
UC Davis
UC Davis Previously Published Works

Title
Water quality trend and change-point analyses using integration of locally weighted 
polynomial regression and segmented regression

Permalink
https://escholarship.org/uc/item/8jt524ff

Journal
Environmental Science and Pollution Research, 24(18)

ISSN
0944-1344

Authors
Huang, Hong
Wang, Zhenfeng
Xia, Fang
et al.

Publication Date
2017-06-01

DOI
10.1007/s11356-017-9188-x
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8jt524ff
https://escholarship.org/uc/item/8jt524ff#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE
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Abstract Trend and change-point analyses of water quality
time series data have important implications for pollution con-
trol and environmental decision-making. This paper devel-
oped a new approach to assess trends and change-points of
water quality parameters by integrating locally weighted poly-
nomial regression (LWPR) and segmented regression
(SegReg). Firstly, LWPR was used to pretreat the original
water quality data into a smoothed time series to represent
the long-term trend of water quality. Then, SegReg was used
to identify the long-term trends and change-points of the
smoothed time series. Finally, statistical tests were applied to
determine the significance of the long-term trends and change-
points. The efficacy of this approach was validated using a 10-
year record of total nitrogen (TN) and chemical oxygen de-
mand (CODMn) from Shanxi Reservoir watershed in eastern
China. Results showed that this approach was straightforward
and reliable for assessment of long-term trends and
change-points on irregular water quality datasets.

The reliability was verified by statistical tests and prac-
tical considerations for Shanxi Reservoir watershed. The
newly developed integrated LWPR-SegReg approach is
not only limited to the assessment of trends and change-points
of water quality parameters but also has a broad application to
other fields with long-term time series records.

Keywords Water quality . Long-term trend assessment .

Change-point analysis . Locally weighted polynomial
regression . Segmented regression

Introduction

Many countries and regions in the world suffer from chronic
water shortages, often from a scarcity of clean drinking water
(Mukheibir 2010; Tiwari and Joshi 2012;Wang and Yu 2014).
Therefore, water quality protection and remediation are very
important aspects of sustainable social-economic develop-
ment (Zhou et al. 2014). As a result, the protection and envi-
ronmental remediation of drinking water sources have re-
ceived considerable attention in research (Basu et al. 2014),
since drinking water quality is closely related to human health
(Corlin et al. 2016). In general, these research efforts include
environmental policy and legislation planning (Syme and
Nancarrow 2013; Xu et al. 2016), water quality standard de-
velopment (Goncharuk 2013), and health risk assessment
(Chiang et al. 2010; Houtman et al. 2014; Sun et al. 2015),
water quality monitoring and modeling (Tropea et al. 2007;
Sokolova et al. 2013; Chen et al. 2015), and protection and
remediation technology (Zhang et al. 2011; Basu et al. 2014).
An important aspect of water quality modeling for drinking water
source protection is identifying changes in water quality trends
and specific change-point timing,which are important information
for environmental protection performance evaluation and
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environmental decision-making (Bodo 1989; Chowdhury andAl-
Zahrani 2014).

Water quality trend and change-point analyses commonly
employ traditional statistical methods including parametric
(i.e., linear regression, polynomial regression) and nonpara-
metric (e.g., variants of the Mann-Kendall test) statistical
methods (Donohue et al. 2001; Chang 2008; Kisi and Ky
2014). However, water quality is strongly influenced by both
natural and human factors, and data records are often chal-
lenging to analyze from a statistical perspective as the data is
often non-normally distributed, nonlinear fashion, non-
monotonic trend, uneven time spacing, and with large season-
al variations. Linear regression may not be appropriate in
cases of the data in nonlinear and non-normal distribution,
while Mann-Kendall test may not be applicable in cases of
non-monotonic trends and uneven sampling time spacing.
Polynomial/logistic regression is based on global estimation,
whereas data with these nonlinear patterns usually display
local characteristics. Meanwhile, the water quality monitoring
frequency is often at monthly and/or bimonthly which
resulting in discrete and irregular time series data records at
various sampling dates and sampling intervals. In general,
trend assessment of statistically compromised time series
datasets such as those that do not fully meet required statistical
assumptions should not rely solely on abstract test statistics
(Bodo 1989).

Appropriate graphing techniques may be a powerful data
evaluation tool. As early as 1983, Chambers et al. (1983)
noted that There is no single statistical tool as powerful as a
well-chosen graph.^ The most classical graphical method is
Cleveland’s (1979, 1981) locally weighted scatterplot smooth-
er (LOWESS), which was further developed byCleveland and
Devlin (1988) as the locally weighted polynomial regression
(LWPR) procedure. LWPR can be directly applied to graphi-
cal analysis of 2D scatterplots for a series xi versus corre-
sponding times ti. Soon afterwards, LOWESS was developed
for seasonal-trend decomposition using loess (STL)
(Cleveland et al. 1990). These graphical methods are based
on various local smoothing techniques (Harding et al. 2016)
and have been widely applied in environmental quality trend
analysis including air quality (Li et al. 2014; Gong et al.
2015), water quality (Lee et al. 2010; Stow et al. 2015), etc.
In general, graphical methods can play an important role in
trend analysis in typical time series data, both as a diag-
nostic tool and as visual corroborative evidence when re-
quired assumptions for formal statistical tests are not met
(Bodo 1989). However, graphical methods are not able to
produce regression functions that can be mathematical
described to determine the significance levels and define
change-points (Liang 2014).

Segmented regression, also known as Bpiecewise
regression^ or Bbreak-point regression^, is a regression meth-
od applied to cases where independent variables are clustered

into different intervals where the relationships between the
variables are different. Nowadays, segmented regression
(SegReg) has been widely used in trend and change-point
analyses in research fields including medicine (Kazemnejad
et al. 2014), hydrology (Shao and Campbell 2002), economics
(Wu and Chang 2012), society (Mathews and Hamilton
2005), etc. In comparison with graphical methods, major ad-
vantages of SegReg are that the regression function is defined
by a mathematical formula to describe the relationship, the
significance levels of the trend can be determined statistically
(Kazemnejad et al. 2014), and the change-point can be quan-
titatively defined (Taljaard et al. 2014). Since water quality
time series are often statistically compromised, the direct ap-
plication of SegReg might produce invalid results. However,
SegReg would be an effective approach for trend and
change-point analyses of water quality if the data could
be appropriately pretreated.

Change-point detection is the identification of an
abrupt variation in process behavior due to distributional
or structural change, whereas a trend can be defined as the
estimation of a gradual departure from past norms
(Sharma et al. 2016). For water quality time series analy-
sis, identifying changes in long-term trends is important,
yet identifying specific change-points is also important.
The objective of this paper is to provide an integrated
LWPR-SegReg approach to analyze water quality trends
and change-points. The efficacy of this approach was
demonstrated by trend and change-point analyses for a
10-year record of key water quality parameters (TN and
CODMn) in Shanxi Reservoir watershed of Zhejiang
Province, China. Innovative and importance aspects of
the integrated LWPR-SegReg approach include its ability
to define change-points and trends visually and to quanti-
tatively define the change-points and trends with statisti-
cal rigor.

Materials and methods

Locally weighted polynomial regression(LWPR) approach

Trend analysis determines whether the measured values of a
water quality variable increase or decrease during a given time
period (Naddafi et al. 2007). For a water quality seriesWQi, a
basic linear trend analysis model is:

WQi ¼ αti þ β þ εi; ð1Þ
where ti is time, a is the regression coefficient indicating the
slope of the line, β is the regression constant, and εi is an
irregular noise term.

LWPR usually employs a local linear polynomial regres-
sion model, but a local nonlinear regression model can also be

Environ Sci Pollut Res



used in some circumstances (Bodo 1989). For a water quality
series WQi, LWPR is:

WQi ¼ f tið Þ þ εi; ð2Þ
where f(ti) is a smoothed function and εi is an irregular
noise term.

The local polynomial fits are typically first (linear) or sec-
ond (quadratic) order using weighted least squares, giving
more weight to points near the point whose response is being
estimated and less weight to points further away (Cleveland
and Devlin 1988). The traditional weight function is the tri-
cube weight function; however, any other function that sat-
isfies the properties can be used. More details concerning the
LWPR approach can be found in Rajagopalan and Lall (1998)
and Proietti and Luati (2011). In this research, LWPR models
were fitted in R using the Bloess^ function available in the
Bstats^ package.

Segmented regression (SegReg) approach

Segmented regression with segments separated by
breakpoints (i.e., change-points) is useful for quantifying
abrupt changes in water quality over time (Shao and
Campbell 2002, Kazemnejad et al. 2014). The least squares
method is applied separately to each segment; each regression
line is optimized to minimize the sum of squares of the
differences (SSD). For a water quality series WQi with
m change-points (CPs), a segmented linear regression
with m + 1 segments is depicted as:

WQi ¼ α1ti þ β1 ti≤CP1ð Þ
WQi ¼ α2ti þ β2 CP1 < ti≤CP2ð Þ

⋮
WQi ¼ αmþ1ti þ βmþ1 ti≤CPmð Þ

8
>><

>>:

; ð3Þ

where ti is time, αm is the regression coefficient indi-
cating the slope of each line segment, and βm is the
regression constant; α > 0 and α < 0 indicate increasing
and decreasing trends, respectively.

Statistical tests are then performed to ensure that the trend
is significant. The commonly used indexes are the correlation
coefficient squared (R2) and P value. If no significant change-
point is detected, a single regression without a change-point
should be used. More details concerning SegReg can be found
in Mathews and Hamilton (2005) and Wu and Chang (2012).
In this research, SegReg models were developed in R using
the Bsegmented^ package.

Integration of LWPR and SegReg

Since water quality time series are often statistically
compromised, neither LWPR nor SegReg is able to ac-
complish long-term trend and change-point analyses

independently (Liang 2014). However, with the integra-
tion of LWPR and SegReg, it is possible to deal with
many of the problems associated with statistical assump-
tions. For a water quality series WQi, the integration of
LWPR and SegReg is performed in three major steps:

1) LWPR (Eq. 2) is used to pretreat the original data series
(WQi) versus corresponding times ti, into a new smoothed
series (SMi) representing the long-term trend of water
quality versus corresponding times ti

2) SegReg (Eq. 3) is used to quantify the relationships be-
tween the smoothed water quality time series SMi versus
corresponding times ti

3) Statistical tests are used to estimate the significance of the
long-term trends and change-points

The original water quality time series are often statistically
compromised (i.e., contain long-term trends, non-monotonic
trends and storm event/seasonal variations) and are sometimes
irregular and discrete (i.e., uneven time spacing and/or low
frequency in sampling), and the direct application of SegReg
might produce invalid results, since the least squares method
is applied separately to each segment, which requires a normal
distribution of the data. In order to extract the long-term trend
information, the pretreatment step is necessary to remove the
compounded noise. By means of the pretreatment approach
(i.e., LWPR), the non-monotonic trends and seasonal varia-
tions are removed, and the long-term trend information is
preserved and provided for subsequent SegReg analysis,
which is able to quantitatively identify the change-points and
trends in water quality data with statistical rigor. The integra-
tion of LWPR and SegReg methods is necessary and innova-
tive for achieving these goals.

Model testing

Study area and data collection

Shanxi Reservoir is a multi-annual regulating reservoir
located in the uplands of the Feiyun River watershed in
Zhejiang Province, China (Fig. 1). This reservoir is the major
drinking water source of seven million people in the local
region, with a total watershed area of 1529 km2 and total
storage capacity of 1.8 × 109 m3. The region has a subtropical
monsoon climate with mean annual precipitation of 1870 mm
and temperature of 17 °C. Forest and cultivated lands account
for 75 and 15% of the watershed land area, respectively
(Mei et al. 2016). The population density within the
watershed is 236 per/km2, which is about 1.6 times
the national average (143 per/km2). Since polluting in-
dustries have been moved or closed, the remaining ma-
jor pollution originates from non-point sources of
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atmospheric deposition, agricultural fertilizer, livestock,
and domestic waste (Dong et al. 2016).

Total nitrogen (TN) and chemical oxygen demand
(CODMn) are key water quality concerns in Shanxi Reservoir
and were therefore selected as the focus of this study (Dong
et al. 2016; Mei et al. 2016). Reservoir water quality was mon-
itored by the localWater Resources Bureau on an approximate-
ly monthly basis during 2005–2014 (Fig. 1); however, the
sampling date was often different in each month. CODMn

was measured by the acid permanganate method. TN was
measured following alkaline potassium persulfate diges-
tion using an UV spectrophotometer. These water quality
parameters displayed both long-term non-monotonic
trends and seasonal variations, since water quality was
influenced by both natural and human factors (Fig. 2).
Major pollutants for Shanxi Reservoir originate from
non-point sources, and the seasonal variation of water
quality may be influenced by runoff fluctuation, since
the study area has a subtropical monsoon climate with
distinct wet and dry seasons (Huang et al. 2014a).

However, there was no significant relationship between
monthly average inflow runoff rate and monthly discrete
TN and CODMn concentrations (Fig. 3).

In general, the transport and transformation of nitrogen in
this large reservoir is very complex, and the seasonal variation
in TN concentration is impacted by many factors requiring
further research. The long-term trends, non-monotonic trends,
and seasonal variations in the original water quality time series
data for both TN and CODMn concentrations highlight the
importance of smoothing the time series prior to further
analysis. The efficacy of the integrated LWPR-SegReg
approach was assessed by trend and change-point analy-
ses of TN and CODMn from the Shanxi Reservoir water
quality dataset.

Efficiency of the LWPR-SegReg approach

The distributional or structural changes of a time series result
from changes in the data distribution patterns or changes in the
distribution of parameters, including changes in mean value,

Fig. 1 Geographic location of study area and sampling site
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variance, and trends. Using the LWPR approach, the original
monthly irregular and discrete TN and CODMn time series
were smoothed by LWPR and then regressed by SegReg.
The LWPR-SegReg results for the TN and CODMn time series
are shown in Fig. 4 and Fig. 5, respectively. Using LWPR, the
irregular and discrete original TN and CODMn time series
(blue triangles) were smooth into a new time series (green
circles), and then the smoothed time series were used for
SegReg resulting in the segment lines (red lines) (Fig. 4 and
Fig. 5; model parameters are listed in Table 1). The smoothed
new time series generated from LWPR revealed that the TN
and CODMn series showed non-monotonic trends within the
2005–2014 record, yet the change-points cannot be exactly
defined from the graphs (Fig. 4 and Fig. 5).

The smoothed time series for TN and CODMnwere divided
into three segments (red lines) with two change-points (Fig. 4
and Fig. 5); adjusted R2 were >0.99 and P values were <0.001
demonstrating excellent model fit. The first change-points for
the TN and CODMn time series were 2008.567 and 2008.336,
and the slopes of the first segments were −0.047 and −0.040,
respectively (Table 1). This indicates that TN and CODMn

showed small decreasing trends before the first half of 2008.
The second change-points for the TN and CODMn time series
were 2011.738 and 2011.631, and the slopes of the second
segments were 0.094 and 0.130, respectively (Table 1). This
indicates that TN and CODMn showed small increasing trends
from the second half of 2008 to the first half of 2011. The
slopes of the third segments for the TN and CODMn time
series were −0.052 and −0.133, respectively (Table 1), which
indicate decreasing trends since the second half of 2011.
Based on statistical tests (Table 1), we conclude that the
long-term trends and change-points were significant (Shao
and Campbell 2002; Mathews and Hamilton 2005; Wu and
Chang 2012; Kazemnejad et al. 2014).

In general, the LWPR approach is able to extract long-term
trend information from statistically compromised water qual-
ity time series (WQi), providing a smoothed data series (SMi)
for subsequent analysis (Bodo 1989; Stow et al. 2015).
Further, the subsequent SegReg is able to quantify the rela-
tionships between the smoothed water quality time series
(SMi) versus the corresponding times (ti). That is the powerful
advantage of the LWPR-SegReg approach. The practical

Fig. 2 Annual and monthly
variations of TN and CODMn

(mg L−1). Circles in box plots are
outliers, and lines in the graphs
indicated values are at minimum,
25% percentile, median, 75%
percentile, and maximum values

Fig. 3 Monthly average inflow
rate (m3 s−1) to Shanxi Reservoir
vs TN and CODMn concentrations
(mg L−1)
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value of this research was to examine the efficacy of past
pollution control practices in the watershed, as well as to pre-
dict future trends. The existence of change-points indicates
that the change in water quality trends within the time series
was non-monotonic, and the corresponding specific times of
the change-points were identified. Whether the water quality
was improved or deteriorated can be identified according to
the slopes of the segments derived from the LWPR-SegReg
approach, and future trends can be predicted from the slope of
the latest segment. Having demonstrated the efficacy of the

LWPR-SegReg approach, the reliability is analyzed in the
following section.

Reliability of the LWPR-SegReg approach

To further confirm the reliability of the integrated LWPR-
SegReg approach, the commonly utilized STL method was
applied for trend analysis of the TN and CODMn time series
from Shanxi Reservoir. More details concerning the theory
and application of STL can be found in Cleveland et al.
(1990) and Liang (2014), respectively. STL analysis was per-
formed in R using the Bforecast^ package. The time interval
between water quality data points was assumed to be consis-
tent for STL analysis purposes. Using STL, the original data
series were decomposed into seasonal, trend, and residual pat-
terns, respectively. STL analysis indicated that TN concentra-
tion trends in Shanxi Reservoir were generally decreasing
before 2009, increasing during the 2009 and 2010 period,
and then decreasing after 2010 (Fig. 6). CODMn concentration
trends followed an identical pattern to that of TN during the
study period (Fig. 7).

In comparison to the LWPR-SegReg approach, the STL
method was unable to specifically identify the timing of the
change-points, and the trends derived from STL fluctuated
within each time period. This results from STL holding the
seasonal patterns the same throughout the whole time period
(Cleveland et al. 1990); however, the seasonal pattern is some-
what variable from year-to-year. For LWPR, the seasonal pat-
terns were designed to be functions of time and were removed
locally according to their corresponding times (Bodo 1989;
Stow et al. 2015) resulting in the smoothed data trends (green
circles in Fig. 4 and Fig. 5) for subsequent SegReg analysis.
However, the non-monotonic change trends for the TN and
CODMn time series determined by LWPR-SegReg and STL

Fig. 4 LWPR-SegReg of monthly irregular and discrete TN
concentrations. Blue triangles are original TN data, green circles are
pretreated TN time series derived from LWPR, and red line is the
SegReg results of the pretreated TN time series

Fig. 5 LWPR-SegReg of monthly irregular and discrete CODMn

concentrations. Blue triangles are original CODMn data, green circles
are pretreated CODMn time series derived from LWPR, and red line is
the SegReg results of the pretreated CODMn time series

Table 1 SegReg model parameters for pretreated TN and CODMn time
series data

Model Parameter Estimated Std. err P value

TN α1 −0.047 0.0006 <0.001
α2 0.094 0.0009

α3 −0.052 0.001

CP 1 2008.567 0.019

CP 2 2011.738 0.036

Adjusted R2 0.993

CODMn α1 −0.040 0.0007 <0.001
α2 0.130 0.001

α3 −0.133 0.001

CP 1 2008.336 0.016

CP 2 2011.631 0.015

Adjusted R2 0.997
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Fig. 7 STL analysis of monthly
irregular and discrete CODMn

concentrations (mg L−1)

Fig. 6 STL analysis of monthly
irregular and discrete TN
concentrations (mg L−1)
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were generally consistent, which further supports the reliability
of the new LWPR-SegReg approach.

The integrated LWPR-SegReg approach indicated that TN
and CODMn concentrations in Shanxi Reservoir had three
different trends that decreased before the first half of 2008,
increased during the second half of 2008 to the first half of
2011, and then decreased after the second half of 2011 (Fig. 4
and Fig. 5). Firstly, the initial increase in TN and CODMn

concentrations in Shanxi Reservoir (2005 to first half of
2008) was due to processes associated with the first filling
of the reservoir that began in 2000 and reached normal oper-
ating water levels in 2005 (Shi 2010). Once the runoff was
captured within the reservoir, various pollutants were retained,
recycled, or lost due to processes within the reservoir (e.g.,
sedimentation, biological uptake/transformation). Being a
large multi-annual regulating reservoir, the initial self-
cleaning (assimilative) capacity was substantial (Liu et al.
2013), and therefore, TN and CODMn concentrations de-
creased slowly in the first several years. Secondly, TN and
CODMn concentrations increased slowly in the second period
of the record (the second half of 2008 to the first half in 2011).
Once the reservoir’s assimilation capacity was exceeded
(Liu et al. 2013), the water quality deteriorated as the
pollution loads exceeded the reservoir’s assimilation ca-
pacity, such as due to recycling of nutrients from the sed-
iments to the water column (Wei et al. 2009). A previous
study showed a deterioration of water quality due to
cyanobacteria blooms in some areas of Shanxi Reservoir
after 2008, particularly in 2010, which caused serious
concerns for drinking water operations (Shi 2010). These
algal blooms were consistent with the increasing trends in
TN and CODMn concentrations during the second half of
2008 to the first half in 2011. Thirdly, TN and CODMn

concentrations decreased after the second half of 2011.
The algal blooms in 2010 resulted in adoption of compre-
hensive environmental regulations for the entire Shanxi
Reservoir watershed. These efforts included implementa-
tion of five watershed remediation strategies including
domestic sewage treatment, residential garbage treatment,
livestock pollution treatment, conservation and restoration
of major tributaries, and development of an online real-
time water quality monitoring and forecasting system
(Dong et al. 2016; Mei et al. 2016). As a result, water
quality in Shanxi Reservoir demonstrated slow improve-
ments during the latest period. In general, the trends and
change-points identified by the integrated LWPR-SegReg
approach were confirmed by the hydrologic and biogeo-
chemical conditions of the reservoir, as well as watershed-
scale implementation of environmental regulation and re-
mediation actions.

The practical application of the LWPR-SegReg approach
was realized in examining the efficiency of past pollution
control strategies and to predict future water quality trends.

The existence of change-points indicates that the changes in
trends within the time series are non-monotonic, and the cor-
responding change-points reveal when the trends changed.
Whether the water quality improved or deteriorated was iden-
tified by the slopes of the segments derived from the LWPR-
SegReg approach, and trends for the near future were predict-
ed from the trend of the latest segment.

Advantage of the LWPR-SegReg approach

STL, LOWESS and LWPR are graphical methods that have
been improved to assess long-term trends in environmental
quality time series records (Bodo 1989; Lee et al. 2010;
Stow et al. 2015). SegReg has also been widely used in trend
and change-point analyses in many research fields (Mathews
and Hamilton 2005; Wu and Chang 2012; Kazemnejad et al.
2014), including hydrology (Shao and Campbell 2002). For
water quality trend and change-point analyses, graphical
methodsare limited as they do not produce the regression
functions necessary to determine significance levels and
change-point detection, while SegReg is limited by statis-
tically compromised data issues common in water quality
time series records.

SegReg was performed directly on the original monthly
irregular and discrete TN and CODMn datasets; the fitting
results for the SegReg models are shown in Figs. 8 and 9,
and model parameters are listed in Table 2. SegReg on the
original time series data for TN and CODMn identified three
segments with two change-points, indicating that the trends
were both decreasing and increasing within the 2005–2014
record (Figs. 8 and 9). The first change-points for TN and
CODMn were 2009.516 and 2010.177 with corresponding

Fig. 8 Direct SegReg of monthly irregular and discrete TN
concentrations (mg L−1)
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slopes of −0.077 and −0.044, the second change-points were
2010.006 and 2010.384 with slopes of 0.637 and 3.927, and
the slopes for the third segment were −0.565 and −4.038,
respectively (Table 2). Based on practical considerations, the
long-term trends and change-points determined from direct
SegReg analysis of the original time series were not fully
reliable. Firstly, TN and CODMn should not be decreasing as
early as the beginning of 2010, since the implementation of
watershed pollution control measures only began after 2010,
and the improvement of water quality would be expected to
lag behind the implementation of watershed management
practices. Secondly, the slopes for the second and third seg-
ments (particularly for CODMn) would not be expected to

be so big due to the buffering capacity of water quality con-
stituents by the large volume of water stored in the reservoir.
For instance, due to the long-term accumulation of nutrients in
soil and groundwater within watersheds (Chen et al. 2014a;
Huang et al. 2014b; Van Mete and Basu 2015), a lag effect in
nutrient transport from legacy nutrient sources has been
shown to increase riverine nutrient concentrations in many
regions even after implementation of extensive pollution con-
trol efforts (Stålnacke et al. 2003; Onderka and Mrafková
2012; Chen et al. 2014b; Dong et al. 2016). Therefore, water
quality improvement in large watersheds and reservoirs re-
quires long time periods following implementation of pollu-
tion control measures, and the response is generally not very
rapid. In general, the accuracy and objectivity of LWPR-
SegReg results were much better than the use of STL,
LWPR, or SegReg alone.

Neither LWPR nor SegReg was able to accomplish
long-term trend and change-point analysis independently,
whereas their integration creates a powerful new method
to analyze water quality time series data. An important
advantage of the integrated LWPR-SegReg approach is
the ability of LWPR to extract long-term trend informa-
tion from water quality time series (Cleveland 1979; Bodo
1989; Stow et al. 2015) and subsequently providing an
appropriate dataset for SegReg analysis. Another notable
advantage is the ability of SegReg to quantitatively detect
change-points and trends with statistical rigor (Shao and
Campbell 2002; Kazemnejad et al. 2014). Furthermore,
this approach is easily performed in R packages, and all
results can be graphed to provide an effective visualiza-
tion of the time series dynamics.

Conclusions

The integrated LWPR-SegReg approach was demonstrated to be
straightforward and effective for determining long-term trends
and change-points in irregular water quality time series. The
practical value of the integrated LWPR-SegReg ap-
proach is the ability to successfully evaluate the efficacy
of pollution control strategies, as well as to predict fu-
ture water quality trends. While this approach was de-
veloped for use with water quality data, it has applica-
tions for use with many types of time series records.

The study revealed that the TN and CODMn concentrations
in Shanxi Reservoir watershed decreased before the first half
of 2008, increased during the second half of 2008 to the first
half of 2011, and then decreased gradually in response to
pollution control actions after the second half of 2011.
Given the considerable lag effect resulting from legacy nutri-
ent retention in watershed and reservoir waters/
soils/sediments, improving water quality conditions in
the reservoir will require a long-term effort.

Fig. 9 Direct SegReg of monthly irregular and discrete CODMn

concentrations (mg L−1)

Table 2 SegReg model parameters of original TN and CODMn time
series data

Model Parameter Estimated Std. err P value

TN α1 −0.077 0.018 <0.001
α2 0.637 0.671

α3 −0.565 0.670

CP 1 2009.516 0.295

CP 2 2010.006 0.328

Adjusted R2 0.169

CODMn α1 −0.044 0.046 0.349
α2 3.927 10.029

α3 −4.038 10.029

CP 1 2010.177 0.338

CP 2 2010.384 0.227

Adjusted R2 0.105
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