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ABSTRACT OF THE DISSERTATION

Limit Theory for Overfit Models

by

Grayson Ford Calhoun
Doctor of Philosophy in Economics

University of California San Diego, 2009

Professor Graham Elliott, Co-Chair

Professor Allan Timmermann, Co-Chair

This dissertation consists of three independent papers. Collectively they
attempt to formalize a notion of model “overfit” – the idea that a large econo-
metric model can appear to fit a particular dataset well simply because it is large.
This behavior is modeled by using asymptotic approximations that allow the num-
ber of regressors in a linear regression model to increase with the number of total
observations. The first chapter looks at the behavior of the F-test under this
asymptotic theory, shows that the F-test is generally invalid for these overfit mod-
els, and derives a correction that gives a valid test statistic. The second chapter
looks at the behavior of pseudo out-of-sample comparisons of forecasting models
under this asymptotic theory, shows that this asymptotic theory resolves some
technical issues that lead to nonstandard test statistics, and gives conditions un-
der which standard procedures remain valid for overfit models. The third chapter
conducts an empirical comparison of several methods for comparing forecasting
models out-of-sample.
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Chapter 1

Hypothesis testing in linear
regression when k/n is large

1.1 Introduction
Consider the linear regression model

yt = x′tβ + εt t = 1, . . . , n (1.1.1)

with xt and εt uncorrelated. Under standard assumptions, the OLS estimator, β̂,
is consistent and asymptotically normal as n increases to infinity. This asymptotic
distribution is the basis for most of the empirical research in economics, but, as
Huber (1973) has shown, this approximation is unreliable unless k/n is close to
zero; k is the number of regressors in (1.1.1). Huber proves that the OLS coefficient
estimator is consistent and asymptotically normal when k increases with n, but
only if k/n → 0. In practice, k/n will always be positive and is sometimes large,
so it is unclear whether the classic tests that exploit asymptotic normality are
themselves reliable. This paper derives the asymptotic distribution of the F-test
for the joint significance of a subset of the coefficients in Equation (1.1.1) under
a more general limit theory that allows k/n to remain uniformly positive. The
conventional F-test is asymptotically invalid under this limit theory, but, despite
this theoretical tendency to over-reject, will usually have close to its nominal size
in practice. Moreover, this paper derives a modification of the F-test that is

1
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asymptotically valid and demonstrates that this new test performs better than the
unmodified F-test in practice.

This paper is not the first to study the asymptotic distribution of estimators
like β̂ as both n and k increase. Previous research has looked at the behavior
of M-estimators of (1.1.1) as k increases, of Analysis of Variance (ANOVA) as
the number of groups increases, and of instrumental variables estimators as the
number of instruments increases. This research has followed two distinct paths.
The first looks for the fastest growth rate of k that is compatible with the usual
consistency and asymptotic normality results. Typically, k = o(n) is a necessary
but insufficient condition for these results to hold. The second approach looks for
alternative asymptotic distributions of the coefficient estimators that are correct
when k/n remains positive.

These increasing-k asymptotics were first introduced in the context of M-
estimation; Huber (1973) argued that the assumption that k is fixed is unrealistic
in practice. After proving that k = o(n) is necessary for the OLS estimators to be
consistent and asymptotically normal, Huber argues that this condition is likely
to be required for any tractable asymptotic theory, and proves normality of the
M-estimator of the coefficients of the linear regression model under the stronger
condition that k3/n→ 0. This rate was improved by Yohai and Maronna (1979),
Portnoy (1984) and Portnoy (1985) . In particular, Portnoy (1984) proves consis-
tency under the condition k log k/n → 0, and Portnoy (1985) proves asymptotic
normality for (k log k)1.5/n → 0. Further research has extended these results to
other estimating functions (Welsh 1989), nonlinear models (He and Shao 2000),
and estimation of the distribution of the errors (Portnoy 1986, Mammen 1996, Chen
and Lockhart 2001).

In econometrics, interest has focused instead on the properties of IV estima-
tors with a fixed number of coefficients but an increasing number of instruments,
l. Bekker (1994) studies the asymptotic behavior of Two-Stage Least Squares and
Limited Information Maximum Likelihood (LIML) for normal errors as l/n con-
verges to a positive constant. He finds that LIML is both consistent and asymptot-
ically normal but that 2SLS is not. Bekker’s results are extended to non-Gaussian
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errors by Hansen, Hausman, and Newey (2008) and Chao, Hausman, Newey, Swan-
son, and Woutersen (2008). Koenker and Machado (1999) prove the consistency
and asymptotic normality of GMM estimators with l3/n → 0. Stock and Yogo
(2005), Chao and Swanson (2005), and Andrews and Stock (2007), among others,
combine the many-instruments and the weak instruments literatures and argue
that the relationship between the concentration parameter and l is more impor-
tant than that between the number of observations and l. Han and Phillips (2006)
study the limit distributions of nonlinear GMM estimators with many weak in-
struments, and their approach allows for the estimators to converge to non-normal
distributions.

Previous work on the F-test under increasing-k asymptotics has focused
largely on ANOVA; this literature finds that the usual F-test is asymptotically
invalid unless the design matrix is perfectly balanced (requiring an equal number
of observations for each group) and propose a new Gaussian approximation for
the statistic that gives an asymptotically valid test. Boos and Brownie (1995)
started this research, and it was extended to two-way fixed-effects and mixed
models (Akritas and Arnold 2000); to allow for heteroskedasticity (Akritas and
Papadatos 2004, Bathke 2004); and to allow for additional covariates (Wang and
Akritas 2006, Orme and Yamagata 2006, Orme and Yamagata 2007). Anatolyev
(2008) proposes an extension that allows for linear regression under conditions
similar to this paper’s, but imposes a strong restriction on the matrix of regressors
that rules out, among other design matrices, the unbalanced ANOVA examined
by the previous papers.

These extensions to the F-test all suggest that the standard test should
behave poorly in finite samples unless the number of predictors is quite small.
However, the F-test is known to have extremely good performance as a comparison
of means, even when the errors are not normal. Scheffé (1959) for example, presents
analytic and computational evidence that supports using the F-test even with
asymmetric and fat tailed errors. Moreover, the simulations presented in some of
the ANOVA papers themselves support using the naïve F statistic instead of their
proposed replacements. Akritas and Papadatos (2004), for example, simulate a
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5% test with lognormal errors and find that the conventional F-test has size 0.04,
while their proposed statistics have size 0.73 and 0.78, a moderate over-rejection.

These corrections have other undesirable features. The approximations do
not hold under conventional, fixed-k asymptotics, forcing applied researchers to
choose between two incompatible asymptotic approximations before testing. This
concern on its own is not inherently problematic, and researchers are often forced
to make a similar choice in their empirical work. Since k/n is always positive in
practice, it would be reasonable to use the increasing-k limit theory by default, but
the simulation evidence favoring the standard F-test suggests that there is little
merit to these asymptotics even if they are intuitively compelling. Moreover these
results only apply under strong restrictions on the matrix of regressors — either
assuming an ANOVA structure or other inhibitive conditions — and so are not
relevant for applied economic research.

This paper instead proposes a simple correction to the usual F statistic
that gives a valid test under either the conventional fixed-k limit theory or under
increasing-k asymptotics. When k is fixed, the correction disappears in the limit
and our proposed statistic is asymptotically equivalent to the F-test. When k/n
remains positive, the correction does not vanish and improves the size of the test
statistic. The simulations presented in this paper indicate that this new statistic
performs better than the conventional F-test and also outperforms a Gaussian test
that is similar to those proposed for ANOVA.

Since this statistic nests both the standard and nonstandard asymptotic
theories, careful study of the correction can explain the F-test’s strong performance
in simulations. The magnitude of the correction depends on the excess kurtosis of
the regression errors, εt, and on a particular feature of the matrix of regressors.
When the excess kurtosis is zero, no correction is necessary and the F-test is valid.
If the excess kurtosis is not zero, the magnitude of the correction depends on the
diagonal elements of the projection matrices for the unrestricted and restricted
regression models — the restricted model imposes the null hypothesis. In practice,
it is likely that the correction will be quite small, and the naïve F-test performs
reassuringly well, even if it is technically not asymptotically valid. When the F
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statistic returns a value near the critical value for a specific test size, though, the
correction can affect whether the test rejects or fails to reject the null hypothesis.

Finally, the usefulness of this statistic is demonstrated through two appli-
cations — one for time series macroeconomic data and one for cross-sectional data.
The first re-examines Olivei and Tenreyro’s (2007) study, “The Timing of Monetary
Policy Shocks,” and finds further support for their conclusion that monetary pol-
icy has a different impact on output in different quarters. The second re-examines
Sala-i-Martin’s (1997) cross-country economic growth analysis and finds support-
ing evidence that additional regressors beyond the initial levels of primary school
education, GDP per capita, and life expectancy are correlated with a country’s
economic growth. These variables were singled out by Levine and Renelt (1992)
and Sala-i-Martin (1997) as having broad support as determinants of economic
growth. The first example studies four different equations, and for each equation
tests 51 restrictions on the OLS coefficients with 144 observations; the second tests
64 restrictions with 88 observations.

To reiterate, this paper derives a new statistic that can replace the F statis-
tic in tests and works well for regression models with many regressors. The paper
also explains the original F-test’s strong performance in simulations and illustrates
where it is likely to do poorly in applications. Section 1.2 discusses the new test
statistic and studies its asymptotic distributions under the null and alternative
hypotheses. Section 1.3 presents monte carlo evidence in favor of the statistic.
Section 1.4 presents the empirical exercises. Section 1.5 concludes. The proofs are
presented in the appendix.

1.2 Asymptotic Theory and Main Results
This section derives the asymptotic distribution of the F-test of the null

hypothesis Rβ = r for the linear equation

yt = x′tβ + εt (1.2.1)

as q → ∞, n → ∞ and q/n remains uniformly positive; q is the number of
restrictions imposed by the null hypothesis. This limiting distribution implies that
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the F-test is not valid, and we use this asymptotic theory to find a new statistic,
Ĝ, that should be used instead of the F statistic. Comparing Ĝ to the quantiles
from the F (q, n− k) distribution yields an asymptotically valid test. Section 1.2.1
discusses the paper’s notation and assumptions, Section 1.2.2 presents asymptotic
theory and the new test statistic, and 1.2.3 studies the differences between the
uncorrected and corrected statistics in more detail. Since the number of estimated
coefficients is assumed to vary with n, a triangular array structure underlies all of
this paper’s theory. Dependence on n will be suppressed in the body of the text,
but will be made explicit in assumptions, theorems, and proofs. Unless otherwise
indicated, all limits are taken as n→∞.

1.2.1 Assumptions

Since the number of restrictions imposed by the null hypothesis and the
total number of predictors both increase with n, some assumptions take an unfa-
miliar form. They are, however, analogous to the usual assumptions that ensure
the validity of the F-test under classical (fixed-k) asymptotic theory.1 The obser-
vations are required to be independent, the errors are required to be uncorrelated
with the regressors and be homoskedastic, and the matrix X′X is required to be
uniformly positive definite.

The first assumption defines the behavior of the regressors and errors.

Assumption 1. Define the random array {xn,t, εn,t; t = 1, . . . , n} and assume
that {xn,t, εn,t} is uniformly integrable. The elements xn,t are random kn-vectors
of regressors with bounded second moments, and each element εn,t is a random
scalar error term. For each n, the elements of the series {(xn,t, εn,t); t = 1, . . . , n}
are independent. There are constants r > 4 and B > 0 such that E|εn,t|r < B for
all t and n. Moreover,

E(εn,t | Xn) = 0.
1Illustrated by White (2000), for example.
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and E(ε2n,t | Xn) = σ2 > 0 for all t and n. The matrices Xn and εn are defined as

Xn = (xn,1, . . . , xn,n)′

εn = (εn,1, . . . , εn,n)′.

!

Assumption 1 restricts the errors to be strictly exogenous and conditionally
homoskedastic, ruling out time series applications that use lagged dependent vari-
ables as predictors. The other details of this assumption could be relaxed. It would
be straightforward, for example, to allow the array {xn,t, εn,t} to satisfy a less re-
strictive weak dependence condition than full independence, but the requirement
that E(εn,t | Xn) = 0 is crucial.

The next assumption defines the relationship between (εn,t, xn,t) and the
dependent variable, yn,t. The operator |·|2 denotes the Euclidean norm of an arbi-
trary vector in Rp.

Assumption 2. The dependent and independent variables are related through
the equation

yn,t = x′n,tβn + εn,t t = 1, . . . , n (1.2.2)

with |βn|2 = O(1). Also, λmax(n−1X′nXn) = Op(1) and λmin(n−1X′nXn)−1 = Op(1);
the functions λmax and λmin return the largest and smallest eigenvalues of their
arguments, respectively. !

The assumption that |β|2 = O(1) ensures that the model does not asymp-
totically crowd out the error. If |β|2 → ∞ instead, the variance of yt would also
increase to infinity, and in the limit (1.2.2) would behave as though there were no
error. Such an asymptotic theory would obviously be of little practical value; in
real data, there is a substantial error term.

This assumption that restricts the eigenvalues of X′X replaces the standard
assumption that n−1X′X converges in probability to E xtx′t, a deterministic and
positive definite limit. That standard assumption is inappropriate here, because
n−1X′X does not converge to any deterministic limit; X′X is a k×k matrix, so its
dimension grows with n when k does, and the matrix does not converge at all. For
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sequences of matrices like this, it is more natural to look at the convergence of the
matrices’ eigenvalues rather than of the matrices themselves. When k/n remains
positive, though, the eigenvalues of n−1X′X do not converge to the eigenvalues of
E xtx′t either. The limiting behavior of these eigenvalues has been worked out for
special cases; Yin (1986), for example, shows that, if the elements of X are i.i.d.
(0, 1), the empirical distribution function of the eigenvalues of n−1X′X converges
in probability to the distribution function F (x) ≡ ∫ x0 f(y)dy, with

f(y) =






√(
(1+√c)2−y

)(
y−(1−√c)2

)

2πy if (1−√c)2 ≤ y ≤ (1 +√c)2
,

0 otherwise

and c = limn→∞ k/n. Note that the eigenvalue conditions of Assumption 2 are
satisfied in this case. In general, Assumption 2 ensures that n−1X′X is uniformly
positive definite in probability.

Also define the following notation. The OLS coefficient estimators are de-
noted β̂ and the residuals are ε̂t. The null hypothesis of interest is

Ho : Rβ = r. (1.2.3)

The next assumption controls the asymptotic behavior of this hypothesis.

Assumption 3. {Rn} is a sequence of qn×kn matrices of deterministic restrictions,
and {rn} is a sequence of qn×1 deterministic vectors. There is a constant BR such
that maxi,j |R(ij)

n | ≤ BR, with R(ij)
n the (i, j) element of Rn. Moreover,

λmax(Rn(n−1X′nXn)−1Rn)−1 = Op(1), λmin(Rn(n−1X′nXn)−1R′n)−1 = Op(1),
(1.2.4)

and |rn|2 = O(1). !

Assumption 3 is a technical condition on the nature of the theoretical se-
quence of null hypothesis, and does not need to be (and can not be) checked in
practice. It arises only because this paper’s asymptotic theory embeds the par-
ticular null hypothesis of interest in a sequence of similar hypotheses, and this
assumption ensures that the limiting behavior of that sequence is reasonable. It
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rules out sequences like R1 = Ik1 , R2 = 2 · Ik2 , . . . , Rn = n · Ikn , . . . ; and guarantees
that the restricted model is well-behaved in the limit. Three concrete examples
can help illustrate Assumption 3.

Example 1. Suppose that one wants to test that the first coefficient, βn,1, is zero.
Then Rn = (1, 0, . . . , 0), rn = 0, and qn = 1. Assumption 3 requires that the (1, 1)
element of (n−1X′nXn)−1 be finite and bounded away from zero in probability,
which is also required by Assumption 2.

Example 2. Let kn = (n/2) and suppose that one wants to test that βn,1 through
β&kn/2' are all zero. Then

Rn =
(
I&kn/2',0&kn/2'×&kn/2'

)

and rn = 0. Now Assumption 3 requires that the (kn/2) × (kn/2) top left sub-
matrix of (n−1X′nXn)−1 be uniformly positive definite in probability, which is also
implied by Assumption 2.

Example 3. Suppose that one wants to test that βn,1 + · · · + βn,n = 0. For
this hypothesis to be consistent with Assumption 3, it should be expressed as
Rn = (n−1/2, . . . , n−1/2), rn = 0. There are other equivalent ways to express the
hypothesis as well.

To minimize confusion between the F statistic, the F distribution, and the
F-test, we denote the conventional F statistic for the hypothesis (1.2.3) as F̂ ,

F̂ ≡
∑n
t=1
(
ε̂20,t − ε̂2t

)
/q

∑n
t=1 ε̂

2
t/ (n− k)

with ε̂0,t denoting the residuals from the restricted model.

1.2.2 Distribution of F̂ and Asymptotic Correction

The theory proceeds in two steps. We first find the asymptotic distribution
of the F-statistic as both q and n increase together. This distribution gives an
unsatisfactory test statistic, but motivates an asymptotically equivalent test that
performs better. Lemma 1.2.1 shows that F̂ is approximately normal under the
null hypothesis.
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Lemma 1.2.1. Suppose that Assumptions 1, 2, and 3 hold, that qn → ∞ and
kn →∞ with lim kn/n < 1, and that the null hypothesis (1.2.3) holds. Then

√
qn
ηn

(
F̂n − 1

)
d−→ N(0, 1),

with

η2
n = 2 (1 + cn) + q−1

n

∑n

t=1 κn,tDn,t,

Dn,t =
(
P ∗n,tt + cnPn,tt − cn

)2
,

P ∗n = Xn(X′nXn)−1R′n
(
Rn(X′nXn)−1R′n

)−1
Rn(X′nXn)−1X′n,

Pn = Xn(X′nXn)−1X′n,

cn = qn/(n− kn), and κn,t = E(ε4n,t | Xn)/σ4 − 3. !

Under the null hypothesis,

√
q(F̂ − 1) = q

−1/2 (ε′ (P ∗ + cP − cI) ε)
(n− k)−1ε′ (I − P ) ε ,

so Lemma 1.2.1 follows from the asymptotic normality of the numerator. The
denominator converges in probability to σ2. The numerator can be shown to be
asymptotically normal by an existing central limit theorem for quadratic forms,
derived by Hall (1984) and de Jong (1987); the convergence in probability of the
denominator to σ2 follows from the same theorem. The details of the proof are
presented in the appendix.

Lemma 1.2.1 implies that the standard F-test is an asymptotically valid
test statistic only if

q−1
n∑

t=1
κtDt → 0 in probability,

otherwise the asymptotic distribution of √qF̂ is not pivotal. For example, observe
that if εt ∼ N(0, σ2), then F̂ ∼ F (q, n−k) and additionally√q(F̂−1) d−→ N(0, 2(1+
c)) (since κt = 0).2 This convergence implies that the critical values from the
F (q, n− k) converge to those of the normal(0, 2(1 + c)) distribution as both q and
n− k increase together. Whenever

√
q(F̂ − 1) d−→ N(0, 2(1 + c)),

2In an abuse of notation, we use c to designate limn→∞ cn.
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then, critical values from either the Gaussian or the F (q, n − k) distribution can
be used to test, implying that q−1∑n

t=1 κtDt → 0 is necessary for the naïve F-test
to be valid.

This sum converges to zero in three cases. First, if the excess kurtosis of
the errors is zero the summation is identically zero, as the example with Normal
errors illustrates. Second, if the design matrix, X, is balanced, so that Pss = Ptt
and P ∗ss = P ∗tt for all s and t, then all of the elements Dt are equal. In that case,
since both P ∗ and P are idempotent matrices,

Ptt = n−1 trace(P ) = k/n a.s.

and
P ∗tt = n−1 trace(P ∗) = q/n a.s.,

so each Dt = 0 almost surely and the sum is again identically zero. Finally,
if q/n → 0 then each of the elements P ∗tt converges to zero in probability3 and
cn → 0, so again, each element of Dt converges to zero in probability. If none of
those conditions are met, the sum generally remains positive.

This Gaussian approximation suffers from some limitations. First, and
most importantly, using Gaussian critical values for the F-test as the basis for a test
statistic performs worse than using the naïve critical values from the F distribution.
Section 1.3 presents simulations that illustrate this point, and previous research
is consistent with this claim. Akritas and Papadatos (2004), for example, run
simulations for the F-test in a similar ANOVA application, and the naïve F-test
has lower Type-I error than their Gaussian alternatives.

The second limitation is that this approximation forces researchers to choose
between asymptotic approximations. If k is fixed, the approximation implied
by Lemma 1.2.1 does not hold because qF̂ is asymptotically chi-square. Ideally,
Lemma 1.2.1’s approximation should contain the fixed-k result as a special case. If
this new approximation were much more accurate than the usual approximation,
researchers might be convinced to abandon the standard F-test to use the new
test. But, again, the Gaussian test statistic seems to perform worse.

3The eigenvalue restrictions on X′X and R(X′X)−1R′ ensure that the individual P ∗tt-s do not
deviate too far from their average value of q/n, which is now assumed to converge to zero.
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In light of these concerns, we propose rescaling the F statistic and then
comparing that new statistic to the F (q, n−k) critical values. Observe that Lemma
1.2.1 implies √

2(1 + c)q
η

(F̂ − 1) d−→ N(0, 2(1 + c))

under Assumptions 1 – 3. As discussed, the normal(0, 2(1 + c)) distribution and
the F (q, n−k) distribution are related: any sequence of random variables Gn that
satisfies √qn(Gn − 1) d−→ N(0, 2(1 + c)) is approximately F (q, n− k) as well when
both q and n− k are large. Theorem 1.2.2 defines Gn as

Gn = η−1
√

2(1 + c)(F̂ − 1) + 1,

and exploits this relationship. This random variable could form the basis of an
infeasible test statistic instead of F̂ — if G exceeds the (1 − α) quantile of the
F (q, n− k) distribution, the test would reject.

Theorem 1.2.2. Suppose that the conditions of Lemma 1.2.1 hold but qn and kn
may be bounded. Define the random variable

Gn = vnF̂n + (1− vn), vn =
√

2(1 + cn)
ηn

.

Under (1.2.3), P[Gn > zn,α]→ α; each zn,α is the (1− α) critical value for the F
distribution with qn and n− kn degrees of freedom. !

This asymptotic approximation suffers from none of the drawbacks of the
asymptotically-normal approximation. The simulations presented in Section 1.3
demonstrate that the feasible test statistic based on G performs at least as well
as the F-test. Moreover, this asymptotic result holds whether q and k increase
or not, so researchers do not have to choose between asymptotic theories. When
q/n remains positive, the discussion preceding the theorem applies, and when q is
bounded, η2 → 2(1+c) in probability so the correction vanishes. In the second case,
the new random variable, G, and the F statistic, F̂ , are asymptotically equivalent.

The correction term v should be viewed as a variance correction. When the
innovations have positive excess kurtosis, the variance of the F statistic is larger
than predicted by the F (q, n− k) distribution. For small values of q, the variance
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is only slightly larger, but for large values of q relative to n − k, this discrepancy
can invalidate the F-test. Applying the proposed correction, v, simply re-scales
the F statistic so that its true variance matches that of the F distribution.

This correction must be estimated to make testing feasible; in particular,
η2 is an unknown random variable and must be estimated. Such an estimate is
complicated slightly by the necessary degree-of-freedom corrections, but is straight-
forward to calculate. The next lemma gives an estimator for η2.

Lemma 1.2.3. Suppose that the conditions of Theorem 1.2.2 hold. Then

2(1 + cn) + q−1
n

n∑

t=1



 ψ̂n,t
σ̂4
n

− 3


Dn,t = η2
n + op(1) (1.2.5)

if the smallest eigenvalue of Γn+ Ln is bounded away from zero in probability with
σ̂2
n = (n− kn)−1∑n

t=1 ε̂
2
n,t,





ψ̂n,1
...
ψ̂n,n




≡ (Γn + Ln)−1





ε̂4n,1 − σ̂4
n

(
6Pn,11 − 18P 2

n,11 + 12P 3
n,11 − 3∑ns=1 P

4
n,s1
)

...
ε̂4n,n − σ̂4

n

(
6Pn,nn − 18P 2

n,nn + 12P 3
n,nn − 3∑ns=1 P

4
n,sn

)




,

Γn the diagonal matrix with elements 1− 4Pn,tt+ 6P 2
n,tt− 4P 3

n,tt and Ln the matrix
with (s, t) element P 4

n,st. If, additionally, κn,t = κn for t = 1, . . . , n, then

2(1 + cn) + κ̂nq−1
n

n∑

t=1
Dn,t = η2

n + op(1) (1.2.6)

with

κ̂n = n−1
n∑

t=1

ε̂4n/σ̂
4
n − 6kn/n+ n−1∑n

s=1
(
18P 2

n,ss − 12P 3
n,ss + 3∑nu=1 P

4
us

)

n− 4 kn +∑ns=1
(
6P 2
n,ss − 4P 3

n,ss +∑nu=1 P
4
n,us

) . (1.2.7)

!

All three estimators, ψ̂n,t, σ̂2
n, and κ̂n, can be estimated with Pn − P ∗n

replacing Pn in the formulae. This replacement amounts to using the residuals from
the restricted model instead of the unrestricted model, which is appropriate when
the null hypothesis is true. Denote these alternative estimators as ψ̃n,t, σ̃2

n, and κ̃n.
The Cauchy-Schwarz inequality implies that the excess kurtosis must be greater
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than −2, so we recommend using the estimators max{κ̂,−2} and max{κ̃,−2}
instead of κ̂ or κ̃ on their own.

The asymptotic distribution of the feasible test statistic is an immediate
corollary.

Corollary 1.2.4. Suppose that the conditions of Theorem 1.2.2 are satisfied, let
v̂n be a consistent estimator of vn, and define

Ĝn = v̂nF̂n + (1− v̂n). (1.2.8)

If (1.2.3) holds, P[Ĝn > zn,α]→ α. !

The preceding discussion has focused on the validity of the F-test and on
proposing a valid alternative test, but we also care about the power of these tests.
The asymptotic theory for G and Ĝ is based fundamentally on asymptotically
normal random variables, so it is relatively easy to derive the distribution under
local alternatives of the form

Rnβn = rn + δn. (1.2.9)

Corollary 1.2.6 shows that the test based on G has nontrivial power if δ′nδn =
O(q1/2n /n) and is consistent if δn converges to zero more slowly. An important
special case is if Rn = Ik, rn = 0, and δn = (1, 0, . . . , 0)′ — i.e. there is a single,
nonzero regressor and test is for the joint significance of the regression. In that
case, the test has unit power asymptotically.

Lemma 1.2.5. Suppose that the conditions of Lemma 1.2.1 hold but that the
alternative hypothesis (1.2.9) holds with δ′nδn = O(q1/2n /n). Then

√
qn
ηn

(
F̂n − 1

)
− θn → N(0, 1) (1.2.10)

in distribution, with

θn ≡ σ−2η−1
n (n/√qn)δ′n(R(n−1XnXn)−1R′)−1δn = O(1). (1.2.11)

!
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The behavior of F̂ under local alternatives is sufficient to describe the first-
order local power of Ĝ. Exploring the higher-order behavior of G or Ĝ is beyond
the scope of this paper. Consistency of the test is an immediate corollary.

Corollary 1.2.6. Suppose that the conditions of Corollary 1.2.4 hold, but that the
alternative hypothesis (1.2.9) holds with δ′nδn ∼ 1. Then P[Ĝn > zn,α]→ 1.

1.2.3 Behavior of the F-statistic

Lemma 1.2.1 and Theorem 1.2.2 show that the F-test is invalid and propose
a corrected replacement test statistic, but if the correction, v, is near one, the F-
test may do well in practice. This section looks at the correction term in more
detail. If the effect of v on the F-test is small, researchers might prefer to use the
uncorrected F-test out of convenience. However, this section shows that the size of
that test can be compromised, suggesting that the new test is preferable. In this
section, we assume that the fourth moments of the errors are all identical. In this
case, the correction simplifies considerably:

v = 2(1 + c) + κD̄, D̄ =
∑n

t=1Dt/q. (1.2.12)

Section 1.2.3 runs a series of simulations to study the distribution of D̄, and Section
1.2.3 looks at the effect of κD̄ on the size of the uncorrected F-test.

Distribution of D̄

Unless the kurtosis is near zero, the value of D̄ determines the extent to
which a correction is necessary for valid testing. In practice, researchers can cal-
culate this statistic to check whether it is large. This subsection uses simulations
to study the distribution of D̄ and looks for systematic patterns based on the
marginal distribution of the regressors and on n, k, and q.

We draw 600 realizations of the statistic D̄ when the predictors are drawn
from each of three different simple distributions — the Normal(0,1), Cauchy, and
Exponential distributions — and include an intercept. Comparing the Normal
and Cauchy distributions allows us to see how D̄ is affected by heavy-tailed dis-
tributions; the Normal distribution is thin-tailed, the Cauchy is fat-tailed, and the



16

Table 1.1: Values of n, k, and q used for simulations for distribution of D̄.
n: 50 100 200 500
k: n/20 n/10 n/4 n/2
q: 1 k/2 k − 1

Exponential distribution falls in-between. We then draw matrices of predictors
with different values of n, k, and q for each distribution. Table 1.1 contains the
precise values; when fractions resulted in non-integer values, we rounded up to the
next largest integer.

The results of the simulations are presented as boxplots. Figure 1.3 gives
the results for Normal predictors, Figure 1.4 for Cauchy, and Figure 1.5 for Ex-
ponential. Each boxplot contains the results for a particular combination of n,
k, and q, and they are grouped by n, then k/n, and then q/k, with larger values
above lower values. The boxplots are constructed as usual, except we do not la-
bel any observations as “outliers.” The boxes themselves mark the interquartile
range of the simulated distribution, and the dark line in the middle of each box
marks the median. Each whisker extends to the largest or smallest observed value.4

Other optional enhancements, such as notches or varying the width of the plots to
represent the number of observations, were not used in constructing these plots.

Some patterns emerge from the simulations. The value of D̄ increases dra-
matically as q/k increases, for fixed values of n and k. This behavior is most
visually apparent for k/n = 0.5, but can be seen generally by comparing the medi-
ans for any values of n and k (see, especially, Figure 1.5). Moreover, the dispersion
of the distribution of D̄ decreases with all of the variables, n, k/n, and q/k. The
relationship between q and the dispersion is most clearly seen in Figures 1.4 and
1.5.

We also compare the distributions of D̄ for different distributions of the pre-
dictors. The distribution of D̄ has much larger dispersion and is on average much
larger for the Cauchy distribution, and is somewhat larger and more dispersed for

4For most boxplots, the whiskers do not extend beyond 1.5 times the interquartile range,
and observations beyond the edge of the whisker are marked individually as outliers. In these
simulations, there are many such “outliers,” and including them separately is visually distracting.
Moreover, they are not really outliers; they are known to be drawn from the same distribution
as the other observations, so there is no point in studying them individually.
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Figure 1.1: F (15, 70) density (dotted line) and the density fF (·) given in Equation
(1.2.13) for n = 100, k = 30, q = 15, and v = 0.5 (solid line). The shaded region
is the area to the right of the 0.90 quantile of the F (15, 70) distribution.

the Exponential distribution compared to the Normal, suggesting that the tails
of the distribution of the regressors plays a large role in the degree of correction
necessary. We still see some large values of D̄ for the Gaussian distribution, but
they require tests of the joint significance of many predictors at once.

Taken together, these simulations indicate that the corrected statistic, Ĝ,
is most necessary when testing a hypothesis with a large number of restrictions,
especially if the regressors are heavy-tailed. The number of additional regressors
beyond those in the null hypothesis does not seem to affect degree of correction
necessary for the test.

Effect of the Infeasible Correction on the Size of the Test

This section looks at the relationship between the magnitude of the infeasi-
ble correction, v, and the size of the uncorrected F-test. This paper’s asymptotic
theory implies that G has approximately an F (q, n− k) distribution; in this sub-
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Figure 1.2: Plot of area to the right of the 0.90, 0.95, and 0.99 quantiles of the
F (10, 30) distribution, for different values of κD̄ (horizontal axis).

section, we assume that G has this distribution exactly, and derive the implied
density of the uncorrected F-statistic. We then calculate the mass of that density
above the 0.90, 0.95, and 0.99 quantiles of the F-distribution for different values
of n, k, q, and κD̄, with κ the excess kurtosis of the errors. This mass gives an
indication of the extent to which the naïve F-test over-rejects; if 5% of the distri-
bution of the F-statistic lies to the right of the 0.99 quantile, then the true size
of a nominal 1% test is 5%. These calculations are approximate since G does not
have this distribution in finite samples, but they do allow the impact of κD̄ to be
isolated.

If the distribution of G is known and v is fixed, it is straightforward to derive
the distribution of F̂ . Suppose that fq,n−k(·) is the density of G, an F (q, n − k)
random variable. Then we have a formula for F̂ ,

F̂ = (G+ v − 1)/v,

and the density of F̂ , denoted fF (·), is trivially calculated to be

fF (x) = v · fq,n−k(vx+ 1− v). (1.2.13)

Figure 1.1 plots a representative graph of the densities fq,n−k and fF for n = 100,
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k = 30, q = 15, and v = 0.5. We see that both densities are centered at one, and
that the density of F̂ is more dispersed than that of G. The shaded part of graph
is the area under the density of F̂ that lies to the right of the 90% critical value of
the F-distribution. This area is equal to 0.15, so the F-test would over-reject.

To better understand these size distortions, we calculate that area for dif-
ferent values of n, k, q, and κD̄. Table 1.1 contains the values of n, k, and q,
they are the same values used to construct Figures 1.3 through 1.5. We consider
all values of κD̄ between −1 and 3 and consider tests of size 1%, 5%, and 10%.
These values are plotted in Figures 1.6, 1.7, 1.8, and 1.9; Figure 1.2 gives a key
to the diagrams. Each figure presents the true area for a different value of n. The
plots are arranged in a grid, and each plot in the grid contains three curves, each
depicting the area for a different quantile. The true area is the vertical axis and
the value of κD̄ is the horizontal axis. When κD̄ is zero, no correction is necessary
and each area is equal to the corresponding area of the F density function. In each
plot, the top curve presents the values for a test of size 10%, the middle curve 5%,
and the bottom curve 1%.

The broad patterns are the same for each test size do not depend heavily on
n, although the size distortions are larger for larger values of n. These distortions
are, obviously, smaller when κD̄ is near zero, and increase as κD̄ increases. For
κD̄ near 3, the true size of each test is roughly 5 percentage points higher than
the test’s nominal size. For any values of n and k, the distortions increase with q,
and for any values of n and q, the distortions do not seem to vary with k.

1.2.4 Summary

When many restrictions are tested simultaneously, the naïve F statistic
over-rejects. This tendency is not so pronounced that the F-test is useless, but
it can be large enough to effect empirical conclusions. The rescaled statistic, Ĝ,
avoids this size distortion and should be used instead of the F statistic for testing.
The next section studies the finite sample properties of this statistic through monte
carlo simulations.
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1.3 Monte Carlo comparison
Although the asymptotic properties of the new statistic, Ĝ, are superior

to the conventional F-test, researchers are far more concerned about these tests’
finite sample properties. One possible concern is the dependence of this statistic
on an estimate of the kurtosis of the regression errors; if this estimate is poor, the
entire test may do poorly as well and may do worse than the uncorrected F-test.
This section presents two monte carlo simulations. The first studies the accuracy
of the kurtosis estimator, and the second studies the size of the test statistic based
on Ĝ.

1.3.1 Kurtosis Estimates

This subsection studies the performance of the kurtosis estimator proposed
in Lemma 1.2.3. This estimator is constructed for different distributions of the pre-
dictors, different numbers of observations and variables, and different magnitudes
of the population kurtosis. The predictors are drawn from either the Cauchy,
Standard Normal, or Exponential distributions, and the errors are drawn from
Student’s t distribution with either 5, 10, or 30 degrees of freedom. Varying the
distribution of the regressors allows us to determine the effect of the imbalance of
the regressors on the kurtosis estimator, and varying the degrees of freedom of the
error distribution allows us to determine the effect of the kurtosis of these errors
on the estimator.

The values of the number of predictors and observations that were used
in these simulations are listed in Table 1.1. We ran 1000 simulations; for each
simulation, the linear regression

yt = β0 + x′tβ + εt

was fit, and the estimator κ̂, defined in Lemma 1.2.3, was calculated. The Median
Absolute Deviation (MAD) and the Root Mean-Squared Error (RMSE) of the kur-
tosis estimator were calculated for each experiment, and the results are displayed
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in Tables 1.2, 1.3 and 1.4. For comparison, the naïve estimator

(n− k)−1
n∑

t=1
ε̂4n/σ̂

4 − 3

is also calculated for each experiment, and the MAD and RMSE of this estimator
is tabulated in Tables 1.5, 1.6, and 1.7.

We can see that the estimators are terrible for very large values of k/n,
here 1/2. For more moderate values of k/n, even 1/4, κ̂ improves considerably,
and continues to improve as k/n decreases. The performance of the estimator
(in terms of RMSE and MAD) improves as the kurtosis decreases, and improves
as the number of observations increases. For five degrees of freedom, the kurtosis
estimator is poor; its RMSE is comparable to the value of the excess kurtosis itself.
For smaller values of excess kurtosis, the estimator improves. The distribution of
the predictors, on the other hand, does not seem to affect the kurtosis estimators
very much. Although the kurtosis estimator is more accurate for the Cauchy
predictors, this effect is small compared to that of the other factors. In comparison,
the naïve kurtosis estimator performs poorly for all values of q, k, and n and should
be avoided.

These results are not as discouraging as they first appear. In practice,
researchers can choose to estimate the kurtosis using the residuals from either the
unrestricted model or from the restricted model that imposes the null hypothesis.
Using the restricted model decreases the effective number of predictors, so the case
k/n = 1/2 should not arise in practice.

1.3.2 Test Size

We perform a similar monte carlo experiment to study the size of the test
statistic based on Ĝ. As before, design matrices are generated with q, k, and n
set according to Table 1.1, but do not consider n = 500. The regressors are drawn
independently from the Cauchy, Standard Normal, or Exponential distribution
with an intercept, and the dependent variables are drawn independently of the
regressors from Student’s t distribution with 5, 10, and 30 degrees of freedom. For
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each simulation, we estimate the regression

yt = x′tβ + εt

and calculate the following random variables: the F-test; the infeasible test based
on G; the feasible test based on Ĝ, using the restricted residuals to estimate the
kurtosis of the errors (κ̃); the feasible test based on Ĝ, using the unrestricted
residuals to estimate the kurtosis; and a test statistic based on the Normal ap-
proximation for F̂ in Lemma 1.2.1. For all but the last statistic, the test rejects if
its corresponding random variable exceeds the 0.90 quantile of the F (q, n− k) dis-
tribution. The last test, based on the Normal distribution, rejects if √q(F̂ − 1)/η̂
exceeds the 0.90 quantile of the standard normal distribution. The variance for
the Normal approximation, η̂2, is estimated using the restricted residuals. We
only study the size of nominal 10% tests; Section 1.2.3 indicates that we would get
similar results for tests of different size.

Tables 1.8, 1.9, and 1.10 contain the results of these simulations. Each entry
lists the percentage of the 1500 simulations ran that rejects the null hypothesis.
The naïve F-test and the feasible corrected test, Ĝ, both perform well for almost
all of the simulations we consider; their simulated size is very close to the nominal
size of 10%. The exception is for Cauchy predictors with 5 degrees of freedom. In
this case, unless very few restrictions are tested, the F-test over-rejects by roughly
5 percentage points, and the degree of over-rejection increases with n, k/n, and q.
The simulated size of Ĝ, on the other hand, is much closer to its nominal size and
over-rejects by only one or two percentage points.

The other statistics perform worse. Using the unrestricted residuals to
estimate the kurtosis gives a statistic that under- or over-rejects by up to seven
percentage points, suggesting that both the size and power of the test are worse
than the naïve F-test. The test that uses a normal approximation performs the
worst, with higher than nominal size for any distribution of regressors. Surprisingly,
it performs worse for high values of q than for small values. It also seems to perform
better for larger values of n.

Generally, these simulations demonstrate that the proposed statistic, Ĝ,
preserves size well in finite samples, even for models with many regressors and hy-
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potheses with many restrictions. This performance may appear puzzling, given the
demonstrated poor performance of the kurtosis estimator in the previous section,
but it is not. When q is large, ko — the number of regressors used by the restricted
model — is small, since ko = k − q. In that case, the kurtosis can be estimated
precisely, and Ĝ should be expected to perform well. On the other hand, when q is
small, ko is large but D̄ is small. In this case, the kurtosis may be estimated poorly,
but its estimate has only a small effect on the final statistic. These compensating
forces are not present in Ĝa, since it uses the unrestricted residuals to estimate the
kurtosis, explaining its poor performance in these simulations.

1.4 Empirical Exercise
This section presents two empirical studies that illustrate the new test

statistic based on Ĝ. The first is a macroeconomic application based on Olivei
and Tenreyro’s (2007) study of monetary policy shocks and the second is a cross-
sectional application based on Levine and Renelt’s (1992), Sala-i-Martin’s (1997),
and Sala-i-Martin, Doppelhofer, and Miller’s (2004) studies of economic growth.
Although this paper’s theory has not yet been extended to time series applications
with lagged dependent variables, which is the econometric model used by Olivei
and Tenreyro, their study is a natural application of this paper’s statistic and it
is unlikely that the form of the test statistic based on Ĝ will need to change to be
appropriate in these applications.

1.4.1 Monetary Policy Shocks

Macroeconomic models often impose rigidities in price and wage contracts
so that monetary policy has an effect on real economic variables, output and un-
employment in particular. Taylor (1980) and Calvo (1983) pioneered models with
many agents who set wages or prices rationally but infrequently; the length for
which the price is set is exogenous, and the agents set these prices at different,
staggered, times. In this framework, aggregate prices and wages do not change
instantaneously, and these frictions can cause agents to change their consumption
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and labor supply in response to changes by the Federal Reserve to the money
supply or interest rate.

Olivei and Tenreyro (2007) argue that these models could be missing impor-
tant seasonal effects in the price rigidity. These seasonalities could cause monetary
policy to have a stronger effect at some times of the year than others. Sticky price
models are often motivated by citing union wage negotiations and other similar
contracts. Olivei and Tenreyro cite survey evidence that most firms renegotiate
these contracts in the fourth quarter of the calendar year, and these changes are
enacted in the first quarter of the next year. Consequently, actions by the Federal
Reserve could have less impact in the first and fourth quarters, when wages and
prices are the most flexible.

Olivei and Tenreyro formalize this argument in two ways. They develop a
variation of a Calvo sticky-wage Dynamic Stochastic General Equilibrium (DSGE)
model that allows the probability of wage renegotiation to vary over the year. They
also estimate a structural vector autoregression (SVAR) using GDP, the GDP
deflator, an index of commodity prices, and the Federal Funds rate, and allow the
coefficients of this model to be different in different quarters.5 They find that the
impulse response functions of the DSGE model match those estimated from the
SVAR, supporting their intuition. Moreover, the impulse response functions of the
VAR show a more pronounced effect from monetary policy shocks in the second
and third quarters.

Although Olivei and Tenreyro focus on developing and studying this ex-
tended Calvo model, this section will focus on a relatively small aspect of their
work: whether there is evidence that the VAR coefficients are truly different across
quarters. Olivei and Tenreyro use quarterly data from 1959 to 2005 to estimate
the vector autoregression

yt = B0,Q(t) +B1 · t+
4∑

k=1
Ak,Q(t)yt−k + εt (1.4.1)

with yt containing log GDP for quarter t, the log of the GDP deflator, the log of the
5Olivei and Tenreyro report that the BEA is the source of the GDP and the GDP deflator

series, and that the Commodity Research Bureau is the source of the commodity price index.
The full dataset used by Olivei and Tenreyro is available through the website of the AER.
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commodity price index, and the Federal Funds rate. The calendar quarter of period
t is given by Q(t), so each equation has 69 different unknown regression coefficients
and is estimated with 144 total observations. To test that the coefficients B0,j and
Ak,j are equal across j for any one of the equations in (1.4.1) requires imposing
51 constraints, giving q/n ∼ 0.35. This ratio is large enough that the naïve F-test
could over-reject.

The null hypothesis of no seasonal effects in equation i can be written
formally as

Ho : B(i)
0,1 = B0,m m = 1, . . . , 4

A(ij)
k,1 = A(ij)

k,m m = 1, . . . , 4, j = 1, . . . , 4

with B(i)
0,1 the ith element of the vector B0,1, and A(ij)

k,1 the (i, j) element of the
matrix Ak,1. To test this hypothesis, we calculated both F̂ and Ĝ, using the
restricted VAR to estimate the excess kurtosis of the errors. These statistics, and
the supplementary statistics used to construct Ĝ, are presented in Table 1.11.

These tests somewhat support Olivei and Tenreyro’s results. The test statis-
tic rejects at the 10% level for the equations with GDP Deflator, the commodity
price index, and the Federal Funds Rate as the dependent variables. However,
one-period-ahead GDP does not seem to be subject to these seasonal effects — the
new statistic, Ĝ, has a p-value of 0.105 and so fails to reject. Notice that the naïve
F-test has a p-value of 0.098 and so it would reject.

In macroeconomic applications, like Olivei and Tenreyro’s, the desire to
flexibly model the dynamics of the economy leads researchers to use vector au-
toregressions that have many unknown coefficients. The paucity of data makes
it especially difficult to accurately estimate these models, but it is not clear that
a smaller model would be able to capture the dynamics of interest. This paper’s
theory suggests that one can reliably test the significance of these coefficients even
if they are estimated imprecisely, and this section’s analysis indicates that failing
to account for the complexity of these models can give misleading results. It is im-
portant to note that, even though the one-step-ahead forecasts that we study and
the impulse response functions that Olivei and Tenreyro study are tightly related,
there can be seasonal effects in the response of output to structural shocks, even
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if the relationship between output and past values of the observed series is not
seasonal. Moreover, until we verify that the test based on Ĝ is appropriate in time
series regressions with lagged dependent variables, this section’s results should be
viewed as promising but unconfirmed.

1.4.2 Cross-Country Growth Regressions

This second application looks at the literature on the determinants of eco-
nomic growth. Over long periods of time, the welfare benefits from a high growth
rate dominate other determinants of a region’s welfare, so understanding the fac-
tors that cause economic growth is important. This interest has led researchers to
estimate equations of the from

growthj = β0 + β1xj + εj (1.4.2)

with growthj the average rate of per capita GDP growth in country j between two
specified years and xj a vector of country-level explanatory variables. A concern
in this literature is that there are many potential variables that cause economic
growth, so the dimension of xj can be large. In practice, researchers often select a
small subset of those predictors and test the smaller model; this approach makes
it hard to compare studies and hard to know the importance of any one variable
while controlling for the effects of all of the others.

Levine and Renelt (1992) propose one solution to these problems; they use
a variation of Leamer’s Extreme Bounds Analysis using the average growth rate
from 1960 to 1989. To use this approach, Levine and Renelt estimate (1.4.2) using
different subsets of the regressors and label the relationship between, for example,
the ith variable and economic growth “fragile” if any two of the estimated coeffi-
cients for this variable have different signs. To make this approach computationally
feasible, they restrict the subsets of the regressors they consider. Each regression
includes four variables — a measure of initial per-capita income in 1960, primary
school enrollment in 1960, the investment share of GDP in 1960, and the average
annual population growth rate; arguing that these variables have broad support
and are included in most prior empirical studies. Permutations of the other re-
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gressors are then examined, subject to the constraint that at most three additional
variables enter the equation. Levine and Renelt find, perhaps unsurprisingly, that
the relationship between most variables and economic growth is “fragile,” that
there are different subsets of additional regressors for which the sign of almost any
estimated coefficient switches.

Sala-i-Martin (1997) and Sala-i-Martin, Doppelhofer, and Miller (2004) ar-
gue that this Extreme Bounds Analysis is too strict of a assessment, so Levine and
Renelt’s finding does not really reflect the relationship between economic growth
and these regressors. Sala-i-Martin (1997) proposes a model-averaging approach
instead, that Sala-i-Martin, Doppelhofer, and Miller (2004) build on, and finds that
many of these variables are strongly correlated with economic growth. Similarly to
Levine and Renelt (1992), Sala-i-Martin splits the regressors into a set of three that
are included in every regression (replacing population growth and the investment
share of GDP with life expectancy in 1960) and estimates each possible regression
that includes the other variables, again imposing a limit to mitigate the compu-
tational complexity. Instead of comparing the two most extreme point estimates,
though, Sala-i-Martin uses the empirical distribution of the estimated coefficients
to determine the relationship between that regressor and economic growth. Sala-
i-Martin, Doppelhofer, and Miller (2004) use a related Bayesian procedure and
emphasize the posterior distributions of the regression coefficients. Both studies
find that many of these regressors are correlated with growth, contradicting Levine
and Renelt (1992).

In this section, we take a much different perspective: this is not a model
selection problem at all, but is a conventional estimation and testing problem. The
relationship of interest is

growthj = β0 + β′wwj + β′zzj + εj (1.4.3)

with wj the three undisputed determinants of growth and zj the additional ex-
planatory variables of interest. If βz = 0, these additional predictors are not
correlated with growth; if βz += 0 they are; so it is natural to test it. Although this
simple analysis does not tell us any details about how the elements of zj are related
to growth, as the original studies aim to, it does support one set of conclusions
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over the other: if the variables zj are jointly significant, we should not treat their
relationship with growth as “fragile,” and if they are insignificant there may be
very little relationship to explain. We also test the hypothesis βw = 0 to determine
whether the favored variables are correlated with growth after controlling for the
others.

We use Sala-i-Martin, Doppelhofer, and Miller’s (2004) dataset for this
analysis. It includes data on economic growth from 1960 to 1996 for 88 countries,
and includes 67 other country level variables, giving k/n = 0.77. The vector wj
includes an intercept, the enrollment rate in primary education in 1960, the level
of GDP per capita in 1960, and the life expectancy in 1960. These are the three
variables that Sala-i-Martin (1997) included in all of his regressions. Please see
Sala-i-Martin, Doppelhofer, and Miller (2004) for a full description of the countries
and variables contained in this dataset.

The statistics are presented in Table 1.12. The second test, for the sig-
nificance of the “consensus” variables that Sala-i-Martin (1997) includes in every
regression, fails to reject at 10%. While these variables could have an important
structural relationship, they do not seem to have strong partial correlations with
growth, and the data do not seem to justify favoring these regressors over the oth-
ers. For this hypothesis, the test statistics F̂ and Ĝ have similar values: the null
hypothesis imposes only three restrictions, so the degree of correction, v̂, is small.

The test of the main hypothesis, that the additional regressors do not help
explain economic growth, reject at the 10% level, supporting Sala-i-Martin’s (1997)
and Sala-i-Martin, Doppelhofer, and Miller’s (2004) conclusion that there is a
meaningful relationship between these variables and growth. It is somewhat sur-
prising that the correction estimate, v̂, is not further from one — it is estimated
to be 0.98 — given the number of restrictions tested. The F-test rejects the null
hypothesis as well, agreeing with the corrected statistic. One would not normally
be confident in the F-test here, but its close agreement with Ĝ should give us some
confidence in this result.
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1.5 Conclusion
Often researchers are concerned that using too large a model will bias their

results — that they will find spurious and nonexistent patterns in a dataset simply
because the model has many unknown parameters. This paper shows that this
concern has been well founded. The naïve F-test has a tendency to over-reject for
models with many parameters. However, this tendency can be understood and
modeled, and this paper derives a new statistic that controls for model size and
yields a valid test for regression models with many coefficients. Our theory suggests
that this correction is especially important when the number of restrictions being
tested is large, when the regressors are fat-tailed, and when the regression errors
have high excess kurtosis — when those conditions are not met, both the original
F-test and our corrected version are reliable. This paper’s monte carlo evidence
suggests that the F-test can over-reject in finite samples, and the empirical exercises
demonstrate that the F-test and our new statistic can give different answers in
practice when the original F statistic is near the test’s critical values.

The asymptotic theory underlying this new statistic builds on and extends
similar results for the F-test in the ANOVA literature. The statistic that we
present has several advantages over the ANOVA test statistics, the most important
of which is its proximity to the F-test in situations where the F-test performs well.
In that light, we also suggest that the statistic Ĝ also be used for homoskedastic
ANOVA when the number of groups is large, and the number of observations per
group is small.

1.A Proofs and Additional Results
Lemma 1.A.1. Suppose the conditions of Lemma 1.2.1 hold. Then

var(ε′nP ∗nεn | Xn)−1/2(ε′nP ∗nεn − qnσ2) d−→ N(0, 1) (1.A.1)

and

var(ε′n(In − Pn)εn | Xn)−1/2
[
ε′n(In − Pn)εn − (n− kn)σ2

]
d−→ N(0, 1). (1.A.2)
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Proof of Lemma 1.A.1. The proofs of (1.A.1) and (1.A.2) are identical, so we only
present the proof of (1.A.1). Since the errors are strictly exogenous and the limiting
distribution does not depend on Xn, we can treat the regressors as deterministic
for this proof, which simplifies the notation. Observe that

q−1/2
n

(
ε′nP

∗
nεn − qnσ2

)
= q−1/2
n

n∑

t=1
(ε2n,t − σ2)P ∗n,tt + q−1/2

n

n∑

t=1

∑

s *=t
εn,tεn,sP

∗
n,st.

Since the errors are independent with mean zero, these two sums are independent.
It then suffices to prove that each term is individually asymptotically normal.

The proof that q−1/2
n

∑(ε2n,t−σ2)P ∗2n,tt is asymptotically normal is immediate.
Each summand is independent, and P ∗n,tt is bounded between zero and one. Since
εn,t has bounded rth moments, the summation satisfies the Lindeberg-Feller central
limit theorem.

The proof for
q−1/2
n

n∑

t=1

∑

s *=t
εn,sεn,tP

∗
n,st

is only slightly more difficult and follows from a central limit theorem for quadratic
forms developed by Hall (1984) and de Jong (1987). Define

ς2n = var


q−1/2
n

n∑

t=1

∑

s *=t
εn,sεn,tP

∗
n,st



 .

Straightforward calculations give

ς2n = (2σ4/qn)
n∑

t=1

∑

s *=t
(P ∗n,st)2

= (2σ4/qn)
n∑

t=1
(P ∗n,tt − (P ∗n,tt))

= 2σ4 − (2σ4/qn)
n∑

t=1
P ∗2n,tt.

We can assume without loss of generality that ς2n remains uniformly positive; if
not, this term vanishes and the proof is complete. To apply de Jong’s central limit
theorem (Theorem 5.2 of de Jong 1987), we must prove that there exists a sequence
of numbers Mn such that Mn →∞ and the following three conditions hold.

1. ς−2
n M

4
nmaxs=1,...,n

∑
t*=s
(
q−1/2
n P ∗n,st

)2
→ 0 in probability.
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2. maxs=1,...n E
(
ε2n,t1 {|εn,t| > Mn}

)
→ 0

3. ς−2
n q
−1
n λmax(P ∗n −Λn)2 → 0 in probability, with Λn the diagonal matrix with

elements (P ∗n,tt).

Since P ∗n is idempotent, ∑t*=s P ∗2n,st = P ∗n,tt − P ∗2n,tt almost surely, which is in turn
less than one. The first condition, then, is satisfied for any Mn = o(q1/4n ). The
second conditions is satisfied automatically because εn,t has bounded rth moments.
Finally,

λmax(P ∗n − Λn) ≤ λmax(P ∗n) = 1

by construction, ensuring that the third condition is met. !

Proof of Lemma 1.2.1. Under the null hypothesis, we have

√
qn(F̂ − 1) = q−1/2

n ε′nP
∗
nεn

(n− kn)−1ε′n(In − Pn)εn
− q1/2n

= q
−1/2
n [ε′nP ∗nεn − cnε′n(In − Pn)εn]

(n− kn)−1ε′n(In − Pn)εn
.

Straightforward calculations give

E (ε′nP ∗nεn − cnε′n(In − Pn)εn) = 0

and
var (ε′nP ∗nεn − cnε′n(In − Pn)εn | Xn) = η2

n

(For formulae for the mean and variance of quadratic forms, see Seber and Lee
2003). Lemma 1.A.1 implies that the numerator is asymptotically normal and the
denominator converges in probability to σ2, completing the proof. !

Proof of Theorem 1.2.2. Define a sequence of random variables {F ∗n} such that
F ∗n ∼ F (qn, n− kn). Lemma 1.2.1 implies that if qn →∞,

√
qn

2 (1 + cn)
(F ∗n − 1) d−→ N(0, 1)

and √
qn
ηn

(F̂n − 1) d−→ N(0, 1).
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As a result, √
2 (1 + cn) qn
ηn

(
F̂n − 1

)
d= √qn (F ∗n − 1) + op(1)

and convergence in distribution follows. Now, suppose that qn is bounded. Then
we can apply, for example, White’s (2000) Theorem 5.3 to prove that β̂n is asymp-
totically normal, so qnF̂n d= χ2

qn + op(1) and, since (qF̂n)2 is uniformly integrable,
var(qnF̂ )− 2qn → 0 as n→∞. Since cn → 0 as well, vn → 1. !

Proof of Lemma 1.2.3. The proofs for the restricted and unrestricted versions of
these estimators are identical and we present the proof for the unrestricted esti-
mator. As with previous proofs, we assume that the predictors are deterministic
to streamline notation, but the identical proof also holds for stochastic regressors.
From Lemma 1.A.1, σ̂2

n → σ2 in probability, so it suffices to prove that

q−1
n

n∑

t=1

[
ψn,t − µ(4)

n,t

]
Dn,t

p−→ 0,

with µ(4)
n,t = E(ε4n,t | Xn) and





ψn,1
...
ψn,n




≡ (Γn + Ln)−1





ε̂4n,1 − σ4
n

(
6Pn,11 − 18P 2

n,11 + 12P 3
n,11 − 3∑ns=1 P

4
n,s1
)

...
ε̂4n,n − σ4

n

(
6Pn,nn − 18P 2

n,nn + 12P 3
n,nn − 3∑ns=1 P

4
n,sn

)




.

To show this convergence, we will prove first that

E q−1
n

n∑

t=1
(ψn,t − µ(4)

n,t)Dn,t → 0, (1.A.3)

then prove that the variance of q−1
n

∑n
t=1(ψn,t − κn,t)Dn,t converges to zero under

the auxiliary assumption the eighth moment for εn,t is bounded. A truncation
argument allows us to extend that result to the case with unbounded eighth mo-
ments and completes the proof. The proof for the special case of the lemma when
the errors all have identical kurtosis is similar and not presented. Without loss of
generality, assume that βn = 0 for all n.

To prove (1.A.3), we expand ε̂4n,t and take the expectation of each term



33

separately. Observe that

ε̂4n,t =
(
εn,t − x′n,tβ̂n

)4

= ε4n,t − 4ε3n,tx′n,tβ̂n + 6ε2n,t(x′n,tβ̂n)2

− 4εn,t(x′n,tβ̂n)3 + (x′n,tβ̂n)4.

Then
E
(
ε3n,tx

′
n,tβ̂n

)
= µ(4)

n,tPn,tt.

Similarly,

E
(
ε2n,t(x′n,tβ̂n)2

)
= µ(4)

n,tP
2
n,tt + σ4

n(Pn,tt − P 2
n,tt)

E
(
εn,t(x′n,tβ̂n)3

)
= µ(4)

n,tP
3
n,tt + 3σ4

n(P 2
n,tt − P 3

n,tt)

E
(
(x′n,tβ̂n)4

)
=
n∑

s=1
µ(4)
n,sP

4
n,st + 3σ4

n

(
P 2
n,tt −

∑n

s=1 P
4
n,ts

)
,

where many of these terms are simplified because the matrix Pn is idempotent. As
a result,

E(ε̂4n,t) = µ(4)
n,t

(
1− 4Pn,tt + 6P 2

n,tt − 4P 3
n,tt

)
+
∑n

s=1 µ
(4)
n,sP

4
n,st

+ σ4
n

(
6Pn,tt − 18P 2

n,tt + 12P 3
n,tt − 3

∑n

s=1 P
4
n,st

)

so each ψn,t has mean µ(4)
n,t as required for the first step of the proof.

If the eighth moment of εn,t is bounded, it can be shown similarly through
tedious algebra that

E
(
q−1
n

∑n

t=1

(
ψn,t − µ(4)

n,t

)
Dn,t
)2
→ 0 (1.A.4)

as n → ∞, and the proof is omitted. Finally, to prove (1.A.4) for bounded rth
moments, define, for any fixed constant C,

ε̃cn,t = εn,t1{|εn,t| < C} − E(εn,t1{|εn,t| < C} | Xn)

β̃n =
(
X′nXn

)−1 n∑

t=1
xn,tε̃

c
n,t
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and




ψ̃cn,1
...
ψ̃cn,n




= (Γn + Ln)−1

×





(ε̃cn,1 − x′n,1β̃n)4 − σ4
n

(
6Pn,11 − 18P 2

n,11 + 12P 3
n,11 − 3∑ns=1 P

4
n,s1
)

...
(ε̃cn,n − x′n,nβ̃n)4 − σ4

n

(
6Pn,nn − 18P 2

n,nn + 12P 3
n,nn − 3∑ns=1 P

4
n,sn

)




.

It follows that
q−1
n

n∑

t=1

(
ψ̃cn,t − E(ε̃cn,t)4

)
Dn,tt

p−→ 0

for any finite C. For any δ > 0, there is a value of C such that

P[|ψ̃cn,t − ψ̂n,t| < δ] > 1− δ

and
P[|(ε̃cn,t)4 − (εn,t)4| < δ] > 1− δ

for all n and t; choose such a C to complete the proof. !

Proof of Lemma 1.2.5. Under (1.2.9), the numerator of F̂n becomes

q−1
n Y

′
nP
∗
nY n = q−1

n

[
ε′nP

∗
nεn + 2δ′n(Rn(X′nXn)−1R′n)−1Rn(X′nXn)−1X′nεn

+ δ′n(Rn(X′nXn)−1R′n)−1δn
]
,

and so
√
qn
ηn

(F̂ − 1) = η−1
n σ

−2q−1/2
n ε′nP

∗
nεn

+ 2q−1/2
n σ−2η−1

n δ
′
n(Rn(X′nXn)−1R′n)−1Rn(X′nXn)−1X′nεn

+ q−1/2
n σ−2η−1

n δ
′
n(Rn(X′nXn)−1Rn)−1δn + op(1).

Lemma 1.2.1 ensures that the first term converges to a standard normal. The
second term has mean zero and variance (conditional on Xn) equal to

2q−1
n η
−2
n δ
′
n(Rn(X′nXn)−1R′n)−1δn.



35

This variance is in turn of order less than

(n/qn)δ′nδn λmax((Rn(n−1X′nXn)−1R′n)−1) p−→ 0

by assumption. Similarly,

η−1
n q
−1/2
n δ′n(Rn(X′nXn)−1R′n)−1δn = Op(1).

!

Proof of Corollary 1.2.6. Suppose that qn is bounded. Then Ĝ behaves like F̂ ,
and standard results give the result. If qn →∞, the result holds as a consequence
of Lemma 1.2.5 !
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Table 1.2: Root Mean Squared Error (RMSE) and Median Absolute Deviation
(MAD) for the kurtosis estimator, κ̂, for different dimensions of the matrix of
regressors and different values of excess kurtosis of the errors; n is the number of
observations; k is the number of predictors, including an intercept; and “error df”
is the degrees of freedom of the Student’s t distribution used to generate the errors.
The predictors are drawn from a standard normal distribution, and each entry in
the table is based on 1000 simulations.

RMSE MAD
error df: 5 10 30 5 10 30

excess kurtosis: 6.00 1.00 0.23 6.00 1.00 0.23
k/n = 0.05 n = 50 5.2 1.4 0.9 5.2 1.0 0.6

n = 100 5.1 1.3 0.7 4.8 0.8 0.4
n = 200 5.8 1.8 0.5 4.3 0.6 0.3
n = 500 5.8 0.8 0.3 3.7 0.5 0.2

k/n = 0.1 n = 50 5.4 1.3 0.9 5.2 1.1 0.6
n = 100 5.2 1.3 0.7 4.7 0.8 0.5
n = 200 5.4 1.1 0.6 4.2 0.6 0.3
n = 500 6.9 0.9 0.3 3.7 0.5 0.2

k/n = 0.25 n = 50 5.7 1.6 1.3 5.5 1.2 0.9
n = 100 5.4 1.5 1.0 4.9 1.0 0.7
n = 200 5.6 2.0 0.7 4.3 0.8 0.5
n = 500 8.6 1.2 0.5 3.7 0.5 0.3

k/n = 0.5 n = 50 1083.3 5638.5 2350.9 8.0 3.0 2.2
n = 100 746.3 5137.8 244.4 60.6 3.0 2.2
n = 200 1179.5 412.6 218.6 256.5 32.7 2.2
n = 500 3247.9 829.6 406.6 1116.0 329.0 28.1
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Table 1.3: Root Mean Squared Error (RMSE) and Median Absolute Deviation
(MAD) for the kurtosis estimator, κ̂, for different dimensions of the matrix of
regressors and different values of excess kurtosis of the errors; n is the number of
observations; k is the number of predictors, including an intercept; and “error df”
is the degrees of freedom of the Student’s t distribution used to generate the errors.
The predictors are drawn from a Cauchy distribution, and each entry in the table
is based on 1000 simulations.

RMSE MAD
error df: 5 10 30 5 10 30

excess kurtosis: 6.00 1.00 0.23 6.00 1.00 0.23
k/n = 0.05 n = 50 5.3 1.3 0.8 5.2 1.0 0.6

n = 100 5.9 1.4 0.6 4.8 0.8 0.4
n = 200 6.5 1.4 0.5 4.3 0.6 0.3
n = 500 5.6 0.7 0.3 3.8 0.4 0.2

k/n = 0.1 n = 50 5.2 1.3 0.9 5.3 1.1 0.6
n = 100 5.1 1.2 0.7 4.8 0.8 0.5
n = 200 6.5 1.3 0.5 4.4 0.7 0.3
n = 500 7.6 1.0 0.4 3.7 0.5 0.2

k/n = 0.25 n = 50 5.6 26.6 1.2 5.4 1.3 0.8
n = 100 5.8 2.3 1.0 4.8 1.0 0.7
n = 200 5.8 1.6 0.9 4.3 0.7 0.5
n = 500 6.7 18.4 2.5 3.6 0.5 0.3

k/n = 0.5 n = 50 92.6 27.3 20.7 8.0 3.0 4.5
n = 100 6.9 5.2 14.1 8.0 3.0 2.2
n = 200 7.3 3.3 3.6 8.0 3.0 2.2
n = 500 7.9 2.6 2.2 8.0 3.0 2.1
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Table 1.4: Root Mean Squared Error (RMSE) and Median Absolute Deviation
(MAD) for the kurtosis estimator, κ̂, for different dimensions of the matrix of
regressors and different values of excess kurtosis of the errors; n is the number of
observations; k is the number of predictors, including an intercept; and “error df”
is the degrees of freedom of the Student’s t distribution used to generate the errors.
The predictors are drawn from an Exponential distribution, and each entry in the
table is based on 1000 simulations.

RMSE MAD
error df: 5 10 30 5 10 30

excess kurtosis: 6.00 1.00 0.23 6.00 1.00 0.23
k/n = 0.05 n = 50 5.3 1.6 0.9 5.2 1.0 0.6

n = 100 5.2 1.3 0.7 4.7 0.8 0.4
n = 200 6.4 1.1 0.5 4.3 0.6 0.3
n = 500 10.6 0.8 0.3 3.8 0.4 0.2

k/n = 0.1 n = 50 5.2 1.6 0.9 5.2 1.1 0.6
n = 100 5.2 1.6 0.7 4.8 0.8 0.4
n = 200 5.6 1.5 0.5 4.2 0.7 0.3
n = 500 6.1 0.9 0.3 3.7 0.5 0.2

k/n = 0.25 n = 50 5.5 1.8 1.3 5.5 1.3 0.8
n = 100 5.9 1.7 1.1 4.9 1.0 0.6
n = 200 5.4 1.4 0.7 4.4 0.8 0.5
n = 500 6.6 1.0 0.5 3.7 0.5 0.3

k/n = 0.5 n = 50 18216.2 2803.9 514.7 8.0 3.0 7.8
n = 100 10839.8 4709.1 1093.5 8.0 3.1 2.2
n = 200 10198.1 2668.7 3405.4 212.3 23.3 2.2
n = 500 10154.4 5537.1 2383.4 1569.8 375.4 8.4
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Table 1.5: Root Mean Squared Error (RMSE) and Median Absolute Deviation
(MAD) for the naive kurtosis estimator for different dimensions of the matrix of
regressors and different values of excess kurtosis of the errors; n is the number of
observations; k is the number of predictors, including an intercept; and “error df”
is the degrees of freedom of the Student’s t distribution used to generate the errors.
The predictors are drawn from a standard normal distribution, and each entry in
the table is based on 1000 simulations.

RMSE MAD
error df: 5 10 30 5 10 30

excess kurtosis: 6.00 1.00 0.23 6.00 1.00 0.23
k/n = 0.05 n = 50 14.2 2.7 1.2 4.1 1.1 0.7

n = 100 9.4 2.2 0.9 3.5 0.8 0.5
n = 200 14.9 3.3 0.7 2.7 0.7 0.4
n = 500 12.4 1.4 0.4 2.2 0.6 0.2

k/n = 0.1 n = 50 37.0 2.2 1.1 4.3 1.1 0.7
n = 100 10.3 2.1 0.8 3.6 0.8 0.5
n = 200 12.1 1.6 0.7 2.8 0.6 0.4
n = 500 13.9 1.4 0.4 2.2 0.6 0.3

k/n = 0.25 n = 50 10.2 1.7 1.2 4.4 1.0 0.7
n = 100 9.1 1.5 0.8 3.6 0.8 0.5
n = 200 8.2 2.6 0.6 3.0 0.6 0.4
n = 500 14.9 1.2 0.4 2.4 0.4 0.2

k/n = 0.5 n = 50 5.6 1.8 1.2 4.6 1.1 0.8
n = 100 9.5 1.2 0.9 4.0 0.8 0.6
n = 200 4.4 1.0 0.6 3.7 0.6 0.4
n = 500 4.3 0.7 0.4 3.2 0.4 0.2
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Table 1.6: Root Mean Squared Error (RMSE) and Median Absolute Deviation
(MAD) for the naive kurtosis estimator for different dimensions of the matrix of
regressors and different values of excess kurtosis of the errors; n is the number of
observations; k is the number of predictors, including an intercept; and “error df”
is the degrees of freedom of the Student’s t distribution used to generate the errors.
The predictors are drawn from a Cauchy distribution, and each entry in the table
is based on 1000 simulations.

RMSE MAD
error df: 5 10 30 5 10 30

excess kurtosis: 6.00 1.00 0.23 6.00 1.00 0.23
k/n = 0.05 n = 50 20.0 2.5 1.1 4.0 1.0 0.7

n = 100 30.7 2.5 0.8 3.4 0.8 0.5
n = 200 19.5 2.5 0.7 2.7 0.8 0.4
n = 500 11.8 1.5 0.5 2.0 0.7 0.3

k/n = 0.1 n = 50 10.5 2.3 1.2 4.0 1.1 0.7
n = 100 9.7 2.1 1.0 3.5 0.8 0.5
n = 200 17.8 2.4 0.7 2.8 0.8 0.4
n = 500 18.2 1.9 0.6 2.2 0.9 0.3

k/n = 0.25 n = 50 13.1 2.6 1.3 4.0 1.0 0.7
n = 100 12.5 3.2 1.2 3.2 0.9 0.6
n = 200 9.9 2.3 1.1 2.5 0.9 0.5
n = 500 10.3 2.1 0.9 2.0 1.1 0.6

k/n = 0.5 n = 50 10.2 3.1 2.0 4.1 1.2 1.0
n = 100 34.0 3.1 1.8 3.1 1.1 0.9
n = 200 15.2 3.5 1.8 2.5 1.5 1.2
n = 500 43.9 2.8 1.5 1.9 1.7 1.2
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Table 1.7: Root Mean Squared Error (RMSE) and Median Absolute Deviation
(MAD) for the naïve kurtosis estimator for different dimensions of the matrix of
regressors and different values of excess kurtosis of the errors; n is the number of
observations; k is the number of predictors, including an intercept; and “error df”
is the degrees of freedom of the Student’s t distribution used to generate the errors.
The predictors are drawn from an Exponential distribution, and each entry in the
table is based on 1000 simulations.

RMSE MAD
error df: 5 10 30 5 10 30

excess kurtosis: 6.00 1.00 0.23 6.00 1.00 0.23
k/n = 0.05 n = 50 12.3 3.0 1.2 4.1 1.0 0.7

n = 100 13.7 2.3 0.9 3.5 0.8 0.5
n = 200 19.5 1.9 0.6 2.8 0.7 0.4
n = 500 38.5 1.3 0.5 2.1 0.6 0.3

k/n = 0.1 n = 50 17.7 2.6 1.1 4.1 1.0 0.7
n = 100 11.2 2.4 0.9 3.4 0.8 0.5
n = 200 12.6 2.2 0.6 2.9 0.7 0.4
n = 500 11.7 1.3 0.4 2.1 0.6 0.3

k/n = 0.25 n = 50 17.2 2.1 1.2 4.2 1.0 0.7
n = 100 12.4 2.1 0.9 3.7 0.8 0.5
n = 200 7.3 1.5 0.6 3.1 0.6 0.4
n = 500 8.7 1.0 0.4 2.4 0.5 0.3

k/n = 0.5 n = 50 6.4 2.3 1.3 4.6 1.1 0.7
n = 100 5.7 1.4 1.0 3.8 0.8 0.6
n = 200 5.6 1.0 0.7 3.7 0.6 0.4
n = 500 5.6 0.7 0.4 3.2 0.4 0.3
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Table 1.8: Simulated size for a nominal 10% test, based on 1500 simulations. The
regressors are a k × n matrix drawn from the Normal distribution and include an
intercept; the null hypothesis of each test imposes q restrictions; “df” denotes the
degrees of freedom of the t distribution used to generate the errors. Each column
contains the size for a given test statistic and error df.

df = 5 df = 10 df = 30
q k/n n F̂ G Ĝ Ĝa N F̂ G Ĝ Ĝa N F̂ G Ĝ Ĝa N

1 0.1 50 9 9 9 9 9 11 10 11 11 10 9 9 9 9 9
1 0.1 100 13 12 12 12 12 11 11 11 11 11 10 10 10 10 10
1 0.1 200 9 9 9 9 9 12 12 12 12 11 10 10 10 10 9
1 0.25 50 10 9 10 10 10 11 11 11 11 11 9 9 9 9 9
1 0.25 100 9 9 9 9 9 11 11 11 11 11 11 11 11 11 11
1 0.25 200 10 9 10 10 9 12 12 12 12 12 10 10 10 10 10
1 0.5 50 9 8 9 7 9 10 10 10 8 10 10 10 10 9 10
1 0.5 100 11 11 10 7 10 10 10 10 9 10 10 10 10 10 10
1 0.5 200 10 10 10 6 9 10 10 10 9 10 11 11 11 9 11
k/2 0.1 50 8 7 8 8 10 11 10 10 11 12 13 13 13 12 14
k/2 0.1 100 10 10 10 10 12 11 11 11 11 14 11 11 11 11 13
k/2 0.1 200 12 11 11 11 13 9 9 9 9 10 10 10 10 10 11
k/2 0.25 50 11 10 11 11 13 9 9 9 9 12 12 12 12 12 15
k/2 0.25 100 11 10 11 11 12 10 10 10 10 11 11 11 11 11 12
k/2 0.25 200 11 11 11 10 12 9 9 9 9 11 9 9 9 9 11
k/2 0.5 50 10 9 10 8 14 11 11 11 9 16 10 10 10 8 13
k/2 0.5 100 11 11 11 7 13 11 11 11 9 13 9 9 9 7 12
k/2 0.5 200 9 9 9 4 12 12 12 12 9 14 9 9 9 7 11
k − 1 0.1 50 10 10 10 10 12 10 10 10 10 11 9 9 9 9 11
k − 1 0.1 100 11 11 11 11 13 9 9 9 9 11 11 11 11 11 13
k − 1 0.1 200 10 10 10 10 12 9 9 9 9 10 11 11 11 11 12
k − 1 0.25 50 8 7 7 7 11 10 10 10 10 14 10 10 10 10 13
k − 1 0.25 100 11 11 11 11 13 10 10 10 10 13 10 10 10 10 13
k − 1 0.25 200 10 10 10 10 12 9 9 9 9 11 8 8 8 8 9
k − 1 0.5 50 10 8 9 8 14 11 10 11 9 17 10 10 10 8 15
k − 1 0.5 100 11 10 11 7 15 10 10 10 9 14 12 12 12 10 16
k − 1 0.5 200 9 9 9 5 12 8 8 8 6 11 9 9 9 8 12
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Table 1.9: Simulated size for a nominal 10% test, based on 1500 simulations. The
regressors are a k × n matrix drawn from the Cauchy distribution and include an
intercept; the null hypothesis of each test imposes q restrictions; “df” denotes the
degrees of freedom of the t distribution used to generate the errors. Each column
contains the size for a given test statistic and error df.

df = 5 df = 10 df = 30
q k/n n F̂ G Ĝ Ĝa N F̂ G Ĝ Ĝa N F̂ G Ĝ Ĝa N

1 0.1 50 11 7 10 10 10 10 9 10 10 10 9 9 10 9 10
1 0.1 100 7 5 7 7 7 10 9 9 9 9 11 11 11 11 11
1 0.1 200 10 7 9 9 9 8 7 8 8 7 9 9 9 9 8
1 0.25 50 9 7 9 9 9 11 10 11 10 11 13 12 13 13 13
1 0.25 100 9 6 8 8 8 11 11 11 11 11 10 10 10 11 10
1 0.25 200 10 8 9 9 9 9 9 9 9 9 10 10 10 10 9
1 0.5 50 9 7 7 8 7 11 10 8 9 9 11 11 10 8 10
1 0.5 100 11 8 10 11 10 11 10 9 10 9 11 11 9 9 8
1 0.5 200 10 7 11 11 11 11 10 11 11 11 9 9 9 9 8
k/2 0.1 50 10 6 10 10 11 8 7 8 7 9 11 11 11 11 12
k/2 0.1 100 12 7 10 10 11 12 10 11 11 13 11 10 10 10 12
k/2 0.1 200 11 6 9 9 10 12 11 11 11 12 12 11 12 11 13
k/2 0.25 50 11 7 10 10 12 12 10 11 11 14 9 8 9 10 13
k/2 0.25 100 13 9 12 12 14 12 10 11 11 14 9 9 9 9 11
k/2 0.25 200 13 6 10 10 11 10 9 9 10 10 13 12 12 12 14
k/2 0.5 50 12 8 11 10 15 10 9 10 7 14 11 10 11 8 16
k/2 0.5 100 12 6 11 13 14 11 9 10 9 13 11 11 11 10 15
k/2 0.5 200 15 8 12 17 15 12 10 11 12 13 12 11 11 11 13
k − 1 0.1 50 11 8 11 11 12 10 9 10 10 12 11 10 11 11 13
k − 1 0.1 100 13 7 11 12 12 12 11 11 11 12 10 9 9 10 11
k − 1 0.1 200 13 7 10 11 12 13 10 11 11 12 8 8 8 9 9
k − 1 0.25 50 12 6 10 11 13 13 11 12 13 16 11 10 11 11 14
k − 1 0.25 100 16 9 12 14 15 11 10 10 10 12 11 10 10 10 13
k − 1 0.25 200 14 7 11 11 12 12 9 10 10 11 11 10 11 11 13
k − 1 0.5 50 14 8 12 11 18 11 10 10 9 15 9 9 9 6 15
k − 1 0.5 100 15 8 12 14 15 12 10 11 10 15 11 10 10 9 14
k − 1 0.5 200 17 8 12 17 15 12 9 9 12 13 10 9 9 9 12
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Table 1.10: Simulated size for a nominal 10% test, based on 1500 simulations.
The regressors are a k × n matrix drawn from the Exponential distribution and
include an intercept; the null hypothesis of each test imposes q restrictions; “df”
denotes the degrees of freedom of the t distribution used to generate the errors.
Each column contains the size for a given test statistic and error df.

df = 5 df = 10 df = 30
q k/n n F̂ G Ĝ Ĝa N F̂ G Ĝ Ĝa N F̂ G Ĝ Ĝa N

1 0.1 50 11 10 11 11 11 12 11 11 11 11 10 10 11 11 10
1 0.1 100 11 10 11 11 11 9 9 9 9 9 10 10 10 10 10
1 0.1 200 10 10 10 10 10 9 9 9 9 8 10 10 10 10 10
1 0.25 50 10 8 10 10 10 9 9 9 9 9 10 10 10 10 10
1 0.25 100 9 8 9 9 8 10 9 10 10 9 9 9 9 9 9
1 0.25 200 9 8 8 8 8 10 10 10 10 9 10 10 10 10 10
1 0.5 50 8 8 8 7 9 10 10 10 8 10 10 10 10 8 10
1 0.5 100 10 9 8 6 8 10 10 10 8 10 11 11 11 8 11
1 0.5 200 10 10 9 5 8 10 10 10 8 10 10 10 10 7 10
k/2 0.1 50 11 8 10 10 12 8 8 8 8 10 11 11 11 11 12
k/2 0.1 100 10 8 10 10 10 11 10 10 10 11 10 10 10 10 11
k/2 0.1 200 9 8 9 9 11 11 11 11 11 12 10 10 10 10 12
k/2 0.25 50 12 10 11 12 15 10 9 9 9 13 10 10 10 10 13
k/2 0.25 100 9 8 9 9 10 10 10 10 10 12 10 10 10 10 12
k/2 0.25 200 10 10 9 10 11 8 8 8 8 10 10 10 10 10 13
k/2 0.5 50 10 9 10 7 14 10 10 10 6 15 8 8 8 5 13
k/2 0.5 100 9 9 9 6 12 9 9 9 5 12 9 9 9 6 13
k/2 0.5 200 11 10 10 5 13 9 9 9 6 12 12 12 12 8 15
k − 1 0.1 50 11 9 11 11 12 9 8 9 9 9 9 9 9 9 11
k − 1 0.1 100 10 9 10 10 11 11 10 11 11 12 11 11 11 11 12
k − 1 0.1 200 10 9 10 10 11 11 11 11 11 12 10 10 10 10 11
k − 1 0.25 50 9 8 9 9 12 12 12 12 12 15 11 11 11 11 14
k − 1 0.25 100 10 9 10 10 13 13 12 13 13 15 10 10 10 10 12
k − 1 0.25 200 11 10 10 10 13 9 8 8 9 10 11 11 11 11 13
k − 1 0.5 50 10 9 10 7 16 10 10 10 7 15 12 12 12 7 17
k − 1 0.5 100 11 10 11 7 14 10 10 10 6 13 10 10 10 6 14
k − 1 0.5 200 12 11 11 7 14 9 9 9 5 13 11 11 11 6 15
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Table 1.11: Statistics for equation-by-equation hypothesis tests of coefficient equal-
ity for Olivei and Tenreyro’s (2007) monetary policy VAR. F̂ is the F-statistic, and
Ĝ is this paper’s proposed corrected statistic. p· is each statistic’s corresponding
p-value.

κ̂ D̄ v̂ F̂ Ĝ pF̂ pĜ
GDP 1.8 0.15 0.96 1.39 1.37 0.098 0.105
GDP Deflator 0.9 0.15 0.98 1.55 1.54 0.042 0.044
Commodity Index 0.8 0.15 0.98 1.81 1.79 0.010 0.010
Fed. Funds 11.5 0.15 0.82 1.79 1.65 0.010 0.024

Table 1.12: Statistics for equation-by-equation hypothesis tests of coefficient equal-
ity for cross-country growth regressions using Sala-i-Martin et al.’s (2004) dataset.
F̂ is the F-statistic, and Ĝ is this paper’s proposed corrected statistic. p· is each
statistic’s corresponding p-value.

κ̂ D̄ v̂ F̂ Ĝ pF̂ pĜ
Main Hypothesis 0.8 0.34 0.98 1.74 1.73 0.084 0.086
Comparison 0.1 0.03 1.00 1.22 1.22 0.328 0.328
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q/k = 1, k/n = 0.05, n =  50
q/k = 1/2, k/n = 0.05, n =  50

q/k = 0, k/n = 0.05, n =  50
q/k = 1, k/n = 0.10, n =  50
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Figure 1.3: Boxplots for the statistic D̄, a measure of the imbalance of the design
matrix of the regressors, for i.i.d. Normal regressors (with a constant as the first
column). The boxplots are based on 600 simulations. When q/k is labeled “1”, the
test corresponding to D̄ is a test of joint significance of all of the regressors except
for the intercept. When q/k is labeled “0”, the associated test is of the significance
of a single regressor, and when q/k is labeled “1/2”, the test is for the significance
of half of the regressors.
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q/k = 1, k/n = 0.05, n =  50
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Figure 1.4: Boxplots for the statistic D̄, a measure of the imbalance of the design
matrix of the regressors, for i.i.d. Cauchy regressors (with a constant as the first
column). The boxplots are based on 600 simulations. When q/k is labeled “1”, the
test corresponding to D̄ is a test of joint significance of all of the regressors except
for the intercept. When q/k is labeled “0”, the associated test is of the significance
of a single regressor, and when q/k is labeled “1/2”, the test is for the significance
of half of the regressors.
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q/k = 1, k/n = 0.05, n =  50
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Figure 1.5: Boxplots for the statistic D̄, a measure of the imbalance of the design
matrix of the regressors, for i.i.d. Exponential regressors (with a constant as the
first column). The boxplots are based on 600 simulations. When q/k is labeled “1”,
the test corresponding to D̄ is a test of joint significance of all of the regressors
except for the intercept. When q/k is labeled “0”, the associated test is of the
significance of a single regressor, and when q/k is labeled “1/2”, the test is for the
significance of half of the regressors.
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Plots of True Size; n = 50
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Figure 1.6: Approximate size of the F-test for different values of k and q. See
Figure 1.2 for legend.
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Plots of True Size; n = 100
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Figure 1.7: Approximate size of the F-test for different values of k and q. See
Figure 1.2 for legend.
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Plots of True Size; n = 200
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Figure 1.8: Approximate size of the F-test for different values of k and q. See
Figure 1.2 for legend.
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Plots of True Size; n = 500
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Figure 1.9: Approximate size of the F-test for different values of k and q. See
Figure 1.2 for legend.



Chapter 2

Limit theory for comparing
overfit models out-of-sample

2.1 Introduction
Consider two sequences of prediction errors, each of length P , the result of

forecasting the same variable with two different estimated models. The R observa-
tions used to estimate the models are called, collectively, the estimation window,
and the P observations used to produce the errors are called the test sample. There
are T observations in all, and R+P = T . This paper introduces a new asymptotic
theory for the sample moments of these prediction errors that assumes at least one
model is overfit, that statistics calculated from that model’s sample residuals are
unreliable because its estimated coefficients match the data too well.

If one of these models nests the other, a researcher can determine whether
the additional regressors help predict the dependent variable (in population) by
using one of two representative methods. He or she can run a regression over
the full dataset and use a robust F-test to directly test whether the coefficients
on the extra predictors equal zero. Or he or she could instead produce a series
of forecasts with each model, and then test whether the models’ predictive mean
squared errors (PMSE) are equal. The first test is simple and easy, and the second
test is not; Clark and McCracken (2001) and McCracken (2007) show that the
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test statistic is not asymptotically normal and that the critical values must be
calculated by monte-carlo or bootstrap. But the out-of-sample test is much more
popular among forecasters because it is believed to be more reliable: see Meese
and Rogoff (1983), Stock and Watson (2003) and Lettau and Ludvigson (2001) for
prominent examples.

The asymptotic theory used to derive these out-of-sample statistics, how-
ever, does not imply that they are any more reliable than their in-sample coun-
terparts. There are two main approaches to approximate these statistics’ distri-
butions. The first, begun by Diebold and Mariano (1995) and West (1996) and
extended to nested models by Clark and McCracken (2001), Chao, Corradi, and
Swanson (2001), Corradi and Swanson (2002), and McCracken (2007), finds the
limit distribution as though all of values of the models’ coefficients were known, and
then adjusts that distribution to account for estimation error.1 This adjustment re-
quires the estimated coefficients to be consistent and asymptotically normal. But if
they were, a forecaster could instead just use an F-test directly on the coefficients.

The second method, proposed by Giacomini and White (2006), is becom-
ing a popular alternative to West’s (1996) approach because it always gives an
asymptotically normal statistic. Their method requires that the forecaster use a
fixed-length rolling estimation window — the model for each forecast is estimated
over the previous R observations — and they derive a statistic to test whether
the difference between the models’ forecasts is predictable.2 This rolling window
can be appropriate if the series exhibit substantial instability, so Giacomini and
White’s (2006) out-of-sample statistic should be reliable in settings where an in-
sample statistic is not. But, by its nature, their statistic measures the forecasting
performance of the estimated models, and does not reflect the predictive content

1Diebold and Mariano (1995) assume that the coefficients are known. West (1996) introduces
the adjustment.

2Although Giacomini and White (2006) claim that their results also apply to fixed-length
fixed window schemes, their proofs do not apply to that situation. For a rolling window of
length R, the period-s prediction error only depends on the observations of period s − R − 1
through period s, and so, for any finite R, this sequence inherits mixing from the underlying
observations. But for a fixed window of length R, the period-s prediction error depends on all of
the past observations, periods 1 through s, and so does not inherit mixing from the underlying
observations. Giacomini and White’s proofs require the prediction errors to be mixing.
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of their variables in population. So Giacomini and White’s method suggests a new
criterion to use to choose between forecasting methods, but does not indicate why
a researcher who wants to study the true relationship between several series should
use an out-of-sample statistic.

Although the foundation of West’s approach — asymptotic normality of
the coefficient estimates — implies that in-sample and out-of-sample statistics
should behave similarly, in practice they do not. Stock and Watson (2003), for
example, show that in-sample tests of Granger Causality are much more likely
to find predictive relationships when predicting output and inflation than out-
of-sample tests. As Inoue and Kilian (2005) argue, this fact can support either
approach: either the in-sample tests do not preserve size, or the out-of-sample
tests have low power. The monte carlo evidence is mixed.3

This paper introduces a new approximation for out-of-sample sample aver-
ages that does not require the coefficient estimates to be consistent or asymptoti-
cally normal. This approximation allows us to study the behavior of out-of-sample
statistics when one of the models is overfit, and we find that these statistics can
be reliable even when in-sample statistics are not. We impose overfit by studying
the limit distribution of a sequence of linear regression models in which the ratio
K/T remains positive; K is the number of predictors. Huber (1973) shows that
the OLS estimators are not asymptotically normal under this limit theory and that
they have positive variance in the limit, so robust F-tests should be invalid. This
new approximation gives evidence that the out-of-sample average loss is a reliable
statistic for comparing complex, overfit models to a simple benchmark and that
ad hoc critical values, such as Clark and McCracken’s (2001), are not necessary;
using the standard normal critical values gives valid but conservative tests. The
approximation also leads to a new criterion to use to evaluate a model’s expected
forecasting performance.

This increasing-dimension asymptotic theory is discussed in detail in Sec-
tions 2.2 and 2.3. Section 2.2 presents the notation, assumptions, and models
that the rest of the paper will use, and Section 2.3 studies the behavior of West’s

3This issue has been studied both analytically and in simulations by Inoue and Kilian (2005,
2006), McCracken (1998), Clark (2004), Clark and McCracken (2005), and Chen (2005).
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(1996) approximation under this new limit theory. West’s asymptotic distribution
no longer holds because the test statistics are not centered on the expected loss of
the pseudo-true models. Section 2.3 also presents the results of a brief simulation
demonstrating that conventional fixed-K asymptotic theory can be inaccurate in
finite samples when K/T is as small 0.03.

Section 2.4 presents our new approximation. The fixed-window average
loss converges to a measure of the expected performance of the estimated models
and is asymptotically normal in most applications. Section 2.5 shows that this
average can be used to compare nested models when the larger model is overfit,
and that using standard normal critical values leads to an asymptotically valid (if
conservative) test statistic.

Section 2.6 discusses the relationship between the models’ average loss and
their future forecasting performance and shows that the conventional wisdom artic-
ulated by Hastie, Tibshirani, and Friedman (2003) among others, that one should
split the dataset in half or in thirds is wrong: to estimate a model’s future per-
formance (under this paper’s limit theory) P/T must converge to zero and to
construct a confidence interval, P 2/T must converge to zero.

In short, this paper studies out-of-sample averages to see if they are more
robust to overfit than in-sample statistics and finds that they are. It shows that
using a one-sided t-test to compare nested models is conservative but preserves size
as long as the benchmark is simple, consistent with simulations presented in Clark
and West (2007) but in contrast to existing theory. It also shows that the test
sample must be much smaller than is commonly used if one hopes to accurately
compare the performance of the full-sample models that will be used to produce
real forecasts.

2.2 Notation and Assumptions
This paper does not define a specific data generating process but instead

assumes that there are two competing forecasting models and both are misspeci-
fied. The underlying data are represented as a stationary and absolutely regular
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stochastic array:

{(yT,t, x1T,t, x2T,t); t = 1, . . . , T + 1; T an integer}, (2.2.1)

and FT,t denotes the information available in period t:

FT,t ≡ σ(yT,1, x1T,1, x2T,1, . . . , yT,t, x1T,t, x2T,t).

The first model uses x1T,t as predictors for yT,t and the second uses x2T,t. Each
vector xjT,s has KjT elements; KjT can change with T , but is always assumed to
be less than RT (the sequence of estimation window sizes, {RT}, will be discussed
in detail later in the paper). Moreover, T and RT are implicitly assumed to be
large enough that all of the operations in this paper are well defined. To keep the
presentation relatively clean, the T subscript will be removed whenever possible.
Although we only present results for one-period forecasts, these results can be
generalized easily to multi-period forecasts.

Assumption 4 states the moment and dependence conditions that the array
(2.2.1) must satisfy.

Assumption 4. The random array (2.2.1) is stationary and absolutely regular
with coefficients βτ of size −ρ/(ρ− 2); ρ is greater than two and discussed further
in Assumption 6. The variance of yT,t is uniformly positive and finite, and all of
the eigenvalues of the covariance matrices of xjT,T are uniformly positive and finite
as well. !

Each forecast is produced by a linear model; model j’s forecast for period
T + 1 is x′jT+1θ̂jT , with θ̂jS the OLS estimate using observations one through S.
The models’ pseudo-true coefficients are denoted θ∗j and defined by

θ∗jT ≡ argminθ E(yT,T+1 − x′jT,T+1θ)2.

Assumption 5 rules out the uninteresting cases where the forecast error vanishes.

Assumption 5. The Euclidean norm of the pseudo-true coefficients satisfies |θ∗jT |2 =
O(1), and the population residuals, εjT,t ≡ yT,t − x′jT,tθ∗jT , have uniformly positive
and finite variance. !
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Since this paper will apply limit theory to the average loss over the test
sample, the observed test sample loss satisfies moment restrictions. The observed
loss for model j in period s is Ljs which is defined by

Ljs = L(ejt) ≡ L(ys − x′jsθ̂jR);

L is the loss function of interest. The period-s loss for the forecast produced by
model j’s pseudo-true coefficients is L∗js ≡ L(εjs), and the period-s loss for the
forecast produced by the full-sample estimates is LTjs ≡ L(ys − x′jsθ̂jT ).

The vector L̄ denotes the average loss of the estimated models over the test
sample:

L̄j ≡ P−1
T∑

s=R+1
Ljs.

Assumption 6 restricts the moments of Ls.

Assumption 6. The loss function L is convex and there is a constant BL such that
‖LjT,s‖ρ ≤ BL for all j, s, and T . Moreover, the function EL(yT,T+1 − x′jT,T+1θ)
is continuously differentiable in θ. !

Finally, | · |v is the lv-norm for vectors in Rp (p arbitrary) and ‖ · ‖v the
Lv-norm for Lv-integrable random variables. The functions λi(·) take a square
matrix argument and return its ith eigenvalue. All limits are stated for T → ∞
unless explicitly labeled otherwise.

2.3 Background
A large sample does not guarantee the accuracy of an asymptotic result;

other factors come into play, among them the complexity of the model estimated.
Clark and West (2006, 2007) show that parameter estimation error affects the
analysis of nested models in practice, making West’s (1996) limit theory unreliable.
This section shows that the same problems occur without nesting and motivates
the use of increasing-K asymptotics as a method of studying that estimation error
formally.4

4For this section, assume that there is only one model under consideration.
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It is natural to use sequences of models with K/T positive to study the fail-
ure of in-sample asymptotics because applied researchers choosing between mod-
els routinely make adjustments that are proportional to K/T . Statisticians have
proposed model selection criteria, such as Mallow’s Cp (Mallows 1973), the AIC,
(Akaike 1973) and cross validation, because a model’s apparent error, its average
loss over the dataset used to estimate its unknown coefficients, is a biased esti-
mator of the expected loss one encounters after using that model to predict new
observations. The bias is proportional to K/T , and these criteria are estimated
by correcting the apparent error by a term proportional to K/T (see, for example,
Efron 1986, 2004).

Moreover, since the variance of each element of θ̂T is of order T−1, the
variance of this vector does not vanish if K/T remains positive. The behavior of
M-estimators in this setting has been studied by Huber (1973), Yohai and Marona
(1979), and Portnoy (1985, 1986). If the coefficients are estimated by OLS, they
are consistent and asymptotically normal only if K/T converges to zero; if they
are general M-estimates they require a faster rate of convergence. By keeping K/T
positive, one can keep the variance of the coefficient estimates positive. Since the
coefficients are not asymptotically normal, the F-test is not necessarily asymptot-
ically chi-square, so in-sample tests are unavailable.

Expansions of L̄ around the pseudo-true coefficients, like West’s (1996) and
Clark and McCracken’s (2001), also do not hold whenK/T remains positive. These
approximations require that the coefficient estimates be root-R consistent. For a
short illustration, suppose that the underlying series are stationary; that the same
loss function is used to estimate the coefficients and evaluate the forecasts; that
P and R both equal T/2; and that a fixed-window is used for evaluation.5 In this
special case, West’s theory gives the approximation

P 1/2(L̄ − EL∗T+1) = P−1/2
T∑

s=R+1
(L∗s − EL∗s) + op(R1/2|θ̂R − θ∗|2).

Under conventional (fixed-K) asymptotic theory, R1/2|θ̂R − θ∗|2 is tight,
and the last term of the approximation converges to zero in probability. Then

5These assumptions are not necessary, but simplify equation (??).
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Table 2.1: Simulated Size. Nominal size is 10%
P = 40 80 120 160

R = 80 15.4 18.5 19.0 21.0
160 12.0 14.5 15.9 17.2

. . . .

According to West’s (1996) theory, the random variable (2.3.1) is asymptotically stan-
dard normal. Each cell lists the percentage of simulations for which that r.v. exceeds
1.282, the 90%-quantile of the standard normal distribution.

P 1/2(L̄−EL∗T+1) is asymptotically normal as long as P−1/2∑
s(L∗s −EL∗s) is. But

when K grows proportionally to T , R1/2|θ̂R− θ∗|2 is not tight. And since θ̂R is not
asymptotically normal, the distribution of the remainder term is not known. In
general, the variance of the fixed-window average remains positive asymptotically,
so L̄ does not converge to any non-random value. Sections 2.4 and 2.5 will explore
this convergence in more detail.

In practice, K/T will always be positive, so this discussion indicates that
West’s approximation is unreliable unless this ratio is close to zero, but it is not
necessarily clear how small the ratio must be to make West’s results accurate.
Some brief simulations demonstrate that the size of his tests can be too high even
when K/T is as small as 0.03, and empirically relevant values of K/T seem to be
from 0.01 to about 0.2. Economists are sometimes interested in studying tightly
parameterized models, but they are often interested in larger structural models.
Meese and Rogoff’s (1983) seminal study of exchange rate models, for example,
includes some models for which the K/T is almost 0.3. More recently, Stock and
Watson (2003) consider a range of output and inflation forecasts with this ratio
between 0.01 and 0.08, and Negro, Schorfheide, Smets, and Wouters (2007) study
Bayesian DSGE models for which it is roughly 0.15.

To see whether West’s theory is accurate for these values of K/T , we ran
a brief monte-carlo experiment to study forecasting with a bivariate VAR(4); T
ranges from 120 to 320, soK/T is between 0.025 and 0.075. The DGP is taken from
Clark and West (2007) and is designed to represent macroeconomic forecasting.
Each entry in Table 1 is the simulated size of a test at the 10%-level of the null
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hypothesis that the expected PMSE of the bivariate VAR(4) is less than or equal
to its true value. We ran 3000 simulations: for each simulation we drew 320
observations from the stationary process with independent innovations:

yt = 2.237 + 0.261yt−1 + ε1t
zt = (0.804,−0.221, 0.226,−0.205) · (zt−1, . . . , zt−4) + ε2t

ε ∼ N


0,


10.505 1.036
· 0.366







 .

For each R and P , we constructed sequences of forecasts, ŷt, t = R+ 1, . . . , R+P
from the bivariate VAR(4):

ŷt = α̂0 +
4∑

j=1
α̂jyt−j +

4∑

j=1
β̂jzt−j

with the coefficients estimated recursively by OLS.
Each cell in Table 1 is the percentage of simulations for which the random

variable
P 1/2(L̄− 10.505)/σ̂ (2.3.1)

is greater than 1.282, with

L̄ ≡ P−1
R+P∑

s=R+1
(ys − ŷs)2

and
σ̂2 ≡ (P − 1)−1

R+P∑

s=R+1
[(ys − ŷs)2 − L̄]2.

Under West’s (1996) limit theory, this random variable is approximately standard
normal, so each entry should be close to 10%; but the true size is higher, ranging
from 12% to 21%. Since the parameter values of this simulation were chosen by
Clark and West (2007) to represent quarterly macroeconomic data, the values
R = 80 and P = 160 roughly correspond to the common practice of estimating
forecasting models with pre-1970 data and assessing its performance recursively
from 1970 on:6 the true size is roughly twice the nominal size when testing this
one-sided hypothesis with such a procedure. In general, increasing P while keeping

6As in, for example, Stock and Watson (2003)
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R constant distorts the size more, suggesting that the variance of the out-of-sample
average decreases, but that the average is not centered at EL∗T+1.

2.4 The New Approximation
Instead of using an expansion, we re-center each random sequence {Ls}

by subtracting a random vector M(θ̂R) from each term. The new sequence is
a mixingale, and M(θ̂R) can be interpreted as a conditional expectation after a
change-of-measure.

Lemma 2.4.1. Suppose that Assumptions 4 to 6 hold and define

MiT (θ) ≡ EL(yT,T+1 − x′iT,T+1θ).

Then, for any T , any positive j, and any τ between zero and j,

‖E(LiT,RT+j | FT,RT+j−τ )−MiT (θ̂iT,RT )‖2 ≤ 21+1/ρBL ζτ (2.4.1)

with ζτ = O(τ−1/2−δ) for some positive δ. So the array

{LT,RT+j −MT (θ̂T,RT ),FT,RT+j}

is an L2-mixingale array of size −1/2. !

The proof relies on a coupling argument due to Merlevède and Peligrad
(2002) that builds on Berbee’s Lemma (Berbee 1979). Merlevède and Peligrad’s
(2002) statement of the Lemma is repeated here verbatim for reference.

Berbee’s Lemma (Merlevède and Peligrad 2002). Let X and Y be random
variables defined on (Ω, T ,P) with values in a Polish space S. Let σ(X) be a σ-
field generated by X and U be a random variable uniformly distributed on [0, 1]
independent of (X, Y ). Then there exists a random variable Y ∗ measurable with
respect to σ(X) ∨ σ(Y ) ∨ σ(U), independent of X and distributed as Y , and such
that

P(Y += Y ∗) = β(X, Y ).

!
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The coefficient β is the coefficient of absolute regularity.
Merlevède and Peligrad (2002) use this result to bound the Lp-norm of the

distance between Y and Y ∗. We prove Lemma 2.4.1 by defining (y∗, x∗) to satisfy:

1. (y∗, x∗) d= (yT,RT+j, xiT,RT+j)

2. (y∗, x∗) is independent of FT,RT+j−τ .

3. P[(y∗, x∗) += (yT,RT+j, xiT,RT+j)] = βτ .

Since MiT (θ̂iT,RT ) = E(L(y∗ − x∗ · θ̂iRT ) | FT,RT+j−τ ) almost surely, the left
side of (2.4.1) is bounded by

‖LiRT+j − L(y∗ − x∗ · θ̂iRT )‖2.

We can directly use Merlevede and Peligrad’s method of proof to bound this last
distance.

An immediate consequence of Lemma 2.4.1 is that L̄iT −MiT (θ̂iT,RT ) con-
verges to zero almost surely as PT increases. We can also show that

√
PT [L̄T −

MT (θ̂T,RT )] is asymptotically normal under a slightly stronger condition that its
asymptotic variance is positive definite.

Lemma 2.4.2. Suppose that the conditions of Lemma 2.4.1 hold and that

λmin(ΣT (θ̂T,RT ))−1 = Op(1),

with each element of ΣT (·) defined by

[ΣT ((θ1, θ2))]ij ≡ P−1
T∑

s,t=R+1

[
EL(yT,s − x′iT,sθi)L(yT,t − x′jT,tθj)−MiT (θi)MjT (θj)

]
.

If PT →∞ as T →∞, then

P 1/2
T ΣT (θ̂T,RT )−1/2

[
L̄T −MT (θ̂T,RT )

]
d−→ N(0, I) as T →∞. (2.4.2)

!
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The proof is based on de Jong’s (1997) Theorem 1, a mixingale Central
Limit Theorem.

This mixingale approximation allows us to work with sequences of estima-
tors that do not converge. As in Giacomini and White (2006), such sequences
can ensure that the asymptotic variance matrix remains positive definite, even for
nested models.

It is useful to compare this approximation to McCracken’s (2000). Mc-
Cracken assumes that the estimators θ̂T,RT are asymptotically normal and that
the function MT (·) is smooth enough that

√
RT [MiT (θ̂iT,RT )−MiT (θ∗iT )]

is asymptotically normal as a consequence of the delta-method. As a result, he,
like West (1996), can apply a central limit theorem to P 1/2

T [L̄T −MT (θ∗T )] and then
adjust its covariance matrix to account for the difference between MiT (θ̂iT,RT ) and
MiT (θ∗iT ).

Lemmas 2.4.1 and 2.4.2 show that we can apply a Central Limit Theorem
directly to P 1/2

T [L̄T−MT (θ̂T,RT )]. This extra generality allows us to study how out-
of-sample averages perform when their models are estimated imprecisely. However,
we need to impose more restrictions before we can relateMT (θ̂T,RT ) to objects that
a researcher should be interested in, such as MT (θ∗T ).

2.5 Comparing Nested Models
In most applications, the benchmark model is very simple (a random walk,

for example) so we can treat the smaller model as having fixed K. Only the
alternative model is complex. In this case, we can construct a conservative one-
sided test for the null hypothesis that smaller model is more accurate (in terms of
MSE) in population.

Theorem 2.5.1. Suppose that the conditions of Lemmas 2.4.1 and 2.4.2 hold and
that
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(i) K1T = K1 and does not change with T ; K2T/T → k2 > 0; and PT/RT →
π <∞.

(ii) σ̂T is a consistent estimator of (1,−1)ΣT (1,−1)′.

(iii) Each of the smaller model’s predictors is also used by the larger model (model
two).

(iv) L(e) = e2.

Then, under the null hypothesis

H0 : EL∗1T,T+1 = EL∗2T,T+1 for all T ,

the one-sided t-test satisfies

lim
T→∞

P
[
P 1/2
T (L̄1T − L̄2T )/σ̂T ≥ zα

]
≤ α,

with zα the (1− α)-quantile of the standard normal distribution. !

In short, one-sided tests for nested models that (erroneously) act as though
the out-of-sample average were normal with mean EL∗T+1 are asymptotically valid.

This theorem relies on the inequality

(L̄1 − L̄2)− (EL∗1T+1 − EL∗2T+1) ≤
[
L̄1 −M1(θ̂1R)

]
−
[
L̄2 −M2(θ̂2R)

]
+ op(R−1/2), (2.5.1)

which holds because EL∗1T+1 =M1(θ̂1R) + op(R−1/2) and EL∗2T+1 ≤M2(θ̂2R).
We should discuss the variance estimator, σ̂T , further. Since the asymptotic

variance, ΣT (θ̂T,RT ), is a random element that depends on θ̂T,RT , the usual proofs
that HAC estimators are consistent do not apply. Moreover, those proofs require
NED sequences, not mixingales, so they would not apply anyway. Because of the
special structure of our mixingale process, though, it is straightforward to prove
the consistency of HAC estimators using a coupling argument similar to the one
used to prove Lemmas 2.4.1 and 2.4.2. In fact, one can simply mimic the available
NED proofs. In this paper, we will simply assume the existence of a consistent
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estimator. Lemma 2.A.2 (in the Appendix) contains the basic argument for how
to modify existing proofs, Davidson and de Jong (1998, 2000) in particular.

In this case, there are more basic assumptions that guarantee that the
covariance matrix ΣT (θ̂T,RT ) is uniformly positive definite. Remember that the
null hypothesis imposes that the coefficients on the additional predictors used
by the larger model are zero. Under Theorem 2.5.1’s assumptions, the models’
prediction errors satisfy the relationship

e1s = ε1s + op(1)

e2s = ε1s + z′sα̂RT + op(1)

with zs the additional predictors and α̂RT their coefficient estimates. As long as zs
and α̂RT are almost surely not zero, the two forecasts are almost surely different.

This example is generalized slightly by the next lemma.

Lemma 2.5.2. Suppose that the conditions of Lemma 2.4.1 and the additional
conditions of Theorem 2.5.1 hold. In addition, suppose that

(i) The maximum eigenvalues of

R−1
T X

′
iT,RT
X iT,RT

and
R−1
T X

′
iT,RT
εiRT ε

′
iRT
X iT,RT

are Op(1) and their minimum eigenvalues are bounded away from zero in
probability.

(ii) The first model’s innovations, ε1T,t, are sequentially exogenous and indepen-
dent of x1T,s and x2T,s for s = 1, . . . , t.

(iii) The elements of x2T,t and θ̂2T,RT are continuous random variables.

Then [(1,−1)ΣT (θ̂T,RT )(1,−1)′]−1 = Op(1). !

These eigenvalue conditions are analogous to the usual restrictions made
on asymptotic variance matrices. The strong assumption of sequential exogene-
ity simplifies the proof but is not crucial. The fact that the random variables
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are continuous rules out the possibility that, for example, the estimation error,
x′2T,T+1(θ̂2T,RT − θ∗2T ), is zero.

To summarize this section: researchers can use fixed-window out-of-sample
averages to compare the pseudo-true performance of an overfit model to a simple
benchmark. If the benchmark is also overfit (i.e., K1T/T remains positive), this
approach does not work because inequality (2.5.1) does not hold. Also, if dif-
ferent loss functions are used to estimate and evaluate the model, this approach
again does not work because inequality (2.5.1) does not hold. But Theorem 2.5.1
and Lemma 2.5.2 justify using the naive out-of-sample one-sided t-test for most
empirical research.

2.6 Comparing Finite-Sample Performance
This section gives conditions under whichMT (θ̂T,RT ) converges toMT (θ̂T,T )

and suggests thatMT (θ̂T,T ) be used as a criterion for choosing between forecasting
models.

Ideally, a forecaster choosing between two models to use for period T +
1 would chose the one that minimizes the expected loss given the information
available in period T , E(LTjT+1 | Fn,T ). Even if the underlying random variables are
independent, FT has valuable information about the models’ performance — the
values of the coefficient estimates θ̂1T and θ̂2T . But usually a model will use lagged
variables as predictors, and their values are also included in FT . Consequently,
a forecaster choosing the model that minimizes the conditional expectation will
make better forecasts than one who minimizes the unconditional expected loss,
ELTjT+1.

For i.i.d. series, MT (θ̂T,T ) = E(LTT+1 | Fn,T ) almost surely. With depen-
dence, MT (θ̂T,T ) ignores the past information beyond the value of the coefficient
estimate, and so is a biased proxy for the true conditional expectation. However,
the true conditional expectation can be difficult to estimate, and the fixed-window
out-of-sample average can be used to estimate MT (θ̂T,T ).

Lemma 2.6.1. Suppose that Assumptions 4 to 6 hold and that
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(i) For each sequence {sT} with sT between RT and T , the maximum eigen-
values of s−1

T X
′
iT,sT
X iT,sT and s−1

T X
′
iT,sT
εisT ε

′
isT
X iT,sT are Op(1) and their

minimum eigenvalues are bounded away from zero in probability.

(ii) PT/RT → 0, K1T/T → k1, and K2T/T → k2. Both k1 and k2 are less than
one.

(iii) L has finite left- and right-derivatives at every point, denoted DL(·) and DR(·)
respectively.

Then
MiT (θ̂iT,RT )−MiT (θ̂iT,T ) = OL1(

√
PT/RT ),

and so L̄T −MT (θ̂T,T )→ 0 in probability. !

Theorem 2.6.2 is an immediate corollary.

Theorem 2.6.2. Suppose the conditions of Lemmas 2.4.2 and 2.6.1 hold. If
P 2
T/RT → 0, then

P 1/2
T ΣT (θ̂T,RT )−1/2

[
L̄T −MT (θ̂T,T )

]
d−→ N(0, I) as T →∞.

!

These results suggest two new ideas. When the models are overfit, out-
of-sample averages implicitly condition on the coefficient estimates.7 In economic
forecasting applications, such conditioning is desirable — we will make predictions
for the same series using those coefficients, so averaging the forecasts’ performance
over other hypothetical values for those coefficients is inappropriate. However,
unless P/R is very small, the forecasts comparative performance can change when
the models are re-estimated over the entire dataset. Since, in practice, P must
also be large enough to justify a Law of Large Numbers or Central Limit Theorem,
these out-of-sample statistics may have limited use in macroeconomics.

7Efron (1986) makes a similar point about cross-validation in finite samples. Our result,
though, is the first that we are aware of to study such conditioning asymptotically.
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2.7 Conclusion
By studying the behavior of the fixed-window out-of-sample average under

a new limit theory that increases the number of predictors with the number of ob-
servations, this paper shows that these out-of-sample tests can prevent overfit and
are properly sized when in-sample tests are not. Many of the previously known re-
sults on these statistics do not carry over to this setting, though: the performance
of the model’s pseudo-true coefficients can not be estimated, but researchers can
still construct some one-sided confidence intervals; nested comparisons are asymp-
totically normal; and the test sample must be extremely small if this out-of-sample
exercise will estimate how well the models perform when they are re-estimated over
the full dataset.

Future research should study whether it is possible to improve the power of
out-of-sample tests while preserving size under this asymptotic theory in the man-
ner of Clark and West (2006, 2007); whether resembling techniques can improve
the restrictions on P/R; and how these results can be extended to M-estimators
and nonlinear models.

2.A Additional Technical Results and Proofs
Lemma 2.A.1. Suppose Assumptions 4 to 6 hold. Then, for any T , s, t, and u,
with t ≥ s > u ≥ RT there exists an array {L̃jv; v = s, . . . , t; j = 1, 2} such that

E
(
φ(L̃s, . . . , L̃t) | FT,u

)
=
∫
φ(LT,s, . . . , LT,t) P(dxT,s, dyT,s, . . . , dxT,t, dyT,t)

(2.A.1)
almost surely for all measurable functions φ such that the expectations are finite.
Moreover,

P[L̃jv += LjT,v for at least one v and j] = βs−u (2.A.2)

and
‖L̃v − LT,v‖2 ≤ 21+1/ρBLβ

(ρ−2)/2ρ
s−u for each v and j. (2.A.3)

Proof. Fix T , t, s, and u. The array A ≡ {(yT,τ , xT,τ , . . . , yT,τ+t−s, xT,τ+t−s); τ} is
also absolutely regular of size ρ/(ρ− 2), so Berbee’s Lemma allows us to construct
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a new array A∗ ≡ {(y∗τ , x∗τ , . . . , y∗τ+t−s, x∗τ+t−s)} that is independent of FT,u, equal
to A in distribution, and satisfies P[A∗ += A] = βs−u.

Now it is easy to construct {L̃jv}:

L̃jv ≡ L(y∗v − x∗jv · θ̂jT,RT ), j = 1, 2, v = s, . . . , t. (2.A.4)

Equations (2.A.1) and (2.A.2) are satisfied by construction, so it remains to prove
(2.A.3). But (2.A.3) follows immediately from Merlevède and Peligrad’s (2002)
Proposition 2.3 — this proposition only uses (2.A.2) and moment restrictions, not
the equality of distributions. As noted by Dedecker and Prieur (2005), Merlevède
and Peligrad’s constant, 2p+2 can be reduced when p = 2. !

Lemma 2.A.2. Suppose {bT} is a sequence of positive integers such that bT →∞
and bT/PT → 0, and define

ZT i ≡
RT+ibT∑

s=RT+(i−1)bT+lT+1
[LT,s −MT (θ̂T,RT )].

If Assumptions 4 to 6 hold then
∑

i

[
Z2
T i − E*

R(Z2
T i | FT,RT )

]
→ 0 in L1,

where E*
R is the integral with respect to a new probability measure P*

R that imposes
independence between FT,RT and the sigma-field generated by the random variables

{yT,RT+j, x1T,RT+j, x2T,RT+j; j > 0}

but otherwise preserves the original probability measure.

Proof. Much of the proof mimics that of de Jong’s (1997) Lemma 5. For clarity,
suppose that ZT i is a scalar. Define the function

hc(x) =






sign(x)c
√
bT/PT if |x| > c

√
bT/PT

x otherwise

for an arbitrary constant c. McLeish (1975a) shows that (in this paper’s notation)
{PTZ2

T i/bT} is uniformly integrable,8 so it is sufficient to prove that
∑

i

[
hc(ZT i)2 − E*

R(hc(ZT i)2 | FT,RT )
]
→ 0

8Also see the remarks after Davidson’s (1992) Lemma 3.2.
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in L1 for any choice of c.
We prove this by showing that the array

{hc(ZT i)2 − E*
R(hc(ZT i)2 | FT,RT ),FT,RT+i bT } (2.A.5)

is another L2-mixingale of size−1/2 with constants dT i that satisfy∑i d2T i → 0. Fix
T , i, and κ, and define the array {L̃jv; v = RT+(i−1)bT+1, . . . , RT+ibT ; j = 1, 2}
independent of FT,RT+(i−κ)bT using Lemma 2.A.1. Now let

WT i =
RT+ibT∑

s=RT+(i−1)bT+lT+1
[L̃−MT (θ̂T,RT )],

so

∥∥∥E
[
hc(ZT i)2 − E*

R(hc(ZT i)2 | FT,RT ) | FT,RT+(i−κ)bT

]∥∥∥
2

=
∥∥∥E
[
hc(ZT i)2 − hc(WT i)2 | FT,RT+(i−κ)bT

]∥∥∥
2
≤
∥∥∥hc(ZT i)2 − hc(WT i)2

∥∥∥
2

and it suffices to bound the last quantity.
As in de Jong, we have the inequalities:

‖hc(ZT i)2 − hc(WT i)2‖2 ≤ 2c
√
bT/PT‖hc(ZT i)− hc(WT i)‖2

≤ 2c
√
bT/PT

∥∥∥∥
RT+ibT∑

s=RT+(i−1)bT+1
(LT,s − L̃s)

∥∥∥∥
2

≤
[
2cb3/2T P−1

T β
(ρ−2)/2ρ
bT

]
β(ρ−2)/2ρ
κ

≡ dT i β(ρ−2)/2ρ
κ .

Since β(ρ−2)/2ρ
κ , the array (2.A.5) is an L2-mixingale and has size −1/2, ∑i d2T i → 0.

Then McLeish’s (1975b) Theorem 1.6 gives
∥∥∥∥
∑

i

[
hc(ZT i)2 − E*

R(hc(ZT i)2 | FT,RT )
]∥∥∥∥

1
= O
(∑

i

d2T i

)
,

to complete the proof. !

Proof of Lemma 2.4.1. We’ll prove that

‖E(LiT,RT+j −MjT (θ̂jT,RT ) | FT,RT+j−τ )‖2 ≤ 21+1/ρ BL β
(ρ−2)/2ρ
τ
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Notice that β(ρ−2)/2ρ
τ = O(τ−1/2−δ. Define L̃s as in Lemma 2.A.1 to be independent

of FT,s−τ . Then

‖E(LiT,s −MiT (θ̂iT,RT ) | FT,s−τ )‖2 = ‖E(LiT,s − L̃is | FT,s−τ )‖2
≤ ‖LT,s − L̃is‖2

≤ 21+1/ρBLβ
(ρ−2)/2ρ
τ

by Lemma 2.A.1. !

Proof of Lemma 2.4.2. Without loss of generality, assume that LT,s is a scalar. We
will modify de Jong’s (1997) Theorem 1 to establish normality. The only part of
de Jong’s proof that needs to be changed is the handling of the covariance matrix;
here it is a random element and in de Jong’s theorem it is a constant.

Let {bT}, {lT}, and {mT} be sequences of positive integers that satisfy
PT ≥ bT ≥ lT + 1, bT → ∞, lT → ∞, (PT/bT ) → ∞, and lT/bT → 0. Then, de
Jong proves that (in our notation)

P−1/2
T

[
L̄T −MT (θ̂T,RT )

]
=
∑

i

ZT i + op(1)

with
ZT i ≡

RT+ibT∑

s=RT+(i−1)bT+lT+1

[
LT,s − E(LT,s | FT,RT+(i−1)bT )

]
.

The array {ZT i,FT,RT+ibT , i = 1, . . . ,mT} is a martingale difference array by con-
struction and it suffices to apply a Central Limit Theorem to ∑i ZTi.

We apply Hall and Heyde’s (1980) Theorem 3.3 to complete the proof.9 De
Jong’s condition (9) ensures that Hall and Heyde’s (3.18) and (3.20) are satisfied,
so it remains to prove that

∑

i

Z2
T i = ΣT + op(1).

This last step is an immediate consequence of Lemma 2.A.2 and De Jong’s Lemmas
3 and 4. !

9The covariance matrix, ΣT , is measurable in all of the sub-sigma-fields FT,s, so Hall and
Heyde’s nesting condition is unnecessary. See the remarks surrounding their Theorem for more
details. This measurability also allows us to use a sequence of covariance matrices that does not
necessarily converge.
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Proof of Theorem 2.5.1. Under the null hypothesis,

L̄1T − L̄2T = [L̄1T −M1T (θ̂1T,RT )]− [L̄2T −M2T (θ̂2T,RT )]

+ [M1T (θ̂1T,RT )−M1T (θ∗1T )] + [M2T (θ∗2T )−M2T (θ̂2T,RT )]

≤ [L̄1T −M1T (θ̂1T,RT )]− [L̄2T −M2T (θ̂2T,RT )] + op(R−1/2
T )

since the derivative of M1T (·) at θ∗1T is zero and [M2T (θ∗2T )−M2T (θ̂2T,RT )] is pos-
itive. Lemma 2.4.2 ensures that this last quantity is asymptotically normal with
asymptotic variance σ̂T . !

Proof of Lemma 2.5.2. Let {(vT , z1T , z2T )} be a sequence of random vectors, inde-
pendent of θ̂T,RT and equal in distribution to {(ε1T,t, x1T,t, x2T,t)}. The prediction
errors satisfy

e1T,t = ε1T,t + x′1T,t(θ̂1T,RT − θ∗1T )

= ε1T,t +Op(R−1/2
T )

e2T,t = ε1T,t + x′2T,t(θ̂2T,RT − θ∗2T ).

Since z′T (θ̂2T,RT − θ∗2T ) is a continuous random variable, the probability of it taking
a value that guarantees constant loss is zero. To show that

[(1,−1)ΣT (θ̂T,RT )(1,−1)′]−1 = Op(1),

it suffices to prove that the conditional variance (given θ̂T,RT ) of the vector (v2T , [vT+
z′T (θ̂2T,RT − θ∗2T )]2)′ satisfies the same relationship. Since zT has uniformly positive
variance, we only need to prove that |θ̂2T,RT −θ∗2T |2 is uniformly a.s. positive. This
follows from the inequality

|θ̂2T,RT − θ∗2T |22 ≥ λmax(X ′2T,RTX2T,RT )−1λmin(X ′2T,RT ε2RT ε
′
2RTX2T,RT ).

!

Proof of Lemma 2.6.1. Observe that

MjT (θ̂jT,RT )−MjT (θ̂jT,T ) =

E
[
L(ψT − z′T θ̂jT,RT )− L(ψT − z′T θ̂jT,T ) | θ̂jT,RT , θ̂jT,T

]
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almost surely, with (ψT , zT ) d= (yT,T+1, xjT,T+1) and independent of (θ̂jT,RT , θ̂jT,T ).
As a result, it suffices to show that

‖L(ψT − z′T θ̂jT,RT )− L(ψT − z′T θ̂jT,T )‖1 = O(
√
P/R).

Since L has finite left- and right-derivatives and is convex,

L(ψT − z′T θ̂jT,RT )− L(ψT − z′T θ̂jT,T ) = Op(1)z′T (θ̂jT,RT − θ̂jT,T ),

and, because this difference is uniformly integrable, we only need to prove that

|θ̂jT,RT − θ̂jT,T |2 = Op(
√
PT/RT ).

Now, we can express this last difference as

θ̂jT,RT − θ̂jT,T =
[
(X ′jT,TXjT,T )−1 − (X ′jT,RTXjT,RT )−1

]
X ′jT,TεjT

+ (X ′jT,RTXjT,RT )−1
T∑

s=RT+1
xjT,sεjT,s.

The square of each of these terms is Op(
√
PT/RT ). First, observe that

∣∣∣
[
(X ′jT,TXjT,T )−1 − (X ′jT,RTXjT,RT )−1

]
X ′jT,TεbjT

∣∣∣
2

2

= Op(T )
KjT∑

i=1
λi
[
(X ′jT,TXjT,T )−1 − (X ′jT,RTXjT,RT )−1

]2
,

which is Op(PT/RT ) since (X ′jT,TXjT,T )−1 − (X ′jT,RTXjT,RT )−1 has rank PT and
its largest eigenvalue is Op(1/T ). A similar argument proves that the second term
is Op(

√
PT/RT ) as well, completing the proof. !



Chapter 3

The empirical behavior of
out-of-sample forecast
comparisons

3.1 Introduction
Empirical macroeconomics and finance have been heavily influenced by the

conclusions drawn from pseudo out-of-sample forecast comparisons. These statis-
tics are so influential that when an in-sample and out-of-sample comparison dis-
agree, the results of the in-sample comparison are usually discarded in favor of those
of the out-of-sample comparison; this is exemplified by Meese and Rogoff’s (1983)
comparison of exchange rate models. But, despite their influence, there have been
no studies of the empirical properties of out-of-sample comparisons themselves
and it is unclear whether the statistics perform well in practice. This concern is
present to some degree with all statistical techniques; but it matters more in areas
like macroeconomics and finance, where replication of empirical studies is difficult,
if not impossible. In fields where it is possible to perform many similar studies
independently, flaws in statistical methodology can often be detected. When such
studies are not conducted, it can take a long time before methodological flaws are
discovered.

75
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In this paper, we examine whether the empirical behavior of these statis-
tics matches their asymptotic properties. We use the asymptotic distributions
derived by Clark and West (2006, 2007), Giacomini and White (2006), McCracken
(2007), and Calhoun (2009) to construct confidence intervals for the recent perfor-
mance of the Phillips curve relative to a random walk for nineteen different OECD
countries, and we calculate the frequency with which these intervals contain the
observed difference in MSE. If this observed frequency is much smaller than the
intervals’ nominal confidence level, the intervals are too small and these out-of-
sample comparisons are unreliable; if instead the observed frequency is higher
than the confidence level, then out-of-sample tests have lower power in practice
than their asymptotic theory indicates.

This paper’s analysis mimics the problem facing a forecaster who has to
choose between two models to produce a sequence of forecasts for a known number
of periods. The observations up to the end of the first out-of-sample period can be
viewed as the data available to that forecaster when choosing between the models,
and the second out-of-sample period can be viewed as the values of the series that
will determine the real-time performance of the models. In general, the forecaster
will use the available data to construct a lower bound for difference in the average
loss of the two models over the second period. If this interval does not contain
zero, the forecaster can be confident (at a predetermined confidence level) that
forecasts produced by the alternative model will give a smaller average loss than
forecasts produced by the benchmark model.

Although this type of practical forecasting application is a natural setting
for a pseudo out-of-sample comparison, the theoretical research into the behavior
of these comparisons has focused on testing whether the population versions of the
models forecast equally well.1 Asymptotic approximations for these test statistics
were first derived by Diebold and Mariano (1995) and West (1996) — Diebold and
Mariano (1995) derive the asymptotic distributions of several out-of-sample test
statistics under the assumption that none of the models’ coefficients are estimated,
and West (1996) extended those results to allow for estimated coefficients.

1By “population version,” we mean the infeasible models that use the pseudo-true values of
the coefficients.
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West’s (1996) asymptotic results have the practical limitation that they
require each model’s estimated coefficients to converge to different limits; this
condition is violated whenever the true DGP can be expressed as a particular
parameterization of the models being compared. One example is when one of
the models is a generalization of the other, and the null hypothesis is that the
smaller model is more accurate. Subsequent research has focused on extending
West’s (1996) asymptotic theory to apply to those nested models. These extensions
include Chao, Corradi, and Swanson (2001), Corradi and Swanson (2002, 2004)
Clark and McCracken (2001) and McCracken (2007). These papers show that the
asymptotic distribution of the out-of-sample statistics is nonstandard and derive
critical values for the different test statistics.

A second approach for dealing with nested models has been to propose a dif-
ferent asymptotic approximation under which the coefficient estimates do not con-
verge. Under those asymptotics, the limiting distribution is Gaussian because the
models still produce different forecasts in the limit. Giacomini and White (2006)
and Clark and West (2006, 2007) propose using a finite-length rolling window to
achieve this effect, and Calhoun (2009) proposes using the limiting distribution
where both the number of regressors and the number of observations increase at
the same time.

In this paper, we study several of these asymptotic approximations: Gia-
comini and White’s (2006), Clark and West’s (2006, 2007), McCracken’s (2007),
and Calhoun’s (2009). These approximations lead us to consider three different
statistics for each of the three basic window schemes: the rolling, recursive, and
fixed windows; we use only three different statistics because Giacomini and White
(2006) and Calhoun (2009) both recommend using the same naïve Gaussian ap-
proximation for the out-of-sample average. The two models that we are comparing
are nested, so statistics based on Diebold and Mariano’s (1995) and West’s (1996)
original approximation are inappropriate.

Since Giacomini and White (2006), Clark and West (2006, 2007), and Mc-
Cracken (2007) do not derive the joint distribution of a pair of adjacent out-of-
sample averages, we extend their results to apply in this setting. These extensions
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are mathematically simple, but are of independent interest beyond this paper. In
academic research, the population quantities that the original papers study are of
primary interest, but in applied forecasting the actual forecasting performance of
the models is usually more important.

By doing this study, we hope to discover whether any of these approxi-
mations are systematically more or less reliable than the others. This question
is obviously important to applied forecasters and also sheds light on whether the
original out-of-sample approximations are useful for academic research focusing
on the population models. Although we use slightly different statistics than are
proposed in the original papers by Giacomini and White (2006), Clark and West
(2006, 2007), and McCracken (2007), the asymptotic theory that motivates our
statistics is identical to the asymptotic theory used in the original papers; if the
intervals do poorly in our empirical exercise, it is likely that they do poorly when
applied as originally designed, and vice versa

In addition, there are several factors that can potentially have a large effect
on the reliability of an out-of-sample analysis but are incompletely understood.
Some of these can be chosen by the forecaster, such as the division of the available
data into estimation and test windows, and others are out of the forecaster’s control
to some degree. This second group includes the complexity of the underlying
models, the time-periods available to estimate the models and to forecast chosen
for the analysis, and the particular window scheme to be used.2 We also hope
to understand the impact of these variables on the quality of the out-of-sample
comparison through this paper’s analysis as well.

In this paper, we study the accuracy of the theoretical approximations
for a particular pseudo out-of-sample comparison. However, implications of this
study are more broadly applicable to other such comparisons because our analysis
uses the same maintained assumptions as these other statistics and our confidence
intervals are both conceptually and numerically similar to the statistics proposed

2Obviously, the forecaster controls all of these different factors at some stage of the analysis.
However, a forecaster will choose them to try to produce the best forecasts possible and to
improve the quality of the pseudo out-of-sample comparison. So it is better to think of those
variables as outside the forecasters control when analyzing procedures to choose between a pair
of forecasts.
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for other applications. Obviously, there are some differences between the statistics
and these differences may turn out to be significant in unpredictable ways, so one
should not take evidence that the statistics perform well uncritically.

A limitation of our analysis is that McCracken’s (2007) and Clark and
West’s (2006, 2007) approximations are only valid under the null hypothesis that
the benchmark model is correctly specified – that the errors from the benchmark
model form a martingale difference sequence. This is a more restrictive than im-
posing that the smaller model be more accurate, so intervals based on their approx-
imations could break down because of the failure of that maintained assumption.
We include these intervals despite this possibility for two reasons. Although Mc-
Cracken’s (2007) and Clark and West’s (2006, 2007) theoretical results require the
additional martingale difference sequence assumption, there is no evidence (empir-
ical or Monte Carlo) that indicates whether the results would hold under weaker
assumptions. The statistics may still perform well. And, even though the theory
does not support using these statistics to choose a model for forecasting, they are
often used this way in practice, so it is important to document how well they
perform.

The application we choose, the forecasting performance of a Phillips curve
relative to a random walk, of widespread interest. Inflation is the primary series
targeted by the central banks and government policy-makers are interested in pre-
dicting the effect of different policy choices on inflation. This goal necessitates a
model that is both accurate and theoretically grounded, so the accuracy of the
Phillips curve is significant. Moreover, since inflation and expected inflation both
have strong effects on the real economy and on the financial markets, businesses
in the private sector have strong financial incentives to forecast inflation accu-
rately and academic economists have interest in the accuracy of models that relate
inflation to potential output, unemployment, and other series.

The question of whether out-of-sample forecast comparisons are reliable
in this setting is especially pertinent because of Atkeson and Ohanian’s (2001)
and Stock and Watson’s (2007, 2008) demonstrations that the Phillips curve has
forecast worse than a random walk since the early 1980s. Atkeson and Ohanian
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show that a random walk outperformed several Phillips curve models from 1985
through 1999, and Stock and Watson verify and refine that finding with a detailed
comparison of the Phillips curve to several univariate models over several different
time periods. Of course, these findings rest on the reliability of out-of-sample
comparisons themselves, which hasn’t yet been demonstrated.

Our choice of inflation forecasting brings up a further goal of our study.
The out-of-sample statistics that we use assume that the underlying series are sta-
tionary to some degree, that the difference in the models’ performance is constant
across time periods. One of the proposed explanations for the deterioration of the
Phillips curve is that inflation exhibits some form of instability, which could vio-
late such an assumption. It is often claimed, however, that out-of-sample statistics
provide a guard against this sort of instability, even though the theory behind
these approximations does not yet incorporate that generality. In that vein, by
studying the behavior of the statistics in a potentially unstable environment, we
can test this claim to some degree. Moreover, because these statistics are believed
to be reliable when the underlying series are unstable, they are often used to study
models of inflation (as in the papers cited above, and in many more: see Stock and
Watson 2003 and 2008 for recent surveys). Therefore, this analysis also indicates
whether that literature is based on solid statistical foundations.

The rest of the paper proceeds as follows. The next section describes our
empirical exercise and setup in more detail. The third section presents our results,
and the fourth section concludes. Our theoretical results and their proofs are
presented in the appendix.

3.2 Setup

3.2.1 Introduction and Some Notation

We will denote period-t inflation as πt and a forecast for that period’s
inflation as π̂t. We are interested in the difference in squared error between the
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random walk and Phillips curve forecasts, which we’ll call Dt:

Dt = (πt − π̂RWt )2 − (πt − π̂PCt )2. (3.2.1)

We will discuss the details behind these forecasts later in this section. For now,
assume that there are T total observations in the dataset and that those observa-
tions are split into an estimation window (the first R observations), a test sample
(the next P1 observations), and a forecast sample (the remaining P2 observations).
We will refer to the first R + P1 observations as the interval sample for reasons
that will become clear and define T1 = R + P1.

Each of the approximations we study gives a method for constructing in-
tervals of the form

I = [D̄1 − cα × σ̂,∞) (3.2.2)

such that, in the limit, Pr[D̄2 ∈ I] = α with α the predetermined coverage prob-
ability of the interval, where D̄1 is the average of Dt over the test sample and D̄2

is the average over the forecast sample:

D̄1 ≡ P1
−1
R+P1∑

t=R+1
Dt, and D̄2 ≡ P2

−1
T∑

t=R+P1+1
Dt. (3.2.3)

The random variable σ̂ is an estimator of the standard deviation of D̄1.
To determine whether these approximations are accurate, we estimate the

interval I and the average D̄2 for each country j, each window w, and every
reasonable division of the interval sample into an estimation window and test
sample (which is determined by R/T1).3 Our estimate of Pr[D̄2 ∈ I;R,w] is the
frequency with which the intervals contain D̄2,

P̂ r[D̄2 ∈ I;R,w] = J−1
J∑

j=1
1{D̄j,w,R2 ∈ Ij,w,R}, (3.2.4)

with J the number of countries. The rest of this section fills in the necessary
details.

3The size of the forecast sample, P2, will be determined in practice by the particular appli-
cation, so we consider two different choices of P2 in our study, but do not conduct a rigorous
analysis of the effect of P2 on the quality of the approximation.
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3.2.2 Description of the Dataset

We use the OECD’s data on inflation and unemployment to estimate these
forecasts. In particular, we use the first difference of the natural log of the Con-
sumer Price Index (CPI) as our measure of inflation,

πt = ln CPIt − ln CPIt−1 (3.2.5)

and use the seasonally adjusted survey-based unemployment rate. We use the
quarterly series of both to be consistent with empirical practice. To ensure that
we have data on enough countries that our analysis is reasonably accurate, we
use data from the first quarter of 1975 through the fourth quarter of 2008. This
starting value allows us to include fourteen countries in our analysis. We also
consider a shorter sample, starting in the first quarter of 1992, that allows us to
use nineteen countries. Table 3.3 on page 98 lists the countries that comprise each
sample.

3.2.3 Construction of the forecasts

In this paper, we focus on forecasting at the one-quarter horizon and assume
that inflation has a unit root. We impose the unit root to be consistent with
empirical practice and so that our benchmark random walk and alternative Phillips
curve models agree on the order of integration. Restricting our forecast horizon
to the one quarter horizon simplifies the test statistics and some of the forecasting
decisions, so we focus on that horizon even though longer horizon forecasts of
inflation have been studied more extensively in the literature.4 The two alternative
models are Autoregressive Distributed Lag (ADL) models that use the log of the
unemployment rate as an additional predictor.

The random walk forecasts are given by the equation

π̂t+1 = πt. (3.2.6)
4If the forecast horizon were more than a single period ahead, the forecast errors would have

a moving average dependency structure even if the smaller model were the true DGP, so our
pseudo out-of-sample intervals would have to account for that in estimating the variance of the
average loss.
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Atkeson and Ohanian (2001) and Stock and Watson (2007) demonstrate the strong
performance of the random walk for forecasting annual inflation, making it the
natural benchmark for this study. Our random walk model is slightly different
than the model studied by those papers because of the forecast horizon. Since
this model has no parameters to be estimated, the forecasts are the same for each
choice of window scheme and estimation window length.

The Phillips curve models use lags of the change in inflation and the log of
unemployment as predictors. We impose that the same number of lags are used
for each series, giving a forecasting relationship of the form

∆̂πt+1 = β0 +
p∑

j=1
βj∆πt+1−j +

p∑

j=1
βp+jut+1−j + εt+1. (3.2.7)

The variable ut denotes the natural log of the unemployment rate in period t
and εt+1 is the population forecast error; the unknown coefficients are estimated
by OLS. For simplicity, and to ensure that the models we are studying agree as
closely as possible with those described by the asymptotic theory in the original
papers, we do not try to choose the number of lags optimally, but instead conduct
a separate analysis for two different lag choices: one lag and six lags. These choices
let us study the behavior of these intervals for a tightly parameterized model and
a potentially overfit model.

3.2.4 Construction of the Intervals

The difference in the squared error of the random walk and Phillips curve
forecasts is determined by the estimates of the unknown coefficients, β. Out-of-
sample statistics mimic the actual forecasting process by estimating β each period
using only the information available in that period, so we can refine (3.2.1) by
substituting the forecasting models into the right hand side of the equation, giving

Dt = (πt−πt−1)2−
(
πt−πt−1− β̂t−1,0−

p∑

j=1
(β̂t−1,j∆πt−j+ β̂t−1,p+jut−j)

)2
. (3.2.8)

We consider three different window schemes for estimating β: the rolling
window, recursive window, and fixed window. For the fixed window, β is estimated
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t = R + 1, . . . , R + P1

recursive window β̂t =
(∑t

s=1 xsx
′
s

)−1∑t
s=1 xsys

fixed window
(∑R

s=1 xsx
′
s

)−1∑R
s=1 xsys

rolling window
(∑t

s=t−R xsx
′
s

)−1∑t
s=t−R xsys

t = R + P1 + 1, . . . , T
recursive window β̂t =

(∑t
s=1 xsx

′
s

)−1∑t
s=1 xsys

fixed window
(∑T

s=1 xsx
′
s

)−1∑T
s=1 xsys

rolling window
(∑t

s=t−R xsx
′
s

)−1∑t
s=t−R xsys

Table 3.1: This table displays the construction of β̂t for each window scheme
and period. The variables xt denote the vector of all of the regressors (in this
application, lags of ∆πt and of ut) and yt denotes the values of the target, ∆πt.

once using the data from periods one through R and all of the forecasts are con-
structed from those estimates. For the recursive scheme, β is estimated repeatedly
for each period t, using the information from periods one through t − 1. For the
rolling scheme, β is also estimated repeatedly for each period, but is estimated
using the most recent R observations only.

Table 3.1 displays how β̂t is determined by the window scheme and by the
particular value of t. For the recursive and fixed window schemes, the size of the
estimation window, R, only affects the coefficient estimates in the test sample and
not in the second out-of-sample period. That second period is meant to reflect
observations that the forecaster can not observe when choosing a model, and in
practice the forecaster would want to reestimate the model with all of the available
data before making those truly out-of-sample forecasts. For the rolling window, the
choice of R affects the coefficient estimates in both samples, because the window is
an intrinsic part of the forecasting method, and the forecaster would choose to use
a rolling window for the truly out-of-sample forecasts if he or she were concerned
about instability.

In practice, the fixed window is used infrequently – since the coefficients
are only calculated once, it can be useful if the model is computationally difficult
to evaluate, but forecasters usually want to use the most recent data to estimate
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their models. The rolling window is used when forecasters are concerned about
unmodeled heterogeneity in the underlying series; it is believed that using only the
most recent data can improve the forecasts in those settings. When forecasters are
less concerned about instability than about small sample sizes, and when comput-
ing the model is not unduly difficult, the recursive window is preferred because it
uses as many observations as possible to construct each forecast, so the forecasts
should be more accurate.

In analyzing these empirical results, we’ll take the particular window scheme
as given. Although much of the asymptotic theory for out-of-sample inference
assumes that the windows are interchangeable – West’s (1996), Clark and West’s
(2006, 2007), and McCracken’s (2007) approximations imply that all three windows
test the same hypothesis – it’s clear that each window scheme has a different
practical application in this study. The fixed-window interval is appropriate when
the model will be estimated once and put in place for several periods – as can
happen when the model is developed by an outside party such as a consulting firm.
The recursive window is appropriate when the forecasting model is repeatedly re-
estimated over the entire dataset, and the rolling scheme is appropriate when a
rolling-window model will be used to construct the actual forecasts.

We consider a few different options for the division of the data into interval
and forecast samples. These options are listed in 3.4 on page 98. For one analysis,
we use the OECD data starting in the first quarter of 1975, and for a second
analysis, we use the data starting in 1992. For each of these start periods, we
construct confidence intervals for two different forecast samples: from the first
quarter of 2000 through the fourth quarter of 2008, and from the first quarter
of 2006 through 2008. The intervals are constructed using the difference in the
two models’ squared error, Dt, over the preceding dataset. Varying the dates of
these samples allows us to informally determine whether our results are affected by
unmodeled heterogeneity – if the quality of the underlying approximation depends
on the sample period, these out-of-sample statistics probably do not adequately
control for instability in the underlying series.

After deciding on the interval and forecast samples, we need to split the T1
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observations in the interval sample into an estimation and test sample of sizes R
and P1. We look at every division such that R is at least twenty four and P1 is at
least six. The restriction on R rules out extremely inaccurate forecasts, and the
restriction on P1 is necessary to calculate HAC variance estimators of the variance
of D̄1.

3.2.5 Details of the interval construction

Finally, we present the formulae for the pseudo out-of-sample intervals that
we study. All of the intervals in this paper are constructed using an 80% confidence
level. The intervals are of the form

I ≡ [D̄1 − cασ̂,∞), (3.2.9)

and both cα and σ̂ depend on the window scheme, the particular asymptotic theory
behind the approximation, and the sample sizes P1 and P2. The critical value, cα
of these intervals follows directly from the asymptotic distribution of D̄1− D̄2. We
will first discuss a naïve Gaussian interval that can be motivated by Giacomini and
White’s (2006) and Calhoun’s asymptotic theories, as well as (informally) Diebold
and Mariano’s (1995) and West’s (1996). We then look at a similar Gaussian
interval motivated by Clark and West (2006, 2007), and finally an interval based
on McCracken’s (2007) nonstandard limiting distribution.

Naïve Gaussian Intervals

Under Giacomini and White’s (2006) and Calhoun’s (2009) asymptotic ap-
proximations, and under Diebold and Mariano’s (1995) and West’s (1996) if the
models are not nested, both D̄1 and D̄2 are asymptotically normal. Moreover, as
we show in the appendix, the two averages are independent in the limit.

The motivation behind this independence is different for each of the four
approximations. Diebold and Mariano’s (1995) approximation assumes that the
coefficients are known and do not need to be estimated, so independence follows
from the weak dependence of the underlying series. In West’s (1996) approximation
the coefficients are estimated consistently and the interval behaves in the limit like
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Diebold and Mariano’s (1995) statistic.5 Under Giacomini and White’s (2006)
approximation, the forecasts are constructed using a fixed-length rolling window;
in the limit, completely different samples are used to construct each of the two
out-of-sample averages, so they are clearly independent.6 Finally, under Calhoun
(2009) the coefficient estimators are assumed to fail to converge to a non-stochastic
limit and the two out-of-sample averages are highly interdependent; however the
dependence is removed after conditioning on the coefficient estimates and so it
does not affect the validity of the intervals.

This independence is enough to determine the asymptotic variance σ̂ and
the value cα. The asymptotic variance of D̄1 − D̄2 is straightforward to calculate:

avar(D̄1 − D̄2) = avar(D̄1) + avar(D̄2) = (1 + P1/P2) avar(D̄1), (3.2.10)

making cα = zα ·
√

1 + P1/P2 with zα the α-quantile from the standard normal
distribution. We estimate the asymptotic variance using the Newey-West HAC
variance estimator (Newey and West 1987) of D̄1, setting the number of lags used
by the kernel to be the smallest integer greater than or equal to P1

1/4.
Although Giacomini and White’s (2006) and Calhoun’s (2009) approxima-

tions are only derived for a restricted class of window schemes – Giacomini and
White’s for a finite-length rolling window and Calhoun’s for a fixed window with
a small test sample – we will present results for the naïve Gaussian approximation
for all of the window schemes. There are two reasons. Although these approxi-
mations have not been formally extended to other window schemes, doing so may
be possible and so their accuracy is worth examining. The second reason is that
Giacomini and White’s (2006) approximation is sometimes cited informally for re-
cursive window comparisons, and whether or not this use is appropriate is a valid
empirical question.

5This argument only holds when the same loss function is used to estimate and evaluate the
forecasting models. When a different loss function is used for the two purposes, the variance of β̂
needs to be accounted for explicitly and would introduce another source of dependence between
D̄1 and D̄2. In this paper, squared error is used for both estimation and evaluation, so the
asymptotic independence holds.

6A formal proof of this argument is presented as Lemma 3.A.2 in the appendix.
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Clark and West

Clark and West (2006, 2007) use a slightly different approximation that’s
based on Giacomini and White’s (2006) fixed-R approach. While Giacomini and
White drop the assumption that the benchmark model is the true DGP and im-
pose a secondary assumption that the difference between the models’ loss is unpre-
dictable (that it is a martingale difference sequence), Clark and West (2006, 2007)
maintain the assumption that the benchmark model is true. Since R is fixed, they
show that the larger model can be expected to perform worse than the smaller
model because of the noise introduced by estimating its coefficients. This leads
Clark and West to introduce a correction term that converges in probability to the
expected performance difference due to that estimation error.

In particular, suggest that one introduce the correction term

f̄1 = P1
−1

T∑

t=R+1
(π̂RWt − π̂PCt )2 (3.2.11)

and show that the corrected out-of-sample average,
√
P1(D̄1 − Ef̄1)√

P1
−1∑R+P1

t=R+1(Dt − Ef̄1)2
(3.2.12)

is asymptotically standard normal. Note that under Clark and West’s (2006, 2007)
asymptotic theory, a HAC estimate of the standard deviation is inappropriate.

Clark and West’s (2006, 2007) results are derived for a single out-of-sample
period. When we extend their results to two samples, we observe that the only
difference between these intervals and the naïve Gaussian intervals is the estimator
of the variance. We define f̄2 to be the equivalent correction term from Equation
(3.2.11) calculated over the second test sample. Under Clark and West’s asymp-
totic theory, both D̄1 − Ef̄1 and D̄2 − Ef̄2 are asymptotically normal and, under
stationarity, Ef̄1 = Ef̄2. As a result, we can add and subtract the correction terms
before applying Clark and West’s limit theory:

D̄2 − D̄1 = (D̄2 − Ef̄2)− (D̄1 − Ef̄1). (3.2.13)

which is asymptotically normal.
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This asymptotic normality implies that cα is also calculated using the α-
quantile of the standard normal distribution. Clark and West suggest estimating
the asymptotic variance of D̄1 with

σ̂2 = P1
−1
R+P1∑

t=R+1
(Dt − D̄1 − f̄1)2. (3.2.14)

This estimator corrects the difference in the MSE to reflect estimation error in
the alternative model, and maintains the assumption that the smaller model is
correctly specified so there is no serial correlation in the sequence of differences in
squared error.

McCracken

McCracken’s (2007) is the only approximation we consider that leads to a
non-Gaussian interval. McCracken uses a standard asymptotic setup like West’s
(1996) but assumes the coefficient estimates of the larger model converge to those
of the smaller model because the smaller model is the true DGP. As a result,
West’s (1996) Gaussian approximation is inaccurate because variance of difference
between the two models vanishes.

McCracken (2007) derives the distribution a custom distribution for the be-
havior of the out-of-sample t-statistic we consider in this paper under this different
assumption. An important feature of this distribution is that it is not centered at
zero. When both models are equally accurate in population, McCracken’s results
imply that the larger model will perform substantially worse on average in finite
samples. This is the same behavior described by Clark and West (2006, 2007) and
by Calhoun (2009).

Under McCracken’s (2007) asymptotic theory, the numerator and the de-
nominator of out-of-sample t-statistics converge to zero at the same rate, so the
asymptotic distribution is nonstandard. In particular, McCracken shows that

T∑

t=R+1
Dt

d−→ (Γ1 − 0.5Γ2) and
T∑

t=R+1
(Dt − D̄1)2 d−→ Γ2 (3.2.15)

where Γ1 and Γ2 are random variables that depend on the window scheme and the
window lengths. Table 3.2 on page 90 gives the definitions of Γ1 and Γ2.
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Window R.V. Formula
Recursive Γ1

∫ 1
λ1 s
−1W (s)′dW (s)

Γ2
∫ 1
λ1 s
−2W (s)′W (s)ds

Λ1
∫ 1/λ2

1 s−1W (s)′dW (s)
Λ2

∫ 1/λ2
1 s−2W (s)′W (s)ds

Fixed Γ1 λ−1
1 [W (1)−W (λ1)]′W (λ1)

Γ2 π1λ
−1
1 W (λ1)′W (λ1)

Λ1 [W (λ−1
2 )−W (1)]′W (1)

Λ2 π2W (1)′W (1)

Rolling Γ1 λ−1
1
∫ 1
λ1 [W (s)−W (s− λ1)]′dW (s)

Γ2
∫ 1
λ1 s
−2[W (s)−W (s− λ1)]′[W (s)−W (s− λ1)]ds

Λ1 λ−1
1
∫ 1/λ2

1 [W (s)−W (s− λ1)]′dW (s)
Λ2

∫ 1/λ2
1 s−2[W (s)−W (s− λ1)]′[W (s)−W (s− λ1)]ds

Table 3.2: This table displays the components of the limiting distribution of the
out-of-sample t-test McCracken’s (2007) limit theory. W (·) is a K2 −K1 dimen-
sional Brownian Motion, where K1 is the number of regressors used by the bench-
mark model andK2 is the of regressors used by the larger model. The two variables
λ1 and λ2 denote R/T1 and T1/T respectively.

As with the other approximations, McCracken’s (2007) asymptotic theory
immediately gives a limiting distribution for D̄2. Moreover, since the coefficient
estimates are assumed to converge to their pseudo-true values, the averages D̄1

and D̄2 are asymptotically independent.7 Since McCracken recommends using the
sample variance of Dt over the test sample to estimate σ2, we can find cα directly
from the asymptotic distribution of the random variable M , where

M ≡
P1
(
D̄2 − D̄1

)

√∑R+P1
t=R+1(Dt − D̄1)2

(3.2.16)

d−→ φ(Λ1 − 0.5Λ2)− (Γ1 − 0.5Γ2)√
Γ2

(3.2.17)

and φ = lim
√
P1/P2. The limiting distributions of each Γi and Λi are listed in

Table 3.2.
7A derivation is presented in the appendix as Lemma 3.A.1.
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3.3 Results
The empirical coverage for the recursive, fixed, and rolling windows are de-

picted in Figures 3.1 to 3.3. Each figure depicts twelve different panels: each panel
graphs the empirical coverage for intervals constructed for the difference between
the MSE of the random walk benchmark model and the single lag and the six-lag
Phillips curve models as a function of R/T1. Each interval has nominal coverage
of 0.8. The twelve panels present the results for all of the different combinations of
asymptotic approximation and choice of interval and forecast samples. Each row
contains the results for a different interval sample and each column the results for
a different statistic.

We start by looking at Figure 3.1, the coverage for the recursive window.
Overall the empirical coverage varies strongly with the choice of sample period
and the lag structure. On average, the coverage for the single lag Phillips curve is
22 percentage points smaller than the coverage for the six lag Phillips curve, but
the difference is much smaller for the 1975 to 2000 interval sample than for the
others. In general, the observed coverage is close to the nominal coverage of 0.8
for each approximation for the six-lag alternative. For the single-lag alternative,
the intervals are generally too small, leading to empirical coverage lower than the
nominal coverage.

The coverage does not depend on R/T1 very much, and the effect of R/T1 is
much smaller than the effect of the lag structure or the sample period. We can see
a slight tendency for the coverage to decrease as R/T1 increases. This tendency is
most visible in the 1992–2005 interval sample, but is not uniform and is extremely
mild in the other samples. The coverage plots for the 1992–1999 interval sample
are too short to make meaningful statements about the relationship between the
coverage and R/T1 for that sample.

The most striking pattern is that the choice of approximation does not seem
to matter much. The difference between the graphs for different approximations is
hard to distinguish visually—not only is the coverage similar, but the dependence
on the ratio R/T1, on the lag structure, and the choice of the sample periods
are all virtually identical. The single exception is that the empirical coverage for
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Clark and West’s (2006, 2007) approximation is slightly lower than the coverage of
the naïve Gaussian approximation, especially for the single lag alternative. This
difference occurs by construction, since the statistics are the same except that Clark
and West’s approximation uses a variance estimator that gives smaller estimates.
The result is that these intervals give a less accurate approximation than the naïve
Gaussian intervals.

The coverage plots for the fixed window, Figure 3.2, behave similarly to
those for the recursive window. The coverage varies with the lag structure and the
choice of sample periods; as with the recursive window, the coverage for the six-
lag comparison is roughly twenty two percentage points higher than the coverage
for the single lag comparison. Moreover, the overall patterns are similar for both
window schemes across the different interval samples.

The coverage of the fixed window intervals decreases slightly as R/T1 in-
creases. The pattern is more uniform for the fixed window and is roughly the same
magnitude as for the recursive window plots. The coverage of the intervals based
on McCracken’s (2007) approximation decreases for the 1975–1999 interval sample
and did not for the recursive window.

As with the recursive window, the choice of approximation seems to have
almost no impact on the coverage. By construction intervals constructed using
Clark and West’s (2006, 2007) limit theory are again smaller than the naïve Gaus-
sian intervals, so the coverage of their statistic is smaller. The practical impact of
this tendency is negligible for the six-lag alternative, but makes the coverage much
too small for the single lag alternative for the 1975–2005 and 1992–2005 interval
samples in particular.

Figure 3.3 depicts the coverage for the rolling window. Again, the empirical
coverage varies with the choice of sample period and the lag structure. The vari-
ation is comparable to that of the recursive window and the fixed window. The
behavior of the coverage plot is very similar to the behavior in the other graphs
for intervals based on Clark and West’s (2006, 2007) approximation and the naïve
Gaussian approximation, but is different for those based on McCracken’s (2007)
approximation; for these intervals, the coverage for the single lag and six lag alter-



93

native models are very close and the coverage is above the nominal coverage for
small and moderate values of R/T1.

The behavior of the coverage as R/T1 changes is similar to the behavior
with other window schemes. The decrease in coverage as R/T1 increases is more
pronounced for McCracken’s approximation using the rolling window than other
window schemes. With Clark and West’s and the naïve Gaussian approximation,
the coverage is flat as R/T1 varies, but there is a slight tendency for the coverage
to decrease with R/T1 for the 1992 to 2006 interval sample.

The choice of the approximation matters for the rolling window, unlike the
fixed and recursive windows. As we would expect, intervals derived from Clark
and West’s (2006, 2007) approximation behave similarly to those using the naïve
Gaussian approximation and have slightly lower coverage. But we see a dramatic
difference between those intervals and the intervals based on McCracken’s approx-
imation. The coverage for McCracken’s intervals is much higher, and exceeds the
nominal coverage for most of the range of R/T1, while the naïve Gaussian approx-
imation has empirical coverage very close to the nominal coverage for the six lag
comparison over the 2006 to 2008 forecast samples and for both alternative mod-
els for the 1975 to 1999 interval sample. For the single lag model, the Gaussian
intervals have very small coverage in the other samples.

As we discussed earlier, we consider the choice of the window to be dictated
by the particular application and forecasting models, so it is not something that
a forecaster could choose in practice. In that light, we will summarize how these
empirical results can inform the decision on the approximation to use – Clark
and West’s (2006, 2007), the naïve Gaussian, or McCracken’s (2007) — and, for
the recursive and fixed schemes, the split between estimation and test samples.
For the rolling window scheme, the choice of window length is also dictated by
the application since it also determines the forecasting model that will be used in
practice.

As we can see in Figures 3.1, 3.2, and 3.3, the choice of approximation mat-
ters very little. The naïve Gaussian approximation advocated by Giacomini and
White (2006) and Calhoun (2009) achieves empirical coverage slightly closer to
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the intervals’ nominal coverage than the other approximations, but McCracken’s
(2007) performs very similarly and is better for some of the samples and com-
parison models. In particular, the naïve Gaussian approximation gives intervals
that are too small for the rolling window using a forecasting sample of 2006 to
2008, and McCracken’s (2007) approximation does not. Clark and West’s (2005,
2006) approximation has systematically lower coverage than the naïve Gaussian
intervals by construction, so Clark and West’s approximation should be avoided
when choosing between models for applied forecasting. It is important to remem-
ber that Clark and West’s approximation is derived under the hypothesis that the
random walk model is the true DGP, so the approximation’s poor performance in
our setting is neither surprising nor indicative of the quality of that approximation
for testing their null hypothesis. It does, however, indicate that forecasters should
not use their statistic as a general measure of the models’ forecasting performance.

This analysis does not give clear recommendations for the choice of R/T1;
that ratio does not matter for most of the periods, models, and windows. When
it does matter, there are no values that are clearly superior across the different
sample periods and comparison models. In a later section, we will look at the
length of the individual confidence intervals for each country as another method of
comparing different choices of R/T1 recommending one choice of window selection.

The two factors that most affect the quality of the intervals’ coverage have
not been the focus of much theoretical research. Those factors are the exact model
used as the alternative model (in this case, either a single lag or a six lag ADL),
and the particular sample chosen for the analysis. The impact of these factors may
be indicative of a single underlying cause. Instability in the underlying series could
cause both of these factors to influence the quality of the intervals. The effect of
the choice of the interval and forecast sample, at least, is an indication that these
statistics do not generally account for instability in the underlying series and they
should not be applied uncritically as if they do.



95

3.4 Conclusion
In this paper, we constructed confidence intervals for the difference in Pre-

dictive Mean Squared Error for two forecasting models of quarterly inflation over
two recent periods, 2000 through 2008 and 2006 through 2008, for nineteen OECD
countries. We estimated those intervals by conducting a pseudo out-of-sample
comparison using the data available just before those periods. We constructed dif-
ferent intervals that are asymptotically valid under the asymptotic approximations
proposed by several recent papers: Giacomini and White (2006), Clark and West
(2006, 2007), McCracken (2007), and Calhoun (2009) and extended the results of
those papers to apply to a pair of out-of-sample averages. We then calculated
the average frequency with which each interval contains the actual difference in
MSE. Since this difference is observed, that frequency estimates the actual coverage
probability of those intervals.

The intervals’ actual coverage was heavily influenced by factors that have
been largely ignored in the theoretical literature. Two factors that have been con-
sidered important, the choice of asymptotic approximation to use for the limiting
distribution of the statistics and the division of the available data into an estima-
tion and a test window, had little effect on the coverage. The factors that did
affect the coverage were the particular choice of alternative model and the choice
of the particular sample periods.

These factors are likely to influence any pseudo out-of-sample comparison.
Although the particular statistics we considered in this paper are new, they are
numerically similar to statistics that are in current use and are based on the same
limit theories. Despite what is often claimed, these out-of-sample comparisons do
not seem to automatically control for unmodeled instability. Future theoretical
research should explicitly include such instability to better understand its impact
on out-of-sample forecast comparisons.



96

3.5 Mathematical Appendix
Lemma 3.5.1. Suppose that McCracken’s (2007) Assumptions 1–3 hold and that
P1/R→ π1 and P2/(R + P1)→ π2 with π1, π2 ∈ (0,∞). Then

1
√
P−1

1
∑R+P1
t=R+1(Dt − D̄1)2

(
P−1/2

1

T∑

t=R+1
Dt, P

−1/2
2

R+P1+P2∑

t=R+P1+1
Dt

)

d−→


Γ1 − 1
2Γ2√

Γ2
, φ

Λ1 − 1
2Λ2√

Λ2



 (3.5.1)

where Γ1, Γ2, Λ1, and Λ2 are defined in Table 3.2 and φ = lim
√
P1/P2.

Proof. We can apply the approach used in McCracken’s (2007) Theorem 3.1 to
show that (using McCracken’s notation)

R+P1+P2∑

t=R+P1+1
Dt = σ2

R+P1+P2∑

t=R+P1+1
H̃ ′2,th̃2,t+1 −

σ2

2
R+P1+P2∑

t=R+P1+1
H̃ ′2,tH̃2,t + op(1), (3.5.2)

with h̃2,t+1 = σ−1Ãxtyt and

H̃2,t =






t−1∑t
s=1 h̃2,t+1 recursive window

R−1∑R
s=1 h̃2,t+1 fixed window, t = R1, . . . , T1

T−1
1
∑T1
s=1 h̃2,t+1 fixed window, t = R1, . . . , T

R−1∑t
s=t−R+1 h̃2,t+1 rolling window

(3.5.3)

The matrix Ã any is any K1 ×K2 matrix that satisfies

Σ1/2(Σ−1 − JΣ11J
′)Σ1/2 (3.5.4)

with K1 the number of predictors used by the smaller model and K2 the number
used by the larger model, J = (IK1×K1 , 0K1×K2), Σ = Extx′t and Σ11 the square ma-
trix of the upper left K1 elements of that matrix. In the same theorem, McCracken
establishes that

R+P1∑

t=R+1
Dt = σ2

R+P1∑

t=R+1
H̃ ′2,th̃2,t+1 −

σ2

2
R+P1∑

t=R+1
H̃ ′2,tH̃2,t + op(1). (3.5.5)
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and
R+P1∑

t=R+1
(Dt − D̄1)2 =

R+P1∑

t=R+1
H̃ ′2,tH̃2,t + op(1). (3.5.6)

The result then follows from McCracken’s Lemmas A1, A2, and A3 (which prove
that each sum converges individually) and the continuous mapping theorem. !

Lemma 3.5.2. Supose that {yt, xt} is strong mixing of size −r/(r − 1) for r > 1,
that Dt is Lr+δ-bounded for each t and for some δ > 0, and that the asymptotic
variances of P−1/2

1
∑R+P1
t=R+1Dt P

−1/2
2

∑R+P1+P2
t=R+P1+1Dt are equal to σ2 > 0. If EDt = 0

for all t, then

1
σ̂



P−1/2
1

R+P1∑

t=R+1
Dt, P

−1/2
2

R+P1+P2∑

t=R+P1+1
Dt



 d−→ N(0, I) (3.5.7)

as T →∞, where σ̂2 is a consistent estimator of σ2.

Proof. Giacomini and White’s (2006) Theorem 1 esnures that

P−1/2
1

R+P1∑

t=R+1
Dt

d−→ N(0, σ2) and P−1/2
2

R+P1+P2∑

t=R+P1+1
Dt

d−→ N(0, σ2), (3.5.8)

so it suffices to prove that these two random variables are asymptotically inde-
pendent. This independence follows from the fact that {Dt} is a mixing sequence
when R is fixed and a rolling window is used for the forecasts. !
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Table 3.3: Countries in dataset available at each start date.
From 1975 From 1992
Australia Australia
Austria Austria
Canada Canada
Finland Finland
France France
Germany Germany

Hungary
Ireland

Italy Italy
Japan Japan

Korea
New Zealand

Norway Norway
Portugal

Spain Spain
Sweden Sweden
Switzerland Switzerland
United Kingdom United Kingdom
United States United States

Table 3.4: Sample sizes and number of available countries for each choice of interval
sample and forecast sample.

First observation Start of Forecast Sample Number of countries P2
1975 q 1 2001 q 1 14 32
1975 q 1 2006 q 1 14 8
1992 q 1 2001 q 1 19 32
1992 q 1 2006 q 1 19 8



99

3.A Mathematical Appendix
Lemma 3.A.1. Suppose that McCracken’s (2007) Assumptions 1–3 hold and that
P1/R→ π1 and P2/(R + P1)→ π2 with π1, π2 ∈ (0,∞). Then

1
√
P−1

1
∑R+P1
t=R+1(Dt − D̄1)2

(
P−1/2

1

T∑

t=R+1
Dt, P

−1/2
2

R+P1+P2∑

t=R+P1+1
Dt

)

d−→


Γ1 − 1
2Γ2√

Γ2
, φ

Λ1 − 1
2Λ2√

Λ2



 (3.A.1)

where Γ1, Γ2, Λ1, and Λ2 are defined in Table 3.2 and φ = lim
√
P1/P2.

Proof. We can apply the approach used in McCracken’s (2007) Theorem 3.1 to
show that (using McCracken’s notation)

R+P1+P2∑

t=R+P1+1
Dt = σ2

R+P1+P2∑

t=R+P1+1
H̃ ′2,th̃2,t+1 −

σ2

2
R+P1+P2∑

t=R+P1+1
H̃ ′2,tH̃2,t + op(1), (3.A.2)

with h̃2,t+1 = σ−1Ãxtyt and

H̃2,t =






t−1∑t
s=1 h̃2,t+1 recursive window

R−1∑R
s=1 h̃2,t+1 fixed window, t = R1, . . . , T1

T−1
1
∑T1
s=1 h̃2,t+1 fixed window, t = R1, . . . , T

R−1∑t
s=t−R+1 h̃2,t+1 rolling window

(3.A.3)

The matrix Ã any is any K1 ×K2 matrix that satisfies

Σ1/2(Σ−1 − JΣ11J
′)Σ1/2 (3.A.4)

with K1 the number of predictors used by the smaller model and K2 the number
used by the larger model, J = (IK1×K1 , 0K1×K2), Σ = Extx′t and Σ11 the square ma-
trix of the upper left K1 elements of that matrix. In the same theorem, McCracken
establishes that

R+P1∑

t=R+1
Dt = σ2

R+P1∑

t=R+1
H̃ ′2,th̃2,t+1 −

σ2

2
R+P1∑

t=R+1
H̃ ′2,tH̃2,t + op(1). (3.A.5)
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and
R+P1∑

t=R+1
(Dt − D̄1)2 =

R+P1∑

t=R+1
H̃ ′2,tH̃2,t + op(1). (3.A.6)

The result then follows from McCracken’s Lemmas A1, A2, and A3 (which prove
that each sum converges individually) and the continuous mapping theorem. !

Lemma 3.A.2. Supose that {yt, xt} is strong mixing of size −r/(r − 1) for r > 1,
that Dt is Lr+δ-bounded for each t and for some δ > 0, and that the asymptotic
variances of P−1/2

1
∑R+P1
t=R+1Dt P

−1/2
2

∑R+P1+P2
t=R+P1+1Dt are equal to σ2 > 0. If EDt = 0

for all t, then

1
σ̂



P−1/2
1

R+P1∑

t=R+1
Dt, P

−1/2
2

R+P1+P2∑

t=R+P1+1
Dt



 d−→ N(0, I) (3.A.7)

as T →∞, where σ̂2 is a consistent estimator of σ2.

Proof. Giacomini and White’s (2006) Theorem 1 esnures that

P−1/2
1

R+P1∑

t=R+1
Dt

d−→ N(0, σ2) and P−1/2
2

R+P1+P2∑

t=R+P1+1
Dt

d−→ N(0, σ2), (3.A.8)

so it suffices to prove that these two random variables are asymptotically inde-
pendent. This independence follows from the fact that {Dt} is a mixing sequence
when R is fixed and a rolling window is used for the forecasts. !
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Coverage of recursive window confidence intervals for inflation forecasts
in OECD countries by initial sample period and statistic

Ratio of estimation window to total sample size used to construct intervals:R ((R ++P1))
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Figure 3.1: Each panel depicts the relative frequency with which the difference in
MSE over the forecast sample is contained in its corresponding confidence interval.
Intervals were constructed at the 80% level using the sample and asymptotic ap-
proximation listed in each panel’s title; the difference in MSE is calculated from the
end of the sample to the 4th quarter of 2008. Different intervals are constructed
for each country (see Table 3.3 for a list) and each division of the sample into
estimation and test windows of size R and P1 respectively. The relative frequency
is taken over the countries for each division.
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Coverage of fixed window confidence intervals for inflation forecasts
in OECD countries by initial sample period and statistic

Ratio of estimation window to total sample size used to construct intervals:R ((R ++P1))
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Figure 3.2: See caption for Figure 3.1
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Coverage of rolling window confidence intervals for inflation forecasts
in OECD countries by initial sample period and statistic

Ratio of estimation window to total sample size used to construct intervals:R ((R ++P1))
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Figure 3.3: See caption for Figure 3.1
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