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ABSTRACT OF THE DISSERTATION 

 

Deep Learning in Optical Microscopy, Holographic Imaging and Sensing 

 

by 

 

Tairan Liu 

Doctor of Philosophy in Electrical and Computer Engineering 
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Professor Aydogan Ozcan, Chair 

 

The microscopy imaging technique has been employed as the gold-standard method for 

diagnosing numerous diseases for hundreds of years. However, the dependence on high-end 

optical components of traditional optical microscopes may often limit their usage in many 

applications. Recent developments in deep learning-enabled computational imaging techniques 

have revolutionized the field achieving both faster speed and higher image quality while 

maintaining the simplicity of the optical system. 

In the first part of this dissertation, a set of novel deep learning-enabled microscopy imaging 

techniques is introduced to perform super-resolution, color holography, and quantitative 

polarization imaging, which aims for improving the performance of the existing optical system. 

Firstly, deep learning was adopted to enhance the resolution of both pixel size-limited and 

diffraction-limited coherent imaging systems, providing a rapid, non-iterative method to 
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improve the space-bandwidth product of coherent imaging systems. Then, a high-fidelity color 

image reconstruction method using a single hologram is presented, where deep learning was 

used to simultaneously eliminate the missing-phase-related artifacts and correct the color 

distortion. In addition, another deep learning-enabled holographic polarization microscope is 

demonstrated, which can obtain quantitative birefringence retardance and orientation 

information of the specimen from a phase-recovered hologram from one polarizer/analyzer pair.  

In the second part of this dissertation, deep learning is further applied to various biological 

imaging or sensing applications enabling these systems to perform virtual histology staining, 

cell classification, and pathogen detection. A digital staining technique is first demonstrated to 

transform the quantitative phase images (QPI) of label-free tissue sections into images 

equivalent to the brightfield microscopy images of the same tissue sections that are 

histologically stained. Next, using time-lapse lensless speckle imaging and a deep learning 

classifier, a computational cytometer is shown to rapidly detect magnetic bead-conjugated rare 

cells of interest in three dimensions (3D). Lastly, two deep learning-based pathogen detection 

frameworks are presented. A bacterial colony-forming-unit (CFU) detection system exploiting 

a thin-film-transistor (TFT)-based image sensor array is firstly shown which can save ~12 

hours compared to the Environmental Protection Agency (EPA)-approved methods. Then, a 

stain-free quantitative viral plaque assay framework is presented which could automatically 

detect the first cell lysing events due to the viral replication as early as 5 hours after the 

incubation and achieved a >90% detection rate for the plaque-forming units (PFUs) with 100% 

specificity in <20 hours, providing major time savings compared to the traditional plaque 

assays that take ≥48 hours. 
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Chapter 1 . Introduction to deep learning-enabled computational 

microscopy 

The optical microscopy imaging technique has been employed as the gold-standard method for 

diagnosing numerous diseases for hundreds of years, leading to continuous advances and 

discoveries. However, the traditional lens-based optical microscope is limited by many 

drawbacks, including high system cost, limited throughput, bulky optical design, requirements 

for accurate alignment, etc. The development of the lensless imaging technique has largely 

overcome such burdens and offered many flexibilities in areas such as point-of-care diagnostics, 

lab-on-a-chip applications, global health applications, telemedicine, etc. Nevertheless, without 

performing many image quality enhancement techniques, such as phase recovery, pixel-super-

resolution, hyper-spectral imaging, etc., it is often hard to obtain high image quality using such 

systems.  

Recently, deep learning has emerged as a highly effective technique for solving inverse 

problems in microscopy. It has been applied to traditional inverse problems such as holographic 

image reconstruction, reconstruction of color images, super-resolution, quantitative 

polarization microscopy, as well as to perform cross-modality image transformations such as 

virtual labeling of histological tissue, live cells monitoring, and pathogen detection. In this 

dissertation, I will focus on discussing the above innovations enabled by deep learning. The 

dissertation is structured as follows:  

Chapters 2-4 will focus on three different deep learning-enabled frameworks that improves the 

traditional lensfree microscopy technique. In Chapter 2, I will use lensfree microscopy as an 

example to discuss a central challenge for all microscopy techniques, i.e., spatial resolution 

enhancement, and demonstrate the success of the deep learning framework to be able to 

improve the spatial resolution in both pixel-size-limited case and diffraction-limited case. In 
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Chapter 3, I will demonstrate a deep learning-based color holography framework, where the 

network is used to simultaneously remove the missing-phase-related artifact and correct the 

color distortion when using only three illuminating wavelengths to form a color image in the 

lensfree imaging system. In Chapter 4, I will present a quantitative holographic polarization 

microscopy technique, where the system only requires one polarization state in its light path to 

reconstruct both the retardance and orientation information of a birefringent object.  

Then, in Chapters 5-8, I will cover four biomedical applications of deep learning-based 

computational microscopy and the related techniques. In Chapter 5, a virtual staining technique 

will be introduced where a deep learning algorithm will be used to digitally convert the 

quantitative phase images of a label-free tissue into a bright-field image as if the sample is 

stained with histochemical stains. In Chapter 6, a compact lensfree cytometer will be presented, 

which is able to rapidly detect magnetic beads conjugated rare cells using time-lapse imaging 

and deep learning. In Chapter 7&8, two pathogen detection frameworks will be shown to 

automatically detect colony forming units of bacteria during their growth on a chromogenic 

agar plate and to detect plaque forming units of viruses during their growth in a stain-free 

manner.  

Finally, I will summarize the dissertation in Chapter 9. 
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Chapter 2 . Enhancing resolution for coherent imaging systems 

with deep learning 

2.1 Introduction 

Coherent imaging systems have many advantages for applications where the specimen’s 

complex field information is of interest [1]. Since Gabor’s seminal work, various optical and 

numerical techniques have been suggested [2] to acquire the complex field of a coherently 

illuminated specimen. This has allowed for the characterization of absorption and scattering 

properties of a sample, as well as enabling numerical refocusing at different depths within that 

sample volume. To infer an object’s complex field in a coherent optical imaging system, the 

“missing phase” needs be retrieved. A classical solution to this missing phase problem is given 

by off-axis holography [3,4], which in general results in a reduction of the space-bandwidth 

product of the imaging system. In-line holographic imaging, which can be used to design 

compact microscopes [5], has utilized measurement diversity to generate a set of physical 

constraints for iterative phase retrieval [6–10]. Recently, deep-learning based holographic 

image reconstruction techniques have also been demonstrated to create a high-fidelity 

reconstruction from a single in-line hologram [11–13], and are capable of further extending the 

depth-of-field of the reconstructed image [14].   

Several approaches have been demonstrated to improve the resolution of coherent imaging 

systems [15–20]. Most of these techniques require sequential measurements and assume that 

the object is quasi-static while a diverse set of measurements are performed on it. These 

measurements often require the use of additional hardware or sacrifice a degree of freedom 

such as the sample field-of-view [21]. In recent years, sparsity-based holographic 

reconstruction methods have also demonstrated that they are capable of increasing the 

resolution of coherent imaging systems without the need for additional measurements or 
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hardware [22–25]. Sparse signal recovery methods employed in coherent imaging are based on 

iterative optimization algorithms. These methods usually involve a comprehensive search over 

a parameter space to obtain the optimal object image and generally result in longer 

reconstruction times.  

Deep learning-based approaches for super-resolution of incoherent microscopy modalities 

such as brightfield and fluorescence microscopy have also recently emerged [26–30]. These 

data-driven super-resolution approaches produce a trained deep convolutional neural network 

that learns to transform low-resolution images into high-resolution images in a single feed-

forward (i.e., non-iterative) step. Generative adversarial networks (GANs) [31] are a form of 

deep neural network training framework that can be used to ensure that the generated image is 

sharp and realistic. A GAN is made up of two separate networks. A generator network is used 

to generate an image that has the same features as the label (ground truth) image, and a 

discriminator network tries to distinguish between the generated and label (ground truth) 

images.  

Here, we apply deep learning to enhance the resolution of coherent imaging systems and 

demonstrate a conditional GAN that is trained to super-resolve both pixel-limited and 

diffraction-limited images. Furthermore, we demonstrate the success of this framework on 

biomedical samples such as thin sections of lung tissue and Papanicolaou (Pap) smear samples. 

We quantify our results using the structural similarity index (SSIM) [32] and spatial frequency 

content of the network’s output images in comparison to the higher resolution images (which 

constitute our ground truth). This data-driven image super-resolution framework is applicable 

to enhance the performance of various coherent imaging systems. 

Part of this chapter has been published in: 
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Liu, T., De Haan, K., Rivenson, Y., Wei, Z., Zeng, X., Zhang, Y., & Ozcan, A. (2019). 

Deep learning-based super-resolution in coherent imaging systems. Scientific reports, 9(1), 1-

13. 

2.2 Materials and methods 

First we briefly summarize the methods that we have used; sub-sequent subsections will 

provide more information on specific methods employed in our work. We applied the presented 

deep learning-based super-resolution approach to two separate in-line holographic imaging 

geometries to demonstrate the efficacy of the technique. As illustrated in Fig. 2.1a and Fig. 

2.1b, the two implemented configurations were a pixel size-limited system (to be referred to as 

System A) and a diffraction-limited coherent microscopy system (to be referred to as System 

B). Despite using different methods to create the super-resolved images, as a result of the 

different image formation models, both of these systems followed similar general hologram 

reconstruction steps, i.e., 1. Raw holograms were collected at different sample to sensor 

distances, 2. Autofocus was used to determine the accurate sample to sensor distances, 3. Phase 

was recovered using a multi-height phase recovery algorithm. These steps will be detailed in 

the following subsections of the Methods [5,7,33–36].  
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\ 

 

 

Figure 2.1 Schematic of the coherent imaging systems. (a) A Lens-free on-chip holographic microscope. The 

sample is placed at a short distance (z2 < 2 mm) above the image sensor chip. The resolution of this lensless on-

chip imaging modality (without the use of additional degrees of freedom) is pixel size-limited due to its unit 

magnification. (b) A lens-based in-line holographic microscope, implemented by removing the condenser and 

switching the illumination to a partially-coherent light source on a conventional bright-field microscope. The 

resolution in this case is limited by the NA of the objective lens. 

 

For the pixel-super-resolution network (System A), the network training process is 

demonstrated in Fig. 2.2, which summarizes both the hologram reconstruction procedure as 

well as the image super-resolving technique with and without using the network. The real and 
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imaginary components of the phase recovered image pairs were used to train the network. 

 

Figure 2.2 Schematic of the training process for deep-learning based pixel super-resolution. 

For the diffraction-limited super-resolution network (System B), the network training 

process was demonstrated in Fig. 2.3. In this case only the phase channel was used to train the 

network.  

 
Figure 2.3 Schematic of the training process for deep learning-based optical super-resolution for an NA-

limited coherent imaging system. 

Generation of network input and ground truth super-resolved image labels. 
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For the pixel size-limited coherent imaging system (System A), the super-resolved images were 

created by collecting multiple low-resolution holograms at different lateral positions, where 

the CMOS image sensor was sub-pixel shifted by a mechanical stage to create a shift table. 

Once an accurate shift table was estimated, a shift-and-add based pixel super-resolution 

algorithm [33] was applied. The set-up used an illumination wavelength of 550 nm with a 

bandwidth (Δλ) of ~2 nm (WhiteLase Micro with acousto-optic tunable filter, NKT Photonics), 

a single mode fiber (QPMJ-3S2.5A-488-3.5/125-1-0.3-1) with a core diameter of ~3.5 μm and 

a source-to-sample distance (z1) of ~5 cm. As a result, the effective spatial coherence diameter 

at the sensor plane was larger than the width of the CMOS imager chip used in our on-chip 

imaging system. Therefore, the achievable resolution is limited by the temporal coherence 

length of the illumination [37], which is defined as: 

22ln 2
100.47 μmcL

n



 
   =


     (1) 

where n=1 is the refractive index. Assuming a sample-to-sensor distance (z2) of ~300 μm, the 

effective numerical aperture (NA) of the set-up was limited by the temporal coherence of the 

source, and is estimated to be: 

2

2 2

2

NA sin 1 cos 1 0.6624
c

z
n n n

z L
 

 
= = − = −  

+  
   (2) 

Based on this effective numerical aperture and ignoring the pixel size at the hologram plane, 

the achievable coherence-limited resolution of our on-chip microscope is approximated as [4]: 

0.55
= 0.8303 μm

NA 0.6624
d


 =       (3) 

At the hologram/detector plane, however, the effective pixel pitch of the CMOS image 

sensor (IMX 081, Sony RGB sensor, pixel size of 1.12 μm) using only one color channel is 

2.24 μm. Based on this, the effective pixel size for each super-resolved image after the 
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application of the pixel super-resolution algorithm to 4 raw holograms (2×2 lateral positions), 

9 raw holograms (3×3 lateral positions), and 36 raw holograms (6×6 lateral positions) are 1.12 

μm, 0.7467 μm and 0.3733 μm, respectively. Based on Equation (3), the effective pixel size 

achieved by pixel super-resolution using 6×6 lateral positions can adequately sample the 

specimen’s holographic diffraction pattern and is limited by temporal coherence. All of the 

other images (using 1×1, 2×2 and 3×3 raw holograms) remain pixel-limited in their achievable 

spatial resolution. This pixel-limited resolution of an on-chip holographic microscope is a result 

of its unit magnification. This allows the imaging system to have a large imaging field-of-view 

(FOV) that is only limited by the active area of the opto-electronic image sensor chip. This can 

easily reach 20-30 mm2 and >10 cm2 using state-of-the-art CMOS and CCD imagers, 

respectively [5]. 

For the second set-up (System B), which used lens-based holographic imaging for 

diffraction-limited coherent microscopy, the low- and high-resolution images were acquired 

with different objective lenses. For this set-up, the illumination was performed using a fiber 

coupled laser diode with an illumination wavelength of 532 nm. A 4×/0.13NA objective lens 

was used to acquire lower resolution images, achieving a diffraction limited resolution of ~4.09 

µm and an effective pixel size of ~1.625 µm. A 10×/0.30NA objective lens was used to acquire 

the higher resolution images (ground truth labels), achieving a resolution of 1.773 µm and an 

effective pixel size of ~0.65 µm.  

Autofocusing and singular value decomposition-based background subtraction.  

For both types of coherent imaging systems, holograms at 8 different sample-to-sensor 

distances were collected to perform the multi-height phase recovery [5,7,33–36]. This 

algorithm requires accurate knowledge of the sample-to-sensor distances used. These were 

estimated using an autofocusing algorithm. This algorithm assigned zero phase to the raw 

holograms collected by the image sensor and propagated them to different sample to sensor 
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heights using the free space angular spectrum approach [4]. The Tamura of the gradient (ToG) 

edge sparsity-based criterion was computed [38] for each hologram and used to calculate the 

corresponding refocusing distance.  

   For the lens-based diffraction-limited coherent imaging system (System B), the autofocusing 

algorithm required an additional background subtraction step. For undesired particles or dust 

associated with the objective lens or other parts of the optical microscope, the diffraction 

pattern that is formed is independent of the sample and its position. Using this information, a 

singular value decomposition (SVD)-based background subtraction was performed [39], after 

which the ToG-based autofocusing algorithm was successfully applied.  

Multi-height phase recovery.  

The iterative multi-height phase recovery technique [34] was applied to eliminate the 

holographic image artifacts (twin image and self-interference terms [4]) in both of the coherent 

imaging systems that were used in this work. To perform this, an initial zero-phase was 

assigned to the intensity/amplitude measurement at the 1st hologram height. Next, the iterative 

algorithm begins by propagating the complex field to each hologram height until the 8th height 

is reached, and then backpropagates the resulting fields until the 1st height is reached. While 

the phase was retained at each hologram height, the amplitude was updated by averaging 

current amplitude and the square root of the measured intensity at each height.  

Registration between lower resolution and higher resolution (ground truth) images. 

Image registration plays a key role in generating the training and testing image pairs for the 

network in both the pixel size-limited and diffraction-limited coherent imaging systems. A 

pixel-wise registration must be performed to ensure the success of the network in learning the 

transformation to perform super-resolution. 
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For both super resolution methods, the low-resolution input images were initially 

bicubically up-sampled. Following this, a correlation-based registration, which corrected any 

rotational misalignments or shifts between the images was performed. This registration process 

correlated the spatial patterns of the phase images and used the correlation to establish an affine 

transform matrix. This was in turn be applied to the high-resolution images to ensure proper 

matching of the corresponding fields-of-view between the low-resolution images and their 

corresponding ground truth labels. Finally, each image was cropped by 50 pixels to each side 

to accommodate for any relative shift that may have occurred. 

For the diffraction-limited coherent imaging system (System B), an additional rough FOV 

matching step was required before the registration above. For this step, the higher resolution 

phase images was first stitched together, by calculating the overlap between neighboring 

images, and then fusing them together into a larger image. The corresponding lower resolution 

phase images are then matched to this larger image. This is done by creating a correlation score 

matrix between the large image and each smaller patch. Whichever portion of the matrix has 

the highest correlation score is used to determine which portion of the fused image is cropped 

out and is used as the input for the network. 

GAN architecture and training process. 

Once the high and low resolution image pairs were accurately registered, they were cropped 

into smaller image patches (128×128 pixels), which were used to train the network. The 

architectures of the generator (G) and the discriminator (D) that make up the GAN can be seen 

in Fig. 2.4.  
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Figure 2.4 Diagram of the GAN structure. (a) Structure of the generator portion of the network. (b) Structure 

of the discriminator portion of the network. 

For both the pixel-size limited and the diffraction-limited coherent imaging systems, the 

discriminator loss function is defined as: 

( )( ) ( )( )
2 2

discriminator input label1l D G x D z= + −          (4) 

where D(.) and G(.) refer to the discriminator and generator network operators, respectively, 

xinput is the lower resolution input to the generator, and zlabel is the higher resolution label image. 

For the lensfree holographic imaging system (System A), the generator loss function was 

defined by: 

( )  ( )  ( )( )( )
2

generator 1 label input input input, 1l L z G x TV G x D G x = +  +  − .  (5) 

The L1{zlabel,G(xinput)} term is calculated using: 
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( )  ( )( )( )n_pixels n_channels input label1 label input = E E,L G G x zz x −   (6) 

This finds the absolute difference between each pixel of the generator output image and its 

corresponding label. En_pixels(.) and En_channels(.) are the expectation values for the pixels within 

each image and the channels of each image, respectively. TV{G(xinput)} represents the total 

variation loss, which acts as a regularization term, applied to the generator output. Total 

variation (TV) is defined as:  

 ( ) ( ) ( ) ( )( )input input input input, 1,n_chann ,e s ,l 1 ,i j i j i j i j i j
T xEV G G x G x G x

+ +
= − + −  (7) 

where the i and j indices represent the location of the pixels within each channel of the image.  

The last term in Equation (5) (i.e., α×(1-D(G(xinput)))
2) is a function of how well the output 

image of the generator network can be predicted by the discriminator network. α and γ are 

regularization parameters which were set to 0.00275 and 0.015 respectively. As a result of these 

parameters, the L1 loss term, L1{zlabel,G(xinput)}, made up 60% of the overall loss, while the total 

variation term, γ×TV{G(xinput)}, was approximately 0.25% of the total loss. The discriminator 

loss term, ×(1-D(G(xinput)))
2, made up the remainder of the overall generator loss. Once the 

networks were successfully trained, they reach a state of equilibrium where the discriminator 

network cannot successfully discriminate between the output and label images, and D(G(xinput)) 

converged to approximately 0.5. 

The loss function for the lens-based coherent microscope images (System B) incorporated 

an additional structural similarity index (SSIM) [32] term in addition to the terms included for 

the lensfree on-chip imaging system, i.e.,: 

( )  ( )  ( )( )( )
( ) 

2

generator 1 label input input input

input label

, 1

SSIM ,

l L z G x TV G x D G x

G x z

 



= +  +  −

+ 

  (8) 

Where β is a regularization parameter set to 0.01, and SSIM{x, z} is defined as [32]: 
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where μx, μz are the averages of x, z; 2 2,x z  are the variances of x, z, respectively; 
,x z  is the 

covariance of x and z; and c1, c2 are dummy variables used to stabilize the division with a small 

denominator. The term β×SSIM{G(xinput),zlabel} was set to make up ~15% of the total generator 

loss, with the rest of the regularization weights reduced in value accordingly. 

Our generator network used an adapted U-net architecture [40]. The network began with a 

convolutional layer that increased the number of channels to 32 and a leaky rectified linear 

(LReLU) unit, defined as: 

( )
for 0

LReLU
0.1 otherwise

x x
x

x


= 


      (10) 

Following this layer, there was a down-sampling and an up-sampling section. Each section 

consists of three distinct layers, each made up of separate convolution blocks (see Fig. 2.4a). 

For the down-sampling section, these residual blocks consisted of two convolution layers with 

LReLU units acting upon them. At the output of the second convolution of each block the 

number of channels was doubled. The down-sampling blocks were connected by an average-

pooling layer of stride two that down-samples the output of the previous block by a factor of 

two in both lateral dimensions (see Fig. 2.4a). 

The up-sampling section of the network used a reverse structure to reduce the number of 

channels and return each channel to its original size. Similar to the down sampling section, 

each block contained two convolutional layers, each activated by a LReLU layer. At the input 

of each block, the previous output was up-sampled using a bilinear interpolation and 

concatenated with the output of the down-sampling path at the same level (see Fig. 2.4a). 

Between the two paths, convolutional layer was added to maintain the number of the feature 

maps from the output of the last residual block to the beginning of the down-sampling path 
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(Fig. 2.4a). Finally, a convolutional layer was used to reduce the number of output channels to 

match the size of the label. 

The discriminator portion of the network was made up of a convolutional layer, followed 

by five discriminator blocks, an average pooling layer and two fully connected layers which 

reduced the output to a single value (see Fig. 2.4b). Both the label images and the output of the 

generator network were input into the initial convolutional layer discriminator network. This 

layer was used to increase the number of channels to 32 and was followed by five discriminator 

blocks all containing two convolutional layers activated upon by LReLU functions. The first 

convolution was used to maintain the size of the output, and the second doubled the number of 

channels while halving the size of the output in each lateral dimension. Next, the average 

pooling layer was used to find the mean of each channel, reducing the dimensionality to a 

vector of length 1024 for each patch. Each of these vectors were subsequently fed into two 

fully connected layers and LReLU activation layers in series. While the first fully connected 

layer did not change the dimensionality, the second reduced the output of each patch to a single 

number which was in turn input into a sigmoid function. The output of the sigmoid function 

represents the probability of the input being either real or fake and was used as part of the 

generator’s loss function.  

The filter size for each convolution was set to be 3×3. The trainable parameters are updated 

using an adaptive moment estimation (Adam) [41] optimizer with a learning rate 1×10-4 for the 

generator network and 1×10-5 for the discriminator network. The image data were augmented 

by randomly flipping 50% of the images, and randomly choosing a rotation angle (0, 90, 180, 

270 degrees). For each iteration that the discriminator is updated, the generator network is 

updated four times, which helps the discriminator avoid overfitting to the target images. The 

convolutional layer weights are initialized using a truncated normal distribution while the 

network bias terms are initialized to zero. A batch size of 10 is used for the training, and a batch 



16 

 

size of 25 is used for validation. The networks chosen for blind testing were those with the 

lowest validation loss. The number of training steps as well as the training time for each 

network are reported in Table 2.1, and the testing times are reported in Table 2.2. 

Table 2.1 Training details for the deep neural networks. 

Resolution 

limiting factor 

Tissue 

type 

Low resolution 

input type 

Training dataset 

size (number of 

patches before 

augmentation) 

Trainin

g 

time 

(s) 

Number 

of 

iterations 

Pixel size-

limited 

(System A) 

Pap smear  
1×1 raw 

hologram 
56250 9,078 17,000 

Lung 
1×1 raw 

hologram 
83700 17,052 28,000 

Lung 
2×2 raw 

holograms 
83700 9,363 15,000 

Lung  
3×3 raw 

holograms 
83700 30,480 52,500 

Diffraction-

limited 

(System B) 

Pap smear 
4×/0.13 NA 

objective lens 
65475 46,411 100,000 

All the networks were trained with a batch size of 10 using 128×128 pixel patches. 

Table 2.2 Time for each network to output a 1940×1940 pixel image.  

Resolution 

limiting factor 

Tissue 

type 

Low resolution 

input type 

Testing 

Time 

(s/image) 

Pixel size-

limited 

(System A) 

Pap smear  
1×1 raw 

hologram 
1.42 

Lung 
1×1 raw 

hologram 
1.37 

Lung 
2×2 raw 

holograms 
1.38 

Lung  
3×3 raw 

holograms 
1.38 

Diffraction-

limited 

(System B) 

Pap smear 
4×/0.13 NA 

objective lens 
1.26 

Each measurement is the average time, calculated using 150 test images. 

Software implementation details.  



17 

 

The network was developed using a desktop computer running the Windows 10 operating 

system. The desktop uses an Nvidia GTX 1080 Ti GPU, a Core i7-7900K CPU running at 3.3 

GHz, and 64 GB of RAM. The network was programmed using Python (version 3.6.0) with 

the TensorFlow library (version 1.7.0). 

Sample preparation.  

De-identified Pap smear slides were provided by the UCLA Department of Pathology 

(Institutional Review Board no. 11–003335) using ThinPrep® and SurePathTM preparation. 

De-identified Hematoxylin and Eosin (H&E) stained human lung tissue slides were acquired 

from the UCLA Translational Pathology Core Laboratory. We used existing and anonymous 

specimen, where no subject related information was linked or can be retrieved. 

2.3 Results and discussion 

Super-resolution of a pixel size-limited coherent imaging system. We first report the 

performance of the network for the pixel size-limited coherent imaging system using a Pap 

smear sample and a Masson’s trichrome stained lung tissue section (connected tissue sample). 

For the Pap smear, two samples from different patients were used for training. For the lung 

tissue samples, three tissue sections from different patients were used for training. The 

networks were blindly tested on additional tissue sections from other patients. The FOV of 

each tissue image was ~20 mm2 (corresponding to the sensor active area).  

 Fig. 2.5 illustrates the network’s super-resolved output images along with pixel-size 

limited lower resolution input images and the higher resolution ground truth images of a Pap 

smear sample. The input images have a pixel pitch of 2.24 µm, and the label images have an 

effective pixel size of 0.37 µm (see the Methods section). For lung tissue sections, we also 

demonstrate our super-resolution results (Fig. 2.6) using three different deep networks, where 

the input images for each network has a different pixel size (i.e., 2.24 µm, 1.12 µm, and 0.7467 
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µm, corresponding to 1×1, 2×2 and 3×3 lateral shifts, respectively, as detailed in the Methods 

section). In comparison to the less densely connected Pap smear sample results, the network 

output misses some spatial details for lung tissue imaging when the input pixel size is at the 

coarsest level of 2.24 µm. These spatial features/details are recovered back by the other two 

networks that use smaller input pixels as shown in Fig. 2.6.  
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Figure 2.5 Visualized result for the pixel size-limited system. Deep learning-based pixel super-resolution 

imaging of a Pap smear slide under 550 nm illumination. (a) Whole FOV of the lensfree imaging system. (b) 

Amplitude and phase channels of the network output. (c) Further zoom-in of (b) for two regions of interest. The 

marked region in the first column demonstrates the network’s ability to process the artifacts caused by out-of-

focus particles within the sample. 

 

Figure 2.6 Visualized result for the pixel size-limited system. Comparison of the performances for the deep-

learning-based pixel super-resolution methods using different input images. The sample is a Masson’s trichrome 

stained lung tissue slide, imaged at an illumination wavelength of 550 nm. SSIM values are also shown for the 

network input and output images for each case. The ground truth (target) image for each SSIM value is acquired 

using 6×6 lensfree holograms per height. 
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We also report the SSIM values with respect to the reference label images in order to further 

evaluate the performance of our network output when applied to a pixel size-limited coherent 

imaging system. The average SSIM values for the entire image FOV (~20 mm2) are listed in 

Table 2.3, where the input SSIM values were calculated between the bicubic interpolated lower 

resolution input images and the ground truth images. The results clearly demonstrate the 

improved structural similarity of the network output images. 

Table 2.3 Average SSIM values for the lung and Pap smear samples for the deep neural network output 

(also see Figs. 2.5 and 2.6 for sample images in each category). 

Resolution 

limiting 

factor 

Tissue 

type 

Low resolution 

input type 

Input SSIM Output SSIM 

Imagina

ry 
Real 

Imagina

ry 
Real 

Pixel size-

limited 

Pap 

smear  

1×1 raw 

hologram 
0.9097 0.9135 0.9392 0.9442 

Lung 
1×1 raw 

hologram 
0.6213 0.5404 0.6587 0.7135 

Lung 
2×2 raw 

holograms 
0.8069 0.8205 0.8405 0.8438 

Lung  
3×3 raw 

holograms 
0.9185 0.9184 0.9422 0.9347 

 

 In addition to SSIM comparison, we also report the improved performance of our 

network output using spatial frequency analysis: Fig. 2.7 reports the 2-D spatial frequency 

spectra and the associated radially-averaged frequency intensity of the network input, network 

output and the ground truth images corresponding to our lensfree on-chip imaging system. The 

appearance of the higher spatial frequency components in the output of the network, 

approaching to the spatial frequencies of the ground truth image is another indication of our 

super-resolution performance. 
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Figure 2.7 Spatial frequency analysis for the pixel size-limited system. Radially-averaged spatial frequency 

spectra of the network input, network output and target images, corresponding to a lensfree on-chip coherent 

imaging system. 
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Super-resolution of a diffraction-limited coherent imaging system. For the task of super-

resolving a diffraction-limited coherent imaging system, we trained an identical network 

architecture (see the Methods section) with a Pap smear sample. As in the pixel super-

resolution case reported earlier, two samples were obtained from two different patients, and the 

trained network was blindly tested on a third sample obtained from a third patient. The input 

images were obtained using a 4×/0.13 NA objective lens and the reference ground truth images 

were obtained by using a 10×/0.30 NA objective lens. Fig. 2.8 illustrates a visual comparison 

of the network input, output and label images, providing the same conclusions as in Fig. 2.5 

and Fig. 2.6. Similar to the pixel size-limited coherent imaging system, we also analyzed the 

performance of our network using spatial frequency analysis which is reported in Fig. 2.9. The 

higher spatial frequencies of the network output image approach the spatial frequencies 

observed in the ground truth images, similar to the results of Fig. 2.7.  

 

Figure 2.8 Visualized result for the diffraction-limited system. Deep learning-based super-resolution imaging 

of a Pap smear slide under 532 nm illumination using a lens-based holographic microscope. (a) Phase channel of 

the network output image. (b) Zoomed-in images of (a). 
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Figure 2.9 Spatial frequency analysis for the diffraction-limited system. Radially-averaged spatial frequency 

spectra of the network input, network output and target images, corresponding to a lens-based coherent imaging 

system. 

On the other hand, the SSIM criterion did not reveal the same trend that we observed 

in the lensfree on-chip microscopy system reported earlier, and only showed a very small 

increase from e.g., 0.876 for the input image to 0.879 for the network output image. This is 

mostly due to increased coherence related artifacts and noise, compared to the lensfree on-chip 

imaging set-up, since the lens-based design has several optical components and surfaces within 

the optical beam path, making it susceptible to coherence induced background noise and related 

image artifacts, which partially dominate SSIM calculations.  
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2.4 Conclusions 

We have presented a GAN-based framework for super-resolution of pixel size limited and 

diffraction limited coherent imaging systems. The framework was demonstrated on 

biologically connected thin tissue sections (lung and Pap smear samples) and the results were 

quantified using structural similarity index and spatial frequency spectra analysis. The 

proposed framework provides a highly optimized, non-iterative reconstruction engine that 

rapidly produces resolution enhancement, without additional parameter optimization. 

 The proposed approach is not restricted to a specific coherent imaging modality and is 

broadly applicable to various coherent image formation techniques. One of the techniques that 

will highly benefit from the proposed framework is off-axis holography. The proposed 

technique might be used to bridge the space-bandwidth-product gap between off-axis and in-

line coherent imaging systems, while retaining the single-shot and high sensitivity advantages 

of off-axis image acquisition systems.  
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Chapter 3 . Deep learning-based color holography 

3.1 Introduction 

Histological staining of fixed, thin tissue sections mounted on glass slides is one of the 

fundamental steps required for the diagnoses of various medical conditions. Histological stains 

are used to highlight the constituent tissue parts by enhancing the colorimetric contrast of cells 

and subcellular components for microscopic inspection. Thus, an accurate color representation 

of the stained pathology slide is an important prerequisite to make reliable and consistent 

diagnoses [42–45]. Unlike bright-field microscopy, a common method used to obtain color 

information from a sample using a coherent imaging system requires the acquisition of at least 

three holograms at the red, green, and blue parts of the spectrum, thus forming the red–green–

blue (RGB) color channels that are used to reconstruct composite color images. Such 

colorization methods used in coherent imaging systems suffer from color inaccuracies [46–48] 

and may be considered unacceptable for histopathology and diagnostic applications. 

To achieve increased color accuracy using coherent imaging systems, a computational 

hyperspectral imaging approach can be used [49]. However, such systems typically require 

engineered illumination, such as a tunable laser to efficiently sample the visible band. Previous 

contributions have demonstrated successful reduction in the number of required sampling 

locations for the visible band to generate accurate color images. For example, Peercy et al. 

demonstrated a wavelength selection method using Gaussian quadrature or Riemann 

summation for reconstructing color images of a sample imaged in reflection mode 

holography [46], whereby it was suggested that a minimum of four wavelengths were required 

to generate accurate color images of natural objects. Later, Ito et al. demonstrated a Wiener 

estimation-based method to quantify the spectral reflectance distribution of the object at four 

fixed wavelengths that achieved an increased color accuracy for natural objects [50]. Recently, 

Zhang et al. presented an absorbance spectrum estimation method based on minimum mean-
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square-error estimation, specifically crafted to create accurate color images of pathology slides 

with in-line holography [48]. Because the color distribution within a stained histopathology 

slide is constrained by the colorimetric dye combination that is used, this method successfully 

reduced the required number of wavelengths to three, while it still preserved accurate color 

representation. However, owing to the distortions introduced by twin image artifacts and the 

limited resolution of unit magnification on-chip holography systems, multiheight phase 

recovery [5,7,33–36] and pixel super-resolution (PSR) techniques [51–61] were implemented 

to achieve acceptable image quality.  

 

Figure 3.1 Comparison between the traditional hyperspectral imaging and the proposed neural network-

based approaches for the reconstruction of accurate color images. NH is the number of sample-to-sensor 

heights required for performing phase recovery, NW is the number of illumination wavelengths, NM is the number 

of measurements for each illumination condition (multiplexed or sequential), and L is the number of lateral 

positions used to perform pixel super resolution. (a): Required number of raw holograms for the traditional 

hyperspectral imaging and the proposed neural network-based approaches. (b): High fidelity color image 

reconstruction procedure for the hyperspectral imaging approach. (c): High fidelity color image reconstruction 

procedure for the proposed neural network-based approach. 
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Herein, we present a deep learning-based accurate color holographic microscopy method (Fig. 

3.1). Neural networks and deep learning methods have been used in the literature to generate 

color images using a variety of imaging modalities. For example, grayscale 

photographs/images have been colorized using GANs [62,63]. As some other examples, 

holograms of objects (acquired at a single wavelength) have been reconstructed using deep 

neural networks with the color contrast of brightfield microscopy [64], and the images of 

unstained/label-free tissue samples have been transformed into brightfield equivalent color 

images of the same samples, demonstrating virtual staining of label-free tissue using 

holographic [65] or grayscale auto-fluorescence images of tissue sections [66]. In comparison 

to the traditional hyperspectral imaging approaches used in coherent imaging systems, the 

proposed deep neural-network-based color microscopy method of this work significantly 

simplifies the data acquisition procedures, the associated data processing and storage steps, and 

the imaging hardware. This technique requires only a single super-resolved hologram acquired 

under wavelength-multiplexed illumination. As such, the proposed approach achieves a similar 

performance to that of the state-of-the-art absorbance spectrum estimation method [48] that 

uses four super-resolved holograms collected at four sample-to-sensor distances with either 

sequential or multiplexed illumination wavelengths, thus representing more than four-fold 

enhancement in terms of data throughput.  

We demonstrate the success of this framework using two types of pathology slides: lung tissue 

sections stained with Masson’s trichrome and prostate tissue sections stained with Hematoxylin 

and Eosin (H&E). Using both the structural similarity index (SSIM) [67] and the color 

distance [68], high fidelity and color-accurate images are reconstructed and compared to the 

gold-standard images obtained using the hyperspectral imaging approach. The overall time 

performance of the proposed framework is also compared against a conventional 20× bright-

field scanning microscope, thus demonstrating that the total image acquisition and processing 
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times are of the same scale. We believe that the presented deep learning-based color imaging 

framework might be helpful to bring coherent microscopy techniques into use for 

histopathology applications. 

Part of this chapter has been published in: 

Liu, T., Wei, Z., Rivenson, Y., de Haan, K., Zhang, Y., Wu, Y., & Ozcan, A. (2019). Deep 

learning‐based color holographic microscopy. Journal of biophotonics, 12(11), e201900107. 

3.2 Materials and methods 

3.2.1 Overview of the hyperspectral and deep neural network-based reconstruction 

approaches 

We train a deep neural network to perform the image transformation from a complex field 

obtained from a single super-resolved hologram to the gold-standard image, which is obtained 

from NH×NM super-resolved holograms (NH is the number of sample-to-sensor distances, and 

NM is the number of measurements at one specific illumination condition). In this work, to 

generate the gold-standard images using the hyperspectral imaging approach, we used NH = 8 

and NM =31 sequential illumination wavelengths (ranging from 400 nm to 700 nm with 10 nm 

step size). The following subsections detail the procedures used to generate both the gold-

standard images as well as the inputs to the deep network.  

3.2.2 Hyperspectral imaging approach 

The gold-standard, hyperspectral imaging approach reconstructs a high-fidelity color image by 

first performing resolution enhancement using a PSR algorithm (Section 3.2.2.1) Subsequently, 

the missing phase-related artifacts are eliminated using multiheight phase recovery (Section 

3.2.2.3). Finally, high-fidelity color images are generated with tristimulus color projections 

(Section 3.2.2.4). 

3.2.2.1 Holographic pixel super-resolution using sequential illumination 
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The resolution enhancement for the hyperspectral imaging approach was performed using a 

PSR algorithm [33]. This algorithm is capable of digitally synthesizing a high-resolution image 

(pixel size of approximately 0.37 μm) from a set of low-resolution images collected by an RGB 

image sensor (IMX 081, Sony, pixel size of 1.12 μm, with R, G1, G2, and B color channels). 

To acquire these images, the image sensor was programmed to raster through a 6×6 lateral grid 

using a 3D positioning stage (MAX606, Thorlabs, Inc.) with a subpixel spacing of ~0.37 μm 

(i.e., 1/3 of the pixel size). At each lateral position, one low-resolution hologram intensity was 

recorded. The displacement/shift of the sensor was accurately estimated using the algorithm 

introduced in  [35]. A shift-and-add based algorithm was then used to synthesize the high-

resolution image. 

Because this hyperspectral imaging approach uses sequential illumination, the PSR algorithm 

uses only one color channel (R, G1, or B) from the RGB image sensor at any given illumination 

wavelength. Based on the transmission spectral response curves of the Bayer RGB image 

sensor, the blue channel (B) was used for the illumination wavelengths in the range of 400–

470 nm, the green channel (G1) was used for the illumination wavelengths in the range of 480–

580 nm, and the red channel (R) was used for the illumination wavelengths in the range of 590–

700 nm. 

3.2.2.2 Angular spectrum propagation 

Free-space angular spectrum propagation [69] was used in the hyperspectral imaging approach 

to create the ground truth images. To digitally obtain the optical field U(x,y; z) at a propagation 

distance z,  the Fourier transform (FT) is first applied to the given U(x,y; 0) to obtain the angular 

spectrum distribution A(fx, fy; 0). The angular spectrum A(fx, fy; z) of the optical field U(x,y; z) 

can be calculated using: 

 ( ) ( ) ( ), ; , ;0 , ;x y x y x yA f f z A f f H f f z=    (11) 

where H(fx, fy; z) is defined as, 
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  (12) 

where λ is the illumination wavelength, and n is the refractive index of the medium. Finally, an 

inverse Fourier transform is applied to A(fx, fy; z) to get U(x,y; z).  

This angular spectrum propagation method first served as the building block of an autofocusing 

algorithm, which is used to estimate the sample to sensor distance for each acquired 

hologram [70,71]. After the accurate sample to the sensor distances were estimated, the 

hyperspectral imaging approach used the angular spectrum propagation as an additional 

building block for the iterative multiheight phase recovery, which will be detailed next. 

3.2.2.3 Multiheight phase recovery 

To eliminate the spatial image artifacts related to the missing phase, the hyperspectral imaging 

approach applied an iterative phase retrieval algorithm [34]. Holograms from eight sample-to-

sensor distances were collected during the data acquisition step. The algorithm initially 

assigned a zero-phase to the intensity measurement of the object. Each iteration of the 

algorithm began by propagating the complex field from the first height to the eighth height, 

and by backpropagating it to the first height. The amplitude was updated at each height, while 

the phase was kept unchanged. The algorithm typically converged after 10–30 iterations. 

Finally, the complex field was backpropagated from any one of the measurement planes to the 

object plane to retrieve both the amplitude and the phase images. 

3.2.2.4 Color tristimulus projection 

Increased color accuracy was achieved by densely sampling the visible band at 31 different 

wavelengths in the range of 400 nm to 700 nm at a 10 nm step size. This spectral information 

was projected to a color tristimulus using the Commission Internationale de l’Éclairage (CIE) 
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color matching function [47]. The color tristimulus in the XYZ color space can be calculated 

by, 
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where λ is the wavelength, ( )x  , ( )y  , and ( )z   are the CIE color matching functions, T(λ) 

is the transmittance spectrum of the sample, and E(λ) is the CIE standard illuminant D65 [47]. 

The XYZ values can be linearly transformed to the standard RGB values for display [47]. 

3.2.3 High-fidelity holographic color reconstruction via deep neural networks  

The input complex fields for the proposed deep learning-based color reconstruction framework 

were generated in the following manner: Resolution enhancement and cross-talk correction 

through the demosaiced pixel super resolution algorithm (Section 3.2.3.1) followed by the 

initial estimation of the object via the angular spectrum propagation (Section 3.2.2.2). 

3.2.3.1 Holographic demosaiced pixel super-resolution (DPSR) using multiplexed 

illumination 

Similar to the hyperspectral imaging approach, the proposed network approach also used a 

shift-and-add-based algorithm in association with 6×6 low-resolution holograms to enhance 

the hologram resolution. We used three multiplexed wavelengths, i.e., simultaneously 

illuminated the sample with three distinct wavelengths. To correct the cross-talk error among 

different color channels in the RGB sensor we used the DPSR algorithm [61]. This cross-talk 

correction can be illustrated by the following equation: 
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where UR-ori, UG1-ori, UG2-ori, and UB-ori, represent the original interference patterns collected by 

the image sensor, W is a 3×4 cross-talk matrix obtained by experimental calibration of a given 

RGB sensor chip, and UR, UG, and UB, are the demultiplexed (R, G, B) interference patterns. 

In this work, the three illumination wavelengths were chosen to be at 450 nm, 540 nm, and 590 

nm. As suggested in [48], using these wavelengths, a better color accuracy can be achieved 

with specific tissue-stain types (i.e., prostate stained with H&E and lung stained with Masson’s 

trichrome, which were used in this work).  

3.2.3.2 Deep neural network input formation 

Following the demosaiced pixel-super-resolution algorithm, the three intensity holograms are 

numerically backpropagated to the object plane, as discussed in Subsection 3.2.2.2. Following 

this back-propagation step, each one of the three color hologram channels will produce a 

complex wave, represented as real and imaginary data channels. This results in a six-channel 

tensor that is used as input to the deep network, as shown in Fig. 3.1. Unlike the ground truth, 

in this case, no phase retrieval is performed because only a single measurement is available.  

3.2.3.3 Deep neural network architecture 

A generative adversarial network (GAN [72]) was implemented to learn the color correction 

and eliminate the missing phase-related artifacts. This GAN framework has recently found 

applications in super-resolution microscopic imaging [30,73,74] and histopathology [64,66], 

and it consists of a discriminator network (D) and a generator network (G). The D network was 

used to distinguish between a three-channel RGB ground truth image (z) obtained from 

hyperspectral imaging and the output image from G. Accordingly, G was used to learn the 

transformation from a six-channel holographic image (x), i.e., three color channels with real 

and imaginary components, into the corresponding RGB ground truth image.  

Our discriminator and generator losses are defined as, 
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where Nchannels is the number of channels in the images (e.g., Nchannels = 3 for an RGB image), 

M and N are the number of pixels for each side of the images, i and j are the pixel indices, and 

n denotes the channel indices. TV represents the total variation regularizer that applies to the 

generator output, and is defined as, 
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The regularization parameters (λ, α) were set to 0.0025 and 0.002 so that the total variation loss 

(λ×TV{G(xinput)}) is ~2% of L2, and the discriminator loss (α×(1-D(G(xinput)))
2) is ~15% of 

lgenerator. Ideally, both D(zlabel) and D(G(xinput)) converge to 0.5 at the end of the training phase. 

The L2-loss was empirically found to better handle distortions, which resulted due to the free-

space back propagation of the single RGB DPSR hologram.  

The generator network architecture (Fig. 3.2) was an adapted form of the U-net [75]. 

Additionally, the discriminator network (see Fig. 3.3) used a simple classifier that consisted of 

a series of convolutional layers which slowly reduced the dimensionality, while they increased 

the number of channels, followed by two fully connected layers to output the classification. 

While in this manuscript we adapted the U-net structure for our deep network, other structures 

can also be considered for elimination of missing phase artifacts [76] and for performing color 

correction on the reconstructed images. The convolution filter size was set to 3×3, and each 

convolutional layer except the last was followed by a leaky-ReLu activation function, defined 

as:  
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Figure 3.2 Schematic of the generator part of the network. The six-channel input consists of the real and 

imaginary channels of the three free-space propagated holograms at three illumination wavelengths (450 

nm, 540 nm, and 590 nm). Each down block consists of two convolutional layers that double the number of 

system channels when used together. The down blocks are opposite, and consist of two convolutional layers with 

half the number of system channels when used together. 

 

Figure 3.3 Diagram of the discriminator part of the network. Each down block of the convolutional layer 

consists of two convolutional layers. 
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3.2.3.4 Deep neural network training process 

In the network training process, we used the images generated by the hyperspectral approach 

as our network labels, and took the demosaiced super-resolved holograms that were back-

propagated to the sample plane as the network inputs. Both the generator and the discriminator 

networks were trained with non-overlapping patches, each with a size of 128×128 pixels. The 

weights in the convolutional layers and fully connected layers, were initialized using the Xavier 

initialization [77] while the biases were initialized to zero. All parameters were updated using 

an adaptive moment estimation (Adam) optimizer [78] with a learning rate of 1×10-4 for the 

generator network and a corresponding rate of 5×10-5 for the discriminator network. The 

training, validation, and testing of the network were performed on a PC with a four-core 3.60 

GHz CPU, 16 GB of RAM, and an Nvidia GeForce GTX 1080Ti GPU. The lung tissue network 

was trained for 38.9 epochs over 5.58 hours, while the prostate tissue network was trained for 

25.6 epochs over 2.29 hours. This training process only needs to be performed once for a 

specific type of tissue-stain combination and can improve in speed by using cloud computing. 

3.2.4. Bright-field imaging 

For comparison of the imaging throughput, bright-field microscopy images were obtained. An 

Olympus IX83 microscope equipped with a motorized stage and a set of super panchromatic 

objectives (Olympus UPLSAPO 20×/0.75 numerical aperture (NA), working distance (WD) 

0.65) were used. The microscope was controlled by the MetaMorph advanced digital imaging 

software (Version 7.10.1.161, MetaMorph®) with the autofocusing algorithm set to search in a 

range of 5 µm in the z–direction with 1 µm accuracy. Two-pixel binning was enabled and a 

10% overlap between the scanned patches was used. Stitching was done using the ImageJ 

Grid/Collection stitching plugin [79], which calculates the exact overlap between the images, 

and linearly blends the overlapping section, which allows the image to have a smooth transition 

and reduces stitching related artifacts. 
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3.2.5. Quantification metrics 

Quantification metrics were chosen and used to evaluate the performance of the network: the 

SSIM [67] was used to compare the similarity of the tissue structural information between the 

output and the target images; E*94 [68] was used to compare the color distance of the two 

images. 

SSIM values ranged from zero to one, whereby the value of unity indicated that the two images 

were the same, i.e., 
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where U and V represent one vectorized test image and one vectorized reference image, 

respectively, μU and μV are the means of U and V, respectively, 
2 2,U V 

 
are the variances of U 

and V, respectively, ,U V  is the covariance of U and V, and constants C1 and C2 are included to 

stabilize the division when the denominator is close to zero.  

The second metric that we used, E*94 [68], outputs a number between zero and 100. A value 

of zero indicates that the compared pixels share the exact same color, while a value of 100 

indicates that the two images have the opposite color (mixing two opposite colors cancel each 

other out and produce a grayscale color). This method calculates the color distance in a pixel-

wise fashion, and the final result is calculated by averaging the values of E*94 in every pixel 

of the output image. 

3.2.6. Sample preparation 

De-identified H&E stained human prostate tissue slides and Masson’s trichrome stained human 

lung tissue slides were acquired from the UCLA Translational Pathology Core Laboratory. 

Existing and anonymous specimens were used. No subject related information was linked or 

can be retrieved. 
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3.3 Results and discussion 

3.3.1. Qualitative assessment  

We evaluated our network’s performance using two different tissue-stain combinations: 

prostate tissue sections stained with H&E, and lung tissue sections stained with Masson’s 

trichrome. For both types of samples, the networks were trained on three tissue sections from 

different patients and were blindly tested on another tissue section from a fourth patient. The 

field-of-view (FOV) of each tissue section that was used for training and testing was ~20 mm2.  

The results for lung and prostate samples are respectively summarized in Fig. 3.4 and 3.5. 

These indicate our approach’s capability of reconstructing a high-fidelity and color-accurate 

image from a single nonphase-retrieved and wavelength-multiplexed hologram (as detailed in 

the Methods section). Using the trained model, we were able to reconstruct the sample image 

over the entire sensor’s FOV (i.e., ~20 mm2), as demonstrated in Fig. 3.6. 

 

 

Figure 3.4 Deep learning-based accurate color imaging of a lung tissue slide stained with Masson’s 

trichrome for a multiplexed illumination at 450 nm, 540 nm, and 590 nm, using a lens-free holographic on-

chip microscope. (a): Large field of view of the network output image. (b): Zoomed-in comparison of the network 

input, the network output, and the ground truth target at region of interest (ROI) 1 and 2. 
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Figure 3.5 Deep learning-based accurate color imaging of a prostate tissue slide stained with H&E for a 

multiplexed illumination at 450 nm, 540 nm, and 590 nm, using a lens-free holographic on-chip microscope. 

(a): Large field of view of the network output image. (b) Zoomed-in comparison of the network input, the network 

output, and the ground truth target at ROI 1 and 2. 

 

Figure 3.6 Stitched image of the deep neural network output for a lung tissue section stained with H&E, 

which corresponds to the sensor’s field-of-view. 

To further demonstrate the qualitative performance of the network, we compare in Fig. 3.7 and 

3.8 the reconstruction results of the deep network to the images created by the absorbance 

spectrum estimation method  [48] in terms of the required number of measurements. For this 
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comparison, we implemented the spectrum estimation approach for the multiheight phase 

recovery method and reconstructed the color images from a reduced number of wavelengths 

via both sequential (NH=8, NM=3) and multiplexed (NH=8, NM=1) illuminations at the same 

wavelengths (i.e., 450 nm, 540 nm, and 590 nm). Qualitatively, the network results are 

comparable to the multiheight results obtained with more than four sample-to-sensor distances 

for both the sequential and multiplexed illumination cases. This will be also confirmed by the 

quantitative analysis described below. 

 

Figure 3.7 Visual comparison between the deep neural network-based approach and the multiheight phase 

recovery with spectral estimation approach for a lung tissue sample stained with Masson’s trichrome. (a-

h): Reconstruction results of spectral estimation approach using different number of heights and different 

illumination conditions. (i): Network output. (j): Ground truth target obtained using the hyperspectral imaging 

approach 



40 

 

 

Figure 3.8 Visual comparison between the deep neural network-based approach and the multiheight phase 

recovery with the spectral estimation approach for a prostate tissue sample stained with H&E. (a-h): 

Reconstruction results of spectral estimation approach using different number of heights and different illumination 

conditions. (i): Network output. (j): Ground truth target obtained using the hyperspectral imaging approach 

3.3.2. Quantitative performance assessment 

The quantitative performance of the network was evaluated based on the calculation of the 

SSIM  [67] and color difference (E*94 [68]) between the network’s output and the gold-

standard image produced by the hyperspectral imaging approach. As listed in Table 3.1 and 

visually shown in Fig. 3.5 and 3.6, the performances of the spectrum estimation methods 

decrease (i.e., SSIM decreases and E*94 increases) as the number of holograms at different 

sample-to-sensor distances decreases, or when the illumination is changed to be multiplexed. 

This quantitative comparison demonstrates that the network’s performance using a single 

super-resolved hologram is comparable to the results obtained by state-of-the-art algorithms 

where ≥4 times as many raw holographic measurements are used.  

Table 3.1 Comparison of SSIM) and E*94 performances between the deep neural network approach 

and various other methods using two, four, six, and eight sample-to-sensor heights and three 

sequential/multiplexed wavelength illumination conditions for two tissue samples (the network-based 

approach and other methods with comparable performance are highlighted with bold font).  
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Tissue-stain 

type 
Method 

Illumination 

condition (at 

450 nm, 540 

nm, and 590 

nm) 

Total 

required 

measurement

s (NH×NM×L) 

Average 

SSIM 
ΔE*94 

Masson’s 

trichrome 

stained lung 

slide 

(~20 mm2 FOV) 

Deep neural 

network 
Simultaneous 1×1×36 0.8396 6.9044 

Two-height 

reconstruction 

Simultaneous 2×1×36 0.5535 10.7507 

Sequential 2×3×36 0.6011 9.4786 

Four-height 

reconstruction 

Simultaneous 4×1×36 0.8344 5.1674 

Sequential 4×3×36 0.8769 3.8709 

Six-height 

reconstruction 

Simultaneous 6×1×36 0.878 4.4219 

Sequential 6×3×36 0.9136 3.1928 

Eight-height 

reconstruction 

Simultaneous 8×1×36 0.9068 3.6779 

Sequential 8×3×36 0.9538 2.1849 

Hematoxylin 

and Eosin 

stained prostate 

slide 

(~20 mm2 FOV) 

Deep neural 

network 
Simultaneous 1×1×36 0.9249 4.5228 

Two-height 

reconstruction 

Simultaneous 2×1×36 0.7716 7.5085 

Sequential 2×3×36 0.848 5.5316 

Four-height 

reconstruction 

Simultaneous 4×1×36 0.8984 4.3878 

Sequential 4×3×36 0.9335 3.3399 

Six-height 

reconstruction 

Simultaneous 6×1×36 0.9225 3.8911 

Sequential 6×3×36 0.9516 2.9622 

Eight-height 

reconstruction 

Simultaneous 8×1×36 0.9411 3.5102 

Sequential 8×3×36 0.9689 2.4148 

 

3.3.3. Throughput evaluation 

Table 3.2 lists the measured reconstruction times for the entire FOV (~20 mm2) using different 

methods. For the deep neural network approach, the total reconstruction time includes the 

acquisition of 36 holograms (at 6×6 lateral positions in multiplexed illumination), the execution 

of DPSR, angular spectrum propagation, network inference, and image stitching. For the 

hyperspectral imaging approach, the total reconstruction time includes the collection of 8928 

holograms (at 6×6 lateral positions, eight sample-to-sensor distances, and 31 wavelengths), 
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PSR, multiheight phase retrieval, color tristimulus projection, and image stitching. For the 

conventional bright-field microscope (equipped with an automatic scanning stage), the total 

time includes the scanning of the bright-field images using a 20×/0.75 NA microscope with 

autofocusing performed at each scanning position and image stitching. In addition, the timing 

of the multiheight phase recovery method with the use of four sample-to-sensor distances was 

also shown, and had the closest performance to the deep learning-based neural network 

approach. All the coherent imaging related algorithms were accelerated with an Nvidia GTX 

1080Ti GPU and CUDA C++ programming.  

Table 3.2 Time performance evaluation of the deep neural network approach for reconstructing accurate 

color images compared to traditional hyperspectral imaging approach and standard brightfield 

microscopic sample scanning (where N/A stands for “not applicable”).  

Testing 

area 
Method 

Data 

acquisitio

n time 

Processing time  

Tota

l 

time 

Storag

e 

space 

(raw 

data) 

Auto-

Focusing 

Super 

resolutio

n 

Phase 

recovery 

or FSP 

Inference or 

color 

transformat

ion 

Stitchin

g  

Sensor’s 

entire 

FOV 

~20 mm2   

Deep neural 

network 
~2 min ~ 20 s ~2 min ~ 3 s ~ 1.5 min   ~1 min 

~7 

min 

1.09 

GB 

Four-height 

simultaneous 
~ 8 min ~ 80 s ~ 9 min ~ 5 min ~36 min ~1 min 

~60 

min 

4.36 

GB 

Four-height 

sequential 
~ 25 min ~ 80 s ~ 9 min ~ 5 min ~36 min ~1 min 

~77 

min 

13.08 

GB 

Hyperspectra

l imaging  
~ 8 h ~ 27 min ~ 3 h 

~ 85 

min 
~15 min ~1 min 

~13 

h 

270.3

2 GB 

Conventional 

microscope 

(20×/0.75 

NA) 

~6 min N/A N/A N/A N/A ~1 min 
~7 

min 

577.1

3 MB  

 

The network-based method took ~7 min to acquire and reconstruct a 20 mm2 tissue area, which 

was approximately equal to the time it would take to image the same region using the 20× 

objective with our standard, general-purpose, bright-field scanning microscope. This is 

significantly shorter than the ~60 min required when using the spectral estimation approach 

(with four heights and simultaneous illumination). The deep learning approach also increases 
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the data efficiency. The raw super-resolved hologram data size was reduced from 4.36 GB to 

1.09 GB, which is more comparable to the data size of bright-field scanning microscopy images, 

which in total used 577.13 MB. 

3.4 Conclusions 

We presented a deep learning-based color holographic imaging system and demonstrated its 

performance using histologically stained pathology slides. This framework significantly 

simplified the data acquisition procedure, reduced the data storage requirement, shortened the 

processing time, and enhanced the color accuracy of the holographically reconstructed images. 

Here, we demonstrated the effectiveness of the presented approach using deep neural networks 

trained with specific sample-stain combinations that were holographically imaged. Therefore, 

the general recommendation is to use a separate trained network for a different type of stain; 

while this is a limitation, it does not affect the potential benefits of the technique for the targeted 

applications in e.g., pathology, where the type of the sample is fixed and known a priori. It is 

also important to note that other technologies, such as slide-scanner microscopes used in 

pathology can readily scan tissue slides at much faster rates, although they are rather expensive 

for use in resource limited settings. Therefore, further improvements to our lensless 

holographic imaging hardware, such as for example, the use of illumination arrays to perform 

pixel super resolution [54] would be needed to improve the overall reconstruction time of our 

results. 
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Chapter 4 . Holographic polarization microscopy using deep 

learning 

4.1 Introduction 

Polarized light microscopy is widely used as a diagnostic tool in pathology, as it introduces 

distinctive contrast to birefringent specimen [80]. A number of diseases, such as squamous cell 

carcinoma [81], primary cutaneous amyloidosis [82], cerebral amyloid angiopathy [83], and 

senile cardiovascular amyloid [84] can be diagnosed using various polarization imaging 

techniques. Since 1961, compensated polarized light microscopy (CPLM) has been the gold 

standard imaging technique to identify monosodium urate (MSU) [85] crystals in synovial fluid 

samples [86], and is used to diagnose gout and pseudogout [87]. CPLM operates by allowing 

linearly polarized white light illumination to pass through a full-waveplate designed for green 

light (commonly between 530 nm to 560 nm), which in combination with a linear 

polarizer/analyzer, generates a magenta background. The presence of a birefringent specimen 

within the light path changes the polarization state of the green light, which shifts the spectrum 

after the analyzer and results in the final image becoming yellow or blue.  

While CPLM images are treated as the gold standard for MSU crystal detection, the effort is 

labor intensive as microscopes have limited fields-of-view (FOV) and therefore, mechanical 

scanning is required to inspect the whole sample area. In addition to having a limited FOV, the 

CPLM technique suffers from limitations such as requiring manual alignment of the polarizer 

in relation to the analyzer, limited focal depth with higher magnification objectives and limited 

sensitivity when being used to detect small crystals or crystals with weak birefringence. As a 

result, CPLM analysis is sensitive to both the concentration of the crystals in synovial fluid [88] 

and experience of the diagnostician/technician [89]. Finally, clinical CPLM reporting is limited 

to qualitative results (e.g., presence or absence of crystals on the slide and whether crystals are 
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intra- or extra-cellular).  

There are a number of alternative polarization microscopy methods which have been developed 

to produce quantitative images of birefringent specimen. These methods all use the same 

principles of operation: they collect images from two or more light paths with either the 

polarizer or the analyzer oriented differently in order to infer the Stokes/Jones parameters that 

define the birefringent specimen [90–94]. Among these methods, Jones phase microscopy [93] 

and polarization holographic microscopy, (PHM) [94] are two examples, where both systems 

take advantage of the amplitude and phase information of the reconstructed interferogram, and 

measure spatially resolved Jones matrix components of anisotropic samples using four 

polarization states. However, these types of systems in general require the use of relatively 

sophisticated and costly optical components to maintain a linear mapping between the 

measurements and the inferred Jones parameters.  

Various methods have recently demonstrated that the retardance and orientation information 

channels, especially for biological samples, provide some of the most useful spatial features 

corresponding to birefringent specimen [95–97]. Due to the reduction of the number of 

unknown parameters, these methods usually have simpler optical designs compared to e.g., 

PHM. Among these, a technique known as single-shot computational polarized light 

microscopy (SCPLM) [97] that uses a pixel-wise polarized image sensor with four polarization 

directions has been demonstrated to simplify the optical system required to image birefringent 

samples. Using this method, the retardance and orientation of the sample are explicitly solved, 

providing quantitative contrast for birefringent specimen. While these methods are quite 

effective, both PHM and SCPLM are lens-based imaging systems. Therefore, they suffer from 

the small field of view of objective lenses and a relatively high system cost. One method which 

can get past these limitations is wide-field lensfree differential holographic polarized 

microscopy [98,99]. By taking advantage of the simple optical design and unit magnification 
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of lensfree on-chip holographic systems, this method can achieve a FOV of >20-30 mm2  [100–

102]. Furthermore, the technique is cost-effective, compact and suitable for resource-limited 

settings [103,104]. However, in order for this lensfree holographic imaging method to be used 

for imaging of birefringent objects, two sets of raw holograms must be taken with illuminations 

in two different polarization states, which requires precise image alignment, especially for the 

detection of small birefringent objects within the sample. Furthermore, this method does not 

resolve the retardance or orientation of the sample, leading to lower contrast compared to the 

SCPLM method. 

In parallel to these advances in computational polarization microscopy, deep learning has 

emerged as a highly effective technique for solving inverse problems in microscopy [105,106]. 

It has been applied to traditional inverse problems such as holographic image 

reconstruction [76,107,108], reconstruction of color images [109], super-resolution [73], as 

well as to perform cross-modality image transformations such as virtual labeling of histological 

tissues [110], live cells [111], and to give brightfield image contrast to holographic images [64]. 

Here, we build upon these advances and present a novel deep learning-based holographic 

polarization microscope (DL-HPM) which can provide the retardation and orientation of 

birefringent specimen using a single phase-retrieved hologram that encodes one state of 

polarization (Fig. 4.1). This system requires only minor changes to the existing imaging 

hardware, i.e., the addition of a polarizer / analyzer set to a standard inline lensfree holographic 

microscope. Our framework uses SCPLM images as the ground truth to train a deep neural 

network (Fig. 4.1b), which uses this image data to learn how to transform the information 

encoded within a reconstructed hologram into an image that directly reveals the specimen’s 

birefringence retardance and orientation. In addition to achieving a comparable image quality 

to the SCPLM images (Fig 4.1c), this deep learning-enabled lensfree microscopy method has 

a FOV of >20 mm2 using a cost-effective optical design. The performance of DL-HPM is 
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demonstrated using MSU and triamcinolone acetonide (TCA) crystal samples as well as a corn 

starch sample, matching the performance to SCPLM, both qualitatively and quantitatively.  

We believe that the presented deep-learning based polarization microscopy approach could be 

widely used as a diagnostic tool in pathology and other fields that need to rapidly process and 

reveal the unique signatures of various birefringent crystals within complex specimen such as 

synovial fluid samples. 

Part of this chapter has been published in: 

Liu, T., de Haan, K., Bai, B., Rivenson, Y., Luo, Y., Wang, H., ... & Ozcan, A. (2020). 

Deep learning-based holographic polarization microscopy. ACS photonics, 7(11), pp.3023-

3034. 
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Figure 4.1 (a) Schematic for deep learning-based holographic polarization microscopy (DL-

HPM). Raw holograms are collected using a lensfree holographic microscope with a customized 

polarizer and analyzer. A trained neural network is used to transform the reconstructed holographic 

amplitude and phase images into the birefringence retardance and orientation images. (b) Schematic 

for single-shot computational polarized light microscopy (SCPLM). Images are collected with a 

four-channel pixelated polarized camera under circularly polarized illumination. Birefringent 

retardance and orientation channels are computed using Jones calculus, and the amplitude image is 
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obtained by averaging the four polarization channels. SCPLM is used as the ground truth information 

channel, providing the network training target for DL-HPM. (c) Blind testing of DL-HPM. A new 

clinical sample (containing MSU crystals) collected from a de-identified patient is tested using DL-

HPM. Birefringent samples are given a pseudo color using the same convention according to the 

compensated polarized light microscopy. Similar image quality was achieved compared to SCPLM 

images. Scale bar: 50 µm.  

4.2 Results and discussion 

We trained a deep neural network (see the Methods section) using 6 clinical samples containing 

MSU crystals, collected from 6 de-identified patients, to perform an image transformation, 

from an input holographic image (amplitude and phase) to the birefringence retardance and 

orientation images at the output of the network. The slides were all reviewed using CPLM 

(Olympus BX-51) by our clinical expert (JF) for the presence of MSU crystals. This analysis 

found that the majority of the birefringent crystals within these samples are needle shaped MSU 

crystals. Once trained, the neural network was blindly tested with 2 additional MSU slides from 

2 new patients; Fig. 4.2(a) shows the blind output of the DL-HPM method in comparison to 

the SCPLM method. The birefringent crystals within the FOV are colored using a calibrated 

colormap according to the CPLM convention, where the background is left in grayscale to 

enhance the contrast. Fig. 4.2(b) further shows two representative zoomed-in regions for both 

single MSU crystals (within a blood cell) and a crystal cluster. These images demonstrate that 

our deep learning framework is capable of accurately locating the birefringent objects and 

giving them a high color contrast with respect to the non-birefringent cell background within 

the FOV.  
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Figure 4.2 Imaging performance of DL-HPM. (a) Images generated using DL-HPM compared 

against co-registered images captured using SCPLM for a blindly tested MSU sample. The 

birefringent MSU crystals are colored according to CPLM convention after obtaining the retardance 

and orientation channels using each method. The pseudo-colored retardance and orientation 

information is also fused with the amplitude channel to show the high contrast against the non-

birefringent cell background achieved by both methods. (b) Two different zoomed-in regions cropped 
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from (a).  

To quantify the performance of our method, 3432 different birefringent objects were detected 

and analyzed. These objects were composed of individual MSU crystals (most common), MSU 

crystal clusters, or protein clusters (rare). We classified the birefringent objects according to 

their length and analyzed each of these categories separately. The classification was performed 

by first setting a 0.2 Rad threshold on the retardance channel in SCPLM target to convert it 

into a binary mask. Then, using these masks, connected component analysis was performed to 

classify each object into different length categories. For each detected birefringent object in the 

SCPLM, the same coordinates were also used to locate the corresponding birefringent object 

in the co-registered DL-HPM. The absolute retardance/orientation error was computed pixel-

wise and averaged by the number of pixels for each detected birefringent object at its local 

region within a 5-pixel radius of any edge of the object.  

The results of this quantitative analysis are reported in Fig. 4.3(a) with sample FOVs provided 

for visual comparison in Fig. 4.3(b). The minimum length of the crystals included in this 

analysis was selected to be 2 μm, representing an object with at least 5 pixels in length. Objects 

smaller than this threshold had insufficient resolution to assign a crystal type accurately. In 

total, 6 length categories were selected: 2-4 μm (1077 objects), 4-6 μm (582 objects), 6-8 μm 

(454 objects), 8-10 μm (466 objects), 10-20 μm (795 objects), and 20-50 μm (58 objects). The 

error was first computed and averaged pixel-wise for each detected birefringent object, and 

then averaged object-wise to obtain the statistics reported in Fig. 4.3(a). The overall object-

wise averaged absolute error between the SCPLM results and the DL-HPM results was 0.047 

Rad in the retardance channel and 0.135 Rad in the orientation channel, where the retardance 

and orientation channels range from 0 to π/2 and 0 to π, respectively. In order to further 

compare the performance of the DL-HPM with SCPLM, we plotted in Fig. 4.4 the cross-

sections of the retardance and orientation channels for various crystals from the middle column 
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of Fig. 4.3b in each length category (detailed error analysis is shown in Supporting 

Information). These results reveal that DL-HPM can quantitatively transform the holographic 

amplitude/phase information that is acquired at a single polarization state into birefringence 

retardance and orientation image channels, closely matching the results of SCPLM. 

 



53 

 

Figure 4.3 Quantitative performance of DL-HPM, compared against SCPLM results. (a) Mean 

and standard error of the mean (SEM) plots of the absolute error. DL-HPM achieves an overall object-

wise averaged absolute error of 0.047 Rad in the retardance channel and 0.135 Rad in the orientation 

channel. (b) Sample birefringent objects. For each length category, the left image is the smallest object 

and the right is the largest, while the middle one has the median size. 

 

Figure 4.4 Cross section plots of the retardance and orientation channels obtained by DL-HPM output 

and SCPLM target. The blue curve represents the output of DL-HPM, while the red curve represents the 

target from SCPLM. 

To further investigate the image transformation performed by the trained deep network, next 

we blindly tested it on two new types of birefringent samples that were never seen by the 

network during its training; for this purpose, we imaged TCA crystals, and corn starch samples 

(Fig. 4.5). The results revealed that DL-HPM can correctly identify birefringence in most of 

the TCA crystals and corn starch particles within the sample FOV. This is an indication that 

the presented DL-HPM method is learning a combination of the desired physical image 

transformation and a semantic segmentation which is related to morphological information of 

the samples. However, the network is observed to be less accurate when applied to these new 

types of samples than it is when tested upon samples of the same type that it was trained with. 
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Therefore, transfer learning was used to improve its generalization for new types of samples. 

As expected, once the same network is further trained using transfer learning with these new 

types of samples, its blind inference performance can be improved, which is illustrated in Fig. 

4.6.  

 

Figure 4.5 Imaging performance of DL-HPM on new types of birefringent samples. Visualization 

of birefringent TCA crystals and corn starch samples imaged using DL-HPM method, where the 

associated deep network is trained with only birefringent MSU crystals. Color bar: from left to top to 

right, represents π, π/2, 0 Rad in the orientation channel. Retardance is represented by the distance 

from the center of the color bar, ranging from 0 to 0.4. 

 

Figure 4.6 Comparison of two different deep neural networks for imaging TCA samples using 
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DL-HPM. The first network is trained with only MSU samples, and the second network is trained 

through transfer learning from the original MSU network with a training dataset containing TCA 

samples. Color bar: from left to top to right, represents π, π/2, 0 Rad in the orientation channel. 

Retardance is represented by the distance from the center of the color bar, ranging from 0 to 0.4. 

Our results have qualitatively and quantitatively demonstrated the effectiveness of the 

presented framework using multiple types of samples, also illustrating the capability of the 

networks to generalize from one sample type to another. However, the black box nature of deep 

neural networks often makes it challenging to determine how the transformation is actually 

performed. In this section, we perform an ablation study aiming to partially reveal the physical 

interpretation of the deep neural network, and demonstrate that the network is learning to 

perform crystal segmentation based on both the morphological information and the physical 

relationship between the holographic amplitude/phase information and the birefringent 

retardance/orientation channels. For this analysis, we trained two additional networks using the 

MSU image dataset: 1. using only the holographic amplitude channel as the input to the neural 

network to blindly perform the retardance/orientation inference; and 2. using only the 

holographic phase channel as the input to the neural network to blindly perform the 

retardance/orientation inference. Examples of the blind inference performance of these trained 

networks are shown in Fig. 4.7.  

In general, using only the amplitude or only the phase channel, as opposed to using both 

channels together, significantly degrades the inference performance of the network. The 

amplitude only network tends to accurately predict the crystals but generates images with 

significant error in the orientation channel, whereas the phase only network tends to predict the 

locations of the crystals in the retardance channel less accurately. One possible explanation for 

this observation is that the amplitude only network is learning morphological information to 

locate the crystals, as the holographic optical system was designed to introduce intensity 
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contrast for birefringent samples [98], and the additional phase information is required to fully 

reconstruct the orientation channel. Hence, both the amplitude and phase information channels 

are essential to accurately infer the retardance and orientation of birefringent samples. This 

conclusion is also supported by analyzing the formulation of HPM, which will be discussed 

next.  

 

Figure 4.7 DL-HPM reconstruction results using different input channels. The performance of 

DL-HPM in general degraded when reducing the input channel to amplitude only or phase only 

information. Color bar for retardance, from black to white, represents 0 to 1 Rad. Color bar for 

orientation, from black to white, represents -π/2 to π/2. Color bar for pseudo-colored crystals, from left 

to top to right, represents π, π/2, 0 Rad in the orientation channel. Retardance is represented by the 

distance from the center of the color bar, ranging from 0 to 0.4. The circled crystals in the amplitude 

only network show that the network is capable of reconstructing the crystal features in the correct 

location, but the color is inaccurate due to the errors in the orientation channel. The circled crystals in 

phase only network are either entirely missing or have a retardance that is too low, rejected by the 

pseudo coloring scheme. 

The evolution of the polarization state in our optical setup (Fig. 4.1a) can be analyzed using 
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Jones calculus (see Methods section), where for each pixel of the reconstructed holographic 

amplitude and phase images, we can write:   
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where atan2(y, x) is the four-quadrant inverse tangent function for point (x, y), Arecon is the 

normalized reconstructed amplitude, φrecon is the normalized reconstructed phase (with zero 

phase in the background), β represents the orientation of the linear polarizer with respect to the 

x-axis, and a and b are defined as: 
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θ represents the orientation of the fast axis of the sample with respect to the x-axis, and η 

represents the relative phase retardance.  

Unlike the SCPLM method, where the retardance, η, and the orientation, θ, are encoded in 

symmetrical equations with a straightforward analytical solution (detailed in the Supporting 

Information), Equations 15-16 encode the birefringence information in a much more 

convoluted form. Because of the experimental challenges in obtaining an accurate estimate of 

β as well as the potential phase wrapping related issues, independently solving Equations 15-

16 in a pixel-by-pixel manner could result in errors or spatial inconsistencies/artifacts at the 

output retardance and orientation images. Hence, it elevates the need for a more advanced 

solution and a robust method such as a deep neural network, which is trained to perform an 

image-to-image transformation by making use of all the information from multiple pixels 
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within a FOV simultaneously. Stated differently, through image data, the deep neural network 

learns to solve Equations 15-16 over an input FOV, where all the pixels within the complex-

valued input image (phase and amplitude) are simultaneously processed to generate the desired 

output image channels, i.e., the retardance (η) and the orientation (θ) images.  

4.3 Conclusions 

We presented a deep learning-enabled holographic polarization microscope. This framework 

is advantageous as it only requires the measurement of a single polarization state which can be 

generated using a simple optical setup, and is capable of accurately reconstructing the 

quantitative birefringent retardance and orientation information of the specimen. These 

information channels can dramatically simplify the automatic detection, counting, and 

classification of birefringent objects within complex media. After necessary regulatory testing 

and approvals, our method can be the basis of a rapid point-of-care crystal detection and 

analysis instrument with automated crystal identification and classification capabilities, which 

could significantly simplify the clinical procedures used to diagnose diseases related to 

birefringent crystals, such as gout and pseudogout. In addition, we also expect our DL-HPM 

method to benefit a wider range of technical fields for both research and industrial applications, 

e.g., surface defect detection and air quality monitoring [112] . 

4.4 Materials and Methods 

Lensfree polarization imaging setup 

The presented DL-HPM system utilizes a customized lensfree holographic polarization 

microscope to capture the input images (Fig. 4.1a). This microscope is able to generate 

quantitative phase images as well as introduce an intensity contrast to birefringent objects 

(though it is unable to differentiate high absorbance non-birefringent objects [98]). The 

microscope uses a laser source filtered by an acousto-optic tunable filter (AOTF) for 
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illumination at 530 nm (~2.5 nm bandwidth). The raw holograms were collected using a CMOS 

image sensor (IMX 081, Sony, 1.12μm pixel size) at 8 sample to sensor heights, which were 

used for multi-height phase recovery [34]. A set of low-resolution holograms were captured at 

6×6 lateral positions, which were used for pixel-super resolution. Using these images, a high-

resolution holographic image was reconstructed and subsequently numerically back 

propagated [69] to the sample plane using an auto-focusing algorithm [38]. Finally, the 

reconstructed hologram was normalized to obtain an average background amplitude of 1, and 

have an average background phase of 0. These normalized images were then passed through 

the neural network. Details of the holographic image reconstruction techniques including free 

space propagation, multi-height phase recovery, super resolution, and auto-focusing are 

presented in the Supporting Information.  

To enable detection of the birefringence within the sample, a left-hand polarizer and a 

customized analyzer were added in the holographic imaging system [98]. Unlike traditional 

polarization microscopes, where a second circular polarizer (i.e. right-hand polarizer) can be 

used as the analyzer, holographic imaging systems require background light to form an 

interference pattern, and the direct use of another circular polarizer would completely reject 

the background light. Therefore, we designed the analyzer to use a λ/4 retarder film (75 μm 

thickness, Edmund Optics), and a linear polarizer (180 μm thickness, Edmund Optics), having 

the fast axis of the λ/4 retarder oriented to 25° with respect to the linear polarizer, creating a 

holographic polarization microscope. These films were affixed directly to the CMOS image 

sensor using an ultraviolet (UV)-curable adhesive (NOA 68, Norland Products, Cranbury, NJ) 

as shown in Fig. 4.8b. 

Polarization encoding in the holographic imaging system 

In the analysis of our holographic imaging system, we assume that the sample, polarizer, and 



60 

 

analyzer are thin and have negligible gaps between them. We further assume that the light 

diffracts from the analyzer onto the image sensor after being converted to linearly polarized 

light by the last layer of the analyzer. Therefore, after its reconstruction, the hologram becomes 

in-focus at the sample plane (the thicknesses of both the sample and the analyzer are assumed 

to be negligible).  

 

Figure 4.8 Images sensor photos and polarization designs of the SCPLM and DL-HPM systems. 

(a) Photo of the four-channel pixelated polarizer camera. This camera is used in SCPLM. When 

illuminated with circularly polarized light, four channels with different polarization states are acquired 

using a single image. (b) Photo of the CMOS image sensor with a customized analyzer. This imager 

is used for DL-HPM. The analyzer film is directly bound to the CMOS image sensor, allowing a 

certain amount of background light to form the hologram, while also providing one polarization 

channel to sense the birefringent sample. (c) Polarization design for SCPLM. The red plot represents 

the light polarization state at each plane. The green plot represents an optical component that changes 

the polarization state. (d) Polarization design for DL-HPM. 

The evolution of the polarization in our imaging system can be analyzed using Jones 

calculus [113]. The light field in the presented framework was designed to be transmitted 
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through a left-hand polarizer, birefringent sample, λ/4 retardation plate and a linear polarizer 

(Fig 4.2d). Each of these optical components can be formulated as: 

I. Input left-hand circularly polarized (LHCP) light: 

 in
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where i2 = -1, and LHCP is defined from the point of view of the source. 
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where θ represents the orientation of the fast axis of the sample with respect to the x-axis, and 

η represents the relative phase retardance. 

III. λ/4 retarder: 
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where α represents the orientation of the fast axis of the λ/4 retarder with respect to the x-axis. 

IV. Linear polarizer: 
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where β represents the orientation of the linear polarizer with respect to the x-axis. 

The output light field can then be expressed as: 

 out linear retarder sample in=E M M M E  (21) 
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Equations 15-16 reported in the Discussion section are obtained by rearranging Equation 21, 

and applying a background normalization step (detailed in the Supporting Information). 

Dataset preparation 

The neural networks were trained using image pairs captured using both SCLPM and the 

holographic imaging systems. We used 6 clinical MSU samples for training, and 2 additional 

MSU samples for testing. To ensure that the network training can generalize to new samples, 

the slides used to train the neural network were chosen to have different concentrations of MSU 

crystals (example FOVs of each slide are shown in Supporting Information Fig. S4.3). In 

addition, a single TCA sample was used for both training and testing (where blind testing was 

performed on new regions); similarly, a single starch sample was used for blind testing. 

In order to train the neural network to learn the image transformation from a lensfree 

holographic imaging modality to a lens-based SCPLM system, an accurately co-registered 

training dataset is required. This co-registration begins by bicubic down-sampling the target 

polarization images by a factor of 0.345/0.373 (obtained with the benchtop microscope) to 

match the pixel size of the holographic microscope; the ground truth images were created using 

SCPLM with an effective pixel size of 0.345 μm, while the holographic images used as the 

network input have an effective pixel size of 0.373 μm. Next, a rough matching between the 

two sets of images is obtained by finding the overlapping area with maximum correlation 

between the amplitude channels of the images. Once the images have been roughly aligned, 

global matching is performed by applying an affine transformation calculated using 

MATLAB’s multimodal image registration framework [114]. This framework extracts features 

from the amplitude channel of the images and matches them with the affine matrix. Next, large 

fields of view were cropped, and matched to each other using an elastic pyramidal registration 

algorithm, which allows for pixel level matching [115] based upon the amplitude channel of 
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the images. As discussed above, these holograms were normalized to have an average 

background amplitude of 1, and an average background phase of 0, before being passed through 

the neural network. This normalization step helps the neural network to be applied more 

consistently to different samples. The orientation of areas of the polarization images without 

any birefringence are set to zero to eliminate noise in the labels. This is done by setting the 

orientation value of any pixel (below a threshold) in the corresponding retardance channel to 

zero.  

Neural network 

A Generative Adversarial Network (GAN) framework was used to perform the image 

transformation. In addition to this GAN loss, a mean absolute error (L1) loss was used to ensure 

that the transformation is accurate, and a total variation (TV) loss is used as a regularization 

term. GANs use two separate networks for their operation. A generator network (G(·)) is used 

to transform the holographic images into their polarization counterparts. A second network 

known as the discriminator (D(·)) is used to discriminate between the ground truth images (z) 

and the generated images (G(x)). The two networks learn from one another, with the generator 

gradually learning how to create images that match the feature distribution of the target dataset, 

while the discriminator gets better at distinguishing between ground truth images and their 

generated counterparts. 
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Figure 4.9 Network architecture. (a) Diagram of the generator portion of the network. (b) Diagram 

of the discriminator portion of the network. 

The overall loss function can be described as: 

 ( )  ( )  ( )( )( )
2

generator 1 1 2L G , TV G 1 D Gl x z x x = +  +  −  (22) 

where λ1 and λ2 are constants used to balance the various terms of the loss function. The L1 loss, 

which ensures that the transformation performed by the network is accurate, was balanced to 

make up ~25% of the total loss function, while the total variation loss makes up ~0.5% of the 

overall loss function. The L1 loss is defined as: 
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where K is the number of image channels (k =1 represents the retardance channel, and k =2 

represents the orientation channel), M and N are the number of pixels on each axis, and i and j 

represent the pixel indices of the image. The total variation loss, used to regularize the loss 

function and reduce noise is defined as: 
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In order to train the discriminator a separate loss function is used, defined as:  

 ( )( ) ( )( )
2 2

discriminator D G 1 Dl x z= + −  (25) 

Depending on the exact dataset being used and the application of interest, the relative weights 

of the different portions of these loss functions, or even the makeup of the loss function itself 

can be changed. 

The generator network uses the U-net architecture [40], as shown in Fig. 4.9(a). The U-net 

architecture is used, as this architecture has been shown to be highly effective for biological 

applications, as it can learn to transform features at multiple different scales. This U-net begins 

with a convolutional layer increasing the number of channels to 32, and is made up of four 

“down-blocks” followed by four “up-blocks”. Each down-block consists of three convolutional 

layers, which together double the number of channels. These layers are followed by an average 

pooling layer with a kernel size and stride of 2. After these down-blocks, an equal number of 

up-blocks are applied. The up-blocks begin by bilinear up-sampling the images and similarly 

apply three convolutional layers, and reduce the number of channels by a factor of four. 

Between the two sets of blocks, skip connections are added. The skip connections allow small 

scale data to pass through the network, avoiding the effects of the down-sampling by 

concatenating the output of each down-block with the input to each up-block. Following these 

blocks, a convolutional layer reduces the number of channels to two, which match the two 

channels of the polarization images. 

The discriminator network (Fig. 4.9(b)) receives the generated images or the SCPLM images, 

and attempts to distinguish between the two. The discriminator is first made up of a 

convolutional layer which increases the number of channels from 3 to 32. This is followed by 
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five blocks, each made up of two convolutional layers, the second of which doubling the 

number of channels and using a stride of two. Following these five blocks are two fully 

connected layers, which reduce the image to a single number which can have a sigmoid 

function applied to it. 

Each convolutional layer uses a kernel size of 3×3 and is followed by the leaky rectified linear 

unit (LeakyReLU) activation function which is defined as: 
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In the training phase, we used the adaptable movement estimation (Adam) optimizer, with a 

learning rate of 10-4 for the generator, and 10-5 for the discriminator. The network begins with 

the generator being trained 7 times for each training of the discriminator, with this ratio being 

reduced by 1 every 4000 iterations down to a minimum of 3. The network was trained for 

30,000 iterations of the discriminator, taking 5 hours using a standard consumer GPI. This 

training was performed using a single 2080 Ti (Nvidia), with Python version 3.6.0 and 

TensorFlow Version 1.11.0. MATLAB version R2018a was used for preprocessing. 

We also want to emphasize that, though our network model is sample type-specific, training a 

network model is a one-time effort. For each novel application scenario, a new model is 

required, which must be generated with the similar measurement and training procedures. 

However, once the new model is determined, it is ready to be distributed to a large number of 

end users, without requiring extra cost or resources. 

4.5 Appendix 

Holographic image reconstruction 

Free space propagation. Free space wave propagation [69] is performed using the following 

equation: 
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where FT{·} is the 2D Fourier transform operation, U(x, y; z) is the light field at an axial 

distance z, and H(fx, fy; z) is defined as: 
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where fx, fy are the spatial frequencies along x and y directions, respectively, λ is the wavelength, 

and n is the refractive index of the medium. 

Autofocusing. To accurately estimate the distance between the image sensor and the sample, 

an edge sparsity criterion (Tamura of the gradient (ToG)) based autofocusing is used [38]. First, 

we propagate the unfocused hologram to a series of z distances. At each distance, the ToG is 

computed, and the distance with the highest ToG is treated as the focusing distance. If the 

unfocused hologram is an amplitude only hologram (e.g. raw hologram captured using the 

image sensor), the propagation algorithm assumes zero phase by default. 

Multi-height phase recovery. To eliminate twin-image related artifacts we used an iterative 

multi-height phase recovery algorithm [34,36,116]. Raw holograms from 8 sample to sensor 

distances with ~10 μm step size were collected. The hologram at the 1st height was padded with 

a zero-phase channel, and then propagated to the 2nd height. After the axial propagation, the 

amplitude channel values are averaged with the measured amplitude channel at the 2nd height, 

where the propagated phase channel was kept unchanged. This process is continued until it has 

been propagated to the 8th height, then back to the 1st height, which defines one iteration. The 

missing phase channel of a given hologram is typically recovered after 10-30 iterations. 

Shift-and-add pixel super resolution. A super resolution algorithm [117] was used to improve 
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the resolution of each hologram prior to the multi-height phase recovery step. Thirty-six low-

resolution raw holograms at different lateral positions (6x6 with ~0.3733 μm spacing along the 

x and y directions) were collected at each sample-to-sensor distance to generate these high-

resolution holograms. To accurately estimate the relative distance between the low-resolution 

holograms, a correlation-based method was used [35]. With the distance of these shifts being 

accurately obtained, the shift-and-add super resolution algorithm was used to fuse the low-

resolution holograms into a high-resolution corresponding hologram. 

SCPLM mathematical model derivation 

The design of the single-shot computational polarized light microscopy (SCPLM) setup [97] 

is demonstrated in the main text Figure 7(c). A birefringent sample of interest is illuminated 

using left-hand circularly polarized (LHCP) light, which is obtained by placing a left-hand 

circular polarizer behind an LED illumination source. The transmitted light is recorded using 

a pixelated polarizer camera. As shown in Figure 7(a), every four pixels of the camera sensor 

utilize four different directional polarizing filters (0°, 90°, 45°, and 135°) and form a repeated 

pattern across the sensor.  

The mathematical model of the SCPLM can be formulated by Jones calculus, where the optical 

components can be expressed as: 

I. Input left-hand circularly polarized (LHCP) light: 
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in

1

2

E

i

 
=  

 
E  (29) 

where i2 = -1, E0 is the amplitude of the incident LHCP light, and LHCP is defined from the 

point of view of the receiver. 

II. Birefringent sample: 
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where η and θ represent the retardance magnitude and the slow axis orientation of the 

birefringent object. Both η and θ are spatially varying. 

III. Detector on the pixelated image sensor: 
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for four different directional polarizing filters at 0°, 45°, 90°, and 135°, respectively. 

The output light field can be expressed as: 

 out detector sample LHCP=E M M E  (32) 

Consider a pixel with 0°-orientated polarizing filter, the corresponding light field can be 

formulated as:  

 0 0
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Then the intensity value recorded by this 0°-orientated pixel can be written as: 
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0 out out outI  = E E E  (34) 

Combining Equation 33 and 34, we get: 

 
0 max

1
(1 sin sin 2 )

2
I I  = −  (35) 

where 
maxI  is a constant related to the intensity of the illumination light. Following the same 

steps, the intensity values captured by other three different orientated pixels of the image sensor 
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chip can be expressed as:  
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Gathering Equation 35 and 36, two auxiliary variables A and B can be defined as: 
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Finally, the retardance magnitude and the slow axis orientation of the birefringent object can 

be reconstructed as: 
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DL-HPM mathematical model  

The mathematical model of the deep learning-based holographic polarization microscope (DL-

HPM) which is described by Equation 21 in the main text can be expanded as: 
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(39) 

where the illumination light is normalized to have an amplitude of 1, LHCP is defined from 

the point of view of the source, α represents the orientation of the fast axis of the λ/4 retarder 
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with respect to the x-axis, β represents the orientation of the linear polarizer with respect to the 

x-axis, θ represents the orientation of the fast axis of the sample with respect to the x-axis and 

η represents the relative phase retardance. 

 

In our optical design, we selected α to be 90° without a loss of generality, and therefore we 

have: 
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Then, using the terms before the linear polarizer, we have: 

 
( )

( )

2 2

4 2
before_linear 2 2

cos sin 1 cos sin1

2 1 cos sin sin cos

i i
i i

i i

i ie e
e e

e i ie

 
 

 

   

   

− −
 + + −
 =
 − − −
 

E  (41) 

To further simplify the equation, we use Euler's formula: 
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where x and y are unit vectors pointing toward the positive x and y axis directions, respectively, 

and Ebefore_linear_x and Ebefore_linear_y are the x and y components of Ebefore_linear, defined as: 
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Since the final polarizer is a linear polarizer, the output field can be written as:  
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where k is a unit vector pointing toward the direction with β degrees with respect to the positive 

x-axis. 

Based on Equations 43-44, we get: 
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where a and b are both real and functions of θ and η that are defined by:  
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Then, the amplitude and phase of the output field can be written as: 
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where atan2(y, x) is the four-quadrant inverse tangent function for point (x, y). 

To relate these results from Equation 47 to the amplitude and phase channels obtained by the 

holographic reconstruction method, a background normalization procedure is required, where 

the background region is normalized to have a unit amplitude and zero phase. For the 

background region, the output field can be written as: 
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Thus, we have: 
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Hence, the reconstructed amplitude and phase can be expressed as: 
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Error analysis of DL-HPM 

The first direct source of error comes from the image co-registration. Any co-registration error 

negatively affects both the quantitative analysis as well as the training of the network. As was 

demonstrated in Figure 1, we used two image modalities to capture the image training and 

testing dataset. An accurate sub-pixel-level elastic co-registration algorithm is required to align 

the images from the two-imaging system. However, as the MSU crystals are much more rare 

than blood cells, the registration algorithm may focus only on aligning the cells at some certain 

regions and leaving a relatively large registration error for MSU crystals. Thus, Fig. 4.4 was 

plotted with another step of local registration to only align the individual crystal (a cross section 

without local registration is shown in Supporting Information S4.1). In addition, when the 

images used to train the network are inaccurately co-registered, the ground truth does not match 

the network input, which causes the loss function to be applied incorrectly. This in general can 

reduce the performance of the network. 

Another cause of error is revealed by examining larger crystals, as the larger crystals are more 

likely to be formed by multiple MSU crystals which are stacked or clustered next to one another. 

This can lead to a more complex relationship between the amplitude/phase channel to the 

retardance/orientation channel, as the input phase channel may start to present wrapping effects 
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and Equation 15 is insufficient to characterize the final polarization state. This is compounded 

by the fact that larger objects are the minority in the training dataset, the error in these regions 

becomes higher as is shown in the orientation channel of the example from the 20-50 μm length 

category in Fig. 4.4. 

The experimental procedure can also cause errors. Throughout the image acquisition procedure 

used to  generate both the training and testing dataset, each sample slide had to be aligned when 

moving it between two different imaging systems (each sample needs to be roughly aligned at 

the same angle relative to the polarizer-analyzer pair in each imaging system). Fig. S4.2 shows 

an example of what happens when the samples used by both the training and testing dataset are 

randomly aligned. In this figure, the reconstructed orientation channel performance is clearly 

degraded as the pseudo color does not matching the target. In addition to changes in the imaging 

procedure, if a change is made to the sample preparation procedure, the network may not 

generalize to the new sample. It is important that the network is trained using samples which 

are similar to those it is being tested on, as was shown in the results section. 

 

Figure S4.1 Comparison of cross section plots of retardance and orientation between DL-HPM output 

and SCPLM target with and without local registration. The blue curve represents the output for DL-HPM, 

while the red curve represents the target from SCPLM. 
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Figure S4.2 Result of DL-HPM when the training samples are not aligned. Color bar: from left to top to 

right, respectively, represents π, π/2, 0 Rad in the orientation channel. Retardance is represented by the 

distance from the center of the color bar, ranging from 0 to 0.4. Scale bar: 50 μm. 

MSU dataset 

The MSU dataset used for training and testing of DL-HPM contains 8 MSU slides obtained 

from different de-identified patients with different sample conditions in terms of the crystal 

density and dominant cell types. Figure S4.1 shows an example field of view for each of these 

slides obtained using the SCPLM method. 
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Figure S4.3 Example fields of view of each MSU slide used for training and testing of DL-HPM. Color 

bar: from left to top to right, respectively, represents π, π/2, 0 Rad in the orientation channel. Retardance is 

represented by the distance from the center of the color bar, ranging from 0 to 0.4. 
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Chapter 5 . Digital staining of label-free tissue using quantitative 

phase imaging 

5.1 Introduction 

Quantitative phase imaging (QPI) is a rapidly developing field, with a history of several 

decades in development [1,118]. QPI is a label-free imaging technique, which generates a 

quantitative image of the optical-path-delay through the specimen. Other than being label-free, 

QPI utilizes low-intensity illumination, while still allowing a rapid imaging time, which 

reduces phototoxicity in comparison to e.g., commonly-used fluorescence imaging modalities. 

QPI can be performed on multiple platforms and devices [5,9,18,119,120], from ultra-portable 

instruments all the way to custom-engineered systems integrated with standard microscopes, 

with different methods of extracting the quantitative phase information. QPI has also been 

recently used for the investigation of label-free thin tissue sections [1,121], which can be 

considered as a weakly scattering phase object, having limited amplitude contrast modulation 

under brightfield illumination.  

Although QPI techniques result in quantitative contrast maps of label-free objects, the current 

clinical and research gold standard is still mostly based on brightfield imaging of 

histochemically labeled samples. The staining process dyes the specimen with colorimetric 

markers, revealing cellular and sub-cellular morphological information of the sample under 

brightfield microscopy. As an alternative, QPI has been demonstrated for the inference of local 

scattering coefficients of tissue samples [121,122]; for this information to be adopted as a 

diagnostic tool, some of the obstacles include the requirement of retraining experts and 

competing with a growing number of machine learning-based image analysis 

software [123,124], which utilize vast amounts of stained tissue images to perform e.g., 

automated diagnosis, image segmentation, or classification, among other tasks. One possible 
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way to bridge the gap between QPI and standard imagebased diagnostic modalities is to 

perform digital (i.e., virtual) staining of phase images of label-free samples to match the images 

of histochemically-stained samples. One previously used method for digital staining of tissue 

sections involves the acquisition of multi-modal, nonlinear microscopy images of the samples, 

while applying staining regents as part of the sample preparation, followed by a linear 

approximation of the absorption process to produce a pseudo-Hematoxylin and Eosin (H&E) 

image of the tissue section under investigation [125–127].  

As an alternative to model-based approximations, deep learning has recently been successful 

in various computational tasks based on a data-driven approach, solving inverse problems in 

optics, such as superresolution [26,27,30], holographic image reconstruction and phase 

recovery [14,76,128,129], tomography [130], Fourier ptychographic microscopy [131], 

localization microscopy [28,29,132] and ultra-short pulse reconstruction [133], among others. 

Recently, the application of deep learning for virtual staining of autofluorescence images of 

nonstained tissue samples has also been demonstrated [66]. Following on the success of these 

previous results, here we demonstrate that deep learning can be used for digital staining of 

label-free thin tissue sections using their quantitative phase images. For this image 

transformation between the phase image of a labelfree sample and its stained brightfield image, 

which we term as PhaseStain, we used a deep neural network trained using the Generative 

Adversarial Network (GAN) framework [72]. Conceptually, PhaseStain (see Fig. 5.1) provides 

an image that is the digital equivalent of a brightfield image of the same sample after the 

chemical staining process; stated differently it transforms the phase image of a weakly 

scattering object (e.g., a label-free thin tissue section, which exhibits low amplitude modulation 

under visible light) into an amplitude object information, presenting the same color features 

that are observed under a brightfield microscope, after the chemical staining process. 

We experimentally demonstrated the success of our PhaseStain approach using label-free 
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sections of human skin, kidney and liver tissue that were imaged by a holographic microscope, 

matching the brightfield microscopy images of the same tissue sections stained with H&E, 

Jones’ stain, and Masson’s trichrome stain, respectively.  

The deep learning-based virtual-staining of label-free tissue samples using quantitative phase 

images provide another important example of the unique opportunities enabled by data-driven 

image transformations. We believe that the PhaseStain framework will be instrumental for QPI 

community to further strengthen the uses of label-free QPI techniques [134–138] for clinical 

applications and biomedical research, helping to eliminate the need for chemical staining, 

reduce sample preparation associated time, labor and related costs. 

Part of this chapter has been published in: 

Rivenson, Y., Liu, T., Wei, Z., Zhang, Y., de Haan, K., & Ozcan, A. (2019). PhaseStain: 

the digital staining of label-free quantitative phase microscopy images using deep 

learning. Light: Science & Applications, 8(1), 1-11. 

5.2 Results 

We trained 3 deep neural network models, which correspond to the 3 different combinations 

of tissue and stain types, i.e., H&E for skin tissue, Jones’ stain for kidney tissue and Masson’s 

trichrome for liver tissue. Following the training phase, these 3 trained deep networks were 

blindly tested on holographically reconstructed quantitative phase images (see the Methods 

section) that were not part of the network’s training set. Figure 2 shows our results for virtual 

H&E staining of a phase image of a label-free skin tissue section, which confirms discohesive 

tumor cells lining papillary structures with dense fibrous cores. Additional results for virtual 

staining of quantitative phase images of label-free tissue sections are illustrated in Fig. 5.3, for 

kidney (digital Jones’ staining) and liver (digital Masson’s Trichrome staining). These virtually 

stained quantitative phase images show sheets of clear tumor cells arranged in small nests with 

a delicate capillary bed for the kidney tissue section, and a virtual trichrome stain highlighting 



80 

 

normal liver architecture without significant fibrosis or inflammation, for the liver tissue 

section.  

These deep learning-based virtual staining results presented in Figs. 5.2 and 5.3 visually 

demonstrate the high-fidelity performance of the GAN-based staining framework. To further 

shed light on this comparison between the PhaseStain results and the corresponding brightfield 

images of the chemically stained tissue samples, we quantified the structural similarity (SSIM) 

index of these two sets of images using:  
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where U1, U2 are the PhaseStain output and the corresponding brightfield reference image, 

respectively, µk,i and σk,i are the mean and the standard deviation of each image Uk (k = 1,2), 

respectively, and index i refers to the RGB channels of the images. The cross-variance between 

the i-th image channels is denoted with σ1,2,i and c1, c2 are stabilization constants used to prevent 

division by a small denominator. The result of this analysis revealed that the SSIM was 0.8113, 

0.8141 and 0.8905, for the virtual staining results corresponding to the skin, kidney and liver 

tissue samples, respectively, where the analysis was performed on ~10 Megapixel images, 

corresponding to a field-of-view (FOV) of ~1.47 mm2 for each sample. 

Next, to evaluate the sensitivity of the network output to phase noise in our measurements, we 

performed a numerical experiment on the quantitative phase image of a label-free skin tissue, 

where we added noise in the following manner: 
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where   is the resulting noisy phase distribution (i.e., the image under test),   is the original 

phase image of the skin tissue sample, r is drawn from a normal distribution N(0,1) , β is the 
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perturbation coefficient, L is the Gaussian filter size/width and ∆ is the pixel size, which 

spatially smoothens the random noise into isotropic patches, as shown in Fig. 5.4. We choose 

these parameters such that the overall phase signal-to-noise-ratio (SNR) is statistically identical 

for all the cases and made sure that no phase wrapping occurs. We then used 10 random 

realizations of this noisy phase image for 4 combinations of (β, L) values to generate   which 

was used as input to our trained deep neural network. The deep network inference fidelity for 

these noisy phase inputs is reported in Fig. 5.4, which reveals that it is indeed sensitive to local 

phase variations and related noise, and it improves its inference performance as we spatially 

extend the filter size, L (while the SNR remains fixed). In other words, the PhaseStain network 

output is more impacted by small scale variations, corresponding to e.g., the information 

encoded in the morphology of the edges or refractive index discontinuities (or sharp gradients) 

of the sample. We also found that for a kernel size of L∆~3 µm, the SSIM remains unchanged 

(~0.8), across a wide range of perturbation coefficients, β. This result implies that the network 

is less sensitive to sample preparation imperfections, such as height variations and wrinkles in 

the thin tissue section, which naturally occur during the preparation of the tissue section. 

5.3 Discussion 

The training process of a PhaseStain network needs to be performed only once, following 

which, the newly acquired quantitative phase images of various samples are blindly fed to the 

pre-trained deep network to output a digitally-stained image for each label-free sample, 

corresponding to the image of the same sample FOV, as it would have been imaged with a 

brightfield microscope, following the chemical staining process. In terms of the computation 

speed, the virtual staining using PhaseStain takes 0.617 sec on average, using a standard 

desktop computer equipped with a dual-GPU for a FOV of ~0.45 mm2 , corresponding to ~3.22 

Megapixels (see the implementation details in the Methods section). This fast inference time, 

even with relatively modest computers, means that the PhaseStain network can be easily 
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integrated with a QPI-based whole slide scanner, since the network can output virtually-stained 

images in small patches while the tissue is still being scanned by an automated microscope, to 

simultaneously create label-free QPI and digitally-stained whole slide images of the samples. 

The proposed technology has the potential to save time, labor and costs, by presenting an 

alternative to the standard histochemical staining workflow used in clinical pathology. As an 

example, one of the most common staining procedures (i.e., H&E stain) takes on average ~45 

min and costs approximately $2-5, while the Masson’s Trichrome staining procedure takes ~2-

3 hours, with costs that range between $16-35, and often requires monitoring of the process by 

an expert, which is typically conducted by periodically examining the specimen under a 

microscope. In addition to saving time and costs, by circumventing the staining procedure, the 

tissue constituents would not be altered; this means the unlabeled tissue sections can be 

preserved for later analysis, such as matrix-assisted laser desorption ionization (MALDI) by 

micro-sectioning of specific areas [139] for molecular analysis or micro-marking of sub-

regions which can be labeled with specific immunofluorescence tags or tested for personalized 

therapeutic strategies and drugs [140,141]. 

While in this study we trained 3 different neural network models to obtain optimal results for 

specific tissue and stain combinations, this does not pose a practical limitation for PhaseStain, 

since we can also train a more general digital staining model for a specific stain type (e.g. H&E, 

Jones’ stain etc.) using multiple tissue types stained with it, at the cost of increasing the network 

size as well as the training and inference times [76]. Also, from clinical diagnostics perspective, 

the tissue type under investigation and the stain needed for its clinical examination are both 

known a priori, and therefore the selection of the correct neural network for each sample to be 

examined is straightforward to implement. 

It is important to note that, in addition to the lensfree holographic microscope (see the Methods 
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section) that we used in this work, PhaseStain framework can also be applied to virtually-stain 

the resulting images of various other QPI techniques, regardless of their imaging configuration, 

specific hardware or phase recovery method [1,18,33,120,142–144] that are employed. 

One of the disadvantages of coherent imaging systems is “coherence-related image artifacts”, 

such as e.g., speckle noise, or dust or other particles creating holographic interference fringes, 

which do not appear in incoherent brightfield microscopy images of the sample samples. In 

Fig. 5.5, we demonstrate the image distortions that, for example, out-of-focus particles create 

on the PhaseStain output image. To reduce such distortions in the network output images, 

coherence-related image artifacts resulting from out-of-focus particles can be digitally removed 

by using a recently introduced deep learning-based hologram reconstruction method, which 

learns, through data, to attack or eliminate twin-image artifact as well as interference fringes 

resulting from out-of-focus or undesired objects [12,14]. 

While in this manuscript we demonstrated the applicability of PhaseStain approach to fixed 

paraffinembedded tissue specimen, our approach should be also applicable to frozen tissue 

sections, involving other tissue fixation methods as well (following a similar training process 

as detailed in the Methods section). Also, while our method was demonstrated for thin tissue 

sections, QPI has been shown to be valuable to image cells and smear samples (such as blood 

and Pap smears) [1,33], and PhaseStain technique would also be applicable to digitally stain 

these types of specimen. 

To summarize, our presented results demonstrate some of the emerging opportunities created 

by deep learning for label-free quantitative phase imaging. The phase information resulting 

from various coherent imaging techniques can be used to generate a virtually stained image, 

translating the phase images of weakly scattering objects such as thin tissue sections into 

images that are equivalent to the brightfield images of the same samples, after the histochemical 
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labeling. PhaseStain framework, in addition to saving time and cost associated with the labeling 

process, has the potential to further strengthen the use of label-free QPI techniques in clinical 

diagnostics workflow, while also preserving tissues for e.g., subsequent molecular and genetic 

analysis. 

5.4 Materials and methods 

Sample preparation and imaging  

All the samples that were used in this study were obtained from the Translational Pathology 

Core Laboratory (TPCL) and were prepared by the Histology Lab at UCLA. They were 

obtained after deidentification of the patient related information and were prepared from 

existing specimen. Therefore, this work did not interfere with standard practices of care or 

sample collection procedures. 

Following formalin-fixing paraffin-embedding (FFPE), the tissue block is sectioned using a 

microtome into ~2-4 µm thick sections. This step is only needed for the training phase, where 

the transformation from a phase image into a brightfield image needs to be statistically learned. 

These tissue sections are then deparaffinized using Xylene and mounted on a standard glass 

slide using CytosealTM (ThermoFisher Scientific, Waltham, MA USA), followed by sealing 

of the specimen with a coverslip. In the learning/training process, this sealing step presents 

several advantages: protecting the sample during the imaging and sample handling processes, 

also reducing artifacts such as e.g., sample thickness variations. Following the sample 

preparation, the specimen was imaged using an on-chip holographic microscope to generate a 

quantitative phase image (detailed in the next sub-section).  

Following the QPI process, the label-free specimen slide was put into Xylene for ~48 hours, 

until the coverslip can be removed without introducing distortions to the tissue. Once the 

coverslip is removed the slide was dipped multiple times in absolute alcohol, 95% alcohol and 
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then washed in D.I. water for ~1 min. Following this step, the tissue slides were stained with 

H&E (skin tissue), Jones’ stain (kidney tissue) and Masson’s trichrome (liver tissue) and then 

coverslipped. These tissue samples were then imaged using a brightfield automated slide 

scanner microscope (Aperio AT, Leica Biosystems) with a 20×/0.75NA objective (Plan Apo), 

equipped with a 2× magnification adapter, which results an effective pixel size of ~0.25 µm. 

Quantitative phase imaging  

Lensfree imaging setup: Quantitative phase images of label-free tissue samples were acquired 

using an in-line lens-free holography setup [33]. A light source (WhiteLase Micro, NKT 

Photonics) with a center wavelength at 550 nm and a spectral bandwidth of ~2.5nm was used 

as the illumination source. The uncollimated light emitted from a single-mode fiber was used 

for creating a quasi-plane-wave that illuminated the sample. The sample was placed between 

the light source and the CMOS image sensor chip (IMX 081, Sony, pixel size of 1.12 µm) with 

a source-to-sample distance (z1) of 5~10 cm and a sample-to-sensor distance (z2) of 1-2 mm. 

This on-chip lensfree holographic microscope has submicron resolution with an effective pixel 

size of 0.37 µm, covering a sample FOV of ~20 mm2 (which accounts for the entire active area 

of the sensor). The positioning stage (MAX606, Thorlabs, Inc.), that held the CMOS sensor, 

enabled 3D translation of the imager chip for performing pixel super-resolution (PSR) [5,17,33] 

and multi-height based iterative phase recovery [10,33]. All imaging hardware was controlled 

automatically by LabVIEW. 

Pixel super-resolution (PSR) technique: To synthesize a high-resolution hologram (with a 

pixel size of ~0.37 µm) using only the G1 channel of the Bayer pattern (R, G1, G2, and B), a 

shift-and-add based PSR algorithm was applied [17,145]. The translation stage that holds the 

image sensor was programmed to laterally shift on a 6×6 grid with sub-pixel spacing at each 

sample-to-sensor distance. A low-resolution hologram was recorded at each position and the 
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lateral shifts were precisely estimated using a shift estimation algorithm [33]. This step results 

in 6 non-overlapping panels that were each padded to a size of 4096×4096 pixels, and were 

individually phase-recovered, which is detailed next. 

Multi-height phase recovery: Lensfree in-line holograms at eight sample-to-sensor distances 

were captured. The axial scanning step size was chosen to be 15 µm. Accurate z-steps were 

obtained by applying a holographic autofocusing algorithm based on the edge sparsity criterion 

(“Tamura of the gradient”, i.e., ToG) [38]. A zero-phase was assigned to the object intensity 

measurement as an initial phase guess, to start the iterations. An iterative multi-height phase 

recovery algorithm41 was then used by propagating the complex field back and forth between 

each height using the transfer function of freespace [34]. During this iterative process, the 

phase was kept unchanged at each axial plane, where the amplitude was updated by using the 

square-root of the object intensity measurement. One iteration was defined as propagating the 

hologram from the 8th height (farthest from the sensor chip) to the 1st height (nearest to the 

sensor) then back propagating the complex field to the 8th height. Typically, after 10-30 

iterations the phase is retrieved. For the final step of the reconstruction, the complex wave 

defined by the converged amplitude and phase at a given hologram plane was propagated to 

the object plane [4], from which the phase component of the sample was extracted. 

Data preprocessing and image registration  

An important step in our training process is to perform an accurate image registration, between 

the two imaging modalities (QPI and brightfield), which involves both global matching and 

local alignment steps. Since the network aims to learn the transformation from a label-free 

phase retrieved image to a histochemically-stained brightfield image, it is crucial to accurately 

align the FOVs for each input and target image pair in the dataset. We perform this cross-

modality alignment procedure in four steps; steps 1,2 and 4 are done in Matlab (The 
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MathWorks Inc., Natick, MA, USA) and step 3 involves TensorFlow.  

The first step is to find a roughly matched FOV between QPI and the corresponding brightfield 

image. This is done by first bicubic down-sampling the whole slide image (WSI) (~60k by 60k 

pixels) to match the pixel size of the phase retrieved image. Then, each 4096×4096-pixel phase 

image was cropped by 256 on each side (resulting in an image with 3584×3584 pixels) to 

remove the padding that is used for the image reconstruction process. Following this step, both 

the brightfield and the corresponding phase images are edge extracted using the Canny 

method [146], which uses double threshold to detect strong and weak edges on the gradient of 

the image. Then, a correlation score matrix is calculated by correlating each 3584x3584-pixel 

patch of the resulting edge image to the same size as the image extracted from the brightfield 

edge image. The image with the highest correlation score indicates a match between the two 

images, and the corresponding brightfield image is cropped out from the WSI. Following this 

initial matching procedure, the quantitative phase image and the brightfield microscope images 

are coarsely matched. 

The second step is used to correct for potential rotations between these coarsely matched image 

pairs, which might be caused by a slight mismatch in the sample placement during the two 

image acquisition experiments (which are performed on different imaging systems, 

holographic vs. brightfield). This intensity-based registration step correlates the spatial patterns 

between the two images; phase image that is converted to unsigned integer format and the 

luminance component of the brightfield image were used for this multimodal registration 

framework implemented in Matlab. The result of this digital procedure is an affine 

transformation matrix, which is applied to the brightfield microscope image patch, to match it 

with the quantitative phase image of the same sample. Following this registration step, the 

phase and the corresponding brightfield images are globally aligned. A further crop of 64 pixels 

on each side to the aligned image pairs is used to accommodate for a possible rotation angle 
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correction.  

The third step involves the training of a separate neural network that roughly learns the 

transformation from quantitative phase images into stained brightfield images, which can help 

the distortion correction between the two image modalities in the fourth/final step. This neural 

network has the same structure as the network that was used for the final training process (see 

the next sub-section on GAN architecture and its training) with the input and target images 

obtained from the second registration step discussed earlier. Since the image pairs are not well 

aligned yet, the training is stopped early at only ~2000 iterations to avoid a structural change 

at the output to be learnt by the network. The output and target images of the network are then 

used as the registration pairs in the fourth step, which is an elastic image registration algorithm, 

used to correct for local feature registration [27]. 

GAN architecture and training  

The GAN architecture that we used for PhaseStain is detailed in Table 5.1. Following the 

registration of the label-free quantitative phase images to the brightfield images of the 

histochemically stained tissue sections, these accurately aligned fields-of-view were 

partitioned to overlapping patches of 256×256 pixels, which were then used to train the GAN 

model. The GAN is composed of two deep neural networks, a generator and a discriminator. 

The discriminator network’s loss function is given by: 

 
2 2

discriminator input label( ( )) (1 ( ))l D G x D z= + −
 (53) 

where D(.) and G(.) refer to the discriminator and generator network operator, input x denotes 

the input to the generator, which is the label-free quantitative phase image, and zlabel denotes 

the brightfield image of the chemically stained tissue. The generator network, G, tries to 

generate an output image with the same statistical features as label zlabel, while the discriminator, 

D, attempts to distinguish between the target and the generator output images. The ideal 
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outcome (or state of equilibrium) will be when the generator’s output and target images share 

an identical statistical distribution, where in this case, D(G(xinput)) should converge to 0.5. For 

the generator deep network, we defined the loss function as: 

 

2

generator 1 label input input input{ , ( )} TV{ ( )} (1 ( ( )))l L z G x G x D G x = +  +  −
 (54) 

where L1{.} term refers to the absolute pixel by pixel difference between the generator output 

image and its target, TV{.} stands for the total variation regularization that is being applied to 

the generator output, and the last term reflects a penalty related to the discriminator network 

prediction of the generator output. 

The regularization parameters (λ, α) were set to 0.02 and 2000 so that the total variation loss 

term, λ ×TV {G (xinput) } , was ~2% of the L1 loss term, and the discriminator loss term, input 

2 α ×  (1-D (G(xinput))) was ~98% of the total generator loss, generator lgenerator. 

For the generator deep neural network, we adapted the U-net architecture [147], which consists 

of a downsampling and an up-sampling path, with each path containing 4 blocks forming 4 

distinct levels (see Table 5.1). In the down-sampling path, each residual block consists of 3 

convolutional layers and 3 leaky rectified linear (LReLU) units used as an activation function, 

which is defined as: 

 

for 0
ReLU( )

0.1 otherwise

x x
L x

x


= 
  (55) 

 

At the output of each block, the number of channels is 2-fold increased (except for the first 

block that increases from 1 input channel to 64 channels). Blocks are connected by an average-

pooling layer of stride 2 that down-samples the output of the previous block by a factor of 2 

for both horizontal and vertical dimensions (as shown in Table 5.1). 
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In the up-sampling path, each block also consists of 3 convolutional layers and 3 LReLU 

activation functions, which decrease the number of channels at its output by 4-fold. Blocks are 

connected by a bilinear up-sampling layer that up-samples the size of the output from the 

previous block by a factor of 2 for both lateral dimensions. A concatenation function with the 

corresponding feature map from the downsampling path of the same level is used to increase 

the number of channels from the output of the previous block by 2. The two paths are connected 

in the first level of the network by a convolutional layer which maintains the number of the 

feature maps from the output of the last residual block in the downsampling path (see Table 

5.1). The last layer is a convolutional layer that maps the output of the upsampling path into 3 

channels of the YCbCr color map. 

The discriminator network consists of one convolutional layer, 5 discriminator blocks, an 

average pooling layer and two fully connected layers. The first convolutional layer receives 3 

channels (YCbCr color map) from either the generator output or the target, and increases the 

number of channels to 64. The discriminator blocks consist of 2 convolutional layers with the 

first layer maintaining the size of the feature map and the number of channels, while the second 

layer increases the number of channels by 2- fold and decreases the size of the feature map by 

4-fold. The average pooling layer has a filter size of 8×8, which results in a matrix with a size 

of (B, 2048), where B refers to the batch size. The output of this average pooling layer is then 

fed into two fully connected layers with the first layer maintaining the size of the feature map, 

while the second layer decreases the output channel to 1, resulting in an output size of (B, 1). 

The output of this fully connected layer is going through a sigmoid function indicating the 

probability that the 3-channel discriminator input is drawn from a chemically stained 

brightfield image. For the discriminator network, all the convolutional layers and fully 

connected layers are connected by LReLU nonlinear activation functions. 

Throughout the training, the convolution filter size was set to be 3×3. For the patch generation, 
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we applied data augmentation by using 50% patch overlap for the liver and skin tissue images, 

and 25% patch overlap for the kidney tissue images (see Table 5.2). The learnable parameters 

including filters, weights and biases in the convolutional layers and fully connected layers are 

updated using an adaptive moment estimation (Adam) optimizer with learning rate 1×10-4 for 

the generator network and 1×10-5 for the discriminator network. 

For each iteration of the discriminator, there were v iterations of the generator network; for 

liver and skin tissue training, v = max(5, floor(7-w/2)) where we increased w by 1 for every 

500 iterations (w was initialized as 0). For the kidney tissue training, we used v = max(4, 

floor(6-w/2)) where we increased w by 1 for every 400 iteration. This helped us to train the 

discriminator not to overfit to the target brightfield images. We used a batch size of 10 for the 

training of liver and skin tissue sections, and 5 for the kidney tissue sections. The network’s 

training stopped when the validation set’s L1-loss did not decrease after 4000 iterations. A 

typical convergence plot of our training is shown in Fig. 5.6.  

Implementation details  

The number of image patches that were used for training, the number of epochs and the training 

schedules are shown in Table 5.2. The network was implemented using Python version 3.5.0, 

with TensorFlow framework version 1.7.0. We implemented the software on a desktop 

computer with a Core i7-7700K CPU @ 4.2GHz (Intel) and 64GB of RAM, running a 

Windows 10 operating system (Microsoft). Following the training for each tissue section, the 

corresponding network was tested with 4 image patches of 1792×1792 pixels with an overlap 

of ~7%. The outputs of the network were then stitched to form the final network output image 

of 3456×3456 pixels (FOV ~1.7 mm2), as shown in e.g., Fig. 5.2. The network training and 

testing were performed using dual GeForce GTX 1080Ti GPUs (NVidia). 
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Figure 5.1 PhaseStain workflow. Quantitative phase image of a label-free specimen is virtually stained by a 

deep neural network, bypassing the standard histochemical staining procedure that is used as part of clinical 

pathology. 
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Figure 5.2 Virtual H&E staining of label-free skin tissue using PhaseStain framework. 
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Figure 5.3 PhaseStain based virtual staining of label-free kidney tissue (Jones’ stain) and liver tissue 

(Masson’s Trichrome). 
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Figure 5.4 (a) PhaseStain results for noisy phase input images (ground truth shown in Fig. 5.2). Top row: 

L∆~0.373 µm; second row: L∆~3 µm. (b) Analysis of the impact of phase noise on the inference quality of 

PhaseStain (quantified using SSIM), as a function of the Gaussian filter length, L (see Eq. 52). 
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Figure 5.5 The impact of holographic fringes resulting from out-of-focus particles on the deep neural 

network’s digital staining performance. 

 

Figure 5.6 PhaseStain convergence plots for the validation set of the digital H&E staining of the skin tissue. 

(a) L1-loss with respect to the number of iterations. (b) Generator loss, generator ℓ with respect to the number of 

iterations. 
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Chapter 6 . Rare cell detection using holographic time-lapse 

imaging 

6.1 Introduction 

Rare cell detection aims to identify a sufficient number of low-abundance cells within a vast 

majority of background cells, which typically requires the processing of large volumes of 

biological sample. The detection and enumeration of these rare cells are vital for disease 

diagnostics, the evaluation of disease progression, and the characterization of immune 

response. [148–150] For instance, circulating foetal cells present in maternal blood are 

recognized as a source of foetal genomic DNA, and their isolation is crucial for the 

implementation of routine prenatal diagnostic testing. [151] As another example, antigen-

specific T cells in peripheral blood play a central role in mediating immune response and the 

formation of immunological memory, which could lead to the prediction of immune protection 

and diagnosis of immune-related diseases. [152] Circulating endothelial cells with a mature 

phenotype are increased in patients with certain types of cancer and several pathological 

conditions, indicating their potential as disease markers. [153] Circulating tumour cells (CTCs) 

are implicated in various stages of cancer and have therefore been collected to study their role 

in the metastatic cascade and to predict patient outcomes from both the disease and treatments 

received. [154] To highlight yet another example, haematopoietic stem and progenitor cells, 

which reside predominantly in bone marrow with low numbers, also found in peripheral blood, 

possess the unique capacity for self-renewal and multilineage differentiation, and their 

trafficking in blood may be connected to disease processes. [155]  

The specific and sensitive detection of these rare cells in human blood and other bodily fluids 

is therefore of great interest. However, millions of events need to be acquired to obtain a 

sufficient number of these low-abundance cells (e.g., typically <1000 target cells per millilitre 
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of blood [156]). The direct detection of rare cells from whole blood requires the processing of 

large amounts of patient sample (e.g., up to a few hundred millilitres [157]), which is both 

unrealistic and time consuming. To alleviate this issue, highly specific labelling methods are 

often used before detection for sample purification/enrichment to facilitate rapid detection and 

processing. [152,157] Among these labelling techniques, the use of colloidal magnetic particles 

as labelling reagents offers benefits in forming stable suspensions, fast reaction kinetics, [157] 

and minimum damage to the target cells, with high viability retained. [158] 

Motivated by these important needs and the associated challenges, various technologies have 

been developed and employed for detecting rare cells in blood. Most of these existing detection 

methods involve three steps: capture, enrichment and detection. [159] The capture and 

enrichment steps use a number of methods, such as barcoded particles, [160] magnetic 

beads, [161] micro-machines, [162] microfluidic chips, [163] and density gradient 

centrifugation. [159,164] Following the enrichment step, these rare cells can be detected via 

commonly used techniques such as immunofluorescence, [165,166] electrical impedance, [167] 

and Raman scattering [168] measurements, among others. Notably, commercial products for 

rare cell detection, such as the CellSearch system, [169] which automates magnetic labelling, 

isolation, fluorescence labelling, and automated counting, are generally high-cost, limiting 

their adoption worldwide. [159] Therefore, cost-effective, reliable and high-throughput rare 

cell detection techniques are urgently needed to improve the early diagnosis of diseases, 

including cancer, so that earlier treatments can be carried out, helping us to improve patient 

outcomes while also reducing healthcare costs. [170,171] 

The recent advances in machine learning and, specifically, deep learning have pushed the 

frontiers of biomedical imaging and image analysis, [128,172–184] enabling rapid and 

accurate pathogen detection [185–188] and computer-assisted diagnostic methods. [189–193] 

Powered by deep learning, we demonstrate here that speckle imaging using lensless chip-scale 
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microscopy can be employed for the specific and sensitive detection of rare cells in blood with 

low cost and high throughput. This novel cell detection and cytometry technique is based on 

magnetically modulated lensless speckle imaging, which specifically labels rare cells of 

interest using magnetic particles attached to surface markers of interest and generates periodic 

and well-controlled motion on target cells by alternating the external magnetic field applied to 

a large sample volume. The holographic diffraction and the resulting speckle patterns of the 

moving cells are then captured using a compact and cost-effective on-chip lensless imager (Fig. 

6.1) and are computationally analysed by a deep-learning-based algorithm to rapidly detect and 

accurately identify the rare cells of interest in a high-throughput manner based on their unique 

spatio-temporal features. Although previous work has employed the idea of using magnetic 

modulation for enhancing fluorescence detection, [194,195] our work is the first of its kind for 

combining magnetic modulation, lensless imaging and deep learning to create a unique 

cytometer that does not require additional labelling (e.g., fluorescence) or custom-designed 

molecular probes. 

 

Figure 6.1 Schematics and photos of the computational cytometer. (a) A magnetically modulated lensless 

imaging module (inset) that includes a lensless holographic microscope and two electromagnets driven by 
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alternating currents with opposite phase. The fluid sample that contains magnetic-bead-conjugated cells of interest 

is loaded into a capillary tube. The imaging module is mounted to a linear motion stage to scan along the sample 

tube to record holographic images of each section of the tube. (b) A laptop computer is used to control the device 

and acquire data. A function generator and a power supply, together with custom-designed circuitry, are used to 

provide the power and driving current for the linear motion stage and electromagnets.  

As shown in Fig. 6.1, we built a portable prototype of this computational cytometer for rare 

cell detection. Our magnetically modulated speckle imaging module includes a lensless in-line 

holographic microscope [51,52,55,60,187,196–199] and two oppositely positioned 

electromagnets (Fig. 6.1a-b inset). The lensless microscope contains a laser diode (650 nm 

wavelength) to illuminate the sample from ~5-10 cm above, and a complementary metal–

oxide–semiconductor (CMOS) image sensor is placed ~1 mm below the sample for acquisition 

of a high-frame-rate video to monitor the spatio-temporal evolution of the sample containing 

the target cells of interest. Because the light-source-to-sample distance is much greater than the 

sample-to-image-sensor distance, the optical design has a unit magnification, and the field of 

view (FOV) of a single image is equal to the active area of the image sensor (which can be 10-

30 mm2 using the standard CMOS imagers employed in digital cameras and mobile phones). 

To increase the screening throughput, target cells are enriched using magnetic separation and 

loaded inside a capillary tube for imaging (Figs. 6.1-6.2). Magnetic enrichment alone leads to 

a background of unlabelled cells, bead clusters, or weakly labelled cells that are also captured, 

such that further discrimination of the target cells within this background information is needed 

to accurately identify and count the rare cells. The imaging module is mounted onto a custom-

made linear translation stage and is translated along the direction of the sample tube to capture 

a holographic video for each section of the sample tube. During the imaging at each section, 

the electromagnets are supplied with alternating current with a 180° phase difference to exert 

an alternating pulling force to the magnetic-bead-conjugated cells in the sample, which causes 

them to oscillate at the same frequency as the driving current. Extension rods made of 
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permalloy were designed and utilized to enhance the magnetic force at the sample location by 

~40-fold (see the Methods section and Fig. S6.1). The holographic diffraction patterns that are 

cast by the magnetically modulated target cells are captured using the image sensor and are 

transferred to a laptop computer. A computational motion analysis (CMA) algorithm [187] and 

a densely connected pseudo-3D convolutional neural network structure (P3D CNN) [200] then 

analyse the holographic image sequence that contains the 3D dynamic information from the 

oscillating cells, which allows rapid and specific detection of the target cells. 

The current prototype (Fig. 6.1) screens ~0.942 mL of fluid sample, corresponding to ~1.177 

mL of whole blood sample before enrichment, in ~7 min (Fig. 6.2), while costing only ~$750 

for the raw materials (excluding the function generator, power supply and laptop computer) 

and weighing ~2.1 kg. The platform with a single imaging channel can be expanded to parallel 

imaging channels by mounting several imaging modules onto the same linear stage, as shown 

in Fig. 6.1a (semi-translucent illustrations). 

Part of this chapter has been published in: 

Zhang, Y., Ouyang, M., Ray, A., Liu, T., Kong, J., Bai, B., ... & Tsai, K. (2019). 

Computational cytometer based on magnetically modulated coherent imaging and deep 

learning. Light: Science & Applications, 8(1), 1-15. 
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Figure 6.2 Sample preparation and imaging procedures. The sample preparation time before scanning is 

approximately 1 hour, with the first 30 min dedicated to passive incubation, which does not require supervision.  

The performance of our technique was tested by detecting a model rare cell system of spiked 

MCF7 cancer cells in human blood. We demonstrate that our technique has a limit of detection 

(LoD) of 10 cells per mL of whole blood using only a single imaging channel. Because the 

current LoD is mainly limited by the screening volume, we expect that the LoD can be further 

improved by including additional parallel imaging channels and increasing the sample volume 

that is screened. 

6.2 Results  

Characterization of the oscillation of bead-cell conjugates under alternating magnetic force 

Our detection technique capitalizes on the periodic oscillatory motion of the target cells of 
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interest, with a large number of labelling magnetic particles, to specifically detect them with 

high throughput. We designed a magnetic actuator to exert periodic and alternating magnetic 

force on the magnetic particles bound to these cells of interest (Fig. 6.1). To exert sufficient 

magnetic force on each labelled cell, we designed and machined extension rods that were made 

with magnetically soft permalloy, which were attached to the electromagnets to enhance the 

magnetic force at the sample location by ~40-fold with minimal magnetic hysteresis (see the 

Methods section and Fig. S6.1). 

The movement of MCF7 cells conjugated with Dynabeads was recorded by mounting the 

magnetic actuator and the labelled cells onto a 40× 0.6NA benchtop microscope (see Fig. 6.3). 

The sample preparation procedure is depicted in Fig. 6.2, where the Dynabead-conjugated cells 

were suspended in a methyl cellulose solution (a viscous fluid) and were subjected to 

alternating magnetic fields with a period of 1 s and a square-wave driving current. As shown 

in Figs. 6.3a-o, due to the high viscosity of the methyl cellulose solution, the labelled cells 

mainly demonstrated 3D rotational motion. Typically, the motion of a labelled cell starts at the 

beginning of a cycle of the magnetic field (e.g., t = 0.5 s), approaching a steady state (e.g., t = 

1.0 s) before the magnetic field switches its direction and the cell rotates in the reverse direction 

(e.g., between t = 1.0 s and t = 1.5 s). The two extreme positions of the rotational motion are 

demonstrated in Fig. 6.3p by overlaying the images captured at t = 0.5 s and t = 1.0 s using 

magenta and green, respectively. 
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Figure 6.3 Dynabead-conjugated MCF7 cells demonstrate periodic rotational motion under an alternating 

magnetic force field. Images were acquired using a 40× 0.6NA benchtop microscope. a-o Snapshots of three 

Dynabead-conjugated MCF7 cells at different time points within a period of oscillation (period = 1 s). p Images 

taken at the two extrema of the oscillation (t = 0.5 s and t = 1.0 s) were fused together to demonstrate the movement, 

where the grey regions in the fused image represent the consistency between the two images and the 

magenta/green colours represent the differences of the two images. Magenta  represents the first image (t = 0.5 s), 

and green represents the second image (t = 1.0 s).  

Various unbound magnetic beads and bead clusters are also observed within the sample (Fig. 

6.3p reports some examples, marked with text and arrows), which also oscillate at the same 

frequency as that of the bead-conjugated target cells. If not handled properly, these might form 

a major cause of false positives. However, the spatio-temporal dynamics of bead-conjugated 

cells significantly differ from those of unbound beads and bead clusters (see the following 

subsections and the Methods section). For a given amount of magnetic driving force, the bead-

conjugated cells are subjected to more inertia and viscous drag, which is manifested by a slower 

response to the magnetic field, i.e., a slower rotational motion. In addition, magnetic beads 

typically form chains when they cluster under an external magnetic field, and these chains 
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exhibit a swinging motion under the alternating magnetic field. This contrasts with the 3D 

rotational motion, i.e., the “rolling” motion associated with the bead-conjugated cells. These 

intricate spatio-temporal dynamic features, in addition to morphological differences, are 

utilized by a subsequent classification step (based on a deep neural network) to achieve higher 

accuracy and eliminate false positive detections, as will be detailed in the following subsections 

and the Methods section. 

Cell detection and classification using CMA and deep learning 

The sample, which contains the periodically oscillating target cells and other types of unwanted 

background particles, is illuminated with coherent light. The interference pattern recorded by 

the CMOS image sensor represents an in-line hologram of the target cells, which is partially 

obscured by the random speckle noise resulting from the background particles, including other 

unlabelled cells, cell debris and unbound magnetic particles. Recorded at 26.7 frames per 

second using the CMOS image sensor, these patterns exhibit spatio-temporal variations that 

are partially due to the controlled cell motion. This phenomenon is exploited for the rapid 

detection of magnetic-bead-conjugated rare cells from a highly complex and noisy background. 

Figs. 6.4a-g show the detailed computational steps for the preliminary screening of cell 

candidates from a raw holographic image sequence. First, a computational drift correction step 

mitigates the overall drift of the sample between frames. Then, a high-pass filtered back-

propagation step using the angular spectrum method [201] calculates the holographic images 

at different axial distances within the 3D sample. A CMA step analyses the differences among 

the frames to enhance the 3D contrast for periodically moving objects that oscillate at the 

driving frequency and employs time averaging to suppress the random speckle noise caused by 

background particles. This is then followed by a maximum intensity projection and threshold-

based detection to locate potential cell candidates.  
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Figure 6.4 Computational detection of rare cells. a-c Preliminary screening of the whole FOV to detect 

candidates for target cells (MCF7). At each scanning position, 120 frames of raw holograms were taken at 26.7 

frames per second. Computational drift correction was applied to mitigate the horizontal shift caused by the fluid 

drift, where the vertical movement caused by the magnetic field was kept unmodified. The lateral position of each 

MCF7 candidate was located by CMA, maximum intensity projection and threshold-based detection. d-g 

Zoomed-in preliminary processing for the example region labelled ① in b-c. h-k Classification process for the 

two cell candidates labelled ① and ② in c. The axial location for each cell candidate was determined by 

autofocusing. A video was formed for each cell candidate by propagating each frame to the in-focus plane. The 

classification was performed by a densely connected P3D convolutional neural network, as detailed in the 

Methods section. 
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The cell candidates that are detected in this preliminary screening step contain a large number 

of false positives, which mainly result from unbound magnetic beads that form clusters under 

the external magnetic field. Therefore, we employ another classification step (Fig. 6.4h-k) to 

improve the specificity of our final detection. For this classification step, we choose to use a 

densely connected P3D CNN structure to classify the holographic videos to exploit the spatial 

and temporal information encoded in the captured image sequence. The densely connected P3D 

CNN structure is modified based on a recently proposed CNN structure [200] by adding dense 

connections. [202] Compared to other machine learning techniques, the use of a deep neural 

network for video classification is typically more powerful, and the network can be retrained 

to classify other types of cells or objects of interest. [200,203] 

An autofocusing step [70,204] is applied to each candidate object to create an in-focus 

amplitude and phase video, which is then classified (as positive/negative) by a densely 

connected P3D CNN. These classification results are used to generate the final rare cell 

detection decisions and cell concentration measurements. The CNN was trained and validated 

with manually labelled video clips generated from ten samples that were used solely for 

creating the training/validation datasets. This training needs to be performed only once for a 

given type of cell-bead conjugate (for details, refer to the Methods section). 

Evaluation of system performance 

To quantify the LoD of our platform for detecting MCF7 cells in human blood, we spiked 

cultured MCF7 cells in whole blood at various concentrations and used our technique to detect 

the spiked MCF7 cells. Using spiked samples instead of clinical samples provides a well-

defined system to characterize and quantify the capabilities of our platform, which is an 

important step before moving to clinical samples in the future. 

In each experiment, 4 mL of MCF7-spiked whole human blood at the desired concentration 
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was prepared. Then, the procedure in Fig. 6.2 was followed to perform magnetic separation 

and embed the recovered cells in the viscous methyl cellulose medium, resulting in ~3.2 mL 

of final sample volume. This prepared sample was then loaded into a disposable capillary tube 

to be screened by our computational cytometer. Because the capillary tube length is designed 

to be longer than the range of the motion of the linear stage and because the capillary tube was 

wider than the width of the CMOS sensor, the actual imaged volume per test (within the sample 

tube) is ~0.942 mL, which corresponds to ~1.177 mL of the blood sample before the 

enrichment process.  

MCF7 concentrations of 0 mL-1 (negative control), 10 mL-1, 100 mL-1 and 1000 mL-1 were 

tested, where three samples for each concentration were prepared and independently measured. 

Fig. 6.5 shows the results of the blind testing of our technique using serial dilution experiments. 

The blue data points correspond to a one-time testing result, where the error bars correspond 

to the standard deviations of the three detected concentrations at each spiked concentration. 

Without the detection of any false positives in the negative control samples, our technique was 

able to consistently detect MCF7 cells from 10 mL-1 samples, measuring a target cell 

concentration of 1.98±1.06 mL-1. At this low concentration (10 cells/mL), the detection rate 

was approximately 20%. The experimentally measured detection rate dropped to ~5% at a 

higher concentration of 1000 cells/mL. 

Because the training of the deep neural network inherently includes randomness, we further 

evaluated the repeatability of our network training process. For this, we randomly and equally 

divided our training data into five subsets, and then we trained five individual networks by 

assigning one different subset as the validation dataset and the combination of the remaining 

four subsets as the training dataset. Each of the five networks was blind tested to generate the 

serial dilution results. The mean and standard deviation of the detected concentrations resulting 

from the five networks are shown in Fig. 6.5 (orange data points; for each trained network, 
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three detected concentrations are averaged at each spiked concentration). Overall, good 

consistency between the different network results is observed. 

 

Figure 6.5 Quantification of the LoD of our computational cytometer based on magnetically modulated 

lensless speckle imaging for the detection of MCF7 cells in whole blood. The axes are a hybrid of logarithmic 

and linear scales to permit 0 cells/mL to be shown in the same plot. The blue data points represent one-time testing 

results of a single trained P3D CNN. The error bars represent the respective standard deviation of the three 

repeated tests at each spiked target cell concentration. The orange data points represent the averaged testing results 

using five P3D CNNs that were individually trained on a different subset of data. The error bars represent the 

standard deviation resulting from the detections of the five individual networks; for each trained network, three 

detected concentrations are averaged at each spiked concentration. 

The underdetection behaviour of our system is due to a combination of both systematic errors 

and random factors. A major reason for underdetection is the tuning of the classification 

network. In the preliminary screening step, because there are typically a large number of false 

positive detections and a low number of true positive detections (since the target cells are quite 
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rare), our classifier must be tuned to have an extremely low false positive rate (FPR) to have a 

low LoD. To satisfy this, we applied a widely adopted method for tuning our classifier, [205] 

where we selected a decision threshold based on the training/validation dataset, which leads to 

a zero FPR (see the Methods section for details). However, an inevitable side effect of reducing 

the FPR is a reduction in the true positive rate (TPR). Based on the validation results, when a 

decision threshold of 0.999999 was used, the TPR dropped to 10.5%. This explains a major 

portion of the reduced detection rate that we observed in the serial dilution tests (Fig. 6.5). 

Another systematic error that contributes to the underdetection is the imperfect recovery rate 

of MCF7 cells during the enrichment. We experimentally quantified the recovery rate of MCF7 

cells using Dynabeads to be ~85% (Table S6.1). 

The remainder of the underdetection and fluctuations in the detection rate at different 

concentrations may be associated with various other factors, e.g., sample handling errors 

(especially at low cell concentrations), clustering of the target cells, and non-uniform labelling 

of cells with magnetic beads. In fact, MCF7 cells are known to form clusters and have thus 

been extensively used for preparing in vitro tumour models. [206,207] In an experiment where 

we spiked MCF7 cells at a concentration of 1.1×105/mL (Table S6.1), we observed that ~50% 

of the MCF7 cells formed clusters after enrichment. However, the amount of clustering is 

expected to be lower at decreased MCF7 concentrations, which partially explains our reduced 

detection efficiency at higher cell concentrations. This clustering of cells not only reduces the 

overall number of target entities but may also exhibit changes in their oscillation patterns and 

may be misclassified by our classifier. 

6.3 Discussion 

The presented computational cytometry technique may be applied for the detection of various 

types of rare cells in blood or other bodily fluids using appropriately selected ligand-coated 

magnetic beads. There are several advantages of our magnetically modulated speckle imaging 
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technique. The first important advantage is its ability to detect target rare cells without any 

additional modification, such as labelling with fluorescent or radioactive compounds, unlike 

the vast majority of the existing techniques. The same magnetic beads that are used for 

capturing and isolating target cells from whole blood are also used for periodic cell modulation 

and specific detection within a dense background. False positives are mitigated by identifying 

the controlled spatio-temporal patterns associated with the labelled target cells through a 

trained deep neural network. 

Compared to existing approaches, our technique also has the advantages of a relatively low 

LoD, rapid detection and low cost, which makes it suitable for the sensitive detection of rare 

cells in resource-limited settings. For example, fluorescence imaging and Raman microscopy 

have been widely used to detect rare cells and have been shown to have very low LoDs (e.g., 

~1 cell/mL), [159,208,209] but they are typically limited by a high system cost and complexity. 

To address this issue, a low-cost fluorescence system for detecting rare cells was introduced 

by Balsam et al., [210] which detects fluorescently labelled cells flowing in a fluidic channel 

using laser excitation and a low-cost camera for imaging. They demonstrated an LoD 

comparable to ours (~10 mL-1) for SYTO-9-labelled THP-1 monocytes in whole blood. 

However, the use of fluorescence labelling can suffer from the drawback of photobleaching. 

As another notable example for sensitive and cost-effective rare cell detection, Issadore et al. 

proposed using Hall sensors to detect magnetic-bead-labelled target cells in a microfluidic 

channel and demonstrated a high sensitivity in detecting CTCs. [211] However, their technique 

requires a relatively long detection time (2.5 hours) and a strong expression of biomarkers in 

target cells. Other rare cell detection technologies, such as chemiluminescence detection based 

on aptamer-specific cell capture [212] and DNA-oriented shaping of cell features [213], have 

also been reported, but their capabilities were demonstrated using only cell mixtures in a buffer 

solution with limited throughput, i.e., 3 µL [212] or 500 µL [213] cell solution per batch. 
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In our approach, while deep-learning-based classification is instrumental to achieving high 

detection accuracy, it needs to be retrained on different types of cells, which requires collecting 

and labelling a large amount of data for each new type of target cell. This is a disadvantage of 

our approach; however, preparing the training data and manually labelling the target cells is 

not prohibitively time consuming, and it needs to be performed only once –, i.e., during the 

training phase. For example, when we prepared the training/validation data for MCF7 cells, we 

used 10 experiments to create a manually labelled library containing 17,447 videos of candidate 

cells (including positives and negatives). The manual labelling process took approximately 10 

hours. These procedures only need to be performed once for a given type of target cell. 

Compared to using fluorescence labelling, which requires additional experimental steps and 

reagents each time, we believe that this one-time cost of preparing training data for the deep 

neural network presents advantages. 

Another limitation of our method is that it can detect only positive cells, which are labelled 

with magnetic beads; negative cells that are not labelled are not counted. Additionally, in this 

proof-of-concept study, we only demonstrated our detection technique on a single type of target 

cell. However, a future direction would be to explore the feasibility of multiplexed labelling 

for different types of target cells. One possibility for multiplexing is to use magnetic particles 

of different sizes (e.g., varying from ~100 nm – 10 µm), shapes and iron content, where each 

type of magnetic particle is coated with the corresponding antibody that is specific to a different 

type of cell. In this approach, different cell-bead conjugates would have distinct dynamics when 

they are subjected to a varying magnetic force field, which would lead to different patterns of 

oscillation that can be specifically detected. [194,195] The cell-bead conjugates may also 

exhibit different responses to magnetic modulation when the frequency is varied. These spatio-

temporal and morphological signatures may be classified by an appropriately designed and 

trained deep-learning-based classifier. Therefore, any type of rare cell that can be specifically 
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identified/isolated using antibodies or any targeting moieties can potentially be targeted using 

our presented system. 

The spatial resolution and the quality of the images captured using our system are degraded by 

the random speckle noise generated by background objects, which limits our ability to perform 

further morphological analysis based on reconstructed images. However, at different frames of 

a video that is captured with our system, since the target objects of interest (i.e., the bead-

labelled MCF7 cells) are modulated with a unique spatio-temporal pattern, exposing different 

perspectives of the cells, a robust distinction of the target cells from the background is achieved 

using our deep-learning-based video classifier. 

The entire prototype of our computational cytometer shown in Fig. 6.1b (excluding the function 

generator, power supply and laptop computer) has a raw material cost of ~$750. This cost can 

be significantly reduced under large volume manufacturing, and it is currently mainly attributed 

to the image sensor and frame grabber (~$550), the permalloy rod (~$70), and the 

electromagnets (~$40), with the other components being much more inexpensive. In future 

versions of this instrument, the power supply and function generator can be replaced with cost-

effective integrated circuit chips. For example, the power supply can be replaced with a 20 V 

power adapter (e.g., TR9KZ900T00-IMR6B, GlobTek, Inc., Northvale, NJ, USA) and a step-

down converter (e.g., LTC3630EMSE#PBF, Analog Devices, Norwood, MA, USA) to 

generate 20 V and 12 V power for the electromagnets and the stepper motor, respectively; the 

function generator can be replaced with an oscillator circuit built from a timer integrated circuit 

(e.g., NE555DR, Texas Instruments, Dallas, TX, USA). The total cost of these components 

would be less than $25. Furthermore, the device can be easily scaled up to include two or more 

parallel imaging channels to achieve a higher sample throughput, which is proportionate with 

the number of imaging channels. 
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6.4 Materials and methods 

 

Cell preparation  

MCF7 cell lines were purchased from ATCC (Manassas, Virginia, USA). Cells were plated 

with 10 mL of growth media in a T75 flask (Corning Inc., New York, USA) at a concentration 

of 1×105 cells/mL. The growth media was composed of Dulbecco's Modified Eagle Medium 

(DMEM, Gibco®, Life Technologies, Carlsbad, California, USA) supplemented with 10% (v/v) 

foetal bovine serum (FBS, Gibco®, Life Technologies, Carlsbad, California, USA) and 1% 

penicillin-streptomycin (Sigma-Aldrich Co., St. Louis, Missouri, USA). Cells were grown in a 

humidified incubator at 37°C in a 5% CO2 environment. Cells were harvested by treating them 

with 0.25% trypsin-edta (Gibco®, Life Technologies, Carlsbad, California, USA) for 3 min 2-

3 days after seeding, depending on confluency. Then, the cells were pelleted by centrifuging 

for 3 min at 1200 RPM and resuspended in the growth media to a final concentration of 1×106 

cells/mL. 

Sample preparation 

Rare cell dilution: The MCF7 cells were serially diluted in Dulbecco's phosphate-buffered 

saline (DPBS, Sigma-Aldrich Co., St. Louis, Missouri, USA) at different concentrations (2×104 

cells/mL, 2×103 cells/mL, and 2×102 cells/mL). The dilution of MCF7 cells in whole blood 

was prepared by mixing the cell solution with whole blood at a ratio of 1:19 (v/v). Most of the 

experiments were performed by mixing 200 μL of cell solution with 3.8 mL of whole blood. 

Healthy human whole blood (from anonymous and existing samples) was obtained from the 

UCLA Blood and Platelet Center. 

Bead washing: CELLection Epithelial Enrich Dynabeads (Invitrogen, Carlsbad, California, 

USA) were first resuspended in DPBS and vortexed for 30 s. A magnet (DX08B-N52, K&J 
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Magnetics, Inc., Pipersville, Pennsylvania, USA) was then used to separate the Dynabeads, and 

the supernatant was discarded. This process was repeated three times, and the Dynabeads were 

resuspended in DPBS at the initial volume. 

Rare cell separation: The washed Dynabeads were then added to the MCF7-spiked whole 

blood sample at a concentration of 2.5 μL beads per 1.0 mL of blood sample. The mixture was 

incubated for 30 min with gentle tilting and rotation. A magnet was placed under the vial for 5 

min, and the supernatant was discarded after that. To this solution, we added 1 mL of cold 

DPBS buffer and mixed it gently by tilting from side to side. This magnetic separation 

procedure was repeated five times. After the final step, the sample was resuspended in 0.7 mL 

of DPBS and gently mixed with 2.5 mL of 400 cP methyl cellulose solution (Sigma-Aldrich 

Co., St. Louis, Missouri, USA) using a pipette. The sample was incubated for 5 min to reduce 

the number of bubbles before it was loaded into a glass capillary tube (Part # BRT 2-4-50; 

cross-section inner dimension of 2 mm×4 mm; $11.80 per foot; Friedrich & Dimmock, Inc., 

Millville, New Jersey, USA). The ends of the capillary tube were sealed with parafilm before 

the tube was mounted onto our computational cytometer for imaging and cell screening.  

Design of the computational cytometer based on magnetically modulated lensless speckle 

imaging 

As shown in Fig. 6.1, our device hardware consists of an imaging module and a linear 

translation module. The imaging module, i.e., the scanning head in Fig. 6.1, contains a laser 

diode (650 nm wavelength, AML-N056-650001-01, Arima Lasers Corp., Taoyuan, Taiwan) 

for illumination, which has an output power of ~1 mW. The sample is loaded inside a capillary 

tube with a rectangular cross section, which is placed ~7.6 cm below the light source. A CMOS 

image sensor (acA3800-14um, Basler, Ahrensburg, Germany) with a pixel size of 1.67 μm, 

which is placed below the glass tube with a narrow gap (~1 mm), is used to capture the 
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holographic speckle patterns generated by the liquid sample. To induce oscillatory motion to 

the labelled cells in the sample, two electromagnets (Part #XRN-XP30×22, Xuan Rui Ning Co., 

Ltd., Leqing, Zhejiang Province, China) with custom-machined permalloy extensions are 

placed on either side of the glass tube. An alternating driving current (square wave) is supplied 

to either of the electromagnets, with a 180° phase shift between them, which creates alternative 

pulling force to the magnetic particles within the sample. The low level of the driving current 

is 0, and the high level of the driving current is ~500 mA. The frequency is 1 Hz, which was 

experimentally optimized to maximize the signal corresponding to the magnetic-bead-

conjugated cancer cells. 

The linear translation stage is custom-built using off-the-shelf components. A bipolar stepper 

motor (No. 324, Adafruit Industries LLC., New York, USA) with two timing pulleys and a 

timing belt is used to provide mechanical actuation, and the imaging module is guided by a 

pair of linear motion sliders and linear motion shafts on either side of the scanning head. 3D-

printed plastic is used to construct the housing for the scanning head, and laser-cut acrylic is 

used to create the outer shell of the device.   

Image acquisition 

After the sample is loaded into the capillary tube and placed onto our computational cytometer, 

the image acquisition procedure begins. The linear translation stage moves the scanning head 

to a series of discrete positions along the glass tube. At each position, the stage stops, allowing 

the CMOS image sensor to capture a sequence of 120 holograms at a frame rate of 26.7 fps 

before moving onto the next position. The image data are saved to a solid-state drive (SSD) for 

storage and further processing.   

Because the FOV corresponding to the edges (i.e., top and bottom rows) of the image sensor is 

subject to a highly unbalanced magnetic force field due to the closeness to one of the 
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electromagnets, only the central 1374 rows of the image sensor’s pixels are used to capture the 

image sequence, where the magnetic force from the two electromagnets are relatively balanced. 

Because the CMOS image sensor temperature quickly rises when it is turned on, it tends to 

cause undesired flow inside the glass tube due to convection. Therefore, a scanning pattern is 

engineered to reduce the local heating of the sample: if we denote 1, 2, …, 32 as the indices of 

the spatially adjacent scanning positions, the scanning pattern follows 1, 9, 17, 25, 2, 10, 18, 

26, …. This scanning pattern ensures that a given part of the sample cools down before the 

scanning head moves back to its neighbourhood. The power to the image sensor is also cut off 

during the transition between the two successive scanning positions, which is implemented by 

inserting a MOSFET-based switch into the power line of the USB cable. 

Computational detection and localization of cell candidates and deep-learning-based 

classification 

The image processing procedure (Fig. 6.4) can be divided into two parts: (1) a preliminary 

screening step, which applies computational drift correction and MCF7 candidate detection to 

the entire FOV to locate target cell candidates in 2D, and (2) a classification step, which 

refocuses the holographic image sequence to each individual MCF7 candidate in its local area, 

generates an in-focus amplitude and phase video for each candidate, and classifies the 

corresponding video with a trained deep neural network. This procedure is further detailed 

below. 

1. Preliminary screening 

Computational drift correction 

The sample fluid in the glass capillary tube often drifts slowly throughout the duration of the 

image acquisition, which is due to, e.g., the imperfect sealing at the ends of the tube and the 

convection due to the heat of the image sensor. Because the detection and classification of the 
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target cells are largely based on their periodic motion, the drifting problem should be corrected. 

Since our sample is embedded within a viscous methyl cellulose, minimal turbulent flow is 

observed, and the drifting motion within our imaged FOV is almost purely translational. We 

used a phase correlation method [214] to estimate the relative translation between each frame 

in the sequence with respect to a reference frame (chosen to be the middle frame in the 

holographic image sequence) and used 2D bilinear interpolation to remove the drift between 

frames. As shown in Fig. S6.2, this drift correction step successfully removed many false 

positive detections in the CMA step due to the background drift.   

Detection of target cell candidates 

The detection of the target cell candidates plays a key role in automatically analysing the 

sample, as it greatly narrows down the search space for the rare cells of interest and allows the 

subsequent deep-learning-based classification to be applied to a limited number of holographic 

videos. In the preliminary screening stage, the lateral locations of the MCF7 candidates are 

detected. Each frame of the raw hologram sequence is propagated to various axial distances 

throughout the sample volume using a high-pass-filtered angular spectrum propagation kernel, 

which can be written as:  

 ( ) ( ),i j i jz HP z =
 

B A   (56) 

where HP(·) denotes the high-pass filter (see Supplementary Information for details), (·) 

denotes angular spectrum propagation, [201] Ai denotes the i-th frame of the raw hologram 

sequence after the drift correction, and zj denotes the j-th propagation (axial) distance. The 

selected propagation distances ranged from 800 μm to 5000 μm with a step size of 100 μm to 

ensure coverage of all possible MCF7 candidates within the sample tube. A zoomed-in image 

of Bi(zj) corresponding to an example region is shown in Fig. 6.4e. 
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Next, for every given propagation distance, a CMA algorithm is applied to reveal the 

oscillatory motion of the target cells within the sample, which focuses on periodic changes in 

the recorded frames: 
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where C(z) and B(z) are shorthand notations for C(x, y; z) and B(x, y; z), respectively, NF is the 

total number of recorded frames (in our case, NF = 120), and N is chosen such that the time 

difference between the ith frame and the (i+N)th frame is equal to the period of the alternating 

magnetic field. Therefore, the first two terms inside the summation in Equation (54) represent 

half-period movements at the j-th propagation distance, and the last term represents the whole-

period movement. Ideally, for objects that oscillate periodically with the alternating magnetic 

force field, the first two terms should be relatively large, and the last term should be relatively 

small. For randomly moving objects, the three terms in the summation approximately cancel 

each other out. As a result, C(x, y; z) is a 3D contrast map that has high values corresponding 

to the locations of periodic motion that match the frequency of the external magnetic field. An 

example of C is shown in Fig. 6.4f. 

To simplify segmentation, a maximum intensity projection along the axial direction (i.e., z) is 

applied to flatten the 3D image stack into a 2D image, which can be written as:  

 ( ) ( ) ( ) ( )
H1 2, max , ; , , ; ,..., , ; N

z
x y x y z x y z x y z =

 
D C C C   (58) 

where x and y are the lateral indices and NH is the total number of axial positions (in our case, 

NH = 43). An example of D is shown in Fig. 6.4c, with a zoomed-in image shown in Fig. 6.4g. 

Thresholding-based segmentation was applied to the calculated 2D image D, and the resulting 

centroids are used as the lateral positions of the MCF7 candidates. 

2. Classification 
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Autofocusing and video generation 

After the preliminary screening, which identifies the lateral centroids of potential target cell 

candidates, the subsequent processing is applied to each MCF7 candidate only within their 

local area. Autofocusing [70,204] was first performed to locate the MCF7 candidate in the axial 

direction. Because C(x, y; zj) should have a higher value when approaching the in-focus 

position of each MCF7 candidate, the approximate axial position was obtained by maximizing 

(as a function of zj) the sum of the pixel values of C(x, y; zj) (j = 1, 2, …, NH) in a local 

neighbourhood around each individual MCF7 candidate. We chose to use a local 

neighbourhood size of 40×40 pixels (i.e., 66.8 μm×66.8 μm). This process can be written as 

follows: 

 ( )
20
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z N
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=

= + + C   (59) 

where kz  is the resulting in-focus position for the k-th potential target cell candidate and xk and 

yk are the lateral centroid coordinates of the k-th potential target cell candidate. 

The same criterion to find the focus plane can be applied again with finer axial resolution to 

obtain a more accurate estimation of the axial distance for each MCF7 candidate. We used a 

step size of 10 μm in this refined autofocusing step. Two examples of this process are shown 

in Fig. 6.4h. Alternatively, the Tamura coefficient [70,204] could also be used as the 

autofocusing criterion to determine the in-focus plane. 

Finally, the in-focus amplitude and phase video corresponding to each MCF7 candidate was 

generated by digitally propagating every frame of the drift-corrected hologram sequence to the 

candidate’s in-focus plane. The final video has 120 frames at 26.67 fps with both the amplitude 

and phase channels, and each frame has a size of 64×64 pixels (pixel size = 1.67 μm). Two 

examples corresponding to two cell candidates are shown in Fig. 6.4i. 
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Target cell detection using densely connected P3D CNN 

Each video of the MCF7 candidate was fed into a classification neural network (Fig. 6.6), 

which outputs the probability of having an MCF7 cell in the corresponding video (Fig. 6.4j-

k). We designed a novel structure for the classification neural network, named densely 

connected P3D CNN, which is inspired by the pseudo-3D residual network [200] and the 

densely connected convolutional network. [202] The original P3D CNN [200] used a 

mixture of three different designs of the P3D blocks to gain structural diversity, which 

resulted in a better performance. In this work, we introduced a densely connected structure 

to the P3D CNN structure by adding dense (skip) connections inside the spatio-temporal 

convolution block (dashed black arrows in Fig. 6.6 inset) to unify the three different P3D 

blocks. This allowed a simpler network design that was easier to implement for our task.  

 

Figure 6.6 Structure of the densely connected P3D CNN. The network consists of convolutional layers, a 

series of dense blocks, a fully connected layer and a softmax layer. As shown in the inset, each dense spatio -

temporal convolution block was constructed by introducing skip connections between the input and output of 
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the convolutional layers in the channel dimension, where red represents the input of the dense block, green 

and blue represent the output of the spatial and temporal convolutional layers, respectively, and yellow 

represents the output of the entire block.  

The detailed structure of the densely connected P3D CNN is shown in Fig. 6.6. The network 

contains five densely connected spatio-temporal convolutional blocks. As shown in the inset 

of Fig. 6.6, each block consists of a 1×3×3 spatial convolutional layer (Conv s), a 3×1×1 

temporal convolutional layer (Convt), and a max pooling layer (Max). Each spatial (or 

temporal) convolutional layer is a composition of three consecutive operations: batch 

normalization, a rectified linear unit (ReLU) and a spatial (or temporal) convolution (with 

stride = 1 and output channel number equal to the growth rate k = 8). In each block, we 

introduced skip connections between the input and output of the Conv s layer as well as the 

Convt layer by concatenating (⊕) the input and the output in the channel dimensions. For a 

given input tensor mp, the densely connected spatio-temporal convolutional block maps it to 

the output tensor mp+1, which is given by: 

( ) ( )1 Max Conv Conv ( ) Conv ( )p t s p p s p pm m m m m+
 =   
 

  (60) 

For example, consider an input video with a size of c×t×h×w, where c, t, h and w denote the 

number of channels, number of frames (time), height and width of each frame (space), 

respectively. Here, c = 2, t = 120, and h = w = 64. We first pass the video through a 1×7×7 

spatial convolutional layer (stride = 2) and a 9×1×1 temporal convolution layer (stride = 3) 

sequentially. The output channel numbers of the layers are included in Fig. 6.6 in each box. 

Then, the data go through 5 dense blocks, where between the 2nd and 3rd dense blocks, we 

add an additional 3×1×1 (stride = 1) convolutional filter with no padding to ensure that the 

time and space dimensions are equal. A fully connected (FC) layer with a 0.5 dropout rate 

and a softmax layer are introduced, which output the class probability (target rare cell or not) 
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for the corresponding input video. Finally, a decision threshold is applied to the class 

probability output to generate the final positive/negative classification, where the decision 

threshold is tuned based on the training/validation data to reduce the FPR (detailed in the 

next sub-section, Network training and validation). 

Network training and validation 

We performed ten experiments (i.e., ten samples) to create the training/validation datasets 

for our classifier and then used the trained classifier to perform blind testing on additional 

serial dilution experimental data (Fig. 6.5), which had no overlap with the training/validation 

data. Among the ten experiments for constructing the training/validation dataset, 5 were 

negative controls, and the other 5 were spiked whole blood samples at an MCF7 

concentration of 103 mL-1. When manually labelling the video clips to create the 

training/validation dataset, we noticed that some videos were difficult to label, where the 

annotators could not make a confident distinction. Therefore, to ensure an optimal labelling 

accuracy, our negative training data came from only the 5 negative control experiments, 

where all the candidate videos from those experiments were used to construct the negative 

dataset. The positive training data were manually labelled by two human annotators using 5 

experiments spiked at 103 mL-1, where only the video clips that were labelled as positive 

with high confidence by both annotators were selected to enter the positive training dataset, 

while all the others were discarded. 

Next, the training/validation datasets were randomly partitioned into a training set and a 

validation set with no overlap between the two. The training set contained 1713 positive 

videos and 11324 negative videos. The validation set contained 788 positive videos and 

3622 negative videos. The training dataset was further augmented by randomly mirroring 

and rotating the frames by 90, 180 and 270. The convolutional layer weights were 
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initialized using a truncated normal distribution, while the weights for the FC layer were 

initialized to zero. Trainable parameters were optimized using an adaptive moment 

estimation (Adam) optimizer with a learning rate of 10 -4 and a batch size of 240. The 

network converged after ~800-1000 epochs. The network structure and hyperparameters 

were first optimized to achieve high sensitivity and specificity for the validation set. At a 

default decision threshold of 0.5, a sensitivity and specificity of 78.4% and 99.4%, 

respectively, were achieved for the validation set; a sensitivity and specificity of 77.3% and 

99.5%, respectively, were achieved for the training set. After this initial step, because our 

rare cell detection application requires the classifier to have a very low FPR, we further 

tuned the decision threshold of our classifier to avoid false positives. For this, the training 

and validation datasets were combined to increase the total number of examples, and we 

gradually increased the decision threshold (for positive classification) from 0.5 while 

monitoring the FPR for the combined training/validation dataset. We found that a decision 

threshold of 0.99999 was able to eliminate all false positive detections in the combined 

training/validation dataset. We further raised the decision threshold to 0.999999 to account 

for potential overfitting of the network to the training/validation data and further reduced 

the risk of false positive detections. 

At a decision threshold of 0.999999, as expected, the TPR dropped down to 10.5% (refer to 

Fig. S6.3, which reports the receiver operating characteristic (ROC) curve based on the 

validation dataset, with an area under the curve of 0.9678). This low TPR results in 

underdetection of the target cells, as also evident in our serial dilution results (Fig. 6.5). The 

selection of the decision threshold is dependent on the specific application of interest and 

should be tuned based on the expected abundance of target cells and the desired LoD. For 

the application considered in this work, because the expected number of target cells at the 

lowest concentration (i.e., 10 mL-1) is extremely low, the decision threshold was tuned to a 



125 

 

high level to suppress false positives, which in turn resulted in a very low TPR. However, 

for less demanding cell detection or cytometry applications where the desired LoD is not as 

stringent, the decision threshold may be relaxed to a lower level, which also allows the TPR 

to be higher. 

Computation time 

Using our current computer code, which is not optimized, it takes ~80 s to preprocess the data 

within one FOV (corresponding to a volume of 14.7 mm2×2 mm) for extracting the MCF7 cell 

candidates, corresponding to the preliminary screening step in Fig. 6.4. For each detected cell 

candidate, it takes ~5.5 s to generate the input video for network classification. The network 

inference time for each input video is <0.01 s. Based on these numbers, if there are, e.g., ~1,500 

cell candidates per experiment, the total processing time using the current computer code would 

be ~3.0 hours. However, we should note that the data processing time depends on various 

factors, including the computer hardware configuration, the cell concentration in the sample, 

the programming language and whether the code is optimized for the hardware. In our work, 

although we used relatively high-performance hardware (an Intel Core i7 CPU, 64 GB of RAM, 

and an Nvidia GeForce GTX 1080Ti GPU) and used some of the GPU functions provided by 

MATLAB (MathWorks, Natick, MA, USA), we did not extensively optimize our code for 

improved speed. A careful optimization of the GPU code should bring a significant speedup in 

our computation time. 

COMSOL simulation of the magnetic force field generated by the electromagnet and the 

permalloy extension 

Because of space constraints, the electromagnet could not be placed sufficiently close to the 

imaging area, which caused the magnetic force to be low. We used a custom-machined 

extension rod made of permalloy [215] (relative permeability μr ~ 100,000) to relay the force 
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field and enhance the relative magnetic force on target cells by ~40 times. To simulate the 

magnetic force field distribution near an electromagnet with and without the permalloy 

extension, a finite element method (FEM) simulation was conducted using COMSOL 

Multiphysics (version 5.3, COMSOL AB, Stockholm, Sweden). A 3D model was developed 

using the magnetic field interface provided in the COMSOL AC/DC physics package. A 

stationary study was constructed based on the geometry of a commercially available 

electromagnet, where the core was modelled with a silicon steel cylinder (radius = 3 mm, height 

= 10 mm), and the coil was modelled with a surface current of 10 A/m on the side of the core 

running in the azimuthal direction. The permalloy extension was modelled using Permendur. 

A thick layer of air was added as a coaxial cylinder with a radius of 10 mm and a height of 30 

mm. The magnetic flux density inside the simulation space was simulated using the magnetic 

field module. Then, a coefficient form PDE module in the mathematics library was used to 

derive the relative magnetic force field. The magnetic force that is received by 

superparamagnetic beads is given by: 

 ( )
0

V 


= F B B  (61) 

where V is the volume of the magnetic particle, χ is the magnetic susceptibility, μ0 is the 

magnetic permeability in a vacuum, and B is the magnetic flux density.  

Our simulation results are shown in Fig. S6.1. The results in Fig. S6.1b indicate that the relative 

magnetic force rapidly reduces as a function of the distance from the electromagnet. However, 

by using a permalloy extension, the relative magnetic force at the sample location is enhanced 

by ~40 times. 

6.5 Appendix 

Table S6.1. Concentrations of different types of cells and particles in the sample before and after the 

magnetic enrichment. MCF7 cells were spiked into a whole blood sample at a concentration of 1.1×105 mL-1, 

and enrichment was performed following the procedure reported in Fig. 6.2. After the enrichment, the sample was 
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loaded into a counting chamber and imaged by a 20× 0.45NA benchtop microscope, and the particles/cells were 

manually counted. In order to directly compare it with the concentration before the enrichment step, the 

concentration after the enrichment is normalized by a volume factor (i.e., the ratio between the volume before the 

enrichment and the volume after the enrichment). As reported in our table, there is over three orders of magnitude 

decrease in the concentration of blood cells, while the recovery rate for the target MCF7 cells is ~85%. The 

concentrations of unbound beads and bead clusters reported here only provide an estimate, because bead clusters 

are also dynamically formed during the experiments, when there is an external magnetic field applied.  

 
Concentration (mL-1) 

Before enrichment After enrichment 

Total labeled MCF7 cells 1.1×105 9.4 ×104 

Non-clustering labeled MCF7 

cells 
- 4.7 ×104 

Labeled MCF7 cell clusters - 1.7 ×104 

Blood cells 

~5×109  

(estimated based on the 

average healthy human 

blood cell concentration) 

1.6×106 

Magnetic beads - 1.3×106 

Bead clusters - 1.1×105 
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Figure S6.1 COMSOL simulation of magnetic force field generated by electromagnet with permalloy relay. 

a 3D schematic of the permalloy relays relative to the electromagnets. b-d Simulation of the relative (unitless) 

magnitude of the magnetic force field that is generated by a single electromagnet with (c) or without (d) permalloy 

relay, as a function of the spatial position. The relay significantly increases the magnetic force field for a given 

axial distance from the electromagnet.   
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Figure S6.2 Effect of using computational drift correction to remove false positives. Without drift correction, 

due to the drifting of the medium, particles that do not oscillate in response to the changing magnetic force field 

may generate contrast in the 2D contrast map, which reduces the effectiveness of the computational motion 

analysis. The sub-pixel drift correction step removes most of the “false positive” contrast. 
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Figure S6.3 Receiver operating characteristic (ROC) curve of the trained P3D CNN classifier. The curve is 

generated by varying the decision threshold for positive classification using the validation dataset. The area under 

the curve (AUC) is 0.9678. The blind serial dilution testing experiments (Fig. 6.5) are not used to calculate the 

AUC, because for those tests the ground truth concentrations are based on the dilution factor used during the 

spiking experiments. Manual labeling was not performed for the serial dilution testing data. 
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Chapter 7 . Bacterial colony forming units detection using thin-

film-transistor imaging array 

7.1 Introduction 

Bacterial infection has been a leading factor that causes millions of deaths each year in both 

developed and developing countries [216,217]. The associated expenses of treating bacterial 

infections cost more than 4 billion dollars annually in the United States (US) alone [218]. 

Therefore, the rapid and accurate detection of pathogenic bacteria is of great importance to 

human health in preventing such infectious diseases caused by e.g., contamination in food and 

drinking water. Among those pathogenic bacteria, Escherichia coli (E. coli) and other coliform 

bacteria are among the most common ones, and they indicate fecal contamination in food and 

water samples [216]. The most basic and frequently used method of detecting E. coli and total 

coliform bacteria involves culturing the sample on a solid agar plate or liquid medium 

following the US Environmental Protection Agency (EPA)-approved protocols (e.g., EPA 

1103.1 and EPA 1604 methods) [219,220]. However, these traditional culture-based methods 

usually take ≥24 hours for the final read-out and need visual recognition and counting of 

colony-forming units (CFUs) by microbiology experts. Although various nucleic acid-based 

molecular detection approaches [221–224] have been developed for rapid bacteria detection 

with results ready in less than a few hours, they present lower sensitivity in general and have 

challenges to differentiate live and dead bacteria [225]; in fact, there is no EPA-approved 

nucleic acid-based coliform sensing method that can be used for screening water samples. 

Other bacteria detection methods using different types of biosensors based on e.g., 

electrochemistry [226,227], fluorescence quenching [228], and surface plasmon resonance 

(SPR) [229] can also provide rapid results; however, these methods usually need additional 

surface chemistry or labeling steps; some of these biosensors also provide a positive response 

even for dead or injured/stressed bacteria, which can create challenges to quantify CFU 
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numbers–17. Various other instruments were developed to provide high sensitivity and 

specificity for the detection of bacteria based on different methods such as e.g., 

fluorimetry [233], solid-phase cytometry [234], scatterometry [235], Fresnel diffraction 

systems [236], fluorescence microscopy [237], Raman spectroscopy [238] and others [239–

241]; however, these systems, in general, do not work with large sample volumes (e.g., >0.1 

L). As another alternative, Wang et al. demonstrated a complementary metal-oxide-

semiconductor (CMOS) image sensor-based time-lapse imaging platform to perform early 

detection and classification of coliform bacteria [225]. This method achieved more than 12 

hours of detection time savings and provided species classification with >80% accuracy within 

12-hours of incubation. The field-of-view (FOV) of the CMOS image sensor in this design was 

< 0.3 cm2, and therefore the mechanical scanning of the Petri dish area was required to obtain 

an image of the whole FOV of the cultured sample. Not only that this is time-consuming and 

requires additional sample scanning hardware, but it also brings some extra digital processing 

burden for image registration and stitching.  

Recently, with the fast development of thin-film-transistors (TFT), the TFT technology has 

been widely used in the field of flexible display industry [242], radio frequency identification 

tags [243], ultrathin electronics [244], and large-scale sensors [245,246] thanks to its high 

scalability, low-cost mass production (involving e.g., roll-to-roll manufacturing), low power 

consumption, and low heat generation properties. TFT technology has also been applied in the 

biosensing field to detect pathogens by transferring e.g., antibody-antigen binding, enzyme-

substrate catalytic activity, or DNA hybridization into electrical signals [246,247]. For example, 

a low-cost TFT nanoribbon sensor was developed by Hu et al. to detect the gene copies of E. 

coli and Klebsiella pneumoniae (K. pneumoniae) in a few minutes by using PH change due to 

DNA amplification [248]. As another example, Salinas et al. implemented a ZnO TFT 

biosensor with recyclable plastic substrates for real-time E. coli detection [249,250]. However, 
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these TFT-based biosensing methods could not differentiate between live and dead bacteria 

and did not provide quantification of the CFU concentration of the sample under test. 

Here, we demonstrate the first use of a TFT-based image sensor to build a real-time CFU 

detection and classification system to automatically count the bacterial colonies and rapidly 

identify their species using deep learning. To prove the efficacy of our system, E. coli, 

Citrobacter, and K. pneumoniae were cultured on a growth medium, which provides specificity 

and color distinction to classify E. coli and other total coliforms. Because of the large FOV of 

the TFT image sensor (~7 cm2), there is no need for mechanical scanning, which enabled us to 

create a field-portable and cost-effective lensfree CFU detector as shown in Fig. 7.1. As shown 

in Fig. 7.1(b), visible light signals are transferred to electrical signals through a detection layer, 

read through the TFT sensor array [251–253].This compact system includes sequentially 

switched red, green, and blue light-emitting diodes (LEDs) that periodically illuminate the 

cultured samples (E. coli, Citrobacter, and K. pneumoniae) as shown in Fig. 7.1(d), and the 

spatio-temporal patterns of the samples are collected by the TFT image sensor, with an imaging 

period of 5 min. Two deep learning-based classifiers were trained to detect the bacterial 

colonies and then classify them into E. coli and total coliform bacteria. Blindly tested on a 

dataset populated with 265 colonies (85 E. coli CFU, 66 Citrobacter CFU, and 114 K. 

pneumoniae CFU), our TFT-based system was able to detect the presence of the colonies as 

early as ~6 hours during the incubation period and achieved an average CFU detection rate of 

97.3% at 9 hours of incubation, saving more than 12 hours compared to the EPA-approved 

culture-based CFU detection methods. For the classification of the detected bacterial colonies, 

an average recovery rate of 91.6% was achieved at ~12 hours of incubation.  

This TFT-based field-portable CFU detection system significantly benefits from the cost-

effectiveness and ultra-large FOV of TFT image sensors, which can be further scaled up, 

achieving even lower costs with much larger FOVs based on e.g., roll-to-roll manufacturing 
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methods commonly used in the flexible display industry. We believe that TFT image sensors 

can potentially be integrated with each agar plate to be tested, and can be disposed of after the 

determination of the CFU count, opening up various new opportunities for microbiology 

instrumentation in the laboratory and field settings. 

Part of this chapter has been published in: 

Li, Y., Liu, T., Koydemir, H.C., Wang, H., O'Riordan, K., Bai, B., Haga, Y., Kobashi, J., 

Tanaka, H., Tamaru, T., Yamaguchi K., Ozcan, A. (2022) Deep Learning-enabled Detection 

and Classification of Bacterial Colonies using a Thin Film Transistor (TFT) Image Sensor. 

ACS Photonics, 9(7), pp.2455–2466 
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Figure 7.1 Real-time CFU detection and classification system using a TFT image sensor. (a) A photo of the 

lensfree imaging system, samples to be tested, and the laptop computer used for controlling the hardware. The 

chromogenic agar medium results in a gray-green color for E. coli colonies and a pinkish color for other coliform 

bacteria; furthermore, it inhibits the growth of different bacterial colonies or exhibits colorless colonies when 

other types of bacteria are present in the sample. (b) A cross-sectional schematic of the TFT image sensor is shown. 

(c) A zoomed-in photo of the TFT image sensor with a FOV of ~27 mm × 26 mm. (d) Detailed illustration of the 

lensfree imaging modality. The red (620 nm), green (520 nm), and blue (460 nm) LEDs were switched on 

sequentially at 5-minute intervals to directly illuminate the cultured samples, which were imaged by the TFT 

image sensor in a single shot. The distance between the tri-color LED and the agar plate sample (z1) is 15.5 cm, 

while the sample to sensor distance (z2) distance is ~5 mm.  
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Figure 7.2 Schematics of the workflow of our deep learning-based CFU detection and classification system. 

We process 8 whole FOV RGB images with 20-minute time intervals for the differential analysis to select the 

initial colony “candidates”. The digitally-cropped 8-frame RGB image sequence for each individual colony 

candidate is fed into the CFU detection neural network first. This neural network rejects various non-colony 

objects (among the initial colony candidates) such as dust and bubbles, achieving true colony detection. Next, the 

detected colonies are passed through the CFU classification neural network to identify their species (E. coli or 

other total coliforms, i.e., binary classification). 

7.2 Results 

We experimentally demonstrated the success of our framework by detecting and classifying 

the colonies E. coli and two other types of total coliform bacteria, i.e., Citrobacter and K. 

pneumoniae, on chromogenic agar plates, which result in a gray-green color for E. coli colonies 
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and a pinkish color for other coliform bacteria, also inhibiting the growth of different bacterial 

colonies when other types of bacteria exist in the sample. Each sample was prepared following 

the EPA-1103.1 method [220] (see the Methods section) using a Petri dish with 60-mm 

diameter. After the sample was prepared, it was directly placed on top of the TFT image sensor 

as part of the lensfree imaging system, which images the center of the sample over a FOV of 

~27 mm × 26 mm, missing the edges of the Petri dish. This FOV can be further increased to 

cost-effectively cover the whole area of a Petri dish using industrial roll-to-roll TFT 

manufacturing methods. The entire imaging modality (except the laptop in Fig. 7.1(a)) was 

placed inside an incubator to record the growth of the colonies with 5-minute imaging intervals 

using the automated TFT readout. Each sample was left in the incubator for 24 hours to let the 

colonies further grow for manual readout, which served as the ground truth measurement. For 

each time interval, three images were collected sequentially using the TFT image sensor under 

red (620 nm), green (520 nm), and blue (460 nm) illumination light. This multi-wavelength 

design allowed the monochromatic TFT image sensor to reconstruct color images of the 

bacterial colonies and was mainly used to identify their species by exploiting the color 

information provided by the selective chromogenic agar medium. The recorded time-lapse 

images were processed using the workflow shown in Fig. 7.2, where a differential analysis was 

used to select the initial colony candidates, and two deep neural networks (DNNs) were trained 

to further screen the colony candidates to specifically detect the true colonies and infer their 

species (see the Methods section for details). All these image processing steps take <25 sec 

using an Intel Core i7-7700 CPU-powered computer, consuming <1 GB of memory (without 

the need for GPUs).  

The presented TFT imaging system periodically captures the images of the agar plate under 

test based on lensfree in-line holography; however, due to its large pixel size (321 μm) and 

relatively small sample to sensor distance (~5 mm, which is equal to the thickness of the agar), 
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a free space backpropagation [254–258] step is not needed. By directly using the raw intensity 

images as part of the RGB color channels and calibrating the background, the color images of 

the agar plate can be generated in <0.25 sec after the TFT images are recorded. Fig. 7.3 shows 

examples of color images of E. coli, Citrobacter, and K. pneumoniae colonies at different 

stages of their growth, captured by our system. Consistent with the EPA-approved method 

(EPA-1103.1 [220]), E. coli colonies exhibit gray-green colors, while Citrobacter and K. 

pneumoniae colonies exhibit pinkish color using the chromogenic agar. 

Based on the imaging performance of our TFT-based CFU detection system summarized in 

Fig. 7.3, we quantified its early detection and classification performance as shown in Fig. 7.4. 

For this, we trained the detection and the classification neural network models (see the Methods 

section for training details) on a dataset of 442 colonies (128 E. coli colonies, 126 Citrobacter, 

and 188 K. pneumoniae colonies) captured from 17 independent experiments. The testing 

dataset was populated using 265 colonies from 13 independent experiments, which had a total 

of 85 E. coli colonies, 66 Citrobacter colonies, and 114 K. pneumoniae colonies. The detection 

rate was defined as the ratio of the number of true colonies confirmed by the CFU detection 

neural network out of the total colony number counted by an expert after 24-hour incubation. 

Fig. 7.4(a, c, e) shows the detection rate we achieved in the blind testing phase as a function of 

the incubation time. As shown in Fig. 7.4(a, c, e), > 90% detection rate was achieved at 8 hours 

of incubation for E. coli, 9 hours for Citrobacter, and 7 hours 40 minutes for K. pneumoniae. 

Furthermore, a 100% detection rate was obtained within 10 hours of incubation for E. coli, 11 

hours for Citrobacter, and 9 hours 20 minutes for K. pneumoniae. Compared to the EPA-

approved standard read-out time (24 hours), our TFT-based CFU detection system achieved > 

12 hours of time-saving. Moreover, from the detection rate curves reported in Fig. 7.4, we can 

also qualitatively infer that the colony growth speed of K. pneumoniae is larger than E. coli 

which is larger than Citrobacter because the earliest detection times for E. coli, Citrobacter, 
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and K. pneumoniae colonies were 6 hours, ~6.5 hours and ~5.5 hours of incubation, 

respectively.  

To quantify the performance of our bacterial colony classification neural network, the recovery 

rate was defined as the ratio of the number of correctly classified colonies to the total number 

of colonies counted by an expert after 24-hour incubation. Fig. 7.4(b, d, f) shows the recovery 

rate curves over all the blind testing experiments as a function of the incubation time. We can 

see that a recovery rate of > 85% was achieved at 11 hours 20 minutes for E. coli, at 13 hours 

for Citrobacter, and at 10 hours 20 minutes for K. pneumoniae. It is hard to achieve a 100% 

recovery rate for all the colonies since some of the late growing “wake-up” colonies could not 

grow to a sufficiently large size with the correct color information even after 24 hours of 

incubation. Fig. 7.4 also reveals that there exists approximately a 3-hour time delay between 

the colony detection time and species identification time; this time delay is expected since more 

time is needed for the detected colonies to grow larger and provide discernable color 

information for the correct classification of their species.  
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Figure 7.3 Visual evaluation of coliform bacterial colony early detection and classification using a TFT 

image sensor. (a) Whole FOV color images of E. coli at 11-hour incubation, Citrobacter at 13-hour incubation, 

and K. pneumoniae at 11-hour incubation. (b) Examples of the image sequence of each isolated colony growth. 

Three independent colony growth sequences were selected for each one of the bacteria species. The blue box 

labels the first colony detection time confirmed by the CFU detection neural network, and the orange box 

corresponds to the first classification time correctly predicted by the CFU classification neural network. 
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Figure 7.4 Quantitative performance evaluation of coliform colony early detection and classification using 

a TFT image sensor. (a, c, e) The colony detection rate as a function of the incubation time for E. coli, Citrobacter, 

and K. pneumoniae. The mean and standard deviation of the detection rate were calculated on 85 E. coli colonies, 

66 Citrobacter colonies, and 114 K. pneumoniae colonies for each time point. (b, d, f) The colony recovery rate 

as a function of the incubation time for E. coli, Citrobacter, and K. pneumoniae. The mean and standard deviation 

of the recovery rate were calculated on 85 E. coli colonies, 66 Citrobacter colonies, and 114 K. pneumoniae 
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colonies for each time point. 

7.3 Discussion 

Note that our presented results in Fig. 7.4 represent a conservative performance of our TFT-

based CFU detection method since the ground truth colony information was obtained after 24 

hours of incubation. In the early stages of the incubation period, some bacterial colonies did 

not even exist physically. Therefore, if we used the existing colony numbers for each time point 

as the ground truth, we would have reported even higher detection and recovery rates in Fig. 

7.4. 

Overall, the performance of our TFT-based CFU detection method is similar to the CMOS-

based time-lapse imaging method [225] in terms of the colony detection speed. However, due 

to its large pixel size (321 μm) and limited spatial resolution, the TFT-based method has a 

slightly delayed colony classification time. With its ultra-large imaging FOV (~7 cm2), the 

TFT-based CFU detection method eliminates (1) the time-consuming mechanical scanning of 

the Petri dish and the related optomechanical hardware, and (2) the image processing steps for 

image registration and stitching that would both be required due to the limited FOV of CMOS-

based imagers. In addition to saving image processing time, this also helps the system to 

increase the CFU detection sensitivity as the system is free from any image registration and 

stitching artifacts and therefore, it can precisely capture minute spatio-temporal changes in the 

agar caused by bacterial colony growth at an early stage. Due to the massive scalability of the 

TFT arrays, the imaging FOV of our platform can be further increased to several tens to 

hundreds of cm2 in a cost-effective manner, which could provide unprecedented levels of 

imaging throughput for automated CFU detection using e.g., roll-to-roll manufacturing of TFTs, 

as employed in the flexible display industry.  

Another prominent advantage of the TFT-imager based detection system is that it can be 

adapted to image a wide range of biological samples using cost-effective and field-portable 
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interfaces. As shown in the blue circled regions in Fig. 7.3, our system can detect bacterial 

colonies in their early stage of growth with colorless and low contrast features. By using new 

training data and deep learning, our method can be adapted to specifically and sensitively detect 

and classify other bacterial colonies using different growth media. Furthermore, should the 

users have any contamination concerns, the TFT image sensor shown in Fig. 7.1 can be 

replaced and even used in a disposable manner (e.g., integrated as part of the Petri dish). 

Furthermore, the heat generated by the TFT image sensor during the data acquisition process 

is negligible, ensuring that the biological samples can grow at their desired temperature without 

being perturbed. Finally, our TFT-based CFU detection system is user-friendly and easy-to-

use because there is no need for complex optical alignment, high precision mechanical 

scanning stages, or image registration/alignment steps. 

In summary, we believe that the presented CFU detection system using TFT image sensor 

arrays provides a high-throughput, cost-effective, and easy-to-use solution to perform early 

detection and classification of bacterial colonies, opening up unique opportunities for 

microbiology instrumentation in the laboratory and field settings. 

7.4 Materials and methods 

Sample preparation  

All the bacterial sample preparations were performed at our Biosafety Level 2 laboratory in 

accordance with the environmental, health, and safety rules of the University of California, Los 

Angeles. We used E. coli (Migula) Castellani and Chalmers (ATCC® 25922™), Citrobacter 

(ATCC® 43864™), and K. pneumoniae subsp. pneumoniae (Schroeter) Trevisan 

(ATCC®13883™) as our culture microorganisms. CHROMagar™ ECC (product no. EF322, 

DRG International, Inc., Springfield, NJ, USA) chromogenic substrate mixture was used as the 

solid growth medium to detect E. coli and other total coliform colonies.  
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For each time-lapse imaging experiment, a bacterial suspension in a phosphate-buffered 

solution (PBS) (product no. 20-012-027, Fisher Scientific, Hampton, NH, USA) was prepared 

from a solid agar plate incubated for 24 hours. The concentration of the suspension was 

measured using a spectrophotometer (model no. ND-ONE-W, Thermo Fisher). Then, a serial 

dilution was performed in PBS to finally reach a concentration of ~103 CFUs / mL. Around 

100 μL diluted suspension with ~100 CFUs was spread on a CHROMagar™ ECC plate using 

an L-shaped spreader (product no. 14-665-230, Fisher Scientific, Hampton, NH, USA). Next, 

the plate was covered with its lid, inverted, and placed on the TFT image sensor, which was 

placed with the whole imaging system into an incubator (product no. 151030513, 

ThermoFisher Scientific, Waltham, MA, USA) kept at 37 ± 0.2 °C.  

Additionally, CHROMagar™ ECC plates were prepared ahead of time using the following 

method. CHROMagar™ ECC (6.56 g) was mixed with 200 mL of reagent grade water (product 

no. 23-249-581, Fisher Scientific, Hampton, NH, USA). The mixture was then heated to 100 °C 

on a hot plate while being stirred regularly using a magnetic stirrer bar. After cooling the 

mixture to ~50 °C, 10 mL of the mixture was dispensed into each Petri dish (60 mm × 15 mm) 

(product no. FB0875713A, Fisher Scientific, Hampton, NH, USA). When the agar plates 

solidified, they were sealed using parafilm (product no. 13-374-16, Fisher Scientific, Hampton, 

NH, USA), and covered with aluminum foil to keep them in the dark before use. These plates 

were stored at 4 °C and were used within two weeks after preparation. 

Imaging Set-up 

Our field-portable CFU imager comprises an illumination module and a TFT-based image 

sensor. The light from a tri-color LED directly illuminates the samples and forms in-line 

holograms on the TFT image sensor (JDI, Japan Display Inc., Japan). The TFT module includes 

a controlling printed circuit board (PCB) that provides the illumination and image capture 
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control signal and an image sensor (with 84×80 pixels, pixel size = 321 μm). For the 

illumination module, a tri-color LED (EDGELEC) was controlled by a microcontroller 

(Arduino Micro, Arduino LLC) through a constant current LED driver (TLC5916, Texas 

Instrument, TX, USA) to sequentially provide the red (620 nm), green (520 nm), and blue (420 

nm) illumination beams. The microcontroller, the LED driver, and the tri-color LED were all 

integrated on a single PCB, which was powered by a 5V-1A voltage adapter and communicated 

with the TFT PCB through the LED power signal.  

The illumination light passes through the transparent solid agar and forms the lensfree images 

of the growing bacterial colonies on the TFT image sensor. The distance between the LED and 

the sample (i.e., the z1 distance shown in Fig. 7.1(c)), is ~15.5 cm, which is large enough to 

make the illumination light uniformly cover the whole sample surface. The distance between 

the sample and the sensor (z2) is roughly equal to the thickness of the solid agar, which is ~5 

mm. The mechanical support material for the PCB, the sample, and the sensor were custom 

fabricated using a 3D printer (Objet30 Pro, Stratasys, Minnesota, USA). 

Image data acquisition 

Time-lapse imaging experiments were conducted to collect the data for both the training and 

testing phases. Our CFU imaging modality captured the time-lapse images of the agar plate 

under test every 5 min under red, green, and blue illuminations. A controlling program with a 

graphical user interface (GUI) was developed to perform the illumination switching and image 

capture automatically. The raw TFT images were saved in 12-bit format. After the experiments 

were completed, the samples were disposed of as solid biohazardous waste. In total, we 

collected the time-lapse TFT images of 889 E. coli colonies from 17 independent experiments 

to initially train our CFU detection neural network model. In addition to this, 442 bacterial 

colonies (128 E. coli, 126 Citrobacter, and 188 K. pneumoniae) were populated from 17 new 
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agar plates and used to train (1) the final CFU detection neural network (through transfer 

learning from the initial detection model) and (2) the CFU classification neural network. A 

third independent dataset of 265 colonies from 13 new experiments was used to test the trained 

neural network models blindly. 

Bacterial colony candidate selection 

The entire candidate selection workflow consists of image pre-processing, differential analysis, 

colony mask segmentation, and candidate position localization, following the steps listed in 

Fig. 7.5(a-i). For each time point, three raw TFT images (red, green, and blue channels) were 

obtained over a FOV of ~7 cm2. After getting the TFT images IN_raw, C, where N refers to the 

N-th image obtained at TN and C represents the color channels, R (red), G (green), and B (blue), 

a series of pre-processing operations were performed to enhance the image contrast. First, as 

shown in Fig. 7.5(a-b), the images were 5 times interpolated and normalized by directly 

subtracting the first frame at T0. After this normalization step, the background regions had ~0 

signal, while the regions representing the growing colonies had negative values because the 

colonies partially blocked and scattered the illumination light. Then, by adding 127 and saving 

the images as unsigned 8-bit integer arrays, the current frame at TN was scaled to 0-127, noted 

as IN_norm, C.  
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Figure 7.5 Bacterial colony candidate generation workflow. The image pre-processing steps (a-i) were 

performed on the acquired TFT images in order to select the colony candidates; the cropped videos of the colony 

candidates were then passed through a trained CFU detection neural network to determine the true positives and 

eliminate false positives. 

Following the steps in Fig. 7.5 (b-c), IN_norm, C was averaged as shown in Equation 62 to perform 

smoothing in the time domain, which yields IN_denoised, C : 
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To further improve the sensitivity of our system, differential images IN_diff averaged on three 

color channels were calculated as follows: 
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By this operation, the signals of static artifacts were suppressed, and the spatio-temporal signals 

of the growing colonies were enhanced as ring-shaped patterns. Next, a pixel-wise minimum 

intensity projection was performed, as shown in Fig. 7.5(e-f), to project the minimum intensity 

of the differential images from I(N-7)_diff to IN_diff, yielding the image IN_projection. Following this 

step, with an empirically set intensity threshold, IN_projection was segmented into a binary mask. 

After morphological operations to fill the ring-shaped patterns and a watershed-based [259] 

division of clustered regions, MN was obtained as presented in Fig. 7.5(g). Based on this binary 

mask, MN, we extracted the connected components and localized their centroids as shown in 

Fig. 7.5(h). These centroid coordinates were dynamically updated for each time point to ensure 

maintaining the localization at the center of the growing colonies. 

Despite this pre-processing of the acquired TFT images, there are still some time-varying non-

colony objects that can be selected as false colony candidates (such as bubbles, dust, or other 

features created by the uncontrolled motion of the agar surface). Therefore, a deep neural 

network was trained to further screen each colony candidate to eliminate false positives, the 

details of which will be discussed in the next subsection. 

DNN-based detection of bacterial colony growth 

The time-lapse video of each colony candidate region across 8 frames of IN_denoised, C was 

cropped as shown in Fig. 7.5. These videos were then up-sampled in the spatial domain and 

organized as a four-dimensional array (3×8×160×160, i.e., color channels×number of frames

×x×y) to be fed into the CFU detection neural network, which adopted the architecture of 

Dense-Net [260], but with 2D convolutional layers replaced by pseudo-3D convolutional 

layers [261] (see Fig. 7.6). The weights of this CFU detection DNN were initialized with a pre-

trained model obtained on the E. coli CFU dataset with a single illumination wavelength of 515 

nm. This pre-trained model was obtained using a total of 889 colonies (positives) and 159 non-
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colony objects (negatives) from 17 independent agar plates. Then, this initial neural network 

model was transferred to the multiple-species image dataset with multi-wavelength 

illumination, using 442 new colonies and 135 non-colony objects from another 17 independent 

agar plates. Both the positive image dataset and the negative image dataset were augmented 

across the time domain with different starting and ending time points, resulting in more than 

10,000 videos used for training. A 5-fold cross-validation strategy was adopted to select the 

best hyper-parameter combinations. Once the hyper-parameters were decided, all the collected 

data were used for training to finalize our CFU detection neural network model. Data 

augmentation, such as flipping and rotation, was also applied when loading the training dataset.  

The network model was optimized using the Adam optimizer with a momentum coefficient of 

(0.9, 0.999). The learning rate started as 1×10-4 and a scheduler was used to decrease the 

learning rate with a coefficient of 0.8 at every 10 epochs. The batch size was set to 8. The loss 

function was selected as: 
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where 𝑝 is the network output, which is the probability of each class before the SoftMax layer, 

𝑔 is the ground-truth label (which is equal to 0 or 1 for binary classification), 𝐾 is the total 

number of training samples in one batch,  𝑤 is the weight assigned to each class, defined as 

𝑤 = 1 − 𝑑 where 𝑑 is the percentage of the samples in one class. The training process was 

performed using a GPU (GTX1080Ti) which took ~5 hours to converge. With a decision 

threshold of 0.5, the CFU detection neural network converged with 92.6% sensitivity and 95.8% 

specificity. In the testing phase, the decision threshold was set to be 0.99, which achieved 100% 

specificity.  

DNN-based classification of E. coli and other total coliform colonies 
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To classify the species of the detected bacterial colonies, a second DNN-based classifier was 

built. The CFU classification neural network was trained on the same multi-wavelength dataset 

populated with 442 colonies (128 E. coli colonies, 126 Citrobacter colonies, and 188 K. 

pneumonia colonies). The input of the classification DNN was organized into a four-

dimensional array (3×8×160×160, i.e., color channels×number of frames×x×y), but with a 

different normalization method. Different from the background subtraction normalization 

adopted for the CFU detection neural network, for the classification DNN, the network input 

was re-normalized by dividing the background intensities obtained at the first time point T0. 

This division-based normalization was performed on three color channels so that the 

background would be normalized to ~1 in the three channels, revealing a white color in the 

background. Through this operation, the color variations across different experiments were 

minimized, improving the generalization capability of the classification DNN.  

The network structure of the classification DNN was the same as the CFU detection network 

but with some differences in the hyper-parameter selection (see Fig. 7.6). The classification 

neural network model was initialized randomly and optimized using the Adam optimizer with 

a momentum coefficient of (0.9, 0.999). The learning rate started with 1×10-3 and a scheduler 

was used to decrease the learning rate with a coefficient of 0.7 at every 30 epochs. The batch 

size was also set to 8. The classification neural network also used the weighted cross-entropy 

loss function as shown in Equation 64. The training process was performed using a GPU 

(GTX1080Ti) which took ~5 hours to converge. A decision threshold of 0.5 was used to 

classify the E. coli colonies and other total coliform colonies in the training process, achieving 

91% and 97% accuracy, respectively. In the testing phase, the decision threshold was set to be 

0.8, which achieved 100% classification accuracy. In addition, a colony size threshold of 4.5 

mm2 was used in the testing phase to ensure that only colonies that are large enough to identify 

their species were passed through the classification network. 
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Figure 7.6 Network architectures for the CFU detection neural network and the CFU classification neural 

network. A Dense-Net design was adopted here, with the 2D convolutional layers replaced by the pseudo-3D 

convolutional blocks. The CFU detection and classification neural networks shared the same architecture, but the 

hyper-parameters [m, n, p, q] are selected to be different. 

Chapter 8 . Stain-free viral plaque assay using deep learning and 

holography 

8.1 Introduction 

Viral infections pose significant global health challenges by affecting millions of people 

worldwide through infectious diseases, such as influenza, human immunodeficiency virus 

(HIV), human papillomavirus (HPV), and others [262]. The US Centers for Disease Control 
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and Prevention (CDC) estimates that, since 2010, the influenza virus has resulted in 16-53 

million illnesses, 0.2-1 million hospitalizations, and 16,700-66,000 deaths in the United States 

alone [263,264]. Furthermore, the ongoing COVID-19 pandemic has already caused >500 

million infections and >6 million deaths worldwide, bringing a huge burden on public health 

and socioeconomic development [265]. To cope with these global health challenges, 

developing an accurate and low-cost virus quantification technique is crucial to clinical 

diagnosis [266], vaccine development [267], and the production of recombinant proteins [268] 

or antiviral agents [269,270]. 

Plaque assay was developed as the first method for quantifying virus concentrations in 1952 

and was advanced by Renato Dulbecco, where the number of plaque-forming units (PFUs) was 

manually determined in a given sample containing replication-competent lytic 

virions [271,272]. These samples are serially diluted, and aliquots of each dilution are added 

to a dish of cultured cells [271]. As the virus infects adjacent cells and spreads, a plaque will 

gradually form, which can be visually inspected by an expert. Due to its unique capability of 

providing the infectivity of the viral samples in a cost-effective way, the plaque assay remains 

to be the gold standard method for quantifying virus concentrations despite the presence of 

other methods [273–280] such as the immunofluorescence focal forming assays (FFA) [275], 

polymerase chain reaction (PCR) [277], and enzyme-linked immunoassay (ELISA) based 

assays [280,281]. However, plaque assays usually need an incubation period of 2-14 days 

(depending on the type of virus and culture conditions) [282] to let the plaques expand to 

visible sizes, and are subject to human errors during the manual plaque counting process [283]. 

To improve the traditional plaque assays, numerous methods have been developed [284]. 

While these earlier systems have unique capabilities to image cell cultures in well plates, they 

require either fluorescence markers [283] or special culture plates with gold 

microelectrodes [285]. In addition, human counting errors still remain to be a problem for these 
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methods. Hence, an accurate, quantitative, automated, rapid, and cost-effective plaque assay is 

urgently needed in virology research and related clinical applications. 

Some of the recent developments in quantitative phase imaging (QPI), holography, and deep 

learning provide an opportunity to address this need. QPI is a preeminent imaging technique 

that enables the visualization and quantification of transparent biological specimens in a non-

invasive and label-free manner [286,287]. Furthermore, the image quality of QPI systems can 

be enhanced using neural networks by improving e.g., phase retrieval [288], noise 

reduction [130], auto-focusing [289,290], and spatial resolution [291]. In addition, numerous 

deep learning-based microorganism detection and identification methods have been 

successfully demonstrated using QPI [225,292–296,138,297–300].  

Here, we report a cost-effective and compact label-free live plaque assay that can automatically 

provide significantly faster quantitative PFU readout than traditional viral plaque assays 

without the need for staining. A compact lensfree holographic imaging prototype was built (Fig. 

8.1) to image the spatio-temporal features of the target PFUs during their incubation; the total 

cost of the parts of this entire imaging system is < $880, excluding a standard laptop computer. 

This lensfree holographic imaging system rapidly scans the entire area of a 6-well plate every 

hour (at a throughput of ~0.32 Giga-pixels per scan of a test well), and the reconstructed phase 

images of the sample are used for PFU detection based on the spatio-temporal changes 

observed within the wells. A neural network-based classifier was trained and used to convert 

the reconstructed phase images to PFU probability maps, which were then used to reveal the 

locations and sizes of the PFUs within the well plate. To prove the efficacy of our system, early 

detection of vesicular stomatitis virus (VSV) was performed on Vero E6 cell plates. Our stain-

free device could automatically detect the first cell-lysing event due to the virus replication as 

early as 5 hours after the incubation and achieve >90% PFU detection rate in <20 hours, 

providing major time savings compared to the traditional plaque assays that take ≥48 hours. A 
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quantitative relationship was also developed between the incubated virus concentration and the 

virus-infected area on the cell monolayer. Without any extra sample preparation steps, this deep 

learning-enabled label-free PFU imaging and quantification device can be used with various 

plaque assays in virology and might help to expedite vaccine and drug development research.  

 

Figure 8.1 Stain-free, rapid and quantitative viral plaque assay using deep learning and lensless 

holography. (a) Photograph of the stain-free PFU imaging system that captures the phase images of 

the plaque assay at a throughput of ~0.32 Giga-pixels per scan of each test well. The processing of each 

test well using the PFU classifier network takes ~7.5 min/well, automatically converting the 

holographic phase images of the well into a PFU probability map (see Fig. 8.2). (b) Detailed illustration 

of the system components. (c) A 6-well plate sample with ventilation holes on the cover and parafilm 

sealed from the side.  

Part of this chapter has been published in: 
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Liu, T., Li, Y., Koydemir, H.C., Zhang, Y., Yang, E., Wang, H., Li, J., Bai, B. and Ozcan, 

A., (2022). Stain-free, rapid, and quantitative viral plaque assay using deep learning and 

holography. arXiv preprint arXiv:2207.00089. 

8.2 Results 

To demonstrate the efficacy of the presented device, we prepared 14 plaque assays using the 

Vero E6 cells and VSV. The sample preparation steps are summarized in Fig. 8.2a (also see 

the Methods section); for each well-plate, 5 wells were infected by the VSV and 1 well was 

left for negative control. After each sample was prepared, it was first placed into our imaging 

set-up for 20 hours of incubation, performing time-lapse imaging to capture the spatio-temporal 

information of the sample. Then, the same sample was left in the incubator for an additional 

28 hours to let the PFUs grow to their optimal size for the traditional plaque assay (this is only 

used for comparison purposes). Finally, each sample was stained using crystal violet solution 

to serve as the ground truth to compare against our label-free method. 

To train and test our network-based PFU classifier, 54 wells were used for training and 30 wells 

were used for testing. During the training phase, a machine learning-based coarse PFU 

localization algorithm was developed to both accelerate the training dataset generation and 

delineate the potential false positives (see the Method sections for details). After this PFU 

localization algorithm screened each sample, the resulting PFU candidates were further 

examined manually for confirmation using a custom-developed Graphical User Interface 

(Supplementary Figure 8.1); this manual examination was only used during the training phase 

to correctly and efficiently prepare the training data. The negative training dataset was 

populated purely from the negative control well of each well plate. In total, 357 true positive 

PFU holographic videos and 1169 negative holographic videos were collected for training the 

PFU decision neural network. This dataset was further augmented to create a total of 2594 

positive and 3028 negative holographic videos (see the Method sections), where each frame 
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had 480×480 pixels, and the time interval between two consecutive holographic frames was 1 

hour.   

 

Figure 8.2 Schematics of the workflow of the label-free viral plaque assay and its comparison to 

the standard PFU assay. (a) Plaque assay sample preparation workflow. The traditional plaque assay 

at the last step in (a) is only performed for comparison purposes and is not needed for the operation of 

the presented PFU detection device. (b-f) Detailed image and data processing steps for the live viral 

plaque assay.  

After the neural network-based PFU classifier was trained, it was blindly tested on all the 30 

test wells in a scanning manner (shown in Fig. 8.2b) without the need for the PFU localization 

algorithm, which was only used for the training data generation. For each test well, we have 

~18000×18000 effective pixels (representing a 30×30 mm2 active area after discarding the 

edges); the digital processing of each test well using the PFU classifier network takes ~7.5 min, 

which automatically converts the holographic phase images of the well into a PFU probability 

map (Fig. 8.2d). Each pixel of the well on this map indicates the statistical probability of the 

local area (0.8×0.8 mm2) centered at this pixel having a PFU. Using a probability threshold of 

0.5 (50%), the final PFU detection and quantification result was obtained across the entire test 

well area (see e.g., Fig. 8.2 e-f). 
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Figure 8.3a shows examples of our device's output after 15 hours of incubation. Three 

representative PFUs are also selected and shown in Fig. 8.3b. When a PFU is in its early stage 

of growth, with its size much smaller than our 0.8×0.8 mm2 virtual scanning window, it appears 

as a square (shown by the PFU① in Fig. 8.3b) in the final detection result, which effectively 

is the 2D spatial convolution of the small scale PFU with our scanning window. As another 

example, PFU③ shows a cluster forming event where the two neighboring PFUs can be easily 

differentiated using our method as opposed to the traditional plaque assay where they 

physically merged into one. Fig. 8.3c further shows the PFU quantification achieved by our 

device compared to the 48-hour traditional plaque assay results. We achieved a detection rate 

of >90% at 20 hours of incubation without having any false positives at any time point despite 

using no staining.  

The presented device is cost-effective, compact, and automated, and can also handle a larger 

virus concentration range with a more reliable PFU readout. To demonstrate this, we prepared 

another 5 titer test plates, where for each plate, all the 6 wells were infected by VSV, but with 

a 2 times dilution difference between each well, covering a large dynamic range in virus 

concentration from one test well to another. As shown in Fig. 8.4, our method is effective even 

for the higher virus concentration cases; see, for example, the dilution cases of 2-2×10-4 and 2-

3×10-4. In the traditional 48-hour plaque assay, only the lowest virus concentration is suitable 

for the PFU quantification due to significant spatial overlapping, whereas for our label-free 

device, we can automatically and accurately count the individual PFUs at an early stage, even 

for the highest virus concentration (see Fig. 8.4c).  
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Figure 8.3 Performance of the stain-free plaque assay for samples with low virus concentration. 

(a) Whole well comparison of the stain-free viral plaque assay after 15-h incubation against the 

traditional plaque assay after 48-h incubation and staining. (b) The growth of three featured PFUs in 

the positive well from (a). The reconstructed phase channel is overlaid with the mask generated using 

the PFU localization algorithm to reveal their locations better. (c) Average PFU detection rate using 

the label-free viral plaque assay. The error bars show the standard deviation across the 5 testing plates. 
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Furthermore, our method provides a more reliable readout; for example, in the circled region 

in Fig. 8.4 a-b, the absence of the cells was caused by some random cell viability problems that 

occurred during the plaque assay. In our device, these artifacts can be easily differentiated from 

the cell lysing events caused by the viral replication, since the spatio-temporal patterns for these 

two events are vastly different (assessed by the trained PFU probability network). This makes 

our deep learning-enabled device resilient to potential artifacts or cell viability issues randomly 

introduced during the sample preparation steps.  
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Figure 8.4 Performance of the stain-free viral plaque assay as a function of the virus 

concentration. (a-b) Whole plate comparison of the stain-free viral plaque assay after 15-h incubation 

against the traditional plaque assay after 48-h incubation and staining. (c) The growth of PFUs in their 

early stage for the same plate shown in (a) and (b). 

Due to the high virus concentration used in these 5 titer test samples, PFUs quickly clustered 
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and were no longer suitable for manual counting, as shown in Fig. 8.5a. However, the 

quantitative readout and the PFU probability map of our presented device allowed us to obtain 

the area of the virus-infected regions across all the time points during the incubation period, as 

shown in Fig. 8.5b. To better illustrate this, we plot in Fig. 8.5c the virus dilution factor vs. the 

ratio of the infected cell area per test well (in %) for all the samples at 6, 8, and 10 h of 

incubation time. Despite the existence of some serial dilution errors, late virus wakeups, and 

PFU clustering events, the infected area percentage that our device measured is monotonically 

decreasing with the increasing dilution factor for all the incubation times. This suggests that, 

by calibrating the system, the virus concentration (PFU/mL) can also be estimated from the 

percentage of the infected cell area per well.  
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Figure 8.5 Quantitative performance analyses of the label-free viral plaque assay for high virus 

concentration samples. (a) PFU counting results for different high concentration virus samples at 

different time points. The light red region indicates the time when the PFUs were heavily clustered and 

no longer suitable for counting. (b) Area of the virus-infected regions for different high virus 

concentration samples at different time points.  The error bars in (a-b) show the standard error across 

5 titer testing plates. (c) Plots of virus dilution factor vs. the ratio of the infected cell area per test well 

(in %) for all 5 titer test samples at 6, 8, and 10 h of incubation time.  

Furthermore, using the area percentage of the virus-infected region as a label-free 

quantification metric, the presented framework can provide earlier PFU readouts. To show this, 

we computed the infected area percentage for all the 25 positive/infected wells of the blind 

testing plates used to generate Fig. 8.3c. As shown in Fig. 8.6, when the infected area 

percentage is sufficiently large (>1%), a faster PFU concentration readout can be provided at 

12-h or 15-h. Since the size of an average PFU on the well is physically larger at 15 hours of 

incubation compared to 12 hours, the slope of the red calibration curve in Fig. 8.6b is smaller 

than Fig. 8.6a, as expected. For samples with even higher virus concentrations, the infected cell 

area percentage could reach >1% in ≤10 hours of incubation (shown in Fig. 8.5c), providing 

the PFU concentration readout even earlier. 

 

Figure 8.6 Infected area percentage (%) measured by our stain-free device at different time 

points vs. the virus concentration per well (PFU/mL). The virus concentrations in y-axis were 
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obtained from the 48-h traditional plaque assay for each test well. Different test wells of the same plate 

were marked with the same color/symbols. There are 25 infected test wells in each plot. The red 

calibration curves were obtained by quadratic polynomial fitting.  

8.3 Discussion 

We demonstrated a cost-effective and automated early PFU detection system using a lensfree 

holographic imaging system and deep learning. This deep learning-based stain-free device 

captures time-lapse phase images of a test well at a throughput of ~0.32 Giga-pixels per scan, 

which is then processed by a PFU quantification neural network in ~7.5 min to yield the PFU 

distribution of each test well. The high detection rate of this label-free device with 100% 

specificity shown in Fig. 8.3c is a conservative estimate since the ground truth data were 

obtained after 48-h of incubation. In the early stages of the incubation period, many PFUs did 

not even exist physically, which means that if we were to use the existing PFUs as the ground 

truth for our quantification at each time point, our detection rate would be even higher.  

The modular design employed by the presented PFU detection platform brings the potential for 

further system improvements. For example, parallel imaging can be achieved by installing 

several image sensors on the same system without significantly increasing the cost of the device, 

which will further improve the 30 cm2/min effective imaging throughput of the device [301]. 

More accurate scanning stages can also help reduce the image registration steps needed during 

image pre-processing. Multi-wavelength phase recovery [302] can also be implemented to 

improve the overall image quality of the label-free plaques. The presented deep learning-

enabled PFU detection framework can be potentially adapted to other imaging modalities that 

can provide the spatio-temporal differences in the PFU regions for various types of viruses; 

similarly, the trained PFU classifier network also has the adaptability to these system changes 

(see the Supplementary Note 8.1).  

All in all, we presented a stain-free, rapid, and quantitative viral plaque assay using deep 
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learning and holography. The presented compact and cost-effective device preserves all the 

advantages of the traditional plaque assays while significantly reducing the required sample 

incubation time in a label-free manner, saving time and eliminating staining. It is also resilient 

to potential artifacts during the sample preparation, and can automatically quantify a larger 

dynamic range of virus concentrations per well. We expect this technique to be widely used in 

virology research, vaccine development, and related clinical applications.  

8.4 Materials and methods 

Safety practices: We handled all the cell cultures and viruses during our experiments at our 

biosafety level 2 (BSL2) laboratory according to the environmental, health, and safety rules 

and regulations of the University of California, Los Angeles. All operations were carried out 

under strict aseptic conditions.  

Studied organisms: We used Vero C1008 [Vero 76, clone E6, Vero E6] (ATCC® CRL-

1586TM) (ATCC, USA) and vesicular stomatitis virus (ATCC® VR-1238TM). Vero E6 cells are 

African green monkey kidney cells and are epithelial cells.  

Cell propagation: We placed the frozen stock culture immediately in the liquid nitrogen vapor, 

until ready for use, just after the delivery of the frozen stock culture from ATCC. ATCC 

formulated Eagle's Minimum Essential Medium (EMEM) (product no. 30-2003, ATCC, USA) 

was used as a base medium for the cell line. For the complete growth medium, the base medium 

was mixed with fetal bovine serum (FBS) (product no. 30-2021, ATCC, USA) with a final 

concentration of 10 %. The FBS stock was aliquoted into 4 mL microcentrifuge tubes and 

stored at -20oC until use.   

We used tissue culture flasks (75 cm2 area, vented cap, TC treated, T-75) (product no. 

FB012937, Fisher Scientific, USA) for cell culturing. The base medium in a T-75 flask and 

FBS were brought to 37oC in the incubator (product no. 51030400, ThermoFisher Scientific, 
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Waltham, MA, USA) and fed with 5% CO2 before handling it for cell culturing steps. The 

complete growth medium was prepared. The frozen cell culture was removed from liquid 

nitrogen and thawed under running water. After thawing the cells, the cell suspension was 

added to a T-75 flask containing 8 mL of complete growth medium (i.e., EMEM + 10% FBS). 

The flask was incubated at 37oC and 5% CO2 in the incubator. The adherence of the cells to 

the flask surface was analyzed daily under a phase-contrast microscope. The medium in the 

flask was renewed 2-3 times a week. The cells were sub-cultivated in a ratio of 1:4 when 95% 

confluency of the cells as a monolayer was reached.  

Subculturing of cells: After the removal of the medium from the cell culture flask, the cells 

were exposed to 2-3 mL of 0.25% Trypsin/0.53 mM EDTA (ATCC® 30-2101™, ATCC, USA) 

per flask for dissociation of cell monolayers. The flasks were kept in the incubator for 5-6 

minutes for rapid dissociation of cells. 8 mL of complete medium per flask was added to each 

of them and 2-3 mL of the mixture containing suspended cells was transferred into a new T-75 

flask.  8 mL of complete medium was added to the new flask and after gentle mixing, it was 

incubated at 37oC and 5% CO2 for the growth of new cells.  

Virus propagation: After the delivery of the virus stock sample, it was stored at 4oC until use. 

Virus propagation requires to have Vero cells to be cultured and reach 90-95% confluency on 

the day of infection. Therefore, Vero cells were cultured 1-2 days before the virus propagation 

using a seed cell suspension of Vero cells that were subcultured more than 3 times. The virus 

titer for the stock solution that we had was 106.4 TCID(50)/mL, which was equal to ~1.75×106 

PFU/mL, according to its specifications. The multiplicity of infection was chosen as 0.005, 

which is recommended to be between 0.005 and 0.00001 [303].  

The growth medium in the Vero cell culture flask was removed and discarded. It was rinsed 

using 5 mL Dulbecco's Phosphate Buffered Saline (D-PBS), 1X (ATCC® 30-2200™) (product 
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no. 30-2200, ATCC, USA). After incubation of the D-PBS containing flask for 3 min in the 

cabinet, the buffer solution was removed and discarded. 14 µL of stock virus and 6 mL of 

EMEM (without FBS) were added to each flask. The flasks were incubated at 37oC for 1 hour 

and rocked at 15 min intervals to have a uniform spread of virus inoculum. After 1 hour, 10 

mL of complete medium was added to each flask and the flasks were incubated at 37oC and 5% 

CO2 for 48 h to 72 h.  

After the incubation, the flasks were analyzed under a phase-contrast microscope. The cells 

should dissociate from the surface and round cells should be observed in the mixture if the 

virus propagation process is successful. The mixture was collected into a 50 mL tube (product 

no. 06-443-20, Fisher Scientific, USA) and the tubes were sealed using a parafilm layer. The 

suspension in the tube was centrifuged at ~2600 g for 10 min using a centrifuge with swing-

out rotors (product no. 22500126, Fisher Scientific, USA). The supernatant containing the virus 

was collected from the tube and pooled in a new tube. After gentle mixing of the tube to have 

a uniform suspension, the suspension was aliquoted into 1 mL cryogenic vials with O-ring 

(product no. 5000-1012, Fisher Scientific, USA). The tubes were labeled and stored in liquid 

nitrogen.  

Preparation of agarose solution: 4% Agarose (product no. MP11AGR0050, Fisher Scientific, 

USA) in reagent grade water (product no. 23-249-581, Fisher Scientific, USA) was prepared 

and well mixed [303]. The suspension was then aliquoted into the glass bottles. The solution 

was sterilized at 121oC for 15 min in an autoclave and 50 mL aliquots were stored at 4oC until 

use.  

Preparation of agarose overlay solution: One of the tubes containing the 50 mL of sterile 

agarose solution was heated up in a microwave oven for ~30 s. The solution was cooled down 

to 65oC in a water bath. 23.9 mL EMEM medium was mixed with 0.6 mL FBS and warmed to 

https://www.fishersci.com/shop/products/fisherbrand-higher-speed-easy-reader-plastic-centrifuge-tubes-8/0644320?keyword=true
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50oC. 3.5 mL of agarose solution were added into the warmed medium mixture using a 10 mL- 

serological pipette and kept at 50oC until use.   

Well plate preparation: First, the adhered cells in the flask were resuspended using trypsin. 

The solution was gently mixed to have uniform cell suspension and 10 µL of the suspension 

was taken for cell counting using a hemacytometer chamber. The cells were counted using a 

phase-contrast microscope. According to the cell count, the concentration of cells was adjusted 

to ~6.5×105 cells /mL by diluting the suspension using the complete medium. ~6.5×105 cells 

were added to each well of a new 6-well plate. Then, 2 mL of complete medium was added to 

each well and the plate was stored at 37oC and 5% CO2 for 24 h. Next, the cell coverage on 

each well was checked under the microscope. The cell coverage should reach ~95% to perform 

the PFU assay. The cells were infected with diluted virus suspension and the overlay solution 

was added to the cells. After the solidification of the overlay at room temperature, the plate 

was incubated for 48 h, where the first 20 hours were used for the lensfree PFU imaging device.  

Preparation of crystal violet solution: 0.1 g of crystal violet powder (product no. C581-25, 

Fisher Scientific) was mixed with 40 mL reagent grade water in a 50 mL centrifuge tube. The 

mixture was gently mixed to dissolve the powder. 10 mL methanol (product no. A452-4, Fisher 

Scientific) was added to the mixture and stored at room temperature.  

Fixation and staining of cells: These steps were only performed for comparison against our 

device’s PFU readings. After 48 h of incubation, the plate was removed from the incubator and 

the cells were fixed using 0.5 mL methanol/acetic acid solution for 30 min. After 30 min, the 

wells were washed with water gently to remove the agarose layer. The excess water was 

removed, and 1 mL of crystal violet (CV) solution was added to each well. The plate with CV 

was placed into the shaker incubator and mixed at 100 rpm for 30 min. After 30 min of 

incubation, tap water was used to remove excess stain from the plate and the waste was 
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collected into a large beaker. The plate was left to dry in a fume hood and stored at room 

temperature by covering with an aluminum foil.    

Lens-free imaging set-up: An automatic lens-free PFU imaging set-up was built to capture 

the in-line holograms of the samples. This set-up includes: 1) a holographic imaging system, 

2) a 2D mechanical scanning platform, 3) a cooling system, 4) a controlling circuit, and 5) an 

automatic controlling program. Three green laser diodes (515 nm, Osram PLT5510) were used 

for coherent illumination, where each laser diode illuminates two wells on the same column of 

the 6-well sample plate. The laser diodes were controlled by a driver (TLC5916, Texas 

Instruments, Texas, US) and mounted ~16 cm away from the sample. A CMOS image sensor 

(acA3800-14 µm, Basler AG, Ahrensburg, Germany, 1.67 μm pixel size, 6.4 mm × 4.6 mm 

FOV) was placed ~5 mm beneath the sample forming a lensfree holographic imaging system. 

The phase changes in the PFU regions were encoded in the acquired holograms.  

The FOV of the CMOS image sensor is ~0.3 cm2, hence mechanical scanning is needed for 

imaging the whole area of a 6-well plate. A scanning platform was built using a pair of linear 

translation rails, a pair of linear bearing rods, and linear bearings. 3D printed parts were also 

used to aid with housing and joints. Two stepper motors (product no. 1124090, Kysan 

Electronics, San Jose, CA, USA), driven by two driver chips (DRV8834, Pololu Las Vegas, 

NV, US), were exploited to enable the CMOS sensor to perform 2D horizontal movement. This 

low-cost platform carries the CMOS sensor moving in a raster pattern and images a total of 

420 holograms (21 horizontal, 20 vertical, with 15% overlap) in ~3 min to complete the whole 

sample scanning. The selected CMOS sensor could heat up to >70°C during its operation, 

which could disturb the growth of the sample and vaporize the agarose layer, especially for 

regions that are near the sensor parking location between successive holographic scans. Hence, 

a cooling system was built using fans (QYN1225BMG-A2, Qirssyn, China). We also sealed 

the sides of the sample using parafilm (product no. 13-374-16, Fisher Scientific, Hampton, NH, 
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USA) and opened 4 holes on the top cover to form a gentle ventilation system.  

A microcontroller (Arduino Micro, Arduino LLC) was used to control the two stepper motor 

driver chips, the illumination driver chip, and a field-effect transistor-based digital switch (used 

to turn the CMOS sensor on/off). All these chips along with the digital switch, wires, and 

capacitors, were integrated on one printed circuit board (PCB), powered by a 6V-1A power 

adaptor connected to the wall plug.  

An automatic controlling program with a graphical user interface (see Supplementary Figure 

8.2) was developed using the C++ programming language. It can be used to adjust the image 

capture parameters (e.g., exposure time etc.) of the CMOS image sensor and communicate with 

the microcontroller to further switch the laser diodes or CMOS sensor on/off and control the 

movement of the mechanical scanning system. 

All the components along with their unit prices are also summarized in Table S8.1. The cost of 

the parts of this entire imaging system is < $880, excluding the laptop computer. At higher 

volumes of manufacturing, this cost can be significantly reduced. 

Image pre-processing: After the image acquisition for each time interval, the raw holograms 

were firstly reconstructed using the angular spectrum approach based back-propagation [254–

258]. The accurate sample-to-sensor distance was estimated at the central region of each well 

using an auto-focusing algorithm based on the Tamura-of-Gradient (ToG) metric [304] . The 

same sample-to-sensor distance was used for the entire well since the neural network-based 

method can tolerate de-focusing. Then, the phase channel of the reconstructed holograms was 

stitched into the whole FOV image using a correlation-based method and linear blending [225].  

Starting from the second time interval, a 2-step image registration was performed to 

compensate for the low accuracy of the mechanical scanning stage. A coarse whole FOV 

correlation-based image registration was firstly performed, then a local fine elastic image 
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registration was followed [305].  

Coarse PFU localization algorithm 

First, each current frame was stacked with the previous 3 frames (shown in Supplementary 

Figure 8.3a) and a background image (shown in Supplementary Figure 8.3b) was estimated 

through singular value decomposition [306]. By subtracting this background image, signals 

from the static regions were suppressed (shown in Supplementary Figure 8.3c). Then, by 

applying bilateral filtering, the PFU regions with high spatial frequency features were further 

enhanced (shown in Supplementary Figure 8.3d).  

93 images patches (256 × 256 pixels) in PFU regions and 93 image patches from non-PFU 

regions were cropped manually from 3 experiments. Each pixel of these image patches was 

labelled as 1 for the PFU region and 0 for the non-PFU region. A Naïve Bayes pixel-wise 

classifier was trained using this dataset, where the Tamura-of-Gradient (ToG) metric [304] was 

computed at 2×, 4×, 8×, 16×, and 32× down-sampling scales to serve as the manually selected 

features. The effect of this classifier is shown in Supplementary Figure 8.3e. Finally, by 

applying several morphological operations (such as image close, image fill, etc.), the PFU 

regions are coarsely located (shown in Supplementary Figure 8.3f).  

Though this coarse PFU localization algorithm was still subject to detect false positives (shown 

in Supplementary Figure 8.3g), it could significantly simplify the effort needed for populating 

the network training dataset. In addition, applying this algorithm to a negative well would help 

delineate the potential false positives during network training (shown in Supplementary Figure 

8.3h). Ultimately, this coarse PFU localization algorithm helped label 357 positive videos and 

1169 negative videos used to train the PFU classification network. The positive videos were 

populated to 2594 by performing augmentation over time; the negative videos were populated 

to 3028 by further random selection from the negative control wells. Important to note that this 
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PFU localization algorithm was only used for the training data generation, and was not 

employed in the blind testing phase as its function was to streamline the training data generation 

process to be more efficient. 

Network architecture and training schedule 

Our PFU classifier network was built based on the DenseNet [260] structure, with 2D 

convolution layers replaced by the pseudo-3D building blocks [261]. The detailed architecture 

is shown in Supplementary Figure 8.4 and described in Supplementary Note 8.2. We used 

ReLU as the activation function. Batch normalization and dropout with a rate of 0.5 were used 

in the training. The loss function we used was the weighted cross-entropy loss: 

 ( )
( )

( ) ( )
2 ,

,1 1

,1 ,2

exp
, log

exp exp

K k l

l k lk l

k k

p
l p g w g

p p= =

 
 = −  
 + 

   (65) 

where p is the network output, which is the probability of each class (i.e., PFU or non-PFU) 

before the SoftMax layer, g is the ground-truth label (which is equal to 0 or 1 for binary 

classification), K is the total number of training samples in one batch, w is the weight assigned 

to each class, defined as w = 1-d, where d is the percentage of the samples in one class (d = 

46.1% for positive class, d = 53.9% for negative class).  

The input 4-frame videos were formatted as a tensor with the dimension of 1 × 4 × 480 × 480 

(channel × time frame × height × width). Data augmentation, such as flipping, and rotation 

were applied when loading the training dataset. The network model was optimized using the 

Adam optimizer with a momentum coefficient of (0.9, 0.999). The learning rate started as 1×10-

4 and a scheduler was used to decrease the learning rate with a coefficient of 0.7 at every 30 

epochs. Our model was trained for 264 epochs using NVIDIA GeForce RTX3090 GPU with a 

batch size of 30. The loss curve, training sensitivity and specificity curves of our training 

process are provided in Supplementary Figure 8.5. In these curves, 10% of the training dataset 
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was randomly selected as the validation dataset. Note that the training and validation datasets 

(containing holographic videos of the wells) were formed from various wells at different time 

points of each PFU assay as detailed earlier; therefore, these training and validation sensitivity 

and specificity curves do not reflect the evaluation of an individual test well that is periodically 

monitored from the beginning of the incubation. Our blind testing results reported in the Results 

section, however, were acquired by using the trained PFU detection neural network on 

individual test wells that were continuously monitored from the beginning of the incubation 

with a sampling period of 1 hour, achieving >90% detection rate for PFUs with 100% 

specificity in <20 hours.   

Image post-processing 

After getting the PFU probability map and applying the 0.5 threshold, two image post-

processing steps were followed to obtain the final PFU detection result: 1) maximum 

probability projection along time, and 2) PFU size thresholding. The maximum projection was 

used to compensate for the lower PFU probability values generated from the PFU center when 

it enters the late stage of its growth. The effect of this maximum projection is illustrated in 

Supplementary Figure 6. The size threshold on the PFU probability map was set to 0.5×0.5 

mm2.   

8.5 Appendix 

Supplementary Note 1: Guidelines for hyperparameter selection to adapt to other modalities 

and biological agents. 

The presented framework has the potential to be adapted to different imaging modalities that 

can provide spatio-temporal differences in the PFU regions for various types of biological 

agents. Here, we discuss the principles of the system hyperparameter selection, particularly the 

0.8×0.8 mm2 network input window size, and the network input frames, to provide a guideline 

for future applications.  
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The selection of the window size should take into account the system resolution, PFU size, and 

network structure. The input window size to the PFU detection network should be 

approximately one order of magnitude larger compared to the resolution of the imaging system 

to provide sufficient spatial information to the network. On the other hand, if the window size 

is too large, it will dramatically decrease the network inference speed and harm its ability to 

differentiate PFU clusters at an earlier time point. Lastly, the number of pixels for the window 

must be divisible by 32, since the selected network structure will down-sample the input images 

by 32 times; of course, the network structure can be modified accordingly to handle a different 

number of pixels at the input depending on the needs. Combining all these, the 480×480 pixels, 

i.e., 0.8×0.8 mm2 window size was chosen in our PFU detection network. 

For the selection of the number of input frames, our experience is that at least 3 time-lapse 

frames must be fed into the network to differentiate an early-stage PFU from other non-specific 

signals. To increase the stability of the network performance and ensure its efficiency, we used 

4 frames (acquired at a period of 1 hour) as our network input. However, this number is subject 

to increase when the 1-h scanning time interval is reduced. This should be ultimately decided 

by whether sufficient spatio-temporal features can be captured when adapting to different types 

of viruses depending on the corresponding plaque formation speed.   

Supplementary Note 2: Network architecture of the PFU decision neural network. 

Dense layers and transition layers were connected alternatively to transfer the high-dimensional 

data into low-dimensional data. For each dense layer taking 4-dimensional input, a 3D 

convolutional layer with a kernel size of (1,1,1) and a stride of (1,1,1) was first applied to 

reduce the number of channels to 32, and the pseudo-3D block (sequentially selected from the 

3 types shown in Supplementary Figure 4) was followed to further extract both the spatial and 

temporal features, the output of which was then concatenated with the original input, following 

the structure of DenseNet. Each transition layer also reduced the number of channels of its 
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input by half using a 3D convolutional layer with a kernel size of (1,1,1) and a stride of (1,1,1), 

and then an average pooling layer with a kernel size of (2,2,2) and a stride of (2,2,2) was 

followed to reduce the image size by half. We also included 2D versions of our dense and 

transition layers, which were only used to process the spatial domain in the case when the 

temporal dimension was collapsed to 1. In total, our network consists of 6 3D dense layers, 2 

3D transition layers, 15 2D dense layers, and 1 2D transition layer. Lastly, we had an average 

spatial pooling layer with a kernel size of (15,15) to flatten the features into a 113-length vector, 

which was then fed into a fully connected layer and SoftMax layer to produce an output PFU 

probability map. 

Table S8.1 Cost of our label-free holographic PFU imaging device with the unit price of each component under 

low volume. 

Component Unit price Number Total price 

515 nm laser diode $15.36 3 $46.08 

Basler CMOS sensor $584.00 1 $584.00 

Stepper motor $14.00 2 $28.00 

Arduino Micro $22.80 1 $22.80 

TLC5916 LED driver $1.00 1 $1.00 

Stepper motor driver $9.95 2 $19.9 

PCB fabrication $2.00 1 $2.00 

Belts $25.00 / $25.00 

Acrylic sheet $25.00 2 $50.00 

Mechanical supporting parts $50.00 / $50.00 

3D printing material $50.00 / $50.00 

Total   $878.78 
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(a) 

 

(b) 

 

Figure S8.1 The Graphical User Interface (GUI) for manually labeling the PFU videos; this was 

only used during the training phase to efficiently curate labeled image data. (a) Example of a true 

positive PFU at 1, 3, 5, …, 15 hours. (b) Example of a false positive PFU at 1, 3, 5, …, 15 hours (usually 

these are bubbles, dust, agar degradation regions, etc.). Undecided PFU candidates were further 

compared with the 48-h traditional plaque assay (after staining) for confirmation.  
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Figure S8.2 Graphical user interface of the imaging system controlling program. Users can adjust 

the illumination, image sensor, and scan settings through this user interface. 

 

Figure S8.3 Workflow of the coarse PFU localization algorithm, which is only used during the 

training phase for efficient data curation. A coarse PFU localization mask (binary) can be obtained 

using the PFU localization algorithm following the steps from (a) to (f). 
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Figure S8.4 Network architecture of the PFU decision neural network. This network is based on 

the DenseNet structure, with the 2D convolutional layers replaced by the pseudo-3D building blocks. 
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Figure S8.5 Loss, sensitivity, and specificity curves of the PFU decision neural network training 

process. 

 

          

Figure S8.6 Effect of the maximum projection method. The impact of using the maximum projection 

method to avoid lower PFU probability values being generated from the center of the late-stage PFUs 

(see e.g., the central regions of the red circled areas). Also see the Methods section of the main text.  
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Chapter 9 . Conclusions 

This dissertation has focused on the use of deep learning in the optical microscopy imaging. 

Due to the flexibility of deep learning, this technique can not only improve the performance of 

an existing optical system, but also adapts the optical system to more challenging biomedical 

imaging applications. To conclude, I summarize my major contributions to deep learning on 

microscopy imaging in the following domains: 

(1) Optics. I developed a deep learning-based technique to improve the resolution for a coherent 

imaging system and showed its efficacy for both pixel-size-limited case and diffraction limited 

case, which suggests a great potential for adapting this framework to a wide range of imaging 

platforms (Chapter 2). Next, I presented the use of deep learning on simultaneously eliminating 

the missing-phase-related artifact and correct the color inaccuracy due to the use of only three 

illuminating wavelengths in holography, which reduced the needed data for reconstruct a high-

fidelity color image using the lensfree imaging system by >200 folds (Chapter 3). Later, I 

created a deep learning-enabled holographic polarization microscope, which can reconstruct 

both the quantitative retardance and orientation information of a birefringent object using a 

single polarization state in the light path. This framework eliminates the need for altering the 

light path during imaging and provides a practical solution for polarization imaging using 

holography (Chapter 4).    

(2) Pathology. The development of the deep learning color holography framework can 

dramatically improve the system throughput for adopting the lenfree imaging technique in 

pathology (Chapter 3). In addition, I developed a deep learning-based label-free virtual staining 

technique, which could further accelerate the pathological diagnosing workflow by eliminating 

the chemical staining process (Chapter 5). 

(3) Microbiology. I led the development of a computational cytometer based on magnetically 
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modulated lensless speckle imaging. Using deep learning, this framework can differentiate the 

target rare cell to other random particles in the blood sample (Chapter 6). Furthermore, I 

developed a CFU detection and classification framework using the TFT sensor, which 

significantly reduces the required sample incubation time with an ultra large imaging FOV and 

a cost-effective system design (Chapter 7). Last but not the least, I created a novel quantitative 

viral plaque assay technique that requires no staining and can provide early PFUs readout 

during their growth (Chapter 8). 

Looking forward, I believe that many of these techniques and platforms have the great potential 

to be translated to rapid, compact, and cost-effective diagnosis tools. Yet, there is still a long 

way to go for applying deep learning in the field of biomedical imaging. For example, one of 

the greatest burdens for applying deep learning in such applications is to create an unbiased 

training dataset. A systematical standardized evaluation method is yet needed in many bio-

imaging applications. Further, the interpretation of the black box nature of the deep learning 

remains to be a high interest for many researchers. Combined with the rapid development of 

deep learning, there is still a wide range of opportunities to further penetrate this technique into 

microscopy imaging. 
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