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Abstract

Trajectory Modeling in the National Airspace System: Data Mining, Inference, and Deep
Generative Models

by

Yulin Liu

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Mark Hansen, Chair

In this thesis, we present data-driven methods and algorithms to address the emerging
challenges for performance assessment and predictive analysis in the national airspace system
(NAS). Among these challenges, routing efficiency has received more attention in the research
community due to its core position in aviation economics and environmental studies. This
motivates us to seek answers to fundamental questions such as “what are the mechanisms
and causes of inefficient en route operations?” More importantly, “what can we do to improve
these operations? Presumably in a predictive way?”

Chapter 2 provides a macroscopic comparison for flight en route inefficiency among different
departing airports, arrival airports, seasons, and flight lengths through a series of fixed-
effects models. We show that flights from or to the airports in the east coast corridor and
south coast, especially in the New York metropolitan and Florida area, are generally more
inefficient than the others. Long-haul flights are more efficient mainly because one component
of excess distance – which results from flights using fixed entry and exit points that are not
on the great circle route – is roughly independent of distance. In addition, flights operated
during the summer season, when convective weather is more frequent, are less efficient than
those in other seasons.

In Chapter 3, we have first gathered information from the Federal Aviation Administration
(FAA) database system, which includes convective weather, wind, miles-in-trail (MIT) re-
strictions, airspace flow programs (AFP), and special activity airspace (SAA), through data
mining techniques. We then propose two mechanisms to ascribe flight en route inefficiency to
these factors. Trajectory clustering, attribute matching, statistical modeling, and counter-
factual analysis have been employed in our methodological framework. Using this approach,
the contributions of wind, connective weather, MIT, AFP and SAA to flight inefficiency
have been estimated. Results vary across airport pairs, but in general if we systematically
clear the values of these causal factors in the whole airspace, convective weather and wind
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make the greatest, yet not dramatic, contribution. However, we have also shown that the
“marginal contribution estimates” might be caused by the largely homogeneous distribution
of different attributes across routes. Therefore, if we “clear the sky” solely for one alternative
route, flight en route inefficiency may substantially improve or deteriorate.

Finally, we have developed in Chapter 4 a novel approach to predict, in a real-time man-
ner, the actual 4D (latitude, longitude, altitude, time) aircraft trajectories. Specifically, our
framework consists of an efficient tree-based matching algorithm to construct feature maps
from high-fidelity meteorological datasets, and an end-to-end convolutional recurrent neural
network that includes a long short-term memory (LSTM) encoder network and a mixture
density LSTM decoder network. The encoder network embeds last-filed flight plan infor-
mation into fixed-size hidden state variables and feeds the decoder network, which further
learns the spatiotemporal correlations from the historical flight tracks. Convolutional layers
are integrated into the pipeline to learn representations from the high-dimension weather
features. During the real-time inference process, beam search, adaptive Kalman filter, and
Rauch-Tung-Striebel smoother algorithms have been implemented to prune the variance of
generated trajectories. Our approach, which is trained on historical flights from the George
Bush intercontinental airport (IAH) to Boston Logan international airport (BOS) in 2013,
achieves an average of 50 nautical-mile horizontal and 2800 ft. vertical error, which is a new
state-of-art method for trajectory prediction tasks.
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Chapter 1

Introduction

Recent years have witnessed growing interest in data analytic techniques to assess the over-
all performance in the national airspace system (NAS). In the past decades, air navigation
service providers (ANSPs), including the Federal Aviation Administration (FAA) and EU-
ROCONTROL, have spent tremendous effort on system level projects that seek to identify
key performance indicators (KPIs), define metrics, assess trends, discover patterns, and com-
pare performance. Among these assessments, the en route performance of the airspace, which
is closely related to flight trajectory analysis, is one of the most important KPIs due to its
significant impact on aviation economics and the environment. Therefore, ANSPs have made
many attempts to improve it. For example, since 2008, EUROCONTROL has begun imple-
menting “free route airspace (FRA)” in the European airspace such that flights may freely
plan a route, if available, without reference to the air traffic service (ATS) route network
([55], [20]). They report that this initiative has benefited the flight operators by reducing
average routing inefficiency from 3.17% in 2012 to 2.77% in 2017. In the US, much of the at-
tentions has been focused on balancing air traffic demand and capacity instead of improving
the en route performance. These traffic flow management initiatives, including miles-in-trail
(MIT) restrictions and airspace flow programs (AFPs), however, might be harmful to the
routing efficiency. Therefore, investigating their effects on the en route performance is one
of the major aims in this work.

On the other hand, the concept of trajectory-based operations (TBO) has received
more attention in the development of the next generation of the national airspace system
(NextGen). In 2016, the FAA announced the “TBO Vision 2025” program that aimed to
achieve greater predictability, higher levels of automation, more efficient strategic planning,
and fewer tactical interventions ([26]). As a fundamental requirement, TBO seeks the de-
velopment of tools to both strategically plan and tactically predict accurate 4D aircraft
trajectories (latitude, longitude, altitude and time), such that air traffic control can manage
traffic in a timely manner. Recent years have seen many developments on systems that focus
on optimizing and controlling aircraft 4D trajectories ([5], [59], [60]), yet, there are far fewer
studies on resolving the fundamental task of the TBO – developing tools to predict 4D flight
trajectories in real time.
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These challenging tasks demand individual flight trajectory modeling techniques, which
can be addressed through machine learning, data mining and deep learning methods thanks
to recent enhancements in computing power and data storage. In particular, the FAA estab-
lished a System Wide Information Management (SWIM) system ([52], [68], [67]) that archives
massive real-time information that covers flight track surveillance data, weather activities,
traffic management initiatives and airport operational status. This system, therefore, of-
fers us the opportunity to develop data-driven methodological frameworks that scientifically
understand the mechanisms and causes behind degraded NAS performance, and further, to
build predictive models that improve decision making.

In this thesis, we present three papers around the topic. In Chapter 2, we explore
patterns of flight en route inefficiency for domestic flights into and out of the US 34 core
airports using a dataset of approximately six million flights from the years 2013 and 2014.
Our inefficiency metric, which is defined by the FAA and EUROCONTROL, compares the
distance flown between airport terminal exit and entry points with a benchmark distance,
and further isolates the effects of pre-specified, and often not ideal, entry and exit points and
excess distance flown between these points. Macroscopic fixed effect models are proposed
to estimate the variations of routing inefficiency across different departure/arrival airports,
seasons, and flight length.

Chapter 3 continues the discussion of uncovering the mechanisms behind the flight en
route inefficiency. In this chapter, we first identify the possible factors that cause the ineffi-
ciency through comprehensive literature review and data mining techniques. These factors
include convective weather, wind, miles-in-trail (MIT) restrictions, airspace flow programs
(AFP) and special activity airspace (SAA). Second, we propose two mechanisms that directly
link en route inefficiency with the routing decision-making process, in which flight operators
make strategic routing decisions prior to departure and perform tactical rerouting airborne.
Both phases of decision making can be ascribed to the list of identified causal factors. Third,
we have developed a framework, which includes trajectory clustering and attribute matching,
to reveal nominal traffic flows and their route-specific attributes within a specified airport
pair. Based on this discovery, we are able to construct a scenario whereby each flight needs
to choose a route from the nominal flows, which mimics the strategic flight planning process.
Fourth, we establish logit models, including multinominal logit and nested logit models, to
quantitatively understand, for each airport pair, how different causal factors affect the choice
of a nominal route. A similar strategy is applied to model the tactical rerouting through
a set of inefficiency (linear) models. Lastly, we have conducted counterfactual analysis to
estimate the contributions of each of these causal factors to en route inefficiency.

In Chapter 4, while still focusing on the en route airspace, we shift our focus to mod-
eling individual flight trajectories. As one of the most direct solutions to the fundamental
task of TBO, we have developed a framework to predict real-time 4D aircraft trajectories.
To this end, we first propose a highly generalizable efficient tree-based matching algorithm
to construct image-like feature maps from high-fidelity meteorological datasets — wind,
temperature and convective weather. We then model the track points on trajectories as con-
ditional Gaussian mixtures with parameters to be learned from our proposed deep generative
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model, which is an end-to-end convolutional recurrent neural network that consists of a long
short-term memory (LSTM) encoder network and a mixture density LSTM decoder network.
The encoder network embeds last-filed flight plan information into fixed-size hidden state
variables and feeds the decoder network. The decoder network further learns the spatiotem-
poral correlations from the historical flight tracks and outputs the parameters of Gaussian
mixtures. Convolutional layers are integrated into the pipeline to learn representations from
the high-dimension weather features. During the real-time inference process, beam search,
adaptive Kalman filter, and Rauch-Tung-Striebel smoother algorithms are used to prune the
variance of generated trajectories.
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Chapter 2

Performance Analysis of Routing
Efficiency in the National Airspace
System

2.1 Introduction

In recent years, the aviation research community has witnessed growing interest in com-
parative performance assessment of air navigation service providers (ANSPs). Such efforts,
however, face difficult challenges, in particular the need to identify key performance indi-
cators (KPIs) that are precisely defined and can capture the major dimensions of aviation
system performance. The potential payoffs from comparative performance assessment more
than justify such work, however. These include identifying opportunities for performance
improvement, determining the benefits from modernization, and more fundamentally un-
derstanding the linkages between structure and performance in the air navigation service
domain.

Comparative assessments typically emphasize macroscopic comparisons. For example,
the most recent comparison of US and European air navigation system performance [29]
offers conclusions such as “Europe continues to demonstrate less additional time in the taxi-
out phase than in the US” and “the US continues to show a lower level of inefficiency in the
airborne phase of flight”. From the standpoint of decision makers, such high-level conclu-
sions represent the ultimate payoff from vast amounts of data collection and analysis. To
researchers, however, they beg more detailed questions. For example, are taxi-out times in
the US high everywhere or are the results skewed by a few highly congested airports? Simi-
larly, is airborne inefficiency fairly constant across space and time, or are there pronounced
patterns of variation and, if so, what are they? Answers to these questions, in addition
to satisfying basic curiosity, may be more relevant to improving system performance than
macro comparisons. For example, it may be far easier to import best practices from one
region of a single air navigation system to another than to do so across systems.
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The reminder of this chapter is organized as follows. Section 2.2 introduces the back-
ground and definition of our inefficiency metrics. Section 2.3 presents data sources and
exploratory data analysis. In Section 2.4, we use regression techniques to estimate fixed
effects of airports, seasons, and flight lengths. Section 2.5 offers conclusions.

2.2 Background

The en route phase of a flight is defined as the portion between a 40 nautical-mile circular
boundary around the departure airport (D40) and a 100 nautical-mile circular boundary
around the arrival airport (A100). This definition is intended to exclude the portions of the
flight path that are strongly influenced by terminal operations. Horizontal en route ineffi-
ciency, which evaluates actual flight trajectories against a benchmark trajectory, has received
considerable attention in the literature. Ref. [29] calculates the horizontal inefficiency based
on the extra distance flown in the en route phase with respect to an ideal distance known
as “achieved distance”. The latter represents the average of how much further the flight
has gotten from its origin and how much closer it has gotten to its destination over the en
route portion of the flight ([21], [31]). This method, instead of choosing great circle distance1

between OD airports as the benchmark, excludes the effect of terminal inefficiency. Equa-
tion 2.1 explicitly expresses the definition, where HIE is the horizontal en route inefficiency
of a flight, A is the actual flown distance, and H is the benchmark distance, or “achieved
distance”.

HIE =
A−H
H

(2.1)

The en route inefficiency can be further decomposed into two parts: direct route (DIR)
extension inefficiency; and terminal (TMA) extension inefficiency. While the first component
is primarily driven by the efficiency of the path between the actual terminal area entry
and exit points, the TMA extension inefficiency reflects the inefficiency that derives from
locations of these points, which are usually not on the great circle route between the origin
and destination. The decomposition is illustrated by Equation 2.2, where D is the great
circle distance from the exit point (of the origin airport) to the entry point (of the destination
airport).

HIE = DIR + TMA =
A−D
H

+
D −H
H

(2.2)

Based on these metrics, the US-Europe Performance Report [29] compares en route in-
efficiency in the US and Europe. Both markets have been on a downward trend for en route
inefficiency, but the US in general is more efficient than Europe. In 2013, the flight ineffi-
ciency calculated from equation 2.1 is 2.7% for the US and 2.9% for Europe. The report
documents certain patterns for the US and Europe. It suggests that flights to New York and

1The great circle distance is the shortest distance between two points on a spherical surface
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the Florida area are systematically more inefficient, mostly due to the avoidance of special
activity airspace (SAA) and long transcontinental operations. In Europe, the implementa-
tion of free route airspace (FRA) improves the en route efficiency significantly, especially for
flights through those FRA areas.

However, one major criticism of the en route inefficiency metric is the selection of the
“achieved distance” as the benchmark distance. Although this benchmark takes into account
the deviation between exit/entry points with a direct route from origin to destination, it is not
an “optimum” trajectory distance for most flight operations, when considering meteorological
conditions. For instance, Calvo et al. [7] proposed using the fuel efficiency as the metric to
evaluate flight efficiency. Instead of using absolute distance, [7] calculated the inefficiency
based on the additional fuel burn of the actual trajectory over the great circle trajectory
between the exit and entry points. Although this metric performs quite differently from
the route extension metric for some flights, the two are highly correlated most of the time.
Therefore, route extension metric, while not perfect, has the virtue of simplicity and appears
to correlate well with more refined metrics.

2.3 Data Description and Exploratory Analysis

We obtained flight level performance data from the Federal Aviation Administration (FAA)
enhanced traffic management system (ETMS). The data cover around twelve million flights
arriving at 34 US core airports (see Appendix A) from January 1st, 2013 to December 31st,
2014. Of these, 87% are domestic flights and less 1% are diverted flights2 or missing records.
Each record includes flight level information containing the departure and arrival times,
origin and destination airports, and a list of distance metrics derived from the actual radar
tracks, such as actual flown distance (A), flight plan distance (Ap), achieved distance (H),
and direct route distance fro exit to entry points (D).

In this study, we limit our scope to flights that only flew into and from the 34 US core
airports, which represents most of US instrumental flight rule (IFR) flights3 ([29]). After
removing all international flights and diverted flights, we obtained a dataset with six million
flight records in 2013 and 2014. This encompasses about 50% of the total traffic in the
ETMS database. Based on the data, we first used Equations 2.1 and 2.2 to calculate the
en route inefficiency and its decomposition for each flight. We then compared inefficiencies
from the perspective of flight length, airport pair and season.

Figure 2.1 shows the average horizontal en route inefficiency based on a flight’s great
circle distance category and year. We first observe that there is no substantial difference in
inefficiency across all flight length groups between years 2013 and 2014. Overall, the average
inefficiency across all flights is 3.413% for 2013, which is only 0.006% higher than 2014.

2A diverted flight is one that does not arrive at its original destination, but a new, usually temporary,
airport

3An IFR flight “depends upon flying by reference to instruments in the flight deck, and navigation is
accomplished by reference to electronic signals” ([24])
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We also observe that long-haul flights (e.g., > 1000 nautical-mile flights) tend to be more
efficient than short-haul flights (e.g., 0 – 200 nautical-mile flights). This is primarily the
result of decreasing TMA extension inefficiency with the flight distance; i.e., excess distance
from inefficient placement of entry and exit points is independent of great circle distance,
while the DIR inefficiency is roughly independent of great circle distance. The latter also
implies that the excess distance between entry and exit points is roughly proportional to the
great circle distance. On the other hand, long-haul flights are more likely to adjust their
routes – typically take short cuts – from their original flight plans. To support this claim,
we have shown in Figure 2.2 a kernel density estimation (KDE, [58]) of the gap between
the actual flown and flight plan distances (A − Ap) in 2013. Notice that the bandwidth
parameter of the KDE has been selected through cross validation. Each graph of Figure 2.2
illustrates the KDE for one distance category shown on the upper left corner. While all six
estimated distributions are negatively skewed with modes smaller than 0, long-haul flight
groups (e.g., > 1000 NM) have longer left tails and heavier weights toward the negative
side. This suggests that the actual flown distance is generally shorter than the flight plan
distance, and that this difference tends to be greater for longer flights.

Figure 2.1: Summary of Horizontal En Route Inefficiency

We further summarize the monthly en route inefficiency performance for 1076 airport
pairs in our dataset. To save space, we only present the results for six pairs. These have
similar route distances, but significantly different inefficiency distributions. Figure 2.3 shows
a set of box plots of HIE across months and airport pairs. All of the graphs show that
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Figure 2.2: Kernel Density Estimation of the Gap Between Actual and Flight Plan Distance
(A− Ap)

inefficiency is skewed to the top, and that the skewness is most pronounced for city pairs
that are relatively efficient. However, the detailed patterns are drastically different across
pairs. For example, in the first two subplots, 2.3a and 2.3b, EWR and JFK airports are
both in the New York metropolitan area and share a great portion of airspace. However,
flights from ATL airport to these two airports demonstrate clear differences in that inbound
traffic to JFK has much higher inefficiency. In the next few sections, we will use basic
fixed effect regression models to further conduct these types of macro comparisons among
departure/arrival airports, and across different months.

2.4 Regression Analysis

The primary goal of this work is to investigate variation in the en route inefficiency metrics
for domestic US flights among the core 34 airports. We focus on factors related to origin
and destination airports, season, and flight distance. We apply linear regression techniques
to explore and quantify factors that potentially impact flight horizontal en-route inefficiency.
We are more interested in macro patterns than the specific circumstances that affect the
inefficiency of individual flights.

2.4.1 Airport Level Comparison

We have estimated three fixed effects models to microscopically understand the variations in
flight en route inefficiency with respect to airports and seasons. All three models have the
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same explanatory variables but different dependent variables — en route inefficiency (HIE),
terminal extension (TMA) inefficiency and direct route (DIR) extension inefficiency.

In the models, we include four types of fixed effects. The first two types are the departure
and arrival airports. We expect that flights to or from airports with higher traffic demand
will be more inefficient than the others. The third type includes the monthly fixed effects,
which are treated as proxies for convective weather. We expect estimates for summer months
(June – August) to be systematically larger than the others. The last type considers the
impacts of flight length. We separate flights into six categories based on their D40A100 great
circle distance: a) 0 – 200 nm, b) 200 – 400 nm, c) 400 – 600 nm, d) 600 – 800 nm, e) 800 –
1000 nm and f) larger than 1000 nm. As stated in the previous section, short-haul flights are
prone to more inefficient en route operations. Thus we expect a shorter distance category to
have a larger fixed effect. Based on the specification, we can formulate the regression model
as Equation 2.3, where YHIE,YTMA,YDIR (in percentage) are respectively the HIE, TMA,
and DIR flight inefficiency, and X’s are fixed effect variables.

Model I-I: YHIE = α′ ·Xdep + β′ ·Xarr + γ ′ ·Xmonth + θ′ ·Xdist

Model I-II: YDIR = α′ ·Xdep + β′ ·Xarr + γ ′ ·Xmonth + θ′ ·Xdist

Model I-III: YTMA = α′ ·Xdep + β′ ·Xarr + γ ′ ·Xmonth + θ′ ·Xdist

(2.3)

We use the dataset obtained from Section 2.3, which contains about six millions flight
records from 2013 to 2014, to estimate the above fixed effects models. Estimation results for
the model of horizontal en route inefficiency, HIE (Model I-I), are shown in Figures 2.4 and
2.5. The baseline for airport fixed effects is the Tampa International Airport (TPA), and the
baselines for month and flight length are respectively January and the > 1000 NM. The error
bars in both figures show the 95% confidence intervals. Estimation results for the majority
of variables are significant. Figure 2.4 suggests that the fixed effects for arrival airports,
which range from -1.7% to 3.4%, vary more than those for departure airports, which range
from -2.8% to 0.2%. Meanwhile, airports such as LGA (LaGuardia airport) and FLL (Fort
Lauderdale Airport) have negatively correlated estimates for departure and arrival fixed
effects, indicating that some airports may have relatively efficient departure procedure but
inefficient arrival procedure, or vice versa. To further demonstrate the geographic pattern of
airport fixed effects, we present two 3D bar plots in Figures 2.6 and 2.7. In both figures, each
bar shows the comparative magnitude of airport fixed effect at each airport, and the height
is proportional to the magnitude of the airport fixed effects. We first observe that flights
into or from airports in the east coast corridor and south coast are in general more inefficient
than those in the west coast. This effect is most pronounced for JFK airport, as flights to
JFK almost double their en route inefficiencies compared to those to FLL, which has the
second highest arrival fixed effect. We also notice from Figure 2.5 that the monthly fixed
effects have a concave shape, where June, July and August are systematically higher than
the other months. This suggests less efficient en route performance for flights in the summer
season. Lastly, the estimates for the flight length confirm that flight en route inefficiency
decreases with the great circle distance between the airport pairs. For example, flights within
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200 nautical miles are on average 4.26% less efficient than flights longer than 1000 nautical
miles.

Figures 2.8 and 2.9 show the estimation results for models with direct route extension
(DIR) and terminal extension (TMA) inefficiencies as dependent variables, respectively.
While those airport-level fixed effects have similar patterns as in Model I-I, flight length
has a much stronger impact on TMA inefficiency than the DIR. This also matches our ex-
pectation. In the meantime, the monthly fixed effects show more importance with larger
magnitudes for DIR than for TMA. Lastly, by comparing Figures 2.8 and 2.9, we also find
that there is only modest correlation between the DIR and TMA airport fixed effects. This
implies that the same airport may feature relatively efficient terminal procedures and rela-
tively inefficient direct route procedures, or vice versa.

2.4.2 Airport-Month Level Comparison

In previous models, airport and monthly fixed effects are estimated separately. However,
we also want to compare the monthly variations of flight inefficiency within each airport.
Therefore, in this section, we estimate a model that includes all interaction terms between
airports and months. The new model, denoted as Model II, can be written as in Equation
2.4, where YHIE is the horizontal en route inefficiency, Xdep−month and Xarr−month are vectors
that contain the tuple of departure/arrival airports and months, and Xdist is the flight length
fixed effect variables, as before.

Model II: YHIE = α′ ·Xdep−month + β′ ·Xarr−month + γ ′ ·Xdist (2.4)

We use the dataset in Section 2.4.1 to estimate Model II, and the estimation results are
presented in Figure 2.10. Each subplot shows the monthly fixed effects for a specific airport
depicted in the title. The blue bars are the departure fixed effects, and the orange bars
are the arrival fixed effects. We observe that the fixed effects for departure airports have
a concave shape as regards months. However, such phenomenon is less obvious for arrival
airports. In fact, arrival airports such as BOS, SFO and LAX have a convex shape with
respect to months, indicating more efficient en route operations for summer-time flights into
those airports.

2.5 Conclusions

In this research, we have conducted macroscopic studies to explore sources of variations
with respect to flight horizontal en route inefficiency qualitatively and quantitatively. We
apply fixed effects regression techniques to a two-year flight-level performance dataset, which
includes about six million flights from and into the US core 34 airports. We estimate the
variance of inefficiency across different departure/arrival airports, seasons, and flight lengths.

Our estimation results suggest that flights from or to airports in the east coast corridor
and south coast, especially in the New York metropolitan and Florida area, are generally
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more inefficient than the others. This is consistent with our expectation and the literature.
Long-haul flights are more efficient, mainly because one component of excess distance – which
results from flights using fixed entry and exit points that are not on the great circle route –
is roughly independent of distance. Specifically, flights that are less than 200 nautical miles
are 4% less efficient than flights longer than 1000 nautical miles. In addition, flights operated
during the summer, when convective weather is more frequent, are less efficient than those
in other seasons. The extended model, with emphasis on monthly variations within each
airport, reveals that the departure operations are strongly impacted during summer, while
the phenomenon is less obvious for arrivals. Moreover, the seasonal effects, though they
differ in absolute magnitude, have similar patterns for geographically adjacent airports.

Finally, we point out several limitations and future work of this study. First of all, in
all of our fixed effect models, the analysis of variance reports a low percentage of variance
explained by those identified fixed variables. Although the estimates of included explanatory
variables are mostly significant with reasonable signs, there are still a number of unobserved
factors not captured by our models. In the literature, there are extensive studies on flight
trajectory operations suggesting that wind and convection have strong impacts on strategic
routing ([66], [57], [50], [49]), while en route traffic management initiatives such as miles-
in-trail (MIT) affect tactical rerouting ([53], [56], [64]). These factors are therefore likely to
lead to additional flight inefficiency. Secondly, all of our models focus on the macroscopic
level of performance. However, we observe from Figure 2.3 that the variations for a specific
airport pair within one month are quite pronounced. This suggests the need for a model
that considers circumstances specific to each flight to explain the reason. One very impor-
tant factor, as we have observed from individual flight track data, is that flight trajectories
between a given airport pair typically follow one of a limited number of pre-specified routes,
which have varying levels of inefficiency. Modeling the route to which a flight is assigned
can therefore be an important step in the analysis of flight inefficiency. We will discuss this
topic in the next chapter.
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(a) ATL to EWR (b) ATL to JFK

(c) MSP to LAX (d) MSP to MIA

(e) LAS to SEA (f) FLL to ORD

Figure 2.3: Horizontal Inefficiency Box Plots by OD pairs
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Figure 2.4: Model I-I: Airport Fixed Effects Estimates

Figure 2.5: Model I-I: Distance and Monthly Fixed Effects Estimates
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Figure 2.6: Model I-I: Departure Airport Fixed Effects Estimates

Figure 2.7: Model I-I: Arrival Airport Fixed Effects Estimates
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Figure 2.8: Model I-II: Fixed Effects Estimates

Figure 2.9: Model I-III: Fixed Effects Estimates
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Figure 2.10: ATL to EWR
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Chapter 3

Causal Analysis of En Route Flight
Inefficiency

3.1 Introduction

Horizontal en route inefficiency, which evaluates actual flight trajectories against a bench-
mark trajectory, has received considerable attention in the literature. It is a fundamental
measure in the European performance scheme for air navigation services [13]. In 2016, the
most recent edition of the ICAO global air navigation plan (GANP) listed an en route tra-
jectory metric as a recommended indicator for assessing aviation system block upgrades
(ASBUs) [40]. Although the US does not employ targets for trajectory measures, they are
still used in many applications. They are core to many fuel efficiency benefit assessments and
the air traffic organization (ATO) records airborne holding as part of its reportable delay in
OPSNET.

In this chapter, we use the same methodology and Equation 2.1 as described in Chapter
2 to calculate horizontal en route inefficiency (HIE), which is based on ground track distance
in excess of the benchmark distance, as in the US-Europe Performance report [30]. Admit-
tedly, there are many criticisms of using “achieved distance” as the benchmark distance for
calculating en route inefficiency simply because the great circle distance (GCD) is not an
“optimum” trajectory for most flight operations when considering meteorological conditions.
For example, [66] examines the benefit of wind-optimal trajectories in transatlantic routes
as measured by fuel efficiency. In many cases, a flight taking the shortest ground path would
actually burn more fuel and sometimes take longer airborne time, thus-under performing in
those standards of efficiency. However, given its simplicity and popularity among many per-
formance assessment studies, we stick with Equation 2.1 as the measure of routing efficiency
in this research.

In 2015, the average horizontal en route inefficiency for flights to and from the main
34 airports was 2.92% in Europe (See Appendix B for the 34 core EU airports) compared
to 2.83% in the US (See Appendix A for the 34 core US airports). Europe experienced
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continuous improvement of en route efficiency between 2011 and 2014. However, this trend
reversed in 2015. The US had an overall increase in flight inefficiency from 2013 to 2015,
which can be linked to airports (LAX, SEA, DAL) with drastically increased air traffic. We
have also observed a peak in inefficiency in 2014, which is caused by a fire at the Chicago
air route traffic control center (ARTCC) in the fall of 2014.

Despite of great efforts spent on system level projects to define metrics, assess trends, and
compare performance, work on linking routing inefficiency to causal reasons and determining
if they can be mitigated through investment in technology, staffing or training has been
limited. As a first attempt to analyze different sources of flight routing inefficiency, [63]
used the discrepancy between the theoretically shortest lateral trajectory (great circle) and
the actual flight trajectory as an inefficiency metric. This included departure inefficiency,
en route inefficiency, and arrival inefficiency. In the study, the author identified 6 sources
of inefficiency: a) departure procedures, b) restricted airspace, c) congestion, d) adverse
weather, e) holding and vectoring in the terminal airspace, and f) arrival procedures. The
author then used trajectory data from the US, Europe, and Africa to calculate the routing
inefficiency on an “average day with no major weather”. The work concluded that the
standard routes and restricted airspace were the biggest contributors to the routing efficiency
(27%). Using a similar strategy, the author estimated that the contribution of congestion
to routing inefficiency in the US was approximately 13%; and the contribution of adverse
weather was also about 13%. While this study has largely summarized key factors that
might impact the flight routing efficiency, there are several limitations.

First, due to increasing air traffic demand, a growing number of traffic management ini-
tiatives (TMIs) have been deployed in recent years. Among various TMIs, airspace flow
programs (AFP) and miles-in-trail (MIT) restrictions have received more attention in re-
search due to their significant impacts on both strategic and tactical flight route planning.
To be more specific, MIT ([27], [56]) is an iniative to manage air traffic into a manageable
flow by enforcing a minimal spacing (number of miles) between aircraft over a fix, at an alti-
tude, through a sector, or on a jet route. MITs are classified into three categories: departure
MIT, en route MIT, and arrival MIT based on the locations where the MITs are actually
implemented. Flights under MIT restriction(s) are therefore either slowing down or taking
maneuvers to satisfy those spacing requirements. [53] conducted studies to match individ-
ual flight trajectories to historical MIT restrictions and investigated how those MITs affect
flight performance. The authors found that 32% of MIT restrictions involved fewer than 5
flights. Even with those matched records, MITs did not appear to have a significant impact
on airborne delay or en route spacing during the period of analysis (May 1 – 14, 2004).
However, due to the age of the report and the increasing number of MITs implemented in
more recent years, it is fair to say that very little is known about whether or to what degree
MIT restrictions contribute to en route inefficiency in the present system. AFP ([27], [72]),
on the other hand, identify flow constrained areas (FCAs) in the en route system and assign
specific delays to flights that are filed into those areas. As a result, AFP mostly affect the
flight planning process because flights are more likely to file a route that goes around those
FCAs. [71] studied the airline decision-making process under the AFP using logit models on
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historical flight plan and AFP data. By modeling flight routing behavior in AFP – either
route out of the AFP or stay in the AFP – the authors concluded that flights in AFP of
higher duration are more likely to route out. This also implies that under AFP, flights tend
to have higher en route inefficiency. Interested readers may also refer to [43] for more details
on how AFP affect the flight rerouting process.

Second, while the authors emphasized the importance of convective weather in [63], they
have somewhat ignored the effects of wind. As we have mentioned earlier, our inefficiency
metric is purely a measure for ground track distance in excess of some theoretical shortest
path. However, there is extensive work ([57], [33], [66]) suggesting that a flight almost
always takes advantage of the wind, such that its route is “more wind-optimal”, which is
typically much longer than the great circle route. This effect is also most pronounced for
transcontinental flights due to the jet streams.

Third, in [63], analysis was mostly based on macroscopic comparisons in different loca-
tions and times. However, in this study, we address more detailed questions such as “What
is the mechanism of the en route inefficiency?”, “Why would flights in similar conditions end
up with drastically different inefficiencies?”, and “If a factor affects the routing efficiency,
then how and how much?”. Answers to these questions require a more complex statistical
modeling process. Specifically, the goals of this analysis are threefold.

1. Identify factors that affect route inefficiency based on existing literature and percep-
tions.

2. Quantify effects/contributions of those identified factors, which include convective
weather, wind, SAA and traffic management initiatives, on en route efficiency.

3. Enable performance databases to assign factors causing trajectory inefficiency metrics
similar to the manner in which factors are assigned to reportable delay in OPSNET
[25] or airline reported delay in ASQP [74].

To achieve these goals, we have proposed two mechanisms that link the en route ineffi-
ciency to different causal factors, and developed a methodological framework to model these
mechanisms. To summarize, the main contributions of this work are threefold.

1. Develop a trajectory clustering algorithm to identify nominal air traffic flows and con-
struct route choice sets. Use the route choice set to build Logit-based models that
model the flight route choice process.

2. Develop efficient tree-based matching algorithms that map different causal factors to
4D flight trajectories.

3. Estimate contributions of different factors to en route inefficiency through counterfac-
tual analysis.
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The remainder of this chapter is organized as follows. In Section 3.2, we introduce the
data sources and review our previous work on macro variations of en route inefficiency.
Section 3.3 describes our modeling philosophy and framework of mapping different causal
factors to flight routes. Section 3.4 applies statistical models to quantify the impacts of
different factors on flight en route inefficiency. Section 3.5 offers conclusions.

3.2 Preliminaries

In the section, we first introduce sources of datasets used in this work. We then present
exploratory data analysis results from these datasets. Lastly, we propose two mechanisms
that ascribe flight en route inefficiency to convective weather, wind, miles-in-trail restrictions,
airspace flow programs, and special activity airspace.

3.2.1 Data Sources and Summary Statistics

In this project, we used seven datasets from different sources. The flight event data, which
come from the FAA Traffic Flow Management System (TFMS) and from the Aviation System
Performance Metrics (ASPM), contain flight-level records with variables including arrival and
departure airports, aircraft type, D40 to A100 actual distance (A), D40 to A100 great circle
distance (D), and D40 to A100 achieved distance (H). We obtained flight event data for
years 2013 and 2014 and found an average inefficiency of approximately 3.4% across both
years. This data set includes around 12 million records, 87% of which are domestic flights
and less than 1% are either diverted flights or have missing records. We focused on flights
arriving at and departing form the 34 main US airports listed in Appendix A. This list
includes the 30 core US airports and an additional four high-traffic ones. The 34 main
airports collectively handle around 3 million flights per year, which account for about 50%
of the total number of flights in the US.

The flight tracks dataset, which also comes from TFMS, contains information about the
position and movement of each aircraft throughout its flight. Some fields of interest include:
latitude, longitude, altitude, ground speed, and time, with an interval of approximately
one minute between two consecutive track points. In this research, we only obtained flight
tracks between the eight airport pairs listed in Table 3.1 for the 2013 calendar year. In
the preprocessing step to remove erroneous trajectories, we excluded tracks where spatial or
temporal discontinuities were detected and ones that started or ended outside of the selected
terminal areas. Figure 3.1 shows the historical flight tracks (projected on 2D space) from
the George Bush international airport (IAH) to Boston Logan international airport (BOS)
in 2013.

Our convective weather data contain two separate datasets. The first was derived from the
quality controlled local climatological data (QCLCD), which were obtained from the national
oceanic and atmospheric administration (NOAA). The dataset includes hourly summaries
for convective weather conditions like thunderstorms, rain, hail, etc. at 1,600 ground weather
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Table 3.1: Summary statistics for representative city pair inefficiency analysis

Airport Pair Number of Records Average Inefficiency
IAH to BOS 1617 4.37%
BOS to IAH 1742 2.58%
FLL to JFK 4011 3.59%
JFK to FLL 4043 3.06%
SFO to MCO 746 2.56%
LAX to CLE 875 1.69%
EWR to LAS 1726 2.07%
SFO to MSP 2644 1.11%

Figure 3.1: Flight tracks from IAH to BOS in 2013

stations in the US. Each record is a vector of binary variables indicating if there was a certain
type of weather (e.g., thunderstorms, rain, etc.) occurring at a specific time and location.
QCLCD were collected for the same time period as the flight track dataset. Figure 3.2 shows
a snapshot of the QCLCD data from 18:00 to 21:00 Zulu on 08/08/2013. The green dots are
the ground-based weather stations, while blue stars (“∗”) and red crosses (“+”) represent
stations that reported rain and thunderstorm incidents, respectively. The second convective
weather dataset comes from the national convective weather forecast (NCWF) system, which
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Figure 3.2: QCLCD snapshot data from 18:00 to 21:00 Zulu on 08/08/2013

contains the locations of convective weather polygons (coordinates of boundaries), the highest
altitude of the storm, and the direction of movement at the time of recording. The dataset
is typically updated every 5 minutes.

The wind dataset used in this work comes from the national center for atmospheric
research (NCAR). It records the southerly and westerly wind speeds four times a day —
0:00, 6:00, 12:00, and 18:00 UTC. At each data production instance, the wind speed is given
at a 3D grid with 2.5◦ × 2.5◦ latitude/ longitude resolution, and 17 pressure levels ranging
from 10 mbar to 1000 mbar ([41], [9]). By collecting the wind data from the year 2013, we
obtained 1460 raster files, and each file corresponds to 17 wind maps at different altitudes.
Figure 3.3 shows a wind speed map at altitude 200 mbar at 18:00 Zulu on 02/04/2013. Each
arrow is the wind direction computed based on the westerly and southerly wind speeds, and
the shade indicates the speed of the wind.

The miles-in-trail (MIT) dataset was derived from the national traffic management log
(NTML). It contains information about where, when, and why the MITs were implemented.
For the MIT restriction data, we are interested in the fields including a) providing/requesting
facility for the MIT, b) NAS element to enforce the MIT, c) start/end time of the restriction,
d) altitude of the MIT, and e) the actual MIT spacing parameter (in miles). For this study,
we excluded restrictions that either a) were cancelled before their initiation time, or b)
had spacing parameters less than 0. We have also merged MITs that were extended or
modified from their initial implementation. Lastly, we only included restrictions with known
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Figure 3.3: Wind Speed Map (m/s) at 200 mbar Derived From the NCAR Datasets at 18:00
Zulu on 02/04/2013

Table 3.2: Summary statistics for MIT restrictions

Total En Route
Cancelled Before Initiation Rate 2.80% 2.60%
Number Initiated 186,184 81,294
Modification Rate (Extended or Modified) 21.30% 19.00%
Average Duration 2.007 hours 1.861 hours
Average MIT Value 18.67 miles 20.52 miles
Total Number of MIT after cleaning 151,545 63,142
Percent lost by preprocessing 18.60% 22.33%

geometries of their facilities and NAS elements provided by the FAA. Figure 3.4 illustrates
an actual MIT implemented at the NAS element ONL (as in red circle) from the Denver air
route traffic control center (ARTCC ZDV, as in yellow polygon) to protect the Salt Lake
City ARTCC (ZLC, as in green polygon), such that the flight in white curve will be subject
to spacing at ONL. Table 3.2 provides summary statistics about MIT restrictions in 2013.

The airspace flow programs (AFP) data also come from the NTML and contain infor-
mation about where, when and why the AFP were implemented, and if implemented, what
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Figure 3.4: An Actual Miles-In-Trail Implemented at ONL From the Denver ARTCC (ZDV)
to Protect the Salt Lake City ARTCC (ZLC)

the arrival rate and expected delays were. We have applied similar preprocessing steps as in
the MIT dataset, and ended up with 118 AFPs in 2013. Figure 3.5 shows two sets of AFP
respectively implemented on 04/18/2013 and 07/10/2013. The lines are flow constrained
areas (FCAs), which control the arrival rates and delays for flights crossing them.

The special activity airspace (SAA) data come from the NASA Sherlock data warehouse.
These data describe the start and end time for every active SAA in the airspace. Figure
3.6 presents the spatial distribution of the following six most popular SAAs in the airspace
([23]):

1. Alert area (AA): Areas that “may contain a high volume of pilot training or an unusual
type of aerial activity”. Pilots “should be particularly alert” when flying in AAs.

2. Restricted area (RA): Areas with unusual hazards to aircraft such as “artillery fir-
ing, aerial gunnery, or guided missiles”. Flights within the area, “while not wholly
prohibited, is subject to restrictions”.

3. Prohibited area (PA): Areas established for reasons “associated with the national wel-
fare”, such that flights are prohibited to enter.

4. Military operations area (MOA)1: Areas established to separate military activities from

1Notice that in Figure 3.6, most MOAs are overlapped with the ATCAAs but have lower altitudes
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(a) AFP implemented on 04/18/2013 (b) AFP implemented on 07/10/2013

Figure 3.5: Actual AFP data

instrument flight rules (IFR) traffic. IFR flights can enter the MOAs if separation can
be provided by air traffic control; otherwise, they need to route out the MOAs. MOAs
typically locate at altitudes lower than 18,000 ft.

5. Air traffic control assigned area (ATCAA): Areas assigned by air traffic control for
the purpose of “providing air traffic segregation between specified activities conducted
within the assigned airspace and other IFR air traffic”. ATCAAs typically locate at
altitudes from 18,000 to 60,000 ft.

6. Warning area (WA): Areas that are “three nautical miles outward from the coast of
the US”, which “warn nonparticipating pilots of the potential danger”.

3.2.2 Motivations from Previous Work

In Chapter 2, we applied fixed effects regression techniques to a two-year flight-level per-
formance dataset to quantify how departure/arrival airports and seasons impact en route
inefficiency. Consistent with the literature, our estimation results suggest that long-haul
flights are more efficient than short-haul flights. Additionally, we find that flights occurring
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Figure 3.6: Spatial Distribution of Special Activity Airspace

in the summer season, when convective weather is more frequent, are less efficient than flights
during other seasons.

A deficiency of this work, however, is that our models only explain a low percentage of
the variance in flight inefficiency. We have also observed that variations for a specific airport
pair, even within the same month, are quite pronounced, suggesting the need for models that
consider circumstances specific to each flight. On the other hand, the historical flight track
data reveal the fact that flights for given OD pairs are drastically different from each other.
For example, Figure 3.1 demonstrates clear routing patterns, which consist of three dominant
flows and some outlier flights having unusual trajectories. These flows are inherently different
from each other with respect to their routing inefficiencies. This observation suggests that
while variations in flight en route inefficiency are the result of weather, TMIs and SAAs,
they are not directly attributed to these factors but arise from a two-step decision process
– strategic route selection and tactical reroute. In other words, flight operators first choose
from a route set with different base inefficiencies and utilities constituted of weather, wind,
TMIs, and SAAs. Second, when flights are airborne, they may take tactical reroutes (e.g.,
vectoring, holding, and etc.) as responses to convective activities, TMIs and so on. These
two mechanisms are depicted in respectively Figures 3.7 and 3.8. In the following sections,
we will introduce our methodological framework to quantitatively analyze how these factors
(i.e., weather, wind, TMIs, and SAAs) affect the en route inefficiency through the proposed
two mechanisms.
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yOrigin yDestination
route 1

route 2

Figure 3.7: Route Choice Mechanism

yOrigin yDestination

Figure 3.8: Reroute Mechanism

3.3 Nominal Routes, Attribute Identifications and

Matching Algorithms

Our analysis is based on the concept of nominal route. Flight trajectories are unique, but
most flights for a given origin-destination (OD) pair fall into one of several groups, or clusters.
Trajectories within a cluster are quite similar to one another. Among the trajectories that
form a given cluster, one can identify a specific trajectory that is the “center” of the cluster,
which we term as the nominal route. Much of the variation in flight inefficiency can be
attributed to variation in the inefficiency of the nominal routes. Moreover, one can use
nominal routes as a basis for determining cluster attributes (e.g., exposure to convective
weather) that help explain to which cluster a given flight belongs. As will be shown, this
can provide an approach to the main problem addressed by this chapter: relating en route
inefficiency to causal factors through both strategic flight planning and tactical rerouting.
To achieve this goal, we pursue the following three objectives:

1. Design a trajectory clustering algorithm to classify flight tracks;

2. Identify the nominal route for each cluster;

3. Determine, for the departure time of a given flight, the relevant attributes arising from
a collection of factors of each nominal route.

3.3.1 Trajectory Clustering

There is an extensive literature discussing the application of clustering algorithms to flight
trajectories. To efficiently classify high-dimensional flight tracks into unique groups, Eck-
stein ([16]) proposed a three-step framework: step 1) linear interpolation, step 2) principal
component analysis (PCA), and step 3) k-means [48] on the principal components. Enriquez
and Kurez ([18]) improved the work of [16] by constructing a Gaussian kernel dissimilarity
matrix and applying a variant of spectral clustering algorithm in the third step. However,
such a method is computationally expensive. Other methods such as waypoint-based clus-
tering ([32]) and partition-and-group framework for trajectory clustering ([46], [45]) can be
applied in some circumstances requiring higher granularity (e.g., trajectory clustering in the
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terminal airspace). Interested readers may refer to [17] and [76] for further discussions on
the topic of trajectory clustering.

For purposes of simplicity and efficiency, in this work, we will follow the framework of
[16], but switch from a k-means algorithm to DBSCAN ([19]) in the final step for three
reasons:

1. DBSCAN does not need us to predetermine the number of clusters;

2. DBSCAN allows trajectories to be classified as outliers (i.e., not belonging to any
cluster);

3. DBSCAN can limit the variation within each cluster.

After the clusters are determined, we further calculate the nominal route for each cluster
by solving a 1-median problem [51], and defining the set of nominal routes as a route choice
set. Notice that each nominal route is a specific 4D trajectory that contains a sequence of
latitudes, longitudes, altitudes, and timestamps. A brief summary of the algorithm is shown
in Algorithm 1. Lines 3 – 6 describe the interpolation. Lines 7 is the PCA applied to the
interpolated flight trajectories. Line 8 applies DBSCAN to the principal components, and
lines 9 – 11 solve the 1-median problem to obtain nominal routes.

We have applied our trajectory clustering algorithm to the eight airport pairs listed in
Table 3.1. The parameter n (number of points to be interpolated) is set to be 100 and k
(number of principal components) is set to be 4 such that the variance explained by the
first four principal components exceed 85%. Parameters (ε, p) in the DBSCAN algorithm
are selected through experiments and are based on the resulting number of natural clusters,
sizes of clusters, and inter-cluster similarities. The results are presented in Figures 3.9 to
3.16. In each figure, the left subfigure shows the actual horizontal flight tracks clustered
into groups. Each right subfigure demonstrates a violin plot, with three caps from top to
bottom: maximum, median and minimum, showing the range and probability density of
flight en route inefficiency within each cluster. The x-axis of each violin plot also shows the
percentage of total flights in each cluster. In each figure, different colors represent different
clusters, and the color code is as follows: “k: black; r: red; g: green; m: magenta; c: cyan; b:
clue”. The black trajectories are classified as outliers, and the white curves are the nominal
routes associated with different clusters. From these figures, we first observe that for most
airport pairs in our experiments, individual flights can be divided into 3 – 5 natural clusters
(except for SFO to MSP). Members of each cluster are very similar to each other. The
outlier cluster typically has low proportion of flights. Second, the distributions of en route
inefficiency of natural clusters are typically unimodal with lower variance when compared
with the outlier clusters. We have also summarized in Table 3.3 the average inefficiency
statistics for each cluster and for each airport pair, in which the first row depicts the color
code of natural clusters. Meanwhile, Table 3.4 reports the variance of inefficiency captured
by the clusters.
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Figure 3.9: Trajectory Clustering for Flights from IAH to BOS

Figure 3.10: Trajectory Clustering for Flights from BOS to IAH
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Figure 3.11: Trajectory Clustering for Flights from JFK to FLL

Figure 3.12: Trajectory Clustering for Flights from FLL to JFK
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Figure 3.13: Trajectory Clustering for Flights from SFO to MCO

Figure 3.14: Trajectory Clustering for Flights from SFO to MSP
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Figure 3.15: Trajectory Clustering for Flights from EWR to LAS

Figure 3.16: Trajectory Clustering for Flights from LAX to CLE
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Algorithm 1 Trajectory Clustering (TC)

Inputs
P =

{
Pi = [P1, . . . , PT ],∀i ∈ {1, 2, . . . N}

}
, Pl = [xl, yl, zl, tl]: 4D flight trajectory

set.
Parameters
n: Number of points to be interpolated;
k: Number of principal components selected;
ε: Distance threshold to be considered as in the same cluster in the DBSCAN algo-

rithm;
p: Minimal samples required to be a cluster in the DBSCAN algorithm.

Outputs
Number of clusters, cluster assignment, and nominal routes {Pj, j ∈ {1, 2, . . . ,m}}.

1: procedure TC
2: Initialize: P′ = Φ
3: for i in {1, 2, . . . , N} do
4: Linearly interpolate trajectory Pi to P′i that has n points with equal distance.
5: Append P′i to P′i.
6: end for
7: Apply PCA on P′i and obtain the first n principal components T.
8: Apply DBSCAN(ε, p) algorithm to T and obtain cluster set M =

{
Ωi = {Pj, j ∈

{1, . . . ,mj}},∀i ∈ {1, 2, . . . ,m}
}

.
9: for j in {1, 2, . . . ,m} do

10: Solve Pj = arg min
∑mj

i ‖Pi −P‖
11: end for
12: end procedure

3.3.2 Mapping Framework

We start this section by introducing the general ideas behind the methodology that connects
individual trajectories to the causal factors behind inefficiency. In Section 3.3.1, we have
constructed a set of clusters and the corresponding cluster assignment for any given flight
in our dataset. Therefore, for each flight, we can construct a scenario whereby the flight
operator needs to choose a route from a choice set formed by natural clusters. Essentially,
we are asking, for any flight and for each of the clusters, what would likely have happened
to that flight, with respect to convective weather, wind, traffic management initiatives and
special activity airspace, if it had flown that cluster with its original departure time. This
is what we refer to as the first mechanism to associate flight inefficiency with the identified
causal factors.

An immediate question posed by our proposed mechanism is, however, how do we arith-
metically link the choice set with any of those causal factors? One näıve alternative would
be for each flight, to use the full dataset of predictors covered by the flight time period.
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Table 3.3: Average Inefficiency within Clusters

K
(outlier: black)

R
(red)

G
(green)

M
(magenta)

C
(cyan)

B
(blue)

IAH to BOS 8.78% 3.80% 6.14% 2.84% 1.76% 3.26%
BOS to IAH 6.00% 1.65% 6.48% 2.28% 1.66% 5.63%
FLL to JFK 15.22% 2.41% 8.36% 3.42% 10.38%
JFK to FLL 10.00% 1.85% 11.59% 8.05% 12.28% 15.09%
SFO to MCO 3.68% 1.86% 5.55% 4.35% 3.09%
LAX to CLE 2.90% 2.39% 1.06% 2.21% 4.54%
EWR to LAS 5.32% 2.54% 0.93% 1.44% 4.18% 3.01%
SFO to MSP 2.39% 0.92% 1.78%

Table 3.4: Variance Explained by Clusters

IAH
BOS

BOS
IAH

JFK
FLL

FLL
JFK

SFO
MCO

LAX
CLE

EWR
LAS

SFO
MSP

Variance Explained
by Clusters

0.596 0.641 0.75 0.499 0.722 0.441 0.516 0.285

However, this runs the risk of overfitting and no unique estimates can be found for most re-
gression models. For example, a normal flight from IAH to BOS takes around three hours of
airborne time. Within the time period, the dimensions for convective weather alone would be
approximately 2482× 3× 7 ≈ 50000, where 2,482 is the number of ground weather stations,
3 is the time instance (a 3-hour flight matches roughly 3-hour weather instances), and 7 is
the number of weather phenomena. However, the total number of flights from IAH to BOS
is 1617, which is much smaller than the dimensions of the näıve predictors. Therefore, we
need to construct highly descriptive predictors that not only represent the conditions in the
relevant airspace, but have controllable dimensions. To tackle this issue, we have identified
a specific 4D trajectory with each cluster (lines 9 – 11 in Algorithm 1). This is treated as
the “center” of the cluster, and we term it the nominal route. These routes are representa-
tive for the associated clusters so that we can use them as the bases for determining cluster
predictors that help us understand to which cluster a given flight belongs. Specifically, the
nominal routes in the choice set differ only in the route-specific characteristics, such as con-
vective weather exposure, wind and TMIs, but shares the same flight-level attributes, such
as departure time and airline. That being said, even though the nominal routes as originally
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Figure 3.17: Illustration of the Mapping Framework

identified have their unique departure times and flight operators, we assume they have a
common departure time and operator. These are specified by the flight whose cluster assign-
ment we are modelling, and their route-specific characteristics are also based on the common
departure time.

Figure 3.17 and Algorithm 2 summarize the general process and pseudo code of our
mapping framework to relate the factors of interest with individual flights and the nominal
routes. In the figure, we describe a scenario where flight i needs to chose from N nominal
routes. Therefore, after extracting departure time t0 of flight i, we can replace the timestamps
of all N nominal routes as if they depart at t0. This step corresponds to lines 2 – 9 in
Algorithm 2. After replacing timestamps, we further match those nominal routes with wind,
weather, TMI and SAA datasets to construct route-specific characteristics. This corresponds
to line 12 in Algorithm 2 and the details of this step will be introduced in the following
sections.

3.3.3 Convective Weather Mapping Algorithm

Matching QCLCD Weather Data
The QCLCD convective weather records obtained from NOAA are recorded at individual

ground-based weather stations. They are represented as time-stamped vectors of the form
[It, Ir, Is, . . . ], where the binary indicator variables {Ii} represent the presence or absence
of different weather phenomena, including thunderstorms, rain, etc. For a given flight Pi

and its associated nominal routes
{
Pj,∀j ∈ {1, 2, . . .m}

}
, we compute the QCLCD weather
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Algorithm 2 Mapping Framework (MF)

Inputs
Pi = [P1, . . . , PT ], Pl = [xl, yl, zl, tl]: Flight to be modeled.{
Pj = [P1, P2, . . . , PTj ],∀j ∈ {1, 2, . . .m}

}
, Pl = [xl, yl, zl, tl]: Set of nominal routes.

Outputs
Route characteristics of nominal routes associated with flight Pi.

1: procedure MF
2: Obtain t0: Departure time of Pi.
3: Obtain Fi: Flight-level attributes of Pi.
4: for j in {1, 2, . . . ,m} do
5: Obtain tj0: Departure time of nominal route Pj.
6: Calculate: ∆tj = tj0 − t0.
7: Set: tj0 := t0. /* Replace departure time */
8: for l in {1, 2, . . . , Tj} do
9: Set: tl := tl −∆tj. /* Replace timestamp of nominal route */

10: end for
11: end for
12: Match: use Pj with replaced timestamps to match with weather, wind, MIT, AFP,

and SAA. /* See Sections 3.3.3 to 3.3.5 */
13: end procedure

exposure using Algorithm 3. From lines 4 to 7, we retrieve a subset from the original
convective weather dataset for each track point of the nominal route that satisfies: a) the
subset has the closest timestamp to the track point; and b) the subset contains weather
information whose recording weather station is within a 150-nautical-mile radius around the
track point. From lines 8 to 14, we calculate, for each track point on the nominal route,
a weighted weather exposure. The weight is inversely proportional to the distance between
the track point and the weather station. From line 16, we calculate the overall route-specific
weather exposure by averaging all the weather exposures along the route. The average is
used as the QCLCD weather metric for subsequent modeling.
Matching NCWF Weather Data

The NCWF weather records are preprocessed such that they are stored in a format similar
to the QCLCD dataset. Therefore, the matching process largely agrees with Algorithm 3,
except that we replace the input dataset from QCLCD with NCWF, and add an altitude
range query right after line 6.

3.3.4 Wind Mapping Algorithm

The wind data from NCAR are stored as raster files. Each file corresponds to a single snap-
shot of wind vectors V = [uijkt, vijkt], where uijkt and vijkt are, respectively, the westerly and
southerly wind speed vectors at the grid point (lat, lon, alt) = (i, j, k) at time t. Similar
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Algorithm 3 Mapping Convective Weather (MCW)

Inputs
Pi = [P1, . . . , PT ], Pl = [xl, yl, zl, tl]: Flight to be modeled.{
Pj = [P1, P2, . . . , PTj ],∀j ∈ {1, 2, . . .m}

}
, Pl = [xl, yl, zl, tl]: Set of nominal routes.

Dwx: Convective weather database.
Parameters

R: Maximal query distance, default at 150 nm.
Outputs
{Wj}: Route-specific weather exposure of nominal routes associated with flight Pi.

1: procedure MCW
2: Run Algorithm 2 till line 11 to obtain nominal routes with replaced timestamps{

P′j = [P1, . . . , PTj ], ∀j ∈ {1, 2, . . .m}
}

.
3: for j in {1, 2, . . . ,m} do
4: for l in {1, 2, . . . , Tj} do
5: Retrieve Dt by nearest neighbor searching Dwx with time tl.
6: /* This step uses k-d tree ([6]) based searching technique */
7: Retrieve Dt,p by querying Dt within a distance range R of [xl, yl].
8: /* This step uses k-d tree based range query technique */
9: /* (t, p) is tuple of time t and 2D location instance (xp, yp)*/

10: for It,p in Dt,p do
11: Calculate distance dt,p = ‖(xp − yp)− (xl, yl)‖
12: end for
13: for It,p in Dt,p do

14: Calculate weight wt,p =
(
∑

p dt,p)/dt,p∑
p

(
(
∑

p dt,p)/dt,p

)
15: end for
16: Calculate Wl =

∑
p It,p · wt,p: weather exposure at tl.

17: end for
18: Calculate Wj =

∑
lWl/Tj: weather exposure for nominal route P′j.

19: end for
20: end procedure

to Algorithm 3, we construct the wind-related route-specific characteristics for the nominal
routes using a tree-based searching technique. The details are described in Algorithm 4.
To summarize, this algorithm first matches each track point on the nominal route with the
spatially (latitude, longitude, altitude) and the temporally closest wind speed components
(lines 4 – 7). Second, it projects the wind speeds (westerly and southerly) to the course of
the aircraft flying at each timestamp and obtains either the headwind (specified as negative
value) or tailwind (specified as positive value) speed (lines 8 – 10). Finally, the algorithm
calculates the wind distance traveled along the nominal route by summing the products of
tailwind/headwind speed and time (line 18), which measures the positive/negative contri-
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bution of the tailwind/headwind to the distance flown2.

Algorithm 4 Mapping Wind (MW)

Inputs
Pi = [P1, . . . , PT ], Pl = [xl, yl, zl, tl]: Flight to be modeled.{
Pj = [P1, P2, . . . , PTj ],∀j ∈ {1, 2, . . .m}

}
, Pl = [xl, yl, zl, tl]: Set of nominal routes.

Dwd: NCAR wind database.
Outputs
{WDj}: Route-specific wind distance of nominal routes associated with flight Pi.

1: procedure MW
2: Run Algorithm 2 till line 11 to obtain nominal routes with replaced timestamps{

P′j = [P1, . . . , PTj ],∀j ∈ {1, 2, . . .m}
}

.
3: for j in {1, 2, . . . ,m} do
4: for l in {1, 2, . . . , Tj} do
5: Retrieve Dt by nearest neighbor searching Dwd with time tl.
6: Retrieve V = [uijkt, vijkt] by nearest neighbor searching Dt with [xl, yl, zl].
7: /* The above two steps use k-d tree based searching technique*/
8: Calculate θl = Θ(xl+1, yl+1, xl, yl): Course of the flight at tl.
9: /* Θ(·) is standard course calculation formula */

10: Calculate vl = uijkt · cos θt + vijkt · sin θt: head/tail wind speed.
11: end for
12: Calculate WDj =

∑Tj
l=1 vl · (tl+1 − tl): wind distance traveled along the route.

13: end for
14: end procedure

3.3.5 Traffic Management Initiatives and Special Activity
Airspace Mapping Algorithm

Miles-In-Trail Restrictions
The miles-in-trail (MIT) data from the NTML are assembled as individual data records.

These have the structure [st, et, freq, fprov, nas, z, v, . . . ], where st and et are, respectively, the
start and end time of the restriction; freq and fprov are the requesting and providing facilities;
nas represents the NAS element where the MIT is enforced (it can be a jet route, TRACON
or fix); z is the altitude restriction; and v is the actual mileage between subsequent aircraft
imposed by the restriction.

For a given flight and its nominal routes, we compute the MIT-related impacts using the
following steps.

1. STEP 1: Run Algorithm 2 to line 11 to obtain nominal routes with replaced times-
tamps.

2equivalent still air distance = ground distance - wind distance
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2. STEP 2: Determine a set of candidate MIT restrictions that would have been within
sufficient geographic proximity of that flight, and in its same overall direction of travel.
This requires an exhaustive search of all MIT records. In a real implementation,
however, one might pre-compute MIT membership in the airspace region, so as to take
advantage of the results of lines 5 – 7 of Algorithm 3. In any case, each candidate MIT
restriction considered must be assigned an influence area as follows:

• If the NAS element is a fix, then the influence area is a circle of 0.25◦ lati-
tude/longitude around the fix. This corresponds to about 15 nautical miles. A
nominal route is considered to be a (matching) candidate for this MIT if the route
intersects the circle in the same direction of travel for which the MIT is specified.

• If the NAS element is a jet route, then we define a swath centered on the jet
route with overall width 0.5◦, which is about 30 nautical miles. A nominal route
is considered to be a (matching) candidate for the MIT if the route intersects this
swath for at least 1◦ offset of latitude/longitude, in the appropriate direction of
travel.

• If the NAS element is a center/TRACON, we use its existing polygonal boundary.
The MIT is considered to be a (matching) candidate for a nominal route if the
route intersects this polygon in the MIT restriction’s direction of travel.

3. STEP 3: The list of candidate MIT restrictions is then filtered for timestamps. If the
time of trajectory’s intersection and the boundary of the MIT restriction is within the
MIT’s implementation interval [st, et], then that restriction is retained as a candidate;
otherwise it will be discarded.

4. STEP 4: The remaining list of candidate MIT restrictions is filtered for altitude. In
our data, an MIT restriction is assigned to one of three possible altitude requirements:
a) above a flight level z, b) below a flight level z, or c) at a flight level z. If a particular
MIT involves cases a) or b), then we filter out that MIT if the nominal route’s altitude
at the time of intersection with the MIT influence area does not satisfy the requirement.
In case c), we allow a 1000-foot buffer around the flight level z, and discard the MIT
if the trajectory altitude does not fall within that altitude interval.

Notice that the filtering steps 2 – 4 can be done in any order, and it is wisest to do them
in the most efficient order by starting with a strongest filter that eliminates the most MIT
records, which is “step 3, step 4 and step 2” in our numerical experiment.

We consider that the flight in question, had it flown the route in question, would have
been impacted by whatever MIT restrictions remain after steps 2 – 4. The magnitude of that
impact is measured as the sum of the MIT stringency, which is defined as the product of MIT
value (in miles) and duration (in hours), imposed by all the restrictions. This additive metric
may be refined in subsequent research, as aircraft that are well spaced from one restriction
may not need much additional spacing to comply with others, unless these involve additional
traffic.
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Airspace Flow Programs
The airspace flow programs (AFP) data from the NTML are recorded in a manner similar

to the MIT dataset. Each AFP record is stored as a list [st, et, µ, ffca, . . . ], where st and
et are, respectively, the start and end time of the AFP; ffca represents the flow constrained
area (FCA) where the AFP is enforced (it can be either a polygon or a multiline); and µ is
expected delay at the FCA. To match the AFP with a given flight and its nominal routes,
we basically follow steps 1 to 3 of the procedure for the MIT. However, there is an exception
at step 2, where we only consider the case where the FCA is either a polygon or line without
the need to specify additional “influence area”. We consider the impact of the AFP as the
sum of the AFP expected delays imposed by all the matched AFPs.

Special Activity Airspace
The special activity airspace (SAA) data from the NASA Sherlock data warehouse

also share similarities with the MIT dataset. Each SAA record contains the information
[st, et, fsaa, zmax, zmin, type, . . . ], where st and et are, respectively, the start and end time of
the SAA; fsaa is the location of the SAA (typically a polygon); zmax and zmin specify the
altitude range of the SAA; and type indicates the type of the SAA (e.g., military operations
area). Thus, our matching process for the SAA is similar to the MIT matching process,
except for the following modifications.

1. In STEP 2, we only need to consider the case where the SAA is a polygon.

2. In STEP 2, we create a swath centered on the nominal route with overall width 0.5◦

latitude/longitude and intersect it with the SAA polygon(s). This is because we have
always ended up with no matches by matching the bare flight route with any SAAs due
to the fact that flight routes often go around SAAs, even if the SAAs are not active.
However, “no matches” does not imply “no impact” of SAA as flights need to extend
their path by “going around SAAs”.

3. After STEP 4, we also calculate the intersected area (in km2) of flight route “swath”
and SAA polygon(s), and use the sum of all the intersected areas (in km2) as the
metric to evaluate the impact of SAAs.

It should be noted that multiple thresholds, for example, the query distance R of con-
vective weather and radius of NAS element r, have been chosen in the above mapping
algorithm. While some thresholds, such as the radius of NAS element influence area, can be
found in [53], we have performed sensitivity analysis on the others. For example, we have
experimented with jet route width ranging from 0.25◦ to 0.75◦ of latitude/longitude in 0.25◦

increments. In general, the parameter values used here are the ones that yielded the best
model performance in later modeling. However, the results obtained are not very sensitive
across the range of parameters we have investigated.

We end Section 3.3 by summarizing the metrics of the identified causal factors for the
subsequent statistical analysis.
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1. Convective activities:

• TS: Thunderstorm exposure (in percentage) to each nominal route. Thunder-
storm is obtained from the NCWF dataset. Larger TS indicates more thunder-
storm activities matched with the route.

• Wx: Weather exposure (in percentage) to each nominal route. Weather includes
four variables: rain, squall, ice, hail, and is obtained from the QCLCD dataset.
Higher Wx suggests larger weather activities reported from the weather stations
along the route.

2. Wind: wind distance traveled along the route (in 1000 nautical miles). Large positive
wind distance indicates strong tailwinds, and large negative wind distance indicates
strong headwinds.

3. MIT: sum of MIT stringency along the route (in 100 miles×hours). Larger MIT strin-
gency suggests more severe MITs (could be either large MIT value, or MIT duration)
matched with the route.

4. AFP: sum of AFP delays crossed by the route (in minutes). Larger AFP delays indicate
longer expected delays assigned to the route.

5. SAA: sum of crossed SAA areas by the route (in 1000 km2). Larger SAA areas suggest
bigger overlap between the route “swath” and the SAAs.

3.4 Statistical Analysis

In this section, we first introduce the framework of how we statistically model the flight en
route inefficiency through the proposed two mechanisms, and formulate the model specifica-
tions. Then we experiment with the data for the eight airport pairs listed in Table 3.1 and
present the estimation results. Lastly, we conduct counterfactual analysis to estimate the
contributions of different causal factors.

3.4.1 Modeling Philosophy

We establish two separate models to link causal factors to flight en route inefficiency, of which
the first is a logit model that models the strategic route choice process, and the second is a
linear model that models the tactical reroute.
Logit Model

To fit our use case within the random utility maximization framework ([4], [73]), here
we have constructed a scenario whereby each flight i, prior to its departure, is a decision
maker that needs to choose one nominal route Pj among m alternatives in the route choice
set determined in Section 3.3.1. The “utility” Uij that flight i obtains from choosing an
alternative j is, though unknown to us, assumed to be a function of observed characteristics
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(xij) of the alternative j and some attributes (si) of the flight i, plus some unobserved
random error εij whose distribution needs to be further specified by us. In Equation 3.1,
Vij = V (xij, si) is the assumed utility function, and the flight operator will choose alternative
j that has the highest utility Uij. The probability that corresponds to this utility is Pij, as
formulated below. xij and si will be further introduced in Section 3.4.2.

Uij = Vij + εij = V (xij, si) + εij

Pij = Pr(Uij > Uik,∀k 6= j)
(3.1)

For discrete choice models, different error structures for εij lead to different logit models.
In this research, we start with the simplest, yet popular, multinominal logit (MNL) model by
assuming that each εij in Equation 3.1 is independently, identically distributed (IID) with
Gumbel and type I extreme value distribution. The probability density function (PDF) is
f(εij) = exp(−εij) · exp(−eεij),∀j ∈ {1, 2, . . . ,m}, which yields to a closed-form probability
of flight i choosing alternative j shown below.

Pij =
eVij∑m
k=1 e

Vik

However, due to the independence from irrelevant alternatives (IIA) property, the MNL
model suggests a proportional substitution across alternatives, which is not always the case.
Specifically, we have observed some route alternatives from clustering results are geograph-
ically closer to each other. Therefore, to overcome this issue, we have experimented with
nested logit (NL) model, in which m alternatives will be divided into K non-overlapping sub-
sets, or nests. We denote these nests as M1,M2, . . . ,MK . While the IIA property still holds
for alternatives belonging to the same nest, it does not hold for alternatives from different
nests. The error structure, εi = [εi1, εi2, . . . , εim], as a result, follows a joint distribution as
in Equation 3.2, where the λk is a measure of independence among alternatives in nest Mk

and needs to be estimated from the data. Notice that while εij,∀j are not IID in general,
they can be decomposed into two components εik and εikj, of which the later are IID in the
same nest. This also explains why IIA property holds only within each nest. Lastly, we show
in Equation 3.3 the probability of flight i choosing alternative j belonging to the nest Mk.

F (εi) = exp

(
−

K∑
k=1

( ∑
j∈Mk

e−εij/λk
)λk) (3.2)

Pij =

exp
(Vij
λk

)
·
[∑

l∈Mk
exp

(
Vil
λk

)]−1+λk
∑K

q=1

[∑
l∈Mq

exp
(
Vil
λq

)]λq (3.3)

Inefficiency Model



CHAPTER 3. CAUSAL ANALYSIS OF EN ROUTE FLIGHT INEFFICIENCY 43

The inefficiency model predicts en route inefficiency, had we known which route a flight is
going to fly and the measures of causal factors on that route. Therefore, we propose a linear
regression, in which the dependent variable is the en route inefficiency, and the independent
variables contain flight route assignment fixed effects, weather measurements, and etc., to
quantitatively understand how different factors directly affect the flight en route inefficiency
through tactical reroute. Notice that when we make predictions using the fitted linear model,
the route assignment fixed effects will be the route choice probabilities predicted by the logit
model. The detailed model specification is described in the next section.

3.4.2 Model Specification

Logit Model
In the logit model, the alternative set is formed by natural clusters (nominal routes), and

a flight chooses a cluster to which it belongs. As mentioned in Section 3.4.1, the “utility”
of flight i choosing route j can be written as the summation of an unobserved random error
εij and a deterministic utility function V (xij, si), where xij is a vector of alternative-specific
characteristics that differ from alternative to alternative for each flight; and si is a vector
of flight-level attributes that only vary across flights. In this work, we have specified xij
to include convective weather variables, wind distance, MIT stringency, AFP delays, and
SAA influencing areas (see Section 3.3). We further specified si to contain five variables,
including four departure time related variables (BH, Spr, Smr, Fall) in Table 3.5 and an
alternative-specific constant (ASC).

Equation 3.4 shows the formula of our specifications for the logit model, in which the
variable name code for xij is shown in Table 3.5. and coefficients (ASCj, αj, ζj, γj, θj, βk)
will be estimated using actual data. It should be noted that Vim only contains alternative-
specific attributes to identify a proper logit model. Also notice that each of the alternative-
specific attributes share the same coefficient (β’s) across different alternatives. Based on the
specification, we expect that the coefficients of the weather, MIT, AFP and SAA related
variables should all have negative signs, since higher values of those covariates will always
tend to degrade the attractiveness of a route. We also expect the sign of the wind distance
coefficient to be positive since route with higher tailwind is in general favored.
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Vi1 = ASC1 + α1 · BHi + ζ1 · Spri + γ1 · Smri + θ1 · Falli

+ βwd ·WDi1 + βmit ·MITi1 + βafp · AFPi1 + βsaa · SAAi1

+ βts · TSi1 + βr · Ri1 + βq ·Qi1 + βice · Icei1 + βh · Hi1

Vi2 = ASC2 + α2 · BHi + ζ2 · Spri + γ2 · Smri + θ2 · Falli

+ βwd ·WDi2 + βmit ·MITi2 + βafp · AFPi2 + βsaa · SAAi2

+ βts · TSi2 + βr · Ri2 + βq ·Qi2 + βice · Icei2 + βh · Hi2

...

Vim = βwd ·WDim + βmit ·MITim + βafp · AFPim + βsaa · SAAim

+ βts · TSim + βr · Rim + βq ·Qim + βice · Iceim + βh · Him

(3.4)

Inefficiency Model
In the inefficiency model, the dependent variable is the flight en route inefficiency. There

are five categories of independent variables in the model. The first category includes variables
related to convective weather activities. Among the variables are thunderstorm (from the
NCWF dataset), rain, squall, hail, and ice (from the QCLCD dataset). Since a flight may
extend its route to avoid convection, we expect that those variables will have positive effects
on the en route inefficiency. The second category of variables includes TMIs. Due to the fact
that aircraft may be vectored or rerouted to comply with either the MIT restrictions or AFP,
we expect that these variables will also have positive signs. The third category includes the
SAAs. Since flight almost always go around SAAs, we expect this variable to have positive
correlation with the inefficiency. The fourth set of variables relate to the departure time.
We include both the departure seasons and departure busy hour indicator (8 am – 8 pm)
as control variables to further capture the seasonal patterns and traffic effect, respectively.
As indicated in [37], flights in the summer season tend to be more inefficient, and a higher
volume of traffic in the airspace will also induce unnecessary maneuvers; thus, we expect
that the estimate for summer season indicators should be systematically higher than the
other seasons, and the estimate for the busy hour should also be positive. The last category
pertains to the route structure. Figures 3.9 – 3.16 suggest that while the within-cluster en
route inefficiency maintains a small variation, the cross-cluster inefficiencies tend to have
significant difference. Therefore, we include the cluster memberships as the fixed effects in
the model and use the “red” cluster as the baseline. We expect that the order of estimates for
different clusters should match the order of the averages of within-cluster inefficiencies. The
formula for the inefficiency model is shown in Equation 3.5, where the β’s are the coefficients
that need to be estimated. The explanatory variables and their notations are listed in Table
3.5.
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Table 3.5: Description of Variables

Category Notation Variable description
Dependent
variable

Y En route inefficiency (in percentage)

Convective
weather
activities

TS Thunderstorm exposure (in percentage)
R Rain exposure (in percentage)
Q Squall exposure (in percentage)
Ice Ice exposure (in percentage)
H Hail exposure (in percentage)

TMI
MIT Sum of MIT stringency (in 100 miles × hours)
AFP Sum of AFP delays (in minutes)

SAA SAA
Sum of overlapped area of special activity
airspace and route swath (in km2)

Departure time

BH
Busy hour indicator, equals 1 if local departure
hour is between 8 am and 8 pm

Spr Equals 1 if departed between March to May
Smr Equals 1 if departed between June to August
Fall Equals 1 if departed between September to November

Route structure Cj Cj = 1 if flight chooses route j
Wind WD Wind distance (in 1000 nautical miles)

Y = β0 + β1 · TS + β2 · R + β3 ·Q + β4 · Ice + β5 · H
+ β6 ·MIT + β7 · AFP + β8 · SAA + β9 · BH

+ β10 · Spr + β11 · Smr + β12 · Fall

+
m−1∑
j=1

βc,j · Cj

(3.5)

3.4.3 Estimation Results

We have conducted comprehensive numerical studies on the eight airport pairs in Table 3.1
by experimenting with different nesting structures and variable selections. For the logit
models, however, only airport pairs IAH −→ BOS and JFK −→ FLL exhibit significant
nesting effects. We summarize the specific nesting structures in Table 3.6, in which three
nests have been identified for alternatives in IAH −→ BOS, and four for JFK −→ FLL.
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Also notice that for both pairs, those nests with only one alternative are “degenerate” nests
whose nesting coefficients λk are fixed to 1 and therefore will not be estimated.

Table 3.6: Nesting Structures

IAH −→ BOS JFK −→ FLL
Nest 1 [Red, Cyan] [Magenta, Blue]
Nest 2 [Magenta, Blue] [Red]
Nest 3 [Green] [Green]
Nest 4 [Cyan]
Note:Check Table 3.3 for the color code of alternatives

Table 3.8 and Table 3.9 report the complete estimation results for the inefficiency model.
Notice that the subscripts of the variable names for route structure fixed effects are the color
code for different clusters, for example, Cg is the fixed effect for the green cluster. Readers
may refer to Table 3.3 for the complete color code. To save space, Table 3.7 only reports
the estimated coefficients of those causal factors in the logit model; other coefficients, while
most of which are significant, are not presented in this chapter. For all three tables, each
column presents the estimates for one airport pair shown in the header, and the significance
level is shown by the stars.

From Tables 3.8 and 3.9, the adjusted R2’s range from 0.543 to 0.858, except for pair SFO
to MSP, which reports R2 = 0.255. While we acknowledge that much of the variations in the
SFO – MSP case might not be explained by the inefficiency model, we adopt the result as
is and leave other possible modeling techniques in the future. Apart from the R2’s, we also
observe that the vast majority of the coefficients in the inefficiency models are significant,
and their signs generally match our expectations. First of all, the estimates confirm that
thunderstorm activity along the chosen routes increases en route inefficiency for all eight
airport pairs considered. However, among the four ground-based weather observations, only
the rain exposure appears to have a minor positive impact on four pairs: JFK to FLL, SFO to
MCO, EWR to LAS and SFO to MSP. Second, AFP delays only deem to have minor impact
to flights from IAH to BOS in the tactical reroute, while MIT stringency and SAAs seem to
affect the en route inefficiency more broadly across pairs. Third, the estimates for cluster
membership fixed effects are all significant, and their order matches the statistics shown in
Table 3.3, which confirms the effects of route selection. For instance, the estimate for CLg
in IAH to BOS case implies that if a flight decides to follow the path in cluster “g (green)”,
then its inefficiency will be systematically 2.296% lower than flying the “red” cluster. Flights
departing within the busy hours (8 AM to 8 PM local time) are all confirmed to be less
efficient than departing at other hours. Finally, estimates for summer season fixed effects
are somewhat surprising. While we expected their estimates to be consistently larger than
other seasons, many of them are not statistically significant. This is probably because the
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effect of summertime convective weather has been explicitly accounted for in these models,
and thus does not contribute to the summer season fixed effect.

As for the estimates presented in Table 3.7, the estimates in general agree with our
expectations. Thunderstorm has significantly large negative impacts on route utility across
all eight airport pairs, while rain reports significant negative estimates only for IAH to BOS,
BOS to IAH, and EWR to LAS. This suggests that in the strategic planning phase, a flight
will tend to fly a route that has less fewer convective activities. Second, the estimates for
wind distance are significant with positive signs for all jet-stream-impacted airport pairs,
which implies that flights tend to choose routes with favorable (tail) winds. However, for
flights between FLL and JFK, possibly because of the comparably shorter distance and
lower wind activities, wind is not an important factor on the route selection. Finally, MIT
restrictions, AFP delays and SAAs only appear to have negative and significant estimates
for a limited number of airport pairs, indicating that they are important in strategic route
choice for some but not all OD pairs. We also report in Table 3.7 the prediction accuracy of
the route choice models, which ranges from 55.99% (IAH to BOS) to 93.42% (SFO to MSP),
and the pseudo R̄2, which ranges from 0.331 (IAH to BOS) to 0.722 (FLL to JFK). These
statistics indicate relatively good fit of our specified logit models.

3.4.4 Contributions of Causal Factors

We further use the estimated logit and inefficiency models to quantify the contributions of
wind, weather, TMIs and SAAs to flight en route inefficiency. Specifically, we are trying to
see how the inefficiency changes, in percentage, if we “zero out” specific condition(s) (e.g.,
wind) in the airspace, when comparing to the actual airspace conditions observed in the
data. The detailed procedure, known as counterfactual analysis, is described as follows.

1. STEP 1: Use the estimated logit models to calculate the probabilities of flight i
choosing each route j in the alternative set, given the values of those causal factors xij in
the original dataset. We denote this probability as P F

ij = Pr(Cj|xij),∀j ∈ {1, 2, . . .m}.

2. STEP 2: For each route choice alternative j, substitute its associated route structure
fixed effect in the inefficiency model with the calculated probability P F

ij in STEP 1, and
calculate the predicted en route inefficiency for flight i in the original dataset, denoted
as Ŷ F

ij .

3. STEP 3: Construct a counterfactual scenario in which we set the value(s) of any3

investigated causal factor variable(s) (e.g., wind distance) to zero.

4. STEP 4: Estimate the route choice probability under the new scenario. We denote
this probability as P F̃

ij = Pr(Cj|xij = [0, . . . ]),∀j ∈ {1, 2, . . .m}.
3We can set whatever number of causal variables to 0, depending on whose variables contribution we

want to investigate
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5. STEP 5: For each route choice alternative j, substitute its associated route structure
fixed effect in the inefficiency model with the estimated probability P F̃

ij in STEP 4, and
calculate the predicted en route inefficiency for flight i using the new data , denoted
as Ŷ F̃

ij .

6. STEP 6: Calculate the percentage change in the the expected inefficiency using Equa-
tion 3.6. We term this percentage change as the contribution of (any) investigated
causal factor(s).

δ =

∑
i

(∑m
j=1 Ŷ

F
ij · P F

ij −
∑m

j=1 Ŷ
F̃
ij · P F̃

ij

)
∑

i

∑m
j=1 Ŷ

F
ij · P F

ij

(3.6)

The contributions for wind, convective weather (including thunderstorm and rain), TMIs
and SAAs are summarized in Table 3.10, in which columns 3 to 7 show respectively the
percentage change in the en route inefficiency in scenarios with and without the factor in the
header row, and the second column shows the baseline average en route inefficiency (HIE)
calculated based on the original dataset. Notice that a negative contribution statistics of a
factor implies that the inefficiency increases in the case in which that factor is not present.
From the table, the convective weather contributes up to 7% to the routing inefficiency, while
wind contributes up to about 14%. TMIs do not deem to have significant contributions
across all airport pairs, while SAAs contribute the most for the case SFO to MSP. The
column “All” is the scenario where we set all factors to zero, and the numbers suggest that
the contributions of different factors are approximately additive.

Although we are somewhat surprised by the “marginal” contributions presented in the
table, especially for convective weather and wind due to their largely significant estimates in
the statistical models, we find that for some airport pairs, their route-specific attributes are
noticeably evenly distributed across alternatives. We show in Figure 3.18 a correlation matrix
of three attributes – thunderstorm, rain and wind distance – across the five alternatives for
the case BOS to IAH, in which each cell is the correlation between an attribute for a specific
route and the others. For example, the cell at the first row and second column suggests that
the thunderstorm exposure for the “red” and “green” routes has a Pearson correlation of
0.65. From this figure, we observe obvious positive correlations for each attribute between
alternatives, especially for the wind variable. Therefore, to further understand what might
lead to the “marginal” contribution estimates, we set up another counterfactual scenario
in which only one alternative, say “red”, has a “clear sky” while the others remain the
same. Specifically, we follow the general procedure proposed in the beginning of this section,
but modify step 3 such that we only set the value(s) of (any) investigated causal factor
variable(s) of one specific alternative to 0, while keeping those variables unchanged for the
other alternatives. Table 3.11 presents the full results. For example, in the case of IAH
to BOS, if we clear the convective weather solely on the “magenta” alternative, then the
overall inefficiency decreases by about 5%, while clearing the wind condition increases the
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inefficiency by about 8%. This is because when there is no wind on “magenta”, flights will
shift their route choice probabilities from “magenta” to other more inefficient routes, say
“red” and “green”. More dramatic changes are also observed for pairs such as BOS to IAH,
in which inefficiency decreases by about 80% by clearing the wind condition of the “green”
alternative. This is caused by the fact that flights from BOS to IAH are mostly in the
headwind condition (negative wind distance), and therefore, clearing the wind condition on
“green”, which is the most inefficient route, attracts more flights to choose this alternative.

Table 3.10: Contribution of Causal Factors

Baseline HIE Convection Wind TMIs SAAs All
IAH to BOS 4.366% 0.799% 2.146% 0.962% -4.893% -1.226%
BOS to IAH 2.580% 3.844% 0.373% - - 3.973%
FLL to JFK 3.585% 1.393% - 4.441% - 5.786%
JFK to FLL 3.052% 1.991% - 2.394% - 4.222%
SFO to MCO 2.557% 6.476% 12.740% 0.461% 2.291% 22.058%
LAX to CLE 1.636% 7.104% 13.987% 2.426% 1.262% 24.283%
EWR to LAS 2.134% 5.230% 11.788% - - 17.416%
SFO to MSP 1.109% 2.989% 2.441% - 21.935% 27.387%

3.5 Conclusions

In this research, we have demonstrated a practical means for fusing FAA trajectory perfor-
mance databases with convective weather, wind, miles-in-trail (MIT), airspace flow programs
(AFP), and special activity airspace (SAA) sources for the purpose of obtaining an improved
estimate of flight trajectory efficiency, which presents a first step in ascribing en-route tra-
jectory inefficiencies to causal factors. Two mechanisms have been proposed to relate those
factors to inefficiency – strategic route choice and tactical reroute, through which we present a
methodological framework, containing trajectory clustering, attribute matching, logit model
and inefficiency model, to specifically tackle the problem.

In our framework, the inefficiency of a trajectory is defined as the horizontal distance in
excess of the great circle distance, and is modeled as resulting from an assignment process
through which the trajectory “chooses” among several trajectory clusters based on attributes
of the nominal routes for each cluster, and a tactical process in which flight inefficiency for
trajectories in a given cluster is related to convective weather, TMIs and etc. Using this
approach, the contributions of wind, connective weather, MIT, AFP and SAA to flight inef-
ficiency are estimated. Results vary across OD pairs, but in general if we systematically clear
the values of these causal factors in the whole airspace, convective weather and wind make
the greatest, yet not dramatic, contribution. However, we have also shown that this might
be caused by the largely homogeneous distribution of different attributes across alternatives,
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Figure 3.18: Pearson Correlation of Attributes Across Alternatives
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and further, if we “clear the sky” solely for an alternative route, flight en route inefficiency
may receive substantial improvement/deterioration. This, on the other hand, should be
specifically emphasized for future advise of TMI implementations in the NAS system.

In addition to its scientific contribution, this work also has a number of practical appli-
cations. First, it helps target interventions to reduce flight inefficiency, by identifying which
causes of inefficiency are the most important for different OD pairs. Equally important,
it estimates the extent to which flight inefficiency, as defined in this chapter, is an illusion
arising from the choice of routes with favorable winds but longer ground distances. Finally,
it reveals the degree to which inefficiency is not the result of any identifiable cause. This
inefficiency “dark matter” is presumably attributable to features of the NAS route structure,
which may also be targets for intervention.
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Table 3.11: Percentage Change In HIE by Zeroing Out Factor(s) of One Alternative

Convection Wind TMIs SAAs All

IAH to BOS

Red 1.45% 1.58% 0.17% 0.00% 2.08%
Green -5.00% 12.34% 0.19% -6.14% 6.70%

Magenta 4.65% -7.63% 0.58% 1.20% -4.31%
Cyan 1.97% -0.40% 0.01% 0.00% 0.06%
Blue 0.48% -0.05% 0.04% 0.03% 0.20%

BOS to IAH

Red 6.69% 15.42% - - 19.87%
Green -4.04% -80.55% - - -90.48%

Magenta 1.25% -4.63% - - -2.44%
Cyan 1.32% 11.67% - - 14.52%
Blue -1.86% -47.13% - - -55.21%

JFK to FLL

Red 5.84% - 3.01% - 8.56%
Green -0.44% - 0.01% - -0.43%

Magenta -2.31% - -0.64% - -3.14%
Cyan -1.91% - -0.39% - -2.65%
Blue -2.34% - -0.71% - -3.76%

FLL to JFK

Red 2.66% - 4.42% - 7.01%
Green -1.34% - -0.81% - -2.10%

Magenta 0.07% - 0.08% - 0.19%
Cyan -0.04% - 0.02% - -0.04%

SFO to MCO

Red 7.54% -50.61% 0.90% 0.76% -45.76%
Green -0.70% 3.50% -0.14% 0.06% 3.36%

Magenta -0.69% 9.95% -0.50% 1.02% 9.73%
Cyan 0.17% 0.97% -0.09% 0.19% 1.11%

LAX to CLE

Red -0.40% 22.19% 0.30% -1.19% 21.96%
Green 8.84% -40.32% 2.17% 2.85% -28.94%

Magenta 0.46% 1.06% 0.15% -0.41% 1.14%
Cyan -0.89% 2.21% 0.18% 0.11% 2.13%

EWR to LAS

Red -3.94% -40.00% - - -39.25%
Green 12.75% 37.91% - - 44.68%

Magenta 4.46% 11.30% - - 16.95%
Cyan -5.98% -95.49% - - -101.83%
Blue -0.52% -34.57% - - -37.23%

SFO to MSP
Red 3.25% -29.47% - 20.35% -14.09%

Green -0.39% 4.53% - 1.60% 4.72%
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Chapter 4

Predicting Aircraft Trajectories: A
Deep Generative Convolutional
Recurrent Neural Networks Approach
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Nomenclature

Scalars

x Longitude

y Latitude

z Altitude

t Time

ẋ First order derivative of longitude

ẏ First order derivative of latitude

Vectors

Pt = [x, y, z, t] 4-dimensional track points defined by longitude, latitude, altitude, and time

Xt = [x, y, z, ẋ, ẏ] 5-dimensional aircraft state at time t defined by longitude, latitude, alti-
tude, longitude speed, and latitude speed

X̃t = [x, y] 2-dimensional aircraft state at time t defined by longitude and altitude

FG
t Feature cube grid at time t

Ft Feature cube spanned on the feature cube grid at time t

Matrices

P = [P1, P2, . . . , PT ] Sequence of 4-dimensional track points

X = [X1, X2, . . . , XT ] Sequence of 5-dimensional aircraft states

X̃ = [X̃1, X̃2, . . . , X̃T ] Sequence of 2-dimensional aircraft states

FG = [FG
1 , F

G
2 , . . . , F

G
T ] Sequence of feature cube grids

F = [F1, F2, . . . , FT ] Sequence of feature cubes
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4.1 Introduction

With the growing demand for air traffic, it is crucial to monitor and control air traffic flow
to ensure the safety and efficiency of the National Airspace System (NAS). The Federal
Aviation Administration (FAA) developed the Traffic Flow Management System (TFMS) to
estimate sector traffic loads, make planning decisions, and evaluate historical performance.
Based on this system, we have developed route choice models in Chapter 3 that enable us
to analyze air traffic flow and predict to which nominal route a flight would fly, given con-
vective weather, wind, and traffic management initiatives. In Europe, EUROCONTROL
adopted the PREDICT system ([22]) to forecast the pre-tactical traffic load. These systems
depend on aircraft trajectory prediction tools. However, due to the computational complex-
ity, most of today’s prediction systems are based on deterministic flight trajectory prediction
processes, using, for example, filed flight plans or historical routes ([54], [28]). However, de-
mand forecasting based upon deterministic processes barely considers uncertainties such as
unsteady weather conditions, which could lead to overestimating the traffic load for sectors
with bad weather and induce unnecessary Traffic Management Initiatives (TMIs). From a
system point of view, sector demand is not only the result of planned flight routes, but also
reroutes in response to TMIs and weather changes. Furthermore, in the next generation
of the NAS system (NextGen), the concept of trajectory based operations (TBO) has been
proposed to be a cornerstone ([26]). TBO requires the development of tools to plan and pre-
dict accurate aircraft trajectories in four dimensions – lateral, vertical and time. In recent
years, efforts have been spent on developing systems focusing on optimizing and controlling
aircraft 4D trajectories ([5], [59], [60]), however, there are far fewer studies on predicting
4D trajectories. Therefore, in this chapter, we propose a methodological framework to pre-
dict, in a real-time manner, actual 4D trajectories, which incorporates different sources of
uncertainties including weather, wind, and management actions.

In our framework, the future trajectory of an aircraft is modeled as a sequence of 4D
coordinates that are correlated with its realized trajectory, last filed flight plan, which is a
sequence of 2D waypoints, and weather conditions in the vicinity. Therefore, we can formu-
late our task as a “sequence to sequence learning” problem, in which the input sequence is
the flight plan and the output is the actual flight trajectory. To solve this sequential learning
problem, an encoder-decoder recurrent neural network structure has been employed, where
the encoder learns from the flight plan and the decoder integrates the weather information
and recursively ”translates” the embedded flight plan information into a full 4D trajectory.
We further assume the 4D trajectory coordinates follow conditional Gaussian mixture, whose
parameters are learned by the decoder. To model the weather effect, we first propose an
efficient tree-based matching algorithm that can work both in batch mode and recursive
mode to 4D match aircraft coordinates with nearby convective weather, wind speeds and air
temperature. Then we integrate convolutional layers into the decoder network pipeline to
extract representations from the high-dimension weather features. In summary, this chapter
has the following contributions.
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• To the authors’ knowledge, this chapter is the first research using an encoder-decoder
recurrent neural network structure to predict 4D aircraft trajectories. Once trained,
our model can also be easily adapted into systems that require real-time predictions
with accurate prediction intervals.

• Our proposed approach is a generative model that incorporates multiple factors that
influence trajectories, including convection, wind, and temperature. These features are
constructed by an efficient tree-based matching algorithm, which is highly generalizable
and can be used in many spatiotemporal matching applications.

• We propose both training and inference pipelines, in which the inference pipeline em-
ploys multiple filtering and searching algorithms to produce the best predictions.

The rest of the chapter is organized as follows. In section 4.2, we review related works
in trajectory prediction and deep neural networks. Section 4.3 introduces related concepts
and summarizes our data sources and preprocessing procedure. Section 4.4 presents our
matching (feature engineering) algorithms, and section 4.5 describes our methodological
framework and model architecture. In section 4.6, we present the results of a case study.
Section 4.7 offers conclusions and suggestions for future research.

4.2 Related Work

Common approaches to aircraft trajectory prediction can be summarized into two categories:
deterministic and probabilistic. The former approach ([5], [2], [8]) usually applies a specific
aerodynamic model to estimate the state of an aircraft and then propagate the estimated
states into the future (e.g., using Kalman filter). Although it accounts for specific aircraft
parameters and kinematic equations, this approach, without considering any uncertainties
such as future winds and pilot control actions, can either predict only a specific phase of a
flight or suffers from degraded prediction accuracy. Moreover, this approach yields a ”point
estimate” of the future trajectory rather than a prediction internal. In contrast, the proba-
bilistic approach ([14], [10], [3]) understates the aerodynamics but relies on statistical models
to learn how aircraft fly from one point to another from historical trajectory datasets. De
Leege et al. ([14]) trained a generalized linear model (GLM) to use wind and aircraft initial
state to predict aircraft trajectories in the arrival airport’s terminal area. However, instead
of predicting a 4D trajectory, the authors only predict the time of arrival to a fixed set
of reference points (a.k.a., waypoints). Choi and Hebert ([10]) proposed a Markov model
to predict future motion of a moving object based on its past movement. In their work,
the trajectory of an object is broken down into a sequence of short segments, which are as-
sumed to be generated from latent states. Therefore, their method predicts future trajectory
segments of an object instead of actual coordinates. Ayhan and Samet ([3]) extended the
work of Choi and Hebert and applied the method to predict actual 4D coordinates (track
points) of an aircraft trajectory. In the chapter, the 4D coordinate of the aircraft is defined
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as the hidden state, and the observed weather information that is closest to the aircraft
coordinate is a realization of the hidden state. By training a hidden Markov model (HMM)
on a historical trajectory and weather dataset, the authors obtained the parameters of the
HMM model, which were further used to predict trajectories given the observed weather
sequence. However, their model has three main drawbacks. First of all, the hidden state
is fixed, indicating that every predicted track point can only be one of the historical track
points. Second, for each track point, the authors only consider the weather condition that
is closest to it, however, in aircraft routing problem, pilots usually consider a much larger
region. Lastly, the prediction is highly dependent on the quality of the clustering results of
the observed weather sequence, which is in practice difficult to control.

To a large extent, aircraft trajectories have clear temporal and spatial patterns, demon-
strating high predictability. Thus, with the right tools, these patterns can be employed in
predictive models. Recurrent neural networks (RNNs) have become the state of the art
for sequence modeling. Furthermore, long short-term memory (LSTM) ([39]) is one of the
most popular variations of RNNs with proven ability and stability in solving tasks in various
domains, such as speech recognition ([36], [11], [12]), neural translation ([69]), and image
captioning ([42], [75], [15]). The most relevant work is that of work of Lin et al. ([47]) and
Alahi et al. ([1]). Lin et al. ([47]) proposed a deep generative model, which integrated
an input-output HMM (IO-HMM) and a LSTM network, to model urban mobility. In the
model, the daily activities of travelers are sequences of locations they visit through a day
and are generated by the IO-HMM from cellular data. Then spatiotemporal patterns of the
activities are learned by a LSTM network. Alahi et al. ([1]) proposed a ”Social LSTM”
model to predict human trajectories in crowded spaces. In the space, multiple individuals
are observed, and each individual’s trajectory is modeled by a LSTM network. To share
information among individuals, the authors use the pooling techniques to connect those
LSTM networks. Comparing to simple models such as Gaussian process and linear model,
the authors approach has far better prediction errors on two open source datasets.

Inspired by Sutskever et al. ([69]), Lin et al. ([47]) and Alahi et al. ([1]), we develop
an encoder-decoder LSTM-based generative model to predict aircraft 4D trajectories. Our
approach differs from the past efforts in the following aspects.

• It is a probabilistic generative model that both learns the spatiotemporal trajectory
patterns and can generate a full 4D trajectory from the realized trajectory with any
length of information.

• It provides prediction intervals.

• it gives the possibility of predicting different routes that are not observed in the training
set.

• It uses high-dimension regional features generated from weather variables.
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4.3 Preliminaries

In this Section, we first introduce some key concepts and notations in our methodological
framework. Then we formally formulate our problems. Lastly we introduce the datasets and
our detailed preprocessing steps.

4.3.1 Definitions and Notations

Definition 4.3.1. 4D Trajectory P A sequence of 4-dimensional track points defined by
longitude x, latitude y, altitude z, and time t.

Definition 4.3.2. Pre-departure Last Filed Flight Plan X̃ A sequence of 2-dimensional way
points described by longitude x and latitude y.

Definition 4.3.3. Aircraft State X A sequence of a tuple of aircraft 3-dimensional positions
(x, y, z) and lateral speeds (longitude speed ẋ and latitude speed ẏ)

Definition 4.3.4. Georeferencing System G A grid of the fixed spatial points in the 3-
dimensional space.

Definition 4.3.5. 4D matching algorithm An algorithm to match a 4-dimensional trajectory
point Pt with raw features of interest by some pre-defined distance measures.

Definition 4.3.6. Feature Cube Ft A multi-dimensional array of matched features at time
t around a 4-dimensional track point Pt.

4.3.2 Problem Formulation

In this work, we seek to learn a generative model that predicts the actual 4D aircraft tra-
jectories. For each flight, we observe its last filed flight plan prior to departure X̃, which is
a sequence of 2-dimensional waypoints that guides the actual flight path but is not always
strictly followed. Given the aircraft state Xt at time t, we observe the weather conditions
such as wind speed, air temperature and convective weather in the vicinity of the aircraft,
and 4D match it with the flight location to create the feature cube Ft. Then we use the
Ft to predict its state for the next time instance t + 1. Thus, given flight plan, weather
datasets, and some initial states of the aircraft, we can predict a whole sequence of the flight
trajectory to the last timestamp by recursively predicting the next state and 4D matching
the state with weather information. Mathematically, the goal of this research is to find some
mapping F , such that:

1. During training process,
(
X, X̃,F

) F−→ X learns the best spatiotemporal patterns of
the 4D trajectory.

2. During inference process,
(
X[ : t], X̃,F[ : t]

) F−→ X[(t + 1) :] can generate the rest of
unobserved trajectory.
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This task can be viewed as a combination of a translation and a sequence generation
problem. Therefore, as a state-of-the-art algorithm to tackle similar problem, the encoder-
decoder neural network structure can be employed ([69]) to approximate F , where an encoder
neural network takes an input sequence that corresponds to the last filed flight plan, and a
decoder neural network recurrently predicts an output sequence corresponding to an actual
flight trajectory.

4.3.3 Data Sources and Preprocessing

In this work, we used four datasets from different sources. The flight tracks dataset, which
comes from FAA Traffic Flow Management System (TFMS), contains 4D positions of each
aircraft throughout its flight – latitude, longitude, altitude, and time, whose resolutions are
respectively about 1 minute, 1 minute, 100 feet, and 1 minute. For this study, we limit
our scope for flights from George Bush International Airport (IAH) to Logan International
Airport (BOS) in 2013, since over 95% of flights are operated by the United Airlines. During
the preprocessing, we first excluded flights where spatial or temporal discontinuities were
detected, and ones that started or ended outside of the selected terminal areas (0.5-degree
latitude/longitude boxes). We then down sampled flight by eliminating one out of every two
track points to reduce computational complexity. Lastly, we derived the course, and latitude
and longitude speeds by assuming each flight has a constant ground velocity between two
consecutive points. The final dataset includes 1,679 flights with an average sequence length
of 94.

The flight plan dataset, which also comes from FAA TFMS, contains the last filed 2D
flight plan coordinates (latitude and longitude) for each flight. While the lengths of flight
plans vary from 9 waypoints to 144 waypoints, we can reduce their dimensions significantly
by identifying characteristic points. We implemented a variant of the approximate trajectory
partitioning algorithm proposed by [46], in which we introduced a parameter α ∈ [1, 2] to
control the length of the output sequence. The final dataset includes 118 unique flight plans
with maximal length of 16.

The atmospheric datasets, which contain the wind speed dataset and air temperature
dataset, come from the North American Mesoscale (NAM) Forecast system. It produces
high resolution atmospheric information four times a day – at respectively 00:00, 06:00,
12:00, and 18:00 UTC – and each production cycle provides forecast at hours 0, 1, 2, 3 and
the last hour (6) of the cycle. The datasets use Lambert conformal conic (LCC) projection
and the original horizontal resolution is 614 by 428, in which the longitude ranges from
152.88◦W to 49.42◦W, and latitude ranges from 12.19◦N to 57.33◦N. However, since our
flight tracks only lie in the continental US, we cropped the original georeferencing system
so that the new georeferencing is a box area with four corners: (130◦W, 22◦N), (130◦W,
52◦N), (64◦W, 22◦N), (64◦W, 52◦N). The new horizontal resolution is about 413 by 336,
which is roughly half of the original. Apart from the horizontal projection, the datasets also
include 39 isobaric pressure altitude layers ranging from 50 millibar (about 68,000 ft) to
1,000 millibar (about mean sea level), and we denote Latmalt the list of all 39 unique pressure
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Figure 4.1: Wind Speed Map at 200 mbar Derived From the Atmospheric Datasets

altitudes. Therefore, at each forecast time instance, the final datasets have three separate
data arrays – westerly wind speed, southerly wind speed, and air temperature – each of
which has dimension 39 × 413 × 336. Figure 4.1 shows a wind speed map at 200 mbar at
18:00 Zulu on 02/04/2013, in which each arrow is the wind direction computed based on the
westerly and southerly wind speeds, and the color indicates the speed of the wind. Readers
can imagine that at each forecast dataset, we have 39 layers of wind speed map, and each
corresponds to one dedicated altitude level. Lastly, we also want to point out that the NAM
datasets are very similar to the NCAR dataset introduced in Chapter 3, Section 3.2, however
NAM has far better resolution and more information that are required for our individual
flight track prediction task.

The convective weather dataset comes from the National Convective Weather Forecast
(NCWF) system. In the dataset, every record contains the locations of convective weather
polygons (coordinates of boundaries and highest altitude of the storm) and the direction of
movement at the time of recording. The dataset was typically updated every 5 minutes. We
preprocessed the dataset by the following steps.

1. Unique storms’ altitudes with resolution 1,000 ft, which yield to a list (in 1,000 ft)
Lwxalt = [0, 14, 20, 24, 29, 35, 39, 45, 50, 54, 60, 65, 69].

2. Merge storm polygons within the same altitude group and hourly group (i.e., overlay
all storm polygons at the same altitude level within an hour).
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(a) One Day from the Original NCWF data (b) Processed NCWF data

Figure 4.2: Comparison of NCWF datasets

3. At each time instance (hour of day), create a binary array with dimension 13×138934,
where 13 is the number of altitude levels and 138,934 is the resolution of the horizontal
georeferencing system G obtained from processing NAM datasets.

4. At each time instance, overlay storm polygons at the same altitude level to the geo-
referencing system G. If a grid point from G is covered by a storm polygon, then the
corresponding element in the data array has value 1, otherwise 0.

A comparison of the raw and processed NCWF datasets are illustrated by an example
in Figure 4.2. The left subfigure shows one-day of convective weather activities projected
on the 2D space, in which the yellow polygons describe the locations of convective regions.
The right subfigure, however, shows the discretized convective information from the left, in
which each red point indicates a single location where convection was reported.

Lastly, we obtain our horizontal georeferencing system G from the atmospheric datasets.
Namely, we cropped the horizontal region to a rectangular space cornered by (130◦W, 22◦N),
(130◦W, 52◦N), and (64◦W, 22◦N), and used all the grids from the reduced atmospheric
datasets inside the region. The final G is shown by the blue raster in Figure 4.3, in which
the red raster is the original georeferencing system.

4.4 Feature Engineering

In this work, we predict aircraft trajectories using three types of information. The first is the
flight’s last filed flight plan prior to departure. While this flight plan is clearly an important
indicator of what the flight trajectory will be, it is by no means determinative. It is common
for aircraft to deviate from their flight plans rather than “fly as filed”. Convective weather,
winds, clearances to fly direct, and vectors to resolve conflicts can all cause deviations. Figure
4.4, in which all flights shown by the blue trajectories filed the same flight plan shown by
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Figure 4.3: Georeferencing System G

the red curve reveals the extent to which flights deviate from their last pre-departure flight
plans.

The second source of information used in our model pertains to convective weather.
Strong updrafts and downdrafts are evident within a convection area, which cause signifi-
cant and unfavorable turbulence. Therefore, aircraft almost always avoid those areas either
strategically by choosing a route predicted to be clear of convective weather or tactically
by maneuvering around convective weather cells. The last category of information pertains
to atmospheric conditions, specifically air temperature and wind speed. The conditions can
affect trajectories in at least two ways. First, flights prefer routes with strong tailwind since
it saves both fuel and time. Third, high temperatures are associated with more turbulence,
which pilots may seek to avoid. Finally, pilots prefer flying through cold and dense air since
aircraft engines can produce more power.

To predict actual flight trajectories, it is crucial for us to convert the underlying datasets
into features that provide the basis for the subsequent modelling. In this section, we first
introduce the concept of feature cube, which is a multi-dimensional data array that contains
the weather-related information surrounding a track point. Then we summarize a batch
mode and a recursive mode approach to efficiently match the flight track with data cubes
during the training and inference process, respectively.
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Figure 4.4: Actual Flight Trajectories vs. Their Flight Plan

4.4.1 Feature Cube Referencing System

To match flight trajectories with the relevant raw datasets, we generate a 4D referencing
system that is related to a given track point. For each track point at time t, we first
construct a grid square FG

t surrounding the point. The width and height of the grid square
are respectively dx and dy degrees in latitude/longitude, and the resolution of the square is nx
by ny points. Due to the fact that only the weather conditions in front of an aircraft matters,
we center one side, instead of the centroid, of the grid square at the track point. Then we
rotate the grid square by the course of the previous track point. Figure 4.5 demonstrates
an illustrative feature cube grid for one track point, in which the black dot and the arrow
are respectively the location and course of the aircraft, and the grid square (nx = 20, ny =
20, dx = 2◦, dy = 2◦) is spanned by its grid point. Second, we specify the altitude of the grid
square. For the atmospheric datasets (wind speeds and air temperature), we use the closest
pressure altitude (e.g., 200 millibar) to the track point’s altitude; for the convective weather
dataset, we use the closest altitude in Lwxalt to the track point’s altitude. Lastly, we set the
timestamp for the grid square by directly using the corresponding track point’s timestamp.

The details of the above process are described in Algorithm 51. Notice that each flight is

1We can run this algorithm in a batch mode by entering a collection of 4D flight trajectories P; we can
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u -

Figure 4.5: Illustration of Feature Cube Creations

Figure 4.6: Feature Cube Grid Path Projected on the 2D Space

a sequence of track points, and therefore, has a trajectory of the referencing grids, which we
term as feature cube grid path. An example of the feature cube grid path is illustrated in
Figure 4.6, where the blue series is one of the actual trajectories and the red lattice shows
the grid path around the trajectory.

also run this algorithm in a recursive mode by specifying P to be one single track point Pt
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Algorithm 5 Feature Cube Grid Generator (FCGG)

Inputs
P = [P1, . . . , PT ], Pt = [x, y, z, t]: 4D flight trajectory;
Latmalt : Atmospheric datasets unique altitude list;
Lwxalt : Convective weather dataset unique altitude list.

Parameters
nx, ny, dx, dy: Size of the feature cube, default at respectively 20, 20, 2◦, 2◦.

Outputs
FG = [FG

1 , . . . , F
G
T ]: Sequence of (2D) feature cube grid for P

LGatm = [zatm1 , . . . , zatmt ]: Sequence of feature cube atmospheric altitude for P
LGwx = [zwx1 , . . . , zwxt ]: Sequence of feature cube convection altitude for P

1: procedure FCGG
2: Initialize:
3: Feature cube grid FG

t = {gij},∀t ∈ {1, 2, . . . , T},∀i ∈ {1, 2, . . . , nx · ny},∀j ∈ {1, 2},
4: gp·nx+q,0 = q · dx/(nx − 1),
5: gp·nx+q,1 = p · dy/(ny − 1), ∀0 ≤ q ≤ nx − 1,∀0 ≤ p ≤ ny − 1
6:

7: Initialize: empty LGatm, L
G
wx

8: for t in {1, 2, . . . , T} do

9: 1. Create rotation matrix Rt =

[
cos(θt) − sin(θt)
sin(θt) cos(θt)

]
.

10: 2. Calculate rotated feature grid FG
t = FG

t ·Rt + P ′t , where P ′t = [x, y]t.
11: 3. Calculate zatmt = arg minξ

{
ξ − zt : ξ ∈ Latmalt

}
. Append zatmt to LGatm.

12: 4. Calculate zwxt = arg minξ
{
ξ − zt : ξ ∈ Lwxalt

}
. Append zwxt to LGwx.

13: end for
14: end procedure

4.4.2 Feature Cube Matching

To construct highly descriptive feature space, we match the proposed feature cube grid for
every track point with the weather-related datasets mentioned above. Both the grids and
datasets have 4-dimensional spatiotemporal structures – latitude, longitude, altitude, and
time, each grid therefore needs to query into the weather datasets and use the value of the
closest 4D reference point as its feature value, which is generally computational extensive.
In this study, we proposed a tree-based matching algorithm that efficiently matches flight
trajectories with high-dimension datasets in a 4D manner. For conciseness, we only describe
an example of matching with convective weather dataset, and the full algorithm is presented
in Algorithm 6.

To accomplish our goal, two sets of k-d trees ([6]) – spatial tree and temporal tree – are
firstly constructed (Algorithm 6: lines 3 – 6). To be more specific, the spatial tree TRS is
based on the horizontal georeferencing system G, where each data entry is a tuple of grid’s
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latitude and longitude. Since both the atmospheric datasets and convective weather dataset
share the same G, TRS is static. Also notice that TRS only has two dimensions and does
not include the altitude information. We do this because there is a very limited number of
altitude levels from both the convective weather and atmospheric datasets, and therefore we
can perform quick altitude matching by simply using grouping and indexing (as in the SQL
techniques). The temporal tree TRT is a one-dimensional k-d tree that constructed based
on the elapsed time (e.g., seconds) from a pre-specified baseline time (e.g., 01/01/2013 00:00
Zulu) for each convective weather data entry.

To perform efficient 4D matching, we first generate feature cube grids FG for all flight
tracks in a batch mode using Algorithm 5. Second, we batch query into the spatial tree TRS

using the 2D feature cube grids, which returns the indices of the closest grid points from the
georeferencing system G to the feature cube grids (Algorithm 6: line 9). Third, we further
batch query into the temporal tree TRT using the timestamps of the feature cube grids,
which aligns the original 4D trajectory, with a maximal time distance bound, and collect the
closest time indices from the weather dataset to the feature cube grids (Algorithm 6: lines
10 – 11). Fourth, we group the feature cube grid by their altitudes. However, since storms
usually propagate fast, we should not only consider the convection for the current altitude
level, but also convection below and above. Therefore, within each group, we also specify
an altitude buffer, and subset all convective weather datasets that are within the altitude
range (Algorithm 6: lines 13 – 15). Lastly, we use the calculated three set of indices –
altitude indices, 2D spatial indices, and temporal indices – to collect the matched convective
weather, which is an array with dimension (k, nx, ny), where k is the number of altitude
levels within the altitude buffer, for each feature cube grid. Lastly, for each matched feature
cube grid, we overlay all k layers of matched weather arrays so that the resulting array has
dimension (1, nx, ny), in which each element is 1 if there was convection at any layers of the
corresponding grid, and 0 the otherwise (Algorithm 6: line 14).

Notice that the above description only presents our matching procedure for the convective
weather dataset. For atmospheric datasets, however, the process is very similar except that
we don’t specify altitude buffers (Algorithm 6: line 17). Therefore, the final matched feature
cube Ft for each feature cube grid has 4 layers – each with dimension (1, nx, ny) – where
the first layer is a binary array indicating whether there was convective weather, the second
layer is a numeric array representing air temperature, the last two layers are also numeric
arrays indicating westerly and southerly wind speed, respectively.

4.5 Module Design

Aircraft that “fly as filed” frequently deviate from their pre-departure last filed flight plans
for the various reasons discussed above. To predict such “deviations”, or equivalently the
actual flight trajectories, we formulate the problem as a combination of translation and
sequence generation problem, in which we recurrently use weather information to “translate”
a flight plan to an actual flight trajectory. Specifically, our model integrates three modules:
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Algorithm 6 Feature Cube Matching (FCM)

Inputs
G = {(x, y)i},∀i ∈ {1, 2, . . . , N}: 2D georeferencing system;
FG, LGatm, L

G
wx: Outputs from Algorithm 5;

Datm(It, Ix, Iy, Iz) = {Datm
t },∀t ∈ Ωatm = {1, 2, . . . ,M}: Atmospheric datasets in-

dexed by time It, and 3D locations Ix, Iy, and Iz, where Datm
t contains wind speeds and air

temperature information (as matrices) at time t;
Dwx(It, Ix, Iy, Iz) = {Dwx

t }, ∀t ∈ Ωwx = {1, 2, . . . , K}: Convective weather datasets
indexed by time It, and 3D locations Ix, Iy, and Iz, where Dwx

t contains convective weather
information (as binary matrices) at time t.

Parameters
A = 20000 ft: Altitude buffer.
B = 1 hour: Maximal time bound.

Outputs
F = [F1, . . . , FT ]: Sequence of feature cubes.

1: procedure FCM
2: Initialize: empty array F[1 . . . T ][1 . . . 4][1 . . . nx][1 . . . ny]
3: Construct spatiotemporal k-d trees:
4: TRS = kdtree(G)
5: TRatm

T = kdtree(Ωatm)
6: TRatm

T = kdtree(Ωwx)
7:

8: Batch query:
9: I ′x, I

′
y = TRS.query(FG)

10: Iatm
′

t = TRatm
T .query(FG, max bound= B)

11: Iwx
′

t = TRwx
T .query(FG, max bound= B)

12:

13: for I ′z in LGwx.groupby(z) do

14: F[Iwx
′

t ][1][I ′x][I
′
y] = 1−

∏{
1−Dwx

(
Iwx

′
t , I ′x, I

′
y, (I

′
z − A) : (I ′z + A)

)}
15: end for
16: for I ′z in LGatm.groupby(z) do

17: F[Iatm
′

t ][2 . . . 4][I ′x][I
′
y] = Datm

(
Iatm

′
t , I ′x, I

′
y, I
′
z

)
18: end for
19: end procedure
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Figure 4.7: Training Framework

1. an encoder LSTM to embed flight plans into a fixed-size feature vector;

2. a decoder LSTM that maps the fixed-size feature vector to the target flight trajectory
sequence;

3. a set of convolutional layers that are integrated into the decoder network to condense
high-dimension weather-related feature cubes into fixed-size feature representations.

Figure 4.7 shows the general structure of the framework (unrolled LSTM). In the figure,
the five cylinders represent raw datasets, from which we extracted the flight plan state X̃,
aircraft state X, and feature cubes F. The “Conv.” module utilizes convolutional layers to
map the feature cubes F to some fixed-size feature representation C. The first box shows the
encoder LSTM, which maps the flight plan to some hidden states H̃, while the second box
shows the decoder LSTM that maps the aircraft state X, encoded H̃, and C to a parameter
set Y that later constitutes the loss function. The detailed network architecture will be
explained the following subsections.
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4.5.1 Network Architecture

Convolutional Layers
Convolutional neural network (CNN) has achieved great success in image recognition

([44], [65], [70], [38]) and object detection ([35], [34], [62]). As is also well known, deep
CNN is not only capable of classification tasks, but also learning feature representations
from high-dimensional input signals. Using the feature engineering techniques introduced in
Section 4.4, each actual track point Pt will be matched with a high-dimension feature cube
Ft. The feature cube can be treated as a multi-channel “image” whose width and height
are decided by the size of the relevant regions around the aircraft location (i.e., nx, ny), and
number of channels is the number of weather-related features considered. In this work, the
feature cube has four channels – westerly and southerly wind speeds, air temperature, and
convective weather. To extract feature representation from the feature cube, we employ
multiple convolutional layers. Specifically, at each timestamp, our convolutional layers use
small filters to map a feature cube into a fixed-size feature vector and directly feed to the
decoder LSTM network (i.e., this is an end-to-end neural network). During the training
process, therefore, the loss will be back propagated to all weights of the convolutional layers.
If we denote FC : F −→ C the convolutional layers with weight matrix Wc, then we can
describe the above mapping in Equation 4.1.

Ct = FC(Ft,Wc) (4.1)

Encoder-decoder LSTM
Long Short-Term Memory (LSTM) networks have been shown to be an effective tool to

learn representations from sequential data with long temporal dependencies. Inspired by the
success of [69] to solve neural translation problems, we develop an LSTM-based encoder-
decoder architecture to map flight plans to actual flight trajectories. Let FE : X̃ −→ H̃
denote the encoder LSTM network that maps the 2D flight plan sequence X̃ (i.e., 2D aircraft
state in the nomenclature) to fixed-length hidden states H̃, let W̃ further denote the weight
matrix of the encoder LSTM FE , then we have Equation 4.2 to describe the transitions
between X̃ and H̃, in which X̃t and H̃t are respectively the elements of H̃ and X̃. Notice
that since only the hidden state enters the decoder network, we have discarded the output
Ỹt in later discussions.

(Ỹt, H̃t) = FE(H̃t−1, X̃t,W̃),∀t ∈ {1, 2, . . . , T̃} (4.2)

The decoder network LSTM, denoted as FD : (X, H̃T̃ ,C) −→ Y , maps aircraft state,
encoded flight plan hidden state and feature representation (see Convolutional layers)
to a parameter set Y that best describes the spatiotemporal patterns of the actual flight
trajectories. Specifically, we assume that the aircraft state Xt at each timestamp t follows
a Gaussian mixture with K Gaussian components and is parameterized by a vector Yt =
{φit, µit,Σi

t}, ∀i ∈ {1, 2, . . . , K}, where φit, µ
i
t = [µix, µ

i
y, µ

i
z, µ

i
ẋ, µ

i
ẏ]t, and Σi

t are respectively
the weight, mode, and covariance matrix of the ith Gaussian component. To further simplify



CHAPTER 4. PREDICTING AIRCRAFT TRAJECTORIES: A DEEP GENERATIVE
CONVOLUTIONAL RECURRENT NEURAL NETWORKS APPROACH 73

the model, we have also assumed the covariance matrix for each Gaussian component Σi
t is

block diagonal, with Σ
(i,1)
t a full 3× 3 covariance matrix for latitude, longitude, and altitude

(x, y, z), and Σ
(i,2)
t a full 2×2 covariance matrix for latitude speed and longitude speed (ẋ, ẏ).

Lastly, we let the parameter set Y = {Y1, . . . , YT} learned by the decoder LSTM network.
Therefore, if we let Wd denote the weight matrix of FD, then Equation 4.3 and Equation
4.4 describe the above functional relations.

Xt ∼
K∑
i=1

φit · N (µit,Σ
i
t)

Σi
t =

[
Σ

(i,1)
t 0

0 Σ
(i,2)
t

] (4.3)

(Yt, Ht) = FD(Ht−1, Xt, Ct,W|H̃T̃ ),∀t ∈ {1, 2, . . . , T}
Yt = {φit, µit,Σi

t},∀i ∈ {1, 2, . . . , K}
(4.4)

While the above two equations can in theory achieve our goal, it almost always suffers
from the numerical stability issues in practice, and namely, exploding weight parameters φ
and indefinite covariance matrix Σ. Therefore, we have conducted two further steps. First,
to ensure the positive definiteness of the covariance matrix, we let the decoder LSTM outputs
two lower triangular matrices L

(i,1)
t and L

(i,2)
t that further construct the covariance matrices

Σi,1
t ,Σ

i,1
t using Cholesky decomposition. Therefore, we can rewrite Equation 4.4 to Equation

4.5. Second, we have employed an additional softmax layer to the output that corresponds
to the weight parameter of the Gaussian mixture, as stated in Equation 4.6. Lastly, to make
equal number of operations, we further add a nonlinear mapping to the mode parameters
as in Equation 4.7, where f can be any differentiable nonlinear functions (e.g., exponential
linear unit activation). Notice that the above three operations involve matrix multiplications
whose weights, which are not explicitly expressed by Equations 4.6 and 4.7, are also part of
W and thus need to be learned/optimized.

(Yt, Ht) = FD(Ht−1, Xt, Ct,W|H̃T̃ ),∀t ∈ {1, 2, . . . , T}
Yt = {φit, µit, L

(i,1)
t , L

(i,2)
t },∀i ∈ {1, 2, . . . , K}

Σ
(i,1)
t = L

(i,1)
t · L(i,1) >

t

Σ
(i,2)
t = L

(i,2)
t · L(i,2) >

t

(4.5)

φit =
eφ

i
t∑K

j=1 φ
j
t

,∀i ∈ {1, 2, . . . , K} (4.6)

µit = f(µit), ∀i ∈ {1, 2, . . . , K} (4.7)

Lastly, we have employed the negative log likelihood to be the loss function of the pro-
posed neural network, and we can therefore obtain the weights Wc,Wd, and W̃ by optimizing
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the loss through gradient-based method. The full loss function is formulated by Equation 4.8,
where Pr(·) is the probability density function of Gaussian distribution, and Xj

t is aircraft
state at time t for the jth aircraft.

L(Wd,Wc,W̃) = −
N∑
j=1

T∑
t=1

log

[ K∑
i=1

φit · Pr(X
j
t |µit,Σi

t)

]
(4.8)

4.5.2 Inference Process

During the inference time, we are trying to answer what the rest of trajectory will be, if
we have known an aircraft’s last filed flight plan, first T ′ states (1 ≤ T ′ ≤ T ), and the
corresponding first T ′ weather-related feature cubes. One simple solution is to directly
feed the flight plan X̃t,∀t = {1, 2, . . . , T̃}, first T ′ states and feature cubes Xt, Ft,∀t =
{1, 2, . . . , T ′} to the pre-trained model, and obtain the set of Gaussian mixture parameters
Yt = [φit, µ

i
t,Σ

i
t],∀i = {1, 2, . . . , K},∀t = {1, 2, . . . , T ′}. Then we use the Gaussian mixture

to sample one aircraft state, say X̂T ′+1, and use Algorithms 5 and 6 (in the recursive mode)
to match the generated point X̂T ′+1 with weather data and obtain FT ′+1. By recursively
repeating the process until the last timestamp T , we can generate a whole flight trajectory
after time T ′. Although simple as it is, the predicted sequence tends to have very large
variance, especially towards the end of the sequence. One may argue that this can be
tackled by sampling multiple points, however, in practice, this often ends up with “zigzagged”
predicted track points due to the symmetry property of the Gaussian distribution. Therefore,
instead of using sampling techniques in most literature (e.g., [47], [1]), we have abandoned
the idea of using any sampling process from the learned Gaussian mixture, but directly use
the inferred parameter set (e.g., the mode vectors µi and covariance matrices Σi from Y) as
the predicted aircraft state X̂. These, however, creates two more problems: (a) the number
of predicted states at each timestamp grows exponentially (with base K); (b) the predicted
states still suffer from large variance – one falsely predicted point will induce uncontrollable
variance for any later predictions in the sequence. Therefore, we have employed three main
techniques to further tackle these issues: adaptive Kalman filter (AKF), beam search (BS),
and Rauch-Tung-Striebel (RTS) smoother ([61]).

We first present the AKF in Algorithm 7, which contains two steps: Kalman update and
gating. In the first step, the predicted state X̂t−1 and its covariance matrix Σ̂t−1 is used to
produce a estimates for the next timestamp using basic kinematic equations (Algorithm 7:
line 3, Predict process). Then the estimates are combined with the predicted measurement
Yt from the pre-trained encoder-decoder LSTM model to further produce residual estimate
Rt and best predictions X̂t, Σ̂t (Algorithm 7: line 3, Update process). In the second step, we
compare the magnitude of the residual measurement Rt with some pre-defined thresholds
e1, e2 to decide whether the predicted measurement Yt is an outlier (Algorithm 7: line 5), or
maneuver (Algorithm 7: line 6), which require reiterating step 1 using a larger initial process
noise covariance matrix Q, or others (Algorithm 7: line 7).
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Algorithm 7 Adaptive Kalman Filter with Gating (AKF)

Inputs
X̂t−1, Σ̂t−1: Predicted aircraft state and covariance matrix at time t− 1;
Yt = [µt,Σt]: Measurements at time t, i.e., output from decoder LSTM at time t.

Parameters /* Default values provided in Section 4.5.3 */
A: Aircraft dynamic matrix;
Q: Initial process noise covariance matrix;
H: Measurement matrix;
e1, e2: Outlier and maneuver gatings;
qs: Maneuver scaling factor.

Outputs
X̂t, Σ̂t,Mt: Kalman filter estimates (i.e., predictions) X̂t, Σ̂t at time t with gating

indicator Mt, Mt = 1 if outlier and 0 the otherwise.

1: procedure AKF
2: Kalman Update:
3: Predict:

Xt = A · X̂t−1

Σt = A · Σ̂t−1 ·A> + Q

Update:
St = H · Σt ·H> + Σt

Kt = Σt ·H> · S−1t
Rt = H · (µt −Xt)

X̂t = Xt + Kt ·Rt

Σ̂t = (I−Kt ·H) · Σt

4: Gating:
5: If ‖Rt‖ > e1: Mt = 1, return X̂t, Σ̂t,Mt

6: Else If ‖Rt‖ > e2: Mt = 0,Q = qs ·Q, go to Kalman Update
7: Else: Mt = 0, return X̂t, Σ̂t,Mt.
8: end procedure
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Second, we show in Figure 4.8 and Algorithm 8 the details of our proposed inference
procedure. In the figure, the cylinders are raw datasets from which we extracted flight plans
X̃, aircraft state X, and feature cube F. The left-most box contains the pre-trained encoder
LSTM, and from left to right we show the recursive feed-forward pass and feature matching
using the pre-trained decoder LSTM (and convolutional layers). Notice that in each of these
box, we have integrated two modules “AKF” and “BS” to reduce variance and increase the
predictability. The top part of the figure shows the final step – RTS smoother – of our
sampling process that further improves the variance and smoothness of the predictions.

To be more specific, at time T ′, which is the last timestamp of the provided flight trajec-
tory, we first perform a feed forward pass using the pre-trained encoder-decoder LSTM and
collect the hidden states of the last timestamp Ht (Algorithm 8, lines 3 – 9). Then we use it
to recursively feed forward the decoder LSTM (with CNN layers) to obtain the parameter
set of the Gaussian mixture Yt = [φit, µ

i
t,Σ

i
t], ∀i = {1, 2, . . . , K} (Algorithm 8, lines 13 – 15).

Third, for each Gaussian component, we use the adapted Kalman filter (see Algorithm 7 for
details) to obtain the best estimates from previous estimates and LSTM models. We fur-
ther use Equation 4.9 to calculate a cumulative log likelihood for each Gaussian component,
where function l(M i

t = 1) gives a penalty if µit is considered as an outlier (Algorithm 8, lines
17 – 18), and π1 and π2 assign weights to respectively the log of Gaussian component weight
φit and log of Gaussian probability density function Pr(·). Typically we set π1 to be larger
because selecting the correct Gaussian component in the Gaussian mixture appears to be
much more important. Also notice that from lines 13 to 20 of Algorithm 8, each predicted
aircraft state from previous timestamp will produce K more estimates (due to Gaussian
mixture), therefore, to avoid exponential growth of the predicted sequences, we keep tracing
back each estimate its parent state and cumulating its log likelihood throughout the whole
sequence. This operation, which is also known as beam search, eventually allows us to limit
the sampling size at each timestamp and only keep the best top NBS sequences by sorting the
cumulated “sequential” log likelihood (Algorithm 8, lines 18 – 21). Forth, we use Algorithms
5 and 6 to match the best NBS aircraft state estimates with weather features and repeat the
above steps recursively until the last timestamp T +T ′. Lastly, we use Rauch-Tung-Striebel
smoother to further improve the prediction (Algorithm 8, line 24).

Lit = LJt + π1 · log φit + π2 · logPr(µit|µit,Σi
t) + l(M i

t ), π1 + π2 = 1 (4.9)

4.5.3 Implementation Details

Feature Engineering
In our feature engineering process, the horizontal size of each feature cube grid is chosen

as 2◦ × 2◦ latitude-longitude with resolution 20 × 20, which approximately covers a 120-
nautical-mile by 120-nautical-mile square region in front of the aircraft. As a result, the
dimension of each feature cube is 4 × 20 × 20, where the first dimension is constituted
by convective weather, westerly and southerly wind speeds, and air temperature. All the
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Algorithm 8 Trajectory Generator (TG)

Inputs
FC,FE ,FD: Pre-trained encoder-decoder LSTM neural networks;
X̃ = [X̃1, . . . , X̃T̃ ]: Last filed flight plan sequence;
X = [X1, . . . , XT ′ ]: Initial actual flight state sequence up to time T ′;
F = [F1, . . . , FT ′ ]: Initial matched feature cubes corresponding to X.

Parameters /* Default values provided in Section 4.5.3 */
π1, π2: Log likelihood weights;
NBS: Size of the beam search;
T : Length of the full predicted trajectory;
l(Mt): Penalty function for outlier samples.

Outputs
S =

{
X̂j = [X̂j

T ′+1, . . . , X̂
j
T ], 1 ≤ j ≤ NBS

}
: The set of NBS best predicted sequences.

1: procedure TG
2: Initialize:S =

{
X̂j[1 . . . T ],∀j ∈ {1, . . . , NBS}

}
3: Feed Forward Pass:
4: for t := 1 to T̃ do
5: (H̃t, . . . ) = FE(H̃t−1, X̃t,W̃) /* feed forward encoder LSTM */
6: end for
7: for t := 1 to T ′ do
8: Ct = FC(Ft,Wc) /* feed forward CNN layers */
9: (Ht, . . . ) = FD(Ht−1, Xt, Ct,W|H̃T̃ ) /* feed forward decoder LSTM */

10: end for
11: Inference: set X̂j

T ′ = XT ′ , Σ̂j
T ′ = 0,∀j ∈ {1, . . . , NBS}

12: for t := T ′ + 1 to T + T ′ do
13: for j := 1 to NBS do
14: Ct = FC(Ft,Wc)
15: (φit, µ

i
t,Σ

i
t, . . . ) = FD(Ht−1, X̂

j
t , Ct,W|H̃T̃ ), i ∈ {1, . . . , K}

16: for i := 1 to K do /* Loop over Gaussian components */
17: (X̂ i,j

t , Σ̂
i,j
t ,M

i,j
t ) =AKF(X̂j

t−1, Σ̂
j
t−1, µ

i
t,Σ

i
t) /* Adaptive Kalman filter */

18: Li,jt = Ljt + π1 · log φit + π2 · logPr(X̂ i,j
t |µit,Σi

t) + l(M i,j
t )

19: end for
20: end for
21: Sort Li,jt and append (X̂ i,j

t , Σ̂
i,j
t ) associated with the top NBS Li,jt to S.

22: (FG
t , . . . ) =FCGG(X̂ i,j

t ), Ft =FCM(X̂ i,j
t , F

G
t . . . ) /* Feature cube matching */

23: end for
24: S =

{
RTS(X̂j), 1 ≤ j ≤ NBS

}
25: end procedure
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Figure 4.8: Inference Framework

features except the convective weather are normalized to zero mean and unit variance before
feeding into the neural networks.

To potentially transfer our model to a variety of airport pairs, we have also subtracted
the 3D coordinates (latitude x, longitude y, altitude z) of the origin airport from both the
last filed flight plans X̃ and actual flight tracks X, such that our model learns, instead of
the absolute coordinates of aircraft locations, the deviations away from the origin airport.
Similar to the feature engineering, we normalize those outcomes to zero mean and unit
variance.
Training

For the encoder network, we first use an embedding layer with dimension 32 for the flight
plan coordinates before feeding them to the LSTM. Our encoder LSTM has two layers,
and each layer has a fixed-size hidden state with dimension 128. For the decoder network,
we have adopted two-layer LSTM with 128-dimensional hidden state, which takes the last
hidden state from the encoder LSTM as its initial state. We have also chosen K = 3
Gaussian mixture components to model the probabilistic distributions of actual flight tracks.
Therefore, at each timestamp, the size of the decoder LSTM output parameter set Y is 45 (3
components, each with 15 parameters = 1 weight + 5 modes + 9 elements from the Cholesky
decomposed lower triangular matrices).

The convolutional layers in the decoder network learn representations from the weather
feature cubes. Four layers – three convolutional and one fully-connected – are proposed and
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Figure 4.9: Structure of the Convolutional Layers

the overall structure is summarized in Figure 4.9. The first layer inputs the feature cube
with 16 filters of size 6× 6× 4 and stride 2. The second layer uses 16 filters of a smaller size
3 × 3 × 16 and stride 1, and the third layer uses 32 filters of 3 × 3 × 16 and stride 1. The
fully connected layer has 32 neurons. Notice that pooling and padding operations are not
employed since locational information of the weather significantly affects the aircraft state
in our problem domain.

Feature representations C from the convolutional layers and aircraft state variables X
are fed into an embedding layer with 64 neurons before entering the decoder LSTM. The
outputs of the LSTM will then be mapped to the estimates of parameters of Gaussian mixture
using a dense layer. In our architecture, we choose the exponential linear unit (ELU) for all
activation functions.
Inference

In calculating the cumulative log likelihood, we assign a higher weight to the probability
(φit) of Gaussian component, specifically, π1 = 0.8, π2 = 0.2.

In the adaptive Kalman filter, we have assumed a simple linear dynamic (Equation 4.10)
where at each timestamp the aircraft moves at a constant horizontal speed and zero vertical
speed (ẍ = ÿ = ż = 0). The changes in horizontal speed and altitude are captured by the
measurement (predictions from pre-trained neural networks) and are treated as the errors
in the linear dynamic system. The process error Q is assumed to be a diagonal matrix as
in Equation 4.11, and the measurement matrix is set to be an identity matrix H = I5×5.
We choose two gating thresholds e1 = 0.8, e2 = 0.3 to signify whether the measurement
is an outlier, or a maneuver, or neither. Namely, if the sum of absolute errors of latitude
and longitude is larger than e1, then the measurement is an outlier and a negative value
l(M = 1) = −9 will be added to the trajectory’s cumulative log likelihood (Equation 4.9).
If the error is greater than e2, then the measurement is considered as a maneuver and we
increase the process error Q by a factor of qs = 10 and repeat the Kalman filter updating
process. Lastly, to ensure the numerical stability, we only use the diagonal of the matrix St
in calculating the inverse of the updated covariance matrix.

In the beam search, we pick the sampling size NBS = K2 = 9 during the sampling proce-
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dure, and only output one trajectory with the highest log likelihood in the final evaluation.

X t = A · X̂t−1; A =


1 0 0 ∆t 0
0 1 0 0 ∆t
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ; ∆t = 120s (4.10)

Q =


10−3

10−3

1
10−6

10−6

 (4.11)

4.6 Experimental Results

We applied our method on a historical flight trajectory dataset from IAH to BOS in the year
2013. The preprocessed dataset contains 1679 flights and is split into two sets, with 80% in
the training set and the rest in the evaluation set. In the inference process, we use the first 20
actual track points and their corresponding feature cubes for every flight on the evaluation set
as the observed sequence and predict the rest of flight tracks using Algorithm 8. Figure 4.10
illustrates two examples of our sampled trajectories, where the red curve is the last filed flight
plan, the green curve represents the first 20 observed flight tracks, the magenta curve is the
predicted flight tracks, and the blue dashed curve is the actual flight tracks (ground truth).
In the figure, the background color indicates the average air temperature, with warmer color
(towards red) as higher temperature. The arrows represent wind directions and speeds, and
the red polygons are the convective weather regions. The green band indicates the path
with three standard deviations (obtained from the covariance matrix at each timestamp)
around predicted flight tracks. In the figure, the left subplot shows the case with slight
convective activities, while the right subplot with substantial convection. Both predicted
trajectories agree largely with the actual flown tracks (ground truth), with small deviations
in the middle parts of the trajectories. However, those deviations are mostly covered by
the prediction intervals. We have also noticed that towards the end of the predictions, the
confidence intervals are larger. This might be caused by the fact that aircraft in general has
more complex approaching patterns, typically by maneuvers in the terminal airspace.

We report four errors listed below to evaluate the performance of the proposed model.
Notice that the point-wise vertical error is signed error while the other three errors are
unsigned.

1. Point-wise horizontal error (PHE). The distance (in nautical mile) between every pre-
dicted point’s 2D coordinate (latitude and longitude) and the ground truth.



CHAPTER 4. PREDICTING AIRCRAFT TRAJECTORIES: A DEEP GENERATIVE
CONVOLUTIONAL RECURRENT NEURAL NETWORKS APPROACH 81

(a) Prediction Example 1 (b) Prediction Example 2

Figure 4.10: Examples of our Predictions

2. Point-wise vertical error (PVE). The vertical distance (in feet) between every predicted
point’s altitude and the ground truth.

3. Trajectory-wise horizontal error (THE). The average point-wise horizontal error (in
nautical mile) along each trajectory.

4. Trajectory-wise vertical error (TVE). The average point-wise vertical error (in feet)
along each trajectory.

Figure 4.11 shows the histograms of the above errors, and Table 4.1 presents the aver-
age absolute values of the four errors, denoted respectively as MAPHE, MAPVE, MATHE,
MATVE. The distribution of the point-wise horizontal errors is largely skewed towards the
left, with an average of 49.39 nautical miles. The point-wise vertical errors, which are signed
value, are mostly centered in the range from -5000 ft to 5000 ft. The trajectory-wise hori-
zontal and vertical errors, while both skewed to the left, have similar average absolute values
with point-wise errors. We also point out that we do observe large prediction errors for
flights that are have very unusual departure procedures (outlier flights), which requires fur-
ther research to explore possible solutions. Lastly, we report the horizontal error propagation
results using Figure 4.12, in which the x axis represents the elapsed time after the last track
point fed into the pre-trained model, and the y axis shows the average horizontal error at
each of the associated elapsed time instance for all testing flights except for 10 outliers with
unusual departure procedures. We have also shown the standard deviation using the error
bars. In the figure, we observe a concave shape of the error, indicating clear error propaga-
tion through the middle of the predicted trajectories, and convergence towards the arrival
phase of the prediction. The standard deviation, similarly, also demonstrates propagation
towards the middle of the prediction.
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Figure 4.11: Histogram of Prediction Errors

Figure 4.12: Error Propagation



CHAPTER 4. PREDICTING AIRCRAFT TRAJECTORIES: A DEEP GENERATIVE
CONVOLUTIONAL RECURRENT NEURAL NETWORKS APPROACH 83

Table 4.1: Average of the Four Absolute Errors

MAPHE (nmi.) MAPVE (ft.) MATHE (nmi.) MATVE (ft.)
Value 49.39 2669.35 49.44 2690.72

We end this section by visualizing the convolutional layers of our neural networks in
Figures 4.13 and 4.14. Figure 4.13a shows 32 arbitrarily chosen input feature cubes, with
each column a unique feature cube. The first row of the figure represents the convective
weather layer, in which the red polygons identify the location of convection; the second
row shows the air temperature layer; and the last two rows show respectively the westerly
and southerly wind speeds. In the last three layers, warmer color (towards red) indicates
larger numerical value. We feed those random inputs into our convolutional layers of the
neural networks and obtain the outputs. Figures 4.13b, 4.13c, and 4.14 show respectively
the outputs from the first (width 16), second (width 16), and third (width 32) convolutional
layers, in which each column represents the corresponding feed-forward output from Figure
4.13a, and each row shows the results from different filters in the convolutional layers. We
first notice that convolutional layer 1 identifies the locations of convective weather, especially
filters 1, 2, 7 and 8. Filters 11, 12 and 16 reflect the two wind speed components, and other
filters capture the nonlinear relations among the four channels associated with the input
feature cubes. Figures 4.13c and 4.14 show the outputs from convolutional layer 2 and layer
3, which largely agree with the first layer but further abstracts the feature space with more
nonlinearities.

4.7 Conclusions

In this research, we propose a novel approach to predict, in a real-time manner, the actual
aircraft 4D trajectories, using high-dimension meteorological features and last filed flight
plans. To tackle this “sequence to sequence” prediction problem, our approach is composed
of a matching algorithm, a deep generative model, a training framework, and an inference
framework.

The matching algorithm, which is based on the k-d tree, efficiently 4D matches actual
flight tracks with high-fidelity weather-related datasets – convective weather, air tempera-
ture, and wind speeds – in the vicinity of the aircraft. The constructed feature space for
each track point is based on a novel concept of feature cube grid, which is a spatiotempo-
ral 4D grid surrounding the track point. By querying such grid into the weather datasets,
our matching algorithm constructs “image-like” feature cubes, whose width and height are
the size of the interested regions around aircraft locations, and number of channels are the
number of weather-related features.

In our modeling framework, we model the actual flight states – latitude, longitude, alti-
tude, latitude speed, and longitude speed – as conditional Gaussian mixture with parameters
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to be learned from our proposed end-to-end deep generative model, which consists of a multi-
layer encoder LSTM, a multi-layer decoder LSTM, and a set of convolutional layers. The
encoder network inputs the last filed flight plan sequence and produces a fixed-size hidden
state variable that is later fed into the decoder network. The convolutional layers learn a
lower-dimensional feature representations from the matched feature cubes. The convolu-
tional layers are integrated into the decoder network so that the loss will be back propagated
through their weights. The decoder network takes the encoder’s output as its initial hid-
den state and predicts the parameter set of Gaussian mixture based on each timestamp’s
flight state and feature representation. In the training process, the loss function is the total
negative log likelihood.

In the inference process, we first feed the flight plan, observed flight states and their
corresponding feature cubes into the trained model and obtain the Gaussian mixture pa-
rameters for the first predicted flight state. Thereafter, we recursively apply an adaptive
Kalman filter with gating, which improves the predictability by reducing variance, and our
matching algorithm, which produces the feature cubes for the best estimated states, and
feed the outputs to the decoder LSTM to predict the rest of the flight trajectory. A beam
search algorithm is implemented to reduce computational complexity in the recursion, and
a RTS smoother is used to further improve the best predicted trajectory.

We apply our model on the datasets for flights from IAH to BOS in the year 2013.
1342 flights are used for training and 337 flights are used for evaluation. By visualizing our
convolutional layers, we observe that the learned filters successfully locate the convective
weather and generalize the weather-related features well. We use four metrics to measure the
prediction error. Both the point-wise and trajectory-wise average absolute horizontal errors
are around 50 nautical miles, while the average absolute vertical errors are around 2800 feet.
We also observe large prediction errors for (outlier) flights with unusual departure procedures,
which will be explored in our future research. Other future works include extending our
matching algorithm to more features such as air traffic management initiatives (miles-in-
trail, airspace flow program, etc.) and neighboring aircraft.
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(a) Input Feature Cubes

(b) Outputs from the First Convolutional Layer

(c) Outputs from the Second Convolutional Layer

Figure 4.13: CNN Feature Representation



CHAPTER 4. PREDICTING AIRCRAFT TRAJECTORIES: A DEEP GENERATIVE
CONVOLUTIONAL RECURRENT NEURAL NETWORKS APPROACH 86

Figure 4.14: Outputs from the Third Convolutional Layer
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Appendix A

List of US 34 Core Airports
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City ICAO Code IATA Code Country
Avg. Daily IFR

Departures in 2013
Atlanta KATL ATL USA 1238
Chicago KORD ORD USA 1203
Dallas KDFW DFW USA 928
Los Angeles KLAX LAX USA 836
Denver KDEN DEN USA 804
Charlotte KCLT CLT USA 758
Houston KIAH IAH USA 691
Phoenix KPHX PHX USA 596
Philadelphia KPHL PHL USA 592
Minneapolis KMSP MSP USA 591
Detroit KDTW DTW USA 582
San Francisco KSFO SFO USA 572
Newark KEWR EWR USA 564
New York KJFK JFK USA 557
Las Vegas KLAS LAS USA 554
Miami KMIA MIA USA 540
New York KLGA LGA USA 508
Boston KBOS BOS USA 495
Washington KIAD IAD USA 451
Seattle KSEA SEA USA 430
Orlando KMCO MCO USA 406
Washington KDCA DCA USA 398
Salt Lake City KSLC SLC USA 392
Baltimore KBWI BWI USA 344
Chicago KMDW MDW USA 332
Ft. Lauderdale KFLL FLL USA 332
Memphis KMEM MEM USA 316
Portland KPDX PDX USA 279
Houston IHOU HOU USA 258
St. Louis KSTL STL USA 256
San Diego KSAN SAN USA 255
Cleveland KCLE CLE USA 248
Tampa KTPA TPA USA 244
Raleigh-Durham KRDU RDU USA 230
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List of European 34 Core Airports
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City ICAO Code IATA Code Country
Avg. Daily IFR

Departures in 2013
Paris LFPG CDG FRANCE 655
Frankfurt EDDF FRA GERMANY 648
London EGLL LHR UNITED KINGDOM 646
Amsterdam EHAM AMS NETHERLANDS 597
Munich EDDM MUC GERMANY 519
Madrid LEMD MAD SPAIN 456
Rome LIRF FCO ITALY 414
Barcelona LEBL BCN SPAIN 379
Zurich LSZH ZRH SWITZERLAND 350
London EGKK LGW UNITED KINGDOM 343
Vienna LOWW VIE AUSTRIA 339
Copenhagen EKCH CPH DENMARK 336
Oslo ENGM OSL NORWAY 330
Paris LFPO ORY FRANCE 320
Stockholm ESSA ARN SWEDEN 301
Brussels EBBR BRU BELGIUM 289
Dusseldorf EDDL DUS GERMANY 288
Geneva LSGG GVA SWITZERLAND 243
Berlin EDDT TXL GERMANY 237
Palma LEPA PMI SPAIN 232
Dublin EIDW DUB IRELAND 232
Manchester EGCC MAN UNITED KINGDOM 231
Helsinki EFHK HEL FINLAND 230
Milan LIMC MXP ITALY 226
Lisbon LPPT LIS PORTUGAL 200
London EGSS STN UNITED KINGDOM 196
Nice LFMN NCE FRANCE 192
Hamburg EDDH HAM GERMANY 187
Athens LGAV ATH GREECE 186
Prague LKPR PRG CZECH REPUBLIC 171
Cologne EDDK CGN GERMANY 160
Lyon LFLL LYS FRANCE 159
Stuttgart EDDS STR GERMANY 156
Milan LIML LIN ITALY 153




