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ABSTRACT

The one-photon self-energy radiative level shift of an electron

in a Coulomb field is examined. An expression for the level shift

vwhich is suitable for direct numerical evaluation, for Z in the range

10-110, is obtained. It is based on the known Coulomb radial Green's
functions and not on a power series expansion in Za. In the
following paper, the numerical evaluation of the lével'shift for the

18, state is deséribed.=

£
2

&4

I. INTRODUCTION
The lowest order radiative corrections to the enefgy levels in

a hydrogen-like system arise_from the electron self energy and the
vacuum polarization which cofresbond to the Feynman diagramsvin Figs.
1(a) and 1(b), respectivély [1]. 1In these figures, the double line
represents propagation of the electron in a static external Coulomb
field with nucléar charge numbéfi Z. We are concerned ﬁefe with the
evaluation of thg boﬁnd-state'level shift associated with the electron ‘

self energy, for Z in the range 10-110. The vacuum polarization

term has been considered in detail elsewhere [2].

Theoretical evaluation_of the radiative level shifts in
hydrogén-like systems with Z not small is of particular interest in
view of the recent advances in experiments performed with these |
systems. Measurements of the Lamb shift in hydrogenic carbon C5+

and in hydrogenic oxygen 0" have been made [3], and the feasibility

‘of working with higher Z systems bas been demonstrated by the measure-

ment of the lifetime of the 25, state in hydrogenic sulphur S+15

. 2
and in hydrogenic argon Ar+17 {4]. The theoretical values of the

- radiative level shifts in a hydrogén’-like system are also useful as an

- approximation to the rédiativg level shifts of the innermost electrons

in heavy atoms [5]. Values for the radiative level shift due to self

energy for a Coulomb potential are not expected to. be applicable to

~the lower levels in heavy muonic atoms, because of the importance of

the finite nuclear size in these systems [6].

The self-energy radiative level shift was first calculated
nonrelativistically to 1ers£.order in Zal by Bethe [7]. The lowest
order term was subsequently calculated relativistically, and evaluatim

of successively higher order terms followed that. To display the
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results of these calculations, we express the level shift in the fo;m

AE#v - %(z'a)h f(z:) mecz.,' (1.1)

" where
F(z) = Ay + Ay ) e As() + agy(2)°
+ A6"l(Za)2 n(za)”? + A62(Za)2v2n2(Za)-2 + A,?o(m)5 " . “(1.2)
In Table I, we have listed the ﬁalues of the ¢oefficientsv A.j for
the lS% state and the artlcles in which these values, or values for
other states, are given.  Only the self -energy contrlbutlon is included
in thatrtébleQ-ﬁbalues for F(Za) which result from evaluating terms
up to a given order in Za in the series in (l.2) are plotted as
functions of 2 in Fig. 2. Thesé curves give an indication of the
nature of the convergence of the series in (1.2) as a function of Z.
.The truncated series represent ihe’function poorly for Z near 20,
and appeér not to beluseful approximatloné for the function for larger
z. |
Evaluations of the self~energy level shift for large Z have

begn‘made Brown and Mayers calculated the level shift of the 181
state for. Z 80 [15] using a me*hod developed by Brown, Langer, and
.Schaefer {1€] which is valid for large 2. -Deslderlo and Johnson,
wérking with a génerallzation of that method,Aévéluated the level shift
of the 15% state in a Coulomb potential for Z = 70, 75; 80, 83, 96
and evaluated the level éhlft of the»ilsé state in avscreened Coulbmb
potential‘for Z =170, 71, 72 sy, 9Q [5] Erickson has obtained an
expression for the radlative level shlft which is valid (approx1mately)

for all Za and agrees, by constructlon, with the small Za

36—

" Table 1.
for the ‘1S, state.
: K
Coefficient.

1e

Bethe logarithm ~ -2.9841285558(3)

%(3 + %% + %)

&.
3
un(l + 2

o5 -

N .
- -3-(19.3165 £ 0.5) =~

28
3

-1

L

3

21
BnZ-%
9.56 =~

~ -2.87
% m2) = 9.29
-25.8
~ 5.42
4o.0

Values of the coefficients in Eq. (1.2)

Reference

8 .

9

113,11

13,14
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expansion,[l2]. The results of these calculations are given, for

comparison with the results of our calculation, in the following paper.

In this paper,. we obtain an expression for the one-photon self-

eneigy radiative level shift which is suitable for direct numerical
evaluation by a éomputer, for Z in the range 10-110. The standard
exprgssion for the level shift is‘not suitable for direct numerical
evaluation fﬁr the following reasons. First, there is the difficulty
associated with the well-known fact that the éxﬁréssion is formally
infinite before mass renormalization. Second, the standard unrenorm-
alized expression is zeroth order in Za while the net level shift is
of order (Za)h Zn(zz)-Q. Thus, direct calculation would invoive,
aside from the problem of dealing with formally infinite expresgions,
serious loss of numerical significance when the mass renormalization
is carried out for Zx << 1. We note that the latter problem limits
the.effeétiveness of the Brown, Langer, and Schaefer method to the
region of large Z [16]. 1In the sﬁbsequent discussion,.;earrangement
of the expression for the level shift is made,in order to'overéﬁme
these difficulties to the extent that a numerical evaluation, for the

range of 2 under consideration, 1s possible. The pfesentation is

arranged as follows. In Sec. II the compﬁtational procedure, including

the procedure for mass renormalization, is formulated. The energy
shift is divided into three parts: A part which we call the low-energy
part AEL, a part ?hich we call the high-energy part AEH, and tﬁe

mass renormalization counterterm AEM. An expression for AEL ‘which
is in a form suitable for numerical evaluatioh is. given in Sec. III.

In Sec. IV 2, is divided into two parts OBy, end OB, where

AEHA is relatively easy to evaluate, and AEHB is finite and of

-8-

order (Zz)h. An expression for AE.. suitable for numerical evalua-

tion is given in Sec. V...
In the following paper, we describe the numerical evaluation of

the energy shift for the case of the 1§; state, and give the results
5 .

of that calculation.

II. FORMULATION OF THE PROBLEM
The energy shift of an eléctron, in a bound state ¥, due to
the virtual emission and reabsorption of one photon, is given by the

. 1
real part of [17,18]

&, - i fd(te - .tl)di’ﬁepflvn(_xa)_ruspe(xz’xl)wvn(xl)

x ﬁF(xe - l) - & fdzg?n'(x)\l{n(x) (2.1)

where Wn(x) = Wn(g) exp(-iEnf) is the bound-state wave function in
coordinate space; Wn(f) is a normalized solution of the time-

independent Dirac equation
[-1g-v + V(x) +B - Eniwn(i) =0 S (2.2)

in which V(x) = ~20/|x|. ‘The bar over the wave function denotes the

adjoint: Wh(x) = wnT(x)rp. To keep the terms in the energy shift

separately finité,‘we use the covariant regulator method [19,20] in

which the photon propagator in cogqrdinate space is expressed as

1. 1 4 ’
'2— DF(X2 - xl) = -(—2“7: dk exp[-ik(x2 - xl)]
1 1
T . .
X k2 + ie Kk - A° + ¢ (2.3)



been evaluated.
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The limit A — o is to be taken after the integrals in Eq. (2.1) have

The free electron mass shift &m, computed using the’

" regulated photon propagator, is [19]

am = %(% n A2+ P - (2.%)

The propagation kernel SFe(xz,xl) is given by

l 1
-5 8 (k%) = g

) dz G(x,,X,,2) exp[-iz(t; - t,)] .

Cp (2.5)
The ;ontour CF’ which appea?s in Fig. 3, extends from -» to 4w,
passing below the negative real axis and above the positive real axis.
The Greeqfs function ‘G(§2,§l,z) is the kernel corresponding to the
resolvent G(z)
We consider the Green's function in the complex z-plane with cuts in

the intervals The Green's function is an

(-=,-1] and [+1,+w).

analytic function of 2z 1in the cut plane except at the bdund state

eigenvalues which lie on the real z-axis in the interval (o,1).

The energy shift AEn is then the limit as A -w of

tE (n) = - 2| P,xy v tx xp)a dz G(zé,gl,ZNJ“Wn(zlj
c
F
x —L—— [exp(-blx, - x1) - exp(-b'|x, -'111)1
Iz, - %

- o | v M)y, (x) (2.6)

=1/(H - z), where H 1is the Dirac-Coulomb Hamiltonian.

'The contour CH consists of two disconnected halves. -

-10-

where

b = --i[(En - z)2 + ie]% ;h b = .~i[(E - z) - A + 1e]% .

(2.7)

The branches df the square roots are determined by the conditions

Re(b) > 0 ; ‘Re(b') > 0 . (2.8)

In order to facilitate the evaluation of (2.6), we ;hahge the
contour of integration cF to a ne& contour, and divide the integral
into two parts which correspond to integrals over different portions
CL and CH of the new contour. The integrand of the contour integral
is an analytic function of 2z, except for the singularities of -
G(£2’§1’z) and the branch points of b and b'. The;e features of
the integrand are dépicted in Fig. 3. 1In that figure, cuts are
drawn from z =1 and z = -1 so that G(§2,51,z) is a singlé-valued
analytic function of 2z in the cut z-plane, except for the bound-state
poles. A;so, branch cuts are drawn from the singularities of b -and
b' in such a way that the conditions expressed in (2.8) are satisfied

everywhere in the cut z-plane. Because of the analyticity of the

. integrand, we'may deform the contour of'integfation fb the one shown

in Fig. 4.

We now identify three parts of the energy shift LE . The’
first part AEL, which we shall call the "low-energy part”, is the

contribution to the integral in (2.6) from the integration along the

contour CL. The contour CL begins at z,, passes around the square-

0 the "high-

energy part", which comes from the integration along the contour C

root singularity, and ends at z,. The second part is AE

'
The first half
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begins at the point -R - i0, extends along a quarter circle Eentered_
at the origin to the‘point -iR, and continues up the negative imaginary
axis to zy. The second half begins at Zo, éxtends up the positive
-imaginary axis to the point +iR, and continues along a quartér circle
centered at the origin to the point = +R + i0. The third part of the

energy shift is the mass renormalization term AEM
LB, = -bm fd3§ \VnT(z)B\vn(z) . (2.9)
The total energy shift is

OF, = OB, + 0By + OB, . : ' . (2.10)

For these contributions, we are interested in the limit as ¢ — O+,
as 2y and z, approach zeroc from below and above the real axis

respectively, and as R - «. This limit will be-considered first .for
AEL and then for AEH.

I1I. THE LOW-ENERGY PART AEL

The low-energy part of the energy shift is
= -1 ‘ (3.1
QB = I -1 L 6a)

where

2 | &Pxa’x, v, T0x0) o dz G(x,,X;,2)

CL

-b

e X2

I! is obtained by replacing b by b' in the right-hand side of (3.2),
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and p= |x, - x;|. We note that for A>E, I}  vanishes in the
limit € - 0+ .and 21’22 — 0, because the integrand of thé iptegral
over 2z is then an analytic function of z on and inside the contour
Cpe In (3.2), in the limit € - O+, the singularity of b and the
pole of G(§ ’51’2) at z = En ‘coincide. 1In order to avoid any
ambiguity, we temporarily add a smali positivé imaginary part is to
z in u(x ,X l,z). Figure j(a) sho;s.the singulérities of the
integrand in (3.2) after the imaginary part has been added. In the
limit € =0+ and 2152 -» 0, the contour pf integration’ CL consists
of two parts, as shown in Fig. 5(b): ' Cy Dbelow the real axis, and. .
C, sabove the real axis. As a result of the condition Re(b) > 0O,

stated in (2.8), we have

o
#l

-i(En -‘z) , for 'z on Cp ,

o
it

+i(En - z) " for z on Cy . (3;3)

Making the appropriate substitutions from (3.3) in (3.2), and deforming

the contours CA and CB to Iine'segments along the real axis, we

obtain

AR

AEi _ . ‘d3§2d5§l WnT(EEXxp G(Eééfl’z ; ia)a"wn(zl)

sin[(En ; z);]

x — 2, (3.4)
SR

In view of the equation

sin[(E, - 2)pl 1
o & an, explik-(x, - x)] (3.5)



a

-13-

where k = |k| = E, - 2z, we have
ik-x ' -ik-x
. «a 301 K-x 1 KX\
fBp = P2 kg <Eﬁ¢ ® H-E +E-18 o e .

k
e (3.6)

Henceforth, the brackets ( } denote the expectation value in the
bound state V . In the term corresponding to p =0 in (3.6), we
employ the relation o

2 ik-x 1 - -ikex
k e % +k-i5e =k+(g‘.E)A
n

ik-x -ikex
= 1 ~ T~
* <9£'1£ € H-E +k-1ib ake > + Ola) G-7)

to obtain

3
_2p @ 5 1 Kk
Mgy = TE 5.2 kg \8yy - -z
) ” k<E ~

ikex -ik.x

j *R2 1 y) ~' R
x : .
B a’ e AH-En+k—isae ”>‘.(58)

In (3.8) and in the rest of this section, the limit & — O+ is

understood. We note that except for the term aEn/“Q; AEL is exactly

what one would obtain using "old-fashioned" perturbation theory to

calculate the energy shift due to the interaction of.the electron with

the transverse electromagnetic field, with the photon momentum cut off -

at k = En.

~1h4-

The portion of AE. of order lower than (Za)h Zn(m:)-2 is

L
calculated exactly by making the substitution

Hex -k

e = €.
H - En +k-1ip

= (@p-@k+V+p-F +k-15)" (3.9)

in (3.8) and retaining only the first few terms in the expansion of
the right-hand side of (3.9) in powers of a-p, V, and 1 - E . The
justification for this procedure is discussed by Kroll and Lamb [21].

We find
(;;10)

&E; = %[% (8) +~% (V) + GQM)h Zn(m)-2)] .

The expression in coordinate space corresponding to (3.8) is

e
o, = %3, - %f * f Protvy laol 2 + 180, )
0
. ) . - ] . N
<G o3 £y S0 - Pl G

\VARAV )
~2 "~ 21 2
I8 - (B -2)%

The real part of AE is obtained by taking the Cauchy principal

L
value of the integral over z in (3.11). The bound-state wave
function is written as

£ (L (R)
n .

v (x) = (3.12)
Hooa
1f,(x)x_) (%)

L o
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vhere g " ﬁ) “is the spin-angular function described in the appendix
K : ’

and fl(x) and fa(x) are the components of the radial wave function.

The Green's function is written as a sum over eigenfunctioﬁs of the

operator K as described in the appendix:

G(x :fl;z)

6 M (xy0 ,2), (Rp0%, )

"L e e R B R) 0Pl nn Goky)
We then have ' (3.13)
relery) - 23, -2 f “ [ «xszj ot
« ¥ Z £ ()5, 03 ﬁ,z)r o 0g) )
K ,;j-l

where 1 =3 -1 and 3 = 3 - j. Integration over all angles except

g o= 22-21 in Anid(x2;xl)' yields
1 ; -
xg’xl) = ,"l f.l dg P|n+—§—[-§(§)P] , 1(§)(E - 2)2 T(p)
L TS L I (O &N
KK |k+3 ' Ix | . )

Equation (3.15) continued next page

Gnlz(xayxl: Z)ig'%n_n(ézlr;.‘i)

-16-
Equation (3.15) continued
_ : ' 1 ,
Axlz(x2,xl) = 'I"l dg [lK_L' 1(§)P| él_é(g)
41
S SR 14
B R R L R G NN 1<;>] (o)

+ [XQPIK.LI1(§) XiPIK+§I1(§ﬁ

[e?ie, 414® - 27,2130 5 H 3 1) G
n n

- where P 1is the Legendre polyromial, P' 1is the derivative of P

with respect to the argument, and T(p) = sin[(En - z)p]/[(En - z)2p].

X 21 \ 22
The corresponding expressions for A/ (x2,x1) and A/ (xz,xl) can

be obtained by taking advantage of the symmetry

12

Aifn (x2’xl) = A-x,-x (XE’xl)
n . n

-

(3.16)
M (my) = AL, (gux)
n ) n-

In the special case of S% states "(Rn = -1), we have

iy
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Axll(lexl) = »2(>En = Z)l"l [J'IK%I.%(Y2) j'llt-ll'-%(yl)

2

2 .
k -1 .
"T ‘y_ay‘l jl“"%l-%(ye) dJ l"%l‘%(yl)] 3

Anlz(xz:xl)‘ = Q(En - Z)K J’IK%I_%(YE) jlx.%l-%(yl) H (3.17)
21 ' : . I |

AT (xx) = 2(E - 2)e 332 v2) J'lm%,,%(yl) ;

8 20p0q) = 205, - 2)|e] 3)q302) I ey jal)

where J is the spherical Bessel function and y; = (En - z)xi,
i=1,2. ’

Values for Re(AEL) can be obtained by numerically evalﬁating
the expression in (3.1h4). Because terms of order lower than
(Za)h'Zn(21)-2 venish when all contributions to the energy shift are
combined,'it is convenient,.in view of (3.10), to express the results
of tﬁe evaluation of Re(AEL) in terms of thé fﬁnction fL(Zz) defined

by

Re(cE) = 2[2(8) + (v + (0" £ (m) AN ORT)

L ni2 - L :

In the preceding discussion, we propose evaluating' AEL
directly, i.e., there is no provision for extracting the terms of
order lower than (Za)h zn(Zoz)-2 before the numerical eévaluation is
performed. Hence, for Z not large, substantial numerical significance
is lost in obtaining values for fL(ZJ) from values of Re(AEL). It

is possible, with a reasonable amount of computer time, to obtain

-18-

highly accurate values for Re(AEL) by evaluating (3.14). An
important factor in making this possible is the rapid convergehce of
the sum over k in that expression._ The nature of the convergence is

discussed in the following paper. The rapild convergence is, in turn,

>a consequence of oui having symmetrically combined the contributions

to Ré(AEL) from the contours of integration C, and Cq to obtain
(3.4). 'The_sum over & corresponding to the separate contribution from
either CA or CB converges SO Slowly that direct numerical evaluation.

to high accuracy would involve an excessive amount of computer time.

IVv. THE HIGH-ENERGY PART AEH

The high-energy part of the energy shift is given by

AEH' = - El% [djfz jdj)fl WnT(?EQ) ap. dz G(x ,ﬁ,zb“ .wn(zl)
c

Ao 3 1
= e — dz d-k T
uﬂ CH e x (En.-_z) - ie

. 1 1
- o ot
%2 + A8 - (En - z)2 - ie HQop - @k +V+p -z >>
: (k1)

For fixed A, the integrand in (4.1) falls off so rapidly as |[z|

and 15] -+ o that the integral over the portions of the contour CH

which are quarter ¢ircles of radius R vﬁnishes as R -» o, Therefore,
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in (4.1), we replace the contour ’CH by the -contour Cl'{ which is just

the portion of C, along the imaginary z-axis (see Fig. 4).

-~ In order to deal with the part of 4E, of order lowé? than
(Zz)h and the part which becomes infinite as A - w, ve isélate in
an expression which is relatively easy to evaluate the portlon of

AEH which has these features. To do this, we take advantage of the
identity . '

25|+

1
Gp-OK¥p-2 FP-OEKFViIB-2 Fp-QGEP -z

- (4.2)
We substitute the right-hand side of (4.2) into (4.1), and consider

‘the contribution of the last term in (4.2) to 4E.. That contribution

has a finite limit as A — o which to lowest order in Zx is equal to.

<%Zn2-%>(\f2) . " _(h;»;)l

where NR means that the expectatlon value 1s evaluated in the Pnull-
Schrodinger approximation. The expression in (4.3) is of order (ZJ) ,
and hence the part of AEH, which we wish to isolate arises from the
first two terms on the right-hand side in (h 2). For the second of-

those terms, we write

-20-

L
(2 - 5)2 +1-12

1 v 1 - = v
Rp-2k+B-2 qp-ak+p-2z " 2

+2z2(p'+2)V 1

+ 2z(p + z)[ 2

- Vi
[R-0f+1-25% 7 lg-pr1-2]

2zgp - 2K 1

.x 1 " + . 5 .
-k +1-2z

(p- k)P +l.-.2.

v
-k 1-2 2

2-p-qk+p+z ‘ 1
- 5 [g"g:V]

(E - 5)2 +1-2

. 4y
(p - 5)2 +1 -2 2 (-4
The contribution of the last three terms in (4.4) to CE, also has
a finite limit as A —w; that limit is equal, to lowest order in Za,
to

2 (tm2 -0+ G- 3 maleplepViDg

+ o 2- 0N ELVIDE) . (s)

- This expressién is also of Qrder (z:)h. We therefore write

LB, = AEHA * LB+ 6(/\ 1) | (;-6)

where
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i 3 1 '
my, - -2 az | adk
%5<jc. f~<k2-(E -2)° - ie
. H o ~ n
- 1 ‘ - 1
T2 (m -2 ie) M\ FR-TETR-:

- l - 2 + 2z v : i Vv a“\\ .
! (-1 +1-2° ?(B 2 [(g-k° +1- 22J2:> //

(b.7)

The term AEHA is Just the part of AEH described in the 5éginning of
this paragraph. The evaluation of AEHB isvdiscussed in Se;. V. We
integrate over k in (4.7) and express the result as an integral over
a parameter T. Taking the equation satisfied ﬁy the state vector into

account, we then have

Dy = - §§<: dz{3(p°,b) - J(pz,b')i> (4.8)
. Cﬁ . :

where
A I S b2 -2 R
J(p°,b) = dn hEn - 2z + 3+ —_— 8 - En)
: o (n+b +¢)
. 2 2 .
. b - ¢ 1 : 22
+ 1+ 5) V|3 5 - 27(26 - z)
(n+b +c) pi+(n+b+ec) T '
1 .
x V- (4.9)

p° + (b + o)

=22~

and where

¢ = (-2D)%, Re(c) > O (4.10)

The definition of b and b' is given by Eqs. (2.7) and (2.8). For

the terms containing p2 in (4.9), we make the substitution

1 1 2 - L
FE T E D B

In the expression corresponding to the first term on the right side

in (h;ll), the integfal over 17 1is performed easily. In the expression

corresponding to the second term on the right side in (4.11), the

integrand of the integral over ; and 1N fallsoff sufficiently

rapidly as ]z! and 7N — o that the expression has a finite 1limit as

A - =. We thus have

Ey, = AEKAI + AEHAQ + Ouh (4.12)
where

(4.13).

AEHAl = _;—i<f dz[J(O,b) -J(O;b')>

We integrate over .z in (4.13) and arrange the expression so that the

part of order lower than (ZOt)h is isolated in.terms proportional to

the expectation values (g) and (V):
@yt - %[G;zn A2-%> (s>+<§zn2-% (v)

IR (hoaw)



o5
 where
) . -(1 - Ena)(3 + 2En2) l | h - 9En2 + BEnh
@) @) - 2 8 - Llme.—2,
SEn(l+En) .-AEN '

3E_° ,m(1+E )]<<-L>>

(s 15)

9 -
2 9
XEn(l+En )] (v)+[E- 2
We then consider

_ AEHAgb = - §%<i}r az[J(p°,b) - J(O,b);> ' j- (h'l6)

H

We substitute the .appropriate expressions obtained from the right-hand
side of (4.9) into the integrand in (4.16). The result of integration

over n and 2 1s then given by

AEHAQ <[E Ql(P )+ BQQ(p ) + VQj(p ) + 3 VQu(p )] >
(h.lj)
‘where
QJ-(PE) = B&(p) +vBJ(-p)‘ = 1,2,3,1( . '(1&.18)
and )

B, (p)

By(p)

<+

2l

(1 +£2)° | E?
——Jﬁ_Aj(p)+TA1(p)+—6§—pA(p) ’

(l+E ) 5Enl‘+8En2-1
) 13E A3(p) T @

| o2 2 - -
| (l-En)(iEn fl)‘A(P)' o= <BEn -3+ 1>-
i (] ; P E +p
_ i 8En : | | 16En (En +p) n

x A(p)
(1 +£2)?2 . Enu )
?B(P) = =g A5(P) + 5 A4, (p) - ?;:;AO(P)
n n
+ —2 —-7—— Alp) - ———
168, (E +p) E!En}(En'fp)3
x [A(p) - (&, +2)°)
e 1+E 1 SRR
R R b el ()
~ e -
x A(p)
Ap) = i+ (g, e
3 p - .
ay0) = = [A(p) - ) Ao %] : (4.19)
' P £=0
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In (%.19), A% denotes the fth derivative of  A. We note that each ’h )y L ’ 2, 1
. £ ' . o [o3
: : : = + 3= + =([o-p,[o-p,V1])
function Qj(PQ); J =1,2,3,4, approaches a constant in the limit hl(o) (20) {%Ea(P )NRV 30<p >NR Ha( TRRR A R
p2 — 0. In order to arrive at a convenient expression for the contri-
bution of each term in (%.17) to the net energy shift, we isclate the h2(0) - ( )-h (105 % /n 2)(p ) + (%6 - fn 2)(p2v)NR
‘ contribution of order lower than (Z:)h in terms proportional to ‘
(V). The lower order contributions, which come from the terms con- 1 7 ' »
+ ('8' in2 - 8"0‘)([22) [EE’V]J)NR >
_ talnlng Ql and Q, in (4.17), are identified by replacing Ql(p ) C : _
_and Qe(p ) by the limits )y
-4 3L
By (0) = ()7 (-3 2V o
lim @, (p2) = 2=  end Lin (%) = tmo-L
e Q) = 15 Q) = 3 2% - .
o .
| p= p0 () = @ eme-dofng - C(b.22)

To facilitate evaluation of the h's, we employ the expression for the

We accordingly define four functions h,, Jj =1,2,3,4, by the

3 momentum space wave function given in (A.9) and the expression for the
equat?ons function given in (A.11) to arrive at the following equations:
2, 2 1 L °
(EQ (7)) = -1V + (22) h(m), L L .
n £ () by(m) = 5500 +E | aoplle®I®+ e, o %) ,
I ° ’ |
0, (0%5%) = (L3 m2) v+ @) nym) |
o (4.21) (.b, 1 TN\ " 2 2
: - 2a)" hy(za) = (54n2 -3 )(V) + [ dapp [le,(p)|° - |e(p)I"]
- (VQj(pg)pg? = (Za)h_ hy(Za) : 2 | <2 - -?0 Jo 1L T e
2,2 koo : ' ' '
<;E%vqu<p,)p Y = (@) m(w) . | - x ()
These functions then have the property that they approach constants . o
. . n .
as o - 0. The constants are glven by . (Za) h}(za) = f dp )Y [gl*(p)(Vg)l(p) + 82*(p)(Vg)2(P)JQ3(p2) »
0 ) )
()" my(z) = 71| ap p'le, "(R)(VE), (P) - g, (B) (VEL(p)1G, ()

° (4.23)
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The functions hJ. can readily be evaluated, for relevant values of The coordinate-space representation of GA(z) is

2o, by numerical integration over p in (4.23).

: x 1 1
The tota; value of AEHA is thep given by‘ GA(5 ,ﬁ,z) = - 'i%YQ +B+Z+ 5 (g + ;1-
Qp 2 i .
sy = UG m A2 -PE) -HD + (@) )] (k2
: : : q -cp
. . d
where . : v ' X _l - Eﬁﬁzﬁl E) i?
o1 _
() = fgl(2) + ) B@) . RN X)) | |
= & (xy,2)n, (R ) G2 (xy,x,, 210y, (%))
A,k 20 ¥ Bim Ko Xg A,k 01X s ENT Ko Ky Xg
V. THE HIGH-ENERGY REMATNDER AEHB : = E:- o
| | | - 1 (xxp,2)100 R, 1 (K)o (1% 2)x_ (R R )

The remainder of the high-energy part oE is evaluated in : - A,k \ K2 X 2% M %0 A, k22X 2 (X xl

coordinate space. The separation of A given by (4.6) and (4.7) .
_ (5.3)
. corresponds to the separation of the resolvent G(z_) into two parts
. . where )
GA(z) and GB(z) where . . y
: X, +
11 v 11 a2t 1
G(z) = G,(z) +Gy(z) , (5.1) : Gy k(%o X)) = F T (x5x,2) + T2 (1 +2x2) F 7 (x5,%,2)
. : i . : ) 271 )

and

- z(z + l)[x2FR2;(gé,xl,z) + $iFg12(x2,xl,z)]} )i

1 1 1 L
6p(2) - gy BV, - 2B t2) o
A gp+p-z 2\ BT 2 o o ~
o } k 10 L 12 ey
GA,'K(X2’x1’z) = F, (_xe,ﬁ,z) ,
1 _ . o
x { V=53 (5.2) .
[p +1 - 2] ' 21 - | -
: ' GA K(x2’x1’z) = FK (xe,xlyz) »
2 ; .
The curly brackets in (5.2) denote the symmetric product:
' : ' X, + X
= i i 22 22 oL "2 1 22
{X,Y} = XY + YX. The symmetrization is introduced merely for | GA,K(XQ’XI’Z) = F/ (x2’x1’z) -5 -————x —2 {(1 + 2xz) F (x2,xl,§)
convenience, and does not affect the result. Tenl

S 2(z - 1)k Plxgixg,2) + 1P 2 xyx,2)]) (5.4)
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and where c is defined in (4.10). The F's in (5.k4) are elements where I =3 -1 and .J=3-j. Integrating over all angles except
‘of the free radial Green's functions, and are given explicitly in ' &= ;(2;1 in AK(X ’xl) and Anla(xg.'xl), we ‘obtain
(A.20). The expression in (5.3) is the analog of the expression in »

_ - _ 1 -
(3.13) for the Coulomb Green's function, and there exists a correspond- AK(XQ;)L.I.) - _l%l [ -dg[PI a1 1(5) Pl +_| (&)
=1

" ing expression for - G.(x,,Xx;,2z) in which
B\X20 %)

GB K(xz xl,z) = GKlJ(xe,xl,z) - GAin(xe,}L-L,Z)‘ H 1v,j =1,2 . » o 1. - o ’ oo
_ _ . e - ) P g a(6) By ’
(5.5) n . n"jv 2 R+5 (-3 .
That expression for GB(§ ,ﬁ,z) is t'he- .bésis for our numerical
" evaluation of AEHB for which we employ the f?rmula _ ] 1 . :
. - 1 _ Ixl ‘
- , ‘ - AK (x2’x1) = | > f d'g[}P'lH%l-%(g) PI"n’%!’%(g)
gy - -5 |y }’d5£1 o lln) ey | 4z Gy, () T
| . J ' Cy ,
: 1
+=—Q §)P*__é(§)r ’
o . w3
e
: —_— . (5.6
] s x = (5-6)
Substituting the expression for the wave function given in ] _I_L 1 .
. (3.12) and the expression for GB(§2,51,Z) desc.ribed above into | ‘An '("2_”‘1) = 72 [ dg[?ln‘%"%(g)Pl"n*%l‘é'(g)

(5.6) yields : _ | | | v
5y - 3“’} @ f d"e"ezf wx? I 34 40 Al 5
T Ty Je T e . S e

The corresponding expressions for A (x xl) and A (x2 xl) are

Z Z [fi(XZ)GB‘ju(x2’x_L’z)rj(xl)An(x2’xl) _ - obtained by taking advantage of the symmetry expressed in (3.16). For
lf ,J*l : ' . S% states, integration over g gives

f’fT<x2>c;fK(xé,xl,z)r3<xl>AxiJ(x2,x1)1 BN CX O
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Aglx ’x1)| - - x| ST af(ibx ) b 1)1 a(ivx) |
| K 2v B 'f*?' 2 </ fﬁ+§l 2 _ fHB(O) = (Za)'h (% fn 2 - %)(v2)NR + (fn 2 - g)(p2v>NR
Anu(xg,'xl) = -3 Ixl bl 3y 1(10%) 5?3%%‘“}9 | |
. | * (g -3 MEYLp Wy +(3m2 -3 ([pi,[yi,vmm -
+£2"n(c%i]._llb[j| (e 8y Swe) B o o o | (5.12)

The remainder AE can be evaluated numerically with the aid

HB
Cm- of (5.7). The numerical cancellations, which correspond to the
' (1) . -
-J|K+%|+%(ibx<) h|n+%|+%(ibx>) ’ : : removal of o, from LBy, oceur in forping the difference in Eq.
(5.5). The individual terms in that difference can be calculated with

sufficient accuracy that the numerical cancellation does not cause o

12 1)
a 1204 = - x| b3 (m)hf L (1bx,) |
K ( z’xl) Il l”f%l‘% < ‘f%l'iv > trouble. The separation shown in (5.1) and (5.2) leads to a function
T ij - ) ) 13 s
| GA’K(xe,xl,z) which approximates G (x ,xl,z) in the critical

21 _ ; (1) ib region (k, x large; x, = X, ) sufficiently well that the I

AK (x2,x1) = - lKl bJ[x%l-%(ib}%) hln'%,'%( ’S) ) v . - » ) xl ) xl ‘
: ‘ expression for AEHB in (5.7) is a convergent integral over z of a
' . ' C ' L
o0 1) function which is of order (20) . We note that the removal of LEn
= = 11 2{ibx_) h ib

AT (xpx,) 3 |x| le"—%l'%( J ?"-%I'%( %) »

(5.9) ' from AEH before the sum over xk or any integrals have been performed

) numerically is an-essential feature of this calculation. If AEHA
*in which x = min X. = max is the spherical ' - : '
< (x2, l)’ © (xg,xl), J : P were subtracted at a later stage of the computation, possibly after

‘Bessel function, and h(l) is the .spherical Hankel function of the - ’ - o : ‘ : C . o
- - . : ] ) "the sum over k- and the integrals over Xy and x1 in (5.7) were

first kind. . ’ : —

: - _ performed, then for Z not large there would be a substantial loss
It is convenient to express AEHB in terms of the function - '
: : of numerical significance. This would necessitate a highly accurate
f._(zZa) defined by _ o :
HB evaluation of the sum and integrals, which, in turn, would require an

a 4 ‘ ) h excessive amount of computer time’ due to the slow convergence of the
LBy = (@) fp(za) . (5.10) -

sum over k. That sum is examined in the following paper.

The function'-fHB(Za) ‘approaches a constant as 2o — 0. In view of

(4.3) and (4.5), the value of the constant is given by
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VI. CORCLUSION
The total value for the self—energ& radiative level shift is

obtained by adding the constituent parts:
Re(AEn) = . Re(AEL) + OB, OB+ LB, - (6.1)

The terms on the right in (6.1) appear in Egs. (3.18), (4.24), (5.10),

‘apd (2.9) respectively. The last three termsbin (6.1) are real-

valued quantities. We note that in each of the expressions listed
above for the terms on the right in (6.1), the part of order lower

than (Za)h zn(Za)-2 is expressed analytically in terms-of .the

.

_expectation values (B) and (V). The sum of the lowér order parts

~ is zero. We thus have

0B, = %(za)h F(zo) mecz ‘ o - (62)

where
Rza) = f(z) ¢ fu(m) ¢ fgm) . (63)

In (6.2) it is understood that we mean the real part of the energy

- shift. Expressions suitable for the direcf numerical evaluation of

" the functions on the right in (6.3) are given inAthe'preceding

sections. -

The contour of integraﬁionbfor the integral over 2z in (2.6)
ﬁsed'in this . calculation was chosen to be a convenient one with regard
to the numérical work. The final contour consists bf the real z-axis
from zero to the boﬁnd-state energy and the imaginary z-axis. On both
these portions of the contour, the quantity .c, defined in (A.l?), |

is real. This is convenient for the numerical evaluation of the

-3l

radial Green's functions. Another attractive feature of the contour
of integration used here is the fact that it leads to the rapid
‘convergence of the sum over x in (3.14) discussed at the end of

Sec. III.

The numerical evaluation of the level shift of the 18, state
: 2

-1s described in the following paper. ‘We expect that the method of

calculating .the self4energy radlative level shift-which is presented
here and in the followihg paper could easily be extended to calculate

the level shifts of the bound states with principal quentum number

n=2,
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APFENDIX - F . 3 1
. R += =
In this appendix, we discuss some relevant properties of the , _ - Til. 2 YT-%ll'%(i)
K 3
. 2k + 1
Dirac wave functions and Green's function for the case of a Coulomb MR ' (1.5)
. " = . S . A.5
potential. The Dirac Hamiltonian is given by o k o+ 1 . é‘ -
. s tH
2 ™R @)
A ~ K 2 1 IK‘%I—%
Hx) = gfp +igRpl+vix) +p, - a1 . .+ ]
. . ) . |
where We use the notation
‘ 14
px = - ii-Ex . (A'2) ' T
- A oA _ TPr ul, A
T B O aRR) < ) kMG )
. . . . u
K = B(9.L+1). ) (a.3)
The spectrum of X consists of all nonzero int efs. A wave function . ' ‘ = %ﬁl P l s X A.
P o eg = {1 I"*%I-lz'(g) + 310 (%, X x) (A.6)
which is a simultaneous eigenstate of H, of K (with eigenvalue v . -
. ) ' )
-x), and of the third component of angular momentum J, (with eigen- : o Pl""‘%‘l‘%(g)] ’
value 1), is written as [22] » ‘ , :
where ¢ = 3\:25\&, P is the Legendre polynomial, and P' is the
fl(x) XKH(Q) _ derivative of P with respect to the argument; I is the 2 X 2
'Vn(i) - , | | A (Afh) | . idéntity matrix.. . . .
ifz(x) X_Ku(;z) : . : ’ - The components fl and f2 of the radial wave function, which‘

appear in (A.4), satisfy the radial differential equation i -

where f and f

1 , are the components of the radial wave function

(corresponding to g and f in Ref. 22), and X is a two- 14+ - .14 ®
| . v(x) E, I Xty ] (x)
component spin-angular function explicitly given by . o ,( )
= ’ A.7
.J; .g. X + E. 5 .
Tix Xt x L+V(x) -E | |-2(x)
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; . : . ) The result of the éction of the Coulomb potential on the stéte vector
where En is tne energy. We are interested in the case vwhere the

. o in momentum space is denoted by (V¢n') (p). It is obtained by taking
potential is the Coulomb potential: V{(x) = -Za/x.. For the 1S; ‘ . -

S , o S 2 the Fourier transform of V(x)wn(;s)'. We have

(x = -1) state, the normalized solution is given by

| | (ve), (p) X(2) .
£(x) = N%(l + En)% x,.5 e, . _ ' X,‘ RE o .
| (V) (p) = o - (&.11)
f2(x) = -N%(l - En)% x 0 "TX. , oo .. S (AB) T _ - _ . (Vg),(p) x-nur(s). | : |
R T 525'.,' wher‘e.": | '
T = En=(1-72)%; 5=1-E; L 1.0 M , : o
» . ar(3 - 2s) | . o 1 stal(1 - &) tan™ (®)]
' (Vg)l(P) = g (1+8)° — 2 1(1-%) s
) , : 'n ¥ +°I2
The momentum-space wave function is written in the form. : . :
| - oy 1| sinls tan ™ (®)]  cos[(1 - 8) tan"1(R)]
B W _1 o : (ve),(p) = Eﬂd‘i (1-E)3¢—5 3 Ls - 7D 1(1-8)T
_ v &(p) x, (p) S _ n s [F + 27172 plF +p°)2 J
‘ _ . -12.5 : : ‘ : . . ’ ) .
00 - @072 / Pre v = | - | R
- . sa(pi x-,t“(ﬁ) | ' The Dirac -Qteen's function 6(%,%;,2), which satisfies the
l._ » P _ equation o : L
(4.9) o . 3. o '.
. : - : '[H(fe) - ZJ G(EE’EI’Z) = @ ({2" 51) p) - (a.13)
For the 1S; state, we have : ) . ' _ o .
2 _ ' can be written as an expansion in eigenfunctions of - K [2,23]:
. N 'sin[_(2-8)_-tan_-1(l‘;')_]‘ _ . _ AT L
| 5.1,(‘)) B ‘M?(l BT o 4 p22020) oo S R N Lo Mg 2) x,(x0x) -
. 3 . » L» G(Ee}ilxz) = E: )
l l sin[(l - 6) tan‘l(gr)] L o . . oo . ® . 21 A . . . . . .
(p) = -M(Q1 -E)? T e T 6 T (%, %y 52) i0ex, e (X5,%)
&x(p). S L D pe[rg RERITIeE) N , B S LT P 2 MeV2r R

. ; 12 ~ A A
cos((2 - 8) tan"}(B)] O (xprxps2) 103 "-n(f‘z”&) :

- -‘p[rzfpzjg(z-a ’

) 3-25
M ;r(E-b);IEé)_—gg . o (a.120) -

, (A.14)

ang(*zyxl,z) K-K(QZ’ﬁl)
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where the summation extends over all possible values of x. ~Equation (_A'16_) continued

The G 'j(xz, l,z) are the elements of the radial Green's functionms,

22 ' '
and they satisfy the equation : . Gu (xe,xl,z) = (1 -2)al(x-v) M_v_%’k(2cx2) + (r - g)
1+ Vixy) - 2 '%' Ei_ xy + 1 PGnll(."a”‘l’z) Gula(xz’xl’z)w . (2 ']. I '
2 2 2 T X -Mv%’)\ cxe) [(x + E‘) Wv_%,)\(2cx1) - ?v%,h(ecﬁ)] P (A.IG)
1 a 21 20 where
L-’g a‘x‘g- x2 + ;':—2‘ -1 + V(xa) -2 i LGK (x2,x1,z) GK (X21x1-,2)
d _ L A 2.1l ' '
: (1 -z )2 Re(e) >0; A= (n 72)2- v = cﬁ; Y= 200
= I e 5(x -x) . (A.15) PR : A.l‘
xg,& X _ (a.17)
_ LN - v
= . 2 riL+22) ~’
For x > X55 the radial Green's functions for the Coulomb potential ‘ (xlxa)%(ltc ’_‘1’_‘2)

are given by the following expressions: :
and - M, B(x-) and W, B(x) are the Whittaker functions [24]. For
> 2 )

1 7 T :
G, (xz,xl,z) = (1 +2)Qq[(n -v) Mv-%,x(acx2) - (r - E) _ X, > x;, the radial Green's functions can be obtained from (A.16)
’ ' together with the symmetry conditions

M +_1_,>\(2c‘x2)]‘[(r< + g)wv_%’)\(Zcxl) + Wv%’)\(acxl)] 4

Gnn(x 1Xs,2) cnu(xe,xl,z) ;-

G (xg,xl,z) = Q[(x - v) Mv_%’k'(2cx2) -(x-2) Mv%,)\(zch)] ( ,xe,z) = G, (xz,xl,z) s
: : : - . (A.18)
: _ : ‘ ' : 21 ; 12, -
X - : - . . G X,,2) = X,,2
X [le+ 5 W,y 5 (2ex)) Mool ‘ « (oxpr) (xgrxpo2)
22 22
_ G, (xl,xz,z) = G (xe,xl,z) .
21 : - .
(x55%7,2) = cQ[(x - v) Mv._%’)\(Zcxe)+ (x - ) Mv*—- }\(2cx 1] . .
: The radial Green's functions are described extensively in Ref. 2.
x [(r + —) w (2cx ) + W %’K(2cx1)] , ' _ The free electron Dirac Green's function F({e,zl,z) . can also

be written in the form given in (A.14) with the G's replaced by

N 1]
Equation (A.16) continued next page - F.s, where



Fuij(xg,xl,z)

Por - xl > X3

Fnll(x2’x1’z)
. ?Klz(xe;xl:z)b

Fnal(xe,xl,z)

FK?Z(xexxlgz) -

For this case, the

F(x ;51{;) =

[1,]

k1-

- um 6 Nlpme) 5 Li-12. (a9)

= (z+1) c:il;%,_%(icxg) mf) ) glex)
SRl - SR CC AL VRIS

- | (a.20)
- T g4t 2oy aten)
= (2 - 1) efj g y(texy) hfizél-%(ickl) . .
sum.over k is known, and is Just

(%4»1—5);@‘-;5{5 +.z. E;—::., (a.21)

= % on x = |x| - -

1.

oo
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FOOTNOTE
We employ unlts in which ¢ =1 = mg = 1.
form a' = (a ,a).
b is _ab = aobo - a-a.

Four vectors have the

We use the standard ggmma matrices

T

Gy Gi)

"The 01 are_thé usual Pauli matrices.

1,2,3 is implied. We use th
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aAa“ =A - aAa
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For repeated

summétion oﬁer 0,1,2,3 1is implied; for repeated

Fig. 1.

Fig. 2.

Fig. 3.

Pig. &,

Fig. 5.

z-axis. "In this diagram z; =2

v-ﬁ6_
FIGURE CAPTIONS

The Feynman diagrams corresponding to the lowest order

radiative corrections to the energy levels in a hydrogen-

~like system. The diaérams in (a) and (b) correspond to the

t . .
electron self energy and the vacuum polarization respec-

" tively.

Iheicurves lﬁbeled ), (5), (6);.aﬁd (7) are the éﬁccessive
éppro#imations to iF(Zﬁ) vwhich result from evﬁluating known
terms of order up to A4th, 5th, §ﬁh,‘and Tth in the serieé'
in Eq.'(l.z), |

The contour Cp and the singularities of the integrand in

the complex z-plane. The points to the left of 2z = +1

represent'the bound-state poles; En is the ground-state
energy in this diagram.

The new contoﬁr in the éomplex z-plane.

The complex z-plane with the singularities of the integrand

in Eq. (3.2). In the upper diagram, the branch points of

" b are at E, ¢ (- ie)% As € =0+, the branch points meet
at 'En. In the’ 1ower diagram, the cuts, which" are drawn to

" insure Re(b) >0, meet at E, and extend along the real

5= 0.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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