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Abstract 

Planar turbulent jets are of great interest in a broad range of engineering applications such 
as combustion, propulsion and environmental flows. The influence of the turbulence intensity at 
the inflow, the shear layer momentum thickness, as well as the effects of discrete forcing on the 
initial development of the jet are studied computationally. It is found that the inflow fluctuation 
intensity and shear layer momentum thickness have significant impact on the initial growth of 
the jet .. Higher fluctuation intensity and thinner shear layers lead to more rapid growth of the jet 
with an asymptotic approach of the centerline turbulent kinetic energy to the self-similar alues. 
The influence of the shear layer thickness suggests a strong dependence of the initial growth 
on the shear layer instabilities near the nozzle. Two-dimensional discrete forcing enhances the 
growth and two-dimensionality of the large-scale structures in the near field of the jet. However, 
significant three-dimensional small-scale structures coexist with the large-scale structures. The 
influence of the forcing is rapidly lost downstream as the large-scale structures break down. 

1 Introduction 

The flowfield near the nozzle in planar turbulent jets is initially dominated by the shear layers at 
the jet edges. Michalke and Freymuth [1] showed that near the nozzle lip, the most strongly growing 
disturbances are those corresponding to the shear layer. The shear layers spread downstream and 
interact to form a fully developed jet. Sato [2], Rockwell and Niccolls [3] as well as Antonia, et 
ai. [4] showed that near the jet nozzle, the large-scale structures in the flowfield are predominately 
symmetric for flat exit velocity profiles. When the shear layers interact downstream these struc
tures reorganize into an asymmetric configuration in the fully developed region of the jet. This 
reorganization as the flowfield develops from the shear layers near the nozzle to the fully developed 
jet downstream has a strong influence on the mixing in this region of the jet which is not well 
understood. 

While the developing region of planar turbulent jets is of considerable engineering interest, most 
studies of turbulent plane jets have concentrated on the self-preserving region far downstream where 
the turbulence is fully developed. Bradbury [5], Gutmark and Wygnanski [6] and Ramaprian and 
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Chandrasekhara [7], as well as numerous others, measured statistical quantities in the self-preserving 
region while Oler and Goldschmidt [8, 9], Antonia, et al. [4] and Mumford [10] studied the organi
zation of the large-scale structures in the fully-developed region. Thomas and Goldschmidt [11, 12], 

- Thomas and Chu [13] and Thomas and Prakash [14] are perhaps the only researchers to concen
trate on the study of the transition from the shear layer dominated region near the nozzle to the 
fully-developed region of the jet downstream. In general, however, they concentrated on the spectral 
development and reorganization of the large-scale structures. Thomas and Goldschmidt identified 
both symmetric and asymmetric modes in the near field of the jet and suggest that the asymmetric 
modes are due to resonant forcing by the large-scale structures downstream. Thomas and Chu fur
ther confirmed the upstream feedback and suggest that it results from the loss of symmetry of the 
large-scale structures downstream of the end of the potential core. Finally, Thomas and Prakash 
studied the evolution from the shear layer modes near the nozzle to the jet column mode down
stream in an "untuned" jet, where the subharmonic growth process in the shear layer is incapable 
of obtaining the jet mode, fJt =f. f;z/2 n . 

Namer and Otiigen [15] performed a parametric study of the effects of Reynolds number on the 
initial development of the jet. They found that as the Reynolds number increases, the jet develops 
more rapidly in the near field. They also observe stronger overshoots in the downstream development 
of the centerline turbulence intensities for lower Reynolds number jets. 

The purpose of this study is to characterize the influence of the jet nozzle conditions on the 
downstream evolution of the jet using direct numerical simulation, DNS. The effects of nozzle fluc
tuation intensity and shear layer momentum thickness on the jet growth, centerline mean velocity 
decay as well as centerline fluctuation intensity are discussed below. In addition, the influence of 
symmetric and antisymmetric forcing at discrete frequencies on the evolution of the near field of the 
jet is studied. 

2 Numerical Techniques 

The unsteady, compressible, Navier-Stokes equations for an ideal gas are solved in the following 
form. Conservation of mass, 

(1) 

conservation of momentum, 

(2) 

where, 
2 

Tij = (8j Ui + 8iuj) - 3c5ij8kUk (3) 

and the equation for conservation of energy written as an evolution equation for the pressure, 

. 1 1-1 
8 tp + u i8iP + 1P8iUi = Pr Re 8i 8iT + Re""Tij8iUj (4) 

The Euler terms in these equations are marched in time using the low-storage, fourth-order Runge
Kutta integration scheme of Carpenter and Kennedy [16]. This low-storage scheme requires only 
one additional array for each flowfield variable, thus reducing the memory requirements relative to 
the classical Runge-Kutta scheme. In addition, this is a five-stage scheme for which the additional 
stage is added to increase the overall stability of the scheme. .While this scheme does require an 
additional evaluation of the right-hand-side of the governing equations, the relaxed stability criteria 
makes the scheme 40% more efficient. 

The viscous and conduction terms in equations 1-4 are evaluated using a first-order integration 
scheme. This is implemented by advancing the Euler terms as described above and then evaluating 
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and advancing the viscous and conduction terms with the first-order scheme. This technique requires 
20% less computational work than advancing all of the terms using the Runge-Kutta scheme and 
has negligible impact on the results for the conditions of the jets in this study. The viscous and 
conduction terms are small compared to the advective terms and the Courant-Friedrichs-Lewy, CFL, 
criterion requires a time step small enough that first-order accuracy is sufficient. 

A nonuniform fourth-order compact derivative scheme is utilized to evaluate the spatial deriva
tives. This scheme generalizes the uniform compact derivatives of Lele [17] to nonuniform meshes. 
This central derivative scheme is closed at the boundaries using inward biased, nonuniform, third
order compact derivatives based on the uniform derivatives of Carpenter, Gottlieb and Abar
banel [18]. The normal second-derivatives, 82 / 8x2, 82

/ 8y2, and 82 / 8z2, are evaluated using nonuni
form, compact, second-derivative formulae while the cross derivative terms, 82 /8x8y, etc., are evalu
ated using two successive applications of the first-derivative formulae. This compact 3-4-3 derivative 
scheme allows the simulation of problems on an open, non-periodic, computational domain while 
maintaining an overall fourth-order accuracy on the nonuniform physical grid. 

All finite difference schemes generate their largest errors at the highest wave numbers supported 
by the computational grid, Kx = 1/(2~x). In order to eliminate these high wave number errors, a 
nonuniform fourth-order compact filter is utilized. As with the nonuniform derivatives, the nonuni
form compact filters generalize the uniform filters of Lele [17] and provide fourth-order accuracy 
in the physical grid spacing ~x. This filter is tuned to significantly affect only wave numbers 
kx > 0.85/(2~x) so that the filter does not remove dynamically significant scales of motion. All 
flowfield variables are filtered at the end of each time step. 

One of the greatest difficulties in the simulation of spatially evolving flows is the formulation of 
the boundary conditions required for the open computational domain. In general, the flow occurs 
in an infinite or large physical domain, however in simulations it is required to truncate the domain 
to the region of interest. During this truncation, information about the flowfield is lost. At the 
inflow boundary, the governing equations are solved in a characteristic form. The time variation of 
the incoming characteristic variables are specified while the equation for the outgoing characteristic 
variable is solved using internal biased derivatives. This treatment of the inflow plane allows the jet 
to be forced with proper specification of the characteristic variables. In addition to this characteristic 
inflow forcing, a simple exponential damping term of the form 

8t (pu) = Standard Terms - u (pu - p u) (5) 

is added to the streamwise momentum equation at the inflow plane. In this expression, u = 0.22 
and p and u are the mean density and velocity profiles. These weak damping terms are added to 
neutralize the the long-time effects of the weak numerical diffusion, inherent in all high-order central 
difference schemes, on the inflow profiles. The weak damping terms coupled with the characteristic 
forcing provide steady mean profiles while allowing the desired fluctuation intensity about this mean. 

For the downstream and sidewall boundaries, the nonreflecting boundary conditions of Thomp
son [19, 20] are used. The form of. these conditions is allowed to switch between nonreflecting inflow 
and outflow at each point on the boundary based on the sign of the instantaneous local normal 
velocity. The corner points on the outflow boundary are treated as nonreflecting at an angle 45 
degrees from the two adjacent boundaries. At all outflow points, the pressure correction terms of 
Rudy and Strikwerda [21] and later discussed by Poinsot and Lele [22] 

(6) 

where, 
(7) 

are utilized in conjunction with the nonreflecting boundary conditions. In these expressions, ni is 
the normal to the boundary, Win is the incoming characteristic variable and Ain is the propagation 
velocity. Mmax is the maximum Mach number in the domain, L is a characteristic dimension of 
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the domain, c is the local speed-of-sound and the constant cr = 0.25. In the spanwise direction the 
domain is periodic. 

In addition, a Perfectly Matched Layer, PML, buffer zone based on that of Hu [23] is utilized 
on the sidewall and downstream boundaries to further isolate the interior of the domain from the 
effects of the boundary conditions. In this technique a region is added at the boundary in which 
the grid is stretched in the normal direction. In this stretched region, exponential damping terms 
are added to the governing equations of the form (written for the density equation on a boundary 
whose normal is in the x-direction) 

OtP = Standard Terms - cr(x) (p - p) (8) 

where, 

(

X - x*)!3 cr(x) = crm -y;;:- (9) 

In these expressions, x* is the location of the interface between the buffer zone and the domain 
interior and Lb = X max - x* is the length of the buffer zone. This term acts to damp the density to 
the specified value, p, across the buffer zone. Constant values of crm = 2.0 and (3 = 2.0 are used on 
all three nonreflecting boundaries. On the sidewall boundaries, the streamwise velocity is damped 
to the co-flow velocity while on the outflow boundary the streamwise velocity was damped to the 
profile of Bradbury [5] . 

(10) 

where"., = y/8u and 6.uc = U(y = 0) - U2 is the centerline velocity excess. A target jet growth 
rate of 8u /h = 0.1235(x/h - 0.873) is used. The lateral velocity is damped to the profile given by 
the requirement that the mean field remain divergence free, OiUi = 0.0 on the outflow boundary and 
to zero on the sidewall boundaries. The value of the centerline velocity excess, b".uc , in the outflow 
buffer zone is selected to maintain the same excess momentum flux 

J = p i: U (U - U2) dy (11) 

at the outflow plane as was present at the inflow. The spanwise velocity is damped to zero on all 
boundaries and the pressure and density are damped to the constant inflow conditions. The grid 
stretching in the buffer zones is given by a simple geometric progression with a 5% stretching ratio. 

The mean streamwise velocity profiles in the shear layers on either side of the jet at the inflow 
are given by a hyperbolic tangent profile, 

u = U1 
; U2 + U1 

; U2 tanh [y/(200 )] (12) 

where 00 is the shear layer momentum thickness, while U1 and U2 are the velocities of the high- and 
·low-speed streams, respectively. This profile is mirrored across the centerline to obtain a top-hat 
profile with smooth edges. The mean lateral and spanwise velocities are zero at the inflow. The 
mean pressure and density profiles are uniform initially, however a small variation across the jet is 
generated due to the outgoing acoustic. 

Two types of forcing are utilized in the simulations discussed herein, broadband and discrete. 
The broadband forcing is designed to provide energy to the flowfield in a range of scales characteristic 
of those present in an actual turbulent flow in order to increase the rate at which the jet evolves 
from the top-hat profiles present at the inflow to self-similar profiles downstream. This broadband 
forcing is performed by generating a volume of data with a three-dimensional energy spectrum given 
by 

(13) 
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Table 1: Inflow parameters. 

Case (} / h qbb/ D..U qdisc/ D..U 
A -0.05 0.10 0.0 
B 0.05 0.05 0.0 
C 0.05 0.025 0.0 
D 0.09 0.05 0.0 
E 0.025 0.05 0.0 
F 0.05 0.05 0.02 (Symm.) 
G 0.05 0.05 0.02 (Asymm.) 

and a profile across the jet such that the fluctuation intensity peaks in the shear layers. This 
velocity field is generated to be divergence free. The corresponding pressure field is calculated by 
solving OkOkP = -POjUiOiUj and the density is specified by P = p/c2 where c is the mean speed-of
sound. By calculating the density fluctuations in this way, the production of entropy at the inflow 
is reduced. This box of data is then convected past the inflow plane as the solution is integrated in 
time using a constant convection velocity, Uc = (U1 +U2 )/2. A sixth degree interpoiating polynomial 
is utilized to obtain the velocity, pressure and density fields which are then used to calculate the 
incoming characteristic variables. Forcing the inflow with a finite length time series in this way 
introduces a low frequency component due to the periodicity of the inflow data. However, with a 
carefully designed time series, such that the periodic frequency at the inflow is far from the dominant 
frequencies in the flowfield, this has minimal effect. 

The discrete perturbations are added to the inflo~ forcing using analytic formulae for divergence 
free perturbation velocities consisting of a combination of sines and cosines. The discrete forcing in 
the cases discussed below is purely two-dimensional and includes energy in the most unstable and 
first subharmonic mode from the linear-stability analysis of the hyperbolic tangent shear layers on 
either side of the jet. A phase shift of 7r /2 is imposed between the fundamental and subharmonic 
modes. 

The computational grid used in this study are generated using a simple geometric progression, 
D..Yi+l = A i !1Yi. In the streamwise, x, direction, the grid is uniform everywhere except in the buffer 
zone at the outflow. In the lateral, Y, direction the grid is uniform in the region -4.0h < Y < 4.0h 
around the core of the jet where h is the jet nozzle width at the inflow plane. In the spanwise, z, 
direction the grid is uniform throughout. 

3 Results and Discussion 

The variation of the physical parameters for the simulations discussed herein is given in Table 1. All 
of these simulations are at a jet Reynolds number, Reh = phD..U / J.L = 3000 and a convective Mach 
number, Me = D..U /(Cl + C2) = 0.16. While these simulations are performed using the compressible 
Navier-Stokes equations, they are essentially incompressible due to the low convective Mach number. 
The velocity ratio, 'T/ = D..U /(U1 + U2 ) is 0.83 and the Prandtl number, Pr = CpJ.L/k = 0.72. 

All of the calculations in this study are performed on a grid of physical dimensions, Lx = 
13.5h + 1.6h, Ly = 13.4h + 2.8h and Lz = 4h where h is the jet nozzle width. For all cases except E 
the computational grid is 205 x 189 x 60 and the grid spacing in the interior of the computational 
domain is D..x = D..y = D..z = 0.066h. For case E the computational domain is 205 x 277 x 60 and 
the grid spacing is D..x = D..z = 0.066h and D..y = 0.033h. The finer grid spacing in the y-direction 
is required to resolve the shear layer lll'lar the nozzle in this simulation. 
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Figure 1: Mean streamwise velocity profiles, caseA. --x/h = 0.0, ......... x/h = 4~0, --x/h = 
11.5, 0 Gutmark and Wygnanski [6), 0 Ramaprian and Chandrasekhara [7). 

3.1 Comparison with Experimental Data 

Figure 1 shows the mean streamwise velocity profiles at several downstream stations for case 
A compared against the experimental data of Gutmark and Wygnanski[6) and Ramaprian and 
Chandrasekhara[7). The sharp initial shear layer profiles can be seen for the station x = O.Oh. For 
this case, the mean streamwise velocity profiles exhibit self-similarity for stations downstream of 
x = 4.0h. This station is very near the point at which the two shear layers on either side of the 
jet first merge. As can be seen, good comparison with experimental data for turbulent plane jets is 
observed. 

Analysis of the self-similar region of planar turbulent jets predicts a linear relationship between 
the jet half-width, bu, and the downstream coordinate, x, 

b~ = K 1u [~ + K 2U] (14) 

For case A the constants in this relationship are K 1u = 0.094 and K 2u = 0.904. The growth 
rates, K 1u , are a little low compared to the values of 0.100 of Gutmark and Wygnanski and 0.110 
from Ramaprian and Chandrasekhara. In general, there is a great deal of scatter in the virtual 
origins, K 2u . Ramaprian and Chandrasekhara reported a virtual origin of -1.0 while Gutmark and 
Wygnanski reported -2.0. However, values for the virtual origin ranging from -5.0 (Browne, et 
al. [24)) to 2.16 (Hussain and Clarke [25)) have been reported experimentally. These values are 
extremely sensitive to inflow conditions as will be discussed below. 

Analysis of the self-similar centerline velocity decay predicts an inverse-squared relationship 
between the centerline velocity excess, 6.uc , and the downstream coordinate, x, 

(15) 

where !:lUo is the centerline velocity excess at the jet nozzle. The constants in this expression for 
case A are C1u = 0.208 and C2u = -0.577. The centerline velocity decay rate, C1u , compares 
relatively well with the experimentally observed values ranging from 0.093 (Ramaprian and Chan
drasekhara [7)) to 0.220 (Thomas and Chu [13), Thomas and Prakash [14)). The value of Ramaprian 
and Chandrasekhara is lower than other observed values. However, they found that by using a 
scaling that accounts for variations in the conservation of streamwise momentum, the range of the 
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Figure 2: Streamwise Reynolds stress profiles, caseA. --x/h = 10.0, ......... x/h = 11.5, D Gutmark 
and Wygnanski (6), 0 Ramaprian and Chandrasekhara [7]. 
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Figure 3: Lateral Reynolds stress profiles, caseA. --x/h = 10.0, ......... x/h = 11.5, D Gutmark 
and Wygnanski (6), 0 Ramaprian and Chandrasekhara [7]. 

centerline velocity decay rates from different experimental studies was reduced. Using the scaling 
suggested by Ramaprian and Chandrasekhara, their value for C1u becomes 0.168 while the value 
for the current DNS is 0.183. Unfortunately, unsufficient data is available to calculate the adjusted 
values from Thomas and Chu and Thomas and Prakash. These corrections have insignificant effects 
on the jet growth rates and virtual origins. 

For brevity, only a limited comparison of these results against experimental data is discussed 
here. For a more detailed analysis of a single simulation, as well as a more complete comparison 
with the available experimental data see Stanley and Sarkar [26, 27]. 

3.2 Influence of the Inflow Fluctuation Intensity 

In most experimental studies, the fluctuation intensity at the jet nozzle is only reported on the 
centerline. However, due to the boundary layers upstream, the fluctuation intensity peaks in the 
shear layers on either side of the jet. Since the peak mean shear is also in the shear layers near the 
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Figure 5: Downstream evolution of the jet half-width for different broadband inflow intensities. 
-q/!1U = 0.025, ·········q/!1U = 0.05, --q/!1U = 0.10 

nozzle, it is clear that the fluctuation intensity in this region of the jet will have a strong influence on 
the initial downstream evolution. In order to characterize the influence of the fluctuation intensity 
on the initial development of planar jets, results from three simulations, cases A, Band C, with 
different broadband intensities at the inflow plane are presented .. It is believed that the broadband 
intensity in case C is relatively typical of that in experimental studies with laminar boundary layers 
while the broadband intensity in case A is closer to that which would occur in a jet exiting from a 
turbulent channel. 

Figures 4 and 5 show the variation with broadband inflow forcing intensity of the evolution 
of the centerline mean velocity excess and the jet half-width, respectively. It is clear from these 
figures that the inflow fluctuation intensity has a strong influence on the initial growth of the jet. 
When the inflow fluctuation intensity is increased from qbb/ !1Uc = 0.025 to 0.10 the length of the 
potential core, based on the constancy of the centerline mean velocity excess, decreases from 6h to 
3h. However, in the self-similar region downstream, the jet grows at nearly the same rate and the 
centerline velocity excess decays at nearly the same rate for all inflow fluctuation intensities. 

Table 2 gives the parameters for the self-similar fits of the jet half-width and the centerline mean 
velocity excess for all three cases. It can be' seen that there is a strong increase in the magnitude 
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Table 2: Variation of the jet growth and centerline velocity decay coefficients with inflow fluctuation 
intensity. 

b 
~ 

Case 
A 
B 
C 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 
0.0 

0.10 
0.05 
0.025 

0.094 
0.100 
0.102 

0.904 
-0.280 
-1.02 

~/ 
// 

// 
/ ... / 

// 
/ .. , . ......... 

5.0 
x/h 

0.212 
0.216 
0.228 

10.0 

-0.760 
-1.78 
-2.64 

15.0 

Figure 6: Downstream evolution of the centerline turbulence intensity for different broadband inflow 
intensities. -q/!1U = 0.025, --------- q/!1U = 0.05, --q/!1U = 0.10 

of the virtual origins, K 2u and C2u , for increasing inflow fluctuation intensity. There is also a slight 
decrease in the jet growth rates, K 1u , and centerline velocity decay rates, C1u . While this change is 
small, it is consistent across the range of qbb/ !1Uc studied. It is likely that this variation is a result 
of the focus on the developing region of the jet and that self-similar fits further downstream would 
show less influence of the nozzle conditions. 

Figure 6 shows the variation of the downstream growth of the centerline turbulent kinetic energy 
with changes in the inflow fluctuation intensity. As expected, the initial growth of the centerline 
turbulent kinetic energy is more rapid for the highest inflow fluctuation intensity than for the small
est. The region of strong growth in the turbulent kinetic energy shifts from ~ 3.5h to ~ 7.0h with 
a decrease in the broadband forcing intensity from 0.10 to 0.025. However, near the outflow of the 
domain, the centerline turbulent kinetic energy for the cases with lower intensity inflow fluctuations 
exceeds the turbulent kinetic energy for the highest inflow fluctuation intensity. For qbb/ !1Uc = 0.10 
the centerline turbulent kinetic energy, K/!1U2 , grows asymptotically to a value ~ 0.07. Gutmark 
and Wygnanski [6] observed a centerline turbulent kinetic energy of 0.075 while Browne, et ai. [24] 
found 0.05. However for lower intensity fluctuations at the inflow, the centerline turbulent kinetic 
energy overshoots to values of 0.08 and 0.09 in the DNS. With a longer computational domain, it is 
speculated that a slow decay would be observed downstream to the values more typical of turbulent 
planar jets. 

Figure 7 shows the downstream evolution of the ratio of the turbulent kinetic energy, K, to 
the dissipation, €, on the jet c.enterline for these three simulations. The evolution of this ratio 
is an indicator of the relative state of equilibrium of the turbulence. It can be seen that near 
the inflow this ratio is large, small dissipation relative to the turbulent kinetic energy, indicating 
that the turbulence is highly non-equilibrium. Downstream, the dissipation grows relative to the 
turbulent kinetic energy and this ratio approaches a value of ~ 6.5 for all three inflow fluctuation 
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Figure 7: Downstream evolution of the turbulent kinetic energy to dissipation ratio on the jet cen':: 
terline for different broadband inflow intensities. --" q/ AU = 0.025, ......... q/ AU = 0.05, 
--q/AU = 0.10 

intensities .. For qbb/ AU = 0.10, the turbulent fields approach equilibrium quickly downstream in 
the jet as indicated by the rapid approach of AUK/(8uf.) to the equilibrium value. However, for 
the lower inflow fluctuation intensities, the development of equilibrium turbulence is slower. This 
relatively larger region of non-equilibrium turbulence for smaller inflow fluctuation intensities allows 
the overshoot in the turbulent kinetic energy downstream in the jet. 

Similar overshoots in the turbulent kinetic energy were observed by Namer and Otiigen [15] 
and Browne, et al. [24]. Namer and Otiigen also observed an influence of the jet Reynolds number 
on the overshoot in the turbulence intensities. They found that jets with lower initial Reynolds 
numbers, Reh, developed larger overshoots in the centerline streamwise fluctuation intensity. A 
large overshoot was observed for a Reh = 1000 jet while for Reh = 7000, no overshoot was observed 
in the streamwise fluctuation intensity .. 

3.3 Influence of the Shear Layer Momentum Thickness 

The momentum thickness of the shear layers at the jet nozzle are often quoted in studies of planar 
jets. However, no consistent study of the influence of the initial shear layer thickness on the devel
opment of the jet has been performed. In order to understand the influence of the initial momentum 
thickness, three simulations have been performed with varying shear layer thickness. Cases D, B 
and E have initial momentum thicknesses, eo, of 0.09h, 0.05h and 0.025h, respectively. The initial 
fluctuation intensity for all of these cases is qbb/ AU = 0.05. 

Figures 8 and 9 show the effect of varying the shear layer momentum thickness on the center
line mean excess velocity decay and the jet half-width. While the shear layer conditions are often 
ignored when comparing the evolution of jets from different studies, the current results demonstrate 
unequivocally that the shear layer momentum thickness is an important parameter in the charac
terization of the initial region of planar turbulent jets. When the shear layer momentum thickness 
decreases from 0.09h to 0.025h, the length of the potential core of the jet based on the constancy of 
the centerline mean velocity excess decreases from 6.0h to 3.5h. Likewise, there is a strong shift in 
the location at which the jet width grows strongly from 6.0h to 2.0h. 

As shown above for the inflow intensity, the decrease in the shear layer momentum thickness is 
most strongly felt in the virtual origins in the self-similar fits of the jet half-width and the centerline 
velocity decay, Table 3. There is a strong increase in the virtual origins, K 2u and C2u , with a 
decrease in the momentum thickness. There"is also a significant influence of the inflow momentum 
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Table 3: Variation of the jet growth and centerline velocity decay coefficients with initial shear layer 

momentum thick.=on=§e~ss~.=:::::::;:;:==;=;==:;:;::===;=;:===:::::::;:;==:::::::;;;== 
Case (}o/h K 1u K 2u C1u C2u 

D 0.09 0.098 -1.66 0.224 -2.74 
B 0.05 0.100 -0.280 0.216 -1.78 
E 0.025 0.082 2.44 0.160 1.47 
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Figure 10: Downstream evolution of the centerline turbulence intensity for different initial shear 

layer momentum thicknesses. --(}o/h = 0.025, ......... (}o/h = 0.05, --(}o/h = 0.09 

thickness on the jet growth rates, K1u , and centerline velocity decay rates, C1u ' There is an 18% 
change in the jet growth rates and a 28% change in the centerline velocity decay rates over the range 
of momentum thickness studied. In contrast, there is only an 8% change in the growth rates and 
velocity decay rates for the range of inflow forcing intensity discussed above. While the change in 
the centerline velocity decay rate is consistent across the range of momentum thickness, the change 
in the jet growth rate is not. Again, it is likely that this influence of the nozzle conditions on the 
downstream growth and centerline velocity decay rates is a result of the focus on the developing 
region of the jet. 

Figure 10 shows the downstream evolution of the centerline turbulent kinetic energy for the three 
simulations. Decreasing the shear layer momentum thickness has a similar influence on the centerline 
turbulent kinetic energy as the increase in the inflow fluctuation intensity discussed above. As the 
shear layer momentum thickness is decreased, the region of strong growth in the turbulent kinetic 
energy shifts towards the nozzle from ~ 6.0h to ~ 3.0h. For the smallest shear layer thickness, the 
centerline turbulent kinetic energy grows very strongly and asymptotes rapidly to a value of 0.06. For 
the thicker shear layers, the growth in the turbulent kinetic energy is slower and an overshoot, with 
respect to self-similar values reported in experiments and observed in the DNS with (}o/h = 0.025, 
occurs near the outflow of the domain. 

As above, the asymptotic growth of the centerline turbulent kinetic energy for (}o/h = 0.025, 
while an overshoot occurs for the thicker initial shear layers, can be related to the rate at which the 
turbulence approaches an equilibrium state downstream. Figure 11 shows the downstream evolution 
of the ratio of the turbulent kinetic energy to the dissipation for the jets with differing inflow shear 
layer thicknesses. Again, near the inflow the turbulence is highly non-equilibrium. For (}o/h = 0.025 
the fluctuating velocity fields rapidly develop to equilibrium turbulence while for the thicker initial 
shear layers this evolution is slower. The' difference in the evolution of the turbulent fields to 
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equilibrium for a change in the inflow momentum thickness is more dramatic than was observed 
earlier for variations in the inflow fluctuation intensity. For Bolh = 0.09 the fluctuating. fields remain 
highly non-equilibrium until downstream of x ~ 6.0h where there is a very rapid increase in the 
dissipation relative to the turbulent kinetic energy, decrease in t:1UKI(8u E). This is followed by a 
much slower approach downstream to equilibrium turbulence. This slow approach to equilibrium 
allows a large overshoot in the turbulent kinetic energy downstream in this jet relative to the jet 
with Bolh = 0.025. 

3.4 Influence of Discrete Forcing on the Jet Development 

This section discusses the influence of forcing the jet inflow plane using discrete forcing at the 
shear layer fundamental and first subharmonic frequencies. Forcing at frequencies associated with 
the shear layers, rather than the downstream jet mode, is utilized since the experimental work 
of Michalke and Freymuth [1] show that the strongest growing modes near the nozzle in natural 
developing planar jets are those of the shear layer. However, it would be of interest to perform 
comparisons with forcing at the jet mode as well. The two discretely forced cases, F and G, include 
a broadband forcing at the inflow plane with an intensity of qbbl t:1Uc = 0.05 superimposed with the 
two-dimensional discrete forcing with qdiscl t:1Uc = 0.02, Table 1. Case F is forced symmetrically 
with respect to the centerline while case G is forced asymmetrically. While the broadband' intensity 
is larger, the energy is spread across a large range of scales. The energy in the discrete forcing, on 
the other hand, is concentrated at only two frequencies and provides roughly an order of magnitude 
larger energy in these modes than is present in the broadl?and spectrum at the same frequencies. 

Figures 12(a) and 13(a) show the spanwise vorticity contours on an xly-plane (z = O.Oh) and an 
x I z-plane (y = 0.5h), respectively, for case A. This case has no discrete fq.rcing and serves as the 
unforced reference for the two discretely forced cases. For this simulation, there are no "strong" large 
scale structures in the flowfield near the nozzle. For simulations with broadband inflow conditions, 
the strongest growing mode near the jet nozzle is the shear layer mode (see Stanley and Sarkar [26]). 
However, there is a rapid growth in the energy at all scales due to nonlinear interactions and no 
strong large-scale structures appear in the visualization. The lack of contour lines at x = O.Oh in 
Figure 13(a) indicate that the spanwise vorticity contours are relatively two-dimensional near the 
jet nozzle. However, there is a rapid increase in the three-dimensionality downstream. By x = 5.0h 
strong small-scale, three-dimensional, structures are present in the flowfield. 

13 



• 

2 

~O 

-2 

0 5xJh 10 

(a) Broadband forcing only. 

2 

~O 

-2 

0 5xJh 10 

(b) Symmetric discrete forcing. 

2 

~O 

-2 

0 5xJh 10 

(c) Asymmetric discrete forcing. 

Figure 12: Spanwise vorticity contours on an x/y-plane (z = O.Oh). 
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Figure 13: Spanwise vorticity contours on an x/z-plane in the upper shear layer, (Y.= O.5h). 

15 



2.4 

2.0 '. 
N 

9' 
<l 1.6 
-"'0 

~ 
'-' 

1.2 

0.8 
0.0 5.0 10.0 15.0 

xIh 
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--Unforced, ......... Symmetrically forced, --Asymmetrically forced. 

Figures 12(b) and 12(c) show the spanwise vorticity contours on an x/y-plane for the symmetri
cally and asymmetrically forced planar jet simulations, respectively. While the large-scale structures 
did not show strongly in the visualization of the vorticity field for the unforced case, for the dis
cretely forced simulations the large-scale structures are very evident. In case F, strong symmetrically 
oriented structures are present in the flowfield in the region 3.0h ~ x ~ 7.0h, while in case G the 
structures are arranged asymmetrically. It is interesting to note that accompanying the large-scale 
structures in both simulations there exists a great deal of small-scale three-dimensional structures. 
Downstream in the jets, x > 7.0h, there is a strong breakdown of the large-scale structures to 
small-scale turbulence in both forced simulations. 

Figures 13(b) and 13( c) show the spanwise vorticity contours on an x / z-plane in the upper shear 
layer for the two discretely forced simulations. While there is considerable three-dimensionality on 
the smaller-scales, the large-scale structures present in the region 3.0h ~ x ~ 7.0h are strongly 
two-dimensional (indicated by the sharp break between the region of high vorticity and low vorticity 
at x· = 6.0h for all values of z). This is a result of the fact that the discrete forcing at the inflow 
plane is two-dimensional. In Figure 13(b), small-scale three-dimensional structures present within 
the two-dimensional large-scale vortical structure can be seen in the region 5.0h ~ x ~ 6.0h. In 
this region, the x / z-slice in Figure 13(b) passes thorough the large-scale structure in the upper half 
of the jet. The breakdown of the two-dimensional large-scale structures downstream is evident in 
Figure 13(b) by the lack of two-dimensionality for x > 6.0h. In the region downstream, the strong 
growth in the three-dimensional small-scale turbulent structures overwhelms the two-dimensional 
forcing at the inflow. 

Figures 14 and 15 show the downstream evolution of the centerline velocity decay and the jet 
half-width for the two discretely forced jets as well as the unforced reference. While the discrete 
forcing does influence the jet growth and centerline velocity decay in the region 3.0h ~ x ~ lO.Oh, 
the effect is relatively small. The strongest effect is observed in the asymmetrically forced jet. 
Downstream, x > 10.0h, the jet half-width and centerline velocity excess collapse with that of the 
unforced jet. For the symmetrically forced jet, case F, the effect of forcing is smaller and the collapse 
to the unforced behavior occurs more rapidly. Thus, discrete forcing influences the mean fields in 
the region near the jet nozzle, however downstream the mean field does not feel the effect of the 
inflow forcing. 

While discrete forcing has little influence on the mean stream wise velocity field downstream, it 
is evident from Figure 12 that discrete forcing does influence the growth of the vorticity field in the 
jet. Comparison of Figures 12(a) and 12(c) shows that, for this instant in time, the asymmetric 
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Figure 16: Downstream evolution of the centerline streamwise fluctuation intensity for forced jets. 

--Unforced, ......... Symmetrically forced, - - Asymmetrically forced. 

forcing results in an increase in the downstream spread of the vorticity in the jet. This effect results 
in wider profiles, across the jet, of the turbulent kinetic energy and dissipation for the forced jets 
compared to the unforced jet. At x/h = 11.5 the turbulent kinetic energy profiles, not shown, for 
the symmetrically and asymmetrically forced jets are 12% and 18% wider, respectively, than the 
profile for the unforced jet. 

Figure 16 shows the downstream evolution of the streamwise Reynolds stress on the jet centerline 
for the two discretely forced jets as well as the unforced jet. It can be seen that symmetric forcing 
at the inflow dramatically increases the growth in the centerline longitudinal Reynolds stress. This 
is largely an effect of the enforced symmetry of the large-scale structures in the near field of the jet. 
The influence of the asymmetric forcing on the streamwise Reynolds stress is significantly smaller, 
although there is some impact in the region 3.0h ~ x ~ 7.0h. Downstream, the centerline streamwise 
Reynolds stress for both of the discretely forced jets collapses to that of the unforced jet. There is 
no significant influence of discrete forcing on the downstream evolution of the streamwise Reynolds 
stress (not shown here) in the shear layers (y = ±O.5h). 

Figure 17 shows the downstream evolution of the lateral Reynolds stress on the jet centerline 
for the two discretely forced jets as well as the unforced jet. There is no significant impact of 
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Figure 17: Downstream evolution of the centerline lateral fluctuation intensity for forced jets. 

--Unforced, ......... Symmetrically forced, --Asymmetrically forced. 

symmetric discrete forcing on the evolution of the centerline lateral Reynolds stress due to the 
enforced symmetry of the large-scale structures. Symmetric large-scale structures do not impose 
lateral fluctuations at the centerline of the jet, therefore turbulent transport of the lateral Reynolds 
stress from the shear layers is still the dominant means by which the centerline values grow initially. 
Asymmetric forcing, however, does strongly increase the downstream growth in the lateral Reynolds 
stress. The asymmetric large-scale structures impose large lateral fluctuations at the centerline of 
the jet. The lateral Reynolds stress on the centerline for the asymmetrically forced jet peaks rapidly 
and remains relatively constant through the remainder of the domain. With the domain size used in 
these simulations, a relaxation of the lateral Reynolds stress in the asymmetrically jet back to the 
unforced valu~s is not observed. In contrast to the streamwise Reynolds stress, both the symmetric 
and asymmetric forcing cause an increase in the downstream growth of the lateral Reynolds stress 
(not shown here) in the shear layers (y = ±O.5h). 

There is negligible influence of the symmetric forcing o~ the spanwise Reynolds stress and only a 
small influence of asymmetric forcing. This is a result of the two-dimensional nature of the discrete 
forcing used in this study. It is expect that some energy would transfer from the streamwise and 
lateral components of the Reynolds stress to the spanwise component through the pressure-strain 
terms. However, it appears this effect is small. 

4 Conclusions 

While the flowfield conditions in the shear layers at the nozzle of planar jets are seldom reported 
in detail, it is clear from the current results that they have a significant impact on the initial 
development, 0.0 < x/h < 10.0, in these flows. Variations in the broadband fluctuation intensity in 
the shear layer as well as the shear layer momentum thickness significantly affect the rate at which 
the jet develops downstream. This is felt most strongly in the virtual origins of the jet half width 
and decay of the centerline velocity excess. Higher broadband fluctuation intensities or thinner shear 
layers lead to more rapidly developing jets with an asymptotic approach of the centerline turbulent 
kinetic energy to the self-similar values. Thicker. shear layers or lower intensity inflow fluctuations 
result in an overshoot of the centerline turbulent kinetic energy. This overshoot is a result of the 
initial imbalance in the strong growth of the turbulent kinetic energy, through the production terms, 
and dissipation for these jets. The self-similar values downstream in the jet are reached when the 
appropriate balance between the production; dissipation and transport is achieved. The influence of 
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the shear layer thickness suggests that the initial development of the jet is dominated by the shear 
layer instabilities. 

Two-dimensional discrete forcing at the inflow plane of planar turbulent jets has a significant 
impact on the initial development of the centerline streamwise and lateral Reynolds stresses. This 
influence, however, appears to be predominantly due to the enforced symmetry or asymmetry, as well 
as two-dimensionality, of the large-scale structures near the inflow. Symmetric forcing enhances the 
growth of the streamwise Reynolds stress with no impact on the lateral Reynolds stress while asym
metric forcing primarily affects the lateral Reynolds stress at the jet centerline. The two-dimensional 
discrete forcing has only a small affect on the downstream jet growth and centerline velocity decay 
as well as on the spanwise Reynolds stress. In general, discrete forcing, especially asymmetric forc
ing, enhances the growth and two-dimensionality of the large-scale structures near the jet nozzle, 
however, within the interior of the structures significant small-scale three-dimensionality is present. 
Downstream, these large-scale structures rapidly breakdown under the influence of the small-scale 
turbulence and the influence of the discrete forcing is felt only in the lateral Reynolds stress. The 
streamwise and spanwise Reynolds stresses as well as jet growth and centerline velocity decay rapidly 
collapse with those of the unforced jet downstream. 
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