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Biased and unbiased estimation in longitudinal studies with 
informative visit processes

Charles E. McCulloch1,*, John M. Neuhaus1,**, and Rebecca L. Olin2,***

1Department of Epidemiology and Biostatistics, University of California, San Francisco San 
Francisco, California, U.S.A.

2Division of Hematology/Oncology, University of California, San Francisco San Francisco, 
California, U.S.A.

Summary

The availability of data in longitudinal studies is often driven by features of the characteristics 

being studied. For example, clinical databases are increasingly being used for research to address 

longitudinal questions. Because visit times in such data are often driven by patient characteristics 

that may be related to the outcome being studied, the danger is that this will result in biased 

estimation compared to designed, prospective studies. We study longitudinal data that follow a 

generalized linear mixed model and use a log link to relate an informative visit process to random 

effects in the mixed model. This device allows us to elucidate which parameters are biased under 

the informative visit process and to what degree. We show that the informative visit process can 

badly bias estimators of parameters of covariates associated with the random effects, while 

allowing consistent estimation of other parameters.
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1. Introduction

Calls have been made recently to utilize the wealth of information in large clinical databases 

to drive biomedical research. For example, the Patient-Centered Outcomes Research 

Institute (PCORI) recently funded 11 clinical data research networks with the goal (PCORI, 

2014) to “...integrate data from ... networks that originate in healthcare systems such as 

hospitals, health plans, or practise-based networks and securely collect ‘real-time,’ ‘real-

world’ health information during the routine course of patient care” in order to have, in part, 

the “capacity to support large-scale comparative effectiveness trials, as well as observational 

studies of multiple research questions, including prevention and treatment.” In contrast to 
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well-designed longitudinal studies, the availability of data in clinical databases is often 

driven by patient characteristics. For example, in a study of decline in kidney function in the 

elderly, a patient may visit their doctor because they are feeling ill and that visit might 

generate a measurement of kidney function that would be included in the analysis. If the 

likelihood of a visit is higher among those with lower kidney function – an informative visit 

process – then it is clear that standard statistical analyses will yield a biased estimate of the 

average kidney function in the population served by the clinic. But what about trends over 

time in kidney function? Or the differences between levels of a covariate in trends over time 

in kidney function? Can those features reliably be estimated from the clinical database? In 

general the question we set out to answer is the following: using standard statistical analyses 

that ignore the informative visit process, which parameters are estimated with bias and 

which are not? Though our motivation has been clinical databases and biomedical research, 

the results apply more broadly to data collected longitudinally subject to informative visit 

processes, e.g., data collected through internet sampling.

Previous work has tended to follow two avenues. First, specification of joint models for the 

visit process and the outcome process (e.g., Lin et al., 2004; Sun et al., 2007; Wulfsohn and 

Tsiatis, 1997). These require specification of a model for the visit process (which is not of 

scientific interest) as well as a model for the association between the outcome and visit 

processes. The joint models specified in the literature have been quite simple. More realistic 

models would be problematic because they would require accurate specification of the 

model for reasons why visits occur or do not occur. The variables that govern the presence of 

visits are often not measured and attempts to fit models to correct for missing data have 

typically been extremely sensitive to model specification errors (Kenward, 1998).

The second avenue of argument has appealed to the missing data literature, typically 

requiring the assumption that the data are “missing at random,” or MAR (e.g., Lipsitz et al., 

2002; Rathouz, 2004; Fitzmaurice et al., 2006). In the situations we consider, only a very 

small percentage of possible visits are present and hence a large percentage of data are 

“missing.” In such a situation the assumption that the data are MAR becomes less and less 

tenable with the importance of the assumptions becoming more and more critical, and hence 

the characterization becomes less and less useful. Intuitively, if we have less than 5% 

missing data in a well-conducted longitudinal study with yearly visits, then it might be 

reasonable and innocuous to assume that the data are MAR. Contrast this with a study in 

which data are also scheduled to be collected approximately yearly, but that patients come in 

and get measured more frequently when they are feeling ill. Because of the haphazard 

timing of visits we might consider time on a scale of a week, resulting in 95% of the data 

being missing.

Figure 1 shows the actual visit process from 20 patients being cared for by the University of 

California, San Francisco bone-marrow transplant clinic. The patients’ hemoglobin levels 

are being monitored following transplant because of concerns of anemia. The goal is to 

achieve normal hemoglobin levels (defined as 12 to 15.5 in women and 13.6 to 17.5 in men, 

as marked on the figure in light gray) and planned follow-up would be scheduled within 

reasonable windows of 30, 90 and 180 days.
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We fit a linear mixed model to the data in Figure 1 with an outcome of hemoglobin, 

predictors of sex, days post-transplant, whether a visit fell within the scheduled window or 

not, interactions of days post-transplant with sex and whether the visit was scheduled, and 

we allowed for correlated random intercepts and slopes (with days post-transplant). The 

interaction between days post-transplant and whether the visit fell within the scheduled 

window was statistically significant (p=0.019) with a statistically-significant decline in 

hemoglobin of 0.025 per day (95% CI −0.041 to −0.010) for the unscheduled visits and a 

not-statistically-significant decline of 0.011 per day (95% CI −0.023 to 0.0002) for the 

scheduled visits. This is suggestive that the unscheduled visits may be concentrated in 

patients with declining hemoglobin levels.

Several features of the process are noteworthy. First, many of the visits are unplanned and 

are driven by feeling ill or physician concern. Second, there are missed visits. And third, the 

inter-visit timing is highly irregular and would be quite difficult to model. In many realistic 

situations such as this one, there will be little to no information available from which to 

model the informative data process and hypothesizing simplistic modeling approaches may 

be more harmful than helpful. Instead, our goal is to study the influence of an informative 

visit process on longitudinal data analysis and the consequences of naive estimation from 

such data assuming the data were collected in a non-informative manner.

We begin by assuming the outcome process follows a generalized linear mixed model with 

random effects, a very flexible class of models for a variety of outcome types. Our approach 

to modeling the informative visit process starts in a fashion similar to other work (e.g., Sun 

et al., 2007; Liu et al., 2008). Namely, we build in an association between the outcome 

process and visit process through shared random effects. Because we wish to avoid 

assuming a specific model for how the random effects are shared, we model this quite 

flexibly using a novel, log link relationship and derive general results under a wide class of 

models. In contrast with previous approaches, we do not use information on the visit time 

process and instead focus on the impact on the distribution of the outcome process, 

conditioning on the data being observed. Our log link approximations and simulations 

evaluate the case where many visit times are possible but only a small fraction of the 

possible visits are observed and, essentially, all the visits are unplanned as in electronic 

health record data. Our models and simulations hence generate irregular visit patterns.

After defining our models and notation we derive the distribution of the outcome under 

informative visit processes and a log link. The next section elaborates the effect for a special 

case of a random slopes and intercepts model and then we evaluate the effects under a more 

realistic logistic link visit model via simulations.

2. Models and Notation

2.1 Longitudinal outcome process

We begin by defining the model for the outcome, which is assumed to be a generalized 

linear mixed model, a commonly used model for longitudinal data analysis. We describe our 

models in terms of “subjects” for the correlated clusters of data and “times” for the 

observations within a cluster though, of course, the results apply more broadly.
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Let Yit represent the measurement at time t on subject i. Our model assumes that 

observations are conditionally independent given the random effects and that our outcome 

process follows a generalized linear mixed model with normally distributed random effects, 

bi:

(1)

(2)

In this model, xit represents the covariates associated with subject i at time t, β is the vector 

of covariate effects, zit is the model matrix for the random effects, and g(·) is the link 

function.

2.2 Informative visit process

Let Rit be a binary indicator with Rit = 1 indicating that Yit is observed and is 0 otherwise. 

We assume that, conditional on the random effects, Yit and Rit are independent (and 

independent from one another) and that the probability that Rit = 1 is dependent on the 

random effects via a log link:

(3)

In this model, γit governs the strength and directionality of the association between the 

random effects and whether or not data are observed. The model in (3) is a flexible 

specification; for example we can allow dependence on where subjects start (i.e., through 

dependence on their random intercept), their trend over time (i.e., through dependence on a 

random slope) or on a subject's true mean value (i.e., the mean conditional on the random 

effects) at the current or previous time points. Importantly, and to allow more realistic 

models, both μit and γit can depend arbitrarily on either fixed or time-varying covariates.

Because the visit process depends on the unobserved random effects, it is a “missing not at 

random” (Fitzmaurice et al., 2001) process and even methods such as maximum likelihood 

based fits, which are consistent under “missing at random” assumptions, may be biased. In 

Section 3.6 we extend our results to the case where we allow dependence of the visit process 

on unobserved previous outcomes. This is often a realistic scenario under which virtually no 

approaches that attempt to model the joint process can succeed.

There is a technical issue with using a log link in (3) for a probability, along with the 

specification of a normal distribution for the random effects in (2) since the value of the 

probability is not constrained to be less than 1. To be technically correct the distribution 

needs to be truncated so that the probability in (3) is less than or equal to 1, That is, the 

distribution of the random effects needs to be a multivariate normal, truncated so that 
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. For now we ignore this truncation to exploit the simplification that results in 

the theoretical calculations. In Section 5 we give simulation results under a logit link 

informative visit process (which naturally constrains probabilities to be less than one) and in 

the online supplemental material we give exact calculations under truncation as well as more 

detailed simulation results under both log and logit link informative visit processes.

3. Observed data model

3.1 Conditional distributions of random effects for the observed data

Our goal is to elucidate the consequences of analyzing the available data, so we are led to 

consideration of the conditional distribution of the outcome process, given Rit = 1. This, in 

turn, leads to consideration of the distribution of the random effects conditional on Rit = 1.

From (3) and (2) we can obtain the joint probability of bi being less than s and Rit = 1:

(4)

where q is the dimension of bi.

The conditional density of bi given Rit = 1 can be derived by differentiating (4) with respect 

to s and dividing by the marginal probability that Rit = 1:

(5)

The denominator in (5) is constant in b so completing the square in the numerator leads to

(6)

We thus have that the conditional distribution of bi given Rit = 1 is given by

(7)

That is, the distribution is multivariate normal with variance Σb (both the same as the 

unconditional distribution), but with a mean given by Σbγit instead of 0.

3.2 Conditional distributions for the observed data

We are now in a position to derive the conditional distribution of Yit, conditional on being 

observed. Our calculations are for the “marginal” distribution of each individual Yit (as 

opposed to the joint distribution of Y). The result concerning the random effects above 
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generalizes to Yit, namely that the distribution of Yit conditional on Rit = 1 is the same as the 

unconditional distribution of Yit except that the mean of Yit is affected by the mean of bi 

given in (7). To see this, first recall that the distributions of Yit and Rit are defined 

independently of one another, conditional on bi. Therefore, using bracket notation for 

distributions, we have [Yit | Rit = 1, bi] = [Yit | bi], and the conditional distribution of Yit 

given Rit = 1 is

(8)

That is, the distribution of Yit given Rit = 1 is a convolution of the same, non-informative, 

conditional distribution of Yit given b from (1) with the conditional distribution of b given 

Rit = 1. Since the conditional distribution of b given Rit = 1 is the same as its unconditional 

distribution (except for its mean), the only influence conditioning on Rit = 1 has is to modify 

the mean of the random effects distribution.

Furthermore, because both the random and fixed effects enter the linear predictor in (1), we 

can move the mean of the conditional distribution of bi into the fixed effects portion of the 

model and re-center the distribution of bi given Rit = 1 to have mean 0. The importance of 

this result is that the distribution of the observed data is exactly the same as that of a non-

informative visit process with fixed effects given by . This allows calculation 

of the exact distribution of the outcome or aspects of that distribution in a number of special 

cases that we consider in the following subsections. One important result is immediate from 

the form of differences induced in the marginal distribution. Namely that μit in (3) does not 

impact the marginal distribution under the log link informative visit process. Since μit can 

depend arbitrarily on the covariates, dependence of the informative visit process on the 

covariates alone does not influence the marginal distribution.

3.3 Linear mixed model

Using the result above, and for a linear mixed model with Yit having a distribution 

(conditional on bi) that is normal with variance , we immediately have the distribution of 

Yit conditional on being observed:

This is practical because we can determine the asymptotic limit of many estimation methods 

(for example, ordinary least squares or generalized estimating equations with an 

independence working correlation structure) by simply examining the mean. To determine 

consistency for estimating β, we can often simply compare  with . 

Coefficients of covariates that do not enter in the second term, , may be consistently 

estimated.
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3.4 Mean under log link models

For models with a log link for the outcome and arbitrary distributions (conditional on bi) we 

can easily calculate the mean when the random effects are normally distributed. Without 

selection the mean is given by . On the other hand, with 

selection and using the results above, we have 

. Therefore the difference in the log of the 

mean with and without selection is given by .

3.5 Probit models

For probit models, the mean of Yit without selection is (McCulloch et al., 2008) 

, where . With selection we have 

. Therefore the difference, on the probit scale, of the 

mean with and without selection is given by . 

Since the outcome is binary, the outcome model under selection is still a probit model but 

with a shift of the mean (on the probit scale) of . Given that probit models closely 

approximate logistic models, this suggests that logit models will exhibit similar patterns of 

bias. We report simulation results for a logistic outcome model in Section 5.

3.6 Linear mixed model with dependence on previous outcomes

The results of Section 3.2 can be extended to dependence on previous outcomes by 

essentially the same arguments in the case of a linear mixed model. Suppose the probability 

of observing an outcome is dependent on the value of the outcome lagged by τ time units:

(9)

with εit being the error term in the linear mixed model for subject i at time t. Then the joint 

probability of bi being less than s, εi,t–τ being less than sε, and Rit = 1 is given by:

(10)

Integrating out ε from (10) and using the same argument as before shows that the 

conditional density of bi given Rit = 1 is .
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Also, using assumed independence of errors, εit is independent of εi,t–τ and bi, so that the 

conditional distribution of εit is unchanged by conditioning on {Rit = 1}. We thus have the 

following result for a linear mixed model:

The results derived previously thus carry over to this situation. That is, the marginal 

distribution of Yit in the observed data is unchanged except for a modification of the mean 

which depends on the model matrix of the random effects. So for covariates that are 

unrelated to the random effects we can expect little or no bias.

4. Consequences of the observed data process for a random intercepts and 

slopes model

4.1 A random intercepts and slopes linear mixed model

We next consider the impact of selection for a common mixed model used in the 

longitudinal context: a random intercepts and slopes linear mixed model. In this model Z 

consists of subject-specific intercepts and slopes for one of the variables in X. To better 

understand the consequences of the calculations above we work out the details for the 

random intercept and slope model under three informative visit process models: dependence 

on random intercept only, random slope only, and conditional mean. In both this section and 

the next we use a common longitudinal data model, incorporating a subject-specific “time” 

variable, x1, a treatment variable, x2, which is 1 for a treatment group and zero otherwise, 

and a time by treatment interaction variable, x3 = x1 × x2. We incorporate the random slopes 

as slopes over time (and so associated with x1):

(11)

with , , and cov(b0i, b1i) = σ01. For this model, the tth row of of Zi 

is given by . In most of this section we consider only the linear mixed model 

given in (11) but indicate generalizations in Section 4.4.

4.2 Dependence on the conditional mean

In this section we consider a model where the probability of observing an observation is 

dependent on the true state of the subject at time t. In the Supplementary Material we also 

give results for an informative visit process that depends directly on the random intercepts 

and slopes. Dependence on the true mean is incorporated through the conditional value of 

the linear predictor and a log link:
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(12)

so this fits into the general formulation, (3), with μit = μ+δ(β0+β1x1it+β2x2i+β3x3it), γ1it = δ, 

and γ2it = δx1it. For this model, the result of Section 3.3 gives the expected value of the 

linear predictor conditional on being observed as

(13)

(14)

(15)

Under this informative visit model, the results in (13)-(15) indicate that:

• The estimators of β0 and β1 will be biased due to the extra terms in (13);

• The functional dependence of the mean on x2 and x3 will be unaffected by 

the informative visit process (from (14));

• An additional functional relationship (quadratic in x1) is introduced, which 

could further bias estimation of the βs if it is not accommodated.

Because the functional dependence on x2 and x3 is unaffected by the selection process, these 

results also indicate that the estimation of β2 and β3 may be unbiased if the additional 

spurious relationship with x1 is accommodated in the model.

4.3 Multiplicative link functions

In this section we show that some of the results hold for more general link functions than 

that specified by (3). We hypothesize a model where the conditional probability of a visit is 

the product of two terms with the first term depending on both the random effects and x1 and 

any dependence on other covariates is in the second term:

(16)

This class encompasses models that may be more realistic than the log link model, for 

example both p1(·) and p2(·) could be logistic in form, constraining the probabilities to be 

between 0 and 1. As before, we can obtain the joint probability of bi being less than s and Rit 

= 1:
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(17)

(18)

The joint density of bi and Rit = 1 is therefore:

(19)

and the marginal probability of Rit = 1 is the integral of (19) with respect to b. Therefore the 

conditional distribution of bi given Rit = 1 is given by

(20)

That is, there is no functional dependence of the conditional distribution of b on either x2 or 

x3. Therefore the mean of Y in a linear mixed model, conditional on Rit = 1 has the same 

functional dependence on x2 and x3 as the unconditional mean. We therefore expect that 

fitting a model while ignoring the selection process will yield consistent estimation of β2 

and β3, perhaps after accommodating spurious relationships in x1.

4.4 Probit and log link outcome models

The results derived in the above subsections for the linear mixed model generalize in a 

straightforward way to the log and probit link models in Sections 3.4 and 3.5, albeit on the 

log or probit scales. For example, under the conditional mean dependence of Section 4.2, the 

probit model will have (on the probit scale) additional terms associated with the intercept 

and x1 as well as a spurious quadratic relationship in x1.

How these results will affect maximum likelihood fitting, which is based on the entire joint 
distribution rather than the marginal distribution under selection, is not immediate. However, 

the performance of fitting methods such as generalized estimating equations with a working 

independence structure will be governed by the marginal mean structure and the bias results 

from Section 4.2 will apply. This then suggests that maximum likelihood fits will similarly 

be affected, which we check using simulations, described in the next section.

5. Simulations

Since the log link theoretical results are only an approximation and apply to the marginal 

distribution, we conducted a simulation study to verify that they held under visit processes 
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with reasonable degrees of informativeness and to compare the results to a more natural logit 

link instead of the log link in (3), namely

(21)

To do so, we simulated data with two different outcome distributions and used the linear 

predictor in Section 4.2, namely a model with an intercept (β0), time effect (β1), group effect 

(β2), and a group by time interaction (β3) and random intercepts, b0i, and slopes, b1i, with 

time. The first model was a linear mixed model, (11), with covariances for b0i, b1i, and εit of 

, σ01 = 0 or 0.5, and fixed effect parameters βk = k. Using common random 

numbers, we simulated informativeness using both (3) and (21) and using the informative 

visit models in Sections 4.2 and 4 of the Supplemental Material. We simulated 3000 subjects 

with up to 25 visits per subject, though the number of subjects in any simulation replication 

was much lower because many subjects have no visits.

We also simulated data from a logistic model, that is a logit link and Bernoulli distribution in 

(1), again under both a logit and log link informative visit process and using parameters β0 = 

–1, β1 = 0.5, β2 = 1, β3 = 0.5, , σ01 = 0 or 0.5, and using 3000 subjects and up to 

10 visits.

We simulated data ranging from no “informativeness” to a high degree of informativeness. 

To determine the upper range of informativeness we aimed to have about a five-fold ratio of 

P(Rit = 1 | bi) as the random effect distribution in (3) ranged from its 25th to 75th percentiles. 

This would lead to more than a 10-fold ratio going from an observation that is one standard 

deviation below normal compared to an observation that is one standard deviation above 

normal and more than a 100-fold ratio comparing observations two standard deviations 

below to two standard deviations above normal.

Our first informative visit model has dependence on the conditional mean of Y:

(22)

Using the outcome model described above, the standard deviation of E[Yit|bi] is a little less 

than 2.5. To achieve the five-fold ratio would require δ of about 0.6. Accordingly we 

simulated values of δ of 0, 0.25, 0.5, and 0.75 and used α = –5 for the linear mixed model 

and α = –1 for the Bernoulli outcome model.

Our second informative visit model, which we used only for the linear mixed model, has 

dependence directly on the random effects:

(23)
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In this model, if γ0 = γ1 = γ and if the random effects were uncorrelated then the value of γ 
giving a five-fold difference would be 0.84. Accordingly, for this model we simulated values 

of γl = 0, 0.5 or 1, σ01 = 0 or 0.5 and we used μ = –4.

Under each of these scenarios we fit a random intercepts and slopes model (allowing 

separate variances and a covariance) using maximum likelihood and also fit an independence 

generalized estimating equations approach (i.e., ordinary least squares fit for the linear 

mixed model or logistic regression fit for the Bernoulli model). For the simulations under the 

conditional mean informative model we also included a quadratic term in x1 to 

accommodate the functional dependence noted in Section 4.2. All simulations were 

conducted in Stata 13.1 (StataCorp, College Station, TX) and used 500 replications. We 

report illustrative results in figures below, but the full set of simulation results (including 

standard errors) is available in tabular form in the online supplemental material.

Figure 2 shows the results for the linear mixed model under the conditional mean 

informative visit model, (22), as well what is predicted by theory based on the log link 

model (ignoring truncation), and are as expected. The estimators of β0 and β1 are badly 

biased as the degree of informativeness increases. Further, within the range of low to 

moderate informativeness, the estimators of β2 and β3, the parameters unconnected to the 

random effects, exhibit little bias. There is slight bias at the upper ranges of informativeness 

for both the mixed model and GEE independence fits. Under strong degrees of 

informativeness, the approximations needed for the log link theory to apply (namely that the 

probabilities are less than 1) are violated. For the log link (shown in the supplemental 

material) there is still slight bias for the mixed model fit under δ = 0.75, but the GEE 

independence fit does not exhibit bias, as predicted by the theory. The difference between 

ML and GEE may be because our results apply to the marginal distribution (on which GEE 

depends) but the ML fits utilize the entire joint distribution.

Figure 3 shows the results for the linear mixed model under the random effects informative 

visit model (23). The results again match well with the theory (see Section 4 of the 

Supplemental Material), especially qualitatively: large degrees of bias in the estimators of β0 

and β1 and little or no bias for β2 and β3. There are minor discrepancies between the 

quantitative results predicted by the theory in the most extreme degrees of informativeness 

(again due to the simulation being conducted under the logit link).

Figure 4 shows the results for the logistic outcome model under the conditional mean 

informative visit model, (22). The results are similar to that of the linear mixed model. The 

estimators of β0 and β1 exhibit a large degree of bias as the degree of informativeness 

increases. Further, within the range of low to moderate informativeness, the estimators of β2 

and β3, the parameters unconnected to the random effects, exhibit little bias. There is slight 

bias at the upper ranges of informativeness for both the mixed model and GEE independence 

fits. Note that on Figure 4 the “true” value represents the subject-specific parameter from the 

generalized linear mixed model and the GEE independence estimator is instead estimating 

the population-averaged parameter.
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As noted at the end of Section 3.2 and under the log link visit model, the marginal 

distribution of an individual Yit is unchanged with arbitrary dependence of the visit process 

on covariates, which can be absorbed as part of μit in (3). To check to see if this also held 

under the logistic link, (21), we redid the simulation of Figure 1 but allowing additional 

dependence of the visit process on the group variable, x2. The results were virtually 

unchanged even under strong dependence on x2, as predicted by the log link theory. Details 

are given in the Supplementary Material.

6. Discussion

In this paper we developed theory for the marginal distribution of data generated under a 

generalized linear mixed model but subject to a novel log link informative visit process. That 

visit process allowed dependence of the probability of a visit on the random effects in the 

mixed model. We used the log link because it allowed approximate, theoretical 

quantification of the bias under the informative visit process; this was supplemented by 

simulation results using a logit link that gave very similar results.

Broadly speaking, the theory and simulation studies indicate that estimators of parameters 

associated with the random effects will be badly biased but that those not associated with the 

random effects will be estimated with little or no bias. The lack of bias with estimated 

covariate effects unconnected to the random effects is similar to results we and others have 

demonstrated in the informative cluster size literature (e.g., Williamson et al., 2003; 

Neuhaus and McCulloch, 2011). However, we did not see the severe degree of bias in that 

context that we see here.

Our work is similar to the investigation of bias in selection models in the econometric 

literature. For example, Heckman (1979) studied the effect of selection on the mean in linear 

models using the equivalent of a probit link instead of our log link. This gives bias for the 

mean in terms of ratios of normal p.d.f.s and c.d.f.s (inverse Mill's ratios) which are, in turn, 

complicated functions of the variance components and covariates. Our approach has two 

main advantages: 1) the log link gives easy to understand bias terms as contrasted with the 

effects imbedded in inverse Mill's ratios and 2) in dealing with generalized linear mixed 

models in which the variance-covariance structure influences the marginal mean, we must 

derive the impact of selection on the entire marginal distribution, not just the mean.

Because the log link visit process does not constrain the visit probabilities to be less than 1 

and because the theoretical results apply only to the marginal distribution, we also conducted 

simulations of the performance of standard analyses (mixed model fits and GEE 

independence fits) to longitudinal data under a more realistic logit link informative visit 

process. To a large degree the results mirrored the theory. First, estimators of parameters 

associated with the random effects were badly biased. Second, under low to moderate 

degrees of informativeness, the estimators of parameters unassociated with the random 

effects exhibited little or no bias. However, for large degrees of informativeness, both 

methods exhibited slight bias.
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The results herein indicate that analysis of data that may be subject to informative visit 

processes should be undertaken with care. Investigation of the random effects structure can 

provide guidance as to which parameter estimates may be biased (those for covariates 

associated with the random effects) and therefore interpreted with caution. On the positive 

side, parameter estimates not associated with the random effects are not likely to be biased 

due to the informative visit process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hemoglobin levels versus days post bone-marrow transplant with different types of visits.
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Figure 2. 
Simulated mean values of the maximum likelihood (MLE) and GEE-independence 

regression coefficient estimators. Simulated under a conditional mean informative visit 

process with a logit link, i.e., logit(P(Rit = 1)) = –5 + δE[Y | b], and linear mixed outcome 

model with random intercepts and slopes.
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Figure 3. 
Simulated mean values of the maximum likelihood (MLE) and GEE-independence 

regression coefficient estimators. Simulated under a random effects informative visit process 

with a logit link, i.e., logit(P(Rit = 1)) = –5 + γ0b0 + γ1b1, and linear mixed outcome model 

with random intercepts, b0, and random slopes, b1.
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Figure 4. 
Simulated mean values of the maximum likelihood (MLE) and GEE-independence 

regression coefficient estimators. Simulated under a conditional mean informative visit 

process with a logit link, i.e., logit(P(Rit = 1)) = –1 + δE[Y | b], and logistic mixed outcome 

model with random intercepts and slopes.
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