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Abstract. Liebig’s law of the minimum (LLM) is often used to interpret empirical biologi-
cal growth data and model multiple substrates co-limited growth. However, its mechanistic
foundation is rarely discussed, even though its validity has been questioned since its introduc-
tion in the 1820s. Here we first show that LLM is a crude approximation of the law of mass
action, the state of art theory of biochemical reactions, and the LLM model is less accurate
than two other approximations of the law of mass action: the synthesizing unit model and the
additive model. We corroborate this conclusion using empirical data sets of algae and plants
grown under two co-limiting substrates. Based on our analysis, we show that when growth is
modeled directly as a function of substrate uptake, the LLM model improperly restricts the
organism to be of fixed elemental stoichiometry, making it incapable of consistently resolving
biological adaptation, ecological evolution, and community assembly. When growth is modeled
as a function of the cellular nutrient quota, the LLM model may obtain good results at the risk
of incorrect model parameters as compared to those inferred from the more accurate synthe-
sizing unit model. However, biogeochemical models that implement these three formulations
are needed to evaluate which formulation is acceptably accurate and their impacts on predicted
long-term ecosystem dynamics. In particular, studies are needed that explore the extent to
which parameter calibration can rescue model performance when the mechanistic representa-
tion of a biogeochemical process is known to be deficient.

Key words: additive model; biogeochemical modeling; biological growth; complementary substrates; law
of mass action; law of the minimum; synthesizing unit.

INTRODUCTION

The law of the minimum was proposed by Carl Spren-
gel as early as 1826 to guide fertilizer use in agricultural
practices (Sprengel 1826), and was made popular by Lie-
big (1840) and later followers as a general rule to inter-
pret biological growth data in various contexts (see van
der Ploeg et al. [1999] for an excellent review of the his-
tory and development of LLM). LLM states that the
growth of an organism is constrained by the most limit-
ing nutrient at that moment. More recently, to address
pressing social-environmental challenges, such as car-
bon–climate feedbacks and food security, many ecosys-
tem models have adopted LLM to simulate the growth
of plants and microorganisms that affect crop yield (un-
der various levels of fertilization), the global carbon
cycle (Achat et al. 2016, Lawrence et al. 2019, Zhu et al.
2019), aquatic and ocean biogeochemistry (Degroot
1983, Yool et al. 2011), etc. Notably, LLM is also used
to formulate photosynthesis in the commonly applied
Farquhar model and its progenitors (e.g., Farquhar et al.
1980, Leuning 1990).

Although the LLM model enjoys widespread popular-
ity, it has been criticized for being deficient in modeling
natural and crop plant growth (e.g., Sinclair and Park
1993, Kobe 1996). Further, O’Neill et al. (1989) sug-
gested that they preferred the additive model for its over-
all better predictions across eleven sets of growth data
they analyzed. Later, Kooijman (1998) showed that the
synthesizing unit (SU) model can successfully explain
the growth pattern measured by Droop (1974), who in
his experiment grew algae under two co-limiting sub-
strates (phosphorus and vitamin B12). Moreover, Droop
(1974) inferred that the LLM model interpreted his algal
growth data better than the multiplicative model (Droop
1973), another formulation (of which the dual Monod
kinetics is an example) often used to model biological
growth (e.g., Megee et al. 1972, Zinn et al. 2004). How-
ever, we recently showed that dual Monod kinetics and
single-substrate Monod kinetics adopt opposite assump-
tions for the characteristics of the kinetic parameters,
rendering the multiplicative Monod kinetics mathemati-
cally incapable of consistent upscaling from a single sub-
strate reaction to many-substrate reactions (Tang and
Riley 2017). Nonetheless, to our knowledge, the mecha-
nistic foundation of the LLM model has not been
described in the literature, nor has its relationship with
other growth models (e.g., the SU model and the addi-
tive model) been analyzed.
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For both unicellular and multicellular organisms,
growth emerges from the interaction between a great
number of chemical reactions, most of which are enzyme
catalyzed. Meanwhile, it was established more than a
century ago that the law of mass action developed for
abiotic chemical reactions can also be used to model
enzyme reactions (Henri 1903, Michaelis and Menten
1913). Therefore, if we accept the LLM model as a
mechanistic representation of biological growth, it
should be consistent with the law of mass action. Evalu-
ating this hypothesis should shed light on the limitations
of the LLM model in biogeochemical modeling.
In the following, we conduct our analysis under the

guidance of following questions: (1) What is the mecha-
nistic foundation of the LLM model? (2) What are the
relationships of the LLM model to the SU and additive
growth models? And (3) what are the limitations of the
LLM model in biogeochemical modeling?

METHODS

Mechanistic representation of multi-substrate co-limited
growth

Our analysis below is based on the presumption that
the law of mass action is applicable to modeling multiple
substrates co-limited growth. The legitimacy of the law

of mass action for simple enzyme systems is well estab-
lished, for example, by its use to derive various enzyme
kinetics under different assumptions (Michaelis and
Menten 1913, Cornish-Bowden 2012, Tang and Riley
2013, 2017). Its applicability for organisms is also phe-
nomenologically supported (e.g., the establishment of
Monod kinetics [Monod 1949]). Further, flux balance
models based on the law of mass action for the domi-
nant chemical reactions have been shown to successfully
represent microbial growth under the assumption of
steady-state proteomic distribution (e.g., Orth et al.
2010, Labhsetwar et al. 2014). Therefore, we hypothesize
that its scaling capability enables the law of mass action
to model growth at the organism level. Indeed, the law
of mass action is widely used in macroecology to model
biological growth based on predation and substrate
uptake (e.g., Hannon and Ruth 1997). Based on this
hypothesis, we assume that biological growth can be
conceptually depicted as a central enzyme system (i.e.,
synthesizing unit as called in Kooijman (1998)) that
builds biomass from two incoming complementary sub-
strates A and B, as formulated in the schema of Fig. 1a.
Applying the law of mass action to the schema in

Fig. 1a, and taking mass conservation and the steady-
state approximation for EA, EB, and EAB (i.e., their
temporal changes within the time step of biomass pro-
duction is negligible), we obtain

FIG. 1. (a) Schematic of E working on two complementary substrates A and B to deliver products, e.g., biomass, gases, or water.
(b) Schematic for the synthesizing unit (SU) model. (c) Schematic for the additive model, and we note that it ignores the binding
order effect on EAB from the binding of A and B to E. (d) Schematic for the Liebig’s law of the minimum (LLM) model, where
dashed lines mean the associated substrate is unlimited. The SU model, additive model, and LLM model are approximations to the
law of mass action. Forward reaction parameters are designated with superscript “+”, while backward reaction parameters are des-
ignated with superscript “−”. The k terms represent rate constants for each reaction in appropriate units.
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kþA E½ � A½ � þ k�B EAB½ � ¼ k�A þ kþB B½ �� �
EA½ � (1)

kþB E½ � B½ � þ k�A EAB½ � ¼ k�B þ kþA A½ �� �
EB½ � (2)

kþA EB½ � A½ � þ kþB EA½ � B½ � ¼ k�A þ k�B þ kþ2
� �

EAB½ � (3)

E½ �T ¼ E½ � þ EA½ � þ EB½ � þ EAB½ � (4)

A½ �T ¼ A½ � þ EA½ � þ EAB½ � (5)

B½ �T ¼ B½ � þ EB½ � þ EAB½ � (6)

where forward reaction parameters are designated with
superscript “+” and reverse reaction parameters are des-
ignated with superscript “−.” We note that, when applied
to biological growth, the kinetic parameters kþA and kþB
involve contributions from both physical transport (e.g.,
diffusion) and other enzymatic processes preparing the
substrates A and B (Berg and Purcell 1977, Tang and
Riley 2019). In addition, following previous studies
(Kooijman 1998, Brandt et al. 2004), we assume that the
forward and reverse reaction parameters for A and B are
independent from the complex status of the central
enzyme, e.g., kþA is the same for association between A
and E or between A and EB. In the following, by taking
different approximations in Eqs. 1–6, we will derive the
SU model, the additive model, and the LLM model.
By defining f A ¼ kþA A½ � and f B ¼ kþB B½ �, and assum-

ing that f A⪢k�B , f B⪢k�A , and kþ2 ⪢k
�
A þ k�B (and also see

schema b in Fig. 1), from Eqs. 1–4, we obtain the SU
model (also see Appendix S1)

FSU ¼ E½ �T
1
kþ2

þ 1
f A
þ 1

f B
� 1

f Aþ f B

¼ kþ2 E½ �T
1þ KA

A½ � þ KB
B½ � � 1

A½ �=KAþ B½ �=KB

(7)

where KA ¼ kþ2 =k
þ
A, and KB ¼ kþ2 =k

þ
B . Further, we note

that by substituting Eqs. 5 and 6 into Eq. 7 and taking a
first-order approximation (with respect to the enzyme-
substrate complexes), one can obtain the SUPECA
kinetics (which is generally more accurate than SU
kinetics) derived in Tang and Riley (2017). However,
because the improved accuracy of SUPECA is signifi-
cant only when the problem of interest involves interac-
tions with adsorption surfaces (e.g., soil minerals), we
will not consider it here.
Next, if we ignore the last term in the denominator of

Eq. 7 (or apply the steady state approximation to EA,
EB, and EAB according to schema c in Fig. 1, where
EAB is formed from a serial binding of A and B to E;
see Appendix S2), we can derive the additive model

FADD ¼ kþ2 E½ �T
1þ KA

A½ � þ KB
B½ �
: (8)

We note that there is an alternative form to
the schema in Fig. 1c, i.e., EAB is formed by first

binding E to B and then to A. If schema Fig. 1c and its
alternative are considered together (when formulating
the substrate-enzyme relationships), we then obtain
Fig. 1b, the SU model. We thus find that
�1= A½ �=KA þ B½ �=KBð Þ in Eq. 7 accounts for the
enhanced reaction rate of FSU over FADD due to two
equivalent reaction pathways.
Last, we formulate the LLM model by taking another

approximation to Eq. 8

FLLM ¼ kþ2 E½ �T � min
A½ �

KA þ A½ � ,
B½ �

KB þ B½ �
� �

¼ kþ2 E½ �T min
1

1þ KA= A½ � ,
1

1þ KB= B½ �
� �

: (9)

Mathematically, the LLM model is derived by first
assuming that substrate B is unlimited, which leads to
the first term kþ2 E½ �T= 1þ KA= A½ �ð Þ� �

. Alternatively,
assuming that A is unlimited leads to the second term
kþ2 E½ �T= 1þ KB= B½ �ð Þ� �

. Finally, the actual growth is
taken as the minimum of the two. Conceptually, this
derivation can also be understood by applying the steady
state approximation to EA, EB, and EAB according to
schema d in Fig. 1 (i.e., take the minimum of the rates
calculated by the two pathways).
To provide a visual appreciation of the differences

among the SU, additive, and LLM models for two-
substrate co-limited growth, we compared their func-
tional response curves (of normalized growth rate as a
function of the normalized availability of substrate B
while keeping substrate A normalized at nine different
levels; Fig. 2). There we see that the SU and additive
models are quite similar (which we will see again when
these models are evaluated using observed growth data)
in a way that resembles the classic Michaelis-Menten
kinetics, whereas the LLM model is quite different in
that it has a maximum when the growth is limited by the
controlling parameter (i.e. availability of substrate A in
Fig. 2).
For growth that is co-limited by more than two com-

plimentary substrates, the SU model can be extended by
applying the renewal theory (Kooijman 1998)

FSU ¼ kþ2 E½ �T

1þ∑ j
kþ2
fj

�∑ j2 > j1¼1
kþ2

fj1 þ fj2
þ⋯

þ �1ð Þm�1∑ jm >⋯> j2 > j1¼1
kþ2

fj1 þ fj2 þ⋯þ fjm
þ⋯

0
BBBB@

1
CCCCA

�1

(10)

where f j ¼ kþSj S j
� �

.

The corresponding additive model is

FADD ¼ kþ2 E½ �T
1þ∑ jk

þ
2 = f j

¼ kþ2 E½ �T
1þ∑ jK j=S j

(11)
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b) Additive model
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FIG. 2. Specific growth rate (normalized by kþ2 E½ �T ) as a function of substrate concentration B (normalized by KB) for 10 differ-
ent values of substrate A (normalized by KA).

with K j ¼ kþ2 =k
þ
j for substrate Sj, and the correspond-

ing LLM model is

FLLM ¼ kþ2 E½ �T � min j
1

1þ K j=S j

� �
: (12)

We note that these three models with more than two
complimentary substrates can also be understood (and
derived) using similar schemas as presented in Fig. 1.
From the above derivations, we note that the two-

substrate SU model ignores the dissociation terms in the
law of mass action equations (i.e., terms related to k�A
and k�B in Eqs. 1–3), while the two-substrate additive
model ignores the parallel interaction terms of the SU
model (i.e., �1= A½ �=KA þ B½ �=KBð Þ in Eq. 7), and the
two-substrate LLM model calculates the reaction rate
using the minimum of the asymptotes along the two sub-
strate axes of the additive model. We thus hypothesize
that, with identical parameter values, the SU model, the
additive model, and the LLM model will approximate
the law of mass action with decreasing accuracy. Below
we show that even though all three models are approxi-
mations to the law of mass action, the more dramatic
loss of approximation accuracy in the LLM model
(when compared to the other two models) implies that
parameter calibration cannot always make up its struc-
tural deficiency in modeling biological growth.

Empirical data for evaluating the three models

Since the models derived above are intended to be
applied to uni- or multicellular organisms, we evaluate
them against two types of observed responses, one for
unicellular microbes (i.e., algae) and one for plants. In
total, we identified eight sets of data from two publica-
tions to evaluate the capability of these three models in
predicting two-substrate co-limited growth. The first
two data sets are from Droop (1974), who conducted
batch experiments by growing algae (Monochrysis) on
different supply levels of phosphorus and vitamin B12.
The experiments characterized the growth of separate
populations of slow- and fast-adapted cells. In the data
set, nutrient availability was measured as cellular quota
(i.e., nutrient concentration in the cell), and growth was
measured as dilution rate (calculated as the ratio
between the media flow rate into the experimental con-
tainer and the culture volume). The other data sets are
from Shaver and Melillo (1984), who conducted pot
experiments by growing Carex lacustris, Calamagrostis
canadensis, and Typha latifolia with nitrogen and phos-
phorus fertilizers. The Shaver and Mellilo data are pre-
sented as measured biomass harvested at two times (i.e.,
5 and 7 months after planting, indicated by H1- and
H2-, respectively), with their corresponding nitrogen
and phosphorus additions applied factorially.
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We inferred the best posterior parameters by fitting
these three models (in their two-substrate forms) to the
above data sets using the fminsearch function from
MATLAB (R2020b) to minimize the difference between
predicted and measured growth data. For each model,
the goodness of fit is reported as root mean square error
(RMSE), a linear regression of measured vs. predicted
growth rate, and R2 value. Finally, we note that for
algae, parameter kþ2 designates the actual specific growth
rate (d−1), while for plants, kþ2 represents kþ2 E½ �T inte-
grated over their respective growth periods until harvest.

RESULTS

Using the inferred parameters for the three models
(Table 1), we found all three models fit the observed
algal growth almost equally well (left panels in Fig. 3),
with their performances (based on RMSE and the
regression slope) from best to worst ranked as the SU
model, the LLM model, and the additive model. In con-
trast, for the data set of plant growth, the SU model per-
formed slightly better than the additive model, while the
LLM model fit poorly, particularly for the growth data
of Typha (identified as H2-Typha in Fig. 3f) collected in
the second harvest.
As can be inferred from Eqs. 7–9, when viewed as func-

tions of the normalized substrate concentrations [A]/KA

and [B]/KB, the normalized growth rates FSU=k
þ
2 ,

FADD=k
þ
2 , and FLLM=kþ2 are independent from the char-

acteristics of the experimental organisms. Therefore, for
each model, all algal and plant growth data can be consid-
ered to follow the same contour of the normalized growth
rates (and similarly for plant growth data). This represen-
tation enables an alternative view of the growth data in the
context of different models. We thus normalized the mea-
sured growth rates with their correspondingly inferred
maximum growth rate (Table 1), and then plotted them
together with the contours of the normalized growth rate
predicted by each model as a function of the normalized
substrate availability (Fig. 4). The results show that the
algal growth data mostly exist near the origin or are close
to the two axes (Fig. 3a, b, c), while the plant growth data
spread out more (Fig. 4d, e). Overall, we find that the
LLM model worked well for the Droop data (which calcu-
lated algal growth rates based on cellular nutrient quota),
but not for the Shaver and Melillo data (which calculated
plant growth rates based on nutrient uptake fluxes). In
particular, the LLM model almost failed completely for
the plant growth data (Fig. 4f; see also Appendix S3:
Fig. S1). This result suggests that when evaluated as a
function of external substrate supply, the plants were expe-
riencing nitrogen and phosphorus co-limitation in the
experiments by Shaver and Melillo. In contrast, likely
because of the small size of unicellular algae, the limited
variability of nutrient quota in the Droop data is not able
to differentiate among the three growth models.
All three inferred parameters (Table 1; Fig. 5) have

similar magnitudes between the SU model and the

additive model (as expected based on the similar func-
tional response curves in Fig. 2 and contours in Fig. 3).
However, the LLM model inferred quite different param-
eters. When measured in terms of relative difference as
compared to corresponding parameters of the SU model
(which is supposed to be the most accurate among the
three models), six out of eight sets of the parameters are
within 20% relative difference for the additive model. In
contrast, only two sets of the parameters are within 20%
relative difference for the LLM model. For the fast-
adapted algal group (Table 1 and also see Fig. 5), the
additive model inferred parameters are about half those
of the SU model, because the interaction term
(1= A½ �=KA þ B½ �=KBð Þ) of the SU model is of comparable
magnitude to other terms. In contrast, the LLM model
inferred parameters are more than four times as large as
those of the SU model. For plants, the maximum growth
rates (kþ2 ) are mostly of the same magnitude among the
three models, whereas the nitrogen affinity parameters
(KA) for the LLM model are much smaller than the other
two models for H1-Carex and H2-Typha, while the phos-
phorus affinity parameters (KB) for the LLM model are
much smaller than for the other two models for H1-Cala-
magrostis, H2-Calamagrostis, and H2-Typha.

DISCUSSION

In the following, we address the three main questions
that motivated this analysis.

What is the mechanistic foundation of the LLM model?

We found that the LLM model can be derived from
the first principle-based law of mass action by imposing
the condition that all but one substrate is of unlimited
supply at any particular time. This simplification makes
the LLM model less accurate than the SU model and
additive model in handling growth co-limited by multi-
ple substrates, particularly when the relative supply of
the complimentary substrates is comparable (e.g., plants
in the right column of Fig. 4).

What is the relationship of the LLM model to the SU and
additive growth models?

In the mathematical derivations above, we showed
that the LLM model can be viewed as a crude approxi-
mation to the law of mass action model, and thus to the
more accurate SU and additive models. Theoretically, if
the law of mass action model is the reference growth
model (as we have assumed), under a wide range of con-
ditions, the SU model is the most accurate, followed by
the additive model and the LLM model. Moreover, the
SU and additive models have qualitatively similar
responses to changes in the availability of co-limiting
substrates (as can be seen from the similarity between
the functional response and contour plots for the SU
and additive models; Figs. 2, 4), whereas the LLM
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model behaves differently under co-limiting conditions.
Importantly, all three models (as shown in Eqs. 7–9)
share the same parameters for application. However,
because of their different accuracy in approximating the
law of mass action model, performance degradation
should in general be expected when true model parame-
ters (as assumed to be associated with the most accurate
SU model) are used (e.g., Fig. 3 vs. Fig. 6), and occa-
sionally the degradation will even make the LLM model
unacceptable (Fig. 6d). Therefore, we assert that
although calibration can sometimes make a biogeochem-
ical model that uses the LLM model perform well for a
particular benchmark data set, calibration cannot
always make up for deficiencies in the model’s structural
accuracy, even if the desired processes (i.e., multiple sub-
strates co-limited growth here) are nominally repre-
sented in the model.

What are the limitations of the LLM model in
biogeochemical modeling?

While the LLM model has the same number of
parameters as the SU and additive models, when it is

used to model growth directly as a function of substrate
fluxes (as in the plant example above), the organisms
must be of fixed elemental stoichiometry. This restriction
can be clearly demonstrated with the León-Tumpson
model (1975)

dNi

dt
¼ Ni min j

gij R j
� �
qij

( )
�Di

 !
, i ¼ 1, ⋯, n, j ¼ 1, ⋯, m

(13)

dRj

dt
¼ f j R j

� ��∑
i
qij min j

gij R j
� �
qij

( ) !
Ni (14)

where population Ni (as biomass) grows on m
perfectly complementary substrates Rj (here “perfectly
complementary” means no growth when any substrate is
missing), which are supplied externally at rates f j R j

� �
.

The potential uptake rate by population Ni of substrate
Rj is gij, with a corresponding biomass conversion factor
qij (i.e., one unit of biomass for Ni requires qij unit of
substrate j). Di is the death rate of population Ni. The
model applies LLM to compute the growth rate of

TABLE 1. Inferred parameter values for the algal and plant data sets.

Model ID kþ2 KA KB

SU model
Algae: fast adapted 1 4.15 4.72 27.8
Algae: slow adapted 2 0.842 0.623 4.20
Plant: H1-Carex 3 38.9 1.11 0.148
Plant: H2-Carex 4 37.1 0.624 0.117
Plant: H1-Calamagrostis 5 20.4 5.05 0.280
Plant: H2-Calamagrostis 6 38.5 9.94 0.697
Plant: H1-Typha 7 38.8 2.59 0.940
Plant: H2-Typha 8 45.4 2.40 0.890

Additive model
Algae: fast adapted 1 2.49 (0.600) 2.09 (0.443) 11.7 (0.421)
Algae: slow adapted 2 0.811 (0.963)† 0.475 (0.762)† 3.27 (0.779)†
Plant: H1-Carex 3 38.9 (1.00)† 0.902 (0.813)† 0.129 (0.872)†
Plant: H2-Carex 4 36.9 (0.995)† 0.481 (0.771)† 0.0920 (0.786)†
Plant: H1-Calamagrostis 5 19.2 (0.941) 4.10 (0.812) 0.170 (0.607)
Plant: H2-Calamagrostis 6 40.4 (1.05)† 9.38 (0.944)† 0.539 (0.773)†
Plant: H1-Typha 7 40.3 (1.03)† 2.10 (0.811)† 0.904 (0.962)†
Plant: H2-Typha 8 48.3 (1.06)† 2.19 (0.91)† 0.881 (0.990)†

LLMmodel
Algae: fast adapted 1 17.2 (4.14) 24.6 (5.21) 154 (5.54)
Algae: slow adapted 2 0.748 (0.888)† 0.536 (0.860)† 3.76 (0.895)†
Plant: H1-Carex 3 32.7 (0.841) 0.129 (0.116) 0.0571 (0.386)
Plant: H2-Carex 4 37.0 (0.997)† 0.663 (1.06)† 0.148 (1.27)†
Plant: H1-Calamagrostis 5 13.0 (0.637) 2.21 (0.438) 0.0266 (0.0950)
Plant: H2-Calamagrostis 6 25.7 (0.667) 6.12 (0.616) 0.00965 (0.0138)
Plant: H1-Typha 7 33.1 (0.853) 3.27 (1.26) 0.261 (0.278)
Plant: H2-Typha 8 45.4 (1.00) 0.0529 (0.0220) 0.0196 (0.0220)

Notes: For algal growth data from Droop (1974), the units of kþ2 , KA (phosphorus), and KA (vitamin B12) are d−1, nmol�
(L P)−1�(million cells)−1, and fmol�(L B12)

−1�(million cells)−1, respectively. For plant data from Shaver and Melillo (1984), the units
of kþ2 (which integrates the contribution of [E]T in the three models), KA (nitrogen), and KB (phosphorus) are g dry biomass/pot, g
N/pot, and g P/pot, respectively. The numbers in parentheses for the additive model and the Liebig’s law of the minimum (LLM)
model measure the relative magnitude of a parameter with respect to its corresponding value for the synthesizing unit (SU) model.
† Entries within 20% of the corresponding parameters inferred for the SU model.
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population Ni as min jfgij R j
� �

=qijg in Eq. 13,
which is then used to update the availability of substrate
Rj in Eq. 14.
In the León-Tumpson model, once the growth rate of

population Nk is determined by the most limiting sub-
strate jk, the uptake of any other substrate j (by Nk) is
determined by gk jk and the ratio qkj=qk jk , rather than by
qkj ; i.e., the uptake of substrate j is gk jk qkj=qk jk. However,
Danger et al. (2008) pointed out that this restriction of
fixed elemental stoichiometry of population Nk will poten-
tially result in a situation that while population Nk is lim-
ited by substrate jk, the whole system is limited by another
substrate due to other mechanisms (e.g., competition,
symbiosis). Alternatively, we infer that during a numerical
integration step when the uptake fluxes from all
populations are summed for each substrate, there exists a
possibility that the whole population is limited by
substrate j, while a specific population Nk is limited by
another substrate jk, creating a conundrum on the validity
of using LLM model for the growth of an individual pop-
ulation. Therefore, they asserted (and as we inferred here)
that LLM does not scale from individuals to a community.
They corroborated this inference with batch experiments
of a bacterial community. In a related study, Gorban et al.
(2011) asserted that because biological organisms are gen-
erally adaptive, they typically will not be limited by a

single substrate for long, (in contrast to the implication in
the LLM model) creating “law of the minimum para-
doxes.” In summary, these previous studies and our results
show that, when growth is computed directly from sub-
strate uptake fluxes, the success of the LLM model to
interpret a particular observational data set of growth
rates (without considering ecological interaction) through
parameter calibration does not justify its use as a good
biological growth model in a sophisticated ecological con-
text. Rather, such an application of the LLM model (as in
the León-Tumpson model that involves population
dynamics and substrate competition) conflicts with the
capability of biological organisms to adapt and evolve
under environmental stresses and ecological interactions.
All living organisms consist of a core set of macro-

molecules that are of different elemental stoichiometry
and small size molecules of relatively low concentrations
(supporting metabolism while not creating osmotic
stress; Lodish et al. [1999]). Therefore, cellular elemental
stoichiometry is unlikely to be fixed under fluctuating
nutrients availability. Indeed, observations indicate that
even single cellular organisms can store nutrients for later
use when these nutrients are scarce (aka luxury uptake;
e.g., Madigan et al. 2009, Powell et al. 2009). Moreover,
since multicellular organisms can be viewed as a commu-
nity of many unicellular organisms, their uptake and use
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FIG. 3. Model predicted and measured growth rates for (a–c) the Droop algae data and (d–f) the Shaver and Mellilo plant data.
The Droop data have fast- and slow-adapted algae groups. The Shaver and Melillo data have six groups of measurements, with H1-
meaning data from the first harvest, and H2- meaning data from the second harvest. For each panel, the linear regression was done
for all data involved. Additionally, we note that the legends in panels d, e, and f should be read together.

December 2021 LAWOF THE MINIMUM Article e02458; page 7



5

10

15

[B
]/

K
B

0.8

0.7
0.60.5

0.4

b) Additive model

0.2

0.4

0.6

0.8

10

20

30

40

0.9

0.8
0.7

0.6

e) Additive model

0.2

0.4

0.6

0.8

1.0

5

10

15

[B
]/

K
B

0.8

0.7
0.6

0.5

0.4

a) SU model
Droop data

0.2

0.4

0.6

0.8

10

20

30

40

0.9

0.80.7

0.6

d) SU model
Shaver and Melillo data

0.2

0.4

0.6

0.8

1.0

[A]/KA

5

10

15

[B
]/

K
B

0.9

0.8

0.7

0.60.5

c) LLM model

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14 16 5 10 15 20 25 30 35 40

2 4 6 8 10 12 14 16 5 10 15 20 25 30 35 40

2 4 6 8 10 12 14 16 50 100 150 200 250 300 350 400
[A]/KA

500
1000
1500
2000
2500
3000
3500

0.
9

0.6
0.4

f) LLM model

0.5

1.0

1.5

FIG. 4. Observed growth rates in the normalized contour plots of different models: (a–c) for algal growth data; (d–f) for plant
growth data. In each plot, the observed growth rates are normalized with the maximum growth rates inferred from the model and
each substrate is normalized with its corresponding affinity parameter. The contour lines are derived from the relevant Eqs. 7–9 for
each model. The color bars are the relative growth rates. In panel f, the poor performance of the LLM model forces us to use differ-
ent axes limits from those in panels d and e. An expanded version for better visual of data points around the origins is available in
Appendix S3: Fig. S1.

a

Algae-fa
st

Algae-sl
ow

Plant-H
1-a

Plant-H
1-C

alam

Plant-H
1-T

yp
ha

Plant-H
2-C

arex

Plant-H
2-C

alam

Plant-H
2-T

yp
ha

0

5

10

15

20

25

30

35

40

45

50

 k
2+

b

Algae-fa
st

Algae-sl
ow

Plant-H
1-C

arex

Plant-H
1-C

alam

Plant-H
1-T

yp
ha

Plant-H
2-C

arex

Plant-H
2-C

alam

Plant-H
2-T

yp
ha

0

5

10

15

20

25

 K
A

SU model
Additive model
LLM model

c

Algae-fa
st

Algae-sl
ow

Plant-H
1-C

arex

Plant-H
1-C

alam

Plant-H
1-T

yp
ha

Plant-H
2-C

arex

Plant-H
2-C

alam

Plant-H
2-T

yp
ha

0

20

40

60

80

100

120

140

160

 K
B

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 K
B

FIG. 5. Comparison of inferred parameters of the three models for the eight data sets: panel a is for growth rate, panels b and c
are for substrate affinity. The parameter values are in Table 1. For panel c, except for fast-adapted algae (separated by the red
dashed line), parameter values follow the right y-axis. Calam is Calamagrostis abbreviated.

Article e02458; page 8 JINYUN TANG ANDWILLIAM J. RILEY
Ecological Applications

Vol. 31, No. 8



of substrates are more difficult to synchronize than single
cellular organisms, making variable elemental stoichiom-
etry the rule rather than the exception for fungi, plants,
and animals (e.g., Elser et al. 2000).
In summary, if LLM is used to model biological

growth, it should only be applied to the cellular quota of
the complementary nutrients, i.e., the modeled organism
must be explicitly represented with nutrient storage
pools and flexible stoichiometry. This approach is how
Droop (1974) used the LLM model to interpret his algae
growth data, and it is similarly adopted by the ecosystem
model ecosys (Grant 2013) to represent carbon, nitro-
gen, and phosphorus co-regulated plant and microbial
growth. However, we found (in Fig. 5 and Table 1) that
applying LLM to cellular nutrient quota-based growth
may still result in posterior parameters that differ signifi-
cantly from those inferred with the mechanistically more
accurate SU model, even though the LLM model may
still fit the observations reasonably well (Fig. 6b).
Nevertheless, it will be interesting and valuable to com-
pare the SU, additive, and LLM model implementations
within a complex biogeochemical model that represents
organisms with flexible stoichiometry feeding on a vari-
ety of different substrates, and evaluate how simulated
ecosystem structure and biogeochemistry are influenced
by their differences. In particular, we ask, can parameter
calibration always rescue model performance when the
deficiency in mechanistic representation is known to be
significant?
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