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ABSTRACT 

Engineering development and exploration of physiological instrumentation for health 

optimization and diagnostic applications 

by 

 

Franklin Somchith Ly 

 

This dissertation explores the development and effectiveness of various physiological 

instruments for health optimization and diagnostic applications. It begins by studying the 

Bone Material Strength index (BMSi) and its significant correlation with conventional 

hardness measurements. This dissertation then includes the engineering development of 

prototype Pain Meters for the assessment of chronic pain. The research examines the 

potential of low-cost physiological sensors to measure chronic pain's physiological changes, 

establishing a significant correlation between physiological data and chronic pain at both 

individual and population levels. This discovery suggests the potential for developing 

accessible and affordable diagnostic tools for chronic pain. 

The dissertation also explores pulse rate variability, developing an innovative technology 

like Dynamic Phase Extraction to correlate breathing rates and inter-beat intervals. This 

technology proves effective in providing insights into various health conditions. The 

research then delves into the use of portable biofeedback devices for managing chronic pain 

and anxiety in remote studies. Pilot studies report substantial reductions in pain and anxiety 

levels among participants using these devices, affirming their efficacy. 

 



 

 ix 

Finally, a study involving a handheld thermal biofeedback device reveals its potential to 

enhance sleep quality and reduce anxiety levels. The research concludes by underscoring the 

comprehensive capability of physiological instruments in diverse health applications, 

including anxiety management and sleep enhancement. The findings lay a strong foundation 

for future research and innovation in this field, with the potential to substantially enhance 

healthcare outcomes and patient well-being. 
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I. Introduction 

This dissertation explores various domains within medical science, emphasizing the role 

of biofeedback technology, deep learning, and physiological instrumentation in 

understanding and managing chronic pain and other health conditions. This work brings 

together these cutting-edge areas to offer a cohesive insight into their collective potential in 

enhancing patient outcomes. 

Before delving into specific sections, it is imperative to provide an overview of 

physiological instrumentation. Physiological instruments, such as the OsteoProbe, prototype 

Pain Meter, and prototype biofeedback devices, played a crucial role in non-invasively 

measuring and analyzing various health parameters. These instruments have paved the way 

for more advanced, precise, and convenient diagnostic and monitoring tools, enhancing the 

ability to understand, assess, and manage various health conditions.  

Section II: The OsteoProbe and Bone Material Strength Index 

The OsteoProbe, a microindentation device, quantifies bone’s resistance to indentation, 

providing the Bone Material Strength index (BMSi). This section will critically evaluate the 

reliability of the OsteoProbe's measurements against established hardness measurement 

standards such as Vickers and Rockwell tests, offering a comprehensive understanding of its 

effectiveness and precision. 

Section III: Deep Learning in E-Health and Chronic Pain Assessment 

Deep learning models have revolutionized sectors like computer vision, speech 

recognition, and more. With the rise of e-health data analysis, challenges presented by the 

multifaceted nature of well-being data come to the fore. Chronic pain, affecting a significant 

portion of the U.S. adult population, has considerable societal and economic repercussions. 



 

 2 

The pressing need for an effective, low-cost, and easy-to-use Pain Meter is addressed 

through the utilization of classical physiological measurements, and the introduction of two 

new chronic pain datasets collected using prototype Pain Meters. This section presents a 

deep learning ordinal regression framework for chronic pain score assessment, pitting the 

innovative model against traditional machine learning methods and showcasing its 

advantages. 

Section IV: Physiological Sensors and Machine Learning in Pain Assessment 

Temperature sensors, motion sensors, force resistive sensors, and photoplethysmography 

(PPG) were engineered into a remote prototype Pain Meter and used to collect data remotely 

from chronic pain subjects. This section delves into the use of physiological sensors in the 

prototype Pain Meter, and correlates machine learning model predictions to self-reported 

pain levels to determine its potential applications in chronic pain assessment. 

Section V: Phase Relationships in Heart Rate Variability 

The resurgence of interest in phase relationships and the delay between heart rate 

modulation and breathing leads to the presentation of the Dynamic Phase Extraction (DPE) 

method. This study delves into its potential benefits compared to traditional methods of 

measuring heart rate variability (pulse rate variability). 

Section VI: Biofeedback Devices and Chronic Pain Management 

Chronic pain affects millions globally, with an enormous economic and social toll. This 

chapter examines the potential of portable biofeedback devices in managing chronic pain, 

focusing on their effectiveness in physiological self-regulation and relaxation, and their 

intersection with pain reprocessing therapy. 

Section VII: Thermal Biofeedback for Sleep and Anxiety 
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The rise in global sleep disturbances and anxiety disorders necessitates a deeper 

examination of thermal biofeedback devices. This exploration evaluates the device's 

potential to improve sleep quality and reduce anxiety symptoms. 

Summary 

This dissertation, through a comprehensive integration of physiological technologies like 

the OsteoProbe, Pain Meters, and biofeedback devices, aims to make a significant 

contribution to medical science. It offers a holistic and innovative perspective on medical 

advancements, emphasizing their role and potential in improving chronic pain assessment 

and management, along with health areas relating to bone, anxiety and sleep. The collective 

findings and insights from this research will potentially lay a solid foundation for further 

advancements in e-health, paving the way for more effective, efficient, and patient-centered 

healthcare solutions in the future.
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II. Significant correlation of Bone Material Strength index as measured by 

the OsteoProbe with Vickers and Rockwell hardness 

The BMSi, Bone Material Strength index, as measured by the OsteoProbe, is 

significantly correlated with Vickers Hardness and Rockwell RW Hardness measurements 

on conventional materials. The Vickers and Rockwell measurements were done according to 

ASTM, American Society for Testing and Materials, Standard Test Methods, and 

OsteoProbe measurements followed published standardized testing methods. The 

correlations between BMSi and Rockwell, r = 0.93, and between BMSi and Vickers, r = 0. 

94, are comparable to the correlation between Rockwell and Vickers, r = 0.87. The 

correlation between BMSi and Rockwell is significant at p < 0.01 and the correlation 

between BMSi and Vickers is significant at p < 0.01.  These results show that the 

indentation measurement performed by the OsteoProbe may be considered as a type of 

hardness measurement comparable to widely used conventional methods, with specific 

applications targeted by its portable and narrow design. 
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A. Introduction 

 

Figure 1. OsteoProbe image with a cross section view [1]. Reproduced from Bridges, D., 

Randall, C. and Hansma, P.K., 2012. A new device for performing reference point 

indentation without a reference probe. Review of Scientific Instruments, 83(4), p.044301., 

with the permission of AIP Publishing 

The OsteoProbe [1, 2] is a microindentation device that has been used to quantify bone’s 

resistance to indentation at the micro scale with a singular scalar value, named Bone 

Material Strength index, or BMSi. This value is calculated by taking the ratio of measured 

penetration distance into a test material (e.g. bone) and the measured penetration distance 

into a reference material, then multiplying the ratio by 100. 

 

𝐵𝑀𝑆𝑖 = 100 × ( 
𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑜 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑜 𝑏𝑜𝑛𝑒
 ) 

 
The OsteoProbe has been used in multiple clinical studies of human patients and a 

standard testing procedure has been published previously [3]. One study found that BMSi is 

lower in patients with Type II diabetes [4, 5], while another showed that BMSi decreased 

when patients were treated with glucocorticoids and that this decrease could be eliminated or 
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reversed with drug therapy [6]. A third work examined a decrease of BMSi in patients with 

fragility fractures independent of bone mineral density [7]. 

Some controversy has arisen about what is being measured [8-10]. Though correlations 

exist for some cases [11, 12], a simple universal relationship between BMSi and bulk 

material mechanical properties of bone that holds for all bone diseases has not been found. 

Thus, we cannot appeal to comparison with bulk material mechanical properties to answer 

the question of what is being measured. Instead, OsteoProbe measurements should be 

compared with standard mechanical tests for measuring surface mechanical properties.  In 

this study, OsteoProbe measurements are compared to Vickers and Rockwell tests, two 

standard mechanical tests for measuring hardness – a surface mechanical property. Clinical 

measurement of BMSi in a patient can range from the low 40s up to the low 100s. The 

polymers we selected had BMSi values that represent this range, with the softest scoring 44 

and the hardest scoring 104. This range of BMSI corresponds to indentation depths of 

350µm down to 125µm both in the patients and in the polymers [4-7].   

B. Methods 

To demonstrate that the OsteoProbe’s BMSi is a measure of hardness, measurements 

performed by the OsteoProbe were compared with conventional indentation-based 

measurements of hardness, namely measurements collected through Rockwell and Vickers 

type testing. Using a scanning electron microscope, a micro scale image of an indented 

polymer by the OsteoProbe can be seen in Figure 2. Conventional engineering materials 

were used for the comparison testing, namely high-performance polymers.  Fourteen 

different polymers that span the observed range of OsteoProbe measurements in patients 

were selected and indented five times by each instrument.  The fourteen polymers include, 
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uhmw polyethylene (ultra-high molecular weight polyethylene), hdpe (high density 

polyethylene), polystyrene, abs (acrylonitrile butadiene styrene), noryl ppo, cast nylon, 

polyester, extruded nylon, rexolite, delrin, ultem pei (polyetherimide), peek, torlon pai 

(polyamide-imide), and PMMA (Poly(methyl methacrylate)). 

 
Figure 2. Image of an OsteoProbe indentation for measurements. 

 

Indentation methods chosen for testing were Rockwell Type RW, Vickers, and BMSi 

using the OsteoProbe.  The Rockwell hardness was measured according to ASTM D785-08 

(Reapproved 2015) Standard Test Method using a United Tru-Blue II hardness testing 

instrument.  Test parameters used a loading force of 60kg and indenter geometry of 1/2 inch 

ball diameter.   

The Vickers hardness was measured according to ASTM E384 Standard Test Method 

using a United Tru-Blue II hardness testing instrument. Test parameters used a loading force 

of 10kg and a 136-degree high-load Vickers diamond indenter. The Vickers indentations 

were measured with a 200x and 500x microscope. The Vickers hardness number was 

calculated from these measurements according to ASTM E384. The OsteoProbe BMSi was 
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measured according to a published, standard testing procedure with 10 indentations for each 

polymer sample [3]. Every indentation applies a preload force of 10N at which point a 

trigger system releases a mechanism that applies an additional 30N force at high speed, 

making a microscopic indentation. The penetration distance into the material is 

automatically measured by the OsteoProbe. 

C. Results 

Hardness measurements were performed on fourteen selected polymers using Rockwell, 

Vickers, and OsteoProbe methods, with results seen in Figures 3-5.  OsteoProbe 

measurements of the selected polymers, as given by values of BMSi, were found to be 

comparable to the range of BMSi values measured for the bones of patients [4-7].   

Results showed correlative trends among the measurement methods.  As can be seen in 

Figures 3 and 4, there are statistically significant correlations between BMSi values and 

Vickers, with r = 0.94 and p < 0.01; and between BMSi values and Rockwell values, with r 

= 0.94 and p < 0.01.  Scatter seen in the results may be expected given the different 

mechanical properties of the fourteen different polymers.   Figure 5 shows comparable 

scatter even between the two conventional measures of hardness, Rockwell and Vickers.  

  

 



 

 9 

Figure 3. Correlation of BMSi and Vickers Hardness.  

 

 

Figure 4. Correlation of BMSi and Rockwell RW Hardness. 
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Figure 5. Correlation of Rockwell RW Hardness and Vickers Hardness, with a 

correlation coefficient that is slightly lower compared to BMSi and Vickers Hardness, as 

well as between BMSi and Rockwell RW Hardness. 

 

Hardness Data 1 Hardness Data 2 Correlation Coefficient p-

value 

BMSi Vickers 0.94 < 0.01 

BMSi Rockwell 0.93 < 0.01 

Rockwell Vickers 0.87 < 0.01 

Table 1. Correlation coefficients and p values for hardness data from BMSi, Vickers and 

Rockwell measurements. 

 

 Rockwell BMSi Vickers 

N=5 Mean St. Dev Mean St. Dev Mean St. Dev 

PMMA 74 1.6 100.1 2.2 22.67 0.57 

noryl ppo 62 1.1 73.2 0.5 19.91 0.27 

delrin 77 1.8 77.0 1.5 21.95 1.23 

CPVC 70 0.7 88.5 3.7 19.26 0.18 

cast nylon 65 0.7 66.8 0.5 16.66 1.05 

POLYPROPYLENE 59 0.7 65.7 1.4 11.61 0.22 

abs 41 1.3 61.4 0.2 13.42 0.55 

Table 2. Mean and standard deviations for hardness data from BMSi, Vickers and 
Rockwell measurements. 
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Using the Table of Critical Values: Pearson Correlation, the calculated correlation 

between BMSi and Rockwell was found significant at p < 0.01 and the correlation between 

BMSi and Vickers was significant at p < 0.01.  These tests all evaluated the hardness of the 

materials within a few hundred microns of the surface [14]. All three test methods were 

comparably and significantly correlated: between BMSi and Rockwell, r = 0.93 at p < 0.01, 

between BMSi and Vickers, r = 0. 94 at p < 0.01, and between Rockwell and Vickers, r = 

0.87 at p < 0.01. The BMSi measurements were slightly more correlated with Rockwell and 

Vickers hardness measurements than the two standard testing methods were to each other.  

D. Summary 

The simple answer to the question: “what does the OsteoProbe measure?” is that it 

measures a normalized indentation distance, BMSi, which is a measure of the hardness on 

the surface of the bone. It is similar to other instrumented hardness tests in that an 

indentation is made according to a standard procedure and the resulting indentation depth is 

measured: the smaller the indentation depth, the larger the hardness.  

Indentation has classically been utilized as a method of material characterization with 

measured results often reported in terms of hardness [15].  The classic Vickers and Rockwell 

hardness methods use pyramid, cone or spherical indenter shapes to create permanent, 

localized deformation on the surface of a part under a given load [15]. Measurement of the 

deformed geometry gives the hardness. Softer materials are more deformed. Hard materials 

are less deformed.  The OsteoProbe uses a conical indenter shape to create permanent, 

localized deformation that is monitored by the instrument itself. Specifically, strain gauges 

in the OsteoProbe monitor the distance that the conical indenter goes into the material under 

test. Thus, the OsteoProbe can be considered an indentation device and its results can be 
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compared to conventional devices such as Rockwell and Vickers.  The comparison reported 

in this manuscript revealed strong correlations: correlation coefficients above 0.9, r > 0.9, 

between BMSi and Rockwell and Vickers Hardness instruments.  

Why is it important to measure the hardness on the surface of the bone? The answer to 

this question is that the hardness on the surface of bone, as quantified by BMSi, has been 

shown clinically to be lower in patients with bone degenerating diseases such as Type II 

diabetes [4, 5] and bone degenerating treatments such as glucocorticoid treatment [6].  

Patients with fragility fractures have decreased BMSi [7].  

BMSi, as measured with the OsteoProbe, is significantly correlated with both Rockwell 

and Vickers hardness on fourteen engineering polymers: between BMSi and Rockwell, r = 

0.93 at p < 0.01, between BMSi and Vickers, r = 0.94 at p < 0.01, and between Rockwell 

and Vickers, r = 0.87 at p < 0.01.  Results support that the OsteoProbe indentation 

measurement, BMSi, is a valid measurement of hardness. The value of this measurement of 

hardness is that it can be done in a clinic on patients without surgically exposing bone. 

Decreased hardness, as quantified by BMSi, has been clinically demonstrated to be 

correlated with various causes of bone degeneration [4-7]. 
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III. How Much Does It Hurt: A Deep Learning Framework for Chronic 

Pain Score Assessment 

Chronic pain is defined as pain that lasts or recurs for more than 3 to 6 months, often 

long after the injury or illness that initially caused the pain has healed. The “gold standard” 

for chronic pain assessment remains self report and clinical assessment via a 

biopsychosocial interview, since there has been no device that can measure it. A device to 

measure pain would be useful not only for clinical assessment, but potentially also as a 

biofeedback device leading to pain reduction. In this paper we propose an end-to-end deep 

learning framework for chronic pain score assessment. Our deep learning framework splits 

the long time-course data samples into shorter sequences, and uses Consensus Prediction to 

classify the results. We evaluate the performance of our framework on two chronic pain 

score datasets collected from two iterations of prototype Pain Meters that we have developed 

to help chronic pain subjects better understand their health condition. 

A. Introduction 

Deep learning models have achieved remarkable success in computer vision [16], natural 

language processing [17], speech recognition [18] and the game of Go [19]. Recently there 

has been increasing interest in applying deep learning for end-to-end health data 

analysis [20]. However, e-health data analysis is even more challenging since well-being 

data can be affected by many factors, for example individual differences, measurement 

errors in data collection and missing data. 

Chronic pain is described as persistent or recurrent pain that lasts for at least 3 to 6 

months [21]. According to the 2016 National Health Interview Survey (NHIS), roughly 
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20.4% (50.0 million) of U.S. adults suffer from chronic pain. Chronic pain affects 

individuals, their families, and society, and results in complications harming both physical 

and mental health. The economic costs of chronic pain and pain-related disability in the 

United States cannot be overstated. One influential report [22] conservatively estimated an 

annual toll of 560−650 billion dollars-far exceeding the costs of cardiovascular disease, 

cancer, and diabetes. Therefore, identifying the score of chronic pain is of significant value 

to reduce further complications. 

Neurophysiological signals have been used to quantify pain [23–25]. In the last 

decade, there has been some progress towards discovering the neurobiological substrates of 

pain. However, none of those methods is low-cost or easy-to-use. Clearly, there is an unmet 

need for a low-cost, easy-to-use Pain Meter. According to recent research results [26–28], 

classical physiological measurements can effectively quantify pain. Inexpensive technology 

is now available to measure relevant physiological features. Taken together, it is clear that 

objectively quantifying pain is possible. We thus investigated a number of inexpensive 

commercial sensors capable of measuring physiological variables for pain score assessment. 

We have thus far built prototype Pain Meters that offer the immense potential to 

revolutionize pain treatment and the development of therapeutics. 

To this end, we collected two new chronic pain datasets, using prototype Pain Meter 

1 and 2, respectively. For Dataset 1, our subject has been suffering chronic pain for more 

than 10 years. Neck and shoulder pain were causing her difficulty to perform daily activities. 

For Dataset 2, we recruited chronic pain subjects from our local community. All subjects 

signed an informed consent form according to a protocol approved by a Human Subjects 

Committee. Our chronic pain datasets are characterized by the following unique properties: 
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First, we use Photoplethysmography (PPG) [29], which is low cost and comfortable for 

patients, to collect pulse signals. Secondly, we also include several temperature signals and 

Galvanic Skin Response(GSR) signals to detect the chronic pain symptoms like 

nervousness. For Dataset 2, we also use accelerometers and gyros to detect movements. 

Given the pain score datasets, we introduce the task of chronic pain score prediction, 

which is to train an end-to-end oridinal classifier to accurately predict pain score. The 

illustration of our workflow is shown in Fig. 6. An accurate chronic pain score assessment 

will 

1. Facilitate the development of new therapies both in the laboratory and in Phase II 

and Phase III clinical trials. 

2. Make it possible for physicians to quantify the effects of existing therapies on 

individual patients. 

3. Minimize the harm caused by diagnostic delays and the under/overtreatment of pain 

due to the influence of gender, race, or age. 

4. Allow a patient to decide, with objective personal data, whether current treatments 

are effective in his/her quest to reduce chronic pain. 

5. Serve as a biofeedback device for chronic pain subjects. The unconscious mind can 

learn to control things it can monitor [30]. If people are enabled to accurately 

monitor their chronic pain score with a Pain Meter, their unconscious mind can 

figure out how to decrease the chronic pain score. It is trained and rewarded by the 

tiny decreases in pain score that are accurately and continuously monitored. 

Our main contributions are threefold: 
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1. We propose a deep learning ordinal regression framework for chronic pain score 

assessment. To the best of our knowledge, this is the first paper to use deep learning 

for chronic pain score assessment. 

2. We collect two new chronic pain datasets using our prototype Pain Meters to predict 

the score of chronic pain. 

3. We split the long recordings into smaller slices for training, which not only eases the 

burden on GPU memory but also provides many training samples for deep learning 

models. We define Consensus Prediction as the majority voting result of the sampled 

short slices for testing, since not all of the short slices can be expected to contain 

enough useful information. 

Deep Learning for E-Heath 

Since the emergence of deep learning in e-health, more and more researchers have been 

implementing deep learning models for medicine, aiming to improve health care [20], 

classify diseases [31], and prevent misdiagnosis [32]. More specifically, the prediction of 

medical events has been popular, including the prediction of death rates [33], 

prescriptions [34], and successful extubation [35]. Although many researchers have applied 

deep learning to e-health, to the best of our knowledge no researcher has applied deep 

learning from pulse signals to the prediction of chronic pain scores [36]. There are image 

based models for automatic estimation of pain [37], [38]. Deep Pain [37] uses long short 

term-memory (LSTM) and analyzes images of facial expression. However, images alone are 

not reliable since images alone may not contain enough relevant information for pain score 

prediction. Many factors affect pain score, including stress and mood, which might not be 

fully captured by image based methods. Physio-based models have been developed for 
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assessments of physiological pain [39] but these have not been applied to chronic pain. 

Motivated by this need, we propose a Convolutional Neural Network (CNN)-based 

framework that uses physiological signals to assess chronic pain scores. 

Chronic Pain and Traditional Machine Learning 

In the context of pain assessment research, physiologically-based pain has been the main 

focus for many pain researchers [40]. Chronic pain, on the other hand, is prolonged, lasting 

anywhere from months to years [41]. In the past, traditional machine learning methods have 

been applied to e-health, but this has required extensive feature extraction [42]. Human 

feature extraction has many disadvantages. For example, it is costly and can result in the 

“loss of data interpretability” [43]. Random Forest has been used to monitor the nociception 

(perception of pain) level, which requires feature extraction [44]. Physiological parameters 

like heart rate, heart rate variability, plethysmograph wave amplitude, skin conductance 

level, number of skin conductance fluctuations, and their time derivatives are extracted for 

prediction. In contrast, our end-to-end deep learning framework requires no feature 

extraction and little data preprocessing. 

Physiological Sensors 

Photoplethysmography (PPG) is a widely used non-invasive method for measuring pain 

intensity, in which changes in blood volume and light absorption are detected [29]. This type 

of technology is commonly used because it is simple and can easily collect data, while being 

cost-efficient and accessible [45]. A PPG device has also been developed to monitor 

respiratory and heart rates of infants, and this has been proven to perform well [46]. PPG is 

favored not only for clinical use, but also for home use as a biofeedback device. In addition, 
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it is more comfortable for patients because it does not involve gel and electrodes contacting 

their skin [47]. Thus, in our prototype Pain Meter, we use PPG [48] to collect pulse 

recordings. We also included axis accelerometer gyroscope modules (MPU-6050), force 

sensitive resistors to measure the forces that cause low frequency motion (DF9-40), and a 

GSR sensor (ZIYUN Grove GSR sensor). 

B. Methods 

Prototype Pain Meter  

Fig. 7 shows the device we used for collecting Dataset 1. Pain Meter 1 contains: 1) two 

PPG pulse sensors held to the temples via a headband, three at the three arteries supplying 

blood to the brain mounted in a neck pillow, and two at the fingertip and palm, 2) 

temperature sensors at each location of the PPG pulse sensors, and 3) GSR sensors 

embedded in the block on which the hand rests. These provide a total of 15 signals, recorded 

in Dataset 1. 

As is shown in Fig. 8, it turned out that the PPG sensors were sensing more than pulse. 

They were also sensing subtle motion. Motivated by these phenomena, we added actual 

motion sensors in our Pain Meter 2. As is shown in Fig. 9, Pain Meter 2 contains: 1) PPG 

pulse sensors in a headband, in a neck band, and on the fingertip, 2) temperature sensors on 

the neck and fingertip, 3) 3-axis accelerometers and 3-axis gyros in the head band and wrist 

band, 4) force sensors on the forehead, back of neck, side of neck, and wrist band, and 5) 

GSR sensors between the middle and ring fingers. These provide a total of 25 signals, 

recorded in Dataset 2. 
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Figure 6. The workflow for chronic pain score assessment. The brain image is from 

Google. 

 

For both Pain Meters, a Teensy 3.6 microcontroller with a 32-bit 180 MHz ARM 

Cortex-M4 processor is used to sample all signals every 15ms. A data acquisition program 

was designed in MegunoLink Pro for Pain Meter 1 data and a customized data acquisition 

program was written in Python for Pain Meter 2 data. 
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Figure 7. Pain meter 1 sensed temperature, pulse and GSR, but it did not directly sense 

motion. 

Data Collection  

Using Pain Meter 1 from Fig. 7, our chronic pain Dataset 1 was collected from one 

subject who self-reported the pain score. The subject was asked to fix the headband and 

neck pillow into a comfortable position. Once secured, real-time plots of the pulse and 

temperature data were viewed to verify that the head and neck sensors were collecting 
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accurate and reliable signals for the subject. Minor adjustments to the sensor positions can 

be made if needed. After adjustments were made, the subject placed the left hand on the 

module to read the hand signals. A final verification step viewing all plots of data was 

performed. Then the subject was asked to close their eyes and relax before the recording 

begins. After 10 minutes, the recording was ended. Each recording was taken on a different 

day at the same time in the afternoon, the same temperature and the same environment 

brightness. During recordings with Pain Meter 1 we noticed that some of the pulse signals 

became erratic compared to other pulse signals and that this erratic behavior seemed to 

correlate with pain. We hypothesized that this was due to subtle movement [49] and 

constructed Pain Meter 2 (Fig. 9) to have motion sensors. With the addition of motion 

sensors we could confirm this hypothesis (Fig. 8) and measure the motion directly. 
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Figure 8. Motion affects the pulse sensor signals, which are based on measuring the intensity 

of light reflected from the skin. Part A shows a pulse sensor at the carotid artery, far from 

motion. Part B shows a pulse sensor at the finger. Motion is generated by flexing the wrist 

and is measured in part C by a wrist acceleration sensor. Part D shows data from wrist gyro 

sensor and part E shows data from a wrist force sensor. Note that the pulse sensor on the 

finger (sensor b), which is closer to the motion, is strongly affected by the motion, while the 

pulse sensor on the carotid artery (sensor a) is not. 
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Figure 9. Pain meter 2 consists of: 1) PPG pulse sensors in a headband, in a neck band, and 

on the fingertip, 2) Temperature sensors on the neck and fingertip, 3) 3-axis accelerometers 

and 3-axis gyros in the head band and wrist band, 4) Force sensors on the forehead, back of 

neck, side of neck, and wrist band, and 5) GSR sensors between the middle and ring fingers. 

 

 

 
Table 3: Data statistics for dataset 1 

 

Pain score distributions for the 2-class Dataset 1 and 7-class Dataset 2 are shown 

in Table 3 and Fig 10, respectively. Each recording has a length of 10 minutes, with signals 

sampled every 15 milliseconds. We have 4 recordings from one subject in Dataset 1 and 62 

recordings from 20 subjects in Dataset 2. We divide each 10-minute recording into ten 

mutually exclusive 1-minute samples. 
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Classification Problem  

The classification problem for chronic pain assessment is to classify a Pain Meter 

dataset of time sequences into pain scores on a scale of 0 for no pain to 10 for the worst 

pain possible. The model is first trained on Dataset 1 from a chronic pain subject who 

self reports her pain score for each of the datasets on a 0 to 10 scale. Note that seldom 

has our subject reported a pain score higher than 2 in Dataset 1. Thus in Dataset 1, we 

use pain scores 1 and 2. In Dataset 2, we have pain scores from 0 to 6, which formulates 

to be a 7 class classification problem. Our goal is to use the trained deep learning model 

to accurately classify chronic pain datasets into the self reported pain scores. 

 

Figure 10. Distribution of pain scores in dataset 2. The numbers outside the pie chart 

are the corresponding pain scores and the percentages of time for which each pain score 

is reported are shown in the pie chart. 
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Methodology 

The model architecture, shown in Fig. 10, consists of convolution-pooling layers 

followed by fully connected layers. To learn temporal and correlation features, the 

convolution is performed on both the time and sensor dimensions. We split the 1-minute 

samples into smaller slices with length of seq_length. Sensor recording signals with a 

dimension of (number of sensors (N) × seq_length) serve as input x for the neural 

network. A convolution operation involves a filter w ∈ Rst, which is applied to a window 

of s sensors and t samples to produce a new feature. For example, a feature fi,j, (0 ≤ I ≤ 

−N −s +1,0 ≤ j ≤ seq_length −t +1) is generated from a window size (s,t) of the sensor 

signals: 

                fi, j = ReLU(ωxi:i+s−1,j:j+t−1 + b),                                  (1) 

where b∈R is a bias term. This filter is applied to each possible window of the 

voltage signals to produce a feature map: 

  

with f ∈ RN−s+1,seq_length−t+1. We then apply a max-pooling operation over the feature map 

and take the maximum value m = max(f) as the feature corresponding to this particular filter. 

The idea is to capture the most important feature, the one with the highest value, for each 

feature map. Our model uses multiple filters to obtain multiple features. These features form 

the penultimate layer and are passed to a fully connected softmax layer whose output is the 

probability distribution over different pain scores. We adjust the number of convolutional 
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ReLU layers from 2 to 5, based on the choice of seq_length. The prediction of our model, 

parameterized by W, is given by 𝑝(�̂�|𝑥, 𝑾).  

Due to the existence of the inherent ordering information in our chronic pain score, we 

apply ordinal regression, a setting that bridges metric regression and classification, to predict 

chronic pain scores of ordinal scale. Compared to regular regression problems, these pain 

scores are discrete. These pain scores are also different from the labels of multiple classes in 

classification problems due to the existence of the ordering information. The cross entropy 

loss of our ordinal regression for input vector xn is as follows, 

 

 

where y represents the true pain scores, 𝑝(�̂�) denotes the predicted probability vector 

with one value for each possible pain score, and C is number of pain scores. Divided 

by C−1, the absolute error | 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(�̂�|𝑥, 𝑾)) − 𝑦| is normalized between 0 and 1, 

with C classes in total. By multiplying | 
𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(�̂�|𝑥,𝑾))−𝑦

𝐶 − 1
|, the normalized absolute error 

between prediction and ground truth, with cross entropy loss, we include the ordinal 

information in our loss function. We penalize more in our loss function if the absolute error 

between ground truth and prediction is larger. 

For testing, we define Consensus Prediction to measure the performance of predictions 

for the whole sensor signal sample. Consensus Prediction synthesizes results from multiple 

short slices by majority voting, which can significantly improve the prediction accuracy for 
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a long sample. This is because not all of the short time slices can be expected to contain 

useful information for classification. 

We use Batch Normalization [50] to accelerate training. For regularization, 

dropout [51] and early stopping methods [52] are implemented to avoid overfitting. Dropout 

prevents coadaptation of hidden units by randomly dropping out a proportion of the hidden 

units during backpropagation. Model training is ended when no improvement is seen during 

the last 100 validations. Softmax cross entropy loss is minimized with the Adam 

optimizer [53] for training. Since both frequency information and correlation between 

sensors are captured through convolution filters, our CNN-based framework automatically 

deals with the features needed for classification. We use grid search for hyperparameter 

tuning. The hyperparameters are described in Table 4. 

Experimental Setup  

We introduce two baselines: Multilayer Perceptron (MLP) and Logistic Regression, to 

compare with our proposed CNN framework for the two classification problems. 

 

CNN Based Model and Consensus Prediction 

We implement a parallel processing framework that distributes the convolutional neural 

network into multiple (N) GPUs to ease the burden on GPU memory. Each GPU contains an 

entire copy of the deep learning model. We first split the training batch evenly into N sub-

batches. Each GPU processes only one of the sub-batches. Then we collect gradients from 

each replicate of the deep learning model, aggregate them together and update all the 

replicates. We train our CNN based framework with two NVIDIA GeForce GTX 1080s, 

each of which has a memory of 11178 MB. 
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Multilayer Perceptron 

We use a four layer fully connected network, whose output is the probability distribution 

over two different classes, as a baseline. We use a parallel processing framework similar to 

our CNN model implementation. We train our MLP on two NVIDIA FeForce GTX 1080s. 

 

Logistic Regression 

Since the signals are periodic, we extract individual voltage signal FFT (x1) and pairwise 

sensor signal Pearson Correlation (x2) as features (X) for a Logistic Regression classifier: 

 

where Y is the label for classification and P is the probability of predicting Y as label 1 (pain 

score 1). w0, w1 and w2 are model parameters to be learned during training. 

 

Split Training and Testing 

 

Since each of our recordings is long enough to split into multiple informative samples 

and there exists different settings among different recordings, we implement two methods of 

splitting the training and testing data. We first divide each 10-minute recording into ten 

mutually exclusive 1-minute samples. 

1. Considering the size of our datasets in prediction, we use 5-fold cross validation. For 

each of the 10-minute recordings, we use between 2∗(i−1) and 2∗i minutes as testing, 

and the rest for training, for the i-th fold. This training/testing split fits well with the 

scenario of practical use of pain score assessment. It is known that different subjects 
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have different perceptions of pain. For real use, our pain meters need some self-

calibration before getting accurate pain score readouts. 

2. Leave-one-recording-out cross validation on all the recordings. Each recording is 

used once as a test set while the remaining recordings form the training set. We note 

that, due to differences in subjects' sensitivity to pain, different settings while 

recordings, and the size of our data, it is much more difficult to predict across 

subjects than within one recording. We report the result using this splitting method 

in Section VIII. 

 
Figure 11. Model architecture: 1-minute samples of the voltages measured on the 

physiological sensors are collected from our prototype pain meter. Segments with 

seq_length = 15 s of these samples are individually classified. These individual 

classifications are conducted for consensus prediction in pain score recordings. 

 

 
Table 4: Hyperparameters 
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C. Results 

Considering the size of our dataset in prediction, we use 5-fold cross validation and 

report the average results in this section. Note that Dataset 2 is unbalanced. We also report 

the confusion matrix for evaluation. 

Confusion matrices are shown in Fig. 12 and Fig. 13 for chronic pain score prediction. 

Dominant numbers on the confusion matrix diagonal indicates that our model achieves high 

accuracy for each class. Fig. 14 shows the individual class prediction distribution for Dataset 

2. The infrequent prediction mistakes scatter around the ground truth. For example, although 

11% of the predictions from pain score 3 are incorrect, they are still close to 3 (either 2 or 

4). Fig. 15 further demonstrates that the probability of making an error decreases as the 

absolute prediction error increases. This is the benefit from ordinal regression, which 

penalizes more in the loss if the absolute error between ground truth and prediction is 

larger. Fig. 16 is a scatter plot of expected predicted pain score vs. self-reported pain score. 

The relationship between predicted pain score and ground truth is highly linear, with an R-

squared (R2) of 0.9463. 

Since we use seq_length to split long recordings into shorter slices, some of the short 

slices may not contain enough information for pain score prediction. However, these effects 

can be eliminated using Consensus Prediction. Although we have imblanced data in Dataset 

2, we still use accuracy to compare different models and check the benefits obtained from 

Consensus Prediction, since chronic pain subjects are most interested in prediction accuracy. 
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Figure 12. Confusion matrix for chronic pain score prediction in dataset 1. 

Results of our framework compared against other machine learning models on chronic 

pain recordings are shown in Tables 5 and 6 respectively. We compare our CNN based 

model with two baselines: Multilayer Perceptron (MLP) and feature-based Logistic 

Regression. For Dataset 1, our CNN-based deep learning approach improves the prediction 

accuracy by 5.25% compared to feature-based Logistic Regression. Fig. 17 shows the 

Consensus Prediction accuracy. The accuracy improves by 3.84% using Consensus 

Prediction. Although not all of the short slices can be expected to contain enough useful 

recording patterns, we can overcome that when we synthesize multiple individual 

classification results from these short slices. For Dataset 2, our model achieves accuracy of 

95.23% for short recording slices, which is a 2.8% improvement over feature based Logistic 

Regression. The accuracy further improves to 98.30% with Consensus Prediction as shown 

in Fig. 18. Our CNN based deep learning model also outperforms MLP on both of the two 

sets of recordings by 3.32% and 2.91% respectively, which shows CNN's advantage of local 
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feature extraction using convolutional kernels over MLP. Also from Fig. 17 and Fig. 18, 100 

time slices for each recording are sufficient in Consensus Prediction. 

 

Figure 13. Confusion matrix for chronic pain score prediction in dataset 2. Our model 

achieves high accuracy for each class. 

 

 

 
Table 5: Cross-validation performance comparison of our deep learning model with 

multilayer perceptrons and logistic regression on dataset 1. 

 

Fig. 19 shows the trend of accuracy versus the choice of seq_length for Dataset 1. For 

the effect of seq_length on accuracy, there exists a trade-off between number of training 

samples and representation of a whole recording. The short slices contain less information 

but can provide more independent training samples. For deep learning models, larger 

numbers of training slices help more than a larger sample.  
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Figure 14. Individual class prediction distribution for dataset 2. The occasional incorrect 

predictions scatter close to the ground truth.  
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Table 6: Cross-validation performance comparison of our deep learning model with 

multilayer perceptrons and logistic regression on dataset 2. Although we have imblanced 

data for 7 classes, subjects are still most interested in prediction accuracy. We showed 

confusion matrix for our CNN model in the previous figure.  

 

However, we still cannot choose too small of a seq_length, since a too short slice is not 

representative for a recording. Given the data we currently have, we use a seq_length of 15 

seconds. 

We show some failure cases for our CNN classifiers in Fig. 20. The upper figure shows 

the histogram of short sequence prediction for one recording, where blue indicates predicted 

successfully and red indicates predicted incorrectly. The x axis is the starting point of the 

sampled short sequences. The lower figure shows the corresponding voltage signals from 

our prototype Pain Meter recording. There is a period from 0.55 minute to 0.65 minute, 

during which the classifier consistently makes incorrect predictions. From the pulse signals, 

they also perform abnormally compared to other periods. This is also true for the short peak 

in the data coming from the palm near wrist at 0.28 minute. This illustrates that for those 

periods, by looking at shorter sequences, it is easy to make a wrong prediction for both 

human experts and a classifier. This is due to the fact that our sensors are sensitive to 

movements. Noise can be introduced with a contact position change between sensors and 

skin. However, by using Consensus Prediction, these errors have no effect on the final 

prediction.  

 

 
Figure 15. The distribution of absolute prediction error using ordinal regression for 

dataset 2. The chance of making an error decreases with the increase of absolute prediction 

error. 
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Figure 16. Scatter plot of expected predicted pain score vs. self-reported pain score for 

dataset 2. The larger size of the point corresponds to the higher appearance frequency of the 

data point. We keep a decimal in calculating the expected predicted pain score because 0.1 is 

a reasonable precision to estimate pain in real life. The predicted pain score exerts high 

linear relationship with ground truth with a high R2 of 0.9463. 

 

 
Figure 17. Consensus prediction for chronic pain score prediction in dataset 1. 
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Figure 18. Consensus prediction for chronic pain score prediction in dataset 2. 

 

1. Optimizing the Pain Meter Design 

One of the benefits of our deep learning framework is that it can distinguish which 

sensors are most useful for pain score assessment. We compare the performance of each of 

the separate signals in Pain Meter 1 as shown in Fig. 21. We report the average accuracy 

using 5-fold cross validation. This can help us to further improve our chronic Pain Meter. By 

testing individual signal performance, we find that the accuracy for temperature signals are 

all around 0.5, which is similar to a random guess in binary classification. Thus the 

temperature signals are not very informative. We also find that the temple pulse and the 

palm near wrist pulse contribute substantially to our pain score prediction. 
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Figure 19. Accuracy vs. seq_length trend for dataset 1. 

 

 
Figure 20. Case study for short slices that the classifier predicted incorrectly. In the upper 

figure, red color bars represent incorrect predictions while blue bars represent correct 

predictions. 
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Figure 21. Individual sensor signal classification performance for dataset 1. 

 

 
Figure 22. Confusion matrix for chronic pain score prediction in dataset 2 using leave one 

recording out. The performance is poor due to subjects' differing sensitivities to pain, the use 

of different settings while recording and the limited unbalanced dataset. 
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D. Summary 

We have addressed the issue of predicting a chronic pain score by proposing a deep 

learning ordinal regression framework. We split the long recordings into smaller slices, 

which not only eases the burden on GPU memory but also provides more training samples 

for the deep learning model. We define and use Consensus Prediction during testing. We 

present the Confusion Matrix of leave-one-recording-out in Fig. 22. Leave-one-recording-

out does not perform well due to subjects' differing perceptions of pain intensities. Also 

since we have much more pain score 2 samples compared with other pain score samples in 

Dataset 2, as is shown in Fig. 10, the model is prone to make predictions of pain score 2. 

This paper is a proof of principle for chronic pain score assessment via deep learning. It 

can provide an objective pain assessment for each patient. More data for additional chronic 

pain subjects is needed before it can be definitively known if deep learning will be a 

generally useful technique for chronic pain assessment. 
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IV. Preliminary Study: Quantification of Chronic Pain from 

Physiological Data 

It is unknown if physiological changes associated with chronic pain could be 

measured with inexpensive physiological sensors. Recently, acute pain and laboratory 

induced pain have been quantified with physiological sensors. Here we investigate the 

extent to which chronic pain can be quantified with physiological sensors. 

A. Introduction 

Chronic pain is a significant public health problem. Recent estimates show that 50 

million U.S. adults had chronic pain [75]. Chronic pain and pain-related disability in the 

United States costs $560-$650 billion dollars, far exceeding the costs of cardiovascular 

disease, cancer, and diabetes [89]. Yet, despite the high cost and the profound social and 

personal burdens imposed by chronic pain, the clinical means by which we quantify levels 

of pain are largely relied on subjective self-reports rather than objective measures of pain 

intensity [71]. 

A large body of work demonstrates that chronic pain causes changes in the brain that 

cause pain to persist beyond tissue healing. In particular, Functional Magnetic Resonance 

Imaging, fMRI, has been used to demonstrate changes in the brain that are consistent with 

chronic pain [56-59, 65, 66, 77, 87, 106, 109, 127, 129, 135]. One recent randomized 

controlled study [56] found significant changes in fMRI imaging of subjects with chronic 

back pain before and after psychological pain treatment, showing a possibility of using 

fMRI in pain measurement. However, fMRI is rather expensive and hard to do for routine 
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use. Less expensive and easy to use devices that can also show changes that are consistent 

with chronic pain are needed. 

This research [56] along with another randomized controlled study [80] demonstrated 

interventions that not only reduced, but in many cases cured, chronic pain by retraining the 

brain. Techniques for retraining the brain away from chronic pain include psychological 

therapies [54,78,81,82,86,91,95,99,100,104,110,115,121–123,140,141,150], education 

[114,117,120,131,137], biofeedback [84,128,132], activities 

55,70,97,107,108,116,139,144,145,149] and meditation [60,85,96,155]. Multimodal 

combinations of these techniques have been successful [62,72,74,79,88,90,94,103,146]. 

The changes in the brain that can cause chronic pain may also cause physiological 

changes that can be measured. Recently there has been significant progress in quantification 

of pain with physiological sensors [63,67−69,73,83,92,98,111,113,125, 126,130,138,151, 

153, 154, 156]. Sensors that measure physiological signals are usually low-cost and easy-to-

use. By measuring physiological changes due to chronic pain, such a device could 

potentially be useful to diagnose chronic pain more accurately, which can in turn assist in 

pain reduction. Such a device does not directly help reducing the pain, instead, it assists in 

pain reduction by better assessing the pain. For example, one can use it to monitor pain 

before and after an intervention to assess the effectiveness of pain reducing techniques 

described above. Additionally, quantification of pain is important because there is increasing 

concern that gender, race, age, and intellectual development disabilities may be involved in 

diagnostic delays as well as over-/under-treatment of pain [61,76,105,119]. 

A growing body of literature has suggested that self-reported acute pain and 

experimentally-induced acute pain are associated with differences in physiological 
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parameters —for example, heart rate and heart rate variability (HRV); blood pressure; 

peripheral pulsatile components of the cardiac cycle; and electrodermal activity 

[73,83,98,130,153,154]. Much of this work is consistent with the notion that multivariate 

assessments are superior to single-parameter models when predicting the subjective 

experience of pain intensity. For example, in an experimental induction of acute thermal 

pain, only a linear combination of physiological data from electrocardiograms (ECG), 

photoplethysmograms (PPG), and galvanic skin response (GSR) significantly differentiated 

between no-pain and low-, medium-, and high-pain states—no individual parameter was 

able to distinguish between no-pain and pain states alone [138],  suggesting that information 

from multiple autonomic physiological signals may indeed offer the most promising avenue 

for objective pain quantification [111]. This modeling approach extended to cases of pure 

nociception under anesthesia, where the conscious perception of pain was ostensibly 

impossible: a multivariate approach including HRV, PPG, and pulse transition time 

accounted for intra-operative clinical measures of noxious intensity of incision [126].  

Similarly, in another study, heart rate, HRV, PPG, GSR, and associated temporal/spectral 

subcomponents of those physiological signals differentiated between noxious and non-

noxious surgical events [63]. 

Of special relevance to the present study, previous research [156] has highlighted the 

promise of machine learning models for pain assessment. Multilayer artificial neural 

networks using features derived from skin conductance and ECG distinguished between no 

pain and moderate-to-high levels of experimentally-induced thermal pain, with a 

combination of the two features outperforming either measure alone [113]; in the case of 

chronic pain resulting from sickle cell anemia, multinomial logistic regression using six 
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physiological features significantly predicted pain scores on an 11-point pain scale—both 

within- and between-individuals [151]. Thus, there is considerable evidence to suggest that 

multivariate assessments of classical physiological measures can inform our understanding 

of pain intensity. Critically, however, there is no apparent consensus on the optimal set of 

features to use: the pioneering work on this question has explored a highly-diverse field of 

potential physiological parameters [67−69,77,92,93,101,102,112,118,133,134,136, 143,147, 

148, 152]. 

In this study we report preliminary pain prediction results using physiological data 

collected from chronic pain sufferers on our new Pain Meter. We investigated both 

individual-level models and an overall, population-level model, spanning various 

combinations of pulse and temperature features.  At the individual-level, our results show 

that the ability to quantify chronic pain can vary quite considerably, with only half of the 

participants showing moderately-strong predictive accuracies. Aggregating the data into a 

population-level model, however, significantly predicted pain scores across each recording 

session, providing preliminary evidence for a generalizable model of chronic pain 

quantification using physiological parameters. 

B. Methods 

Pain Meter 

The prototype equipment was built to allow subjects to record at home. For safety, we 

avoided any sensors that required electrode contact to the subjects’ bodies. These in-home 

subject recordings enable us to capture more natural variation in pain levels for each subject, 

including high pain levels that would have made travel to our laboratory difficult. The 

ability to create subject specific chronic pain models is due to the ability to record in homes.   
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Our Prototype Pain Meter (Fig. 23) represents the seventh iteration of our device. The 

sensors we chose were inexpensive and available commercially: photoplethysmograms pulse 

sensors (Pulse Sensor Amplified; http://www.pulsesensor.com); temperature sensors (10K 

Ohm NTC Thermistors MF52-103); IR temperature sensor (MLX 90614); 

acceleration/gyroscope sensors (HiLetgo GY-521 MPU-6050 MPU6050 3 

Axis Accelerometer Gyroscope Modules); and force sensors (Interlink FSR 402 on the 

forehead and wrist; and Interlink 406 on the basilar and carotid arteries). An example of the 

signals recorded from Pain Meter in shown in Figure 24. The Prototype Pain Meter does not 

apply stimulation to obtain different pain score recordings. 

 
Figure 23. Pain Meter contains (1) PPG pulse sensors in a headband, in a neck pillow, 

wristband, and on the fingertip; (2) temperature sensors on the temple, forehead, wrist, and 

fingertip; (3) 3-axis accelerometers and 3-axis gyros in the headband and wristband; and (4) 

force sensors on the left carotid and basilar. PPG, photoplethysmograms. 

 

 

http://www.pulsesensor.com/
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Figure 24. An example of the signals recorded from Pain Meter. 

 

A Teensy 3.6 microcontroller with a 32-bit 180 MHz ARM Cortex-M4 processor was 

used to sample all signals at a frequency of 66.67 Hz. Data visualization and acquisition 

programs for our Pain Meter were written in Python. Data was remotely monitored using the 

Dropbox cloud storage system. 

Participants 

Data were collected from 12 participants (9 women, 3 men; Mage = 38.25, SD = 17.10, 

range = 21 - 65), yielding a total of 183 10-minute recordings. Importantly, we did not 

specify any explicit exclusion criteria for participation: thus, pain etiology/symptomatology, 

duration, and intensity varied across individuals.  

All subjects were recruited via email and provided written informed consent for a 

protocol approved by the UCSB Human Subjects Committee. 

 

Data Collection 
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Subjects first opened a computer program on the Pain Meter computer that was supplied 

to them. They connected to Wi-Fi on the first use. Then they were asked to rate the best 

representation of their current pain score using a visual analogue scale, which included 

pictures and short descriptions of pain states from 0 to 10 (for example, the description of 

state 0 was ‘no pain’ and the description of state 10 was ‘unimaginable unspeakable’).  

Subjects next put on the headband and neck pillow sensors, adjusted their position until 

they felt comfortable, and secured the sensors with Velcro (headband) and a fastener (neck 

pillow). Next, they put on a wrist band and two finger cuff sensors. Once these were 

secured, the computer monitored all of the pulse signals and gave green lights for all sensors 

giving good signals (signals with clearly detected peaks) and yellow for any that were not. If 

there were any yellow, the subject was asked to readjust the sensor and try again. 

Once all of the sensors were giving good signals, a 10-minute recording session was 

initiated in which pulse, temperature, force, and motion data were recorded and stored in 

local memory (at the end of the session, the complete record was automatically uploaded to 

the cloud). 

During this recording, the subject was instructed to relax and to look at a fixation cross 

on the computer screen. The data being recorded was not visible to the subjects during the 

recording. After the recording was done, the subjects were asked to report their current pain 

score again with the same visual analogue scale. The protocol instructed subjects to record 

for two weeks, twice per day.   

Data Pre-processing 

Movements of the subjects during the recording sessions can disturb the pulse signal and 

add additional noise into the data. Consequently, it can be difficult to extract robust, 
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interpretable features from individual pulses. We use several steps to preprocess the data and 

reduce the influence of noise in our analysis. After unstable segments are detected (as 

detailed in Fig. 25), we remove them and split the stable segments into 10-second samples 

before proceeding to feature extraction. We used three pulse sensors in our analysis: temple 

pulse sensor, carotid pulse sensor, and pointer finger pulse sensor. Note that, because we 

removed all unstable segments, the number of available recordings and samples differed 

depending on the combination of sensors—Table 7 shows the number of stable recordings 

and samples for each combination.  

 

Figure 25. Preprocessing and feature extraction. (A) Step 1: Detect all pulse peaks in the 

recording by comparing the moving average m of each 100 data-point segment in S1 (S1 is 
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1.5-second-long) with the last 20 data points in S2 (S2 is 0.3-second-long) of S1. If the first 

and last data point in S2 is smaller than m and the max value of S2 is larger than m, then a 

peak is detected. Step 2: Take the first 6 peaks and calculate the mean Iave and SD d of the 

time between peaks. If Iave is between 0.6 and 1.2 seconds and d is smaller than 0.2 and if 

the time I between 2 peaks is between 0.9 and 1.1 times Iave, this data segment is classified 

as stable. Otherwise, this data segment is classified as unstable. Repeat this process for all 

the data. (B) The data preprocessing and feature extraction steps: (1) Remove unstable 

segments and divide the rest of the recording into continuous 10-second samples. (2) Inside 

each sample, extract pulse features such as the mean and SD for each pulse parameters and 

mean and SD for temperature. 

 

Details of the models trained with different combination of pulse sensors. 

Pulse sensors # of recordings # of samples r RMSE 

1 173 7755 0.60 1.52 

2 168 6671 0.44 1.78 

3 179 8900 0.60 1.52 

1, 2 156 5446 0.45 1.69 

1, 3 168 7033 0.57 1.56 

2, 3 163 5978 0.49 1.66 

1, 2, 3 152 5044 0.41 1.71 

Table 7: Number of recordings, number of samples, Pearson correlation coefficient (r), 

and root mean square error (RMSE) are shown. For pulse sensors, 1 represents temple pulse 

sensor; 2 represents carotid pulse sensor; and 3 represents pointer finger pulse sensor. 

 

Participants provided one pain score at the beginning of each recording and then again at 

the conclusion. We did not give any instructions to the participants such as telling them to 

relax or in any way attempt to change their pain. Nevertheless participants often reported a 

different pain level at the end of the session. We therefore split the data and assigned the 

first pain score to samples from the first half of each recording and the second pain score to 

samples from the second half. This is, of course, only an approximation because we have no 

information about when the pain level changed, but it seemed preferable to using only the 

beginning pain score or only the end pain score for the entire recording. 

Feature Extraction 



 

 49 

Each 10-second sample included stable signals from the pulse sensors and temperature 

sensors. We defined a series of pulse features analogously to earlier research [97], which 

suggested that pulse morphology derived from transmitted-light PPG can be used for 

postoperative pain assessment. Our device, however, uses green reflective-light pulse 

sensors with highly-filtered output (because they are both inexpensive and readily 

available). We therefore investigated whether our pulse sensor parameters can inform the 

quantification of chronic pain.  

We extracted only pulse parameters that are independent of the height of the pulse 

because the height of the pulse can be influenced by how tightly the device is worn and its 

position. Specifically, we extracted pulse width parameters: LR, LF, PPIH and PPIL (Fig. 26). 

PPIH is defined as the interval between two consecutive high peaks of pulses. PPIL is defined 

as the interval between two consecutive low peaks of pulses. The standard deviation of PPIH 

is a measure of pulse rate variability, which was used as one of the parameters in our 

models. 

 
Figure 26. Pulse parameters. LR is the width of the rising part of the pulse; LF is the width 

of the falling part of the pulse; PPIH is the interval between 2 consecutive highs; and PPIL is 

the interval between 2 consecutive lows. 
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From each 10-second sample, after finding the peaks, we segmented the data into 

individual pulses by finding the local minimum between peaks. Figure 25B illustrates this 

process. 

Thus, the following features were extracted from the samples: 

1. Mean and standard deviation of all pulse sensor parameters. 

2. Mean of temperature at forehead, temple, top of wrist, bottom of wrist and finger.  

Additionally, we computed 𝑇𝑇𝑒𝑚𝑝𝑙𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  / 𝑇𝐹𝑖𝑛𝑔𝑒𝑟

̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑇𝑇𝑒𝑚𝑝𝑙𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  - 𝑇𝐹𝑖𝑛𝑔𝑒𝑟

̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑇𝐹𝑜𝑟𝑒ℎ𝑒𝑎𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  / 𝑇𝐹𝑖𝑛𝑔𝑒𝑟

̅̅ ̅̅ ̅̅ ̅̅ ̅, 

𝑇𝐹𝑜𝑟𝑒ℎ𝑒𝑎𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  - 𝑇𝐹𝑖𝑛𝑔𝑒𝑟

̅̅ ̅̅ ̅̅ ̅̅ ̅, where 𝑇𝑇𝑒𝑚𝑝𝑙𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represents the temple temperature mean for each 10-

second sample window, 𝑇𝐹𝑜𝑟𝑒ℎ𝑒𝑎𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represents the forehead temperature mean and 𝑇𝐹𝑖𝑛𝑔𝑒𝑟

̅̅ ̅̅ ̅̅ ̅̅ ̅,  

represents the finger temperature mean. All features were z-scored normalized prior to 

further analysis. 

Recursive Feature Elimination and Random Forest Regression 

Feature selection methods are used to identify a subset of ‘important’ features and 

simplify a model. These techniques often afford several advantages, such as reducing 

computational costs, avoiding overfitting, and improving model performance.  

One popular method, Recursive Feature Elimination (RFE), selects features by training a 

model with one set of features, ranking them by an importance metric, and removing the 

least important. This procedure is recursively repeated until the user-specified number of 

features is reached. We implemented subject-specific linear models for individualized pain 

prediction, accounting for the fact that relevant physiological parameters could likely vary 

on a subject-by-subject basis. 

At the overall population level, we used random forest regression: an ensemble method 

that aggregates the predictions from multiple regression trees to make more accurate 
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predictions. Regression trees are decision trees when the outcomes are continuous values, 

recursively partitioning the data space into smaller regions where simple models can be used 

to describe the relationships between various model inputs and outcomes. In random forest, 

each regression tree is created using random subsets of features and random subsets of 

samples. Accordingly, because random forest uses different subsets from the data and 

features, it is less likely to overfit and performs well with high-dimensional datasets. 

Additional advantages include fewer constraints and assumptions about the data and its 

distribution, as well as robustness to outliers and missing values. After the forest is fit, the 

predicted pain score of the test set is computed as the mean predicted score of the trees in 

the forest. This part of the analysis was done with the Python package scikit-learn [124]. 

7. Leave-One-Recording-Out Cross Validation 

We used leave-one-recording-out cross validation to assess performance in all models 

(individual- and population-level). For leave-one-recording-out, all samples from one 

recording were iteratively removed from the dataset, the model was trained on the remaining 

data, and predicted pain scores were obtained for the left-out recording. Pearson correlation 

coefficient (r), intraclass correlation coefficient and root mean square error (RMSE) between 

the predicted pain ratings and the reported values are reported. Intraclass correlation 

coefficients (ICC(3,1)) are calculated with R package psych [142].  

We additionally performed 1000 iterations of nonparametric permutation tests to assess 

model performance against chance. In this procedure, we constructed a robust empirical null 

distribution of predictive accuracies expected if pain scores were randomly associated with 

patterns of physiological parameters. Thus, for each permutation, pain scores were shuffled 

randomly for all recordings, models were fit using cross-validation as above, and 
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performance was recorded. Significance was determined by the proportion of cases in which 

null-model accuracy equaled or exceeded the ‘true’ accuracy. 

Since Pearson correlation is not an agreement statistic, a high correlation does not 

necessarily imply a good agreement between the two scores. Thus, we also ran a Bland-

Altman analysis for our population-level model.  

Despite these checks, there are still limitations and potential overfit problems with our 

methods. Future studies are needed to validate stable models against independent subject 

samples. 

C. Results 

We were able to capture a fairly-wide range of pain scores (spanning 0-9) through our 

home recording sessions. However, we note that more extreme ratings (particularly, pain 

scores 0, 8 and 9) have many fewer samples for analysis relative to the other values. We 

elected to retain these recordings given the continuous nature of our regression frameworks, 

but the imbalanced representation of scale endpoints is worth keeping in mind for model 

assessment. 

1. Individual-level Models 

We first trained and cross-validated predictive models on an individualized, within-

subject basis. Because of the smaller sample size for individual subjects, we used recursive 

feature elimination to select five features first to avoid overfitting and then fit a linear model 

to predict the pain scores for each subject. All combinations of pulse sensors were tested for 

each subject. The models with the combination that gave the best predictive performance 

(i.e. correlations between reported and predicted pain) are reported in Figure 27. As 

expected, performance was rather variable across individuals. However, pain scores in 5 out 
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of 12 subjects were predicted with moderately-strong accuracy (0.49 < r < 0.78, p < 0.05). 

The intraclass correlation coefficients for these five subjects are between 0.46 and 0.75. A 

few features were selected by recursive feature elimination repeatedly in these five models. 

For example,  𝑃𝑃𝐼𝐿
̅̅ ̅̅ ̅̅  was selected in 5/5 models and 𝐿𝐹 ̅̅ ̅̅ ,  𝑇𝐹𝑜𝑟𝑒ℎ𝑒𝑎𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,  𝑇𝐹𝑖𝑛𝑔𝑒𝑟
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑇𝐹𝑜𝑟𝑒ℎ𝑒𝑎𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  - 

𝑇𝐹𝑖𝑛𝑔𝑒𝑟
̅̅ ̅̅ ̅̅ ̅̅ ̅ were selected in 4/5 models. However, the relationships between these features with 

pain score are not consistent across different individuals. For example, 𝑇𝐹𝑜𝑟𝑒ℎ𝑒𝑎𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 

𝑇𝐹𝑖𝑛𝑔𝑒𝑟
̅̅ ̅̅ ̅̅ ̅̅ ̅ increased with the increase of pain score in 2/4 subjects, and decreased in the other 

two subjects.  

 

Figure 27. Cross-validated predicted pain scores vs reported pain scores for each subject. 

Different colors represent different subjects in the raincloud plots. Each dot represents one 

sample, and each line is the fitted linear regression line for each subject. In total, there are 

6982 samples, 99.50% of the data is shown in the figure. The rest were omitted to provide 

higher resolution for the bulk of the data. The Pearson correlation coefficients between 

reported and the predicted pain scores are 0.78, 0.29, 0.14, 0.54, 0.19, 0.49, 0.56, 0.50, 0.24, 

0.16, −0.31, and 0.35, respectively, for subjects 1 through 12. 
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2. Population-level Model 

We then aggregated the data from all subjects and fit population-level random forest 

models using different combinations of pulse sensors. Table 7 shows the results from each 

possible combination of sensors. In general, modeling more pulse sensors simultaneously 

leads to a smaller number of potential training samples overall (since a given 10-second 

window was only used if it was stable for all sensors combined). Models including only the 

pointer finger sensor or only the temple sensor gave the strongest correspondences between 

actual and predicted pain (r = 0.60, RMSE = 1.52). The intraclass correlation coefficient for 

both models are 0.58, showing a moderate similarity between actual and predicted pain.  

However, as aforementioned, predictive accuracy generally suffered the worst at pain 

scores with fewer available examples (Fig. 28). Because the number of stable recordings and 

samples varies when using different pulse sensors, there are different number of samples for 

each pain score. The more extreme ends of pain score (8 and 9) in particular were 

considerably undershot by the model. Nonetheless, performance on the whole consistently 

outperformed empirical null models, suggesting that pain prediction was still significantly 

better than chance (p < .001).  
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Figure 28. Cross-validated predicted pain scores vs reported pain scores for population-level 

models. Left panel shows the results from the model using signals from temple pulse 

sensors, and right panel shows the results from the model using signals from pointer finger 

pulse sensors. The violin plots for each class shows the distributions of the predicted pain 

scores. 

 

Because one of the measurements in this paper is the self-reported pain, which we 

consider as our reference measurement, we used the self-reported pain scores as the x axis in 

our Bland-Altman plots. Note that the self-reported pain scores are integers from 0 to 10, 

thus all dots in the plots lie on vertical lines with integer x value. The bias and agreement 

limits are the same for both models. The bias is 0.02, and the range of agreements is (-2.95, 

2.99). Our model tends to overestimate the lower end of the pain scores and underestimate 

the higher end of the pain scores. Note that plotting against reference measurement instead 

of average measurements might be responsible for the association between difference and 

pain scores [64]. 

D. Summary 

This is the first demonstration, to our knowledge, that physiological data can be 

correlated with chronic pain, both for individuals and populations. In our subject-specific 
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models for individualized pain prediction, 5 out of 12 subjects yielded Pearson correlation 

coefficients of 0.49 (p<0.05) to 0.78 (p<0.05) and intraclass correlation coefficients between 

0.46 to 0.75. In our population-level model, we achieved an intraclass correlation coefficient 

of 0.58 and a significant Pearson correlation between self-reported and predicted pain (r = 

0.60, p < .001) in this preliminary study. It is likely that higher correlations will be achieved 

with better devices in the future. This first demonstration had significant limitations due to 

the limited amount of data that we could collect shortly before and during COVID-19. 

Additional research is urgently needed to explore the effects of the type and duration of 

chronic pain, the age and gender of the subjects and other factors.  

Additional research is also needed to optimize the selection and placement of sensors. 

As one example of possible future improvements, an optimized pulse sensor would be able 

to sense the low frequency variations in the baseline due to breathing, which were filtered 

out in the commercial pulse sensor that we used. It is also possible (perhaps even probable) 

that the inclusion of electrocardiogram (ECG), electromyography (EMG), or skin impedance 

sensors would give better correlations. However, in the interest of subject safety, since these 

were unsupervised measurements in the subjects’ own homes, we did not include any 

devices with electrodes. 

Our long-term goal is the development of a relatively low-cost, easy to use system that 

could be used by patients in their own homes or in physician offices to objectively measure 

chronic pain. Hopefully this first demonstration of the possibility of achieving this goal will 

inspire engineers, physicists, computer scientists and psychologists to join in doing the work 

that will be necessary to move from the demonstration of a possibility to a practical system. 

The current system of subjective self-reported pain levels results in the over- and under- 
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prescribing of treatment. Shifting to an objective methodology would provide healthcare 

professionals the ability to properly prescribe patients with the appropriate dosage of 

treatment to alleviate pain. This is especially important with the many risks associated with 

pain medication, including long-term opioid addiction. 

 

V. Dynamic Phase Extraction: Applications in Pulse Rate 

Variability 

Pulse rate variability is a physiological parameter that has been extensively studied and 

correlated with many physical ailments. However, the phase relationship between inter-beat 

interval, IBI, and breathing has very rarely been studied. A program based on Lock-in 

Amplifier technology was written in Python to implement a novel technique, Dynamic 

Phase Extraction. It was tested using a breath pacer and a PPG sensor on 6 subjects who 

followed a breath pacer at varied breathing rates. The data were then analyzed using both 

traditional methods and the novel technique (Dynamic Phase Extraction) utilizing a breath 

pacer. Pulse data was extracted using a PPG sensor. Dynamic Phase Extraction can extract 

both the phase between the breath pacer and the changes in IBI due to the respiratory sinus 

arrhythmia component of pulse rate variability (∆IBI), but is limited by needing a breath 

pacer. 
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A. Introduction 

 
Figure 29. Dynamic Phase Extraction (DPE) can give the phase and magnitude (∆IBI) of 

the variation in Inter-beat Interval (IBI) due to Respiratory Sinus Arrhythmia (RSA). We 

define the phase as a shift to the left being negative, and a shift to the right being positive, in 

agreement with standard physics and engineering convention. The phase and ∆IBI are 

determined by DPE, which pulls out the first Fourier component of the IBI Interval curve, as 

shown with the blue dashed line. 

 

Recent experiments have reawakened interest in the phase relationships caused by the 

delay between the modulation of the heart rate from the breath and the breath [157, 158]. 

Lehrer et al. have shown the phase shift at the breathing rate that yields the maximum power 

in heart rate variability varies systematically with age [157, 158]. This report builds upon 

those papers and the largely-ignored work on phase by Angelone and Coulter, who 

demonstrated over 50 years ago that there is an intricate relationship between phase, heart 

rate variability amplitude, and breathing rate [159]. In this paper we introduce a method to 

accurately and efficiently extract the phase of the respiratory sinus arrythmia (RSA) induced 

variations in inter-beat interval (IBI), measured with photoplethysmography, relative to the 

breath. For the sake of clarity and succinctness, in this paper we will define the change in 

IBI due to RSA as the change in IBI (Δ𝐼𝐵𝐼).  
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Our Dynamic Phase Extraction (DPE) method is based on lock-in amplifier technology. 

The lock-in amplifier is a powerful instrument commonly used in astronomy, physics, and 

engineering that can isolate signals a millionth the amplitude of the noise.  

We propose that this method could be used for analyzing the wave characteristics of 

RSA and may be useful for biofeedback studies of pulse rate variability. Broadly, pulse and 

heart rate variability (HRV) is negatively associated with a multitude of ailments and 

physical states, including chronic pain [160, 161], post myocardial infarction death rate 

[162-164], anxiety [165-167], diabetes [168], and sympathetic nervous system activation 

[160, 168, 169]; conversely,  it is positively associated with athletic performance [170,171]. 

Some fluctuations in the very low frequency (VLF) range (<0.04 Hz) have been positively 

associated with sympathetic nervous system activation, with some further complexities in 

chronic heart failure patients [169].  This has led to many papers seeking optimization 

parameters, and extensive work has been done in developing biofeedback and breathing 

protocols to improve and optimize heart rate variability [166, 172, 173], as well as the 

development of consumer devices that measure and utilize pulse rate variability, e.g. 

HeartMath, Whoop, Fitbit.  

Previous work has modeled the cardiac system as a two-closed-loop system, with the 

brain, baroreceptors, vascular tone control system, blood pressure control system, and heart 

rate control system as its constituents. Vaschillo (2002) emphasized the importance of phase 

delays in his work on biofeedback and approached the system from an engineering 

perspective, where often the most important components of a feedback system are the phase 

relationships [174]. This is reason enough to investigate phase relationships, but there has 

been even more work motivating an investigation into the phase relationships in HRV. 
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There is evidence to suggest that the delay causing the phase shift between the changes 

in IBI and breathing rate exists because a delay results in more efficient pulmonary gas 

exchange [175, 176], and that the changes in IBI are just the apparent manifestations of a 

system that optimizes this gas exchange [177]. Thus, we are interested in finding two 

parameters: the phase between IBI and breathing, and the peak-to-peak amplitude of the 

inter-beat interval, Δ𝐼𝐵𝐼, as defined in Fig. 29.  

Notably, the preponderance of extant literature measures HRV by electrocardiography 

(ECG). Here, however, we use photoplethysmography (PPG) to measure pulse rate 

variability. While we acknowledge limitations to this approach (e.g., difficulties in precisely 

capturing the timing of peak-to-peak events), PPG is nevertheless the most accessible form 

of measuring pulse rates. Our future research hopes to use the technique in various 

applications where ECG is unfeasible. 

Here we introduce and discuss the Dynamic Phase Extraction (DPE) method and 

demonstrate its ability to extract the phase relationships from PPG data. We also compare 

the measure for the magnitude of pulse rate variability, Δ𝐼𝐵𝐼, that it generates to other 

methods of extracting pulse rate variability (the LF Power and Standard Deviation of the 

IBI) and compare the phase that it extracts to the phase extracted using the Fourier 

transform. Δ𝐼𝐵𝐼 is defined as the peak-to-peak amplitude of the waves in the IBI interval vs. 

time curve. We extracted the phase and amplitude of the pulse rate variability, compared it 

to other methods of measuring pulse rate variability and phase, and found good agreements 

between them. 

B. Methods 

Participants 
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We collected data from six healthy young adults (5 men and 1 woman, aged between 

from 19-26). All procedures were approved by the UC Santa Barbara Human Subjects 

Committee.  

Data acquisition procedures 

A custom built PPG sensor was used to obtain pulse data. A chest strap with an 

integrated FUTEK LSB 200 load cell, an instrument that measures force using a Wheatstone 

bridge and strain gauges, was used to obtain breathing data. These were used because they 

were conveniently available in the lab; however, any linear chest circumference 

measurement and pulse rate measurement could be used. 

The PPG sensor was attached to the left index finger using a Velcro strap. The 

voltage powering the LED in the PPG sensor was adjusted until a pulse waveform that 

occupied about a third of the voltage range on the measurement device with clear peaks was 

measured. The chest strap was wrapped around the thorax to measure chest movement, and 

the output was run through a low-pass filter and then to an amplifier. Voltage values from 

the PPG sensor and chest strap were read using a Wemos LOLIN32 board sampling at 

2000Hz and recorded by a computer.  

Each subject was tested for at least 8 different breathing rates, ranging from 2.4 to 57 

breaths per minute. IBIs were eliminated without replacement if they were more than double 

or less than half of the previous pulse rate. In order to calculate the phase and perform 

Fourier transforms, each IBI interval was interpolated between to ensure consistent time 

interval spacing.  

Participants were instructed to follow a sine wave breath pacer at the desired 

breathing rate, and to breathe in as the sine wave increased and breath out as the sine wave 
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decreased. Recording sessions were 12 minutes total, with 2 minutes for each breathing rate. 

Multiple sessions were recorded for each subject, with the goal of finding a breathing pace 

where a local maximum of Δ𝐼𝐵𝐼 could be seen. 

The chest strap data was used to verify that the participant followed the breath pacer, 

this was done visually, just to make sure that the subject took a breath every cycle of the 

pacer. Inter-beat Interval (IBI) data were extracted by passing the pulse data through a peak 

detection program and then using those peaks to determine IBI. 

Dynamic Phase Extraction and analysis 

The lock-in amplifier is an instrument commonly used in engineering and physics. 

Here, we apply the principles of lock-in amplifier technology, specifically dual-phase lock-

in amplifiers, in the DPE method to extract the phase of the IBI variations relative to the 

breath pacer. The method can be broken down into a few simple parts.   
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First, a reference signal is fed into any system which will process and return a signal. 

In this case, the reference signal is a breath pacer, the system is the human body, and the 

signal is the Inter-beat Interval. The signal is then processed in two ways: “in-phase” and 

“quadrature”. For the in-phase processing (Fig. 30a), the signal is inverted every time the 

reference signal crosses zero, as seen in the third panel of Fig. 30a. Similarly, for the 

quadrature signal (Fig. 30b), the signal is inverted every time the reference signal has a peak 

or a trough, as seen in the third panel of Fig. 30b. The in-phase and quadrature signals are 

then continuously time-averaged, as seen in the fourth panels of Fig 30a and 30b. In 

practical terms, we can simply perform a numerical summation. 

( 1 ) 

𝐴0 =
1

𝑁
∑ IBI𝑖IP𝑖  ,

𝑁

𝑖=1

 

Figure 30. The Dynamic Phase Extraction (DPE) method extracts an In-phase Averaged Signal 
and a Quadrature (90 degrees out of phase) Averaged Signal. These are used to calculate the 
amplitude and phase of the Inter-beat Interval (IBI) relative to a Breath Pacer. The average value 
of the pulse rate was subtracted out to only reflect the changes in IBI. 
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( 2 ) 

𝐴π/2 =
1

𝑁
∑ IBI𝑖Q𝑖  

𝑁

𝑖=1

. 

In the sum, IPi is positive for the first half of the reference signal, and negative for 

the second half (as seen in the second panel of Fig. 30a). Similarly, Qi follows the second 

panel of Fig. 30b, where it starts positive and switches sign every half-wave. i indexes the 

ith heart beat from where you start counting, and N is the total number of heart beats. After 

evaluating Ao and Aπ/2, using equations (1) and (2), we can calculate the phase and amplitude 

(∆IBI) as follows: 

( 3 ) 

Phase ≔ ϕ = arctan2(𝐴0, 𝐴𝜋/2) = −arctan2(45.7, −73.8)

= 58.2𝑜 , 
( 4 ) 

ΔIBI ∶= 2𝐴 = π√𝐴0
2 + 𝐴π/2

2 = π√73.82 + 45.72 = 86.8 𝑚𝑠, 

where Δ𝐼𝐵𝐼 is the peak-to-peak amplitude of the signal, 𝐴0 is the in-phase value, and 𝐴𝜋/2 

is the quadrature value. The function arctan2 gives the angle of a ray through the origin to a 

point (x,y) relative to the x-axis. It is used because the normal arctan only ranges from 

−90𝑜 to +90𝑜, while arctan2 ranges from −180𝑜 to +180𝑜. We are justified in using these 

formulas as DPE extracts the first Fourier component at the reference frequency. This can be 

seen by converting our sum (eqs. (1) and (2)) to an integral: 

𝐴0 =
1

𝑇
∫ 𝐼𝐵𝐼(𝑡)𝐼𝑃(𝑡)

𝑇

0

𝑑𝑡, 

𝐴π/ 2 =
1

𝑇
∫ 𝐼𝐵𝐼(𝑡)𝑄(𝑡)

𝑇

0

𝑑𝑡. 

If IBI(t) is periodic, its Fourier decomposition is given by: 
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𝐼𝐵𝐼(ω𝑡)  =  ∑ 𝑎𝑖 sin(𝑖ω𝑡)  + 𝑏𝑖 cos(𝑖ω𝑡).

∞

𝑖=1

 

We can neglect the constant value in the Fourier transform because it is exactly equal to the 

average value, which we subtracted out of the IBI. 

However, when we integrate with the in-phase and quadrature signals, the sines and 

cosines cause anything other than a wave at the same frequency as the reference to diminish 

as 1/T, thus only the I = 1 terms are left. We can choose to start anywhere—in other words, 

may keep only the sine terms without loss of generality.  Thus, we are left integrating: 

𝐴0 =
1

𝑇
∫ 𝑎1sin(ω𝑡 − 𝜙)

𝑇

0

IP(ω𝑡)𝑑𝑡 + ϵ =
2𝑎𝑖

π
cos(𝜙), 

𝐴π/ 2 =
1

𝑇
∫ 𝑎1sin(ω𝑡 − 𝜙)

𝑇

0

Q(ω𝑡)𝑑𝑡 + ϵ = −
2𝑎𝑖

π
sin(𝜙). 

 

We can use the result of this integration to easily derive eqs. (3) and (4). 

In general, DPE will have a reasonable phase after two breaths, but inevitably, the 

more breaths that are taken, the better the precision of the method will be. The trade-off 

between time and precision is important to consider when measuring phase, and depends 

strongly on the application of DPE. 

  



 

 66 

C. Results 

 

First, we investigated how changes in the Breathing Rate (Breaths per Minute) of the 

breath pacer modulated the amplitude, ∆IBI, and Phase, as shown in Fig. 31.  

 

 

Figure 32. Different people (shown by different symbols and colors) can have 

slightly different phases at their maximum Δ𝐼𝐵𝐼 

Figure 31.  Δ𝐼𝐵𝐼 and phase as a function of Breathing Rate for a young, athletic 

person. The maximum Δ𝐼𝐵𝐼 occurs around 100𝑜 Phase. The x-axis is plotted on a log 

scale. Multiple runs are reported. 

Fig.4 Different people (shown by 

different symbols and colors) can 

have slightly different phases at their 

maximum Δ𝐼𝐵𝐼 
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This allowed us to identify the breathing rate that maximizes Δ𝐼𝐵𝐼 (Fig. 32). If we 

compare multiple trials to each other, we can locate what phase an individual’s Δ𝐼𝐵𝐼 is 

maximized at, and compare said phase to other individuals. Aside from the applications in 

pulse rate variability, the DPE method can be applied to any physiological signal that varies 

at the same frequency as a reference signal.  

As shown in Fig. 33, it is possible to extract phases relative to the breath from 

different physiological systems—even if they are noisy or have other signals mixed into 

them. It is evident that the pulse and the phase of the R-R interval are different. This is 

because, although the R-R interval is extracted from the pulse, breathing has a different 

phase relationship to the pulse specifically than it does to the R-R interval. Although the 

shapes don’t resemble sine waves, plugging them into the DPE method as one would with 

Figure 33. Dynamic Phase Extraction (DPE) can measure the phase and amplitude of the 

IBI Interval, Pulse Waveform, and Thoracic Force on a chest strap. In general, DPE can 

measure the phase and amplitude of any signal that is the same frequency as a reference 

signal. In this case, all phases are calculated with reference to the breath pacer. 
 



 

 68 

the IBI yields the phase of the fundamental Fourier component of the signal relative to the 

reference signal. 

Futhermore, we demonstrate that there is an upward trend in phase as we increase the 

breathing rate. However, as the breathing rate increases, the phase increases slower, 

indicating that the change in phase isn’t a simple delay in the breathing, but rather, is some 

more complicated function of breathing. We note that this general trend was not observed in 

the single female participant, although we cannot determine whether this is due to gender or 

is simply an outlier. There is also a variation in the phase measured at each breathing rate. 

Whether this is truly a meaningful variation or an artifact due to measurement noise remains 

unclear. More research is needed before any conclusions are warranted. 

 

 

 

 

Figure 34. The phase relationships of the population, plotted on a logarithmic x-

scale, there is a general upwards trend in phase as breathing gets faster. 
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Correlations with standard methods 

Our results for Δ𝐼𝐵𝐼 correlate well with other standardized measures of pulse rate 

variability (PRV). Here, we compare our method of analysis to the LF Power, a common 

frequency domain analysis method for HRV, and the standard deviation of the inter-beat 

interval (SDNN), a common time-domain analysis method [178, 179]. We performed these 

comparisons by calculating Δ𝐼𝐵𝐼, SDNN, and LF power for each data set recorded, and 

Figure 35. Δ𝐼𝐵𝐼 from DPE correlates with the LF 

Power (0.04Hz-0.15Hz) (ρ = 0.885) 
Figure 36. Δ𝐼𝐵𝐼 from DPE correlates well with SDNN 

(ρ = 0.911) 

Figure 37. The correlation between two conventional measures of pulse rate variability, LF Power and 

SDNN, ρ =0.877, is comparable to the correlation of each of them with the novel measure, Dynamic 

Phase Extraction (DPE) (Figs. 34 and 35). 
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plotting the value obtained for each data record with respect to each other measure obtained 

from the same data set. The breathing rates were paced but varied, in order to verify that the 

method generalized well across breathing rates. 

Notably, we observed an offset from zero (Fig. 36) due to SDNN being based on the 

standard deviation (which will pick up any variance due to noise in the data), while the DPE 

naturally filters the noise out. There is also a spread in the data; however, this spread is also 

present when correlating SDNN to the LF Power (Fig. 37). All correlations were assessed 

via the nonparametric Spearman method and were significant at p < 0.00001. 

In order to confirm that these correlations were a result of our method’s sensitivity to 

the RSA—and not some other source of variance in the LF band—we took the Fourier 

Figure 38. The Fourier transforms of a typical set of data, with the breathing rates indicated 

on each of the graphs. The dataset shows that the primary source of power comes from 

frequencies close to the breathing rate. Each subfigure (a-f) represent is a different trail with 

a breathing rate set to the frequency in the figure. 
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transform of the pulse rate and verified that the largest peak was at the respiratory rate. 

Figure 38 presents a set of power spectra for typical trials.  

In most cases, the primary source of power does appear to arise from RSA; however, 

there is a baseline level of power, and the harmonics are also somewhat visible (Fig. 38). 

Furthermore, at very low breathing rates, power from the VLF band (<0.04 Hz) may 

contaminate the estimate (although at such low breath frequencies, it becomes very difficult 

for an individual to keep breathing at the necessary pace). 

While there are no standardized methods of phase extraction, one approach for 

extracting phase relationships utilizes the Fourier transform. In general, the Fourier 

transform of a time series yields a complex function—the modulus of the values in 

frequency space gives the power density at that frequency, while the argument of the values 

in frequency space gives the phase shift of said frequency. In other words, the phase shift, ϕ, 

can be calculated from the Fourier transform of a function 𝑓(𝑡): 

ϕ(ω) = 𝑎𝑟𝑐𝑡𝑎𝑛2 (
𝐼𝑚 (𝑓(ω))

𝑅𝑒 (𝑓(ω))
) 

Where 𝑓(ω) denotes the Fourier transform of a function 𝑓(𝑡). Specifically for our case, to 

find the phase shift of the value in question, we perform a Fourier transform on the pulse 

rate that we extract from the PPG signal, and then find the peak within ±0.01hz of the 

breathing rate. We then identify the phase shift of that peak and show that our DPE method 

is strongly correlated to the traditional Fourier technique (Fig. 39). 
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D. Summary 

Dynamic Phase Extraction (DPE) is a powerful methodology that can determine the 

phase of a signal relative to a reference signal and extract the amplitude of the fundamental 

Fourier component of the signal at the frequency of the reference signal. There has recently 

been a resurgence of interest in phase, and several groundbreaking studies have shown that 

phase can be used to determine the breathing rate that gives the maximum variation in heart 

rate variability in the LF (0.04-0.15Hz) band [157, 158, 180]. Our results, using DPE 

analysis of PPG data, agree with previous estimates of where maximum HRV amplitude is 

in relationship to the phase [157]. The magnitude extracted by DPE also demonstrates a 

significant correlation to other standardized methods of measuring pulse rate variability, 

namely SDNN and LF Power (ρ= 0.911 and ρ= 0.885, respectively), and the phase agrees 

well with that extracted via Fourier transform techniques (ρ=0.857). This suggests that DPE 

is an effective measurement technique for analyzing changes in inter-beat intervals due to 

respiratory sinus arrythmia as measured with PPG. 

Figure 39. The phase extracted using DPE correlates well with the phase 

extracted using Fourier Transform methods. (ρ = 0.857)  
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We note that PPG has nontrivial limitations relative to ECG estimates of heart rate 

variability. Constant et.al have emphasized that pulse rate variability (PRV)—an analogue 

for heart rate variability measured using PPG—is not a surrogate for HRV measured via 

ECG. In particular, they found that respiratory PRV does not precisely reflect respiratory 

HRV in standing healthy subjects and in patients with low HRV.  Accordingly, Yuda 

et.al. suggest that it is more appropriate to recognize PRV as a different biomarker than 

HRV [181]. The literature at large, however, is more conflicted: a number of influential 

studies have persisted in using HRV for PPG-derived signals to emphasize that they are 

often similar to ECG estimates, especially in the frequency domain [182-191].  

There are differences between PPG and ECG sensors, particularly with respect to the 

RSA spectrum. However, this tends to manifest in an overestimation of the power in the 

high frequency band [192], while most data taken in this study is in the LF band. 

Furthermore, other studies have found that PPG and ECG measurements of heart rate/pulse 

rate variability are well correlated during rest [192, 193]. There is also a delay in where the 

peaks are detected between PPG and ECG sensors. This delay is on the order of 0.1s [194]. 

For our application, we are interested in phase delays, and therefore do not investigate non-

resting participants. Our ultimate goal is to develop more accessible techniques to assess 

pulse rate variability. As such, in this context, we believe that PPG is suitable for use.  

Additionally, there are some mathematical niceties to consider for the numbers to make 

sense. The formula √𝐴π/2
2 + 𝐴0

2  gives the RMS amplitude of the changes in the Inter-beat 

Interval, with no assumption of the waveform. But if one wants to convert to peak-to-peak 

amplitude, one needs to know the waveform. For example, the IBI pattern during paced 

breathing is visually similar to a sine wave, thus we multiply by 𝜋, as in Figures 29 and 32. 



 

 74 

In multiplying by π there is an inherent assumption that the waveform is a sine wave. 

Strictly speaking, this doesn’t change any of the correlation coefficients, but it does link the 

number generated by DPE to a physical attribute (the peak-to-peak amplitude). 

In terms of usage, the primary limitation of this method is that it requires a breath pacer. 

The most common methods for determining the heart/pulse rate variability are to perform a 

Fourier transform and integrate the power within the target frequency band (0.04-0.15Hz) 

[178-180] or to perform time-domain analysis involving some statistical methods, eg SDNN 

(the standard deviation of the time between heartbeats) [178-180]. These methods do not 

require a breath pacer, and as such are easier to implement. The primary benefit of using 

DPE is that it can extract the phase efficiently after a breath is taken, while simultaneously 

providing a measurement for the amplitude of the signal at the desired frequency, making it 

ideal for biofeedback. 

In this paper we introduce a novel technique, Dynamic Phase Extraction (DPE), that can 

detect the magnitude (ΔIBI) and phase of a signal relative to a reference signal. ΔIBI 

correlated well with other standard measures of respiratory sinus arrythmia (ρ = 0.885 for 

LF power and ρ = 0.911 for SDNN). We apply this technique to PPG data to determine the 

magnitude and phase of the IBI, pulse, and thoracic force as measured with a chest strap 

relative to a breath pacer. In the case of the IBI, the magnitude detected by this novel 

technique correlates well with pulse rate variability as determined by conventional time and 

frequency-based techniques. The phases detected by our new technique are consistent with 

what has been reported with other techniques, and correlates well with the phase extracted 

using Fourier techniques (ρ = 0.857). The phases between various parameters may give 
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important clues to the detailed operation of the physiological feedback loops that are critical 

for health.  

Work beyond the scope of this initial report on the Dynamic Phase Extraction method 

would be needed to determine if this method is also useful for ECG data and, if that is 

successful, to determine how the parameters from Dynamic Phase Extraction in PPG 

compare to ECG.  
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VI. Home-use and Portable Biofeedback Lowers Anxiety and Pain in 

Chronic Pain Subjects 

In this study, we investigated the use of novel, home-use and portable biofeedback 

devices in a remote program for managing chronic pain.  In three separate 4-week pilot 

studies, participants engaged in twice-daily, 10-minute biofeedback sessions, with self-

assessed reductions in anxiety and pain levels using the 6-item State-Trait Anxiety Inventory 

(STAI-6) and Visual Analogue Scale (VAS), respectively in Studies 2 and 3. Among these 

113 (Study 2) and 237 (Study 3) biofeedback sessions, 81 (~72%) and 130 (~55%) showed 

reductions in pain, while 93 (~82%) and 184 (~78%) experienced reductions in anxiety. A 

positive relationship was found between anxiety and pain reduction, indicating that larger 

reductions in anxiety correspond to larger reductions in pain. In Study 1, only anxiety 

reductions were measured: across 143 biofeedback sessions, 127 experienced reductions in 

anxiety (~89%). Participants in all studies demonstrated reductions in baseline to final 

results in pain, anxiety, and showed increases in satisfaction and recovery.  Our results 

provide strong evidence that portable biofeedback devices can enhance pain management 

programs by helping to alleviate anxiety and pain in individuals living with chronic 

conditions. This study can provide a basis for the integration of biofeedback devices into the 

expanding research of lifestyle and integrative medicine. 

A. Introduction 

Chronic pain, impacting millions of individuals globally, stands as a primary contributor 

to disability and diminished quality of life. However, extensive research efforts are 

underway to address and alleviate this issue [195-199]. 
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In this paper, we investigate the effectiveness of home-use and portable biofeedback 

devices in helping to reduce chronic pain. Biofeedback is a mind-body technique that assists 

users to in gaining conscious control over a physiological process of the body, leading to 

improved physical and mental health [200-201]. This approach enables the acquisition of 

self-regulation over physiological responses, thereby fostering relaxation and enhancing 

well-being.  

Many studies have been conducted showing benefits to mindfulness meditation, 

cognitive therapy, psychophysiologic therapy, and multidisciplinary treatments for chronic 

pain [202-211]. Biofeedback has been shown to be an effective non-invasive treatment 

option for chronic pain [200, 212-214], and it has been demonstrated as a highly efficacious 

intervention for the alleviation of anxiety symptoms [201]. By utilizing biofeedback 

techniques, patients may experience a reduction in pain intensity and anxiety, and improve 

well-being. 

In a recent controlled study, the “Boulder Study”, 33 out of 50 participants (66%) with 

long-term lower back pain were randomized to receive 4 weeks of pain reprocessing 

therapy. At posttreatment, they were pain-free or nearly pain-free [215]. Through pain 

reprocessing therapy, patients' beliefs about the causes and threat value of pain are shifted. 

This therapy utilized a combination of cognitive, somatic, and exposure-based techniques to 

assist patients in reconceptualizing their pain as a result of nondangerous brain activity, 

rather than peripheral tissue injury The principles of pain reprocessing therapy have been 

presented in a new book, “The Way Out”, by Alan Gordon [216]. A central component of 

pain reprocessing therapy involves the reduction of fear and anxiety associated with pain. 

Our study explores the question: what benefits can be derived from the use of home-based 
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biofeedback devices combined with a remote group course based on this book for 

individuals with chronic pain? 

Lifestyle medicine, a rapidly developing field of research, has emerged as a systematic 

approach for managing chronic diseases, with recent investigations focusing specifically on 

the effects of lifestyle interventions on chronic pain [217-225]. These studies have shown 

efficacy towards the benefit of lifestyle medicine approach for chronic pain. Biofeedback 

within lifestyle medicine research has shown benefits for various health conditions [220, 

226-227]. A recent paper by Ziya Altug, provides an overview of the benefits of lifestyle 

medicine strategies to reduce the level of chronic lower back pain including biofeedback 

[220]. This study serves as a basis for the field of lifestyle medicine and integrative 

medicine for how home-use and portable biofeedback devices can be integrated into 

programs. 

In this paper, we provide the results of three pilot studies that investigate the effects of 

novel, home-use and portable biofeedback technology in a 4-week therapy program on 

anxiety, pain, and satisfaction and recovery in chronic pain subjects. 

B. Methods 

1. Participants 

All participants provided written informed consent as approved by the University of 

California Institutional Review Board.  

Study 1: 

A group of 7 participants with chronic lower back pain or fibromyalgia for more than 6 

months was recruited from referrals, posters, and emails from the Santa Barbara County 
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Community. Criteria for inclusion in the study was based on four factors: 1.) Age above 18; 

2.) Proximity to UCSB for mailing purposes; 3.) Access to the internet; 4.) Status of 

experiencing chronic pain for at least 6 months. Demographic information including age, 

gender, and ethnicity were also collected. Once consented, participants were randomly 

assigned to complete the biofeedback sessions either the first two weeks of the study, or the 

latter two weeks of the 4-week study.  

Study 2:  

A group of 6 primarily chronic lower back pain and fibromyalgia subjects was recruited 

from referrals, posters, and emails from the Santa Barbara County Community. One subject 

did not have lower back pain but had lower pelvic pain. Criteria for inclusion in this study 

was based on 3 factors, all of which were required for a participant to be included: 1.) Age 

above 18; 2.) Access to the internet and app store; 3.) Status of experiencing chronic pain for 

at least 6 months. Demographic information including age, gender and ethnicity were also 

collected.    

Study 3: 

A group of 9 participants without exclusion to type of chronic pain was recruited from 

referrals, posters, and emails. Criteria for inclusion in this study was based on 3 factors, all 

of which were required for a participant to be included: 1.) Age above 18; 2.) Access to the 

internet and app store; 3.) Status of experiencing chronic pain for at least 6 months. Location 

was not considered, as the devices were mailed out in this study. Demographic information 

including age, gender, and ethnicity were also collected.    

2. Procedures and Materials 
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Study 1: 

This 4-week study was entirely remote, with a 1 hour Zoom session for the entire 

group at the beginning and in each following week, for a total of 5 group sessions. A group 

of 7 participants were provided with a home-use pulse and temperature biofeedback device 

for 2 weeks of the study and the book “The Way Out” by Alan Gordon [216] for the entire 

study. The Zoom sessions focused on learning the concepts of the book with PowerPoint 

presentations, group sharing and discussions.  

The two biofeedback methods used in this study were thermal biofeedback and heart 

rate variability (HRV) biofeedback. Subjects were instructed to perform five minutes of 

thermal biofeedback and then switch to five minutes of HRV biofeedback in each session. 

The device displayed the temperature with a six-segment display (Figure 40) using an 

absolute temperature scale. As the finger temperature increased, segments changed colors in 

a clockwise direction. Each color set defined a different set of temperature ranges. The heart 

rate variability biofeedback provided a breath pacer for subjects to follow. It used the 

interbeat-interval and Dynamic Phase Extraction [228] to measure the heart rate variability, 

and displayed the integrated magnitude of respiratory sinus arrhythmia. The segments 

changed in a clockwise direction based on the value of the integrated magnitude. 

Anxiety levels were measured on the tablet by a six‐item short‐form of the state scale 

of the Spielberger State—Trait Anxiety Inventory (STAI-6) [229], which was collected at 

the beginning and end of each biofeedback session. 

In addition to the six‐item short‐form of the state scale of the Spielberger State—

Trait Anxiety Inventory (STAI-6), before and after each biofeedback session, participants 

completed an online Qualtrics survey before the first group meeting and after the last group 
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meeting. This survey contained the trait anxiety (STAI) [230], Satisfaction and Recovery 

Index (SRI) [231], McGill Pain Inventory [232], and questions about maximum, average and 

minimum pain with a Visual Analogue Scale (VAS) in the preceding week [233].  

The custom biofeedback device measured finger temperature with an infrared 

temperature sensor (MLX 90614) and pulse with photoplethysmography (PPG). The visual 

biofeedback signal was displayed on Microsoft Surface Pro tablets (Figure 40). The 

microprocessor was a Wemos Lolin ESP32 board that used a serial connection to the tablets 

to acquire and present the biofeedback signal with a custom python software. The raw 

temperature and pulse data, together with pulse parameters such as the magnitude and phase 

of respiratory sinus arrhythmia as computed with Dynamic Phase Extraction [228], were 

sampled at 100 Hz, stored locally, and transmitted to cloud storage. When the device was 

connected to the internet, it transmitted the data after each session. If not, the device stored 

the data and transmitted the data later when the device was connected to the internet. 

  

Figure 40. The device used in Study 1 was a home-use biofeedback device that has a 

temperature and pulse sensor strapped onto the finger. The data acquisition and biofeedback 

display is performed on a tablet. The left figure shows the display with temperature used to 

change the color of the segments sequentially. The right figure shows the breath pacer 

(segments expand and contract) with integrated magnitude of respiratory sinus arrhythmia 

used to change the color of the segments sequentially. 
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Study 2: 

This 4-week study was entirely remote, with a 1 hour Zoom session for the entire 

group at the beginning, followed by 1 hour Zoom sessions for the entire group each 

following week, for a total of 5 group sessions. A group of 6 participants were provided with 

a portable handheld temperature biofeedback device for the entire study and the book “The 

Way Out” by Alan Gordon [216]. The Zoom sessions focused on learning the concepts of 

the book with PowerPoint presentations, group sharing and discussions. These sessions were 

iterated based on responses from participants in Study 1.  

The biofeedback method used in this study was thermal biofeedback. Subjects were 

instructed to perform ten minutes of thermal biofeedback each session. The device was 

portable, fit in the subject’s hand and displayed the temperature with a six-light display 

(Figure 41) using an absolute temperature scale. As the finger temperature increased, lights 

changed colors in a clockwise direction. Each color set defined a different set of temperature 

ranges. Data was collected through a mobile app that included measuring before and after 

session STAI-6 and VAS, and collected the temperature data.  

In addition to the STAI-6 [229] and VAS, before and after each biofeedback session, 

participants completed an online Qualtrics survey before the first group meeting and after 

the last group meeting. This survey contained the trait anxiety (STAI), SRI, McGill Pain 

Inventory [230-233]., and questions about maximum, average and minimum pain in the 

preceding week that were the same as Study 1. 

The custom portable biofeedback device measured hand temperature with an infrared 

temperature sensor (MLX 90614). The visual biofeedback signal was displayed on the 
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device with light emitting diodes (LEDs) that represented the temperature measurement. The 

microprocessor was a Seeed Studio nRF52840 board that used Bluetooth low-energy (BLE) 

to transmit data to a custom mobile app for data acquisition sampling at 50 Hz.  

     

Figure 41. (Left) The portable biofeedback devices used in Studies 2 and 3 had a 

temperature sensor measuring at the palm. (Middle) The device paired with a mobile app for 

temperature data collection. (Right) STAI-6 and VAS were recorded before and after each 

session. 

 

Study 3: 

This was a 4-week study with a 1-hour individual meeting in the week leading up to 

the study which was not required for all participants but was completed by 9 subjects in the 

group. During this meeting which was held online or in person depending on subject 

comfortability, the participants were provided with and instructed on how to use the portal 

handheld temperature biofeedback device and how to download the app for use at home. 

The rest of the study was remote with a 1 hour Zoom session offered twice a week for the 

following 5 weeks for a total of 5 group sessions and 1 individual session. Participants were 

also provided “The Way Out” by Alan Gordon which they were allowed to keep for the 

entirety of the study [216]. The Zoom sessions focused on learning the concepts of the book 
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with PowerPoint presentations, group sharing and discussions with minimal iterations made 

from the previous study, to include terminology encompassing different types of chronic 

pain, not limited to chronic lower back pain and fibromyalgia.  

The biofeedback method and device were the same as in Study 2, and additionally 

included a breath pacer in the device. The breath pacer was visualized by the increasing and 

decreasing brightness of the lights and had a 3-second inhalation and 7-second exhalation 

period [234]. The mobile app was the same, where the data included measuring before and 

after session STAI-6 and VAS, and collected the temperature data. Table 8 shows an 

overview of the biofeedback method and device for each study.  

In addition to the STAI-6 [229] and VAS, before and after each biofeedback session, 

participants completed an online Qualtrics survey before the first group meeting and after 

the last group meeting. This survey used the trait anxiety (STAI), SRI, McGill Pain 

Inventory [230-233], and questions about maximum, average and minimum pain in the 

preceding week that were the same as in Study 1 and Study 2. 

 Biofeedback 

Method 

Biofeedback 

Duration 

Biofeedback Device Biofeedback Survey 

Study 1 Temperature 

and HRV 

2 weeks Finger Insert and Tablet 

(Home) 

STAI-6 

Study 2 Temperature 4 weeks Handheld and Phone 

(Portable) 

STAI-6 and VAS 

Study 3 Temperature 

with breath 

pacer 

4 weeks Handheld and Phone 

(Portable) 

STAI-6 and VAS 

Table 8. Biofeedback overview for use in Studies 1, 2 and 3. The details include the 

biofeedback method, duration, device, and surveys. 

 

3. Statistical Modeling 
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Self-reported pain and anxiety measures were analyzed using Bayesian hierarchical 

models via Stan and brms in R [235-236]. Broadly, these allowed us to assess three 

hypotheses: 1) that self-reported pain and anxiety decrease when comparing pre-

biofeedback to post-biofeedback ratings, within each biofeedback session; 2) that the 

magnitude of the pre-post difference in anxiety predicts the degree of change in pain, within 

each session; and 3) that there are longer-term changes in pain and anxiety when comparing 

survey measures reported at baseline to those at the end of each study period. To assess 

effects relevant to (1), models were specified according to the following formulae (using 

Wilkinson notation): y ~ 1 + prePost + (1 + prePost | subjectID), allowing for both random 

intercepts and random slopes across participants (under the assumption that each 

participant’s pre-biofeedback ratings may be correlated with the degree of pre-post change). 

Similarly, for (2), models were specified according to: deltaPain ~ 1 + deltaAnxiety + (1 + 

deltaAnxiety | subjectID). And finally, for (3), we collapsed across all three studies (because 

each study had a small N and, unlike the previous two cases estimated over repeated 

biofeedback sessions, each participant had only two values per survey measure) using a 

nested random effects structure over the model intercept to account for inter-study 

variability: y ~ 1 + prePost + (1 | studyID / subjectID). 

For consistency, and to avoid the possibility that any given model could be unduly 

influenced by arbitrary prior specifications, several key parameters for all models were 

estimated under the same set of weakly-informative priors: 

Intercept ~ Normal(0, 5) 

Slopes ~ Normal(0, 2.5) 

Random effect SD ~ Half-Cauchy(0, 0.5) 
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When correlated random effects were present, as in (1) and (2) above, we retained 

the default priors given by brms: Random effect r ~ LKJ(1) 

Lastly, we also retained the default, data-dependent priors over the residual 

variances, which followed: σ ~ Half-Student-t(3, 0, 2.5) if the median absolute deviation 

(MAD) of the outcome measure was ≤ 2.5, or σ ~ Half-Student-t(3, 0, MAD) otherwise. 

  Robust exploration of the posterior space for all models was performed using 

Hamiltonian Monte Carlo, using four independent chains with 15000 iterations each (5000 

of which were used as warm-up samples). We ensured that all models properly converged to 

equilibrium for all parameters using classical benchmarks including: the effective sample 

size (considering the autocorrelation between independent posterior draws); the Monte Carlo 

standard error (relative to the posterior SD); R-hat (the variance ratio between each chain 

relative to all chains); and no divergent Monte Carlo transitions after warm-up. For 

statistical inference, we report 95% credibility intervals (i.e., using the highest posterior 

density interval) around the posterior median parameter estimates along with the ‘probability 

of direction’, capturing the proportion of the posterior density in the hypothesized direction, 

above or below zero (thus, this can be thought of as a Bayesian analogue to the frequentist 

p-value; [43]. Models (1) and (3) also include measures of effect size (analogous to Cohen’s 

d) and Bayes factors (BF10) derived using the Savage-Dickey ratio of the posterior against a 

point-null prior estimate of zero effect. Effect sizes were computed by taking the posterior 

draws for each predictor and dividing them by the square root of the summed residual 

variances and random effects variances (as per convention for hierarchical linear models; 

[238], yielding a posterior distribution for each effect size. The models designed for (2) 

above report effect sizes using R2 for both the full model and the marginal R2 capturing 
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variance that can be attributed to the fixed effects alone [239]. We additionally checked for 

outliers using a robust criterion over the residuals: if the median absolute deviation of each 

individual residual was greater than three times the total MAD over all residuals, these data 

points were excluded and the model was re-fit. This resulted in 2 data points (1.77%) being 

removed for model (2) in Study 2 and 8 data points (3.38%) for model (2) in Study 3. 

C. Results 

We first tested the hypothesis that anxiety and pain would be reduced when comparing 

pre-biofeedback ratings to post-biofeedback ratings, using the Bayesian hierarchical models 

described under Statistical Modeling. In Study 1, we observed extremely strong evidence 

for a large reduction in anxiety (d = -1.01, 95CI = [-1.30, -0.72], BF10 > 1000) under the 

pre-post contrast (b = -3.25, SD = 0.38, 95CI = [-3.99, -2.48]) with a 100% probability of 

being negative (i.e., such that anxiety was lower following biofeedback). Similarly, in Study 

2, we observed moderate evidence for a fairly-large reduction in anxiety (d = -0.72, 95CI = 

[-1.27, -0.12], BF10 = 5.96; b = -2.26, SD = 0.88, 95CI = [-3.86, -0.33]) with a 98.67% 

probability of being negative. Study 3 also showed extremely strong evidence for a 

moderate reduction in anxiety following biofeedback (d = -0.65, 95CI = [-0.99, -0.31], BF10 

> 100; b = -3.05, SD = 0.65, 95CI = [-4.29, -1.69]) with a 99.97% probability of being 

negative. Figure 42 highlights the posterior predictive densities for each of these models. 
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Figure 42. 10-minute biofeedback sessions reduced anxiety across all three studies. 

Posterior predictive densities, derived via Bayesian hierarchical models, are shown for each 

study—giving the predicted estimates of pre- and post-biofeedback anxiety ratings. Anxiety 

was self-reported using the STAI-6, which ranged from 0 to 18. In these 493 biofeedback 

sessions (totaled across studies), 404 had reductions in anxiety (~82%). The median pre/post 

differences, along with the posterior standard deviations and 95% credibility intervals, are 

given in the top left of each subplot. 

Changes in pain before and after biofeedback were assessed for Studies 2 and 3 (as we 

did not collect these ratings in Study 1). We again observed strong evidence for a moderate 

reduction in pain in Study 2 (d = -0.69, 95CI = [-1.06, -0.28], BF10 = 15.17; b = -1.03, SD.= 

0.27, 95CI = [-1.55, -0.46]) with a 99.79% probability of being negative. In Study 3, where 

we admitted participants across a wider spectrum of chronic pain types, there was a more 

modest reduction in pain after biofeedback, although we still observed strong evidence 

against the null hypothesis of no effect (d = -0.33, 95CI = [-0.54, -0.14], BF10 = 24.86; b = -

0.76, SD = 0.20, 95CI = [-1.16, -0.37]) and a 99.91% probability of being negative. The 

posterior predictive densities for each model are shown in Figure 43. 
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Figure 43. 10-minute biofeedback sessions reduced pain across Studies 2 and 3. 

Posterior predictive densities, derived via Bayesian hierarchical models, are shown for each 

study—giving the predicted estimates of pre- and post-biofeedback pain ratings. Pain was 

self-reported using an 11-point visual analogue scale (VAS), which ranged from 0 to 10. In 

these 350 biofeedback sessions (totaled across studies), 211 had reductions in pain (~60%). 

The median pre/post differences, along with the posterior standard deviations and 95% 

credibility intervals, are given in the top left of each subplot. 

We then sought to test the hypothesis that the magnitude of the change in anxiety (pre-

/post-biofeedback) would predict the magnitude of the change in pain, such that larger 

reductions in anxiety would correspond to larger reductions in pain. This was again assessed 

for Studies 2 and 3. Indeed, this is what we found in Study 2 (b = 0.27, SD = 0.09, 95CI = 

[0.09, 0.44]), with a 99.49% probability of the slope being positive (i.e., indicating that 

larger changes in anxiety were accompanied by larger changes in pain). The model had 

substantial explanatory power considering the fixed and random effects together (R2 = 0.70, 

95CI = [0.64, 0.75], adjusted R2 = 0.64), with the change in anxiety specifically accounting 

for over half of the variance (Marginal R2 = 0.57, 95CI = [0.18, 0.71]). These trends are 

shown in Figure 44 for the overall, group-level fit, and Figure 45 highlights individual 
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variation in slopes. In Study 3, we observed similar, albeit slightly weaker, trends (b = 0.11, 

SD = 0.03, 95CI = [0.04, 0.17]), still with a 99.63% probability of being positive. Given the 

greater range of pain histories represented in Study 3, this model also had weaker total 

explanatory power relative to Study 2 (R2 = 0.35, 95CI = [0.26, 0.43]), adjusted R2 = 0.30) 

with the change in anxiety captured by the marginal R2 accounting for 15% of the total 

variance (95CI = [6.42 x 10-7, 0.28]). The group-level fits and individualized slopes for 

Study 3 are illustrated in Figures 44 and 45, respectively. 

  

Figure 44. Changes in anxiety before/after biofeedback predict changes in pain. In both 

Study 2 (left) and Study 3 (right), the pre/post difference in self-reported anxiety following 

each biofeedback session corresponded with changes in pain, such that larger reductions in 

anxiety were accompanied by larger reductions in pain. Here we plot the raw data entered 

into each Bayesian hierarchical model, where different colored datapoints correspond to 

different subjects in each study. The population-level slopes are displayed with various 

uncertainty intervals (shaded in red); in the top left, we provide the posterior median 

estimates, their standard deviations, and 95% credibility intervals.  

 

 



 

 91 

 

 

Figure 45. Inter-subject variability in the associations between anxiety and pain, before 

and after biofeedback. Here we display subject-specific estimates for the relationships 

between anxiety and pain reductions—that is, the random effects from the Bayesian 

hierarchical models shown in Figure 44. Subjects with many types of chronic pain were 

included in Studies 2 (top) and 3 (bottom), even subjects with Rheumatoid Arthritis, in 

which there was structural pain from a physical cause. For all these types of chronic pain, 



 

 92 

10-minute biofeedback sessions usually decreased pain and anxiety (data points in the lower 

left quadrant). 

Finally, we examined longer-term changes in pain and anxiety by comparing several 

measures recorded at baseline and at the end of the study period, including STAI reports of 

anxiety; the McGill Pain Inventory (MPI); minimum, average, and maximum pain levels; 

and the Satisfaction & Recovery Index (SRI). As described previously, these measures were 

collapsed across studies to maximize power, while using nested random effects structures to 

account for variability between studies. Consistent with our pre-/post-biofeedback models, 

we observed strong evidence for a longer-term reduction in anxiety (d = -0.39, 95CI = [-

1.05, -0.03], BF10 = 25.21; b = -4.01, SD = 1.38, 95CI = [-6.65, -1.23]) with a 99.71% 

probability of being negative. We also observed moderate evidence for a reduction in pain as 

per the MPI, although we note potential uncertainty in the estimated effect size and contrast 

estimate, which have credibility intervals lightly intersecting zero (d = -0.30, 95CI = [-0.61, 

0.001], BF10 = 4.35; b = -2.90, SD = 1.42, 95CI = [-5.56, 0]). Still, for MPI, the contrast 

posterior suggests a 97.49% probability of being negative. With respect to participants’ 

minimum, average, and maximum pain ratings, models consistently revealed moderate-to-

strong evidence for a reduction in each. For minimum pain, the change relative to baseline 

was large (d = -0.88, 95CI = [-1.45, -0.31], BF10 = 25.63; b = -1.57, SD = 0.49, 95CI = [-

2.51, -0.61]) with a 99.88% probability of being negative. For average pain, the reduction 

was slightly lower in magnitude (d = -0.74, 95CI = [-1.28, -0.21], BF10 = 8.83; b = -1.19, 

SD = 0.41, 95CI = [-2.00, -0.37]) with a 99.66% probability of being negative. And for 

maximum pain, we also observed a slightly lower reduction on average (d = -0.52, 95CI = [-

0.93, -0.13], BF10 = 4.51; b = -0.98, SD = 0.36, 95CI = [-1.68, -0.27]) with a 99.45% 

probability of being negative. However, despite these differences, we did not see evidence 
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for a consistent increase in SRI across the three study periods, which was considerably more 

variable than the other measures assessed (d = 0.04, 95CI = [-0.04, 0.15], BF10 = 1.81; b = 

2.60, SD = 2.39, 95CI = [-2.12, 7.30]) and showed only an 86.16% probability of being 

positive. Figure 46 provides a summary of the posterior differences for each of these effects 

and Table 9 provides a summary of the average measures for each study. 

 

Figure 46. For all three studies, participants showed reductions in pain and anxiety together 

with increases in satisfaction and recovery from the baseline results before the study to the 

final results after the study. The measures obtained were maximum, average and minimum 

pain using VAS, McGill Pain survey, trait anxiety from STAI, and SRI. 

 

 Study 1 Study 2 Study 3 Combined 

Max Pain Baseline 8.0 ± 0.6 6.8 ± 2.3 7.4 ± 2.1 7.4 ± 1.7 

Max Pain Final 7.4 ± 1.0 5.8 ± 1.0 6.2 ± 1.9 6.5 ± 1.3 

Avg Pain Baseline 5.4 ± 2.1 4.2 ± 1.8 4.6 ± 1.3 4.7 ± 1.7 

Avg Pain Final 3.4 ± 0.5 3.4 ± 0.8 3.4 ± 1.6 3.4 ± 1.0 
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Min Pain Baseline 3.6 ± 2.8 2 ± 1.5 3.4 ± 1.4 3.0 ± 1.9 

Min Pain Final 0.6 ± 0.8 1.0 ± 0.8 1.4 ± 1.8 1.0 ± 1.1 

McGill Pain Baseline 22.2 ± 5.5 16.8 ± 8.7 17.2 ± 9.5 18.7 ±7.9 

McGill Pain Final 15.4 ± 4.3 10.6 ± 9.6 14.4 ± 9.8 13.5 ± 7.9 

STAI Baseline 24.6 ± 4.3 25.8 ± 1.6 27 ± 5.6 25.8 ± 3.8 

STAI Final 15.4 ± 3.8 20.8 ± 6.9 20 ± 4.9 18.7 ± 5.2 

SRI Baseline 53.3 ± 15.8 59.3 ± 19.7 41.8 ± 23.6 51.5 ± 19.7 

SRI Final 72.5 ± 11.1 64.2 ± 9.5 64.0 ± 18.5 66.9 ± 13.0 

Table 9. Average baseline and final survey results for studies 1, 2 and 3. The measures 

obtained were maximum, average, and minimum pain using VAS, McGill Pain survey, trait 

anxiety from STAI, and SRI. 

D. Summary 

Significant decreases in anxiety and pain were observed, with respective posterior 

medians in Studies 1, 2, and 3 being -3.25, -2.26, -3.05 for anxiety, and -1.03, -0.76 in 

Studies 2 and 3 for pain. Additionally, a positive correlation was noted between anxiety and 

pain reductions, with posterior medians of 0.27 and 0.11 in Studies 2 and 3, supporting the 

hypothesis that the neural circuits that create the experience of pain include not only pain, 

but also anxiety. The findings highlight the strong efficacy of biofeedback, with reductions 

in anxiety and pain levels observed with a probability exceeding 98.5%, and the correlation 

between them exceeding a 99.4% probability. Among these 113 (Study 2) and 237 (Study 3) 

biofeedback sessions, 81 (~72%) and 130 (~55%) showed reductions in pain, while 93 

(~82%) and 184 (~78%) had reductions in anxiety. In Study 1, only anxiety reductions were 

measured: across 143 biofeedback sessions, 127 had reductions in anxiety (~89%). The 

results provide strong evidence that portable biofeedback devices could enhance 

management programs by helping to alleviate anxiety and pain in individuals living with 
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chronic pain. Limitations of this study include the small participant sample sizes of each 

study, the lack of control to compare against, and the remote group interactions with 

participants.  

One of the advantages of thermal biofeedback is that subjects gain an increased sense of 

agency: their ability to act independently and effectively control their own lives. Individuals 

acquire knowledge regarding their capacity to modulate blood flow, leading to an enhanced 

sense of self-efficacy that extends to other areas of physiological and psychological control. 

This increased awareness enables individuals to recognize and harness their ability to exert 

influence over various aspects of their physiological responses, which may have previously 

gone unrecognized.  

Moreover, thermal biofeedback devices have several advantages. Firstly, thermal 

feedback eliminates the need for costly equipment, making it a cost-effective solution. 

Secondly, its portable nature allows for increased convenience, enabling researchers to 

gather a larger amount of data per subject. Lastly, this versatility enables its utilization in a 

wide range of settings, further enhancing its practicality and applicability. 

A question raised by this work is: How can the temporary reductions in anxiety best be 

used to help people overcome chronic pain and other problems? Possibilities include: 1. 

Reducing anxiety before, during or after somatic tracking. 2. Reducing anxiety in situations 

that might otherwise trigger chronic pain. 3. Reducing anxiety before, during or after 

physical therapy or cognitive therapy.  

As the field of lifestyle medicine and integrative medicine grows, the devices in this 

study can be used as a tool for research collaborations to investigate the effects of 

biofeedback devices in combination with other modalities for various health conditions. 
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Utilizing the capabilities of portable biofeedback devices in remote settings, future research 

should investigate various methods of integrating biofeedback into programs and engage 

larger and more diverse samples to further validate these promising results. 
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VII. A Novel Thermal Biofeedback Device to Enhance Sleep Quality 

and Alleviate Anxiety 

In this study, we investigated the use of a novel, handheld thermal biofeedback device in 

a study measuring sleep quality and a study measuring anxiety levels. In the 2-week pilot 

sleep study, participants engaged in once-nightly, 10-minute thermal biofeedback sessions. 

The 8 participants completed the Pittsburgh Sleep Quality Index (PSQI) before and after the 

study showing 7 (87.5%) improved PSQI scores with an average of 29.79% (p < 0.05) 

improvement in sleep quality. Daytime dysfunction, the ability to stay awake and maintain 

enthusiasm, was seen to improve an average of 58.33% (p < 0.01). Among the 74 

biofeedback sessions there was an average of 87.5% of sessions that had an increase in hand 

temperature. In the pilot anxiety study, 10 participants engaged in three 10-minute thermal 

biofeedback sessions on separate days within one week. Among the 30 biofeedback 

sessions, 25 (83.3%) showed reductions in state anxiety levels with an average of 22.1% (p 

< 0.001) reduction before and after the session using the State-Trait Anxiety Inventory 

(STAI-10). Our results provide evidence that portable biofeedback devices can help to 

enhance overall sleep quality and alleviate anxiety. This study provides a foundation for 

using a thermal biofeedback device in lifestyle medicine.  

A. Introduction 

Despite major advances in sleep and anxiety research, sleep disturbances and anxiety-

related disorders still exist widely today [240-242]. The convergence of psychophysiological 

research and emerging technologies presents an opportunity to develop non-pharmacological 

interventions that could help the way we understand, manage, and ultimately improve the 
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landscape of sleep, anxiety and mental health. The current study explores the potential 

therapeutic effects of a newly developed thermal biofeedback device, hypothesized to 

enhance sleep quality and alleviate symptoms of anxiety. 

Biofeedback mechanisms, employing real-time displays of physiological processes, have 

shown promising results in therapeutic contexts, enabling individuals to develop control 

over these processes and hence enhance their well-being. Among various modalities of 

biofeedback, thermal biofeedback, which provides immediate feedback on skin temperature 

changes, has been found particularly useful in relaxation training and stress management. 

However, the extent to which thermal biofeedback can be employed to improve sleep 

quality remains largely underexplored with limited recent research [243-245]. 

Sleep is a complex physiological process, with temperature regulation playing a crucial 

role in its onset and maintenance [246]. Subtle changes in core and peripheral body 

temperatures signal the body's transition into different sleep stages. Therefore, the proposed 

thermal biofeedback device holds potential for non-invasive enhancement of sleep quality. 

Similarly, given that anxiety has been linked to aberrations in physiological arousal, 

including temperature fluctuations, the same device could also be harnessed to manage 

anxiety symptoms [247]. By teaching individuals to regulate their thermal responses—often 

associated with anxiety—this device might foster self-regulation skills, thereby reducing 

anxiety levels. 

The current paper presents findings from two pilot studies aimed at evaluating the 

efficacy of this novel thermal biofeedback device. The outcomes of interest are 

improvements in sleep quality, as assessed by self-reported sleep indices, and reductions in 

anxiety symptoms, as measured by validated anxiety scales. The results of this study may 
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not only shed light on the therapeutic potential of the thermal biofeedback device but also 

contribute to the broader literature on the application of biofeedback technologies in sleep, 

anxiety and mental health. 

B. Methods 

1. Participants 

All participants provided written informed consent as approved by the University of 

California Institutional Review Board. 

Sleep Study:  

A group of 8 participants was recruited from emails to university students. Criteria for 

inclusion in the study was based on four factors: 1.) Age above 18; 2) Access to the internet; 

3) Owning a mobile phone. Demographic information including age, gender, and ethnicity 

were also collected.  

Anxiety Study: 

A group of 10 participants was recruited from emails to university students. Criteria for 

inclusion in the study was based on four factors: 1.) Age above 18; 2) Access to the internet; 

3) Owning a mobile phone. Demographic information including age, gender, and ethnicity 

were also collected. Once consented, participants were instructed to use the handheld 

thermal biofeedback device in a 10-minute session. 

2. Procedures and Materials 

 The biofeedback device was portable, fit in the subject’s hand and displayed the 

temperature with a six-light display (Figure 1) using an absolute temperature scale. As the 

finger temperature increased, lights changed colors in a clockwise direction. Each color set 
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defined a different set of temperature ranges. Data was collected through a mobile app that 

included measuring the temperature data. 

 

Figure 1. The thermal biofeedback device and mobile app used for the study. 

Sleep Study: 

 This 2-week study was entirely remote. A group of 8 participants were instructed to 

use the handheld thermal biofeedback device in a 10-minute session prior to sleeping each 

night. Subjects recorded biofeedback sessions by connecting the device to a mobile app. 

Sleep quality was measured with the Pittsburgh Sleep Quality Index (PSQI) before and after 

the study [248]. 

Anxiety Study:  

 A group of 10 participants were instructed to come into an office space on three 

separate days within one week. In each visit, participants were instructed to use the handheld 

thermal biofeedback device in a 10-minute session and input their before and after session 
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anxiety survey using STAI-10 Y1 [249-251]. Subjects recorded biofeedback sessions by 

connecting the device to a mobile app. Before the start and after the end of the study, 

participants were also asked to input their trait anxiety using STAI-10 Y2. 

C. Results 

Sleep Study: 

We first tested the hypothesis that sleep quality would be improved when comparing 

baseline to final PSQI scores [248]. Through calculating the average of the baseline and 

final scores, we observed an average difference of 1.75 reduction. This reduction 

corresponds to a 29.79% improvement in sleep quality and can be seen in Table 10. We used 

a Wilcoxon signed-rank test here since our sample data is paired and not normally 

distributed. The results of the statistical analysis indicated a significant reduction in PSQI 

scores between the baseline and final assessments (p < 0.02846).  

Utilizing the same Wilcoxon test model, we want to examine the differences within 

each category of PSQI in Table 11. The individual categories of the PSQI are Duration of 

Sleep (DURAT), Sleep Disturbance (DISTB), Sleep Latency (LATEN), Day Dysfunction 

Due to Sleepiness (DAYDYS), Sleep Efficiency (HSE), Overall Sleep Quality (SLPQUAL), 

and Need Medication to Sleep (MEDS). The results of the statistical test demonstrated a 

significant reduction in Daytime Dysfunction Due to Sleepiness (DAYDYS) between the 

baseline and final assessments (p < 0.005367). No statistically significant reduction in other 

PSQI categories is observed.  
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Table 10: PSQI scores to measure changes between baseline and final sleep quality scores. 

There is an average 29.79% improvement in sleep quality after the two week study. 

 

 
Table 11: PSQI category differences between baseline and final sleep quality scores. There 

is moderate evidence to support that biofeedback improves daytime dysfunction, the ability 

to stay awake and maintain enthusiasm.  
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Figure 2. Temperature change distribution before and after each biofeedback session for the 

sleep study participants. 

 

Anxiety Study: 

 Among the 30 biofeedback sessions, 25 (83.3%) showed reductions in anxiety levels 

with an average of 22.1% reduction before and after the session using the State-Trait 

Anxiety Inventory (STAI-10 Y1) [249-251]. The results of a Wilcoxon signed-rank test 

indicated a significant reduction in state anxiety scores between the baseline and final 

assessments (p < 0.00002888).  

 We tested the hypothesis that trait anxiety would be reduced when comparing pre-

biofeedback ratings to post-biofeedback ratings. The average reduction for the trait-anxiety 

score is 2.3 points, which reflects a 8% reduction on overall anxiety levels. The results of a 

Wilcoxon signed-rank test indicated that the reduction in trait  anxiety scores was not 

significant. 

By using the Wilcoxon signed-rank test, we found the post-biofeedback STAI ratings 

are significantly smaller than the pre-biofeedback STAI ratings(p < 0.00002888). We also 
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analyzed the data in each category of the State-Trait Anxiety Inventory (STAI-10). Our 

findings revealed significant reductions in various aspects of individuals' emotional states. 

Specifically, there were significant reductions in the categories of calm (p < 0.00012), tense 

(p < 0.000066), ease (p < 0.0005), misfortunes (p = 0.0066), nervous (p < 0.02965), jittery 

(p < 0.0061), relaxed (p < 0.000035), worried (p = 0.011), and steady (p < 0.00093). 

 

 
Table 12: STAI-Y1 category differences between baseline and final anxiety scores. Use of 

the thermal biofeedback device shows evidence to support that there is improvement in most 

categories of the anxiety inventory.   
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Figure 3. Temperature change distribution before and after each biofeedback session for the 

anxiety study participants. 

D. Summary 

Our investigation primarily sought to determine if there was a discernible 

improvement in sleep quality when comparing initial and concluding PSQI scores. On 

analyzing the data, we noted a considerable reduction in the average score by 1.75 points. 

This change translates to an improvement in sleep quality by nearly 29.79%. Given that our 

dataset comprised paired samples that did not adhere to a normal distribution, we employed 

the Wilcoxon signed-rank test to validate our findings. The results from this analysis 

revealed a statistically significant improvement in sleep quality from the baseline to the final 

assessment, as indicated by the p-value of less than 0.02846. 

In a secondary examination, using the same Wilcoxon test model, we delved deeper 

into individual categories within the PSQI to discern specific areas of change. Here, our 
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results highlighted a significant amelioration in daytime dysfunction between the initial and 

concluding evaluations, denoted by a p-value of less than 0.005367. 

The marked improvement in sleep quality overall, and specifically in the category of 

daytime dysfunction, the ability to stay awake and maintain enthusiasm, underscores the 

effectiveness of whatever intervention or conditions were present during the study period. 

This change in daytime dysfunction is particularly noteworthy as it directly influences an 

individual's daily activities, social engagements, and overall well-being. Further studies may 

be essential to pinpoint the exact mechanisms or interventions driving these improvements 

and to test the durability of these effects over more extended periods. 

Our study focused on the efficacy of biofeedback sessions in mitigating anxiety 

levels as gauged by the State-Trait Anxiety Inventory (STAI-10 Y1). A significant majority, 

i.e., 83.3% of the biofeedback sessions, resulted in a reduction of anxiety, with an average 

decrement of 22.1%. Utilizing the Wilcoxon signed-rank test, our analysis divulged a 

statistically significant reduction in state anxiety scores between the baseline and subsequent 

evaluations, denoted by a p-value of less than 0.00002888. 

We further explored the potential effect of biofeedback sessions on trait anxiety. 

However, despite an observed average decline of 2.3 points (equating to an 8% overall 

reduction), this decrease in trait anxiety scores did not achieve statistical significance. This 

suggests that while biofeedback might have an immediate effect on situational anxiety (state 

anxiety), its impact on the more enduring and stable component of anxiety (trait anxiety) 

requires further elucidation. 

A more granular exploration of individual categories within the State-Trait Anxiety 

Inventory (STAI-10) illuminated significant shifts in various emotional domains post-
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biofeedback. Concretely, categories encompassing calmness, tension, ease, perception of 

misfortunes, nervousness, jitteriness, relaxation, worry, and steadiness all reflected 

statistically significant reductions. 

These findings accentuate the potency of biofeedback as a viable tool for the 

amelioration of certain aspects of anxiety, especially in the realm of state anxiety and 

various emotional facets therein. There are significant limitations to these studies, namely, 

the number of participants and lack of controls. However, these pilot studies provide 

preliminary evidence for researchers to further investigate the effects of this novel thermal 

biofeedback device. 

One of the key benefits of thermal biofeedback is that it empowers individuals with a 

heightened sense of autonomy, bolstering their confidence in managing their own lives. 

Through this method, they gain insights into their potential to regulate blood flow. This 

newfound understanding not only elevates their self-belief in bodily control but also 

magnifies their perception of their psychological influence. With this enhanced 

consciousness, they can tap into their potential to manipulate various physiological 

reactions, many of which they might have been previously unaware of. 

In addition, thermal biofeedback devices offer several notable advantages. To begin 

with, they remove the requirement for expensive equipment, presenting a more economical 

option. Their compact design also means greater portability, facilitating more 

comprehensive data collection from each participant. This adaptability ensures their efficacy 

in a plethora of environments, amplifying their utility and relevance. 
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