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ABSTRACT

We present a technique for designing memory-bound alguosth
with high data reuse on Graphics Processing Units (GPU$pped
with close-to-ALU software-managed memory. The approach i
based on the efficient use of this memory through the implemen
tation of a software-managed cache. We also present antigahly
model for performance analysis of such algorithms.

We apply this technique to the implementation of the GPUWsbas
solver of the sum-product amarginalize a product of functions
(MPF) problem, which arises in a wide variety of real-life appli-
cations in artificial intelligence, statistics, image pgssing, and
digital communications. Our motivation to accelerate MRigio
nated in the context of the analysis of genetic diseases;hwihi

assaf@cs.technion.ac.lil

dang@cs.technion.ac.il

John D. Owens
Faculty of Electrical and
Computer Engineering
University of California

Davis CA

_ USA _
jowens@ece.ucdavis.edu

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Parallel programming; C.1.2
[Multiple Data Stream Architectures]: MIMD

General Terms
Algorithms, Performance

Keywords
Sum-product, GPGPU, CUDA, Software-managed cache

1. INTRODUCTION

some cases requires years to complete on modern CPUs. Com- Graphics Processing Units (GPUs) have emerged as a powerful

puting MPF is similar to computing the chain matrix produét o
multi-dimensional matrices, but is more difficult due to anex
data-dependent access pattern, high data reuse, and arlfgyuts
to-memory access ratio.

platform for high-performance computation. They have bsec+
cessfully used to accelerate many scientific workloads. [T$pi-
cally, the computationally intensive parts of the applimaiare off-
loaded to the GPU, which serves as the CPU'’s parallel copsote

Our GPU-based MPF solver achieves up to 2700-fold speedup  Originally, GPUs were designed as a massively parallel inash

on random data and 270-fold on real-life genetic analystastds
on GeForce 8800GTX GPU from NVIDIA over the optimized CPU
version on an Intel 2.4 GHz Core 2 with a 4 MB L2 cache.
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for concurrent execution of thousands of independent ttsezach
executing the same code on different data. Such an aralvi¢eist
optimized for high-throughput stream processing. It aidar high
speedups on graphics-like workloads, which can be paizskbl
into thousands of independent identical subtasks and isctea-
ized by low data reuse (or high reuse of a small working sed)an
high compute-to-memory access ratiwithmetic intensity. How-
ever, early GPUs achieved low or no performance gains on mgmo
bound workloads such as a matrix product, which is charaetgr
by high data reuse and low arithmetic intensity [6]. For swcink-
loads, the GPU cacheless memory system prevented effidient u
lization of GPU computing hardware, whereas CPU utilizatias
amplified through the optimal use of the data cache. In faPl)&
allow for cached memory accesses via the GPU’s texture cache
However, this cache is optimized for read-only data with 2i2-s
tial locality and a small working set. Thus, even sophisddause

of this cache yielded only modest speedups compared to thte mu
threaded cache-optimized CPU implementation [8].



The breakthrough in allowing workloads with high data reluae
been the recent introduction of a fast close-to-ALU membigw-
ever, the memory architecture differs between the venddéfgile
AMD hardware includes regular L1 and L2 caches [15], NVIDIA
CUDA [12] provides a special user-managed space calleded
memory Shared memory lacks hardware support for cache func-
tionality and is fully managed by the application. It is died
into chunks (16KB each), each shared only among the threfads o
athread block(up to 512 threads).

Shared memory is intended as a scratchpad for frequently use
data [12]. Explicit management makes it especially usefutrfemory-
intensive applications with complex access patterns oartlieehand,
but greatly complicates the application development orother.

We propose a general technigue for designing algorithmsrld<s
with explicit memory management. The idea is to decoupleléta
management from the computational structure. First, wégdes
serial computation algorithm with spatial and temporaklig of
accesses. Based on the data access pattern of the algatigam,
user-managed cache algorithm is devised, ensuring theaglaiia
ability in the shared memory for a single thread. Finallg #erial
algorithm is parallelized, and the cache management isecfio
maximize the data reuse among the threads of a single thleekl b

Related work.

The introduction of the IBM Cell [9] processor with software
managed per-core memory (local store) led to the developwfen
techniques for utilizing that memory. However, Cell pragraing
techniques are not applicable to the management of a shamed m
ory in NVIDIA CUDA [12] because of the major architecturafdi
ferences between the two. A very partial list of these differes
includes single thread access to Cell’'s local store vers@streads
to shared memory in CUDA, lack of access to global memory,
which bypasses the local store; asynchronous global metreaorg-
fers versus hardware-managed thread preemption; and dast ¢
munication between Cell cores versus complete indeperedehc
different thread blocks. Still, some ideas inspired us tspe the
user-managed cache direction.

The most relevant work on Cell, by Benthin et al. [2], presemt
software cache optimized for a Cell-based ray tracer. Tloelyess
challenges similar to ours, such as trading an optimal caoliey
for better cache logic performance and the non-uniform ssgas
tion of the cache space for different tasks.

Another study is by Kamil et al. [10], where stencil kernete a
optimized through the efficient use of the Cell local storenisT
work highlights the benefits of application-specific membigrar-

This approach enables us to construct an analytical model to chy management, though does not explicitly implement aeach

guantify the effects of the cache parameters and implertienta

We apply this approach to the implementation of the sum-abd
(or marginalize a product of functions — MPF —) solver. MPfves
as a basis for many algorithms in artificial intelligenceaibformat-
ics, communications, signal processing, and others [14jr [i-
mary motivation for this research has been to acceleraterthke-
mentation of an instance of the MPF algorithm, used for itiee
in very large Bayesian networks. This problem arises in threext
of genetic analysis of hereditary diseases [7], and mayiregears
to complete on a modern CPU.

MPF can be considered a generalization of a matrix chain-prod
uct for multidimensional matrices. However, it has a monaptex
memory access pattern with its input-dependent memonerand
large working set. Thus, to achieve high performance, tiohiog
policy (which data to cache and the replacement policy) khbe
determined atun-time as opposed to a matrix product with static
compile-timecache policies (e.g. cache blocking).

The GPU implementation with the user-managed cache achieve
the average speedup 6f500 for random data ane200 for real
Bayesian networks on an NVIDIA GeForce 8800GTX GPU over
an optimized CPU version on a single core of a 2.4 GHz InteeCor
2 processor with 4 MB L2 cache. For sufficiently large inpuits t
speedups reac?70Q The significant contributor to the speedup is
the efficient use of the shared memory (around 24-fold foré3&n
networks and 52-fold for random data). Further accelenaifo
achieved through the utilization of the GPU special funciimits.

The Cell implementation of the matrix product for the renedn
LAPACK library is described by Kurzak et al. [11]. While theam
focus is different from ours, the authors informally used #rith-
metic intensity to analyze the performance.

Compiler-level cache implementations for Cell [1, 4] targen-
eral workloads and differ in scope from our work. The samalfol
true for the higher-level approaches such as the Sequoipr{s]
gramming language for memory-hierarchy-aware parallejpams.

NVIDIA's CUDA programming guide [12] calls for the use of
shared memory to improve the application performance. Newe
the data access pattern is assumed to be completely knowmat ¢
pile time, rather than the more dynamic patterns that arddtes
of our work. Also, no current work presents a general apgdrdac
designing cache organizations and evaluating their padoce.

2. BACKGROUND

2.1 GPU programming and CUDA

The modern GPU is a highly data-parallel processor. The GPU
features many lightweight closely-coupléaread processorshat
run in parallel. While the performance of each thread preces
is modest, by effectively using many thread processors iiallgd,
GPUs can deliver performance that substantially outpac&Ra.

The programming model of the GPU is “single-program, mul-
tiple data” (SPMD): many threads concurrently run the sanaoe p

We analyze the influence of the cache parameters on the bveral gram on different data. The GPU is most effective when thedsa

performance, showing that it behaves as predicted by theemod
We also compare the user-managed cache version with théane t
uses a texture hardware cache, demonstrating superiarpenfice

of the former.

The paper is structured as follows. First, we introduce tiRUJG
programming using CUDA and define the MPF problem. Then we
describe the serial version of the MPF solver. We then develo
a theoretical performance model for GPUs with the focus @n th

of threads are available to the hardware at any time; the GPU i
capable of quickly switching between these threads to latEnty
and keep the hardware busy.

The recent introduction of programming environments ferdle-
velopment of non-graphics applications on GPUs facilitates use
of GPUs for high performance computations. One such environ
ment which we use in our work is NVIDIA's CUDA.

cache performance, and apply it to the MPF kernel. We proceed High-level programming environment.

with the user-managed cache design and GPU kernel implement
tion. We conclude with the results and future research tioes.

CUDA programs are based on the C programming language, with
extensions to exploit the parallelism of the GPU. CUDA pesgs
are explicitly divided into code that runs on the CPU and cibid¢



runs on the GPU. GPU code is encapsulated interael which
exemplifies the SPMD model: it looks like scalar C programnt, bu
is invoked concurrently in thousands of threads by the hardw
Typical CUDA programs will first set up input data on the CPU,
transfer it to the GPU, run the kernel on the GPU data, andlfinal
transfer the result back to the CPU.

Kernel code allows arbitrary read-write accessgtobal GPU

memory which has no hardware cache. Instead, CUDA exposes
low latency ¢-1 cycle) memory shared among a subset of threads,

calledthread block(up to 512 threads per block). The threads of
each block have an exclusive access to a small chunk (16 KB), a
no access to the chunks of other thread blocks. No commimicat
among the threads of different thread blocks is permitted.

Direct Compute Access.

NVIDIA GPUs feature multiplemultiprocessorg16 multipro-
cessors in the GeForce 8800 GTX), each with 8 thread proresso
The GPU is responsible for mapping the thread blocks to threde
tiprocessors, keeping thousands of threads “in-flight” enbugh
resources are available, each multiprocessor typicakyrhaltiple
blocks resident, and can quickly switch between computatio
different blocks when appropriate. For instance, if onechlstarts
a long-latency memory operation, the multiprocessor wikloff
the memory request then immediately switch to another bidule
those memory requests are satisfied.

2.2  Sum-product

Consider three functiond,(z, y, ), g(w, z) andh(w, y) where
w,x,y,z are variables over finite domaini$’, X, Y, Z of size
[W|, |X]|, Y], |Z] respectively. An assignment to all the vari-
ables in the scope is calledcanfiguration A function is defined
as a table with a single value per configuration of the fumctiari-
ables (Figure 1(a)). The set of variables in each functiaralked
a functionscope In the rest of the paper we denote By .
the value of the functioryf(z, y, z) for a particular configuration
r=a,y=>bz=c

The following operations are defined on the functions:

1. Tensor produclf ® g is a functioncw,z,y.2 2 fo.y.z X Guw,x-

2. Marginalization (summationdver a variabler is a function

N
Byz = Dgex fry.er

Assume that we want to compute the following expression:

> f@,y,2) ® g(w, ) ® h(w,y) (1)

The naive way is to first compute(w, x, y, z) (Figure 1(b), top)

and then marginalize out andy (Figure 1(b), bottom). For the

variables’ domains of size, this requiresD(n?) operations.
Alternatively, we can apply the distributive law:

(Z f(@,y,2) ® <Z g(w,z) ® h(wy))) (2)

The computation is split into twbuckets The expression in the in-
nermost parentheses (first bucket) is computed first, andethét
serves as the input for computing the expression in outerpae-
ses (second bucket). This lead€2¢(n?) total operations, i.€0(n)
times less than before.

Unfortunately, the efficiency often comes at the price ofiadd
tional space®(1) andO(n?) respectively).

a(z,y,z,w) =
XyzZ r,Yy,z
e ] 16 v.2) YW | f(,y,2) X glw, x) X h(w, y)
0000 0000 = fooo X goo X hoo
""" - 0001 0001 = fooo X gio X hio
112
Jii2 0010 00010 = J0o1 X goo X Roo
wx [ g(w,z) -
00 900 1121 ai121 = fi12 X g11 X h1a
T i Xz k(z,2) =32, , o=y, 2, w)
— (W, 9) 00 0000 + @0100 + @001 + @o101
O)(; a 2 01 0010 + @0110 + o011 + Qo111
00 02 0020 + @0120 + @p021 + @121
7 -
11 1 12 a1020 + @1120 + 1021 + 21121
(@)

(b)

Figure 1: Computing MPF: (a) Input functions (| X| = |Y| =
|W| =2, |Z| = 3) (b) Naive computation

xyz | f(z,y,z) wy | h(w,y)
000 L] wx | g(w,z) 00 Ha
001 AA [ 1Y * & xz | k(z,2
002 | * % 001 4 o x 01| WA |[oo] ®
010| HWHN 01| MM *a |[01] A
011 AA 7 [ 1N 10 [N 02 *
012 * * A% % * h 10 L
[100] &6 J[11] aa 1, | WA
[10] 44 ] L)

(@)
XZy | f(= 2y)
00 0 [ 1 ] XW g(z, w)
00 1 (1L} 00 LLIVS. &
010 AA 01 HEAA XK
011 AA

(b)

Figure 2: MPF access pattern for computingkoo, ko1, ko2 and
k1o in Figure 1 (a) before reordering (b) after reordering of
two unordered functions. Reordered variables are highlighed.
Symbols denote accesses for computing respective outputlva
ues.

The general MPF problem is:

Y . F(X), Mc|JX,feF, 3)

M i

whereM is the set of variables to be marginalized, dhd the set
of all functions in MPF. MPF algorithms aim to efficiently cpote
the expression in Eq. 3 for any number of functions. Determin
ing the interleaving of summations and multiplications evhimini-
mizes the number of computations under given memory cdngira
is NP-hard [7]. Pakzad and Anantharam [14] provide a congireh
sive overview of MPF.

3. SERIAL MPF KERNEL

In this work we do not deal with the problem of finding the op-
timal order of operations (see [7] for a possible solutioRather,
we focus on the computational part shared by many differeREM
algorithms: computation of a single bucket (Eq. 4).

Vo) =) flo--af, (4)
M
where f* € F are the functions in the bucket aid is the set of
zero or more marginalization variable®,= V\M, V is the union



. Function SumProductKernel
. Input: Set of functionsF', union of functions’ scope¥, set of marginalization
variablesM C V
. Output: Function¥ with scopeO = V\M
. for all configurationgp of O do
sum — 0
for all configurationam of M do
product +— 1
for all functionsf € F do
product «— product X f(p, m)
end for
sum «— sum + product
end for
13:  ¥(p) « sum
14: end for
15: return ¥

PR
BRBeeNearw Ne

Figure 3: MPF kernel pseudocode

of the variables of all the functions iR. In order to solve a given
MPF problem, the kernel is invoked for each bucket, processne
bucket after another in sequence.

We assume that the buckets are formed by an MPF algorithm
under given memory constraints. Thus, the creation of inésti-
ate functions for computing a single bucket is disallowedk tb
potential violation of the memory constraints.

The pseudocode for the single bucket computation is predemt
Figure 3. For each output location, defined by the configomadif
output function variable® (line 4), all configurations of marginal-
ization variables are traversed (line 6). We denotefby, m) the
value of f corresponding to the configuratignU m.

Input data access.

The data of a single function is organized in memory simylarl
to the multidimensional arrays in the C language. For exampl
function f(z,y,2), z € X,y € Y, z € Z is represented as an
array of size|X| x |Y'| x |Z|. The valuef, . is located in the
memory at the offset + |Z| x y + |Y| X |Z] x z. Theleast

significantvariable, i.e. the one whose sequential values correspond f

to adjacent memory locations in the function data arrayhéslast
variable in the function specification (fg(x, y, z), z is the least
significant andrz is the most significant).

The access to the function value for an arbitrary configaredf
variables is costly due to the offset computation. To aveichsa
computation for each access, a data traversal should baiapt
to sequentially access both input and output arrays.

However, in general, such a traversal may not exist (as in the
example in Figure 2(a)). It becomes possible only if we ingpas
global order on all the variables of the bucket. In our examibthe
data is restructured according to the global ordes z > w > y
the traversal with sequential access is from the least tartbst
significant variable in the bucket (see Figure 2(b)).

For the complete MPF computation, where the output of one
bucket is used as an input to another one, restructuring glesin
bucket layout is not enough. If the order of variables in aketic
contradicts that of the next one, the output must be restredtto
comply with the new order, which is too costly if done for eyer
bucket.

The solution is to impose a global order on all the variabies i
MPF as follows. The MPF algorithm prescribes the buckets to

placed to be the highest in the order, and arbitrarily ordemaong
themselves. For our example in Figure 1, if we choose theiefitic
computation with two buckets (§(z,y) = Y, g9(z, w)®h(y, w)
and (I1)>_, f(z,2,y) ® B(z,y), the global order of the variables
isz>z>w>y (0rz>z>w>vy).

Once the input functions in all the buckets are restructuced
follow the global order, no restructuring is required foeinterme-
diate functions. The preprocessing cost is negligible.

4. CACHE PERFORMANCE MODEL

We aim to analytically evaluate the algorithm performance o
the GPU in general, and the effect of caching in particulaur O
goal is to provide an asymptotic performance analysis esiping
the dominating effects of caching.

Our performance measure is the number of floating point oper-
ations per second (FLOP/s) that can be achieved on a pracesso
for our application. To obtain an upper bound, we assumel idea
overhead-free parallelization, which allows for the oglmatiliza-
tion of GPU computational and memory resources. Hardware pe
formance upper bounds are based on two parametetise hggre-
gated maximum rate of computationisthe GPU, denoted a8 (in
FLOPI/s); 2. memory bandwidtlof transfers between GPU global
memory and ALUs, denoted ad, (in floats/s).

The maximum performance is limited by if the workload is
CPU-bound. For memory-bound workloads, however, the mgmor
subsystem becomes a bottleneck. The performance is lirhited
the memory bandwidtd/ multiplied by the compute-to-memory
access ratio, also called arithmetic intensity [12] andotieth by A.

Since the memory accesses and the arithmetic operatiohg in t
GPU are overlapped, we obtain the following expression:

min [P, M x A]. (%)

Arithmetic intensity is application-dependent. To derihe gen-
eral expression for the arithmetic intensity of the kernel start
with a simple MPF instance of computing the expresgion) =
(z) ® g(x). To produce one output,, anyimplementation must
read two valuesf, andg,, from the memory and write the result
k. back — total 3 memory accesses — versus one floating point
operation per one output. Thud, = % for any kernel implemen-
tation. Using Eq. 5, for NVIDIA GeForce 8800GTX GPU with
P=345 GFLOP/s and/=22 GFloat/sSpeed7.3 GFLOP/s, which
is only 2% of GPU's potential.

Note that the caching would not improve the performance be-
cause all the data is read only once. In order to incorporataing
into the performance analysis, consider the matrix prodxatnple,
which is also an instance of MPF. Consider two matrizgés< N
andN x K. For every output, there aV 4+ 1 memory accesses
(2N reads and 1 write). However, assuming infinite cache (only
compulsory misses) with zero-cost access,db&t of memory op-
erations per output drops l% and% for the first and second matri-
ces respectively. Thus, the arithmetic intensity for magnioduct

1

2N—1 2N—1 _ 2-x ;
SNTL with the

is without cache andN(ﬁﬂL%)ﬂL1 = TiIo%
infinite cache. To conclude, the lack of caching leads to tzomns
performance upper boundx 22 GFLOP/s, whereas with caching
it becomes CPU bound (i¥/ = K, andN is large, thed = K).
We define a new parametegched arithmetic intensitglenoted

Acache t0 account for the cost of memory accesses. We derive the

Speed =

be processed in a certain order. Each bucket has a uniqué set Ogxpression ford.qcne (EQ. 6) for the MPF kernel.

marginalization variablesWe order these sets in the reverse or-
der of the buckets, assigning arbitrary order within each s
marginalization variables. All non-marginalization variables are

1
#m— 5

1’
G+ 5

25

(6)

Acache



wherec; is the cache miss rate for accessing functipm is the
number of input functions, and/ is the number of configurations
of the marginalization variables. Note that for the pararsebf the
first example, Eq. 6 yields the intuitive resultst = 2, ¢; = 1
(100% compulsory missesN = 1, Acache= A = %

Clearly, caching is vital for achieving high performanceM®F
kernel. Even the low cache hit rate of 50% for all functioreds to
a two-fold performance increase versus non-cached vergiow-
ing to ten-fold for the hit rate of 90%.

In general, the addition of caching can potentially transfiche
problem from memory-bound to compute-bound, deliveringla s
stantial increase in performance.

5. USER-MANAGED CACHE

We see that the key to high performance for MPF computations
is an efficient use of the memory hierarchy.

An algorithm for the GPUs with a software-managed memory
hierarchy can be logically divided into the memory managame
part that implements the caching functionality and a corponal
part that is structured to use the cached data. Howeverafhis
proach brings us to a chicken-or-egg problem: computasbosild
be structured according to the data availability in the edanem-
ory, while the data should be staged according to the streicifi
the computation.

This mutual dependency can be resolved as follows. Cacloe spa
limitations require the computational structure to maimtamporal
locality of accesses in order to reduce capacity missegrdégss
of the cache algorithm. This suggests to first determine time-c
putational structure with temporal locality, ignoring siphlocality,
and then to derive the cache management algorithm, whigesta
the data accessed close in time but coming from arbitrastioss.

However the spatial locality requirement is critical whessidn-
ing a cache for NVIDIA GPUs, since the effective memory band-
width drops by up to a factor of 16 if the kernel does not concur
rently access sequential memory locations (“coalesceglsses”).

We conclude that, similarly to a CPU implementation, the GPU
computational kernel should maintain both spatial and terap
locality. The caching part of the kernel should simulate the behav-
ior of a hardware-managed CPU cache by determining which dat
to stage. However, the main difference between the hardarzde
user-managed caches is that thplacement policys implemented
in software.

In the following we first analyze the locality properties biet
computational kernel, determine the optimal traversat tveinput
data, and then derive the cache algorithm.

Spatial and temporal locality.

The spatial locality is naturally improved thanks to thetmes
turing of the data layout as discussed in Section 3, and rsang
it from the least to the most significant variable in the glatraer.
This is because this order results in the input and outputtfons
to be accessed in blocks (as in the example in Figure 2(b)).

However, the traversal with the best spatial locality magftict
with the one with the best temporal locality. For example,tfe
bucketf(z,y,z) ® g(y, ), the traversal over the values ofhas
the optimal temporal locality (a single value gy, =) is reused for
each value of), but poor spatial locality« is the most significant
in f(z,y,2)).

While every bucket has a traversal order that achieves tee be
temporal localitywe chose to prefer spatial locality over temporal
locality because otherwise: 1. index computation is required for ev-

ery access, decreasing the common case performance; Ztagta
ing results in non-coalesced accesses, reducing the ieéfenem-
ory bandwidth significantly.

5.1 Cache design

While the spatial and temporal locality of the algorithm Wwbbe
enough for efficient CPU implementation, a GPU software each
also requires addressing the fundamental issues othenarsdied
by the CPU cache hardware: determining the data to be cached,
locating the data in the cache for fast retrieval, and deténg the
cache replacement policy

These issues are easy to handle for workloads where the data
reuse pattern is static and knowncampile timesince the replace-
ment policy is static as well. For example, for a regular imatr
product, a single row of the first matrix is reused for all trzues
of the same row in the output, regardless of the input valuesas
trix dimensions. Thus the simplistic solution (ignoring tieuse of
the second matrix) is to keep one row in the cache as long as the
respective row in the output is being computed. No speciehea
management is required as the replacement policy is cochite
the program flow.

However, for MPF the data of each input function is reused dif
ferently when computing different output locations. In g 2
observe that(w, y) is fully reused for all output values, whereas
only the half of the values of(w, z) are reused since far = 0
andx = 1 different data are accessed, afi@, y, z) is not reused
at all. Thus for each function the data that should be prkéstic
and kept in the cache depends on the specific reuse pattenatof t
function, and must be computedran time

The main challenge is to minimize the overhead of the cache
management. Our key idea is to separate the problem of determ
ing the replacement policy from the mechanism which impleisie
it. The first is performed on a CPU as a preprocessing step, and
results in a set of metatables that prescribe when and wiaitzhig
to be fetched or replaced. These tables are passed to a GRb whi
then uses them during the computation. This approach bexome
possible as the reuse pattern is regular: in Figure 2(&), w) is
accessed exactly in the same mannerafoe= 0,w = 0 and for
x = 0,w = 1. Thus, it is more efficient to perform the metadata
computations on the CPU only once, rather than in each orfeeof t
millions of threads on the GPU.

The cache structure that follows this approach can be bioefiy
lined as follows. We first identify which data is accessedgash
output location, determine the lifetime of that data in tleehe
based on the algorithm access pattern, and finally decidetvdmie
should be replaced at each iteration. Specifying that fonheaem-
ory location is infeasible due to the overheads of storintjascess-
ing the cache metadata. Fortunately, the spatial locdliacoesses
of the MPF algorithm allows to increase the granularity & tlache
management to the blocks of data, referred tceashe pagesStruc-
turing the data in cache pages is also important for maxirgithe
reuse between the threads of the same thread block. We pralid
the details below.

5.1.1 What data to cache

To identify the input data locations that are accessed diose
time, we introduce the notion of @ndex vector Index vector is
a vector of integers with each location corresponding toreale,
and the value at each location corresponding to the valuleeofd-
spective variable. We can think of an index vector as of a rermb
represented in a mixed radix, where the numerical base fdn ea
location corresponds to the domain size of the respectiviabla.



Two vectors aresubsequenif their numerical values differ by 1.

Consider the index vector over all the variables in a buckee
variables are ordered according to the global order, dismlisn
Section 3. We call this vecta bucket addressA given bucket ad-
dress identifies one value in every input and output arrayc@éts
name. In the example in Figure 2(b), for the order z > w > vy,
the bucket addrese210 impliesz = 1, z = 2, w = 1, andy = 0,
referring to the respective valugs;o, g11, h1o andki2. According
to the traversal order the algorithm processes the bucketeby
ating over subsequent bucket addresses, starting from Zénas,
the data which corresponds to a set of subsequent bucketssedr;
and sharing the same values of the most significant digiide@s a
contiguous chunk of the input and output arrays, which acessed
close in time and should reside together in the cache.

5.1.2 Cache structure

The cache is split into multiple cache segments, one pettinpu
function (output is not cached). The location of the datd@ftnc-
tion’s cache segment is determined by tlaehe tag The cache tag
is a subset of the least significant digits of the bucket axidrgVe
denote byC the variables that correspond to the cache tag, and by
C¢ the intersection ofC with the function’s variables. The size
of function’s cache segment is the product of the domainssie
the variables inC¢. The total size of the cache is the sum of the
segment sizes of the functions to be cached. The algorithmefo
termining the number of digits in the cache tag is descrilager|

For the bucket in Figure 2(b) and cache tag of size th€ees
{z,w,y}; C¢ = {z,y}, Cg = {w}, Cn = {w,y}. The cache
stores 6 values fof, 2 for g and 4 forh—a total of 12 values.

Consider the data identified by a set of subsequent bucket ad-

dresses which differ only by their cache tags. We call theda d
cache pageThe subset of the most significant digits of the bucket

accessed directly from the global memory, bypassing theecac

However, this partial caching leads to the problem of chapsi
an optimal subset of functions to be cached.

We formally define this problem as follows. We define the cache
utilization U = Zfefunctionsl'f;“z% x cached, wherecached is
1 if function is cached and otherwise,size; is the size of the
cache segment of, andlifetime; is the number of sequentially ac-
cessed cache pages that share the same segment of therfdiatsio
We aim at maximizing’ under the constraink_ ; ¢ ncionsSiZ€& X
cacheg < Shared memory size

This problem is the classical (NP-hard) binary knapsacklem

where the cost of adding a function segment to the cacﬁegﬂz—gi.

The well-known two-approximation algorithm is to add thenits
in decreasing order of cost. The greedy algorithm is execaote
the CPU prior to the GPU invocation, and the results are abck
on the GPU every memory access, fetching the data eithertfiem
cache or from the global memory.

For both conflict and capacity misseke replacement policy is
determined on the CPU prior to the GPU invocation, leavingyon
the policy enforcement mechanism to be executed by the GPU.

6. CACHE-AWARE PARALLEL KERNEL

We parallelized the MPF kernel over the output domain by as-
signing a subset of the output values to each thread. Thadb@re
independent, allowing as many of them to be run in parall¢has
hardware permits.

However, efficient utilization of the user-managed caclogiires
the threads to be coscheduled, and the outputs to be asdigned
allow localized data accesses to g@mmecache page.

Coscheduling, i.e., concurrent execution of a certain grofi

called acache page tag The algorithm traverses the cache pages
according to the order of the cache page tags, starting frost fi
page with the cache page tag zero.

5.1.3 Conflict misses

The data from the different cache pages but with the sameecach
tag are mapped onto the same physical cache location. Argess
these data leads to the tag conflict misses.

The granularity of the cache invalidation upon a miss is ieduc
While handling each miss individually is costly, replacthg cache
page entirely upon switching to another one reduces thetst r

The key isto consider the replacement policy for each func-
tion segment separatelyObserve that the data of some functions
are shared among multiple subsequent cache pages and siobuld
be invalidated. In the example in Figure 1, with the cache tag
{z,w, y}, and the cache page td4g}, moving from the cache page
x = 0 toxz = 1 requires refreshing only the segmentsfoindg,
since the functiork does not depend an The subset of functions
to be refreshed per cache page is precomputed on the CPUgrior
the GPU invocation and is checked for each cache page.

5.1.4 Capacity misses

(TB). The threads within a TB are executed either concurrently o
in a known order. They communicate through the shared memory
accessible only to the threads of that TB.

Our cache design naturally maps onto the shared memory. Thus
the threads of a TB are coscheduled to concurrently accesssaarc
cache page. Each TB is assigned a set of subsequent caclse page
processed sequentially by that TB.

The currentimplementation stores one cache page at a tithe in
shared memory of each TB, simplifying the memory offset camp
tations per access at the expense of reduced hit rate.

The amount of input data per cache page is determined as fol-
lows. A certain cache page is concurrently processed byhall t
threads in a TB, and the respective input data must residbein t
cache. To exploit all the available hardware parallelisra,agsign
each thread to process a single output per cache page. Teus, t
size of the input data per cache page is dictated by the nuofber
concurrently processed output locations, which in turimisted by
the number of threads in a TB.

The number of cache pages per TB deserves special attention.

While assigning more pages to a TB improves the data reusispit

reduces the parallelism, and potentially the hardwaréatibn, be-
cause of a sequential processing of different pages by a Jize

The amount of data to be cached, as prescribed by the cache tagVe assign the pages to a single TB as long as the resultingetumb

might be too large to fit the available shared memory, leatiing
capacity misses.

Similarly to the conflict miss resolution, the capacity neissre
resolved separately for each function. Afdirely disallow caching
of some functions when the size of all segments togetheedxce
the available shared memaryhe functions that are not cached are

of threads is above the maximum number of threads which can be
executed concurrently by the hardware.

6.1 Implementation

The GPU implementation consists of two modules: the main
GPU kernel that implements the parallel MPF computatiod,tae



. Function SumProductGPUKernel
. Input: thread block IDtBlockID, thread IDthreadID, functionsF, marginaliza-
tion variablesM, #cache pages per TBBPages
outputOffset— call computeOutputOffsetiBlockiD)
for all input functionsf € F do
inputOffset§f] < call computeOffsetBlockID, f)
end for
. for page= 0 to TBPagesio
for all input functionsf € F do
9: if CacheValidArrajpagg|f] is false then

10: call barrier()

11: call populateCachgi, CacheSegmentSii¢$, inputOffsetsf] +
PageOffsetsf][pagd)

12: end if

13:  endfor

14:  sum—o0

15:  for sumPtr= 0 to #configurations of variables it/ do

16: product«— 1

17: for all input functionsf € F do

18: offset— call computeBasdthreadOffsefd][ threadID], sumPt)

19: if CachedFunctionsArrdy] is false then

20: value < call cacheFetchffse)

21: else

22: offset« offset+ inputOffset§f] + PageOffsets][pagd

23: value «— call memoryFetchgffse)

24: end if

25: product— productx value

26: end for

27: sum«— sum+ product

28.  endfor

29:  outputputputOffsett- page x ThreadBlockSize- threadID] «— sum

30: end for

Figure 4: GPU kernel pseudocode

preparatory CPU module that creates the data structuresaai
metadata, and transfers the data from the CPU to the GPU ngemor
Due to the space limitations we skip the details of the CPUuteod

6.1.1 GPU kernel

The presented kernel is executed in each thread (Figure ¢). W
use the names starting with the capital letters to denoteltive
precomputed on the CPU. The data is stored in the read-only GP
memory, which is augmented with the hardware cache (textude
constant memory). The two paramet&BsockID andthreadlD are
supplied by the hardware to allow each thread to determiriehwh
data to process.

The kernel can be logically split into four parts: compugatof
the global memory offsets (lines 3-7), cache prefetchinglbj,
computation loop (15-29), and writing back the result (29).

First, the kernel determines the set of cache pages to begsed
by a given TB. Next, the input data for a given cache page gesta
into the shared memory (line 11). If the function segmenttbdse
refreshed upon switching to the next cache page (line 9}htleaxd
must wait until all the threads in its TB stop using that caphge,
before rereading its content from the global memory (ling 10

The main computation starts by reading the input data eftber

memory. The CPU version is invoked on a single core of an In-
tel Core 2 2.4 GHz CPU with 32KB L1 and 4 MB L2 cache. The
CPU version is optimized for caching, uses SSE instruct&maed
performs within 5% of the performance of the matrix multiali
tion routine of the ATLAS [16] library when applied to a regul
matrix product. The data is stored in single precision flugafioint
representation as GTX8800 does not support double precisio

The performance criterion for a single kernel invocatioritis
number of operations per second, measured in FLOP/s. The num
ber of operations—the input complexity—includes only theltin
plications and summations required by the algorithm.Fangxe,
the multiplication of two %2 square matrices requires 12 FLOP.

We also report the performance of the special version of tR&M
kernel that is used for the inference in probabilistic Bageset-
works. In Bayesian networks the values of the input functiare
probabilities, and underflow is likely to occur during thengau-
tations. One of the methods to avoid the underflow is to perfor
all the computations in the log domain as follows: each irput
replaced with its logarithm before the computation; muikgtions
are replaced by summations; summations require computegx-
ponent of each summand and the logarithm of the result. W& use
log2f andexp2ffunctions for logarithm and exponent computation
with the same precision both on CPU and GPU.

While we note that the real applications will certainly useg |
domain computations, we evaluate the linear domain impi¢ae
tion to emphasize the contribution of the user-managedectctne
kernel performance.

We invoke the kernel on the same input until the accumulated
running time exceeds five seconds, and then derive the tima fo
single invocation. Kernel invocation overhead1(0.s) is ignored.

Unless otherwise stated, we report only the pure GPU exatuti
time, excluding the time for data transfers between the Civltlae
GPU, and for computing the cache metadata on CPU. We specifi-
cally address these issues in Section 7.3.3. The result®of &d
CPU runs are compared to ensure correctness.

7.2 GPU versus CPU performance

7.2.1 Summary of the results

The following table summarizes the speedups obtained iaxthe
periments described in this section.

GPU speedup over CPU
Benchmark peak paverert)ge min
Random benchmark (log-domain) | 2708 536 0.2
Random benchmark (linear-domairp) 52 15 0.02
Bayesian networks (log-domain) 274 200 153
Bayesian networks (linear-domain)] 24 15 12

7.2.2 Random datasets
The tests aim to evaluate the kernel performance on thesnput

the cache or from the main memory, depending on whether the having different amount of available parallelism and d#fat reuse

function is cached or not (line 19). The rest is similar to Hee
rial algorithm in Figure 3.

Finally (line 29) the value is stored in the main memory, dmel t
kernel starts processing the next cache page.

7. RESULTS

7.1 Experimental setup

We evaluate the MPF kernel on NVIDIA's GeForce GTX8800
graphics card, with 128 thread processors and 750 MB of ¢loba

patterns. For the small inputs with low parallelism, and tioe
inputs with limited data reuse, the GPU performance is ebqubto
be low.

We generated 700 buckets of different computational coxitgle
with the parameters randomly chosen from the following g
2—4 functions per bucket, 1-10 values per variable, 2—321saim
tion values, 1-18 variables shared between the functians,5a
25 variables per function. These are the typical ranges Her t
Bayesian networks in the genetic analysis domain. The immct
data is strictly positive.

Figure 5(a) shows the kernel performance on random data as a
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Figure 5: (a) Linear scale performance and (b) log-domain  Figure 6: Kernel performance as a function of (a) cache sizebj
speedups on random data. Each dot represents single kemel  number of cache pages per thread block. The model predicts

invocation. The variability in performance is due to the differ- the same asymptotic behavior as observed experimentally.
ent amount of data reuse for different inputs.

7.2.4 Log-domain performance

function of the input complexity. Each dot represents thenée Figure 5(b) shows the speedups obtained when invoking CPU
invocation for computing one bucket. and GPU log-domain versions on the same set of random buakets
On average, the GPU performs an order of magnitude better tha iy Figure 5(a). Observe that the Figure 5(a) is scaled by @pféa-
the CPU for most inputs above 100 KFLOP (about the complexity tor of 50, resulting in speedups thfree orders of magnitudd his is
of a product of two 4640 matrices). Below this threshold, the  due to the use of the GPU special function units, which sufast
input size does not allow full utilization of the hardware. computation of logarithms and exponents in hardware. Uspreg
The peak performance of 53.5 GFLOP/s corresponds to the ef- cjg| mini-benchmarks we found that the CPU performance ef th
fective memory bandwidth of about 212 GB/s, which would be im  |og2f and exp2f functions on CPU is 30 times and 10 times siowe

possible without the use of shared memory. than the regular product respectively, whereas on GPUs tiues-
) tions are only up to 2 times slower. Howevdisabling the user-
7.2.3 Bayesian networks managed cache reduces the speedup by a factor of 20 on average

The complete instance of the MPF problem often contains-thou ~ For Bayesian networks we achieve a speedup of BY#
sands of buckets of various complexity. To evaluate theoperf
mance on real MPF instances, we used Superlink [7] to generat 7.3 Cache performance
Bayesian networks from the real-life genetic analysis datdcre- We analyzed the impact of the cache size and the number of the
ated the buckets for MPF computation. We then invoked GPU and cache pages per thread block on kernel performance. We esed s
CPU versions of the kernel, and summed the single buckeimgnn  eral buckets of different complexity with 3 functions perckat,
time for all buckets in the MPRAe obtained an average speedup and fixed them throughout the experiment, while varying the p
of 15 (ranging between 12 and 24) over 20 networks of different rameter of interest. All the functions in the bucket togetfitethe
complexity. cache in the default kernel configuration.

The analysis of the bucket complexity distribution reveatieat The results are presented in Figure 6. Both graphs also gew t
over 85% of all buckets in each Bayesian network are below a theoretical performance for one of the inputs as predictedhle
100 KFLOP threshold. As we observed previously, using GRU fo model in Section 4. Since the model does not account for wario
these inputs slows down the execution. However, the ovpeaH low-level overheads, the predicted values are higher thaset ob-
formance is accelerated due to a few large buckets thatiboter tained in practice by about a factor of 40. However, obsdragthis
over 98% to the running time. factor isconstant and the form of the experimental graphs closely



follows the one predicted by the model. We conclude that théeh
allows for studying the asymptotic behavior of the overalifpr-
mance as a function of the cache parameters.

Increasing the cache size (Figure 6(a)) allows for cachingem
functions, as can be seen from the staircase form of the graph
Three “knees” in the graph match the number of functions & th
bucket. According to the model, the hit rate changes fromd® (n
cache), to 33.3%, 65.5% and 98.9% (all functions cachedh- Co
sequently, thed qcreq increases from 0.99 to 1.4, 2.14 and 52 re-
spectively, explaining the sharp improvement in the pentamce.

The impact of the number of cache pages processed by one TB

is depicted in Figure 6(b). As expected, the performanceaovgs
due to the increased data reuse. Clearly this parameteioheféeat
when the caching is disabled, which is confirmed experiniignta
The improvement becomes less significant with the higharesl
of the parameter due to the increased number of tag conflggemsi
and decrease in the data reuse between different cache. fages
the analyzed input, the hit rate changes only for the first&izhe
pages, from 96.8% to 98.8%. Without the cache collisiongy(on
compulsory misses), the hit rate would reach 99.9%, doghie
performance.

The asymptotic behavior of the graph in Figure 6(b) can be ex-
plained by the model as follows. Theoretically, if the dataveed
for a 100% cache hit rate, the arithmetic intensity woulditemin-
finity, as no global memory read accesses would be required-H
ever, this is not the case due to the summ%n'ch the denominator
in the expression in Eq. 6. This summand stems from the cost of
writing the results back to the global memory. Although ia BPU
write accesses are asynchronous and assumed to have eewy)at
they do consumdandwidth which is apparent in the theoretical
and the experimental performance graphs.

7.3.1 Loop unrolling

The impact of loop unrolling is shown in Figure 7. The chosen
inputs fit the cache. We measured the performance as a faraftio
the input complexity. There are two types of unrolling prase—
dynamic unrolling of the loop over the summation variablae(15
in Figure 4, and static unrolling over input functions (libg).

Dynamic unrolling is required for the loops for which the epp
bound is unknown at compile time. It is performed by creating
the unrolled loop versions with 1, 2 and 4 unrolled iterasioand
by dynamically choosing the appropriate version dependim¢he
number of remaining iterations.

Dynamic unrolling of both loops was not possible due to the in
creased register use per thread, which led the compileriticosgp
some of the register to the global memory, significantly dasing
the performance. Thus, we created different versions okéneel
with static unrolling of the loop over the input function.

Dynamic unrolling (curves for 2- and 4-unrolling) boosts ter-
formance significantly (up to a factor of 3), because of ttirioed
number of accesses to the indexing tables and cache metpdata
formed once per iteration, instead of once per access. Hie st
unrolling yields an additional speedup of about 25% over4he
unrolled version.

The saw-like form of the graph in Figure 7(a) is due to the dif-
ficulty in utilizing the shared memory hardware efficientBhared
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Figure 7: Impact of loop unrolling on the performance. The
saw-like behavior is due to the bank conflicts.
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Figure 8: Using texture cache instead of user-managed cache
The latter is superior as long as the data fits the cache.

7.3.2 GPU texture cache comparison

We compare the user-managed cache with the hardware texture
cache, by removing all the cache logic and replacing theailob
memory reads by the texture reads. Texture cache works best f
workloads with two-dimensional locality of accesses andnals
working set. Thus optimizing the MPF algorithm is hard asei r
quires fine-grained blocking of data. This would result ibstan-
tial overhead and is likely to yield low performance. Thus orig-
inal computation algorithm is used. On the other hand, tkiute
cache has many other advantages, as it caches data acess thr
blocks and implements the cache logic in hardware.

The results are depicted in Figure 8. As long as the data fits
the cache, both implementations perform equally well. Haue
for the inputs with a working set of about 1 KB per thread block
texture cache performance deteriorates, despite the mgdeét of
the texture cache being 8 KB [12]. For the inputs of compiexit
above 18 GFLOP, the user-managed cache is no longer ablette ca
all the functions, and the performance is close to that ofékaure
cache.

memory consists of 16 memory banks, and the best performance

is achieved if the threads concurrently access differenk®aor
the same data of the same bank. Otherwlimmk conflictsresult
in the serialization of accesses. For some inputs the dptaitian
the cache led to bank conflicts (in particular when the nunaber
summation values is divisible by 16).

7.3.3 Analysis of the overheads

In all the results above we analyzed only the GPU executina.ti
In this section (Figure 9) we analyze all the overheads:psttoe
for computing the cache metadata and determining kernahpar
ters, and data transfers between the CPU and GPU.
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Figure 9: Overhead analysis: (a) contribution of each facto(b)
speedups including and excluding the overheads.

Figure 9(a) shows the relative contribution of the overlseatb
the overall performance as a function of input complexitydded,
for small inputs the kernel runtime does not even dominaeter-
all runtime resulting in low speedup and even slowdown \&the
CPU version. However, these high overheads can be hiddémin t
repetitive kernel invocations on many buckets as followisstRthe
metadata can be computed on the CPU in parallel with the GPU
processing of the previous bucket. Furthermore, CUDA soih w
allow asynchronous memory transfers both to and from the GPU
Finally, we will be able to completely avoid memory transferf
the intermediate results by using the MPF algorithm thatesdke
whole MPF computation fit the available memory [7].

Figure 9(b) also shows that for larger inputs, the speedup wi
the overheads included converges with the one with the dgdu
overheads.

8. CONCLUSIONS AND FUTURE WORK

In this work we have demonstrated the design and implementa-

tion of a direct-mapped read-only user-managed cache ottiaa da

parallel graphics processor. The speedups of up to thresroaf

magnitude allow greatly improved performance of a wide eaafy

applications of sum-product kernel, including the one fayBsian

inference for genetic disease analysis. High speedupgalstion

the GPUs far beyond the CPUs in terms of the energy efficiency

(180W for GTX8800 card versus 45W per core for Intel Core 2).
Our short-term future work includes the integration of tieeriel

into a real Bayesian networks solver through further exptan

of GPU-CPU parallelism, and continued improvement of cathe

lization. The applicability of the same algorithm for IBM ICand
multicore CPUs is also being considered. Our preliminasults
show close-to-linear speedups on multicore CPUs using @pen

An open question is whether the explicit cache management on
GPUs is applicable to algorithms with a more irregular asqeet-
tern (e.g. ray tracing), in which the cache decisions mushbde
as a part of the computation kernel, as opposed to the compile
time decisions in previous work, extended in this reseaecthé
data-dependent decisions made during the preprocesspgost
the CPU. It seems that the current hardware makes such manage
ment rather difficult, first, because there is insufficierst faemory
for cache metadata, and second, because there is a lackcidIspe
ized hardware to implement the basic cache primitives. Hewrt
more, the lack of fine-grained synchronization between hinestds
within a thread block would make the dynamic update of irdiil
memory locations inefficient, limiting the effective pdedilsm. The
addition of specialized hardware mechanisms is likely tdemithe
range of applications that could benefit from the GPU'’s cotimgu
power.
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