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Abstract

We used cross-modal generative Al models, which rely on the
Contrastive Language-Image Pretraining (CLIP) encoder, to
generate portraits of fictional characters based on their names.
We then studied to what extent image generation captures
names’ gender and age connotations when information from
linguistic distribution is rich and informative (talking names,
e.g., Bolt), present but possibly uninformative (real names,
e.g., John), and absent (made-up names, e.g., Arobynn). Three
pre-trained Computer Vision classifiers for each attribute ex-
hibit reliable agreement in classifying generated images, also
for made-up names. We further show a robust correlation
between the classifiers’ confidence in detecting an attribute
and the ratings provided by participants in an online survey
about how suitable each name is for characters bearing a cer-
tain attribute. These models and their learning strategies can
shed light on mechanisms that support human learning of non-
arbitrary form-meaning mappings.

Keywords: Form-Meaning mappings; Generative Al; Large
Language Models; Multi-modal Semantics.

Introduction

Generative Al models have recently shown impressive abil-
ities in many tasks (e.g., text-based image generation, text
generation, question answering) and several studies have
started to probe the representations these models learn. For
example, Bianchi et al. (2023) found that text-based im-
age generation models amplify racial and gender stereotypes
when asked to generate images from prompts describing oc-
cupations, beyond gender disparities in the workforce. Fur-
thermore, Cai, Haslett, Duan, Wang, and Pickering (2023)
found that when given new names constructed to resemble
male or female names, language generation systems chose
the gender pronoun that aligned with the phonological com-
position of the name, suggesting that these models pick up
subtle sublexical regularities in the training data.

In this work, we use cross-modal generative Al models to
investigate systematic form-meaning mappings such as the
bouba-kiki effect (Kohler, 1929), where participants consis-
tently pair pseudo-words to images showing a certain seman-
tic attribute. We investigate names of fictional characters and
study whether such models capture relevant semantic proper-
ties like perceived gender and age given the name alone. Cru-
cially, we investigate three different naming devices, which
differ in the degree to which they leverage established se-
mantic connotations (Joosse, Kuscu, & Cassani, in press).

On one end of the spectrum, falking names!, such as Black-
berry, leverage existing words to possibly convey information
about a character. On the other end of the spectrum, made-
up names, such as Gmork, cannot be interpreted by relying
on experience with the name, since it was never found in
context and does not have a specific meaning?. Yet, stud-
ies on the interpretation of (made-up) names show that peo-
ple have consistent intuitions based on the sounds and letters
in the name (Elsen, 2017; Pitcher, Mesoudi, & MCcElligott,
2013). A third type of names, real given names such as Ade-
laide, sits in-between the two poles. These names do have
lexical distributions which can sometimes establish conno-
tations through antonomasia, like Karen for obnoxious, and
have distinctive usage patterns on a relevant dimension like
gender, with certain names consistently used for men and
other for women (Cassidy, Kelly, & Sharoni, 1999). At the
same time, however, these names lack a precise meaning,
and yet their phonological make-up affects semantic judg-
ments in participants (Sidhu, Deschamps, Bourdage, & Pex-
man, 2019; Sidhu, Pexman, & Saint-Aubin, 2016). There-
fore, when interpreting such names, people may combine ex-
periences and sensitivity to sound patterns. By feeding these
different names to cross-modal generative Al models which
can handle out-of-vocabulary words, we aim to explore the
models’ ability to reflect the associations people exhibit.

Our study further draws inspiration from Davis, Morrow,
and Lupyan (2019), where participants were asked to draw
pictures given a set of pseudo-words, and then to guess which
pseudo-word inspired a specific drawing. Participants were
consistent in depicting certain pseudo-words: for example,
drawings of horgous were consistently large while drawings
of keex were tiny. Moreover, when guessing, participants per-
formed more accurately than expected under a random base-
line, showing that even in the lack of conventional semantic

'We choose to use the label ralking names for this class of names
to emphasise that these names, the name itself typically communi-
cates certain aspects of the character.

2The names we consider were first collected and analyzed by
Joosse et al. (in press). In this study, names of fictional characters
were selected to first study whether the intuition people had about
names on different attributes aligned with the choices made by the
authors who picked each name for a specific character with specific
attributes. For this reason, made-up names coming from literary
works were preferred to names made-up for the specific purpose of
the study. We address the possible confounds this choice brings in
the discussion.

In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



connotations, people consistently mapped strings to seman-
tic attributes across modalities (language and vision, in this
case). We submit a similar task to cross-modal generative Al
models, using the names of fictional characters as input, and
investigate the degree to which generated pictures encode per-
ceived gender and age (Bianchi et al., 2023). Following on
evidence from studies on sound symbolism (Ramachandran
& Hubbard, 2001; Lockwood & Dingemanse, 2015; Cwiek
et al., 2022) and work which started investigating the seman-
tic intuitions elicited by pseudo-words (Sabbatino, Troiano,
Schweitzer, & Klinger, 2022; Cassani, Chuang, & Baayen,
2020), we hypothesize that the representations the AI mod-
els derive from names capture the target attributes, even in
the lack of specific cross-modal distributions for the lexi-
cal form (as expected for made-up names). Using the same
names, Joosse et al. (in press) showed that the embedding
space derived from a representative corpus of English us-
ing a Distributional Semantic Model with sub-word infor-
mation (Bojanowski, Grave, Joulin, & Mikolov, 2017) re-
flects systematic form-meaning mappings for perceived age
and gender for all three name types. Building on these re-
sults, we investigate here whether the same pattern is found
in cross-modal semantic models, under the hypothesis that
when asked to rate a name, participants relied on cross-modal
correspondences between (sub-)lexical distributions and vi-
sual attributes, which influenced their rating of how fit a name
is for a character having a certain attribute. To this end,
we rely on generative models which leverage the Contrastive
Language-Image Pretraining (CLIP) encoder (Radford et al.,
2021), which is trained on a vast dataset of image-caption
pairs, and learns to encode strings and images in the same
representational space, making it possible to quantify the se-
mantic relatedness between a text and an image.

Computational models such as CLIP thus act as a pos-
sible theory of how people form cross-modal associations
that generalize to completely novel strings (Sidhu & Pex-
man, 2018). If we can explain people’s intuitions using as-
sociations derived from a computational model which only
sees image-caption pairs, it would mean that systematic form-
meaning mappings can be learned from situated language
data alone (Sidhu & Pexman, 2018). If this generalizes to
entirely novel names, we can further probe to what extent
an account grounded solely in the presence of informative
co-occurrences between (sub-)lexical patterns and visual fea-
tures in the environment can explain people’s intuitions on
relevant semantic dimensions.

Crucially, after generating images, we use pre-trained
Computer Vision (CV) classifiers to tag images on perceived
gender and age. In this way, we test whether generative mod-
els reliably capture semantic attributes such that generated
images reflect those attributes reliably enough that indepen-
dent classifiers trained to recognize the same attributes in real
images can recognize them in generated images. We argue
that this set-up offers a more stringent test than asking new
participants to rate generated images, since participants may

rely on very different cues to detect perceived gender and age,
and adjust to the task more flexibly. CV classifiers, on the
contrary, are expected to rely on how the attributes are en-
coded in the training set, which consists of human faces. Ev-
idence of CV classifiers’ success in detecting the same at-
tributes in images generated from names (including made-
up ones) would suggest that the underlying generative model
does encode those semantic attributes reliably. Finally, by
controlling for language-based associations derived from dis-
tributional semantic models (Joosse et al., in press), we assess
whether cross-modal associations play a unique role when in-
ferring semantic attributes from names alone.

Materials & Methods
Fictional Characters Dataset

We use 179 characters’ names from fan fiction, children,
and young-adult literature collected and manually tagged by
Joosse et al. (in press) based on the character’s gender in the
original story>. 119 names were also tagged according to
whether the character was portrayed as young or old*. Names
were balanced according to attribute combinations, such that
there are approximately the same number of young male,
young female, old male, and old female names for talking,
real, and made-up names to ensure the class distribution in
the input names is balanced for both attributes. The names
were presented to 300 participants through an online survey
(protocol approved by the Ethics Board of Tilburg Univer-
sity, protocol ID: 2020.203), asking them to drag a slider
bar (anchored between -50 and 50) to indicate how suitable
each name would be for a male/female or young/old charac-
ter. Raters were thus asked to provide a continuous rating
about the suitability of a name for a character with certain at-
tributes. No specific instructions were provided on what to
consider old or young to avoid biasing ratings.

Image Generation

We generated 20 images for each character name and each
image generator (either Stable Diffusion® or VQGAN-CLIP
(Crowson et al., 2022)), using the prompt “a face of a charac-
ter called <name>". Both image generators leverage CLIP
Radford et al. (2021) to encode textual inputs and guide gen-
eration. Using two generators sharing the same encoder en-
sures that any observed pattern does not depend on the spe-
cific generator. Figure 1 shows six generated images.

CLIP consists of an image (Dosovitskiy et al., 2021) and a
text encoder (Vaswani et al., 2017), trained jointly on 400M
matching sentence-image pairs. During training, CLIP learns

3See the original study by Joosse et al. (in press) for further de-
tails about data collection and tagging. Data and code to reproduce
our analyses are available here: https://github.com/Bragal9/
ClipSoundSymbolism

4Age could not be determined for some characters due to inde-
terminacy in the characterization, since in many cases the authors
did not specify the age of a character. We also only considered char-
acters who do not age during the story, to ensure names were chosen
to characterize characters at a specific time of their life.

Shttps://github.com/CompVis/stable-diffusion
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Figure 1: Generated images using Stable Diffusion (SD) and
VQGAN+-CLIP (VC) given three target names, one real, one
made-up, one talking.

a multi-modal latent embedding representation where match-
ing sentence-image pairs have a higher cosine similarity. The
text encoder pre-processes the input sentences using byte-pair
encoding (BPE) tokenization, enabling the model to encode
out-of-vocabulary (OOV) words by dividing them in sub-
word tokens. This feature is crucial to handle infrequent and
novel words in input sentences (Sennrich, Haddow, & Birch,
2015), but also our made-up names (e.g., Gmork is tokenized

33 9% 9

as ’g”, "mor”, and "’k”).

VQGAN+CLIP (VC) uses CLIP to generate images lever-
aging VQGAN (Vector Quantized Generative Adversarial
Network, (Esser, Rombach, & Ommer, 2021)), a genera-
tive model that combines the transformer architecture with
a Generative Adversarial Network (GAN) and leverages vec-
tor quantization (VQ). Starting from a random mask, at each
iteration CLIP embeds the generated image and assesses how
similar it is to the text query in its latent space. Using gradient
ascent, the image generator is prompted to generate an image
which falls closer to the text query (Crowson et al., 2022). We
leverage the VQGAN generator trained on the faceshg dataset
and use CLIP ViT-B/32, saving images after 200 iterations.

Stable Diffusion (SD) consists of three major components:
CLIP ViT-L/14, U-Net (Ronneberger, Fischer, & Brox, 2015),
and an image decoder. Through an iterative process, U-Net
deconstructs the noise starting from a randomly initialized
image and generates a new latent array that more closely
represents the input text as embedded by CLIP (Rombach,
Blattmann, Lorenz, Esser, & Ommer, 2021). Thus, CLIP
conditions the final output which is generated by the image
decoder. We use Stable Diffusion vI-4.

Image Classification

We rely on a classification task to probe the presence of sys-
tematic cross-modal form-meaning mappings in CLIP’s la-
tent space. We input each generated image to pre-trained,
off-the-shelves CV classifiers trained to detect perceived gen-

der and age in faces using different datasets and architec-
tures. From the HuggingFace Transformers library (Wolf et
al., 2020), we selected rizvan (https://huggingface.co/
rizvandwiki / gender -classification), crangana-gen
(https://huggingface.co/crangana/trained-gender),
and leilab (https://huggingface .co/Leilab/gender
_class) to predict perceived gender: each model outputs the
probability of an image being classified as male or female. To
predict age, we chose nateraw (https://huggingface.co/
nateraw/vit —age -classifier), ibombSwin (https://
huggingface .co/ibombonato/swin-age -classifier),
and crangana-age (https://huggingface.co/crangana/
trained-age). These classifiers predict the probability of
the image fitting different age bins, which we aggregate as
follows: 0-30 for YOUNG and 30+ for OLD, by summing
probabilities allotted to each original bin. The threshold was
chosen to harmonize the predictions of different classifiers.

Data analysis

Inter-Annotator Agreement Since we are interested in the
robustness of the encoded patterns rather than in which clas-
sifier performs best, we compute the inter-annotator agree-
ment (IAA) for each target attribute, considering the three
CV classifiers for each attribute (perceived gender: rizvan,
crangana-gen, leilab; age: nateraw, ibombSwin, crangana-
age) as the annotators. We use the Fleiss’k coefficient (Fleiss,
1971), which yields a number between -1 and 1, where a high
positive k indicates that different classifiers consistently rec-
ognize the target attribute in generated images.

Regression models

First, we obtained the output probability of each attribute
(MALE/FEMALE, OLD/YOUNG) for each generated image
(generated using VC or SD) outputted by each classifier (per-
ceived gender: rizvan, crangana-gen, leilab; age: nateraw,
ibombSwin, crangana-age). Then, we averaged the proba-
bility of the positive class (FEMALE and OLD, those paired
with positive values in the slider bar from the behavioral task,
where a value of 50 meant a name was deemed very suitable
for a female character on the gender semantic differential or
for an old character on the age semantic differential) for each
name. It is worth stressing that human raters did not rated
generated images, but rather names alone. We filtered indi-
vidual behavioral ratings higher than the 9th decile and lower
than the 1st decile for each name, and averaged (see Joosse et
al. (in press) for additional details on data pre-processing).
We then fitted a baseline linear model predicting the aver-
age behavioral rating per name as a function of the name type
(real, talking, made-up) and a measure of semantic polariza-
tion derived from a custom FastText model (Bojanowski et
al., 2017) trained with 2- to 5-grams on the Corpus of Amer-
ican English (CoCA, Davies (2010)). This measure modifies
the Word Embedding Association Test (Caliskan, Bryson, &
Narayanan, 2017) and was introduced by Joosse et al. (in
press). First, we embedded each name using the fastText
model. Then, we computed the average cosine similarity be-

3710



Table 1: The Fleiss k coefficient across attributes (Gen-
der; Age), generator (Stable Diffusion (SD); VQGAN+CLIP
(VC)), and name type (Real; Made-up; Talking).

Gender Age
SO VvC SD VC
Real 0.72 0.76 046 044
Made-up 0.59 0.62 045 041
Talking  0.52 051 05 0.38

tween each name’s fastText embedding and a pool of words A
encoding attribute X (e.g., male, masculine, man, boy, men,
he for MALE) and the average cosine similarity between the
same name and a pool of words B encoding attribute Y oppo-
site to X (e.g., female, feminine, woman, girl, women, she for
FEMALE), to reproduce the semantic differentials on which
participants in the behavioral experiment rated names®. Fi-
nally, we took the difference between the average cosine sim-
ilarities between each name and attributes in B and in A:
positive values indicate the name is closer in fastText’s rep-
resentational space to words pertaining to FEMALE and OLD.
This text-based metric reliably predicted behavioral ratings in
a previous experiment (Joosse et al., in press): names that are
embedded relatively closer to words encoding the attribute
female, were rated to better fit a female character in the be-
havioral experiment. We thus aim to establish whether cross-
modal patterns predict behavioral ratings beyond text-based
associations. To this end, we added the average probability of
images generated from a name using VC or SD being tagged
as female (pfemate) Or 0ld (porq) by the different CV clas-
sifiers to the baseline statistical models, comparing models
using AIC and assessing effect sizes using 1.

To sum up, we start from a baseline statistical model which
predicts behavioral ratings as a function of name type and
text-based associations extracted for all name types using a
custom fastText model: we fit one baseline statistical model
to predict behavioral ratings on gender, and one to predict
behavioral ratings on age. To each baseline model, we then
add the average probability each CV classifier assigns to the
20 images generated for each name to depict a female/old
character respectively. We fit separate statistical models for
each combination of target attribute (age, perceived gender),
image generator (SD, VC), and CV classifier (perceived gen-
der: rizvan, crangana-gen, leilab; age: nateraw, ibombSwin,
crangana-age), for a total of 12 regression models. Impor-
tantly, the focus is not on determining the best one, but on
establishing whether they all exhibit coherent patterns.

Results

Table 1 provides the IAA results. The Fleiss k is consis-
tent across the two image generators. The highest agree-

SFor the attribute young, we opted for young, youth, child, boy,
girl, baby; for the attribute old, we chose old, elderly, grandparent,
grandfather, grandmother, adult

Table 2: Linear regressions fitted to predict behavioral rat-
ings, fitted separately for each combination of attribute (gen-
der; age), generator (Stable Diffusion, SD; VQGAN+CLIP,
VC), and classifier. AAIC: change in fit between a baseline
model considering only name type and text-based associa-
tions, and a model also including cross-modal information
as the probability each classifier attributes to images gener-
ated for a name of being female/old (larger scores indicate the
more complex model improves more over the simpler model);
1’],2: partial effect size of the text-based predictor; nzm: partial
effect size of the cross-modal predictor (the average probabil-
ity that images generated from a name are tagged as female
or old); 7%: model fit (adjusted coefficient).

Generator Classifier AAIC 7 M r”
Gender
SD leilab 60.817 0.75 030 0.77
rizvan 70.728 0.76 0.33 0.79
crangana-gen 54.611 0.75 0.27 0.77
VC leilab 26.245 0.72 0.15 0.73
rizvan 24738 0.71 0.14 0.72
crangana-gen 19.383 0.71 0.11 0.72
Age
SD ibombSwin 39.674 0.18 0.30 0.40
crangana-age 39.254 0.18 0.29 0.40
nateraw 35522 0.17 027 0.38
vC ibombSwin 8.208 0.14 0.08 0.22
crangana-age 19.736 0.15 0.17 0.30
nateraw 34.660 0.17 027 0.38

ment among classifiers is reported for perceived gender: pre-
dictably, real names show the highest consistency (Kyc =
0.76 and ksp = 0.72), but the score is robust for made-up
and talking names as well (x always higher than 0.5). In-
terestingly, this pattern reflects the consistency in behavioral
ratings, were participants agreed the most on the likely gender
of a character bearing a real name, but also shown consistent
patterns for other attributes and name types (see Joosse et al.
(in press) for detailed patterns). The same pattern is reported
for age, although the score is consistently lower, with k be-
tween 0.38 and 0.5. Thus, we report moderate to strong TAA
across three classifiers per attribute (perceived gender: rizvan,
crangana-gen, leilab; age: nateraw, ibombSwin, crangana-
age) on perceived gender and age, for all name types.

Table 2 summarizes the AIC improvement over the base-
line statistical model’. In the baseline statistical model, we
predicted participants’ ratings about the fit of a name for a
character with a certain attribute using name type and the text-
based semantic differential (Joosse et al., in press). This base-
line statistical model was compared with other models which
included the average probability that images generated for a
name depicted a character with a certain attribute: p fomqre in-

"No interaction term improved over a model simply including a
linear combination of the predictors.
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Figure 2: Effect of the average probability of images generated from a name of being tagged as female on gender behavioral
ratings (A) and of being tagged as old on age behavioral ratings (B), while partialing out the effect of text-based associations
on each attribute. The effect is plotted separately by name type. The plot shows the model fitted on images generated using
Stable Diffusion and probabilities provided by the rizvan classifier (A) and the ibombSwin classifier (B). Points show actual
data, while lines show predicted values (shaded areas indicate 95% Confidence Intervals).

dicates the average probability that the 20 images generated
from a name feature a face tagged as female by the chosen
CV classifiers; p,;4 indicates the average probability that the
20 images generated from a name feature a face tagged as old
by the chosen CV classifiers (a probability is computed sep-
arately for each classifier). Positive AIC scores indicate that
the more complex model including the probability that gen-
erated images as tagged as featuring a female/old character
improves over the simpler model which only includes name
type and the text-based differential. We further provide the
n? of the text-based differential and cross-modal predictors
and the adjusted 72 as a measure of fit. For example, the first
row in Table 2 indicates that, when predicting participants rat-
ings of how well a name fits a female character the inclusion
of the average probability that the leilab gender classifier as-
signs to the images generated by Stable Diffusion (SD) of de-
picting a female face, the model fit improves by 60.817 AIC
units over a model which predicts the same dependent vari-
able only considering name type (real, made-up, talking) and
the text.based differential derived from fastText. The more
complex model accounts for 0.77% of the variance. Finally,
the text-based differential has an m? of 0.75 while p(female)
derived from the leilab classifier fed with images generated
by Stable Diffusion (SD), i.e., the cross-modal predictor, has
an 1?2 of 0.3. The remaining rows summarize the compari-
son between the appropriate baseline model and each model
including the cross-modal predictor derived from each com-
bination of image generator (VC or SD) and CV classifier.
We see that including the cross-modal predictor improves
model fit in predicting behavioral gender ratings across the
board (AAIC generally above 20). The lack of a robust in-
teraction with model type further suggests that this predic-
tor reliably improves model fit for all names, regardless of

the availability of rich co-occurrence information. We further
see that the model fits the data well, with an 7> consistently
above 0.7. Finally, we see in Figure 2A that the effect is pos-
itive: names for which images generated with the SD gen-
erator yield a higher p f.mq. according to the rizvan classifier
tend to be rated as better fitting for female characters, and this
applies equally to all name types (patterns for other classifiers
and generators are similar).

The same general pattern is observed when considering
age, despite some notable differences. First, 2 values are
consistently lower (the best adjusted > for ibombSwin clas-
sifying images generated with SD is at 0.4), suggesting that
predicting age ratings is a more challenging task. This is not
surprising considering that age is a more graded and abstract
attribute than perceived gender. Moreover, we observe that
the effect size of p,;; when using Stable Diffusion tends to
be consistently stronger than that of the text-based predictor.
Figure 2B further confirms that names for which images gen-
erated with the SD generator yield a higher p,;; according to
the ibombSwin classifier tend to be rated as better fitting for
older characters in the behavioral task.

Discussion

In this study we fed names of fictional characters to two
cross-modal generative Al models, Stable Diffusion (SD) and
VQGAN+CLIP (VCO), to generate images of a character from
its name alone. Images were then fed to pre-trained, Com-
puter Vision (CV) classifiers for perceived gender and age
to detect whether they featured a male/female, young/old
character. We computed Inter-Annotator Agreement (IAA)
among classifiers for a same target attribute to quantify the
robustness with which perceived gender and age were en-
coded by two generative models, Stable Diffusion (SD) and
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VQGAN+CLIP (VC). Finally, we predicted participants’ rat-
ings about how fit each name is for a character having a cer-
tain attribute using each CV classifier’s output probabilities,
while controlling for name type and text-based associations
between names and target attributes, to assess the unique con-
tribution of cross-modal relations. Crucially, pre-trained CV
classifiers were used to detect the target attributes in gener-
ated images: this ensures that the target attributes are con-
strued in an extrinsically valid way.

We report moderate to strong IAA for both attributes on
all name types, suggesting that CLIP - the encoder model at
the core of both SD and VC - encodes perceived gender and
age sufficiently well for different CV classifiers to come to
similar conclusions about the attributes of the character por-
trayed. That it was easier to classify perceived gender than
age fits with evidence that gender is a prominent semantic di-
mension in semantic models (Hollis & Westbury, 2016) and
in names (Cassidy et al., 1999), as well as robustly connected
to sublexical cues (Monaghan & Fletcher, 2019; Westbury,
Hollis, Sidhu, & Pexman, 2018). The reported agreement for
made-up names further suggests that CLIP encodes system-
atic form-meaning mappings for sublexical patterns. More-
over, since CLIP is only trained on image-caption pairs, our
evidence suggests that the training data are replete with sys-
tematic associations between (sub-)lexical patterns and vi-
sual features, confirming that cross-modal systematic form-
meaning mappings can be learned from situated language ex-
perience (Sidhu & Pexman, 2018).

We further observe a reliable relation between the strength
with which classifiers detect an attribute in the images gen-
erated from a name and the perceived fit between a character
name and an attribute in participants’ ratings. This relation
holds after controlling for text-based associations (Caliskan
et al., 2017) derived from a sublexical distributional model
which leverages n-grams and can thus embed OOV words
(Bojanowski et al., 2017; Sabbatino et al., 2022; Joosse et
al., in press), suggesting a unique contribution of cross-modal
correspondences. We do observe differences across attributes
though. Perceived gender tends to be predicted more strongly
by text-based associations, in line with the important role
of gender in language, even in a language which lacks ex-
plicit morphological markers for it. Age, on the contrary,
shows a more prominent role of cross-modal cues. Overall,
the observation that we can better predict participants’ rat-
ings when we consider how sublexical patterns relate with vi-
sual attributes suggests that their rating may have been at least
partially influenced by cross-modal correspondences between
(sub-)lexical patterns and visual attributes. This fits with em-
bodied cognition theories (Barsalou, 1999) arguing that lan-
guage understanding is mediated by multi-modal, embodied
simulations. We add to this body of literature that such simu-
lations may also apply to entirely novel strings and be medi-
ated by systematic cross-modal mappings between language
and the visual world (Davis et al., 2019).

A possible concern is that names were not made-up to the

participants who rated them and to model. Certain names,
like Gmork, do come from relatively well known books (The
neverending story in the case of Gmork). However, the dis-
tribution of ratings suggests that the names were generally
made-up to the participants: if names were rated based on a
specific character, we would expect very consistent ratings for
a name, whereas ratings for made-up names are only moder-
ately correlated across participants (Joosse et al., in press).
Moreover, excluding extreme ratings that deviate from the
general distribution (higher than the 9th decile and lower than
the 1st decile), should further avoid the risk of considering
ratings which pertain to the character rather than the name,
possibly due to a specific rater recognizing a name and rat-
ing it based on a character it refers to. As far as the under-
lying computational model is concerned, we cannot exclude
the possibility that made-up names were known to CLIP since
its training dataset is not available. However, made-up names
are on average tokenized using more part words (2.18 £ 0.62)
than real (1.28 4= 0.52) and talking (1.25 &£ 0.47) names, de-
spite a similar length in characters (made-up: 5.92 £+ 1.48;
real: 5.69 £ 1.39; talking: 5.3 4+ 1.75). 7 made-up names
were tokenized as a single unit, suggesting they were encoun-
tered as such in training: we re-ran statistical analyses exclud-
ing them and observed comparable patterns, suggesting that
reported evidence was not driven by made-up names being
recognized by the model. Moreover, made-up names did not
feature in the training data for the fastText model, and despite
this, the text-based semantic differential shows a robust rela-
tion with participants’ ratings, strengthening the position that
the chosen computational models did not leverage lexical co-
occurrences but indeed relied on sublexical correspondences
in the case of made-up names. Still, the issue of what counts
as a pseudo-word for pre-trained neural models needs to be
studied further, but we argue that our results show how the
boundary between words and pseudo-words is more blurred
than typically assumed (Gatti, Marelli, & Rinaldi, 2022).

In conclusion, our results show that cross-modal generative
models encode biases beyond lexical items and social dimen-
sions (Bianchi et al., 2023): even made-up names encode at-
tributes like gender (Cai et al., 2023) and age in a sufficiently
robust way for models and people to recognize them. More-
over, a model trained solely on image-caption pairs can sup-
port generation of images from made-up names that reflect
the attributes people associate with the same names, suggest-
ing that the input is replete with systematic correspondences
between sublexical patterns and visual features. Beyond psy-
cholinguistics, our findings are relevant for the social sci-
ences, where vignette studies use names to analyze inequal-
ities in hiring (Johfre, 2020), and marketing, where seman-
tic congruence between brand names and logos may improve
marketing strategies, also for made-up names (Klink, 2000).
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