomer and SGD to become the

global minimum energy structures on their respective crystal structure landscapes (Figures

6.3 and 6.4). After correcting for the ∼60 kJ/mol intramolecular DFT delocalization

error with SCS-MP2D according to Eq 6.2, the monomer and SGD crystals become nearly

isoenergetic (Figure 6.2).
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Figure 6.3: Evolution of the crystal structure prediction landscape for 9MA monomer.
(a) Initial GAFF-generated landscape, (b) after refining with HF-3c, and after the final
B86bPBE-XDM DFT refinement. Structures lying within 10 kJ/mol of the lowest-energy
structure (gray line) were carried forward to the next stage. The experimental crystal
structure is indicated in red.

The predicted monomer and SGD structures match the experimentally reported

crystal structures297 with excellent overlaps of 0.20–0.23 Å using the 15-molecule cluster

root-mean-square deviation (rmsd15) metric (Figure 6.2).298 The DFT unit cell parameters

for the 9MA monomer and SGD are only 1.2% smaller than the experimental ones on

average (Appendix TableA.1), which is consistent with the underestimation of unit cell

volumes expected for comparing 0 K DFT calculations to room-temperature experimental

structures.113

While the ability to predict the thermodynamically most stable polymorphs of

9MA and its photodimer correctly is important, understanding the crystal-to-crystal trans-

formation associated with the photomechanical response also requires identifying the SSRD

polymorph on the photodimer crystal energy landscape. Energetic stability alone cannot

be used as a criterion for the SSRD, since the constraints of the solid-state reaction envi-
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Figure 6.4: Evolution of the crystal structure prediction landscape for 9MA photodimer.
(a) Initial GAFF-generated landscape, (b) after refining with HF-3c, and after the final
B86bPBE-XDM DFT refinement. Structures lying within 25 kJ/mol of the lowest-energy
structure (gray line) on the GAFF landscape were carried forward to the HF-3c refinement
stage; structures lying within 15 kJ/mol on the HF-3c landscape were carried forward to the
final DFT refinement. The experimental SGD and SSRD crystal structures are indicated
in red.

ronment can produce an SSRD that is highly metastable.42 A similar focus on high-energy

structures occurs when predicting structures of porous organic materials,291,292,295 though

there it stems from the models’ omission of guest/solvent molecules which stabilize the

pores experimentally.

A key conceptual advance in this paper lies in extending the topochemical prin-

ciple to the problem of predicting the photoproduct crystal structure, rather than just the

photoproduct molecule by itself. Solid-state anthracene [4+4] photodimerization reactions

only occur when the reactive carbon atoms lie within 4.2 Å and satisfy various orientational

constraints.14,299,300 Moreover, the steric constraints imposed by the crystalline lattice limit

molecular reorganization after the photochemical transformation, thereby constraining the

photoproduct crystal structure and inhibiting its relaxation to the lowest-energy SGD pack-
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ing. Therefore, instead of relying on an energetic stability criterion, we identify the SSRD

based on the crystal packing relationships that connect structures between the monomer

and photodimer crystal energy landscapes.

Specifically, we predict the product of the crystal-to-crystal transformation with

no experimental information by generating an initial topochemical SSRD crystal in which

the reacting monomer pairs in the predicted monomer crystal are replaced by photodimer

molecules having the same positions and orientations. Constrained DFT relaxation of this

crystal structure with the lattice vectors held fixed at their monomer crystal values produces

the proto-SSRD. Subsequent unconstrained relaxation of the proto-SSRD atoms and lattice

vectors produces the final equilibrium SSRD structure. Applying this procedure to 9MA

(Figure 6.5a), we find that the SSRD retains the same P21/c space group as the reactant

monomer crystal, and it matches the rank #27 structure on the DFT photodimer crystal

structure prediction landscape (Figure 6.2) with an excellent rmsd15 overlap of 0.14 Å.

Determining the 9MA SSRD crystal structure experimentally is difficult, since

bulk crystals fracture after about ∼30% photodimerization under ambient conditions.40

Turowska-Tyrk and coworkers recently showed that photodimerization of single 9MA crystal

can be carried to completion without fracture at elevated pressures in a diamond anvil cell.14

The SSRD structure predicted here (at 0 GPa) is an outstanding match for the experimental

X-ray crystal structures reported at 0.1 and 0.4 GPa, with rmsd15 values of only 0.12 Å

(Figure 6.2).

Morimoto et al. observed that single microcrystal plates could expand by a fac-

tor of 1.07 along their c-axis while remaining intact.301 Presumably, these crystals also
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adopt the SSRD structure after conversion. To confirm this, we performed powder X-ray

diffraction (PXRD) experiments on 9MA microplates after photodimerization. Figure 6.6

compares the experimental PXRD pattern with a simulated one for the predicted SSRD

structure. The microplates were not powdered, so their relative peak intensities are different

from those in the calculated PXRD pattern. Peak positions match within 0.2 degrees, which

is reasonable given the differences in volumes between the different experimental pressures

and the 0 K DFT calculations. Furthermore, the peaks with enhanced intensity at 10.6

degrees corresponds to the 001/100 Miller planes, which lie parallel to the bc crystal plane

and thus horizontal along the substrate. The preferred orientation of the crystals should

lead to enhanced intensity of this peak, as observed. Interestingly, after photoconversion

the experimental PXRD pattern disappears over the course of 1 hour as the plates become

mostly amorphous (Appendix FigureA.1). This rapid loss of the SSRD structure suggests

that it is highly unstable. Previously, we observed that 9MA powders appeared to trans-

form directly from monomer to the SGD photodimer structure.274 We suspect that the

sample preparation process used in that work, which involved grinding the crystals after

UV irradiation, facilitated the SSRD-to-SGD transition and caused us to miss the presence

of the SSRD intermediate. All these observations are consistent with the SSRD being a

high-energy polymorph that can be stabilized by the application of mechanical pressure.

The 9MA monomer to SSRD structural transformation is anisotropic: the cell con-

tracts 2.6% and 3.7% along the a and b crystallographic axes, but it expands by 5.9% along

c and the monoclinic angle β increases by 3.2% (Figure 6.7a). The calculated expansions

and contractions are slightly less than observed experimentally in the 9MA microplates,301
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which may be a consequence of temperature effects since the calculations were done at 0

K. The large elongation along the c axis stems from an increase in lateral spacing between

photodimers, rather than from the butterflying of the anthracene rings upon photodimer-

ization. Energetically, the SSRD lies a rather large 10.1 kJ/mol above both the monomer

and SGD crystal structures. Previous polymorphism surveys suggest that only ∼1–3% of

polymorph pairs differ by 10 kJ/mol or more, and such large energy differences are even

less common for rigid molecules such as 9MA and its photodimer.42,92,93

Overall, both crystal structure prediction and the in silico topochemical SSRD

formation approach independently produce the same SSRD structure. The topochemical

approach identifies the SSRD based on its relationship to the monomer crystal, while full

predicted crystal energy landscape of the photodimer provides confirmation of that struc-

ture and its energy relative to other observed and/or predicted photodimer polymorphs.

Together with the successful prediction of the monomer and SGD crystals, these results

demonstrate that the important 9MA crystal structures and the solid-state photochemical

transformation can be predicted entirely from first-principles.

B) 9TBAE

Next, we further validate our crystalline topochemical approach by determining the

solid-state photochemical transformations in 9TBAE. For simplicity, we omit the full crys-

tal structure prediction steps. Instead, we start from the experimentally-known monomer

crystal structure, relax it with DFT, and then predict the associated topochemical SSRD

structures.

135



Previous NMR crystallography work established the structure of the 9TBAE SSRD

as an ensemble of six, closely related and dynamically interconverting structures that differ

only subtly in the torsional angles of the tert-butyl groups.302 Applying the topochemical

approach to the 9TBAE monomer (Figure 6.5b) predicts a P21/n SSRD structure that is

similar to those six structures identified in the earlier study. Although the topochemical

SSRD here retains the monoclinic symmetry of its parent monomer crystal, it overlaps

with the six experimentally inferred orthorhombic structures with rmsd15 values around

0.4 Å. Further confirmation of the topochemically-predicted SSRD comes from the X-ray

diffraction structure for a partially photodimerized 9TBAE crystal.273 Extracting pho-

todimer components from that partially-reacted experimental structure and relaxing them

with DFT produces a P21/n symmetry structure in excellent agreement with the topochem-

ically predicted one (rmsd15 = 0.11 Å).

Structurally, solid-state photodimerization of 9TBAE induces a much larger unit

cell change than 9MA (Figure 6.7). The 9TBAE unit cell expands 6.0% along the a

axis, largely due to the butterflying motion of the anthracene rings. Simultaneously, the

monomers sliding into register as they photodimerize leads to an 7.3% contraction along

the b axis. The c and β lattice parameters change only slightly, and the net volume change

is small. These structural changes are consistent with the mechanism and magnitudes of

nanorod elongation observed previously.35,44

C) 9AC

Now consider monoclinic 9AC. Structural characterization of its SSRD has proved

experimentally infeasible to-date due to the short photodimer lifetimes (seconds to min-
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utes),74,303 which makes theoretical predictions essential to understanding the transfor-

mation. Figures 6.5c and 6.7c show the topochemically-predicted crystal transformation.

Whereas the photodimerizations of 9MA and 9TBAE both involve substantial elongation

along a crystallographic axis, monoclinic 9AC exhibits only modest changes in the a, b, and

c lattice parameters. Instead, the major transformation occurs via the 7.3% decrease in the

β angle.

The one-dimensional stacking geometry in the 9AC crystal is qualitatively different

from the herringbone geometry seen in 9MA and 9TBAE. This leads to a very different

morphology change. The lack of extension along a major crystal axis probably explains why

it has been more difficult to detect length changes for 9AC nanorods, although bending and

twisting are much more readily observed.34,303,304

6.3.2 2. Photomechanical engine cycle

Now that the photochemical structural transformations are understood for all three

systems, we need a conceptual framework to predict the work output. We establish an

idealized four-step photochemical engine cycle (Figure 6.8) that enables characterization of

the work that could potentially be performed by a given material:

1. The cycle begins with an “instantaneous” and complete solid-state photodimerization

of the monomer species, converting the equilibrium monomer crystal to the proto-

SSRD. The proto-SSRD retains the monomer unit cell parameters and is therefore

highly strained.
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2. The proto-SSRD relaxes to its equilibrium geometry. The associated stress release

transforms the crystal structure anisotropically and produces “forward” mechanical

work.

3. The photodimer dissociates to a strained proto-Monomer—the monomer packed within

the SSRD lattice parameters.

4. The proto-Monomer relaxes back to the original equilibrium monomer crystal struc-

ture, producing mechanical work in the “reverse” direction.

In other words, chemical transformation creates the strained crystalline state, and relaxation

of the associated stress produces work. Although the lattice parameter changes in Step 4

exactly mirror those from Step 2, the work performed in the forward and reverse directions

will differ because the stress/elastic constants differ between the proto-SSRD and proto-

Monomer. In practice, this means that a photomechanical engine can perform net work

similar to a traditional Carnot cycle based on gas expansion/compression. In the case of a

photomechanical crystal, the input photon(s) act as an effective high temperature bath.

It is important to emphasize that real-world photomechanical crystals are expected

to deviate from this idealized photochemical engine cycle. First, the solid-state photodimer-

ization process does not occur instantly. Nevertheless, Raman spectroscopy experiments in

certain photomechanical crystals suggest that the photochemical reaction and resulting

crystal-to-crystal transformation do largely precede the relaxation of the unit cell.305,306

Second, the solid-state photochemical reaction may not always reach 100% com-

pletion, whether due to positive photochromism or crystal packing reasons. For example,

photodimerization within the one-dimensional monomer stacks in monoclinic 9AC occurs
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stochastically and only reaches ∼75% completion, with the remaining monomers becoming

isolated and unable to react.304,307 Crystal defects, impurities, and the experimental light

source can also impact the extent of reaction.

Third, many photomechanical processes are not reversible in practice. For exam-

ple, the 9MA SSRD transforms to an amorphous material instead of reverting back to the

monomer (Appendix FigureA.3), while the 9TBAE SSRD slowly converts to the SGD.273

On the other hand, 9AC photodimerization is thermally reversible on the timescale of min-

utes.304 In other photochromic and photomechanical crystals, the reverse reaction can be

triggered via a different wavelength of light308,309 or external pressure.310

Despite these caveats, the idealized photomechanical engine cycle presented here

provides a useful framework for quantifying the nature and magnitude of work that could hy-

pothetically be performed by the system and for comparing the photomechanical responses

of different materials.

6.3.3 3. Photomechanical performance

Having defined the photomechanical engine cycle, we analyze the photomechani-

cal performance of 9MA, 9TBAE, and monoclinic 9AC. There are several different energies

that are involved in the photomechanical cycle. We first consider the energetics of the

photochemical reaction itself. The computed solid-state photodimerization reaction ener-

gies differ significantly across 9MA, 9TBAE, and 9AC. 9MA photodimerization is the least

endothermic at 10.1 kJ/mol. For 9TBAE, the photodimerization energy increases to 32.1

kJ/mol, reflecting the steric penalty of the bulky tert-butyl ester groups. The 9TBAE
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SSRD is computed here to lie 12.0 kJ/mol above the SGD, similar to what was found pre-

viously.42 On the other hand, the 101.2 kJ/mol photodimerization energy for monoclinic

9AC is several-times larger than the other two systems. The constraints of maintaining

the hydrogen-bonded tetramer units within the 9AC lattice make this solid-state reaction

energy even larger than the already endothermic 9AC gas-phase photodimerization.74 The

highly endothermic forward reaction in 9AC could imply a relatively small reverse reac-

tion thermal barrier in accord with the Hammond postulate. This might explain why 9AC

photodimerization is thermally reversible, unlike 9MA and 9TBAE. However, detailed in-

vestigation of the reaction kinetics is beyond the scope of the present study. In any case,

all of these endothermic reaction energies are small relative to the 300 kJ/mol energy input

provided by the 400 nm photons driving the dimerization.

In our photomechanical engine framework, the actual mechanical work is done not

by the photoreaction, but by the subsequent relaxation of the crystal lattice to accommodate

the newly formed photoproduct. Figure 6.9 presents the energies for each step of the cycle

in each species, while Figure 6.10 plots the corresponding anisotropic work densities for the

forward photodimerization (Step 2) and reverse dissociation (Step 4) portions of the engine

cycle.

Consider first the forward photodimerization process in 9MA. The proto-SSRD

lies 21.9 kJ/mol above the equilibrium monomer crystal. Relaxation of the proto-SSRD

unit cell to its equilibrium geometry stabilizes it by 11.8 kJ/mol (for a net reaction energy

of 10.1 kJ/mol). Figure 6.10a plots the computed elastic work produced by relaxation of

the proto-SSRD. The maximal 25.0 MJ/m3 work density occurs roughly along the c axis,

140



which is unsurprising given the large 5.4% elongation in that direction. Much less work is

produced by the smaller contractions along the a and b axes.

While 9MA does not exhibit solid-state photochemical reversibility experimentally,

we can examine what would happen if it completed the photomechanical engine cycle. The

proto-Monomer formed via dissociation within the photodimer unit cell lattice parameters

is 0.7 kJ/mol more stable than the SSRD, and it relaxes 9.4 kJ/mol back to the original

monomer unit cell. So while the lattice parameter changes upon dissociation mirror those

from the photodimerization, the smaller stress and relaxation energy associated with pho-

todimer dissociation translate to a maximum elastic work density of only 12.3 MJ/m3 for

Step 4 of the engine cycle (Figure 6.10b) that is half as large as the forward (Step 2) work.

9TBAE exhibits somewhat larger energy changes than 9MA throughout the engine

cycle (Figure 6.9). At the same time, the maximum forward-direction work density of

46.7 MJ/m3 for 9TBAE (Figure 6.10c) is nearly double that of 9MA. Notably, the 6.0%

expansion along the a axis produces far more work than the 8.5% contraction along the b.

The a expansion reflects the bending out of the anthracene rings, while the b contraction

stems from the energetically “softer” compression of the void space created as the monomer

units slide into register to react.

As noted earlier, photodimerization of monoclinic 9AC is highly endothermic. The

proto-SSRD lies 119.1 kJ/mol above the monomer, compared to 21.9 and 61.0 kJ/mol for

9MA and 9TBAE, respectively. However, the 17.9 kJ/mol relaxation energy of the 9AC

proto-SSRD is intermediate between that of 9MA (11.8 kJ/mol) and 9TBAE (31.5 kJ/mol).

Correspondingly, the maximal work density of 30.1 in the forward direction is closer to
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that of 9MA than that of 9TBAE (Figure 6.10e). Whereas the maximal work density for

9MA and 9TBAE is performed along a crystallographic axis, the maximal work density

in 9AC occurs in between the a and c axes—it stems largely from the 7.3% contraction

of the β angle upon photodimerization. As for 9MA, the reverse work resulting from the

photodimer dissociations in 9TBAE and 9AC are substantially smaller than for the forward

photodimerizations (Figure 6.10d,f).

Taken together, these results reveal several important features of these photome-

chanical crystals: First, the model predicts photomechanical crystal work densities of ∼107

J/m3, which is several orders of magnitude larger than the the experimental work densi-

ties of photomechanical polymers.270 Second, the work resulting from the photodimeriza-

tion is roughly double that produced by the dissociation. This reflects how the anthracene

monomer crystals deform much more readily (i.e. with less stress) than the photodimer ones.

Third, the anisotropic structural changes produce work that is also highly anisotropic. This

highlights the importance of crystal morphology and orientation for device performance.

Fourth, the amount of the work performed by a switchable photomechanical material can-

not always be inferred from the crystallographic change in lattice parameters (strain) alone;

the stress component of the work also depends significantly on the molecular packing. This

is evident in the disparities seen for the 9TBAE work densities along the a and b axes and

in the differences between the forward and reverse directions for all three systems. Fifth,

the reaction energetics are somewhat decoupled from the amount of photomechanical work

performed. 9AC photodimerization is much more endothermic than the other two species,

but 9TBAE can perform considerably more mechanical work. This suggests that it may be
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possible to design materials that tune the reaction reversibility and the photomechanical

work semi-independently.

6.3.4 Future Prospects for Rational Design

Looking forward, the techniques described here create, for the first time, the op-

portunity to design new photomechanical derivatives in silico. To do so, one might perform

crystal structure prediction for a series of reactant species to identify the most stable crys-

tal structure(s), the potential for polymorphism,157 and to what extent the stable crystal

packings satisfy topochemical constraints for the desired solid-state reactions.

Assuming that the photochemistry is not prevented by steric or excitonic effects

in the crystal, the photochemical transformation and mechanical properties can be com-

puted inexpensively from the reactant crystal structures, as demonstrated here for 9TBAE

and 9AC. Anisotropic work density calculations can provide guidance on the potential per-

formance of a material and how one should design an actuator that maximizes the work

performed for a desired task. For example, to lift an object from below using a linear

actuator, one might focus on forward expansion work and let gravity facilitate the reverse

contraction process. On the other hand, linear contraction work could be used to lift an

object from above. From Figures 6.7 and 6.10, we can see that the same crystal can be

used for both types of work simply by changing its orientation with respect to the load. For

the most promising species, one might obtain further insights into the viability, stability,

and reversibility of the system by exploring the full crystal energy landscape of the photo-

product and assessing the reaction energetics and structural relationships among different

photoproduct polymorphs (e.g. SSRD vs. SGD).42,74
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6.4 Conclusions

This study demonstrates how solid-state photochemical transformations in organic

crystals can be predicted entirely from first principles. It addresses several long-standing

challenges surrounding the design of solid-state photoswitching and photomechanical sys-

tems, including the difficulties associated with determining the crystal structures of the

photoproducts, with anticipating how changes to molecular structures will impact the crys-

tal structures, and with understanding how crystal structure determines the mechanical

response properties. The proposed photomechanical engine cycle provides a framework for

characterizing the anisotropic photomechanical responses in these systems. It can be used

to identify which crystal orientations or morphologies can best exploit the work produced

by the photochemical transformation and to compare the potential for photomechanical

work across different materials.

While the present study focuses on anthracene-based crystals, these same tech-

niques can readily be applied to other solid-state photoswitching crystals, such as azoben-

zenes and diarylethenes. The detailed atomistic pictures generated with these techniques

could also provide the foundation for multiscale models270 that could predict photome-

chanical behaviors in nanoscale actuators and would facilitate the development of practical

organic crystal engines.
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Figure 6.5: The crystalline topochemical hypothesis generates the SSRD based on the
crystal packing of the monomer, as shown here for (a) 9MA, (b) 9TBAE, and (c) 9AC.
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Figure 6.6: Comparison of the powder X-ray diffractograms obtained on platelets of
9MA after 40 seconds illumination against the powder diffractograms simulated using the
experimentally-reported14 SSRD crystal structures obtained at 0.1 and 0.4 GPa and the
SSRD structure generated via crystal structure prediction here.
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Figure 6.7: Structure overlays showing the unit cell transformation from monomer (blue)
to SSRD (red) for (a) 9MA, (b) 9TBAE, and (c) monoclinic 9AC.
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Figure 6.8: The proposed photomechanical engine cycle for anthracene systems consists
of: (1) topochemical photodimerization within the monomer unit cell to form the proto-
Photodimer (SSRD), (2) relaxation of the strained proto-Photodimer to perform forward
work, (3) topochemical dissociation of the photodimer back to the monomer within the
photodimer unit cell (proto-Monomer), and (4) reverse work generated by relaxation of the
proto-Monomer back to the original equilibrium structure.
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Figure 6.9: The energetics associated with the four stages of the photomechanical engine
cycle differ significantly across 9MA, 9TBAE, and monoclinic 9AC.

Figure 6.10: The predicted work densities for the forward photodimerization and reverse
dissociation reactions of 9MA, 9TBAE, and monoclinic 9AC are highly anisotropic. Crys-
tallographic axes shown correspond to the unit cell of the product for each reaction, and
the maximal computed work density for each transformation is indicated. Absolute values
of the work densities are plotted for convenience.
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Chapter 7

Conclusions

A fast and reliable crystal structure prediction workflow would undoubtedly be

beneficial to rational materials design. CSP itself is a multi-faceted problem requiring inde-

pendent sampling and ranking efforts to accurately represent the crystal potential energy

landscape. Balance between computational effort and level of accuracy is crucial, and the

correct balance varies depending on the problem at hand. This thesis introduced addi-

tional tools for the energetic ranking of molecular crystals, specifically for the inclusion of

finite-temperature thermodynamic effects, and showed some applications of this method to

several molecular crystals. CSP was also used in the study of photomechanical crystals,

allowing for an in-depth understanding of the reactant and product unit cell evolution and

quantification of anisotropic work output.

A phonon normal mode matching method for vibrational free energy contribu-

tions was introduced. Crystal supercell phonon dispersion was evaluated with cheap semi-

empirical quantum mechanics and up scaled to ab initio density functional methods via
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normal mode eigenvector overlap. Thermodynamic quantities of several small molecule

organic molecular crystals were determined with experimental accuracy, and the correct

polymorph ranking of five oxalyl dihydrazide (ODH) forms was predicted. This can serve

as an additional tool in the toolkit of crystal free energy ranking.

Affordable quasiharmonic thermal expansion was then made possible by coupling

with cheaper free energy assignments via mode-matching. Temperature dependent prop-

erties for the small organic molecular crystal resorcinol such as cell volume and density of

its most stable polymorphs were predicted with excellent agreement to experiment. Finite

temperature unit cell volumes of the β and α forms of resorcinol were accurately determined.

Additional insight into the thermodynamic properties of the solid-to-solid phase transition

was also gleaned.

These methods were extended to the organic semiconducting crystals naphtha-

lene, pentacene, and benzothieno[3,2-b][1]benzothiophene (BTBT). QHA/mode-matching

was used to predict the temperature dependence of the charge transfer integral as thermal

expansion drove the increase intermolecular separation. QHA expanded structures were

able to qualitatively capture contraction or expansion of individual lattice parameters and

had quantitative agreement with unit cell volumes as a function of temperature. This infor-

mation could help further explain how intermolecular transfer integrals vary with thermal

expansion of the crystal.

Finally, crystal structure prediction was employed for photomechanical systems.

These crystals, whose molecular pairs undergo a [4+4] dimerization when exposed to the

correct wavelength of light, expand or contract anisotropically and yield mechanical work.
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CSP was used to characterize the landscape of the reactant and product of the 9-methyl an-

thracene (9MA) photodimerization, showing the energetic relationships between important

forms and solving for their crystal lattice parameters. This allowed for determination of the

magnitude and direction of the resulting work, an important quantity for designing actua-

tors or smart materials from these types of systems. The methods introduced for 9MA were

also used to determine the crystal structures and theoretical work output for two additional

photomechanical crystals: 9-anthracene carboxylic acid (9AC) and 9-tert-butyl-anthracene

ester (9TBAE).

Crystal structure prediction remains full of avenues for additional research. True

high-throughput CSP with finite temperature effects is still largely intractable without im-

mense computer power. The methods introduced here were certainly intended to alleviate

this, however they can only realistically be applied to a few dozen polymorphs before becom-

ing unwieldy. A “true” free energy determination would need to be applicable hundreds

of potential forms of a particular molecular crystal. The general formulation for mode-

matching coupled with quasiharmonic expansion can be extended to any other pairing of

quantum chemical techniques not limited to DFT/DFTB. Could additional fine-tuning of

other methods for pDOS corrections potentially reach an even more cost effective balance of

accuracy and speed? Would this allow for “true” free energy predictions without strenuous

hierarchical ranking?

Additional applications of crystal structure prediction as a whole can also be con-

sidered. In industry, CSP is typically focused on inorganic materials or pharmaceuticals

design, but computational methods and computing power has evolved enough to justify
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application elsewhere. Here we presented a novel CSP study for photomechanical systems,

potentially streamlining the design of smart materials based off of organic molecular crys-

tals. Where else can systematic sampling and energetic ranking procedures of complicated

crystal landscapes be of use? Systems like high entropy alloys, organic semiconductors,

and photoactuators are all dependent on crystal structures from high dimensional potential

energy landscapes. Relying on computer aided materials design as a practical approach

could introduce more efficient engineering of novel materials.
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243 D. Käfer, M. El Helou, C. Gemel, and G. Witte, “Packing of planar organic
molecules: Interplay of van der waals and electrostatic interaction,” Crystal Growth
and Design, vol. 8, no. 8, pp. 3053–3057, 2008.

244 P. A. Banks, J. Maul, M. T. Mancini, A. C. Whalley, A. Erba, and M. T. Rug-
giero, “Thermoelasticity in organic semiconductors determined with terahertz
spectroscopy and quantum quasi-harmonic simulations,” Journal of Materials
Chemistry C, vol. 8, no. 31, pp. 10917–10925, 2020.

245 C. Cook, J. L. McKinley, and G. J. O. Beran, “Modeling the α- and β-resorcinol
phase boundary via combination of density functional theory and density func-
tional tight-binding,” J. Chem. Phys., vol. 154, p. 134109, 2021.

246 A. Erba, J. Maul, R. Demichelis, and R. Dovesi, “Assessing thermochemical prop-
erties of materials through ab initio quantum-mechanical methods: The case of
α-Al2O3,” Physical Chemistry Chemical Physics, vol. 17, no. 17, pp. 11670–11677,
2015.

247 J. L. Mckinley and G. J. O. Beran, “Faraday Discussions Identifying pragmatic
quasi-harmonic electronic struc- ture approaches for modeling molecular crystal
ther- mal expansion,” 2018.

248 C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. De Boer, and T. T.
Palstra, “Polymorphism in pentacene,” Acta Crystallographica Section C: Crystal
Structure Communications, vol. 57, no. 8, pp. 939–941, 2001.

249 T. Siegrist, C. Besnard, S. Haas, M. Schiltz, P. Pattison, D. Chernyshov, B. Bat-
logg, and C. Kloc, “A polymorph lost and found: The high-temperature crystal
structure of pentacene,” Advanced Materials, vol. 19, no. 16, pp. 2079–2082, 2007.

250 K. Choudhary and F. Tavazza, “Convergence and machine learning predictions
of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT cal-
culations,” Computational Materials Science, vol. 161, no. January, pp. 300–308,
2019.

251 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris,
G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,

176



L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov,
P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: A modular and
open-source software project for quantum simulations of materials,” Journal of
Physics Condensed Matter, vol. 21, no. 39, 2009.

252 A. Togo and I. Tanaka, “First principles phonon calculations in materials science,”
Scripta Materialia, vol. 108, pp. 1–5, 2015.

253 W. Setyawan and S. Curtarolo, “High-throughput electronic band structure cal-
culations: Challenges and tools,” Computational Materials Science, vol. 49, no. 2,
pp. 299–312, 2010.

254 B. Rice, L. M. Leblanc, A. Otero-De-La-Roza, M. J. Fuchter, E. R. Johnson,
J. Nelson, and K. E. Jelfs, “A computational exploration of the crystal energy and
charge-carrier mobility landscapes of the chiral [6]helicene molecule,” Nanoscale,
vol. 10, no. 4, pp. 1865–1876, 2018.

255 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,
M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin,
V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.
Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz,
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Table A.1: Comparison of 0 K DFT-predicted lattice parameters computed with the
B86bPBE-XDM functional against the experimentally-reported room-temperature crystal
structures.

Structure Source Space group a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

9-methyl anthracene (9MA)
Monomer MANTHR15 P21/c 8.679 14.402 8.026 90 96.95 90

DFT P21/c 8.568 14.033 8.002 90 95.23 90
SGD QQQFES04 P21/c 9.851 13.285 8.130 90 115.14 90

DFT P21/c 9.639 13.308 8.025 90 114.06 90
SSRD QQQFES05a P21/c 8.444 13.728 8.584 90 99.37 90

QQQFES06b P21/c 8.48 13.582 8.538 90 99.20 90
DFT P21/c 8.347 13.513 8.477 90 97.95 90

9-tert-butyl anthracene ester (9TBAE)
Monomer NUKMIP01 P21/n 9.168 17.265 9.503 90 99.50 90

DFTc P21/n 9.126 16.925 9.4084 90 100.21 90
SGD ANODAJd P 1̄ 9.161 9.692 10.218 67.19 85.40 62.23

DFTc P 1̄ 9.116 9.555 10.237 64.95 82.88 60.89
SSRD Ref 302 Pccn 15.871 12.065 15.759 90 90 90

DFT P21/n 9.671 15.683 9.744 90 106.01 90
PRD Ref 273 P21/n 9.142 17.540 9.753 90 99.82 90

DFTc P21/n 9.630 15.691 9.810 90 105.76 90

9-anthracene carboxylic acid (9AC), Monoclinic
Monomer QQQFDJ01 P21/n 3.897 9.355 28.980 90 90.79 90

DFTc P21/n 3.751 9.242 28.525 90 90.89 90
SSRD DFT P21/c 7.582 9.591 29.565 90 102.70 90

a Structure determined at 0.1 GPa b Structure determined at 0.4 GPa

c DFT optimization started from experimental structure.

d Structure determined at 100 K.
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Figure A.1: Time evolution of PXRD 9MA crystals after UV irradiation. The initial
monomer pattern is shown in black. After 40 s of 365 nm UV irradiation, the photodimer
SSRD forms (red). The sample was further exposed to UV for an additional 420 s (green).
Subsequent scans were taken of the sample while left in the dark and the SSRD peaks disap-
pear, leaving only the amorphous phase after a period of 22 hours (brown). The very broad
diffraction peaks at around 9.5◦ and 13◦ may reflect the presence of some SGD crystal that
is formed at longer times.
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Figure A.2: Microscopy images of the as prepared filtered 9MA crystals. The predominant
orientation of the crystals are lying flat and upwards, showcasing the hexagonal facets.

Figure A.3: Birefringence tracking of 9MA crystals during the a-c) photodimerization and
d,e) amorphization in the air at room temperature. a-c) Over 9 minutes of 365 nm light
exposure, the photodimerization process shifts the birefringence color of crystals. d-e) After
turning off UV and leaving the crystals in the air for 5 hours, the 9MA photodimer crystals
gradually lose crystallinity and turn amorphous as judged from the loss of birefringence.
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