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ABSTRACT
We present a technique for designing memory-bound algorithms
with high data reuse on Graphics Processing Units (GPUs) equipped
with close-to-ALU software-managed memory. The approach is
based on the efficient use of this memory through the implemen-
tation of a software-managed cache. We also present an analytical
model for performance analysis of such algorithms.

We apply this technique to the implementation of the GPU-based
solver of the sum-product ormarginalize a product of functions
(MPF) problem, which arises in a wide variety of real-life appli-
cations in artificial intelligence, statistics, image processing, and
digital communications. Our motivation to accelerate MPF origi-
nated in the context of the analysis of genetic diseases, which in
some cases requires years to complete on modern CPUs. Com-
puting MPF is similar to computing the chain matrix product of
multi-dimensional matrices, but is more difficult due to a complex
data-dependent access pattern, high data reuse, and a low compute-
to-memory access ratio.

Our GPU-based MPF solver achieves up to 2700-fold speedup
on random data and 270-fold on real-life genetic analysis datasets
on GeForce 8800GTX GPU from NVIDIA over the optimized CPU
version on an Intel 2.4 GHz Core 2 with a 4 MB L2 cache.
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1. INTRODUCTION
Graphics Processing Units (GPUs) have emerged as a powerful

platform for high-performance computation. They have beensuc-
cessfully used to accelerate many scientific workloads [13]. Typi-
cally, the computationally intensive parts of the application are off-
loaded to the GPU, which serves as the CPU’s parallel coprocessor.

Originally, GPUs were designed as a massively parallel machines
for concurrent execution of thousands of independent threads, each
executing the same code on different data. Such an architecture is
optimized for high-throughput stream processing. It allows for high
speedups on graphics-like workloads, which can be parallelized
into thousands of independent identical subtasks and is character-
ized by low data reuse (or high reuse of a small working set) and a
high compute-to-memory access ratio (arithmetic intensity). How-
ever, early GPUs achieved low or no performance gains on memory-
bound workloads such as a matrix product, which is characterized
by high data reuse and low arithmetic intensity [6]. For suchwork-
loads, the GPU cacheless memory system prevented efficient uti-
lization of GPU computing hardware, whereas CPU utilization was
amplified through the optimal use of the data cache. In fact, GPUs
allow for cached memory accesses via the GPU’s texture cache.
However, this cache is optimized for read-only data with 2D spa-
tial locality and a small working set. Thus, even sophisticated use
of this cache yielded only modest speedups compared to the multi-
threaded cache-optimized CPU implementation [8].



The breakthrough in allowing workloads with high data reusehas
been the recent introduction of a fast close-to-ALU memory.How-
ever, the memory architecture differs between the vendors.While
AMD hardware includes regular L1 and L2 caches [15], NVIDIA
CUDA [12] provides a special user-managed space calledshared
memory. Shared memory lacks hardware support for cache func-
tionality and is fully managed by the application. It is divided
into chunks (16KB each), each shared only among the threads of
a thread block(up to 512 threads).

Shared memory is intended as a scratchpad for frequently used
data [12]. Explicit management makes it especially useful for memory-
intensive applications with complex access patterns on theone hand,
but greatly complicates the application development on theother.

We propose a general technique for designing algorithms on GPUs
with explicit memory management. The idea is to decouple thedata
management from the computational structure. First, we design a
serial computation algorithm with spatial and temporal locality of
accesses. Based on the data access pattern of the algorithm,the
user-managed cache algorithm is devised, ensuring the dataavail-
ability in the shared memory for a single thread. Finally, the serial
algorithm is parallelized, and the cache management is refined to
maximize the data reuse among the threads of a single thread block.

This approach enables us to construct an analytical model to
quantify the effects of the cache parameters and implementation.

We apply this approach to the implementation of the sum-product
(or marginalize a product of functions – MPF –) solver. MPF serves
as a basis for many algorithms in artificial intelligence, bioinformat-
ics, communications, signal processing, and others [14]. Our pri-
mary motivation for this research has been to accelerate theimple-
mentation of an instance of the MPF algorithm, used for inference
in very large Bayesian networks. This problem arises in the context
of genetic analysis of hereditary diseases [7], and may require years
to complete on a modern CPU.

MPF can be considered a generalization of a matrix chain prod-
uct for multidimensional matrices. However, it has a more complex
memory access pattern with its input-dependent memory reuse and
large working set. Thus, to achieve high performance, the caching
policy (which data to cache and the replacement policy) should be
determined atrun-time, as opposed to a matrix product with static
compile-timecache policies (e.g. cache blocking).

The GPU implementation with the user-managed cache achieves
the average speedup of∼500 for random data and∼200 for real
Bayesian networks on an NVIDIA GeForce 8800GTX GPU over
an optimized CPU version on a single core of a 2.4 GHz Intel Core
2 processor with 4 MB L2 cache. For sufficiently large inputs the
speedups reach2700. The significant contributor to the speedup is
the efficient use of the shared memory (around 24-fold for Bayesian
networks and 52-fold for random data). Further acceleration is
achieved through the utilization of the GPU special function units.

We analyze the influence of the cache parameters on the overall
performance, showing that it behaves as predicted by the model.
We also compare the user-managed cache version with the one that
uses a texture hardware cache, demonstrating superior performance
of the former.

The paper is structured as follows. First, we introduce the GPU
programming using CUDA and define the MPF problem. Then we
describe the serial version of the MPF solver. We then develop
a theoretical performance model for GPUs with the focus on the
cache performance, and apply it to the MPF kernel. We proceed
with the user-managed cache design and GPU kernel implementa-
tion. We conclude with the results and future research directions.

Related work.
The introduction of the IBM Cell [9] processor with software-

managed per-core memory (local store) led to the development of
techniques for utilizing that memory. However, Cell programming
techniques are not applicable to the management of a shared mem-
ory in NVIDIA CUDA [12] because of the major architectural dif-
ferences between the two. A very partial list of these differences
includes single thread access to Cell’s local store versus 512 threads
to shared memory in CUDA; lack of access to global memory,
which bypasses the local store; asynchronous global memorytrans-
fers versus hardware-managed thread preemption; and fast com-
munication between Cell cores versus complete independence of
different thread blocks. Still, some ideas inspired us to pursue the
user-managed cache direction.

The most relevant work on Cell, by Benthin et al. [2], presents a
software cache optimized for a Cell-based ray tracer. They address
challenges similar to ours, such as trading an optimal cachepolicy
for better cache logic performance and the non-uniform segmenta-
tion of the cache space for different tasks.

Another study is by Kamil et al. [10], where stencil kernels are
optimized through the efficient use of the Cell local store. This
work highlights the benefits of application-specific memoryhierar-
chy management, though does not explicitly implement a cache.

The Cell implementation of the matrix product for the renowned
LAPACK library is described by Kurzak et al. [11]. While the main
focus is different from ours, the authors informally used the arith-
metic intensity to analyze the performance.

Compiler-level cache implementations for Cell [1, 4] target gen-
eral workloads and differ in scope from our work. The same holds
true for the higher-level approaches such as the Sequoia [5]pro-
gramming language for memory-hierarchy-aware parallel programs.

NVIDIA’s CUDA programming guide [12] calls for the use of
shared memory to improve the application performance. However,
the data access pattern is assumed to be completely known at com-
pile time, rather than the more dynamic patterns that are thefocus
of our work. Also, no current work presents a general approach for
designing cache organizations and evaluating their performance.

2. BACKGROUND

2.1 GPU programming and CUDA
The modern GPU is a highly data-parallel processor. The GPU

features many lightweight closely-coupledthread processorsthat
run in parallel. While the performance of each thread processor
is modest, by effectively using many thread processors in parallel,
GPUs can deliver performance that substantially outpaces aCPU.

The programming model of the GPU is “single-program, mul-
tiple data” (SPMD): many threads concurrently run the same pro-
gram on different data. The GPU is most effective when thousands
of threads are available to the hardware at any time; the GPU is
capable of quickly switching between these threads to hide latency
and keep the hardware busy.

The recent introduction of programming environments for the de-
velopment of non-graphics applications on GPUs facilitated the use
of GPUs for high performance computations. One such environ-
ment which we use in our work is NVIDIA’s CUDA.

High-level programming environment.
CUDA programs are based on the C programming language, with

extensions to exploit the parallelism of the GPU. CUDA programs
are explicitly divided into code that runs on the CPU and codethat



runs on the GPU. GPU code is encapsulated into akernel, which
exemplifies the SPMD model: it looks like scalar C program, but
is invoked concurrently in thousands of threads by the hardware.
Typical CUDA programs will first set up input data on the CPU,
transfer it to the GPU, run the kernel on the GPU data, and finally
transfer the result back to the CPU.

Kernel code allows arbitrary read-write access toglobal GPU
memory, which has no hardware cache. Instead, CUDA exposes
low latency (∼1 cycle) memory shared among a subset of threads,
called thread block(up to 512 threads per block). The threads of
each block have an exclusive access to a small chunk (16 KB), and
no access to the chunks of other thread blocks. No communication
among the threads of different thread blocks is permitted.

Direct Compute Access.
NVIDIA GPUs feature multiplemultiprocessors(16 multipro-

cessors in the GeForce 8800 GTX), each with 8 thread processors.
The GPU is responsible for mapping the thread blocks to thesemul-
tiprocessors, keeping thousands of threads “in-flight”. Ifenough
resources are available, each multiprocessor typically has multiple
blocks resident, and can quickly switch between computation on
different blocks when appropriate. For instance, if one block starts
a long-latency memory operation, the multiprocessor will kick off
the memory request then immediately switch to another blockwhile
those memory requests are satisfied.

2.2 Sum-product
Consider three functions,f(x, y, z), g(w,x) andh(w, y) where

w, x, y, z are variables over finite domainsW , X, Y , Z of size
|W |, |X|, |Y |, |Z| respectively. An assignment to all the vari-
ables in the scope is called aconfiguration. A function is defined
as a table with a single value per configuration of the function vari-
ables (Figure 1(a)). The set of variables in each function iscalled
a function scope. In the rest of the paper we denote byfa,b,c

the value of the functionf(x, y, z) for a particular configuration
x = a, y = b, z = c.

The following operations are defined on the functions:

1. Tensor productf ⊗ g is a functionαw,x,y,z , fx,y,z × gw,x.

2. Marginalization (summation)over a variablex is a function
βy,z ,

P

x∈X
fx,y,z.

Assume that we want to compute the following expression:
X

w,y

f(x, y, z) ⊗ g(w,x) ⊗ h(w, y) (1)

The naive way is to first computeα(w, x, y, z) (Figure 1(b), top)
and then marginalize outw andy (Figure 1(b), bottom). For the
variables’ domains of sizen, this requiresO(n4) operations.

Alternatively, we can apply the distributive law:
 

X

y

f(x, y, z) ⊗

 

X

w

g(w,x) ⊗ h(w, y)

!!

(2)

The computation is split into twobuckets. The expression in the in-
nermost parentheses (first bucket) is computed first, and theresult
serves as the input for computing the expression in outer parenthe-
ses (second bucket). This leads toO(n3) total operations, i.e.O(n)
times less than before.

Unfortunately, the efficiency often comes at the price of addi-
tional space (O(1) andO(n2) respectively).

xyz f(x, y, z)
000 f000

...... ..
112 f112

wx g(w, x)

0 0 g00

.. .. ..
1 1 g11

wy h(w, y)

0 0 h00

.. .. ..
1 1 h11

(a)

xyzw
α(x, y, z, w) =

f(x, y, z) × g(w, x)× h(w, y)
0000 α0000 = f000 × g00 × h00

0001 α0001 = f000 × g10 × h10

0010 α0010 = f001 × g00 × h00

........ ..
1121 α1121 = f112 × g11 × h11

xz k(x, z) =
P

w,y α(x, y, z, w)

00 α0000 + α0100 + α0001 + α0101

01 α0010 + α0110 + α0011 + α0111

02 α0020 + α0120 + α0021 + α0121

.... ..
12 α1020 + α1120 + α1021 + α1121

(b)

Figure 1: Computing MPF: (a) Input functions ( |X| = |Y | =
|W | = 2, |Z| = 3) (b) Naive computation

xyz f(x, y, z)

000 � �

001 N N

002 ⋆ ⋆

010 � �

011 N N

012 ⋆ ⋆

100 ♠♠

110 ♠♠

wx g(w, x)

0 0
� � N

N ⋆ ⋆

0 1 ♠♠

1 0
� � N

N ⋆ ⋆

1 1 ♠♠

wy h(w, y)

0 0
� N

⋆♠

0 1
� N

⋆♠

1 0
� N

⋆♠

1 1
� N

⋆♠

xz k(x, z)

00 �

01 N

02 ⋆

10 ♠

(a)
x zy f(x, z, y)

00 0 � �

00 1 � �

01 0 N N

01 1 N N

xw g(x, w)

00 � � N N ⋆ ⋆

01 � � N N ⋆ ⋆

(b)

Figure 2: MPF access pattern for computingk00, k01, k02 and
k10 in Figure 1 (a) before reordering (b) after reordering of
two unordered functions. Reordered variables are highlighted.
Symbols denote accesses for computing respective output val-
ues.

The general MPF problem is:
X

M

N

i
f i(Xi), M ⊆

[

i

X
i
, f

i ∈ F, (3)

whereM is the set of variables to be marginalized, andF is the set
of all functions in MPF. MPF algorithms aim to efficiently compute
the expression in Eq. 3 for any number of functions. Determin-
ing the interleaving of summations and multiplications which mini-
mizes the number of computations under given memory constraints
is NP-hard [7]. Pakzad and Anantharam [14] provide a comprehen-
sive overview of MPF.

3. SERIAL MPF KERNEL
In this work we do not deal with the problem of finding the op-

timal order of operations (see [7] for a possible solution).Rather,
we focus on the computational part shared by many different MPF
algorithms: computation of a single bucket (Eq. 4).

Ψ(O) =
X

M

f
1 ⊗ · · · ⊗ f

n
, (4)

wheref i ∈ F are the functions in the bucket andM is the set of
zero or more marginalization variables,O = V\M, V is the union



1: Function SumProductKernel
2: Input: Set of functionsF, union of functions’ scopesV, set of marginalization

variablesM ⊆ V

3: Output: FunctionΨ with scopeO = V\M
4: for all configurationsp of O do
5: sum← 0
6: for all configurationsm of M do
7: product← 1
8: for all functionsf ∈ F do
9: product← product× f(p, m)
10: end for
11: sum← sum + product

12: end for
13: Ψ(p)← sum

14: end for
15: return Ψ

Figure 3: MPF kernel pseudocode

of the variables of all the functions inF. In order to solve a given
MPF problem, the kernel is invoked for each bucket, processing one
bucket after another in sequence.

We assume that the buckets are formed by an MPF algorithm
under given memory constraints. Thus, the creation of intermedi-
ate functions for computing a single bucket is disallowed, due to
potential violation of the memory constraints.

The pseudocode for the single bucket computation is presented in
Figure 3. For each output location, defined by the configuration of
output function variablesO (line 4), all configurations of marginal-
ization variables are traversed (line 6). We denote byf(p,m) the
value off corresponding to the configurationp ∪ m.

Input data access.
The data of a single function is organized in memory similarly

to the multidimensional arrays in the C language. For example,
function f(x, y, z), x ∈ X, y ∈ Y , z ∈ Z is represented as an
array of size|X| × |Y | × |Z|. The valuefx,y,z is located in the
memory at the offsetz + |Z| × y + |Y | × |Z| × x. The least
significantvariable, i.e. the one whose sequential values correspond
to adjacent memory locations in the function data array, is the last
variable in the function specification (forf(x, y, z), z is the least
significant andx is the most significant).

The access to the function value for an arbitrary configuration of
variables is costly due to the offset computation. To avoid such a
computation for each access, a data traversal should be optimized
to sequentially access both input and output arrays.

However, in general, such a traversal may not exist (as in the
example in Figure 2(a)). It becomes possible only if we impose a
global order on all the variables of the bucket. In our example, if the
data is restructured according to the global orderx > z > w > y
the traversal with sequential access is from the least to themost
significant variable in the bucket (see Figure 2(b)).

For the complete MPF computation, where the output of one
bucket is used as an input to another one, restructuring a single
bucket layout is not enough. If the order of variables in a bucket
contradicts that of the next one, the output must be restructured to
comply with the new order, which is too costly if done for every
bucket.

The solution is to impose a global order on all the variables in
MPF as follows. The MPF algorithm prescribes the buckets to
be processed in a certain order. Each bucket has a unique set of
marginalization variables.We order these sets in the reverse or-
der of the buckets, assigning arbitrary order within each set of
marginalization variables.All non-marginalization variables are

placed to be the highest in the order, and arbitrarily ordered among
themselves. For our example in Figure 1, if we choose the efficient
computation with two buckets (I)β(x, y) =

P

w
g(x,w)⊗h(y, w)

and (II)
P

y f(x, z, y) ⊗ β(x, y), the global order of the variables
is x > z > w > y (or z > x > w > y).

Once the input functions in all the buckets are restructuredto
follow the global order, no restructuring is required for the interme-
diate functions. The preprocessing cost is negligible.

4. CACHE PERFORMANCE MODEL
We aim to analytically evaluate the algorithm performance on

the GPU in general, and the effect of caching in particular. Our
goal is to provide an asymptotic performance analysis emphasizing
the dominating effects of caching.

Our performance measure is the number of floating point oper-
ations per second (FLOP/s) that can be achieved on a processor
for our application. To obtain an upper bound, we assume ideal
overhead-free parallelization, which allows for the optimal utiliza-
tion of GPU computational and memory resources. Hardware per-
formance upper bounds are based on two parameters: 1.the aggre-
gated maximum rate of computationsof the GPU, denoted asP (in
FLOP/s); 2. memory bandwidthof transfers between GPU global
memory and ALUs, denoted asM , (in floats/s).

The maximum performance is limited byP if the workload is
CPU-bound. For memory-bound workloads, however, the memory
subsystem becomes a bottleneck. The performance is limitedby
the memory bandwidthM multiplied by the compute-to-memory
access ratio, also called arithmetic intensity [12] and denoted byA.

Since the memory accesses and the arithmetic operations in the
GPU are overlapped, we obtain the following expression:

Speed = min [P, M × A] . (5)

Arithmetic intensity is application-dependent. To derivethe gen-
eral expression for the arithmetic intensity of the kernel we start
with a simple MPF instance of computing the expressionk(x) =
f(x) ⊗ g(x). To produce one outputkx, any implementation must
read two values,fx andgx, from the memory and write the result
kx back — total 3 memory accesses — versus one floating point
operation per one output. Thus,A = 1

3
, for any kernel implemen-

tation. Using Eq. 5, for NVIDIA GeForce 8800GTX GPU with
P=345 GFLOP/s andM=22 GFloat/s,Speed=7.3 GFLOP/s, which
is only 2% of GPU’s potential.

Note that the caching would not improve the performance be-
cause all the data is read only once. In order to incorporate caching
into the performance analysis, consider the matrix productexample,
which is also an instance of MPF. Consider two matricesM × N

andN × K. For every output, there are2N + 1 memory accesses
(2N reads and 1 write). However, assuming infinite cache (only
compulsory misses) with zero-cost access, thecostof memory op-
erations per output drops toN

K
and N

M
for the first and second matri-

ces respectively. Thus, the arithmetic intensity for matrix product

is 2N−1
2N+1

without cache and 2N−1

N( 1

M
+ 1

K
)+1

=
2− 1

N
1

M
+ 1

N
+ 1

K

with the

infinite cache. To conclude, the lack of caching leads to constant
performance upper bound1 × 22 GFLOP/s, whereas with caching
it becomes CPU bound (ifM = K, andN is large, thenA = K).

We define a new parameter,cached arithmetic intensity, denoted
Acache, to account for the cost of memory accesses. We derive the
expression forAcache (Eq. 6) for the MPF kernel.

Acache =
#m − 1

N
Pm

i
ci + 1

N

, (6)



whereci is the cache miss rate for accessing functioni, m is the
number of input functions, andN is the number of configurations
of the marginalization variables. Note that for the parameters of the
first example, Eq. 6 yields the intuitive results:m = 2, ci = 1
(100% compulsory misses),N = 1, Acache= A = 1

3
.

Clearly, caching is vital for achieving high performance ofMPF
kernel. Even the low cache hit rate of 50% for all functions leads to
a two-fold performance increase versus non-cached version, grow-
ing to ten-fold for the hit rate of 90%.

In general, the addition of caching can potentially transform the
problem from memory-bound to compute-bound, delivering a sub-
stantial increase in performance.

5. USER-MANAGED CACHE
We see that the key to high performance for MPF computations

is an efficient use of the memory hierarchy.
An algorithm for the GPUs with a software-managed memory

hierarchy can be logically divided into the memory management
part that implements the caching functionality and a computational
part that is structured to use the cached data. However, thisap-
proach brings us to a chicken-or-egg problem: computationsshould
be structured according to the data availability in the shared mem-
ory, while the data should be staged according to the structure of
the computation.

This mutual dependency can be resolved as follows. Cache space
limitations require the computational structure to maintain temporal
locality of accesses in order to reduce capacity misses, regardless
of the cache algorithm. This suggests to first determine the com-
putational structure with temporal locality, ignoring spatial locality,
and then to derive the cache management algorithm, which stages
the data accessed close in time but coming from arbitrary locations.

However the spatial locality requirement is critical when design-
ing a cache for NVIDIA GPUs, since the effective memory band-
width drops by up to a factor of 16 if the kernel does not concur-
rently access sequential memory locations (“coalesced accesses”).

We conclude that, similarly to a CPU implementation, the GPU
computational kernel should maintain both spatial and temporal
locality. The caching part of the kernel should simulate the behav-
ior of a hardware-managed CPU cache by determining which data
to stage. However, the main difference between the hardwareand
user-managed caches is that thereplacement policyis implemented
in software.

In the following we first analyze the locality properties of the
computational kernel, determine the optimal traversal over the input
data, and then derive the cache algorithm.

Spatial and temporal locality.
The spatial locality is naturally improved thanks to the restruc-

turing of the data layout as discussed in Section 3, and traversing
it from the least to the most significant variable in the global order.
This is because this order results in the input and output functions
to be accessed in blocks (as in the example in Figure 2(b)).

However, the traversal with the best spatial locality may conflict
with the one with the best temporal locality. For example, for the
bucketf(x, y, z) ⊗ g(y, z), the traversal over the values ofx has
the optimal temporal locality (a single value ofg(y, z) is reused for
each value ofx), but poor spatial locality (x is the most significant
in f(x, y, z)).

While every bucket has a traversal order that achieves the best
temporal locality,we chose to prefer spatial locality over temporal
locality because otherwise: 1. index computation is required for ev-

ery access, decreasing the common case performance; 2. datastag-
ing results in non-coalesced accesses, reducing the effective mem-
ory bandwidth significantly.

5.1 Cache design
While the spatial and temporal locality of the algorithm would be

enough for efficient CPU implementation, a GPU software cache
also requires addressing the fundamental issues otherwisehandled
by the CPU cache hardware: determining the data to be cached,
locating the data in the cache for fast retrieval, and determining the
cache replacement policy.

These issues are easy to handle for workloads where the data
reuse pattern is static and known atcompile time, since the replace-
ment policy is static as well. For example, for a regular matrix
product, a single row of the first matrix is reused for all the values
of the same row in the output, regardless of the input values or ma-
trix dimensions. Thus the simplistic solution (ignoring the reuse of
the second matrix) is to keep one row in the cache as long as the
respective row in the output is being computed. No special cache
management is required as the replacement policy is compiled into
the program flow.

However, for MPF the data of each input function is reused dif-
ferently when computing different output locations. In Figure 2
observe thath(w, y) is fully reused for all output values, whereas
only the half of the values ofg(w,x) are reused since forx = 0
andx = 1 different data are accessed, andf(x, y, z) is not reused
at all. Thus for each function the data that should be prefetched
and kept in the cache depends on the specific reuse pattern of that
function, and must be computed atrun time.

The main challenge is to minimize the overhead of the cache
management. Our key idea is to separate the problem of determin-
ing the replacement policy from the mechanism which implements
it. The first is performed on a CPU as a preprocessing step, and
results in a set of metatables that prescribe when and which data is
to be fetched or replaced. These tables are passed to a GPU which
then uses them during the computation. This approach becomes
possible as the reuse pattern is regular: in Figure 2(b),g(x,w) is
accessed exactly in the same manner forx = 0, w = 0 and for
x = 0, w = 1. Thus, it is more efficient to perform the metadata
computations on the CPU only once, rather than in each one of the
millions of threads on the GPU.

The cache structure that follows this approach can be brieflyout-
lined as follows. We first identify which data is accessed pereach
output location, determine the lifetime of that data in the cache
based on the algorithm access pattern, and finally decide which one
should be replaced at each iteration. Specifying that for each mem-
ory location is infeasible due to the overheads of storing and access-
ing the cache metadata. Fortunately, the spatial locality of accesses
of the MPF algorithm allows to increase the granularity of the cache
management to the blocks of data, referred to ascache pages. Struc-
turing the data in cache pages is also important for maximizing the
reuse between the threads of the same thread block. We provide all
the details below.

5.1.1 What data to cache
To identify the input data locations that are accessed closein

time, we introduce the notion of anindex vector. Index vector is
a vector of integers with each location corresponding to a variable,
and the value at each location corresponding to the value of the re-
spective variable. We can think of an index vector as of a number
represented in a mixed radix, where the numerical base for each
location corresponds to the domain size of the respective variable.



Two vectors aresubsequentif their numerical values differ by 1.
Consider the index vector over all the variables in a bucket.The

variables are ordered according to the global order, discussed in
Section 3. We call this vectora bucket address. A given bucket ad-
dress identifies one value in every input and output array, hence its
name. In the example in Figure 2(b), for the orderx > z > w > y,
the bucket address1210 impliesx = 1, z = 2, w = 1, andy = 0,
referring to the respective valuesf120, g11, h10 andk12. According
to the traversal order the algorithm processes the bucket byiter-
ating over subsequent bucket addresses, starting from zero. Thus,
the data which corresponds to a set of subsequent bucket addresses,
and sharing the same values of the most significant digits reside in a
contiguous chunk of the input and output arrays, which are accessed
close in time and should reside together in the cache.

5.1.2 Cache structure
The cache is split into multiple cache segments, one per input

function (output is not cached). The location of the data in the func-
tion’s cache segment is determined by thecache tag. The cache tag
is a subset of the least significant digits of the bucket address. We
denote byC the variables that correspond to the cache tag, and by
Cf the intersection ofC with the function’s variables. The size
of function’s cache segment is the product of the domain sizes of
the variables inCf . The total size of the cache is the sum of the
segment sizes of the functions to be cached. The algorithm for de-
termining the number of digits in the cache tag is described later.

For the bucket in Figure 2(b) and cache tag of size three,C =
{z, w, y}; Cf = {z, y}, Cg = {w}, Ch = {w, y}. The cache
stores 6 values forf , 2 for g and 4 forh—a total of 12 values.

Consider the data identified by a set of subsequent bucket ad-
dresses which differ only by their cache tags. We call these data a
cache page. The subset of the most significant digits of the bucket
address, which are shared among all the data in a cache page is
called acache page tag. The algorithm traverses the cache pages
according to the order of the cache page tags, starting from first
page with the cache page tag zero.

5.1.3 Conflict misses
The data from the different cache pages but with the same cache

tag are mapped onto the same physical cache location. Accessing
these data leads to the tag conflict misses.

The granularity of the cache invalidation upon a miss is crucial.
While handling each miss individually is costly, replacingthe cache
page entirely upon switching to another one reduces the hit rate.

The key is to consider the replacement policy for each func-
tion segment separately. Observe that the data of some functions
are shared among multiple subsequent cache pages and shouldnot
be invalidated. In the example in Figure 1, with the cache tag
{z, w, y}, and the cache page tag{x}, moving from the cache page
x = 0 to x = 1 requires refreshing only the segments off andg,
since the functionh does not depend onx. The subset of functions
to be refreshed per cache page is precomputed on the CPU priorto
the GPU invocation and is checked for each cache page.

5.1.4 Capacity misses
The amount of data to be cached, as prescribed by the cache tag,

might be too large to fit the available shared memory, leadingto
capacity misses.

Similarly to the conflict miss resolution, the capacity misses are
resolved separately for each function. Weentirely disallow caching
of some functions when the size of all segments together exceeds
the available shared memory. The functions that are not cached are

accessed directly from the global memory, bypassing the cache.
However, this partial caching leads to the problem of choosing

an optimal subset of functions to be cached.
We formally define this problem as follows. We define the cache

utilization U =
P

f∈functions
lifetimef

sizef
× cachedf , wherecachedf is

1 if function is cached and0 otherwise,sizef is the size of the
cache segment off , andlifetimef is the number of sequentially ac-
cessed cache pages that share the same segment of the function data.
We aim at maximizingU under the constraint

P

f∈functionssizef ×
cachedf ≤ Shared memory size.

This problem is the classical (NP-hard) binary knapsack problem
where the cost of adding a function segment to the cache is

lifetimef
sizef

.
The well-known two-approximation algorithm is to add the items
in decreasing order of cost. The greedy algorithm is executed on
the CPU prior to the GPU invocation, and the results are checked
on the GPU every memory access, fetching the data either fromthe
cache or from the global memory.

For both conflict and capacity misses,the replacement policy is
determined on the CPU prior to the GPU invocation, leaving only
the policy enforcement mechanism to be executed by the GPU.

6. CACHE-AWARE PARALLEL KERNEL
We parallelized the MPF kernel over the output domain by as-

signing a subset of the output values to each thread. The threads are
independent, allowing as many of them to be run in parallel asthe
hardware permits.

However, efficient utilization of the user-managed cache requires
the threads to be coscheduled, and the outputs to be assignedto
allow localized data accesses to thesamecache page.

Coscheduling, i.e., concurrent execution of a certain group of
threads, is a built-in feature of CUDA, realized by athread block
(TB). The threads within a TB are executed either concurrently or
in a known order. They communicate through the shared memory,
accessible only to the threads of that TB.

Our cache design naturally maps onto the shared memory. Thus,
the threads of a TB are coscheduled to concurrently access a certain
cache page. Each TB is assigned a set of subsequent cache pages,
processed sequentially by that TB.

The current implementation stores one cache page at a time inthe
shared memory of each TB, simplifying the memory offset compu-
tations per access at the expense of reduced hit rate.

The amount of input data per cache page is determined as fol-
lows. A certain cache page is concurrently processed by all the
threads in a TB, and the respective input data must reside in the
cache. To exploit all the available hardware parallelism, we assign
each thread to process a single output per cache page. Thus, the
size of the input data per cache page is dictated by the numberof
concurrently processed output locations, which in turn is limited by
the number of threads in a TB.

The number of cache pages per TB deserves special attention.
While assigning more pages to a TB improves the data reuse, italso
reduces the parallelism, and potentially the hardware utilization, be-
cause of a sequential processing of different pages by a given TB.
We assign the pages to a single TB as long as the resulting number
of threads is above the maximum number of threads which can be
executed concurrently by the hardware.

6.1 Implementation
The GPU implementation consists of two modules: the main

GPU kernel that implements the parallel MPF computation, and the



1: Function SumProductGPUKernel
2: Input: thread block IDtBlockID, thread IDthreadID, functionsF, marginaliza-

tion variablesM, #cache pages per TBTBPages
3: outputOffset← call computeOutputOffset(tBlockID)
4: for all input functionsf ∈ F do
5: inputOffsets[f ]← call computeOffset(tBlockID, f )
6: end for
7: for page= 0 to TBPagesdo
8: for all input functionsf ∈ F do
9: if CacheValidArray[page][f ] is false then

10: call barrier()
11: call populateCache(f, CacheSegmentSizes[f ], inputOffsets[f ] +

PageOffsets[f ][page])
12: end if
13: end for
14: sum← 0
15: for sumPtr= 0 to #configurations of variables inM do
16: product← 1
17: for all input functionsf ∈ F do
18: offset← call computeBase(ThreadOffsets[f][ threadID], sumPtr)
19: if CachedFunctionsArray[f ] is false then
20: value← call cacheFetch(offset)
21: else
22: offset← offset+ inputOffsets[f ] + PageOffsets[f ][page]
23: value← call memoryFetch(offset)
24: end if
25: product← product× value
26: end for
27: sum← sum+ product
28: end for
29: output[outputOffset+ page× ThreadBlockSize+ threadID]← sum
30: end for

Figure 4: GPU kernel pseudocode

preparatory CPU module that creates the data structures andcache
metadata, and transfers the data from the CPU to the GPU memory.
Due to the space limitations we skip the details of the CPU module.

6.1.1 GPU kernel
The presented kernel is executed in each thread (Figure 4). We

use the names starting with the capital letters to denote thedata
precomputed on the CPU. The data is stored in the read-only GPU
memory, which is augmented with the hardware cache (textureand
constant memory). The two parameterstBlockID andthreadIDare
supplied by the hardware to allow each thread to determine which
data to process.

The kernel can be logically split into four parts: computation of
the global memory offsets (lines 3–7), cache prefetching (7–15),
computation loop (15–29), and writing back the result (29).

First, the kernel determines the set of cache pages to be processed
by a given TB. Next, the input data for a given cache page is staged
into the shared memory (line 11). If the function segment hasto be
refreshed upon switching to the next cache page (line 9), thethread
must wait until all the threads in its TB stop using that cachepage,
before rereading its content from the global memory (line 10).

The main computation starts by reading the input data eitherfrom
the cache or from the main memory, depending on whether the
function is cached or not (line 19). The rest is similar to these-
rial algorithm in Figure 3.

Finally (line 29) the value is stored in the main memory, and the
kernel starts processing the next cache page.

7. RESULTS

7.1 Experimental setup
We evaluate the MPF kernel on NVIDIA’s GeForce GTX8800

graphics card, with 128 thread processors and 750 MB of global

memory. The CPU version is invoked on a single core of an In-
tel Core 2 2.4 GHz CPU with 32KB L1 and 4 MB L2 cache. The
CPU version is optimized for caching, uses SSE instruction set and
performs within 5% of the performance of the matrix multiplica-
tion routine of the ATLAS [16] library when applied to a regular
matrix product. The data is stored in single precision floating point
representation as GTX8800 does not support double precision.

The performance criterion for a single kernel invocation isthe
number of operations per second, measured in FLOP/s. The num-
ber of operations—the input complexity—includes only the multi-
plications and summations required by the algorithm.For example,
the multiplication of two 2×2 square matrices requires 12 FLOP.

We also report the performance of the special version of the MPF
kernel that is used for the inference in probabilistic Bayesian net-
works. In Bayesian networks the values of the input functions are
probabilities, and underflow is likely to occur during the compu-
tations. One of the methods to avoid the underflow is to perform
all the computations in the log domain as follows: each inputis
replaced with its logarithm before the computation; multiplications
are replaced by summations; summations require computing the ex-
ponent of each summand and the logarithm of the result. We used
log2f andexp2f functions for logarithm and exponent computation
with the same precision both on CPU and GPU.

While we note that the real applications will certainly use log
domain computations, we evaluate the linear domain implementa-
tion to emphasize the contribution of the user-managed cache to the
kernel performance.

We invoke the kernel on the same input until the accumulated
running time exceeds five seconds, and then derive the time for a
single invocation. Kernel invocation overhead (∼10µs) is ignored.

Unless otherwise stated, we report only the pure GPU execution
time, excluding the time for data transfers between the CPU and the
GPU, and for computing the cache metadata on CPU. We specifi-
cally address these issues in Section 7.3.3. The results of GPU and
CPU runs are compared to ensure correctness.

7.2 GPU versus CPU performance

7.2.1 Summary of the results
The following table summarizes the speedups obtained in theex-

periments described in this section.

Benchmark GPU speedup over CPU
peak average min

Random benchmark (log-domain) 2708 536 0.2
Random benchmark (linear-domain)52 15 0.02
Bayesian networks (log-domain) 274 200 153
Bayesian networks (linear-domain) 24 15 12

7.2.2 Random datasets
The tests aim to evaluate the kernel performance on the inputs

having different amount of available parallelism and different reuse
patterns. For the small inputs with low parallelism, and forthe
inputs with limited data reuse, the GPU performance is expected to
be low.

We generated 700 buckets of different computational complexity
with the parameters randomly chosen from the following ranges:
2–4 functions per bucket, 1–10 values per variable, 2–32 summa-
tion values, 1–18 variables shared between the functions, and 5–
25 variables per function. These are the typical ranges for the
Bayesian networks in the genetic analysis domain. The function
data is strictly positive.

Figure 5(a) shows the kernel performance on random data as a
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Figure 5: (a) Linear scale performance and (b) log-domain
speedups on random data. Each dot represents single kernel
invocation. The variability in performance is due to the differ-
ent amount of data reuse for different inputs.

function of the input complexity. Each dot represents the kernel
invocation for computing one bucket.

On average, the GPU performs an order of magnitude better than
the CPU for most inputs above 100 KFLOP (about the complexity
of a product of two 40×40 matrices). Below this threshold, the
input size does not allow full utilization of the hardware.

The peak performance of 53.5 GFLOP/s corresponds to the ef-
fective memory bandwidth of about 212 GB/s, which would be im-
possible without the use of shared memory.

7.2.3 Bayesian networks
The complete instance of the MPF problem often contains thou-

sands of buckets of various complexity. To evaluate the perfor-
mance on real MPF instances, we used Superlink [7] to generate
Bayesian networks from the real-life genetic analysis dataand cre-
ated the buckets for MPF computation. We then invoked GPU and
CPU versions of the kernel, and summed the single bucket running
time for all buckets in the MPF.We obtained an average speedup
of 15 (ranging between 12 and 24) over 20 networks of different
complexity.

The analysis of the bucket complexity distribution revealed that
over 85% of all buckets in each Bayesian network are below a
100 KFLOP threshold. As we observed previously, using GPU for
these inputs slows down the execution. However, the overallper-
formance is accelerated due to a few large buckets that contribute
over 98% to the running time.
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Figure 6: Kernel performance as a function of (a) cache size (b)
number of cache pages per thread block. The model predicts
the same asymptotic behavior as observed experimentally.

7.2.4 Log-domain performance
Figure 5(b) shows the speedups obtained when invoking CPU

and GPU log-domain versions on the same set of random bucketsas
in Figure 5(a). Observe that the Figure 5(a) is scaled by up toa fac-
tor of 50, resulting in speedups ofthree orders of magnitude. This is
due to the use of the GPU special function units, which support fast
computation of logarithms and exponents in hardware. Usingspe-
cial mini-benchmarks we found that the CPU performance of the
log2f and exp2f functions on CPU is 30 times and 10 times slower
than the regular product respectively, whereas on GPUs these func-
tions are only up to 2 times slower. However,disabling the user-
managed cache reduces the speedup by a factor of 20 on average.

For Bayesian networks we achieve a speedup of up to274.

7.3 Cache performance
We analyzed the impact of the cache size and the number of the

cache pages per thread block on kernel performance. We used sev-
eral buckets of different complexity with 3 functions per bucket,
and fixed them throughout the experiment, while varying the pa-
rameter of interest. All the functions in the bucket together fit the
cache in the default kernel configuration.

The results are presented in Figure 6. Both graphs also show the
theoretical performance for one of the inputs as predicted by the
model in Section 4. Since the model does not account for various
low-level overheads, the predicted values are higher than those ob-
tained in practice by about a factor of 40. However, observe that this
factor isconstant, and the form of the experimental graphs closely



follows the one predicted by the model. We conclude that the model
allows for studying the asymptotic behavior of the overall perfor-
mance as a function of the cache parameters.

Increasing the cache size (Figure 6(a)) allows for caching more
functions, as can be seen from the staircase form of the graph.
Three “knees” in the graph match the number of functions in the
bucket. According to the model, the hit rate changes from 0 (no
cache), to 33.3%, 65.5% and 98.9% (all functions cached). Con-
sequently, theAcached increases from 0.99 to 1.4, 2.14 and 52 re-
spectively, explaining the sharp improvement in the performance.

The impact of the number of cache pages processed by one TB
is depicted in Figure 6(b). As expected, the performance improves
due to the increased data reuse. Clearly this parameter has no effect
when the caching is disabled, which is confirmed experimentally.
The improvement becomes less significant with the higher values
of the parameter due to the increased number of tag conflict misses
and decrease in the data reuse between different cache pages. For
the analyzed input, the hit rate changes only for the first 64 cache
pages, from 96.8% to 98.8%. Without the cache collisions (only
compulsory misses), the hit rate would reach 99.9%, doubling the
performance.

The asymptotic behavior of the graph in Figure 6(b) can be ex-
plained by the model as follows. Theoretically, if the data allowed
for a 100% cache hit rate, the arithmetic intensity would tend to in-
finity, as no global memory read accesses would be required. How-
ever, this is not the case due to the summand1

N
in the denominator

in the expression in Eq. 6. This summand stems from the cost of
writing the results back to the global memory. Although in the GPU
write accesses are asynchronous and assumed to have zero latency,
they do consumebandwidth, which is apparent in the theoretical
and the experimental performance graphs.

7.3.1 Loop unrolling
The impact of loop unrolling is shown in Figure 7. The chosen

inputs fit the cache. We measured the performance as a function of
the input complexity. There are two types of unrolling presented—
dynamic unrolling of the loop over the summation variables (line 15
in Figure 4, and static unrolling over input functions (line17).

Dynamic unrolling is required for the loops for which the upper
bound is unknown at compile time. It is performed by creating
the unrolled loop versions with 1, 2 and 4 unrolled iterations, and
by dynamically choosing the appropriate version dependingon the
number of remaining iterations.

Dynamic unrolling of both loops was not possible due to the in-
creased register use per thread, which led the compiler to spill out
some of the register to the global memory, significantly decreasing
the performance. Thus, we created different versions of thekernel
with static unrolling of the loop over the input function.

Dynamic unrolling (curves for 2- and 4-unrolling) boosts the per-
formance significantly (up to a factor of 3), because of the reduced
number of accesses to the indexing tables and cache metadata, per-
formed once per iteration, instead of once per access. The static
unrolling yields an additional speedup of about 25% over the4-
unrolled version.

The saw-like form of the graph in Figure 7(a) is due to the dif-
ficulty in utilizing the shared memory hardware efficiently.Shared
memory consists of 16 memory banks, and the best performance
is achieved if the threads concurrently access different banks, or
the same data of the same bank. Otherwise,bank conflictsresult
in the serialization of accesses. For some inputs the data layout in
the cache led to bank conflicts (in particular when the numberof
summation values is divisible by 16).
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Figure 7: Impact of loop unrolling on the performance. The
saw-like behavior is due to the bank conflicts.
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The latter is superior as long as the data fits the cache.

7.3.2 GPU texture cache comparison
We compare the user-managed cache with the hardware texture

cache, by removing all the cache logic and replacing the global
memory reads by the texture reads. Texture cache works best for
workloads with two-dimensional locality of accesses and a small
working set. Thus optimizing the MPF algorithm is hard as it re-
quires fine-grained blocking of data. This would result in substan-
tial overhead and is likely to yield low performance. Thus our orig-
inal computation algorithm is used. On the other hand, the texture
cache has many other advantages, as it caches data across thread
blocks and implements the cache logic in hardware.

The results are depicted in Figure 8. As long as the data fits
the cache, both implementations perform equally well. However,
for the inputs with a working set of about 1 KB per thread block,
texture cache performance deteriorates, despite the working set of
the texture cache being 8 KB [12]. For the inputs of complexity
above 18 GFLOP, the user-managed cache is no longer able to cache
all the functions, and the performance is close to that of thetexture
cache.

7.3.3 Analysis of the overheads
In all the results above we analyzed only the GPU execution time.

In this section (Figure 9) we analyze all the overheads: setup time
for computing the cache metadata and determining kernel parame-
ters, and data transfers between the CPU and GPU.
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Figure 9: Overhead analysis: (a) contribution of each factor (b)
speedups including and excluding the overheads.

Figure 9(a) shows the relative contribution of the overheads into
the overall performance as a function of input complexity. Indeed,
for small inputs the kernel runtime does not even dominate the over-
all runtime resulting in low speedup and even slowdown versus the
CPU version. However, these high overheads can be hidden in the
repetitive kernel invocations on many buckets as follows. First, the
metadata can be computed on the CPU in parallel with the GPU
processing of the previous bucket. Furthermore, CUDA soon will
allow asynchronous memory transfers both to and from the GPU.
Finally, we will be able to completely avoid memory transfers of
the intermediate results by using the MPF algorithm that makes the
whole MPF computation fit the available memory [7].

Figure 9(b) also shows that for larger inputs, the speedup with
the overheads included converges with the one with the excluded
overheads.

8. CONCLUSIONS AND FUTURE WORK
In this work we have demonstrated the design and implementa-

tion of a direct-mapped read-only user-managed cache on a data-
parallel graphics processor. The speedups of up to three orders of
magnitude allow greatly improved performance of a wide range of
applications of sum-product kernel, including the one for Bayesian
inference for genetic disease analysis. High speedups alsoposition
the GPUs far beyond the CPUs in terms of the energy efficiency
(180W for GTX8800 card versus 45W per core for Intel Core 2).

Our short-term future work includes the integration of the kernel
into a real Bayesian networks solver through further exploitation
of GPU-CPU parallelism, and continued improvement of cacheuti-

lization. The applicability of the same algorithm for IBM Cell and
multicore CPUs is also being considered. Our preliminary results
show close-to-linear speedups on multicore CPUs using OpenMP.

An open question is whether the explicit cache management on
GPUs is applicable to algorithms with a more irregular access pat-
tern (e.g. ray tracing), in which the cache decisions must bemade
as a part of the computation kernel, as opposed to the compile-
time decisions in previous work, extended in this research to the
data-dependent decisions made during the preprocessing step on
the CPU. It seems that the current hardware makes such manage-
ment rather difficult, first, because there is insufficient fast memory
for cache metadata, and second, because there is a lack of special-
ized hardware to implement the basic cache primitives. Further-
more, the lack of fine-grained synchronization between the threads
within a thread block would make the dynamic update of individual
memory locations inefficient, limiting the effective parallelism. The
addition of specialized hardware mechanisms is likely to widen the
range of applications that could benefit from the GPU’s computing
power.
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