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Ni/Photoredox-Catalyzed C(sp3)–C(sp3) Coupling between 
Aziridines and Acetals as Alcohol-Derived Alkyl Radical 
Precursors

Sun Dongbang1, Abigail G. Doyle1,2

1Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States

2Department of Chemistry and Biochemistry, University of California, Los Angeles, California 
90095, United States

Abstract

Aziridines are readily available C(sp3) precursors that afford valuable β-functionalized amines 

upon ring-opening. In this article, we report a Ni/photoredox methodology for C(sp3)–C(sp3) 

cross-coupling between aziridines and methyl/1°/2° aliphatic alcohols activated as benzaldehyde 

dialkyl acetals. Orthogonal activation modes of each alkyl coupling partner facilitate cross-

selectivity in the C(sp3)–C(sp3) bond-forming reaction: the benzaldehyde dialkyl acetal is 

activated via hydrogen atom abstraction and β-scission via bromine radical (generated in situ 
from single-electron oxidation of bromide), whereas the aziridine is activated at the Ni center via 

reduction. We demonstrate that an Ni(II) azametallacycle, conventionally proposed in aziridine 

cross-coupling, is not an intermediate in the productive cross-coupling. Rather, stoichiometric 

organometallic and linear free energy relationship (LFER) studies indicate that aziridine activation 

proceeds via Ni(I) oxidative addition, a previously unexplored elementary step.
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INTRODUCTION

Selective cross-coupling of two different carbon electrophiles, commonly known as cross-

electrophile coupling, has emerged as an enabling strategy for C─C bond formation.1 

These processes often operate on readily available and stable organic (pseudo)halides 

under mild conditions. Extensive progress has been made in developing C(sp3)–C(sp2) 

cross-electrophile coupling reactions, with Ni catalysis offering a particularly general 

platform.2 Mechanistic studies on select Ni-catalyzed reactions have revealed that distinct, 

hybridization-dependent activation mechanisms give rise to the cross-selectivity with C(sp2) 

and C(sp3) electrophiles.3,4 In contrast, methods for selective coupling of two C(sp3) 

electrophiles remain underdeveloped, owing to the more subtle differences in reactivity 

between the two reaction partners (Figure 1A).5 Nevertheless, there has been important 

recent progress made in this area using Ni6 or Cu catalysis7 with chemical reductants 

and electrochemical methods.8 These approaches typically rely on substrate stoichiometry, 

differences in (pseudo)halide identities or differences in substitution at the carbon center 

to achieve selectivity. Alternatively, redox-neutral metallaphotoredox catalysis9 can provide 

a platform for the development of chemoselective C(sp3)–C(sp3) cross coupling in part by 

relying on orthogonal redox-dependent activation mechanisms of the two alkyl coupling 

partners. This approach offers the opportunity to use non-traditional reaction partners 

beyond alkyl (pseudo)halides while retaining many of the positive attributes of cross-

electrophile coupling. For example, researchers have recently found success coupling two 

C(sp3) fragments arising from carboxylic acids, activated alcohols, alkyl halides, and C─H 

bonds.10 These examples highlight how the identification of strategies that engage distinct 

classes of C(sp3) coupling partners in C(sp3)─C(sp3) bond formation can be of broad value 

from a synthetic and mechanistic perspective.

Aziridines have been employed successfully as C(sp3) electrophiles in a number of cross-

coupling reactions. Work from our lab,11 Michael,12 Jamison,13 Takeda/Minakata,14 May15 

and Xiao16 has demonstrated that coupling reactions with aziridines can afford access 

to substituted ethylamines, important nitrogen-containing motifs in medicinal chemistry 

(Figure 1B).17 Organometallic nucleophiles such as organozinc halides or organoboron 

reagents, have been employed as coupling partners to form both C(sp3)─C(sp2) and 

C(sp3)─C(sp3) bonds (Figure 1B, top). Recently, our lab demonstrated that aziridines 

can also participate in cross-electrophile coupling reactions with aryl iodides, using either 
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a stoichiometric inorganic reductant18 or a photo-assisted reductive coupling (PARC) 

strategy.19 Like other C(sp3)–C(sp2) cross-electrophile coupling reactions, these methods 

take advantage of the difference in hybridization of each coupling partner to impart 

selectivity (Figure 1A, bottom).20 Unfortunately, direct extension of the methods for cross-

selective C(sp3)–C(sp3) coupling with unactivated alkyl halides was not possible as both 

precursors undergo indiscriminate reduction at the Ni center. To address this challenge, 

we questioned whether we could design a selective redox-neutral C(sp3)–C(sp3) cross 

coupling with aziridines by using an alternative C(sp3) partner where the activation mode is 

decoupled from that of aziridine oxidative addition.

Herein, we report progress toward this goal in the development of a redox-neutral Ni/

photoredox-catalyzed alkylation of aziridines to generate 2°–Me, 2°−1°, 2°−2° alkyl bonds 

(Figure 1C). The method facilitates the synthesis of a range of β-substituted sulfonamides 

that were previously inaccessible by traditional cross-coupling methods with aziridines. 

Benzaldehyde dialkyl acetals serve as the second C(sp3) coupling partner in the method, 

functioning to activate unactivated alcohols toward homolytic C(sp3)–O cleavage in an 

oxidative process21 that is orthogonal to aziridine activation via reduction. Differentiation 

of the activation modes affords an opportunity to independently tune the rate of reaction 

of the two partners to achieve cross-selectivity using easy to manipulate variables like light 

intensity. Mechanistic studies suggest that aziridine activation does not occur via Ni(0) 

oxidative addition, but rather via Ni(I), an elementary step that has no prior stoichiometric or 

catalytic precedent.22,23

RESULTS AND DISCUSSION

Reaction Optimization

We began reaction optimization using 2-(4-fluorophenyl)-1-(p-tolylsulfonyl)aziridine (1a) 

and benzaldehyde dimethyl acetal (2a) as a methyl radical precursor. On the basis of 

prior studies, including our own recent work,21 we explored the use of halide salts as 

precursors to halogen radicals for HAT. We were pleased to find that using 2.5 mol% 

Ni(cod)2, 5 mol% NH4Br (E1/2 [Br−/Br·] = +0.80 V vs SCE in DCE), and 2 mol% 

Ir[dF(Me)ppy]2(dtbbpy)PF6(IrII/IrIII* = +0.97V vs SCE in MeCN)2g,24 with a 427 nm Kessil 

lamp at 25 °C, the desired cross-coupled product 3a was formed in 22% yield (Table 1, 

entry 1). Because hydrolysis of the acetal 2a was also observed under these conditions, we 

next evaluated non-protic bromide salts, including LiBr, which led to the formation of 3a 
in 32% yield (Table 1, entry 2). In both these reactions, numerous undesired side products 

also accompanied product formation, including the dimerized aziridine (4), sulfonamide 5,25 

and the direct product of cross-coupling with the 3° carbon of the acetal (6). Since 4 and 5 
both presumably arise from unproductive consumption of an azanickellacycle intermediate, 

we hypothesized that increasing the rate of methyl radical formation from 2a might lead 

to better selectivity for the cross-coupled product 3a.26 Consistent with this hypothesis, we 

found that simply adding another lamp and increasing the lamp intensity, variables that 

should both differentially impact the HAT cycle, afforded 3a in 70% yield (Table 1, entry 

3-4). Increasing the acetal equivalents from 1.8 to 2.4 also afforded a modest improvement 

in the yield of 3a (Table 1, entry 5).
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Although the conditions in entry 5 afforded a high yield of the desired product, we sought to 

test the robustness of the reaction under a more simplified light set-up. Interestingly, while 

only one lamp with fan-cooling afforded 34% yield of 3a, simply removing the fans to 

increase the reaction temperature gave a significant increase in the yield of 3a to 72% (Table 

1, Entry 6,7), potentially because higher temperatures facilitate β-scission and increase the 

concentration of Me radical in solution. Finally, evaluation of Ni precatalyst identity showed 

that NiBr2·glyme gave a 10% increase in yield over Ni(cod)2 (Table 1, Entry 8).

With these optimized reaction conditions, we were pleased to find that 3a can be obtained in 

useful yield even with reduced equivalents of the acetal (Table 1, Entries 9 & 10). Moreover, 

although NiBr2·glyme can serve as the sole source of bromide for HAT, control reactions 

omitting LiBr led to diminished reactivity, consistent with previous observations that the 

counter cation of the additive may facilitate stabilization of the anionic sulfonamide and 

product release (Table 1, Entry 11).20c Because NiBr2·glyme is the optimal Ni source and is 

air- and moisture stable, the reaction can be setup and run on the benchtop, as opposed to the 

glovebox, and delivers 3a with only a small decrease in yield (Table 1, Entry 12).

Substrate scope

Methylation of C(sp3) carbons is a powerful strategy in medicinal chemistry that can lead 

to an increase in potency, higher selectivity among bioreceptors, alteration in solubility, and 

enhanced protection against enzyme metabolism.27 Accordingly, amines and sulfonamides 

bearing β-methyl groups are a highly sought structural motif in pharmaceuticals.28 

Nevertheless, methylation of aziridines has only been accomplished with highly nucleophilic 

organometallic reagents, such as Grignard reagents, organocuprates, and AlMe3, and often 

results in poor regioselectivity.29 Moreover, there have been no reports of successful Ni- or 

Pd-catalyzed cross-coupling of aziridines with methyl nucleophiles.11-14 Therefore, with the 

optimized reaction conditions in hand, we investigated the scope of the reaction with various 

aziridines using benzaldehyde dimethyl acetal as a methylating reagent.

We were excited to find that a broad range of styrenyl aziridines were compatible with this 

Ni/photoredox methylation reaction (Table 2). Substrates bearing electron-deficient groups 

such as p-CF3 (3b) or p-CN (3c) gave the β-methylated sulfonamide products in 77% and 

50% yield, respectively. An unsubstituted styrenyl aziridine (3d) as well as those baring 

electron-donating groups such as p-t-Bu (3e) or p-OPh (3f) also afforded the methylated 

products in good yield. The reaction showed minimal sensitivity to steric hindrance on the 

arene, with 3g formed in 59% yield.

As sulfonamides have been frequently employed in medicinal chemistry, we also 

investigated aziridines with sulfonyl substituents other than a tosyl group. Aryl (3h-3k), 

benzyl (3l, 3m) and alkyl sulfonamides,30 such as methanesulfonamide (3n)30c and 

cyclopropanesulfonamide (3o)30d,e were tolerated in the reaction, albeit the alkyl 

sulfonamides were formed as mixtures of regioisomers with methylation favoring 

the benzylic position. Finally, an unsubstituted aziridine was also converted to the 

deuteromethyl- and methylated products 3p and 3q in 75% and 76% yield, respectively. 

A current limitation of the methodology is that aliphatic aziridines give poor conversion to 
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the product, even with prolonged reaction times (3r). While styrenyl aziridines undergo 

preferential cleavage at the substituted site governed by the weak benzylic C-N bond 

strength,22a aliphatic aziridine 1r undergoes methylation to give the linear product 3r in 

9:1 selectivity, likely due to a change in mechanism favoring addition of Ni to the least 

sterically encumbered position.11b

We next explored the scope of the acetal partner using 2-(4-fluorophenyl)-1-(p-

tolylsulfonyl)aziridine (1a). Traditionally, β-aryl β-alkyl-substituted ethylamines have been 

accessed via hydride ring-opening of 1,2-disubstituted aziridines;31 hydroaminomethylation 

of styrenes with anilines;32 or reduction of β-aryl β-alkyl nitriles,33 nitro alkanes (or 

alkenes),34 and enamides.35 However, these methods require prior installation of the β-

substituent whereas the Ni/photoredox aziridine alkylation would enable introduction of 

the β-alkyl group late in a synthetic sequence. In so doing, this method could be more 

amenable to SAR studies36 and the preparation of a common motif in medicinal agents 

such as venlafaxine (antidepresent)37 and baclofen (muscle relaxants).38 Indeed, we found 

that deuteromethyl (3s) as well as other unactivated linear alkyl groups such as ethyl 

(3t), n-propyl (3u), n-pentyl (3v), isoamyl (3w), and adamantly ethyl (3x) all afforded the 

desired products in 49–83% yield. Moreover, β–substituted alkyl coupling partners such as 

neopentyl (3v) were effective in the reaction. As another example, a methylene cyclobutyl 

group could be transferred in 51% yield (3z), wherein both the direct cross-coupling (3z1) 

and the radical ring-opened terminal alkene (3z2) were observed in a 4:1 ratio. Alkyl groups 

bearing nitrogen-derived functional groups previously reported to be incompatible with 

Negishi couplings of aziridines11a were tolerated, such as phthalimide 3aa and piperidine 

3ab. Ether (3ac) and silyl (3ad)-containing alkyl coupling partners also afforded the cross-

coupled products in synthetically useful yields.

We were also excited to observe reactivity between 2° alkyl coupling partners and aziridines, 

given that cross-coupling of 2° alkyl groups with aziridines is not feasible under reported 

Negishi conditions.11,13 Moreover, 2°–2° C─C bond formation presents a particular 

challenge in cross-electrophile strategies, with only a few examples reported to date.6d,e 

When testing the reactivity between 2° alkyl coupling partners and aziridines, we found 

that application of 5,5’-difluoro-2,2’-bipyridine rather than dtbbpy as ligand enabled higher 

conversion to the desired product (See supporting information III-E for details). Both cyclic 

and acyclic secondary alkyl groups underwent coupling. The reaction was most efficient 

with cyclobutane derivatives (3ae and 3af). A decrease in yield was observed as the ring 

size was expanded to cyclopentylation (3ag). Interestingly, use of isopropyl acetal as the 2° 

coupling partner afforded cross-coupled product with a 1:1.5 ratio of branched and linear 

propyl groups (3ah). Isomerization was also observed when using an unsubstituted aziridine 

as coupling partner (3ai), indicating that isomerization is not restricted to only congested 

2°–2° C─C bond formation (vide infra).

Interestingly, in cases where the alkyl scaffolds are commonly employed laboratory solvents, 

we found that direct C(sp3)–H alkylation can take place. For example, rather than employing 

benzyl alcohol or tetrahydrofuranol, we found that it is possible to directly employ toluene 

and THF as alkylating reagents to afford 3aj and 3ak in 50% and 66% yields, respectively 

(Scheme 1), with slight variation on the reaction conditions.
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Possible mechanistic pathways

Oxidative addition of aziridines to Ni(0) has been established in stoichiometric studies,22 

with the resulting Ni(II) azametallacycle proposed as a common catalytic intermediate in 

cross-coupling reactions with aziridines.11-13,15,16,23 Therefore, at the outset of our reaction 

design, we initially hypothesized that oxidative addition of Ni(0) I to generate an Ni(II) 

azametallacycle II would be operative; subsequent capture of the alkyl radical to generate 

Ni(III) III followed by reductive elimination would furnish the desired product (Scheme 1, 

eq1). Alternatively, Ni(II) complex IV could instead arise via oxidative addition of Ni(0) 

to benzylbromide 7 generated in situ, given the catalytic presence of bromide in solution 

(Scheme 1, eq 2).19,23b

Nevertheless, the generation of linear/branched isomers using acyclic secondary alkyl 

reaction partners appeared inconsistent with these pathways (Table 2, 3ah, 3ai). In 

particular, β-hydride elimination and reinsertion should be more favorable at a low-valent 

Ni(I) VI center as opposed to the Ni(III) intermediate III in eqs 1 and 2 since isomerization 

necessitates a vacant coordination site and an intermediate with a relatively long lifetime.39 

Interestingly, the intermediacy of a Ni(I) alkyl VI would imply that aziridine activation takes 

place by Ni(I)–Ni(III) oxidative addition, an elementary step that does not have precedent 

in stoichiometric studies for aziridines (Scheme 1, eq3). Or an analogous Ni(I)–Ni(III) 

pathway could also be proposed with benzyl bromide 7 (Scheme 1, eq 4). The Ni(I) alkyl 

VI intermediate could either be accessed via radical addition to the Ni(0) I, or via radical 

addition to Ni(I)Br VII to first generate Ni(II)(alkyl)(Br) VIII, followed by SET.

Mechanistic Investigations

To interrogate the mechanism of aziridine activation, we first sought to synthesize the Ni(II) 

II oxidative adduct and test its intermediacy in the coupling reaction (Scheme 2, eq1). 

Complex IIa was independently synthesized by reacting Ni(cod)2 with 1a in the presence 

of dtbbpy (Scheme 3A). The stoichiometric reaction of IIa under the standard reaction 

conditions did not result in the formation of product. Instead, IIa underwent conversion 

(30%) to a mixture of aziridine dimer 4a, sulfonamide 5 and reduced aziridine (See 

supporting information V-A for details). To determine if IIa accesses a catalytically-relevant 

intermediate and if the attached aziridine in the Ni complex can be directly converted to 

the desired methylated product, a cross-over experiment was designed using p-CF3 styrenyl 

aziridine 1b as a substrate in the presence of 10 mol % azametallacycle IIa as the sole 

nickel catalyst source (Scheme 3B). However, less than 1% of the product originating from 

IIa (3a) was obtained, whereas the product from 1b was formed in 32% yield. These 

results provide evidence against the pathway shown in Scheme 1, eq 1. Furthermore, when 

a time-course experiment was performed, IIa was never spectroscopically observed (see 

supporting information V-A for details).

Next, we investigated the intermediacy of benzylbromide 7, pertinent to Scheme 1, eq2 or 

eq4, which could be generated by the 7.5% of bromide (2.5% from NiBr2·glyme and 5% 

from LiBr) in the reaction mixture. When benzyl bromide 7a was subjected to the reaction, 

only 1% of the product was generated. Instead, the majority of bromide 7a was converted to 

dimer 4a and reduced aziridine 8 (Scheme 4A).
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When 7a was used in catalytic quantities in the presence of aziridine 1b, as a way to 

simulate the catalytic formation of 7a under the standard condition, 1.6% of the product 

originating from 7a was observed, whereas the product derived from 1b was formed in 51% 

yield (Scheme 4B). Based on these observations, we propose that any in situ generated 7 
most likely leads to off-cycle byproducts, presumably via oxidative addition of the benzyl 

bromide or halogen abstraction to generate the benzylic radical, followed by free-radical 

recombination, a common off-cycle pathway in aryl benzylation with benzylic halides.40

Oxidative addition of aziridines via Ni(I)–N(III) pathway

Taken together, these data are most consistent with a pathway wherein Ni(I) undergoes 

oxidative addition to the aziridine (Scheme 2, eq 3). Since this step has not been previously 

observed, we sought direct experimental evidence for the stoichiometric oxidative addition 

of Ni(I) to aziridine 1a. Unfortunately, an isolable dtbbpyNi(I)(alkyl) complex has not 

previously been prepared. However, in their investigation of the reactivity of CO2 at Ni(I), 

the Martin group reported the synthesis of a (mesityl-phenanthroline)Ni(I)(CH2t-Bu) VII 
(Scheme 5).41 Therefore, we sought to test this Ni(I) alkyl complex for oxidative addition 

reactivity with 1a. Prior to exploring stoichiometric studies with VII, we established that 

mesityl-substituted phenanthroline (L2) gives similar yield as dtbbpy (L1) in the catalytic 

reaction. Indeed, mesityl-substituted phenanthroline afforded 33% yield of 3v, in close 

agreement with the 36% yield of 3v seen with dtbbpy (Scheme 5A).

Having confirmed the catalytic competence of L2, we turned our attention to the 

stoichiometric reaction (Scheme 5B). VII was generated in situ, by adding a solution 

of neopentylMgBr to L2Ni(I)Br,32 with the resulting complex then subjected to aziridine 

1a. This led to a full consumption of the aziridine, affording 11% of the cross-coupled 

product 3v and 28% of enamide 9, which could result from oxidative addition at the Ni(I) 

center, followed by elimination.42 It is possible that enamide 9 serves as a source for 

sulfonamide formation 5, which is observed under the catalytic conditions with L1 and L2. 

Taken together, these data support the catalytic relevance of a Ni(I) species for aziridine 

activation.

Having established the catalytic relevance of Ni(I), we sought to gain further insight into 

the mechanism of oxidative addition at Ni(I) by subjecting enantioenriched aziridine (R)-1d 
(99% ee) to the standard reaction conditions (Scheme 6). We found that the product 3d is 

obtained in 0% ee, while the aziridine was recovered in 99% ee at an early time point (8h 

instead of 20h). This is consistent with either (a) an irreversible and stereoablative oxidative 

addition via single electron-transfer11a or (b) a stereospecific oxidative addition followed by 

racemization at Ni(III) [Scheme 2, eq1].43

Hammett analysis

To understand the mechanism of aziridine activation via Ni(I), we evaluated the impact 

of aziridine substitution (Hammett analysis) on the relative rate of methylation and on the 

branched/linear ratio of product arising from alkylation with i-Pr acetal 2aa. If isomerization 

of the Ni(i-Pr) occurs prior to oxidative addition, aziridines that undergo faster oxidative 

addition to Ni(I) should afford higher branched/linear ratios of the product according to 
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the proposed mechanism (Scheme 7A).44 Moreover, the ρ value measuring the impact of 

aziridine substitution on the b/l isomer ratio with i-Pr acetal 2aa should be the same as the 

ρ value measuring the impact of aziridine substitution on rate of methylation (kX/kH) in this 

mechanistic scenario.

Two sites of the aziridine were independently evaluated: the benzene sulfonamide (Scheme 

7B) and the benzylic arene (Scheme 7C). When the substituents on the benzene sulfonamide 

were varied, we observed a high linear correlation between the log[(b/l)k]/[(b/l)H] ((b/l)k 

= branched/linear ratio of various arene substituents, (b/l)H = branched/linear ratio of Ph) 

with a positive ρ value (R2 = 0.98, ρ = 1.1) (Scheme 7B). The positive, but relatively low 

magnitude, slope indicates that electron-withdrawing groups on the sulfonamide facilitate 

faster oxidative addition. Notably, a similar ρ value was obtained for the Hammett analysis 

measuring relative initial rates of methylation (R2 = 0.87, ρ = 1.0) using these same 

substituted aziridines, providing support for the proposed mechanism wherein the b/l ratio is 

influenced by relative oxidative addition rates (see Supporting Information V-E).45 When the 

electronics of the benzylic aryl group were modified and plotted against Hammett–Brown 

constants σ+,46 or with Jiang’s spin-delocalization substituent constants σJJ
• (indicative of a 

radical stabilization effect),47 a slightly negative but near 0 value slope was observed with 

log [(b/l)k]/[(b/l)H] (for σ+, R2 = 0.76, ρ = −0.15; for σJJ
• R2 = 0.87, ρ = −0.15) (Scheme 

7C). This indicates that the identity of the benzylic arenes has negligible impact on oxidative 

addition rates.

The distinct ρ values obtained when varying the arene on the sulfonamide versus the arene 

on the benzylic site, combined with the results on the stereochemical course of the coupling 

reaction, are most consistent with a single electron transfer oxidative addition, where Ni(I) 

reduces the aziridine to generate a Ni(II)-sulfonamide complex and a benzylic radical, 

which is followed by fast recombination of the tethered benzylic radical to afford Ni(III).11a 

The observed LFERs are inconsistent with a concerted oxidative addition, which would 

be expected to have positive ρ values of similar magnitude for both experiments48 or an 

oxidative addition via an SN2-type process, which has been shown to result in negative ρ 
value of larger magnitude (ρ < −1) in prior examples of Ni-catalyzed coupling reactions with 

styrenyl aziridines.49

It is worth pointing out that the observed ρ values are also inconsistent with the participation 

of benzyl bromide 7a as a productive intermediate in the catalytic cycle (Scheme 1, eq 2 

or 4). Steeper slopes (ρ > ∣5∣) are found in Hammett studies for Ni(I) oxidative addition to 

substituted benzyl bromides.50 Furthermore, the Hammett analysis precludes the possibility 

of β–H elimination and reinsertion occurring at Ni(III), which has been proposed in prior 

studies,51 as more electron-deficient arenes on the benzylic site would also be expected to 

lead to faster reductive elimination and reduced isomerization (i.e.. both ρ values > 0).

Proposed Catalytic Cycle

On the basis of our mechanistic investigations, we propose the following catalytic cycle 

(Scheme 8A, black). Upon irradiation with blue light, the excited Ir photocatalyst oxidizes 

bromide anion. The resulting bromine radical can abstract the 3° benzylic C–H of the 

benzaldehyde dialkyl acetal, followed by β–scission to generate the alkyl radical and ester 
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byproduct.21b Concurrently, the NiBr2·glyme precatalyst can be reduced to Ni(0) I by Ir(II) 

to enter the Ni catalytic cycle, which can capture the alkyl radical generated from the β-

scission event to afford Ni(I)(alkyl) I. Alternatively, NiBr2·glyme precatalyst can be reduced 

to generate Ni(I)Br, which in turn could intercept the alkyl radical to first generate Ni(II)(Br)

(alkyl) followed by SET to generate the same Ni(I)(alkyl) I intermediate.52,53 Based on 

our stoichiometric, catalytic and spectroscopic observations, we propose that Ni(I)(alkyl) 

I undergoes oxidative addition to the aziridine by a single electron transfer mechanism. 

Reductive elimination from the resulting Ni(III) III complex then affords the cross-coupled 

product with regeneration of Ni(I) VIII. Finally, VIII would be reduced by the Ir(II) species 

to turnover the catalytic reaction.54

We also identified off-cycle pathways that lead to undesired byproducts (Scheme 8A, gray). 

For instance, if aliphatic radical generation by HAT/β-scission or trapping by Ni is slow, 

Ni(0) I oxidative addition to the aziridine would afford Ni(II) azametallacycle II and 

resulting degradation products. Moreover, any generation of benzylbromide 7 could lead 

to undesired dimer 4 and reduced aziridine 8. Sulfonamide 5 and styrene formation may 

arise from inefficient cross-coupling, on the grounds of observing enamide 9 formation 

using Ni(I) oxidative addition in the stoichiometric studies. This proposed competition of 

light-mediated cross-reactivity with off-cycle speciation pathways is further supported by 

comparing the relative product and dimer formation with varying light intensity (Scheme 

8B, see supporting information V-F for details). For example, when performing a time-

course study comparing the ratio of product 3a to dimer 4a at high versus low light intensity 

(64 kLux, vs 4.5 kLux), the lower light intensity conditions result in the formation of nearly 

1:1 ratio of the desired product to the dimer. Suppression of off-cycle speciation is therefore 

partially dependent on having sufficient light penetration to favor the productive catalytic 

pathway.

CONCLUSION

In conclusion, we have developed a C(sp3)–C(sp3) cross-coupling methodology between 

aziridines and benzaldehyde dialkyl acetals as latent alkyl radical sources. The 

transformation employs a diverse set of styrenyl aziridines with varying substitution on 

the sulfonamide. Moreover, methyl, 1° and 2° unactivated aliphatic coupling partners can 

be installed efficiently. The orthogonal activation of each coupling component and ligation 

at distinct Ni oxidation states imparts cross-selectivity between two C(sp3) precursors. 

Specifically, mechanistic studies support a pathway for activation of aziridines via Ni(I)

—Ni(III) oxidative addition, distinct from the commonly proposed oxidative addition of 

aziridines to Ni(0). These mechanistic studies shed light on the nature of the activation 

modes for unconventional C(sp3) precursors, which we anticipate can lead to the expansion 

of C(sp3)—C(sp3) cross-coupling methodologies in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cross-electrophile and redox-neutral metallaphotoredox coupling with C(sp3) 
precursors.
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Scheme 1. Alkylation of aziridine via direct incorporation of C-H substrates
Reactions were performed on 0.2 mmol scale, with two Kessil lamps and a fan for cooling.
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Scheme 2. Possible mechanistic pathways for accessing Ni(III) to enable product formation.
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Scheme 3. Crossover experiment and stoichiometric studies with azametallacycle IIa.
1-fluoronaphthalene was used as the external standard for 19F NMR yield.
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Scheme 4. Reactivity of benzylbromide 7a.
(A) Reaction performed 0.1 mmol scale using stoichiometric amount of benzylbromide 7a 
vs. (B) catalytic amount of benzylbromide 7a (0.01 mmol) and aziridine (0.09 mmol). Ar1 = 

p-F-benzene Ar2= p-CF3-benzene. Yields are based on 0.1 mmol 1-fluoronaphthalene as the 

external standard by 19F NMR.
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Scheme 5. Stoichiometric studies with Ni(I) complex.
(A) Control experiments with L1 (4,4’-di-tert-butylbipyridine) and L2 (2,9-dimesityl-1,10-

phenanthroline) (B) Reactivity of L2Ni(CH2t-Bu) complex VII with aziridine 1a.
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Scheme 6. Alkylation of enantioenriched aziridine.
Reaction was performed on 0.2 mmol scale. Isolated yields are reported.
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Scheme 7. Hammett plot analysis.
(A) Isomerization of branched to linear alkyl species at Ni center. (B) Hammett plot of 

branched vs linear product against varying substituents on aryls on sulfonamide and (C) 

styrenyl arene. Reaction was performed on 0.2 mmol scale using under standard condition.
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Scheme 8. Proposed mechanistic pathway and off-cycle pathways.
a Strong light emission: 50% light intensity where the vials were placed 3 cm away from the 

Kessil lamp, maintained at 38 °C. Weak light emission: 25% light intensity where the vials 

were placed 20 cm away from the Kessil lamp while heating in an oil bath at 38 °C.
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Table 1.

Optimization of aziridine alkylation with benzaldehyde dialkyl acetals.

Entry Acetal
equiv [Ni]

Light
intensity

/no. of lamps

Temp
(°C)

Yield (%)

3 (rsm) 4 5 6

1 1.8 Ni(COD)2 25%/1 25a,b 22 (59) 3 12 7

2 1.8 Ni(COD)2 25%/1 25b 32 (50) 2 10 7

3 1.8 Ni(COD)2 25%/2 28b 68 4 10 6

4 1.8 Ni(COD)2 50%/2 31b 70 4 5 6

5 2.4 Ni(COD)2 50%/2 31b 79 4 7 5

6 2.4 Ni(COD)2 50%/1 26b 34 3 22 5

7 2.4 Ni(COD)2 50%/1 38c 72 5 7 5

8 2.4 NiBr2•glyme 50%/1 38c 82 6 5 4

9 1.1 NiBr2•glyme 50%/1 38c 58 10 8 7

10 1.8 NiBr2•glyme 50%/1 38c 68 8 10 7

11 2.4 NiBr2•glyme 50%/1 38c 47 11 12 3

12 2.4 NiBr2•glyme 50%/1 38c,d 65 7 14 5

Reactions performed on 0.1 mmol scale, with 1-fluoronaphthalene as the external standard (19F NMR yield for 3,4,6, 1H NMR yield for 5). 
Entries 1-2 were performed at 0.04M, and entries 3-10 were performed at 0.057M. For reactions with 25% intensity, vials were placed 1.5 cm away 
from Kessil lamp and for 50% intensity, vials were placed 3cm away. Entries without (rsm) showed full conversion of the aziridine.

a
NH4Br was used instead of LiBr

b
Three fans were used to cool the reaction.

c
No fans were used to cool the reaction.

d
Reaction was setup on the benchtop under an inert atmosphere. Reaction with either no light, no photocatalyst, no nickel, or no nickel/ligand all 

gave 0% yield of the desired product.
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