
Lawrence Berkeley National Laboratory
Recent Work

Title
SPECTRAL METHODS FOR THE SMALL DISTURBANCE EQUATION OF TRANSONIC FLOWS

Permalink
https://escholarship.org/uc/item/8jt165j5

Author
Fishelov, D.

Publication Date
1986-09-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8jt165j5
https://escholarship.org
http://www.cdlib.org/


~1 

J 
• 

LBL-24252 
Preprint <::".~ 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Physics Division 

Mathematics Department 

To be submitted for publication 

Spectral Methods for the Small 
Disturbance Equation of Transonic Flows 

D. Fishelov 

I -- ~, _ .• 

'. : \ , '~ I ... t: . 
tl-'.\Vi::":NCC M.-

•. -:. '~I I i\ '3GF./A ToRY 

J/\N J 1988 

Sep~ember 1986 TWO-WEEK LOAN COpy 

This is a Library Circulating Copy 

which may leb~{rowed for two weeks. 
, J 

"I 
I 

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



SPECTRAL METHODS FOR THE SMALL 
DISTURBANCE EQUATION OF TRANSONIC FLOWS l 

Dalia Fishelov 

Department of Mathematics and Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720, USA 
and 

Department of Mathematics, School of Mathematical Sciences 
Tel Aviv University 

Tel Aviv 69978, Israel 

September 1986 

LBL-24252 

ISupported in pa.rt by the Applied Mathema.tical Sciences Subprogram of the Office of Energy Research, U.S. 
Department of Energy under contra.ct DE-AC03-76SFOOOIlS. 



SPECTRAL METHODS FOR THE SMALL 
DISTURBANCE EQUATION OF TRANSONIC FLOWS. 

Dalia Fiahe/ov 

ABSTRACT 

Spectral methods Cor the small disturbance equation oC transonic flows is developed. 
Two schemes are presented. One oC them is spectral in % and 11 and oC second order in t. 
The other is spectral in % and oC second order in 11 and t . A method Cor extracting a highly 
accurate solution Cor problems containing a discontinuity is presented. The solution is 
obtained by fitting the standard spectral approximation to a sum oC a step Cunction and a 
trancated chebychev series. An application to the burger's equation and to the small distur­
bance equation is decribed. 

Key worda: Spectal Methods, Shock waves, Transonic flows, qhebyshev polynomials. 

AMS(MOS} Subject Classification: 76H05, 76L05, 33A65, 35L65 

l.lntroduction 

The small disturbance equations describing transonic flows is treated. This equation is a model Cor 

describing flow with Mach number close to lover a thin body. The steady state equation is 

(1.1) 

and the time-dependent one is 

(1.2) 

-where tP is the velocity potential ,karad I are positive constants. 

IC the Mach number Car away Crom the body is close to 1, the solution of (1.1) or (1.2) contains a shock 

(see [7] , [20]). Moreover, the steady state equation (1.1) is oC mixed type. 
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These equations were treated previously by E. Murman and J. Cole [20] and by B. Engquist and S. 

Osher [7] (see also [3] , [5] , [15] ), using finite differencing. 

E. Murman and J. Cole [20] proposed a scheme for the steady state equation which is type dependent 

,i.e., in the hyperbolic region (supersonic flow) - upward differencing is used, while in the elliptic region (sub­

sonic flow) - they used centered differencing. The difference equations are solved using relaxation procedure. 

B. Engquist and S. Osher [7] modified this scheme in the region of interface between supersonic and sub­

sonic domains. The new scheme is nonlinearly stable and does not admit solutions violating the entropy condi­

tion. It is of first order in the % direction and of second order in the fJ and t directions; at steady state 

the elliptic domain becomes second order accurate in the % direction as well. 

We offer a way of treating the small disturbance equation, using spectral methods. As we are interested 

in the steady state only, we advance in time via a Modified-Euler scheme. In the % direction spectral 

differencing is used, while for the fJ variable we choose either spectral differencing or finite differencing, 

depending on the number of grid points we use in the fJ -direction. For a coarse grid (8 or 16 points ) it is 

preferable to use spectral differencing; for finer meshes we use finite differencing, due to the limiting time step. 

We may do it without affecting the accuracy too much as changes spread slower in the fJ -direction. 

Thus, we are looking for a scheme which is spectral in the % -direction and is capable of capturing the 

shock. 

In order to stabilize the scheme and capture the shock we add two filters every time step. The first one 

is a filter offered by A. Majda, J. McDonough and S. Osher [18] which damps high modes in the Fourier space. 

The second filter is a second order Shuman filter proposed by A. Hartan and H. Tal-Ezer [14]. The results, 

using these filters, agree with those obtained by the Engquist-Osher (E-O) scheme, except near the region of 

interface between the subsonic and supersonic regions. In the E -0 scheme, we used a grid which is four 

times finer in the % -direction than the spectral one. 

The total time of computations depends on the shape of the airfoil. We have checked two types of air­

foils. For one of them the computational time for the spectral method,as compared to the E-O scheme,is 

reduced by a factor of 1.3 and for the other the factor is 3.3. 

.. 
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Since the Shuman filter may reduce the accuracy of the scheme, we removed the two filters mentioned 

above for a few iterations (1-10) after reaching a steady state, and applied a spectral filter. The latter fits 

the solution to a sum of a step function with an unknown location and a smooth part. The smooth part is 

introduced by a truncated Chebyshev series. 

M 
u .......,d 2 S(x,xe )+ ~ bkTdx) 

k=O 

-where S (x ,xe ) is a step·function, having a jump at x = xe. 

It turns out that we got the location of the shock very accurately, regardless of the number of iterations 

for which we have removed the two filters applied until reaching a steady state. The location of the shock 

agrees with that prescribed by the E - 0 scheme using a grid which is four times finer in the E - 0 

scheme. Moreover, the results are improved compared to those obtained before using the spectral filter, espe-

cially in the neighbourhood of the shock. 

In section 2 we present the differential problem describing transonic flows and in section 3 we review 

finite difference methods to solve it. Two schemes are presented in section 4. One is spectral in x and y and 

of second order in t and the other is sectral in x and of second order in y and t . 

In section 5 we discuss the problem of approximating discontinous solutions using spectral methods and 

in section 6 we present a method to extract a highly accurate solution by fitting the standard Fourier approxi-

mation to a sum of a saw-tooth function and a truncated Fourier series. In section 7 we develop a similar 

method for a non-periodic problem, using a step function instead of a saw tooth-function. An application to the 

small disturbance equation of transonic flows is decribed in section 8 and numerical results are presented in 

section 9. 

2. Presentat,ion of the Problem 

The formulation of the small disturbance problem of transonic flows is as follows: 

(2.2) ¢(-I,y ,t) = 0 



(2.3) :: (I,y ,t) = 0 

(2.4) :: (x, ± I,t ) = F ± (x). 

(2.5) ~(x ,y ,0) = ~o(x ,y) 

The steady state equation is 

(k ~ 1 + 1 2) ~. (2.6)· z - 2 ~z z + 4 1111 = O. 

-4-

-where ~ is the potential velocity and k and I are positive constants. 

The small disturbance equation of transonic flow is derived by asymptotic expansion procedure applied to 

the exact equations of gas dynamic. The small parameter of expansion is taken to be the airfoil thickness 

ration r, and the flow is presented as small disturbance on a uniform stream. The freestream Mach number 

Moo is considered to approach 1 and T -> 0, such that the transonic similarity parameter k, 

k = (1 - M! )/;'/3 is fixed. For more details about the expansion procedure, including high order approxi-

mation see [6],[5]. 

Boundary Conditions 

We consider a bounded spatial domain -1 < x ,y < I,in which the airfoil is represented by 

y(x) = -1 + rF(x) I x I < Xo , xo« 1 . 

Assume that the boundaries x =±I, y =1 can be viewed as far away from the airfoil, so that the dis-

turbed flow there is zero. Hence, we have 

~(-I,y ,t) = 0 

u(I,y,t)=O 

On the airfoil the Bow is tangent to the body. Since in our asymptotic expansion T tends to zero, this 

condition should be applied at y = -1, I x I < x 0 .Thus 

.~ 
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{ 
F' (x) 

4>u (x ,-l,t) = 0 

We should supply initial conditions for (1.1) 

I x I < Xo 

I x I > Xo 

4>(x ,Y ,0) = 4>o(x ,y) 

See figure 8 for description of the boundary conditions and the geometry of the problem. 

4. Discretization in time and space 

(a) Discretization in time 

As in [7], we split the problem (2.1) - (2.5) into two differential problems. The first one is 

(4.1) u, = - (J (u))% 

(4.2) u (l,y ,t) = 0 

where u = 4>% 

and 

Observe that (4.1) is in conservative form. 

The second is: 

(4.4) 4>(-I,y ,t) = 0 

(4.5) 4>u(x, ±l,t) = F±(x). 

(4.1)-(4.2) and (4.3)-(4.5) must be supplied by initial conditions. 

One may present both problems above in the form: 

u, = G(u). 
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For the first one 

a 
G (u ) = G l( u ) = - ax f (u ) 

-and for the second 

Since we are interested in the steady state only, we discretize Ut in (4.1) or (4.3) using a Modified Euler 

scheme. 

Denote by L 1(.~t), L 2(at) the operators acting on unto get un +1 for (4.1)-(4.2) and (4.3)-(4.5) 

respectively by the Modified-Euler scheme, and use a Strang-type approximation: 

(4.6) 

According to [9], the above discretization in time is accurate up to order two in the time variable, even in 

the nonlinear case. One may also consider an implicit time integration. In this work we are concerned essen-

tially with treating the shock using spectral methods. One may modify the spectral scheme to be implicit in 

time, and compare the results to an implicit scheme using the Murman-Cole switch [3], or the Engquist-Osher 

one [16]. 

(b) Discretization in Space 

In both problems (4.1) - (4.2) and (4.3) - (4.5) derivatives or integrals with respect to the spatial variables 

z 

I · uffi' d'b h d' . au d J ()d x or y appear. t 1S S 1C1ent to escr1 e ow we lScret1ze - an u T T. 

ax -1 

Let P N u be the Chebyshev-pseudospectral projection of u on the subspace of polynomials of degree 
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N or less. 

N 
uN (x ,Y ) = P N U (x ,Y ) = E an (y ) Tn (x ), 

where 

We discretize a by differentiating PN U (x ,y), i.e., ax 

n=O 

Xi = cos 1ri ,0 < i < N. 
N -

N N 
- E an (y) Tn' (x) = E bn (y) Tn (x), 

n=O n=O 

where 

and 

o <k < N-2 

and 

Cj = 1, 1 < j < N -1. 

We apply LN u . for every Yj 

1rJ 
Yj = cos M 

Next, integration is done in a similar way, i.e. , 

0< j <M. 

% N % 

IN = P N J P N ud T = P N E an (y ) J TN (T)d T 
-1 n =0 -1 

N+l 
= P N E dn (y ) Tn (x ). 

n =0 
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By integrating the recurrence formula 

T' "+1(X) 
2T,,(x) = --n-+-l-

T',,_1(X) 
n -I 

we have 

aN-l 

2(N +1) 

3 < n < N-I 

and we choose do such that 

N+l 
E d" (y )T" (-I) = o. 

,,=0 

2 . 

Two types of schemes for the discretization of 4 are possible. The first is spectral in y, and the 
By 

second is a finite-difference one. We may use the latter, since in the transonic problem perturbations spread 

much slower in the y - direction, in comparison to those in the X - direction. In this way we avoid the stabil-

ity limited time step 

At = 0 (_1_) 
. M4 

for the spectral discretization, where M is the number of points in the y direction. 

Using finite differences in the y direction implies 

At = O(~). 
M 

In this case we have 

where Ay 2 
- M' Yj = 1 - (Ay)· j I<j <M-I 

,.. 
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We apply DM (y) at 

11'1 
X = xi = cos-

N 
o < 1 <N-l. 

Denote by U the approximation to u and by 4> the approximation to </>, where 

Hence, the semi-discrete approximation to (4.1) - (4.2) is 

(4.7) 

(4.8) 

au - = - LN(X)! (U) at 

U(-l,y ,t) = 0 

And for (4.3) - (4.5), 

(4.9) 

(4.10) 
4>(Xi ,1) - 4>(Xi ,1 - tl.y) _ F ( .)" 

- + x, , 
tl.y 

(4.11) 
4>(Xi ,-1 +tl.y) - 4>(xi ,-1) _ F ( .) 

tl.y - - x, , 

where 4> = IN U . 

o < i < N-1 

o < i < N-1 

This scheme has spectral accuracy in the x -variable and is of second order in the y - variable. For 

further analysis of the schemes above see [8]. 

6. Spectral methods for problems containing a discontinuity 

In section 4 we described two schemes for the small disturbance equation, which have spectral accuracy 

in X and are of second order in t . One of the schemes has spectral accuracy in y ,while the other is of second 

order in y. 

For low Mach numbers no shock appears in the solution, hence we apply the scheme presented in (4.6)-

(4.11) and show numerical results in figure 1. 
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When Moo begins to approach 1, shocks appears in the solution (see [20] and [7]) and we have to treat 

the discontinuity. To illustrate the problem caused by the discontinuities ,we treat a linear problem, though 

we shall apply our new method to nonlinear problems as well. 

Consider the problem 

u, = Lu 

u(%,O) = uo(%) 

where u belongs to a Hilbert space H , L is a spatial linear operator, % is a scalar or vector spatial 

variable. 

Denote by PN a projection operator PN : H _> BN , where BN is a finite dimensional subspace 

Let uN be the solution oC the semi-discrete problem 

Then, by [13] and [4] , Cor spectral methods 

(5.1) u E HP (0) . 

where H P (0) is a Sobolev space, Cor which u and its derivatives up to order p are in L 2(0) 

Invoking results in [4] , 

(5.2) I I PN u - u I 10 < CN-P I I u I I P 

Combining (5.1), and (5.2), we may deduce that 

(5.3) I I uN - u I I 0 < CN-P +1 I I u I I P u E HP (0) 
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From the last inequality it is clear that when the solution u or its derivatives have discontinuities, the 

rate of convergence of the approximated solution uN to the exact one u may be very poor. 

In fact, it is well known (the Gibbs phenomena) that for a pieeewi8e smooth function 

I PN u - u I - O( ~ ) 

away from the discontinuity and P N u is an oscillatory function. 

Can we extract a piecewise Coo function from its oscillations? In [19J M.S. Mock and P.D. Lax have 

argued that for high order schemes moments are preserved within high accuracy (see also [17] for the high reso-

lution of high order schemes). In sections 6 and 7 we show how we use this idea to deduce pointwise conver-

gence by a post processing. We refer the reader to [12J for another kind of post processing. We shall first 

describe the method for a periodic problem,since in this case the theory is more complete. 

Our method is based also on the idea of S. Abarbanel and D. Gottlieb appearing in [lJ of looking Cor a 

solution which is a sum of a step function (or a saw-tooth function in the periodic case) and a smooth Cunction. 

For a periodic problem S. Abarbanel and D. Gottlieb [lJ minimized: 

2N-l 

H= ~ 
M 

I ( ) d F ( ) " bL e ibJ ]2 UN Xj ,t - 2 N Xj ,X, - L.J ,. 
j=O i=-M 

where UN is a pseudospectral-Fourier approximation to the differential problem. F N is. a pseudospectral 

-Fourier projection of a saw-tooth function F (x ,x, ) onto the subspace spanned by {e ib } f=-N ,where 

(5.4) 

(5.5) 

F (x ,x, ) = {X 2 x - 1r 

o < x < x, 

x, < x <21r 

The jump 21rd 2 ,its location x, and bi are unknowns. 

For a non-periodic problem, instead oC a saw-tooth function, they looked for a step Cunction S (x ,x, ) 

S(X ,x,) = { ~ -1 < x < x, 

x, < x < 1 

and then minimized 

N 

H- ~ 
j=o 
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I M I < N and SN (x ,XI) is the pseudospectral projection of S (x ,XI) onto the subspace spanned 

by {Tk (x )hN=o. Tk (x) is a Chebyshev polynomial of degree k. Note that I is real, not necessarily an 

integer. 

We also refer the reader to theorems appearing in [21 which show that for spectral Fourier methods 

moments are preserved within spectral accuracy and then show how to fit the numerical solution to a sum of a 

step function (or a saw-tooth) and a smooth part, based on preservation of moments. 

(a) Preservation of Moments for the Galerkin-Fourier Method 

We consider first the Fourier-Galerkin method. 

Define the inner product 

271' 

(u,v) = J u(x,t)v(x,t)dx 
o 

Let u be a solution of 

(5.6) u, = Lu , ° < x < 21r, t > ° 
(5.7) u (x ,0) = f (x) 

(5.8) u (x ,t) = u (x + 21r, t) 

where L is a linear operator 

(5.9) a 
L = a (x) ax' 

and f (x) is a piecewise Coo function. 

a (x) = a (x + 21r) 

Let uN be the Galerkin-Fourier approximation of u satisfying (5.6) - (5.9) ,.i.e., uN satisfies: 

where 
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and PN is the Galerkin-Fourier projection defined in [11] and [13]. 

Theorem (5.1) (S. Abarbanel, D. Gottlieb and E. Tadmor [2] ) 

Let u (t) satisfy (5.6) - (5.9) and let uN (t) satisfy (5.10) - (5.12) where f (x) is a piecewise Coo, 

.. then 

(5.13) (UN (T), v (T))= (U (T), v (T)) + E 

for every V E HP (0,211") and E satisfies 

I E I <C N-P +1 I I V I I P 

(b) Preservation of moments for the Fourier - Pseudospeetral method 

Consider now the Fourier Pseudospectral method. 

Define the discrete inner product 

-ti where Xj - N 0<j<2N-l 

Let uN be a pseudospectral-Fourier approximation to (5.6) - (5.9), i.e., uN satisfies 

° < x < 211", t > ° 
(5.l5) UN(X ,0) = pi f (X) 

where 

.. 

and P ~ and P N are the Galerkin and pseudospectral-Fourier projection respectively defined in [13]. 

Theorem (5.2) (S. Abarbanel , D. Gottlieb and E. Tadmor [2] ) 

Let U (t) be the solution of (5.6) - (5.9) and let UN (t ) be a solution of (5.14)- (5.16) . 
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.Assume that (5.14) - (5.16) is stable. 

then 

(5.17) (u (T), v (T)) = (UN (T), v (T))N + E 

where 

I E I < CN-P +1 I I v I I P . 

6. Fitting the approximated solution to a saw-tooth Cunction- (periodic problem) 

In the previous section we have quoted theorems stating that spectral-Fourier methods, applied to linear 

problems, preserve moments within spectral accuracy. 

The question is how to extract pointwise convergence from that property. 

For a periodic problem (5.6)-(5.9) , we assume that the non-smooth part of the solution is a saw-tooth 

function and approximate the smooth part by a truncated Fourier series, i.e., 

(6.0) 
M 

u(x,t)--d 2F(x,x,}+ E bke ib 

I k 1=0 

where F (x, XI) is a saw-tooth function defined in (5.4). 

If there are other types of singularities, we may add other singular functions to the sum (6.0), Le., 

Ml 
U (x ,t)-- E dl: FI: (x ,XI) + 

I I: 1=0 

M2 
E bl: e ib 

I I: 1=0 

where F o(x ,x, ) = F (x ,XI) and FI: (x ,XI) are periodic functions, which they and their derivatives up to 

order k -1 are continuous, and their k -th derivative has a discontinuity at x, . In this paper a representation 

similar to (6.0) for non-periodic problems was used, but it is possible to include more non-smooth terms as 

suggested in order to improve the results. 

In (6.0) the location of the jump - x" its magnitude - 21rd 2 and the coefficients - bk are prescribed 

using preservation of moments. 

For the Galerkin-Fourier method, we substitute (6.0) in (5.13) and choose the smooth functions v (T ) in 

(5.13) to be e ijz , I j I = 0, ... , M + 2 
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and M such that 

The rollowing set or equations results: 

- 15-

M < N -2. 

b
t 

e ib )e -ij: dx _ 

2lr 

= J UN(X )e-i# dx 
o 

for I j I = 0, ... , M + 2. 

For the pseudospectral-Fourier method, we get (using (5.17) instead or (5.13) ) 

(6.1) 

where 

for I j I = 0, ... ,M + 2 

1rn 
X =­

n N ° <n < 2N-l, 

F N (x, XI) is the pseudospectral-Fourier projection or F (x ,x, ) , i.e., 

(6.2) 

(6.3) 

N 
FN(X, x,) = ~ Ak (x,)e ib 

I k 1=0 

A 0 = .!.. (l-N -f-J/J ) 
N 

-it lr(1 +1) 

( l-e N + cot 1rk -1) 
-ilrl 2N' 

l-e --;:;-
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C, = 1 for II I <N -1, C, = 2 for I I I = N. 

Letting I be real, not necessarily integer, enables us to locate the jump within spectral accuracy. It is 

clear that the its profile would be sharp. 

Equations (6.1) can be written in a simpler form, but we shall write this simpler form in detail for the 

non-periodic case, because of the similarity of this two cases, and since our goal in this work is to apply the 

method for the non-periodic small disturbance equation of transonic flow. 

7. Fitting the approximated IIOlution to a step function- (non-periodic problem) 

We develop now a similar method to the one presented in section 6 for a non-periodic problem, using 

chebyshev polynomials. Assuming that the non-smooth part of the solution is a step function, we search for a 

solution which is a sum of a step function and a truncated chebyshev series, i.e., 

M 
(7.0) u (x,t )......,d 2S(x, x,) + E be Te (x) 

e=O 

where S (x , XI) is a step function defined in (5.5). 

The location of the jump - x" its magnitude - d 2 and the coefficients - be are prescribed using 

preservation of moments. For a non-periodic case, we choose the smooth function v ( T ) to be 

T j (x), j = 0, ... , M + 2 

and M such that 

M < N -2. 

For the Galerkin-Chebyshev method we interpret (5.13) in the following way: 

M 
J (d 2S(x, x,) + E bl: Te(x))Tj(x) (1- x 2)...l/l dx -
-1 e=O 

= J uN(x)Tj(x) (1- x 2)...l/l dx 
-1 

for J = 0, ... , M + 2. 
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For the pseudospectral-Chebyshev method, we require that 

(7.1) 

where 

for j = 0, ... , M + 2 

for 1 < . < N -1 _J_ , 

1I"n 
Xn = cos N 

en = 2 for j = 0, N 

° <n < N 

SN(X, Xl) is the pseudospectral-Chebyshev projection of S(x ,Xl), i.e., 

11" 
where x, = cos - 1 

N 

(7.2) 

(7.3) 

N 
SN(x, x,) = E AI: (x,)T.dx) 

1:=0 

1 
Ao= -I 

N 
A I. 1 

N = - 510 11" 
2N 

A I. k1l" 1/· k1l" I: =-sm- Sin-
N N 2N 

l<k <N-l. 

Eqs. (7.1) forms a set of M + 3 equations for the M + 3 unknowns 

d 2, X, , b 0, . . . , b M . 

We shall write down now the system of equations resulting from (7.1). 

Define 

(7.4) k =0, ... ,N 
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We use orthogonality properties 

and the following system of equations results from (7.1): 

(7.5) doAo + bo = Fo 

There is a solution to the system (7.5) - (7.8) if and only if 

(7.9) 

(7.9) is a non-linear equation for x" which is solved iteratively. 

Then, we get 

Therefore, the position of the jump- x" its magnitude - d 2 and the smooth part of the solution 

are prescribed within spectral accuracy, provided that the singular part of the solution is a step function. 

8. Application to the Transonic Problem 

In our approximations to the solution of the transonic problem, we are interested in the solution in the 

steady state .. Using the scheme presented in section 4 we have got a non-stable procedure due to nonlinear 

instabilities which appears in presence of a shock for t large enough. 
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In order to stabilize the procedure we have used two filters. «a) and (b)). 

<a) A. Majda, J. McDonough and S. Osher in [18] have offered a procedure for damping high modes in the 

approximated solution. 

If 

(8.1) 

N 

u{x) = ~ at Tt{x) 
t=o 

N 
u{x) = ~ at Tt{x) 

t=o 

where 

(8.2) a, = { : ~('-'oI' I k I < ko 

I k I >ko 

and k 0 is an integer which depends on the strength of the shock. 

We choose 

2 k o ....... - N 
3 

This is a very weak filter since there is no change in the low modes. 

In [18] it was proved that for linear problems, this filter insures stability for the Fourier method. More-

over, if we also smooth the initial data in a certain way, (see [18], preliminary section) this filter leads to a 

spectral accurate approximation away from a set discontinuities of the exact solutions. 

(b) The smoothing described in (a) was not sufficient for our non-linear problem. Therefore, we applied 

every time step a Shuman filter as well. 

Denote by uI1: the values of the approximated velocity u (x ,y) in the x -direction at the point 

(Xj ,Yt) at time tra. The filtered values U jl are given by 

(8.3) 



The smoothing factors a j are chosen such that they are small in the smooth part of the solution and 

become large (0(1)) only in the neighborhood of the discontinuities. 

Following Harten and Tal-Ezer [14], we choose 

(8.4) 

where 0 < f3 < 1. 

We used f3 = 0.01 in our calculations. This filter was also used by D. Gottlieb, L. Lustman, and S. 

Orszag [10]. It reduces the order of accuracy of our scheme. But our strategy was first to reach a steady state 

and afterwards to construct a highly accurate approximation. 

After achieving a steady state, we omitted the two filters described above for a few iterations (1 to 10) 

and applied the spectral filter presented in (7.5)-(7.8). 

To conclude: 

(8.5) We first worked out the scheme described in (4.6)-(4.11). 

(8.6) At each time step applied the filters described in (8.1) - (8.2) 

and (8.3) - (8.4). 

(8.7) After reaching a steady state we removed the above filters and applied a spectral filter presented 

in (7.5)-(7.8). 

9. N umerieal Results 

We first show results for the "inviscid" Burger's equation 

u,...Jj (u ~% = 0 

u(l,t) = 1 

u (-I,t) = -1 

u(%,O) = % 

This is a non-periodic problem, for which one can easily verify that a shock appears in the solution at 

t =1. The exact solution for t >1 is u (% ,t )=-1 for negaiive %, and u (%,t )=1 for positive x. In the 
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numerical solution :t is approximated by a modified Euler scheme and :x by a polynomialpseudospectral 

method described in section 4 with N = 32. Every time step we applied the step function filter (7.5)-(7.8) 

and got the following results at t = 2.176. 

x I error I 

.9952 .51(-5) 

.9239 .14(-4) 

.7730 .90(-5) 

.5556 .53(-5) 

.2903 .39(-4) 

.0000 .37(-3) 

-.2903 .18(-4) 

-.5556 .89{-5) 

-.7730 .85(-5) 

-.9239 .19{-4) 

-.9952 .37{-5) 

Next, we approximated the solution of the small disturbance problem of transonic flows around a sym­

metric airfoil, described in section 2. The computational domain is -1 < x, y < 1. The airfoil is located at 

-x 0 < x < x 0, y =-l. We divided the domain into three parts: 

-1 < x <-x 0, -x 0 < x < x 0, x 0 < x < 1, and approximated uN in each subdomain by a Chebyshev 

polynomial. That gives a natural refinement of the grid near the tips of the airfoil." Typically x 0 = ! in our 

calculations. 

The shape of the airfoil is given by 
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11 = -1 + 1'F (x) I x I <xo· 

Note that in the expansion procedure l' -> 0, hence the airfoil IS represented by the segment 

-x 0 < x < x 0,11 = -1 . The shape of the airfoil only affects the boundary condition applied to ¢II on this 

segment. For 

(9.1) 

(9.2) 

F (x )=k ocosl.51rx I xl < Xo I 

where k 0 was chosen to be (.2...)2, 
31r 

{ 

F I (x) = -1.51rk oSin1.51rx 

¢/J = 0 

Note that ¢/J is discontinuous at x = ±x 0 • 

I x I < Xo 

I x I > Xo 

The calculations were continued until steady state was reached approximately ,i.e. until 

I n +1 n max Ujk - Ujk 
j,k 

e 1 = -=.,.;:...---a-t----

For all the numerical results displayed for the small disturbance equation (figures 1-7) we used second 

order finite differencing in 11 (as in the E-O scheme), therefore the number of grid points in the 11 direction is . 

identical (17) (or both schemes. In figures 1-7 the quantity presented is U (x ,-I,t) as t -> 00, i.e., the 

steady state velocity in the x direction on the airfoil. 

We first ran the scheme for low Mach numbers. In this case no shock appears, so we were able to apply 

the Strang-type scheme (4.6) described in section 4 (or marching in time, and (4.7) - (4.11) (or discretization in 

the spatial variables. There was no need to add filters. 

As an example, Figure 1 contains the results (or Moo = .57, l' = 0.1, which implies k = 2.89. The 

airfoil is presented by (9.1) and the grid is of (49 X 17) points. The results are compared to those obtained by 

the E - 0 scheme[7]. One should take a grid o( (121 X 17) points in the E-O scheme to get similar results 

to those obtained by the. spectral method , with a grid o( (49 X 17) points. 

While increasing Moo, we were able to use the same scheme up to Moo approximately 0.85. For 
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Moo> 0.85 we added filters to capture the shock. In figures 2-5 we present results for Moo = .9, r = .1 

which implies k = .822 for two types of airfoils described in (9.3) and (9.1). Asa shock appears in the solu-

tion, we have used the procedure described in the previous section ((8.5) - (8.8)). 

(9.3) 

We have carried out the calculations for two shapes of airfoils. The first presented by 

y =-I+rF(x) 

where 

The second is presented in (9.1). Notice that for (9.3) 

{ 
F' (x) = 31l'koSin31l'x 

4111 = 0 

4111 is continuous at x = ±x o· 

I x I < Xo 

I x I > Xo 

The results for this case are presented in Figure 2. The location of the shock prescribed by the spectral 

method was 

x, = .08127 . 

In the E-O scheme a (u ) = b + l)u -k is positive Cor x 2 = .08163 and is negative for x 3 = .0918. 

According to a one dimensional analysis done in [71, the shock might be spread over two grid points and there-

fore might occur between their neighboring points: xl = .07143 and x of = .102. 

Next, we increased the number of grid points in the E - 0 scheme to 197 X 17. Still the spectralloca-

tion of the shock p.grees with that prescribed by the E - 0 scheme. Moreover, the results are closer to the 

spectral ones (in comparison to the coarser finite difference grid), especially near the shock. These results are 

presented in Figure 3. Results obtained before using the spectral filter are presented in figure 6. 

In table 2 we compare the number of iterations - NI - to reach a steady state by the (197 X 17) E - 0 

scheme and the spectral one. The total computational time - T - is compared as well. 
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E -0 Spectral 

grid 197X17 49X17 

NI 4810 6007 

T 6335 4938 

Table 2 

The next example is an airfoil whose shape satisfies (9.1). In this case ¢IJ is discontinuous at x = ±x o· 

The results are shown in figure 4. The shock location found by the spectral method is 

X, = .1291 

which is between the two E - 0 grid points xl = .122, x 2 = .132, corresponding to the 197X 17 grid. 

There are some differences in the results near x = ±x 0, due to the discontinuity of ¢IJ. In order to get 

better results we should add continuous functions which have discontinuous derivatives to the sum (7.0). The 

number of grid points taken for the E - 0 scheme is 121 X 17 in figure 4 and 197 X 17 in figure 5. 

Note that for this shape of airfoil too there is more agreement with the spectral results in the finer E - 0 

grid, especially near the shock. Results obtained before using the spectral filter are presented in figure 7. 

In table 3. we compare the same quantities as in table 2 for the airfoil presented in (9.1). In this case NI 

and T corresponds to 1:1 = 10-2 in (9.2). 

E -0 Spectral 

grid 197X 17 49X17 

NI 13660 6607 

T 17920 5432 

Table 3 
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.. 

I 
I J...., ... 

Figure 1: - spectral (49,17) , - - - E-O (121,17) , quantity displayed is u (x ,-l,t ) at steady state, 

Moo = 0.57 , airfoil given by (9.1). 
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Figure 3: .0 - spectral (49,17) , * - E-O (197,17) , quantity displayed is u (x ,-l,t ) at steady state, 

Moo = 0.9, airfoil given by (9.3). 
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Figure 6: 0- spectral before filtering (49,17) , * - E-O (197,17), quantity displayed is u (x ,-l,t ) at 

steady state, Moo = 0.9, airfoil given by (9.3). 
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Figure 7: 0- spectral before filtering {49,17}, • - E-O {197,17}, quantity displayed is u (x ,-l,t ) at 

steady state, Moo = 0.9 , airfoil given by {9.1}. 
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y 

+y(x,l,t) = 0 

1 

-

+(-l,y,t) = 0 -1 -xo Xo 1 +x(l,y,t) = 0 
x 

-1 

+y = 0 +y = F' (x) +y = 0 

OD the body 

Figure 8: Description of boundary conditions. The body IS represented by the segment 

y = -1 1-%0 < % < %0' 
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10. Conclusions 

Both analytic and computational evidence show that spectral methods can be applied efficiently to the 

small disturbance equation of transonic flows. 

Moreover, the method presented in section 7 for fitting the standard spectral approximation to a sum of a 

step function and a truncated Chebyshev series is applicable to other problems ,such as the Burger's equation, 

which contain a discontinuity. If the non-smooth part of the solution is a step function, the method has spec­

tral accuracy. 
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