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ABSTRACT 

The one-photon self-energy radiative level shift of an electron 

in a Coulomb field is examined. An expression for the level shift 

which is suitable for direct numerical evaluation, for Z in the range 

10-1l0, is obtained. It is based on the }mown Coulomb radial Green I s 

functions and not on a power series expansion in ~. In the 

following paper, the numerical evaluation of the level shift for the 

lS1 state is described. 
'2 
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I. INTRODUCTION 

The lowest order radiative corrections to the energy levels in 

a hydrogen-like system arise from the' electron self energy and the 

vacuum polarization which correspond to the Feynman diagrams in Figs. 

lea) and i(b), respectively (1]. In these figures, the double line 

represents propagation of the electron in a static external Coulomb 

field with nuclear charge number Z. We are concerned here with the 

evaluation of the bound-state level shift associated with the electron 

self energy, for Z in the range 10-110. The vacuum polarization 

term· has been considered in detail elsewhere (2]. 

Theoretical evaluation of the radiative level shifts in 

hydrogen-like systems with Z not small is of particular interest in 

view of the recent advances in experiments performed with these 

systems. Measurements of the Lamb shift in hydrogenic carbon C5+ 

and in hydrogenic oxygen 07+ have been made (3), and the feasibility 

of working with higher Z systems has been demonstrated by the measure­

ment of the lifetime of the 281 state in hydrogenic sulphur 8+15 
2 

and in hydrogenic argon Ar+17 (4). The theoretical values of the 

radiative level shifts in a hydrogen~like system are also useful as an 

approximation to the radiative level shifts of the innermost electrons 

in heavy atoms [5]. Values for the radiative level shift due to self 

energy for a Coulomb potential are not expected to be applicable to 

the lower levels in heavy muonic atoms, because of the importance of 

the finite nuclear size in these systems [6]. 

The self-energy radiative level shift was first calculated 

nonrelativistically to lowest order in za by Bethe [7]. The lowest 

order term was subsequently calculated relatiVistically, and evaluaticn 

of successively higher order terms followed that. To display the 
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results of these calculations, we express the level shift in the form 

2 m c e (1.1) 

where 

- 2 -2 2 2 -2 3 ( .+ A61(za) £n(za) + A62(za) £n (za) + ~o(za) + .... 1.2) 

In Table I,. we have listed the values of the coefficients Aij for 

the lS.!. state and the articles in which th.ese values, or values for 
i2 

~ other states, are gi ven. Only the self-energy contribution is included 

in that table. Values for F(za) which result from evaluating terms 

up to a given order in za in the series in (1.2) are plotted as 

functions of Z in Fig. ·2. These curves give an indication of the 

nature of the con'/ergence of the series in (1.2) as a function of Z. 

The truncated series represent the function poorly for Z near 20, 

and appear not to be useful approximations for the function for larger 

Z. 

-Evaluations of the self~energy level shift for large Z have 

b.een made. Brown and Mayers calculated the. level shift· of the 

state for. Z = 80 [15] using a method developed by Brown, Langer, and 

.·Schaefer [16] .... hich is valid for large Z. Desiderio and Johnson, 

working with a generalization of that method ,evaluated the level shift 

of the IS.!. state in a Coulomb potential for Z = 70, 75, 50, 85, 90 
i2 

and evaluated the level shift of the lS~ state in a screened Coulomb 

potential for Z = 70, 71, 72, "', 90 (5]. Erickson has obtained an 

expression for the radiative level shift which is valid (approximately) 

for all za and agrees, by construction, with the small za 

-Table 1. Values of the coefficients in Eq. (1.2) 

for the lS1 state. 
2" 

Coefficient Reference 

B Be the logarithm ~ -2.9841285558(3) 8 

A40 
4 II 3 -2.87 3"(B + 24 + g) ~ 9 

A41 
4 = 3 9 

~O 
4 11 1 n(l + 128 - 2' In 2) ~ 9·29 10 

4 -
A60 · = - 3(19.3435 ± 0.5) ~ -25·8 11,12 

A61 28 .en 2 21 
3 - 20 ~ 5.42. 13.,11 

A62 = -1 13,14 

A70 ~ 
4 ·6 3 n 9·5 ~ 40.0 12 
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expansion [12]. The results of these calculations are given, for 

comparison with the results of our calculation, in the following paper. 

In this paper,. we obtain an expression for the one-photon self-

energy radiative level shift which is suitable for direct numerical 

evaluation by a computer, for Z in the range 10-110. The standard 

expression for the level shift is not suitable for direct numerical 

evaluation for the following reasons. First, there is the difficulty 

associated with the well-known fact that the expression is formally 

infinite before mass renormalization. Second, the standard unrenorm-

ali zed expression is zeroth order in za while the net level shift is 

of order (za)4 .en(za)-2. Thus , direct calculation would involve, 

aside from the problem of dealing with formally infinite expressions, 

serious loss of numerical significance when the mass renormalization 

is carried out for za« 1. We note that the latter problem limits 

the effectiveness of the Brown, Langer, and Schaefer method to the 

region of large Z [16]. In the subsequent discussion, rearrangement 

of the expression for the level shift is made in order to overcome 

these difficulties to the extent that a numerical evaluation, for the 

range of Z under consideration,.is possible. The presentation is 

arranged as follows. In Sec. II the computational procedure, including 

the procedure for mass renormalization, i~ formulated. The e~ergy 

shift is divided into three parts: a part which we call the low-energy 

part 6EL, a part which we call the high-energy part ~, and the 

mass renormalization counterterm ~. An expression for ~ which 

is in a form suitable for numerical evaluation is given in Sec. III. 

In Sec. IV 6EH is divided into two parts ~ and6EHB , where 

6EHA is relatively easy to evaluate, and ~ is finite and of 

..8-

order {za)4. An expression for ~ suitable for numerical evalua­

tion is given in Sec. V. 

In the following paper, we describe the numerical evaluation of 

the energy shift for the case of the lSA state, and give the results 
2 

of that calculation. 

II. FORMULATION .OF THE PROBLEM 

The energy shift of an electron, in a bound state '" , due to n 

the virtual emission and reabsorption of one photon, is given by the 
, 1 

real part of (17,18] 

l:IEn 

(2.1) 

where '" (x) = '" (x) exp(-iE t) is the bound-state wave function in 
n n - n 

coordinate space; '" (x) is a normalized solution of the time-
n -

independent Dirac equation 

in which 

adjoint: 

° (2.2) 

v{~) = -za/l~l. The bar over the wave function denotes the 

* (x) = '" t(x)YO. To keep the terms in the energy shift 
n n 

separately finite, we use the covariant regulator method [19,20] in 

which the photon propagator in cOQrdinate space is expressed as 

(2: )4 J d
4

k 'Xp[ -ik(." - "1) J 

• [,2 ~ i, - .2 _ ~2 q, ] 
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The limit A ~~ is to be taken after the integrals in Eq. (2.1) have 

been evaluated. The free electron mass shift Sm, computed using the· 

. regulated photon propagator, is [19] 

(2.4) 

The propagation kernel SFe(x2'~) is given by 

The contour 

1 
2rci 

C , which appears in Fig. 3. F _ 

exp[-iz(t2 - t l )] • 

(2·5) 

extends from ~ to 

passing below the negative real axis and above the positive real axis. 

The Green's function G(~2'~1'z) is the kernel corresponding to the 

resolvent G(z) = l/(H - z), where H is the Dirac-Coulomb Hamiltonian. 

We consider the Green's function in the complex z-plane with cuts in 

the intervals (-~,-l] and [+l,~). The Green's function is an 

analytic function of z in the cut plane except at the bound state 

eigenvalues which lie on the real z-axis in the interval (0,1). 

x 

The energy shift 6En is then the limit as A ~~ of 

1 [exp(-bl~2 - ~ll) - exp(-b'l~ - ~ll)) 
~ll 

(2.6) 

where 

b -ieeE - z)2 + id~-n 
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b' 
221 

-ieeE -z) -A +iE]2 n 

The branches of the square roots are determined by the conditions 

Re(b) > 0 Re(b') > 0 (2.8) 

In order to facilitate the evaluation of (2.6), we change the 

contour of integration C
F 

to a new contour, and divide the integral 

into two parts which correspond to integrals over different portions 

CL and CH of the new contour. The integrand of the contour integral 

is an analytic function of z, except for the singularities of 

G(~'~l'Z) and the branch points of b and b'. These features of 

the integrand are depicted in Fig. 3. In that figure, cuts are 

drawn from z = 1 and z = -1 so that G(~2'~1'z) is a single-valued 

analytic function of z in the cut z-plane, except for the bound-state 

poles. Also, branch cuts are drawn from the singularities of b ·and 

b' in such a way that the conditions expressed in (2.8) are satisfied 

everywhere in the cut z-plane. Because of the analyticity of the 

integrand, we may deform .the contour of integration to the one shown 

in Fig. 4~ 

We now identify three parts of the energy shift ~n' The 

first part ~, which we shall call the "lo· .. -energy part", is the 

contribution to the integral in (2.6) from the integration along the 

contour CL' The contour CL begins at zl' passes around the square­

root singularity, and ends at z2' The second part is 6E
H

, the I~igh­

energy part", which comes from the integration along the contour CH' 

The contour C
H 

consists of two disconnected halves.· The first half 
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begins at the point -R - iO, extends along a quarter circle centered 

at the origin to the point -iR, and continues up the negative imaginary 

axis to zl. The second half begins at z2' extends up the positive 

imaginary axis to the point +iR, and continues along a quarter circle 

centered at the origin to the. point . +R +.10. The third part of the 

energy shift is the mass renormalization term ~ 

(2.9) 

The total energy shift is 

b.En = llEL + ~ + ~ (2.10) 

For these contributions, we are interested in the limit as € ~O+, 

as zl and z2 approach zero from below and above ·the real axis 

respectively, and as R ~oo. This limit will be considered first for 

~ and then for ~. 

III. THE LOW-ENERGY PART ~ 

The low-energy part of the energy shift is 

(3.2) 

I' is obtained by replacing b by b ' in the right-hand side of (3.2), 
L 
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and p = I~ - ~ I. We note that for A'> En' Ii. vanishes in the 

limit € ~ 0+ .and zl,z2 ~ 0, because the integrand of the integral 

over z is then an analytic function of z on and inside the contour 

C
L

• In (3.2), in the limit € ~O+, the singularlty of b and the 

pole of G(x2,x.,z) at z = E· 'coincide. In order to avoid any 
......, ""'..L n 

ambiguity, we temporarily add a small positive imaginary part i8 to 

z in .G(~2'~1'z). Figure 5(a) shows the singularities of the 

integrand in (3.2) after the imaginary. part has been added. In the 

lim! t £ -+ 0+ and zp z2 ~ 0, the contour of integration· C
L 

consists 

of two parts, as shown in Fig. 5(b): CB below the real axis, and 

CA above the real axis. As a result of the condition Re(b) > 0, 

stated in (2.8), we have 

b for· z on CB 

b = +i(En - z) - for z on CA 

Making the. appropriate substitutions from (3.3) in (3. 2), and deforming 

the contours CA and CB to line segments along the real axis, we 

obtain 

E. . 

~ I n dz f d3"'/~1 • n t( ~ "'. G(,"" "'-' z + is)d'. n (~) 
o 

In view of the equation 

sin[(En - z)p] 

{E - Z )p 
n 

x 
sin[(En - z)p] 

. p 
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where k = Ikl = E - z, we have 
~ n 

~U ~ ~ -ik.X). 
i8 a e • 

(3·6) 

Henceforth, the brackets <) denote the expectation value in the 

bound state 1Vn • In the term corresponding to Il = 0 in (3.6), we 

employ the relation 

2 < i~.~ 1 
k e H-E +k 

n 

, 0 •• o-ik.X) 
~ '" 

i8 e 

< 
ik.x -ik.X) 

+ ~.~ e ~ ~ H _ E : k _ i6 ~.~ e '" '" + <'(8) 
n 

to obtain 

~ 
ik·x· 

~ a j e 1 £ 
H - E + k - is a 

n 

-ik.X.) '" '" e • (3.8) 

In (3.8) and in the rest of this section, the limit 8 .... 0+ is 

understood. We note that except for the term cxEn/rr,· &:L is exactly 

... hat one would obtain using "old-fashioned" perturbation theory to 

calculate the energy shift due to the interaction of the electron with 

the transverse electromagnetic field, with the photon momentum' cut off 

at k = E • n 
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The portion of &:L of order lower than (za)4 £n(za)-2 is 

calculated exactly by making the substitution 

i~·~ 1 -i~.~ 
e H _ E + k _ i8 e . 

n 

)
-1 

(a·n - a·k + V + ~ - E + k - i8 
"'.~ ...... '" n 

in (3.8) and retaining only the first few terms in the expansion of 

the right-hand side of (3.9) in powers of' ~.~, V, and 1 - En. The 

justification for this procedure is discussed by Kroll and Lamb (21J. 

We find 

The expression in coordinate space corresponding to (3.8) is 

The real part of &:L is obtained by taking the Cauchy principal 

value of the integral over Z in (3.11). The bound-state wave 

function is written as 

1\1 (x) 
n '" 
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where 1.. !lex) . is the spin-angular function described in the appendix, It 

and flex) and f 2(x) are the components' of the radial wave function. 

The Green's function is written as a sum over eigenfunctions of the 

operator K as described in the appendix: 

~ [Gltll(X2'~'z)nlt(~'~) GIt12(x2,~,z)i~.~n_lt(x2'~) 

It 21 A A A 22 A A 

-GIt (~,xl,z)i~·~nlt(~'~) GIt (~,~,z)n_lt(x2'~) 

We then have 

It 

where I = 3 - i and j = 3 - j. Integration over all angles except 

A A ij( . '. ~ = ~·x1 in Alt ~,x1) yields 

Equation (3.15) continued next page 
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Equation (3.15) continued 

where P is the Legendre polynomial, p' is the derivative of P 
2 

with respect to the argument, and T(p) = sin[(En - z)p]/[(En - z) p]. 
21' 22 

The corresponding expressions for Alt (X2'~) and Alt (X2'~) can 

be obtained by taking advantage of the symmetry 

. 21' 
A (x2 ,x..) 

It,ltn J. 

In the special case of SJ" states __ Cit = -1), we have 
'2 . n 
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where j is the spherical Bessel function and Yi = (En - z)xi , 

i = 1,2. 

Values for Re{~L) can be obtained by numerically evaluating 

the expression in (3.14). Because terms of order lower than 

(za)4£n{za)-2 vanish when all contributions to the energy shift are 

combined, it is convenient, in view of (3.10), to express the results 

of the evaluation of Re{~L) 

by 

in terms of the function defined 

(3·18) 

In the preceding discussion, we propose evaluating ~ 

directly, i.e., there is no provision for extracting the terms of 

order lower than (za)4 £n{za)-2 before the numerical evaluation is 

performed. Hence, for Z not large, substantial numerical significance 

is lost in obtaining values for fL(za) from values of Re{~L)' It 

is possible, with a reasonable amount of computer time, to obtain 

-18-

highly accurate values for Re{~) by evaluating (3.14). An 

important factor in making this possible is the rapid convergence of 

the sum over K in that expression., The nature of the convergence is 

discussed in the following paper. The rapid convergence is, in turn, 

a consequence of our having,symmetrically combined the contributions 

to Re(~) from the contours of integration CA and CB to obtain 

(3.4) •. 'The_ sum over It corresponding to the separate contribution from 

either CA or CB converges so slowly that direct numerical evaluation 

to high accuracy would involve an excessive amount of computer time. 

IV. THE HIGH-ENERGY PART ~ 

The high-energy part of the energy shift is given by 

)( 

-:3<L 
H 

dZJ d3~G2 . 1 2 
k - (E - z) - i€ 
- n, 

-k~2""';""+-A-:2'---(~::'n---Z-)-=2-_-,0 a" a~--,p---CX-'''''k''';:::'''''''V'''--+--'-t3---Z ~ > 
(4.1) 

For fixed A, the integrand in (4.1) falls off so rapidly as Iz I 
and I~I ~oo that the integral over the portions of the contour CH 

which are quarter circles of radius R vanishes as R ~CX>. Therefore, 
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in (4.1), we replace the contour CH by the contour CH which is just 

the portion of C
H 

along the imaginary z-ans (see Fig. 4). 

In order to deal with the part of ~ of order lower than 

(~)4 and the part which becomes infinite as A ~~, we isolate in 
an expression which is relatively easy to evaluate the portion of 

~ which has these features. To do this, we take advantage of the 

identity., 

1 1 
~.~ - ~.~ + V + t3 - z ~.~ - ~.~ + t3 - z 

1 'V 1 
~.~ - q.~ + t3 - z ~.~ - q'~ + t3 - z 

+ 1 V 1 V 1 
~:£ - ~.~ + t3 - z ~'l? - ~.~ + V + t3 - z ~'l? - ~.~ + t3 - z 

(4.2) 
We substitute the right-hand side of (4.2) into (4.1), and consider 

the contribution of the last term in (4.2) to ~. That contribution 

has a finite limit as A ~~ which to lowest order in ~ is equal to 

;c~ £n 2 - t) (v2)NR 

where NR means that the expectation value is evaluated in thli Pauli­

schr'odinger approximation. The expression in (4.3) is of order (za)4, 

and hence the part of ~EH' which we wish to isolate arises from the 

first two terms on the right-hand side in (4.2). For the second of 

those terms, we write 

-20-

1 V 1 
~.~- ~.€ + t3 - z ~.~ - ~.~ + t3 - z 

(4.4) 

~e contribution of the last three te~ in (4.4) to ~ also has 

a finite limit as A ~~; that limit is equal, to lowest order in za, 

to 

~ {<.n 2 - tHp") .. + eft - ~ In 2)([~.~, [~.~,V]]) .. 

+ ej.n 2 - #)([pl, [pI, VlJ) .. } . 

This expression is also of order (za)4. We therefore write 

where 

(4.5) 

(4.6) 
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-v 21 2 - 2z(13 + z) V 21 Z2)2)cf/\ 
(~ -~) + 1 - z (~ -!:) + 1 -

-, The term aHA is just the part of ~ described in the beginning of 

this paragraph. The evaluation of LIE1m is discussed in Sec. V. We 

integrate over !: ip (4.7) and express the result as an integral over 

a parameter ~. Taking the equation satisfied by the state vector into 

account, we then have 

_icl(! 
21{ \ 

C' H 

2 2 1\ dZ(J(p ,b) - J(p ,b l »)/ 

where 

2 J(p ,b) 

.

+ (1 + _b_2 _--"-c2---=~ v] 2 

\.: (~+ b + c) !) P I 

1 _ 2z(2/3 _ z) 
+(~+b+c)2 c 

1 
x V 2 2 

p + (b + c) 

(4.8) 
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and where 

c Re(c) > 0 (4.10) 

The definition of b and b ' is given by Eqs. (2.7) and (2.8). For 

the terms containing 2 P in (4.9), we make the substitution 

1 (4.11) 2 . 2 
p + a 

In the expression corresponding to the first term on the right side 

in (4.11), the integral over ~ is performed easily. In the expression 

corresponding to the second term on the right side in (4.11), the 

integrand of the integral over z and ~ fallsoff sufficiently 

rapidly as Izl and ~ ~oo that the expression has a finite limit as 

II ~ cx>. We thus have 

(4.12) 

where 

~1 -~~< ( . Jel 
H 

(4.13) .'[J(O,b) - J(O'b')~ 

We integrate over z in (4.13) and arrange the expression so that the 

part of order lower than (7a)4 is isolated in terms proportional to 

the expectation values (/3) and (V): 

1 ex [r3 2 9) (1 1 7'\ . ~ =;- \1I.en II - g (/3) + 2".en 2 - 12.J (V) 

(4.14) 
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where 

[

(1 - E 2)(3 + 2E 2) 
. n n 1 

3E 2(1 + E 2) . - 2" .en 2 
n n. 

x 'n(l + E.o)] (V) + [ 11- 9 ~~/ 'n(l + En
2

) ] <~-I;;) ~ 
(4.15) 

We then consider 

. 2 m(f 2 
~ = - 2:rc Jet dz[.r(p ,b) 

H 

- .r(O,b)~ (4.16) 

We substitute the appropriate expressions obtained from the right-hand 

side of (4.9) into the integrand in (4.16). The result of integration 

over ~ and z is then given by 

llE 2 
HA 

where 

and 

~ <[EnQ1 (p2) + ~~(p2) + VQ3(p2) + ~ VQ4(l) ] p2). 

(4.17) 

j = 1,2,3,4 (4.18) 

-24-

~(p) 

(1 - E 2)(3E 2 - 1) 
nn ( ) + 4 Ao p 

BEn 
-1-6E-n .... 4....:(~=-n-+-P-) (8Bn 

2 

p - } + En ~ ~ 

A(p) 2 tn[l + (E + p)] , n 

x A(P) , 

1 

- 1 Q ---..!..-0 2E 2(E + p) '. p En + p 
n n . 

x A(p) , 

(4.19) 

.. 
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In (4.19), At denotes the tth derivative of A. We note that each 

function Q
j

(p2), j = 1,2,3;4, approaches a constant in the limit 

p2 ~O. In order to arrive at a convenient expression for the contri-

bution of each term in (4.17) to the net energy shift, we isolate the 

contribution of order lower than (za)4 in terms proportional to 

(v). The lower order contributions, which come from the terms con­

- • taining Q1 and ~ in (4.17), are identified by replacing Q1 (p2) 

and ~ (p 2) by the limits 

lim Q
1

(p2) 

p2-.0 

E -+1 n 

1 
10 

and lim ~(p2) 
2 

P ~O 

En-+1 

!. .en 2 7 2 - 20 

(4.20 ) 

We accordingly define four functions hj' j = 1,2,3,4, by the 

equations 

2 2 
(VQ3(P )p ) 

1 4 
- 10(V) + (za) ~ (:la) 

(4.21) 

These functions then have the property that they approach constants 

as za ~O. The constants are.given by 

-26-

",,(0) <",,)-4 ttg6 -t In 2)('\11 + <i" - in 2)(/V) .. 

+ (~ .en 2 - k){[~·~, [~'~'V]])NR} , 

(4.22) 

To facilitate evaluation of the h's, we employ the expression for the 

momentum space wave function given in (A.9) and the expression for the 

function given in (A.ll) to arrive at the following equations: 

2 
)( ~(p ) 

-1 roo 4 * * 2 
En J 0 . dp P (gl (P)(Vg)l(P) - g2 (p)(V~(P)]Q4(P ~ 

(4.23) 
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The functions h
j 

can readily be evaluated, for relevant values of 

za, by numerical integration o~er p in (4.23). 

where 

The total value of ~ is then given by 

4 

fHA1(za) + L hi (za) 
i=1. 

V. THE HIGH -ENERGY REMAnrn~ ~ 

(4.24) 

(4.25) 

The remainder of the high-energy part ~ is evaluated in 

coordinate space. The separation of ~ given by (4.6) and (4.7) 

corresponds to the separation of the resolvent G(z) into two parts 

and 

- z(~ +z) 
ex-_ '-1'-+=113-_ -z - ~ {V, 2 1 2 } 
-- - p + 1 - z 

{ 
1 } x V,' 2 2 2 

[p + 1 - z ] 

The curly brackets in (5.2) denote the symmetric product: 

(X,Y) = XY + YX. The symmetrization is introduced merely for 

convenience, and does not affect the result. 
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The coordinate-space representation of GA(z) is 

where 
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and where c is defined in (4.10). The F's in (5.4) are elements 

of the free radial Green's functions, and are given explicitly in 

(A.20). The expression in (5.3) is the analog of the expression in 

(3.13) for the Coulomb Green's function, and there exists a correspond-

ing expression for . GB(~'~'z) in which 

i,j = 1,2 • 

(5·5) 

That expression for GB(~2'~'z) is the basis for our numerical 

evaluation of ~ for which we employ the for~a 

x 

Substituting the expression for the wave function given in 

(3.12) and the expression for GB(~'~'z) described above into 

(5.6) yields 

= - ~~ i. dz f Ox,'-2
2 f 

H 
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where I = 3 - i and J = 3 - j. Integrating over all angles except 

" " () ij ( ~ = x2·~ in AK x2'~ and AK x2'~)' we obtain 

The corresponding expressions for AK21(X2'~) and AK22(~,~) are 

obtained by taking advantage of the symmetry expressed in (3.16). For 

Sl states, integration over ~ gives 
"2 
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-JI 11 l(ibx ) h(ll~1 .,(ibX-)1 
It~ ~ < It-rz 12 ;> 

in which x~ = min(~,xl)' ~ = max(~,~), j is the spherical 

Bessel function, and h(l) is the, spherical Hankel function of the 

first kind. 

It is convenient to express ~ in terms of the function 

fHB(ZO) defined by 

(5·10) 

The function fHB(ZO) approaches a constant as 'ZI:t. -+ O. In view of 

(4.3) and (4.5), the value of the constant is given by 
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i i } ([p ,[p ,V]])NR •. 

(5.11) 

The remainder L'lEHB can be evaiuated numerically with the aid 

of (5.7). The numerical cancellations, which correspond to the 

removal of ~ from ~, occur in forming the difference in Eq. 

(5.5). The individual terms in that difference can be calculated with 

sufficient accuracy that the numerical cancellation does not cause 

trouble. The separation shown in (5.1) and (5.2) leads to a function 

in the critical 

region (It, x
2

, ~ large, x2 _ ~) sufficiently well that the 

expression for ~ in (5.7) is a convergent integral over z of a 

function which is of order (ZO)4. We note that the removal of ~ 

from L'lEH before the sum over It or any integrals have been performed 

numerically is an essential feature of this calculation. If ~ 

were subtracted at a later stage of the computation, possibly after 

the sum over It and the integrals over ~. and ~. in (5.7) ~ere 

performed, then for Z not large there would be a substantial loss 

of numerical significance. This would necessitate a highly accurate 

evaluation of the sum and integrals, which, in turn, would require an 

excessive amount of computer time' due to the slow convergence of the 

sum over K. That sum is examined in the following paper. 
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VI. CONCLUSION 

The total value for the self-energy radiative level shift is 

obtained by adding the constituent parts: 

(6.1) 

The terms on the right in (6.1) appear in Eqs. (3.18), (4.24), (5.10), 

and (2:9) respectively. The last three terms in (6.1) are real-

valued quantities. We note that in each of the expressions listed 

above for the terms on the right in (6.1), the part of order lower 

than (za)4 .£n(za) -2 is expressed analytically in terms-of' -the 

expectation values (~) and (V). The sum of the lower order parts 

is zero. We thus have 

where 

F(za) 

2 
m c 

e (6.2) 

(6.}) 

In (6.2) it is understood that we mean the real part of the energy 

shift. Expressions suitable for the direct numerical evaluation of 

the functions on the right in (6.3) are given in the preceding 

sections. 

The contour of integration for the integral o,'ler z in (2.6) 

use4 in this calculation was chosen to be a convenient one with regard 

to the numerical work. The final contour consists of the real z-axis 

from zero to the bound-state energy and the imaginary z-axis. On both 

these portions of the contour, the quantity c, defined in (A.l?), 

1s real. This is convenient for the numerical evaluation of the 
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radial Green's functions. Another attractive feature of the contour 

of integration used here is the fact that it leads to the rapid 

convergence of the sum over K in (3.14~ discussed at the end of 

Sec. III. 

The numerical evaluation of the level shift of the lSI state 
2' 

is described in the following paper. We expect that the method of 

calculating ,the self-energy radiative level shift-which is -presented 

here and in the following paper could easily be extended to calculate 

the level shifts of the bound states with principal quantum number 

n = 2. 
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APPENDIX 

In this appendix, we discuss some relevant properties of the 

Dirac wave functions and Green's function for the case of a Coulomb 

potential. The Dtrac Hamiltonian is given by 

H(~) = a·x p + la.x ~ ! + Vex) + ~ , 
-- """'" x - x 

(A.l) 

where 

(A.2) 

and 

K = ~(~'k + 1) • 

The spectrum of K consists of all nonzero integers. A wave function 

which is a simultaneous eigenstate of H, of K (with eigenvalue 

-K), and of the third component of angular momentum Jz (with eigen­

value ~), is written as [22] 

ljr (x) 
n '" 

(A.4) 

where fl and f2 are the components of the radial wave function 

(corresponding to g and f in Ref. 22), and XK~ is a two­

component spin-angular function explicitly given by 
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(A.5) 

We use the notation 

(A.6) 

'" '" where ~ = ~.~, P is the Legendre polynomial, and P' is the 

derivative of P with respect to the argument; I is the 2 X 2 

identity matrix. 

The components fl and f2 of the radial wave function,_ which 

appear in (A.4), satisfY the radial differential equation 

o , (A.?) 
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Where En is the energy. We are interested in the case where the 

potential is the Coulomb potential: vex) = -za/x. For the lSI 
2 

(K = -1) state, the normalized solution is given by 

T = fa; 
N = (2r)3-25 

2r(3 - 25) 

(A.8) 

The momentum-space wave function is written in the form 

For the lSI state, we have 
'2 

. , 

cos[{2 - 5) tan- (~)] 
1 } 

M = 

- .' 2 2J.(2-5) per + p j2 

2 -.i2r)3-25 
r(2 - fl) - -1!ro - 25) 

(A.9) 

(A.IO) 
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The result of the action of the Coulomb potential on the state vector 

in momentum space is denoted by (V¢n) (e). It is obtained by taking 

the Fourier transform of v{x)w (x)~ We have 
n -

where 

(A.ll) 

YM~ 1.[Sin[8 tan-l(~)] coS[(l - 5) tan-l(~)]1 
E (1 - En}2 2 2 2 -1.5 - 2 2 1(1 5) J 

n 5p [r + p ] z . p[ r + p]2 - . 

(A.12) 

The Dirac ,Green's function 'G(~,~,z), which satisfies the 

equation 

(A.13) 

can be written as an expansion in eigenfunctions. of K [2,23]: 

G(~,~,z) 
It 

, (A.14) 
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~ere the summation extends over all possible values of K. 

ij ) The G
K 

(x2,xl ,z are the elements of the radial Green's functions, 

and they satisfY the equation 

x
2 

dx
2 

2, x
2 -!..~x +~1' G, 12("2''''-,z) 1. 

! 
-1 + v(~)- z I 

J 
GK (X21~'Z) 22 I 

(A.l5) 

For ~,> ~1 the radial Green's fUnctions for the Coulomb potential 

are given by the following,expressions: 

X [(K + 1) w 1 ,(2cx-) - W 1,(2CX1 )] 
c v-2'~ L v~,~ 

X [(K + 1) W 1 (2cxl ) + W ~ (2cxl )] 
c V~'A V'2,A 

Equation (A.16) continued next page 

.J 
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Equation (A.16) continued 

(1 - z) Q[(A - v) M 1 ,(2cx2) + (K -!) 
V~I'" c 

where 

Q 

n. 
v = c' 

(A.16 ) 

y.= za; 

and' ~,~(X) and Wa,~(x) are the Whittaker functions [24]. For 

~ > Xl' the radial Green's functions can be obtaine,d from (A.16) 

toget~er with the symmetry conditions 

11 
GK (xl'~,z) 

11 
GK (X2'~'Z) 

12 G
K 

(xl ,x2,z) 21 
GK (x2'~'z) 

(A.18) 

21 
GK (~,x2'z) l2( , ) GK ~,xl'z 

The radial Green's fUnctions are described extensively in Ref. 2. 

The free 'electron Dirac Green's function r(x x z) can also 
-2'-1' 

be written in the form given in (A.l4) with the G's replaced by 

. F's, where 
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i,j = 1,2 • 

For this case, the sum over K is known, and is just 

F(~,~,z) 

x ... x· - x.. =.:2 -.1 

-ex e 
~ 

x =Ixl • ... 

(A.19) 

(A.20) 

(A.21) 
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FOOTNoTE 

We employ units in which c="1l:=m ="1. e 
Four vectors have the 

form ° a= (a ,a). The scalar product of two four vectors a and 

b isab = aObO - a·a. We use the standard gamma matrices 

"i = 1,2,3· The 

o r =~; 
i i 

r "= ~ , 

~ are the usual Pauli matrices. For repeated 

Greek"indices, summation over 0,1,2,3 is implied; for repeated 

Latin indices summation over 1,2,3 is implied. We use the 
° 0 . . i i 

notation r~Af- = r A r -IA 1; a~A~ =A -a Aa. 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 
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FIGURE CAPTIONS 

The Feynman diagrams corresponding to the lowest order 

radiative corrections to the energy levels in a hydrogen~ 

'like system. The diagrams in (a) and (b) correspond to the 

electron self energy and the vacuum polarization respec­

tively. 

The curves labeled (4), (5), (6), arid (7) are the successive 

approximations to F(:lJ:X) which result from evaluating known 

terms of order up to ~th, ~th, ~th, and lth in the series 

in Eq. (1.2). 

The contourCF and the siniuJ-ari ties of the integrand in 

the complex z-plane. The points to the left ofz= +1 

represent the bound-state poles; En is the gro~d-state 

energy in this diagram. 

The new contour in the complex z-plane. 

The complex z-plane with the singularities of the integrand 

in Eq. (3. 2). In the upper diagram, the branch points of 

b are at En :t (-i€)i. As €-+Ot, the branch "points meet 

a t En. In the lower diagram, the cuts, which are drawn to 

insure Re{b)";> 0, meet at En and extend along the real 

z-axis. In this diagram zl = z2 = 0. 
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