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ABSTRACT

A method of analyzing nonlinear static and dynamic
responses of deformable solids has been developed based on an
incremental variational formulation using the Lagrangian mode of
description. The material nonlinearity due to plasticity or
viscoplasticity as well as the geometric nonlinearity due to
large displacements are considered. The equations of motion are
obtained in a linearized incremental form using the principle of
virtual work and solved using step-by-step numerical integration
procedures. Equilibrium check is made at the end of each step
and the residual forces are added to the next increment for
improved accuracy over the pure incremental method.

For elastic-plastic solutions the flow theory of
plasticity is used along with the von Mises yield condition for
isotropically hardening materials. The viscoplastic constitutive
theory is also in the form of an associated flow law and capable
of considering strain rate sensitive behavior. The viscoplastic
strains are taken into account using an initial strain
formulation.

The discretization of the structure is achieved by the

use of degenerate isoparametric finite elements and the computer

ii



codes that have been developed are capable of analyzing large
axisymmetric deformations of shells of revolution. Inclusion of
shear deformations in the elements permits both thin and
moderately thick shells to be analyzed. Several numerical
examples are presented to illustrate the capabilities of the
programs for both static and dynamic analyses. The viscoplastic
formulation is also shown to be capable of solving plasticity

problems when the time parameter is used simply as an artifice.
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NOMENCLATURE

A list of important symbols is compiled in this section

for convenience of reference. All symbols are defined in the text

when they appear first.

Symbols which have more than one meaning

are clearly defined when used so as to avoid any confusion. All

indices range from 1 to 3, unless specified to be otherwise.

AIJKL

dA, da, da
Bgs Bys B2
9Bys 0By, 0B,
IOKL ¢

¢ TJKL

1.1
IE'IJ

1J

LE  1,p 1P
Bt B

Strain transformation matrix, Eq. (3.25).
Infinitesimal areas in By, B; and B,,
respectively.

Initial configuration, configuration 1
and configuration 2, respectively.
Surface areas of By, By, B, with pre-
scribed tractions, respectively.
Stress-strain transformation tensor.
Young's modulus and tangent modulus.
Stress~-strain transformation tensor
for generalized Hooke's law.
Lagrangian strain in B; and B,.
Increment of Lagrangian strain between
B, and B,.

Lagrangian strain rates in B; and B,.

Instantaneous Lagrangian strain rate
in By.
Elastic, plastic and viscoplastic strain

rates in B;, respectively.



F
14
F-I
2
F(ELI’ F?i

0 1

Grg» Gy
] o

G'p» 67 97y
Hl

H

I,

Jlo JZs J3
N, 0, n

Scalar yield function in viscoplasti-
city, Eq. (3.36).

Deformation gradient in B, relative
to‘Bo.

Deformation gradients in B,, relative
to B, and B,, respectively.

Base vectors in By, B; and B,, respect-

ively.

Convected base vectors in By, By and
B2, respectively.

Metric tensors associated with By, B,
and B,, respectively, in terms of base
vectors Gy, g. and ga.

Metric tensors associated with By, B;
and B,, respectively, in terms of base

0 1 2
vectors GI’ G, and G

~ ~1 ~I°
Shifters required to relate components
of a vector in different coordinate
systems, Eq. (2.5).
Hardening parameter in plasticity,
Eq. (3.9).
Slope of the uniaxial ¢ - P curve.
Second invariant of viscoplastic strain
rate tensor.
Invariants of deviatoric stress tensor.

Normal vectors in By, Byand B,, respect-

ively.
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R
R

ISIJ, 2SIJ
SIJ

léld, 2§IJ
§IJ

I VP
SIJ’ SIJ
T

lT'ij , 2Ta8

lfij’ ZiuB

dv, dv, dv
"o

v, 2
o, oW,
oW, o,
XI, x’, X
B> 3y

(o

Generalized loads in B,.
Generalized incremental loads including
out-of-balance forces, Eq. (4.8).
2nd Piola-Kirchhoff stress in B, and B,.
Increment of 2nd P-K stress between
B, and B,.

Rates of 2nd P-K stress in B, and B,.
Deviatoric component of SIJ.
Instantaneous and "viscoplastic" incre-
ments of the P-K stress between B, and
B,, Eq. (2.92).

Period of vibration of mode i.

Cauchy stresses in B, and Bz.

1
Rates of the Cauchy stresses in B,
and B,.

Infinitesimal volumes in Bys B, and
B,, respectively.

Plastic work.

Strain energy functions in B, and B,,
section 2.5.

Virtual work in B, and B,.

Defined in section 2.4.

Coordinates of material point in B,
B, and B,, respectively.

Right and left divergence operators.

Parameter for translation of yield

surface in kinematic hardening, Eq. (3.7).



€14 Linear part of E

1J°
éIJ’ éIJ Components of ey Eq. (2.19).
f Yield surface.
lf, 2f Body force vectors in B, and B,.
g Plastic potential.
h Defined in section 3.1.
hi v Shell thickness at node 1.
k Initial yield stress in pure shear.
1 2

Ps Ps P Normal pressure in B;, B,, and incre-

mental pressure between B, and B,,

respectively.

r; Global coordinate of node i.

r Radius.

1 2

ds, ds, ds Infinitesimal lengths in By, By, Bj.

s, t Local orthogonal curvilinear coordinates,
Fig. 5.2.

t Time.

At Time interval; time step for direct
integration of equations of motion.

°t, 't, 2t Traction vectors in By, By, Bs.

lg, 23, u Displacement vector to B, and B, from
Bgs and from B, to B,, Fig. 2.1.

IQ, 2@ u Velocity vectors.

lﬁ, zg, i Acceleration vectors.

Ui, Uz Local displacements relative to (s, t)

coordinate system, Fig. 5.2.



Xii

Horizonta] and vertical displacements

at node 1.

Global coordinate of nede i.

Rotation of normal at node i.

Components of the tensor describing the
incremental translation of the origin of
yield surface.

Mass and stiffness proportional damping
factors.

Defined in section 5.7.3.

Free parameter in Newmark family of
integration methods.

Free parameter in Newmark integration.
Material viscosity coefficients, section
3.2.2.

Virtual variation.

Control parameter for introducing arti-
ficial damping in Newmark integration.
Kronecker delta.

Eulerian strain in B,.

Equivalent plastic and viscoplastic strains.
Defined in section 3.1.

Local coordinate, Fig. 5.2

Nonlinear part of EIJ‘

Parameter in the Wilson-Farhoomand inte-

gration method.



Xiii

9 Circumferential coordinate for shell.

ei Normal angle at node i, see Fig. 5.2.

np Plastic hardening parameter.

A . Lamé constant.

A, dr Proportionality factors in plasticity,
Chapter 3.

u Lamé constant.

Y Poisson's ratio.

£ Local coordinate, Fig. 5.2.

Pos Py P Mass density in Bo, B1» Ba.

p Load proportionality factor.

o Equivalent stress.

oy Initial yield stress in simple tension.

T Pseudo-time step, defined in section 4.4.2.

o Scalar function in viscoplasticity,

Eq. (3.37).

¢i(£, n) ‘ Interpolation polynomials, Chapter 5.

X Mapping function from B,

¥; Meridoinal angle at node i, Fig. 5.2.

[ 1] Matrix.

{ 1} Column vector.

< > Row vector.

< > Singularity function defined in section
3.2.2.

(8] Transformation matrix between displacement

gradients and displacements, Eqs. (5.17,

18).
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(o]

[2,1.[0,1.0;]
{'FRy

[Hi11,[H22],[H;5]

[J]
[K,]
[Ki], [K.]
[Ks]

[K,]
[M]

<Mo>, <M;>, <My>
{No}, {N;}

{Qol}, 1Q,}

(R
{RVP
{r}
{u}
{a}

}

{ua}
{w}
{z}

xiv

Damping matrix.

Transformed stress-strain matrix,

Eq. (5.25).

Integrated forms of [D], Eq. (5.28).
Internal resisting forces.

Defined in section 5.3.

Jacobian matrix.

Incremental stiffness matrix.

Nonlinear stiffness matrices.

Stiffness matrix due to nonconservative
loading.

Geometric stiffness matrix.

Mass matrix.

Defined in section 5.4.2.

Defined in section 5.7.1.

Defined in section 5.7.2.

Consistent nodal forces due to externally
applied loading in B,.

Incremental viscoplastic pseudo-loading.
Vector of nodal point global coordinates.
Vector of radial displacements.

Vector of nodal point displacements and
rotations.

Vector of displacement gradients.

Vector of vertical displacements.

Vector of nodal point global coordinates.



[r1,
[A]
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[r],

[¢1s [e,1, [8,]

Dgfined in. section 5.3.
Defined in section 5.3
Defined in section 5.3.
Defined in section 5.3.
Matrices of interpolation polynomials,
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1. INTRODUCTION

The development of efficient and accurate techniques for
static and dynamic analysis of deformable bodies is of considerable
importance in various engineering fields. The study of shells of
revolution is of particular significance because of the diverse
fields in which structural components of this type are found - rocket
casings, submarine hulls, fluid containers, nuclear reactors,
pressure vessels, piping systems, etc. The ability to predict the
response of such structures to blast pressure or impact loading is
very essential from a design viewpoint. The objective of arriving
at the most economical and optimum design requires that the analysis
procedures take into consideration both physical and geometrical
nonlinearities.

There are many practical problems involving rate dependent
deformations that are of technical and industrial significance.

Such examples may be found in explosive or impact forming of metal
parts, impulsive loading of bars, plates, cylinders and spheres,
etc. Both inertia and viscous type forces may become very

important and the classical inviscid plasticity theory is inadequate
for dealing with such problems and recourse must be made to
constitutive theories which reflect strain rate sensitivity.

The application of well known linear theories to problems
in solid mechanics remained the primary area of research activity
until the onset of the age of high speed digital computers. Even
in this area of linear analysis, exact closed form solutions to the
governing differential equations of shells of revolution were possible

only for the simplest of cases [1,2] and approximate methods had to



be devised to treat most practical problems. The classical field
theories for nonlinear problems were formulated by Green et al.
[3,4] and Truesdell et al. [5,6] but these theories are so complex
that exact solutions may be found only for very few specific
problems involving bodies with the most simple geometric shapes
and boundary conditions. Even the classical approximate methods
like asymptotic expansion and weighted residual methods could be
applied only to relatively simple cases [7,8,9]. The advent of
high speed digital computers with large capacity storage, along with
the development of new numerical methods, made it possible to
consider a much wider class of problems, and a considerable
research effort has been under way over the last two decades in
the area of nonlinear analysis.

The finite difference method [10] has been used for
numerical solution of shell problems by Budiansky and Radkowski
[11], Sepetoski et al. [12], and Bushnell and Almroth [13]. But
this method is restricted to simple, regular geometries where the
boundary conditions are not complex and the material properties can
be expressed analytically. These difficulties can be overcome by
the finite element method [14-17] which is an extension of the
classical Ritz method for the solution of variational problems.
This method is ideally suited for the analysis of complex structures
since it can account for arbitrary geometries, boundary conditions,
loadings and material property variations. Extensive references to
recent research efforts may be found in several books and survey
papers [18-22] and no attempt is made in the following to present

a complete literature survey.



Most of the early work with the finite element method was
focused on static analysis of linear systems but the use of
incremental and/or iterative techniques have extended its
applicability to nonlinear as well as dynamic problems. Turner
et al. [23] presented the first attempt at solving nonlinear
problems using the finite element method and a number of other
investigators have studied the nonlinear behavior of various
structural members [24-32]. Notable contributions were made by
Marcal [33], Oden [34], Felippa [35], and a rigorous treatment of
incremental equilibrium equations was given by Yaghmai [36].
Application of the finite element method to inelastic problems
was studied by Argyris [24], Popov et al. [37], Khojasteh-Bakht [38],
Marcal [39] and Zienkiewicz [40]. The combined effect of material
and geometric nonlinearities was considered by Marcal [33],

Yaghmai [36], Armen et al. [41], Hofmeister et al. [42] and
Larsen [43]. Larsen also studied the large displacement behavior
of shells of revolution for creep and viscoelastic problems. The
extension of finite element methods for the solution of dynamic
response analysis is rather straightforward. The mode superposition
technique may be used for linear systems and various step-by-step
algorithms may be applied for the solution of both linear and
nonlinear systems [44-49]. However, use of the finite element
methods for nonlinear dynamic analysis and their application to
practical problems are still in the early stages of development.
There are many problems for which strain rate effects can
be important and constitutive laws for rate sensitive materials
have been proposed by several authors. These have been summarized

and discussed by Perzyna [50], Lindholm [51], and Cristescu [52].



Although many experimental studies have been reported [53-57],
application of finite element methods to this class of
viscoplastic problems is lagging far behind and literature in
this field is almost nonexistent, except for the work of
Zienkiewicz and Cormeau [58] which studies some simple problems.
The objective of this investigation was the development
of a method for the static and dynamic response analysis of shells
of revolution subjected to axisymmetric loading, including the
effect of both material and geometric nonlinearities. Lagrangian
formulation is used in this study and the incremental equations of
motion are derived using the principle of virtual work. The
classical inviscid theory of plasticity using von Mises yield
criterion as well as the viscoplasticity laws taking into account
strain rate dependent deformations are both considered. The finite
element idealization is based on the degenerate isoparametric
elements and the solution is achieved by means of step-by-step
numerical integration schemes along with equilibrium correction
at each step. The numerical examples presented illustrate the
effectiveness of the developed programs for a number of static and
dynamic analysis problems and also demonstrate the use of the
viscoplasticity formulation as an artifice for obtaining

plasticity solutions.



2. THEORETICAL FORMULATION FOR LARGE DEFORMATIONS

2.1 Introduction

The most comprehensive accounts of the foundations of
the field theories of continuum mechanics were presented by Trues-
dale and Toupin [5], and Truesdell and Noll [6]. Since then sev-
eral texts have been have been published and the works of Trues-
dale [59], Eringen [60,6]], Jaunzemis [62], Leigh [63] and Malvern
[64] may be cited for their unified presentation of fundamental
principles and for extensive bibliographical references. However,
these theories are so complex that numerical methods have to be
resorted to in most practical problems. Many investigators have
invoked variational principles and derived incremental equations
for nonlinear problems. In particular, Yaghmai [36] and Larsen
[43] have given detailed and rigorous treatments and the presenta-
tion here follows basically that of Larsen.

2.2 Kinematics

The mode of description of the motion of a continuum de-
pends on the choice of the Euclidean space to be used as the ref-
erence configuration. The material particles of the body are used

as primitive quantities in the material description of motion while

the material coordinates in a reference configuration are used in

the referential description. These are both commonly referred to

as the Lagrangian description of motion and no distinction is drawn
between the two in most practical applications. The spatial des-
cription or Eulerian description fixes attention on a given point

in space and time instead of a particle of matter and observes



the motion of particles through this point. The relative des-

cription involves the use of a moving reference configuration
wherein the configuration at time t is taken as the reference

configuration. Finally, the convected description is involved

when fixed coordinates are assigned to material points and motion
is described in terms of deformation of the "body space".

The recomputation of several element matrices involving
derivatives and the update of nodal point coordinates as the geo-
metry changes are eliminated when the Lagrangian description is
used. Although the constitutive equations for plasticity, visco-
plasticity, creep, etc,,6 may need transformation to this descrip-
tion, the Lagrangian mode of description of motion leads to a
very efficient formulation and solution of the nonlinear equili-
brium equations and is used throughout this study.

Consider three configurations in the path of deforma-
tion of a three-dimensional body, as shown in Fig. 2.1. The ini-
tial configuration is denoted by Bj, the current configuration by
By, and a neighbouring configuration to B, is indicated by B,. A
fixed, orthogonal curvilinear coordinate system with coordinates

I

X" and base vectors 91 is associated with configuration By while

1 and base

configuration By is described by the coordinates x
vectors 9i» and B, by x* and Qa , all the indices having the
range 1 to 3. The coordinate system XI will be assumed to be a
global system in which the motion is described. An auxiliary
convected or intrinsic coordinate system is shown in Fig. 2.2

and can be obtained from the foregoing by selecting x' and x*

in such a way that the numerical value of these coordinates



CURRENT CONFIGURATION

INITIAL CONFIGURATION - !

"“FINAL" CONFIGURATION

FIG. 2.1 DESCRIPTION OF MOTION

CONFIGURATIONS OF A BODY IN
ITS PATH OF DEFORMATION




CURRENT CONFIGURATION

x! '

INITIAL CONFIGURATION

“FINAL" %G,
CONFIGURATION ~

FIG.2.2 DESCRIPTION OF MOTION
CONVECTED COORDINATES




of a given point remain the same as those of XI. The base vec-

tors in the initial configuration remain @I; however, each de-

formed configuration requires a second set of base vectors. Thus,

I 1
Gy

and 2§I are the base vectors associated with By, B; and By, res-

the coordinates remain X~ for all configurations while GI,
pectively, in the convected system. This auxiliary system is use-
ful in some coordinate transformations but will not be used in the
description of motion as rate expressions become complicated in it.
The motion of the body causes any given material parti-

cle with material coordinates XI to occupy a new spatial position

with coordinates x'. This is expressed by

xt = xt (xL, by (2.1)
where X is a mapping function from B, and the parameter t is time.
This mapping function will take the value xi in By and X% in B,,
with reference to the base vectors in the respective spaces.

These mappings are assumed to be single-valued and possess conti-
nuous partial derivatives. In order for a unique inverse mapping
to exist, the jacobian J is not identically zero, i.e.

3*‘

Jd = axI

#0 (2.2)

This assumption is known as the axiom of continuity and expresses
the concepts of indestructibility and impenetrability of matter.

Metric tensors and shifters

The inner product of the base vectors associated with

each space defines the corresponding metric tensors, e.g.
GIJ =G
955

(3N
[}
xa
e
L ]
HO
[N
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gaB =% 98 (2.3)
1 _ 1 1

Grg= 61 -6

2 _ 2 2

Grg = 61+ &

The reciprocal base vectors are defined by the orthonormality

conditions,
J J
61,

] J
gi g Gi , etc.

[p]

L ]
D

n

(2.4)

[&Y
L]

In order to relate components of a vector in two coordinate

systems, it is useful to define the following shifters:

i

Gp=9 -§

=3 g (2.5)
@ _ zo

99 9

The shifters are two-point tensor fields, i.e., they transform as

tensors with respect to the transfromation of both coordinates,

I

e.g. X and x' in the case of the shifter G‘I.

Deformation gradients

The deformation gradient tensors are defined as tensors
which operate on infinitesimal material vectors in one space to
associate them to infinitesimal material vectors in another space.

1
F, F, and F are the deformation gradient tensors between By and

B,s By and B;, and By and B,, respectively. The operations are

given by dx = ZE . dX
1
dx = F - dX (2.6)
dx = F - d



and the components of these deformation gradient tensors are given

by
2.0 _ =0 _ =0 i
Faa=x"[p=x |1 X |1
1.4 i
F-I =X |q (2.7)
- =0
F?i Sl

where the vertical bars indicate covariant differentiation.

Strain tensors

The expressions for the Green strain are derived by
considering the difference of the squares of line elements in
2 2
different configurations. Denoting these as (ods) R (lds) and

2
(2ds) in Bg, By and Ba, respectively,

0 2 I J
(ds) =dX .dx =Gy dX dX

(fas)® = dx . dx = gy o' axd = oy axl a? (2:8)
2002 2 4% d¥ = & d3® diB = 2 I,

("ds)” = dx . dx = g g dx* dx" = "Gy dX* dX

Using the relations given by Eqs. (2.6, 7), these can be rewritten

as
0
(°ds)? = 6y ax! ax?
1 2 1.9 1.3 I J _ 1 I J
2. 32 - o B 14 1§ 1 J_2 1,9
( ds) = gaB F-i F.j F-I F.J dax® dx° = GIJ dX® dX
The Green strain tensors are defined as
2 = co B I 1.5 2 )
2 Erg=9, FiFy Fip Fg-Gpg= 6= Gy
1 1§ 1.5 1
2 EIJ = gij F 1 F_J - GIJ GIJ GIJ (2.10)
=2 2 1 _ 2 1
2 Epg=20Epy - Epg) = 6y - Gy

11



where 2EIJ’ 1EIJ and EIJ‘are components of the Green strain be-
tween By and B,, By and B;, and B; and B,, respectively, with all
components referred to the base vectors in By. If the strain in-
crement between B; and B, is required with reference to the space
By, One can rewrite (zds)2 in terms of dx, i.e.

(zds)2 = dx - dx = §a8 dx* dx® from Eq. (2.8) is transformed to

(2ds)” = 3,4 F2, P, ax' o] (2.11)

which then yields

= g a B _
2 €5 = a8 F'i F'j 95 (2.12)

Using Eqs. (2.10), this can be related to EIJ as

_ i
EIJ = F.

(2.13)
The components of Green strain are next expressed in terms of
displacements by deriving expressions for the metric tensors 1GIJ
and 2GIJ and substituting them in Eqs. (2.10).

The equation of motion from Eq. (2.1) can be written as
x = X + lu when going from By to B;. The convected base vectors

~

16 can be expressed as
1

IG X aX J u
= = +
T oI o
ors 1 1
- K
gI = (EI + uKII g (2.]4)

1
The metric tensor GIJ can then be obtained as

1

- 1 K 1 L
Gpg = (G *+ ugp @) - (65 % 1wy y &)

K 1o, L] KL

ey Yt W 6

! 1
=G YUY

12



. 1\ 1

= 1 1 KL 1
g =6t Wrt vt k&

Using the property of metric tensors with regard to the lowering

and raising of the indices of vectors, one gets

IG -6 +1 +l +1 IK
=Gt vt o Y vl (2.15)

Hence, the Green strain is given as

1 1 6. = 1 1
2 Byg= G -Gy = vt Yygr
1 1k
+ uK|I u |J (2.16)
2
A similar expression can be derived for EIJ’ viz.,

2 2

2 EIJ = G

2
-G + u

2
6 I 0 B A J|1

2 ZKI

+ uKlI u (2.17)

J

2 1
Since u= u+u, the expression for EIJ can be derived

-~

1 (3
in terms of displacements u in the current configuration B, and

the displacement increments u.

2
2 Epg=2( k-

+uK|)

. _ 1 K 1 K
ne 2R gttt Y Wiy g v

K
+ uKII u IJ (2.18)

13



2 _ 1 K 1 K
Zepg = ugr Wy tugr vl
i K
2 mpg = v Wl

the strain increment can be written as

Eg=ete et

The linear part of the strain increment

is represented by

and the nonlinear part is given by n1J
During each increment the strains can be
updated using

2 _1
EI\]_ E

or

2 1 1 3
Erg = Epn

Strain rate, velocity, acceleration

The expression for the rate of

Green strain can be written as

1 1.
6l o) - 'y, 6l ¢,

I

G" and gJ being fixed base vectors in By and

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

14



hence independent of time.

2 1
i Erqy - E . E
1.
Define |E..= 1im_"IJ IJ _ 1im _IY (2.25)

1J At+>0 At TAt>0 At

For sufficiently small time increments, the

Green strain increments can be expressed as

_1.
EIJ = Eqg dt (2.26)

The expressions for velocity and acceleration
will be needed in later development, and can be written

in terms of displacements as shown below.

Velocity: v = 35'31 (Xst) |y

= constant
- d 1
= (X+ 9)|§ = constant
1
sv=%(Cu) (2.27)
Similarly,
dg 1
Acceleration: a=-— ("u) (2.28)
T dt

The same equations will be valid in configuration

B, if lg is replaced by 29.

2.3 Stress

The 2nd Piola-Kirchhoff stress tensor is used in
this study as it is a stress measure which is conjugate to
the Green strain tensor in an energy sense. This stress

119

1 .
tensor, S, in configuration B; has components S°° which

15



are defined as forces in B; per unit area in the reference
configuration By, and referred to the base vectors 91 in
By. On the other hand, the Cauchy stress tensor, II, in
configuration B, , has components lTij which are defined as
forces per unit area of the deformed configuration and
referred to the orthogonal base vectors 95 in B;. The
relationship between the Cauchy and the Piola-Kirchhoff
stress tensors will be required in further development and
can be obtained as shown below.

Consider the stress tractions 0§ and lg, as shown
in Fig. 2.3, acting over the areas dA and da in configura-

tion Byand B;, respectively.

Using Cauchy's theorem,

(2.31)

t= SN (2.29)

te T (2.30)
where

sese g Nenek

1T . lTij 9 9 n=n gk,

N and n being unit normals to dA and da, respectively.
0
The pseudo force t on dA is defined in such a
1
way that it has the same relation to t that a material

vector dX at X has to the spatial vector dx at x, i.e.

16



FIG.2.3 TRACTION VECTORS AND NORMALS

FOR PIOLA-KIRCHHOFF STRESS
DEFINITION
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t=F- 't (2.

Then,

and, using Nanson's formula [64]

one gets, for the left side of Eq. (2.33)

1 1 P
tda= T-nda=T

~

©
o

Substituting Eq. (2.29) into the right side of Eq. (2.33)

1

Equating Eqs. (2.35, 36), and comparing terms

1 Py 1 _ 1 1
T5ECFT = s (2.
or
1 P 1 1
T=— F. S. F (2.
~ p -~ -~
0
In terms of componerits,
i o e 1. 10 (2.
T -po F.I F-J S
which simplifies in Cartesian coordinates to
1 1
Ti-2 2% s (2.
J Po BXI BXJ

The inverse relation gives Piola-Kirchhoff stresses

in terms of Cauchy stresses, i.e.

tda=F - tdA (2.
Po (lem1yT

nda-= 5 (F ") - Nda (2.

1-14T

(F ') - Nda (2.

0
F- tdi= F- S.-NdA (2.

32)

33)

34)

35)

36)

37)

38)

39)

40)

18



'sef CE - (YT (2.41)
p
The 2nd Piola-Kirchhoff stress tensor is symmetric
whenever the Cauchy stress tensor is symmetric, i.e.
1§IJ = 1§JI, and hence preferred over the 1st Piola-Kirchhoff
stress tensor (not discussed here) which is, in general, not

symmetric.

Stress rates

The time rates of the Piola-Kirchhoff and Cauchy

stress tensors are given by

1 1
$=d (s 6)="5"g g (2.42)
dt T T
: 1y 1+
T4 (T 95) = TV g5 9
1... 1.. .
+ TV g; 95 * TH g; 95 (2.43)

The time derivative of base vectors 9; do not vanish and remain

in the rate expression for the Cauchy stress tensor.

1 2 1
Define S = 1im ‘sl - ‘sl o glY

At->0 At At

(2.44)

and, for sufficiently small time increments, the increments

can be expressed as

1-
SORERH &

ST dt (2.45)

19



2.4 Principle of Virtual Work

An incremental variational expression will be derived
to describe the motion of a body from its current configuration
By to a neighbouring configuration B, in terms of the increment-
al state variables between B; and B, and the current states of
stresses and deformations of the body in By. The virtual work
expressions in B; and B, have to be written with respect to a
common reference state. The choice of B, as the reference
state leads to an Eulerian description while the choice of B,
leads to a relative description and that of By to the Lagran-
gian description. Yaghmai [36] was the first to propose these
approaches for large deformation analysis and adopted the
relative description in his work while later Larsen [43] made
use of the Lagrangian description. As stated earlier, the
latter will be used in this study.

The virtual work of the external surface tractions
and body forces in B; and B, during infinitesimal virtual

displacements are given by

2 . - 2
Wp= [ou- tda+ [opéu- fdv (2.46)
9B,y - - By - -
1 1
Wy = [su- tda+ [pssu- fdv (2.47)
o3 - - B, - -
Using Cauchy's principle,
2 2 - 1 1
'E = I ‘n, E: I . Q (2.48)

Eqs. (2.46, .47) can be written as

20



- - 2_
SWp= [ su- T-nda+ fpeéu- fdv (2.49)

3B, B,
and
1 1
Wy = [ 6u- T-nda+ [fpéu. fdv (2.50)
3B, B

Nanson's formula, Eq. (2.34), and the transformation
law, Eq. (2.38), expressing Cauchy stress tensors in
terms of the 2nd Piola-Kirchhoff stress tensors can now

be used to obtain &W, and éW; in configuration Bg.

- 2 2 2 P =1
My = fou-(p F-sc F).ohT . ya
3By P, - P
2
+ f po 6u + f dV
By - -
or
2
6Wp = [su. (F- S)-NdA+
3By - - - -
2
[ o, 8u.fdv (2.51)
B 0 ° ~©
and,
1 1 P _
sy = [fou-(p F- 'S ). =2 ()T .y o
9By po P -
1
+ [opou- fav
By
or
1 1
oWy = f[& - (F- S)-NdA+
3B -
: 1
[ oy ou - fdv (2.52)
Bo

The Green-Gauss theorem enabling transformation of



surface integrals to volume integrals is given as

f b-NdA = f div. b dv (2.53)
3B, By

for any vector field b. Using this theorem,

: 2 2
sWp = [L(3y - su) - (F - 9)
By
2 2
+ou - (CF - 79) - +og FHT AV (2.54)
and,
1
oWy f[(aX su) - (F S)
By *~ ~ ~ ~
1 1 1
+6u- {(F- 8) -3 +p, fH]1dV (2.55)

~

The equations of motion in the reference state are
given by [64]

2 2 2 2
(F-'8)- aX to, f=

|
©

(2.56)
- 15) s e Yoo b
(F-S) - x e T0 u

and the left sides of these equations are found in
the virtual work expressions, Eqs. (2.54, 55).
Replacing these by the corresponding right hand
side terms from Eqs. (2.56),

2.,
oWy = [[(su - py )
Bo

+ (s - au) - CF - °9)] v (2.57)
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1..
s = [[(eu - Py u)
By

1 1
+ (a3 -ou) - (F - 8)]av

The vectors and tensors can now be replaced by
their components and the expressions for &W, and &W,;

can be simplified.
2, 2 2_JK
Wy = B{Epo ujy éuy + (Gua)|K F?J ST dv
" - 1 N lei 1Ky 4
oWy = B{[po Uy suj (5ui)|K g STl v
The second terms of Eqs. (2.59, 60) need further

simplification. Let aﬁz and aﬁl denote these terms,

2
sIK gy

~ 2
Gwz f(dua)lK F(.IJ
By

- 14§ 10K
<sw1 _B{(Gui)lK Fog ST av

M
Ga 6uM,

Now G(ua)

M
8 (Ga uM)

M
N T Gy euy

and 5(“1) s (GiN u

as the shifters can be taken as constants during
differentiation and variation. Further, since the

motion is given by

1 - 1
u u (¢ GGI (XI+ uI

11
n
1<
+
<
]
>
+
=
+
[ =
-
o
S
b
"

and

—
-

'y 'y 1
x=X+ u,or X G1I (xI+ ul

the deformation gradients can be expressed as

(2.58)

(2.59)

(2.60)

i.e.
(2.61)

(2.62)

(2.63)

+uI),
(2.64).
)»
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- I, 1 I
F?J = G“I (673+ uly+uly)
(2.65)

-n
-t
J

i1 L1
g =6 (8554 wify)

The expressions for 6&2 and 6@1 can now be rewritten, using
Eqs. (2.63, 65), as
~ 1 2
oMy = [ (suy) ]y 6. 6% (sT+ Tul| + ul])) fsK v
Bo (2.66)

N i I 11 1.0K
[ (su)|, G, G o (87, + u|,y) S dv

Mo Mo
« 21583 (suy) ]y 87 = (sup) |y

(o]

=
—
[

o
Q
t

But G

N . N _
g B8y (sup) [y 677 = (up) |y

[«p]
-
n

and G

~ 1 2
Hence, oW, = [(sup)], (6T, + ul|;+u'])) s av  (2.68)
Bg

~ 1 1
sy = [(oup)|, (GIJ + uIIJ) 9K av (2.69)
By
Examining each term of Eqs. (2.68, 69), and using the symmetry

property of the 2nd Piola-Kirchhoff stress tensors, one gets

I 20K 2 JK
(GuI)IK 85 S = (5UJ)|K S

2
SKJ]

N -

= 5 [ (eup) e S7+ (oup

—

JK _

o

I 2 : 2 JK

NI

JK K

NI -

11, 2 1] 11 2 J

1T, 20K _ 11 11 2 JK
s (sup)| ui|y STT =8 (uIlK uty + upjg U lg) S

N -



K

I} 20K _ , I I 2.JK

K

I, 24 K
(su)]y ull, 8% =

Ni= NI~

I 2.4
8 (uIlK u'ly) S

Similarly,

1 _JK 1

I i 10K
(supdlg 87y S =3 8 (g * ugpg) S

1T 1JK 1 11 1 10K
and (suy)|, ul; S =3¢ (uIIK utly + ur|9 uﬁK) S

Using the expressions for strain tensors shown in Eqs. (2.19), it

can be seen that

I 20K _ 20K | .
(6uI)|K 83 S = S8 LI
11, 20K _ 20K _ =2
) ) (2.70)
I JK JK
(GuI)lK u |J S = S 8y
I 10K _ 1K o
11, 10K _ .10 2
(6uI)|K u |J %= 87T 8 &y

Substituting these expressions into Eqs. (2.68, 69), taking the

2 1
difference and noting that _s9K = 'sIK + sIK,
sWy - cﬁl = ][sJK (séJK + aéJK + G“JK)
By
1
+ sK sngd 4V
or,
-~ -~ 1
oy - oy = (57K sEy + ST snyy) AV (2.71)
By
where

Eak = ok * ek * Mok T Guk T ok (2.72)

Subtracting Eq. (2.60) from Eq. (2.59), the incremental virtual

work expression is obtained as
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2., 1 ~ ~
Wy - oWy, = f Py (up - ) sup dV + &y - o,
B
or, 0
. 1
My - oWy = [[ oy iip sups(s™ sEpy + ST a0 )1 av (2.73)
By

In the displacement formulation of the finite element method, the
first term gives rise to a consistent mass or lumped mass matrix
depending on the approximation to be used, and the terms in the

paranthesis give rise to the stiffness matrices.

Virtual work due to the applied loads

The incremental virtual work expression for the pre-

scribed tractions and body forces may be obtained from Eqs. (2.46,

47) as
2 - 2 .
SWy - 8Wy = [ou- tda + [péu- fdv
9By - By -
1 1
- [ou- tda- [pou- fadv (2.74)
331 - Bl -

But the use of the finite element method, while ensuring global
force equilibrium of the system, does not guarantee local stress
equilibrium equations and gives an internal stress field that is
not necessarily in equilibrium with the applied load at any
instant. This lack of equilibrium can be accounted for in the
load increment by using the expression for 6W; in terms of the
internal stress field instead of Eq. (2.47) in the computation

of incremental work derived in Eq. (2.74).

Using the Eqs. (2.60, 69, 70 d, 70 e) it can be seen that
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1 1 . A
W, [lo, iy 8u; + S, (se,, + 8e;,)] dV
By 0 I I IJ IJ 1J

or

1 1
oWy = [log p up + S;; éer)) dv (2.75)
By

Now, subtracting Eq. (2.75) from Eq. (2.46),

2 - - 2 -
SWp - 8Wy = [ éup tyda+ [posu frdv
3B,

By I

I
1., 1
—B{;(p0 Up sup + Spy aeIJ) dv (2.76)

This general expression must now be specialized for conservative
and nonconservative loading and the integrals transformed from
B, to By. This problem has been discussed by Oden [18, 31] and
Larsen [43], and Larsen and Popov [65, 66].

Conservative loading consists of forces which do not
change direction during deformation and can be derived from a
potential function. Nonconservative loads, on the other hand,
do change direction such as in the case of a pressure type

loading.

Nonconservative Loads

2
For a pressure type loading, the traction vector t
is given by
2 2 . .
tdi=-"pnda (2.77)

2 -
where p is the pressure on the surface element da whose out-

ward normal is n.
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Using Nanson's formula Eq. (2.34) to transform n da in B, to

N dA in By,

2 . 2 . . 2 2__
tda=- pnda=- pYo (F 1)T - N dA (2.78)

Since 25'1 is defined in terms of gradients with respect to B,
it cannot be determined directly and an approximate expression is
obtained by imposing the restrictions that
i) the displacement increments u between B; and B, are

1
small compared to u, and

ii) the rotations associated with u are small compared to

unity.
Hence, one can assume e =~ 1
- "
(2.79)
= 9
0% * ax"

2 - > 3 L3
and F ! can be written in rectangular Cartesian coordinates as

BXI BXI BXK B BXI

2p (% )
= - - —_— = — -u
IJ axJ axK axJ axK axJ K K
¢ 3XK 3XK XJ ) M
or,
2 . . Xp o 9Xp aXy duy (2.80)

F ry -
1J axJ axK axJ aXM

This leads to the approximate virtual work expression

3X; _ 9Xj 3Xy auK) N, dA

2
SWy - oWy = -[p o 6up (
8xI axK axI aXM
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( 1, 1
;ﬁ po Uy Sup + Sy ep;) dv

+o, fp dup dv (2.81)
By
The second term in the paranthesis of the integrand in the
surface integral is linear in the displacement increment u
and will give rise to an additional stiffness term. It should
be noted that this term is nonsymmetric and usually neglected
for most engineering applications because its effect on the
total stiffness of the system is negligible and the additional
computational effort needed to solve a set of equations with
an unsymmetric coefficient matrix is significant. However, it
is essential to include this term in cases where both the strains

and rotations are large, as in the case of pneumatic structures.

Conservative Loads

In the case of conservative loading, the loads are
usually given in terms of vectors with fixed directions in space.
A difficulty arises in the transformation of these loads from B,
to By due to the lack of transformation rules for such vectors.
This was overcome by Larsen [65, 66] who suggested that the load
be redefined in terms of the convected base vectors in B,, i.e.
291, which are governed by known transformation rules, e.g.,

ZG _ 2 -1 0
6= (F )51 6 (2.82)

0
where §J = QJ is the set of base vectors in By as defined in

2
section 2.2. For gravity load vector ¢, whose norm and direc-



tion are known, one then obtains

5 2f dv = 5 qu 291 v = o, 2qI (2F'1)JI OgJ v (2.83)
where the components qu of the gravity loads relative to the
convected base vectors 291 are deformation dependent and must be
computed in B,. For the surface traction vector 2;, the Toad
intensities change according to the ratio da/dA. Thus,
2§ dA = 2; da defines 2@, the traction vector in B, measured per
unit area in Bg. For most structures the distinction between
2; and 2§ is insignificant. Once again, the norm and direction
of the vector zf are known and its components 251 relative to

~

2
G; must be computed. Then one obtains

2. 2 _2_ 2 4 0
t; 6y dA="E (CFTM)y 6, dA

As in the case of nonconservative loading discussed earlier,

the deformation gr'adien'czE-1 cannot be obtained directly and
approximations must be introduced. The final expression for the
incremental virtual work in the case of conservative loading is
obtained as

2.
sy - oMy = [ oup Ty (X1- %% 3Xy B“K) dA
3By 9Xy  9Xy 93X Xy

2
;f sup py ay (X _ X[ dXy auK) v
0 axy  3xy dxy Xy

. 1
-f(p0 up Sup + Spy 8 eIJ) dv (2.84)
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2.5 Incremental Constitutive Equations in Elasticity

The incremental virtual work expressions derived in
the previous section are not restricted to any particular consti-
tutive law of material behavior. For an elastic continuum, the
constitutive laws assume rather simple forms and this section
presents the incremental equations in terms of the Green strain
tensor and the 2nd Piola-Kirchhoff stress tensor.

A strain energy function W, per unit mass in the
undeformed configuration, exists for hyperelastic materials and
is a function of the Green strain tensor. As a consequence of

the law of conservation of energy, it can be shown that

Y
0—
2 .
3 Epy (2.85)
1 1
and st = o 2
3 Epy

where 2w and lw are the strain energies in configurations B, and
By, respectively. Assuming that W may be expressed as a poly-

nomial function of the strains,

o iy = clY IEIJ + % CIJKL IEIJ IEKL
1 ~IJKLMN i ic i
+ 3 c EI\J EKL EMN + .....
Taking derivatives with respect to 1EIJ one gets
iJId _ 1Y IJKL i IJKLMN i i
ST =C"+¢C EKL +C EKL EMN + ...
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As a consequence of the material being assumed elastic, CIJ

must vanish and linear elastic behavior demands that CIJKLMN and

all higher order terms must be taken as zero. Hence, for linear

elastic material,

IJKL i

iy o1 i
pp W=3C Erg Ex
(2.86)

iSIJ - CIJKL iE

KL

The incremental constitutive relationship then takes the form

2. 10 1.1

_ ~IJKL ,2 1
S - §T =¢C (Em_- Em)
(2.87)
or
IJ _ .IJKL
SV =¢C EKL
where
CIJKL = (GIK 6JL + 6IL 6JK) + ) 6IJ 6KL

for an isotropic, linear elastic material. A and u are the Lame

constants,

- v E -
A= {1+v) (1-2v) v T 2(0+)
where v = Poisson's ratio.

2.6 Modification of the Virtual Work Expression for Viscoplasti-

city
The application of the virtual work expressions de-
rived in section 2.4 for viscoplastic material behavior is
straightforward and based on the following assumptions:

i) The additive decomposition law is valid for the Green
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strain rate tensor, i.e.

VP
+ By (2.88)

where Eid’ the instantaneous strain rate, and E¥§, the
viscoplastic strain rate, are assumed to be defined by constitu-
tive relations. For sufficiently small time steps, a similar
equation is valid for the strain increments.

ii) There exists a linear relationship between the incre-

ment of P-K stress and the instantaneous strain increment, i.e.

= C..., EL

S 1KL Sk

1J (2.89)

Although the additive decomposition of the strain
rates is not the only method of decomposing kinematic variables,
it is the most convenient form for use in Lagrangian descrip-
tion. While these component strain rates do not in general
satisfy kinematics, they are obtained directly from constitutive
equations formulated so as to satisfy the principles of thermo-
dynamics, and given the same invariance properties as the total
strain rate. A comparative discussion of the many different
approaches adopted for the kinematic decomposion of finite in-
elastic deformations has been presented by Larsen [43].

In viscoplasticity, the instantaneous strain EiJ equals
the elastic strain EgJ. In the case of problems involving
classical inviscid plasticity, E¥3 equals zero, and the instanta-
neous strain rate is decomposed into elastic and plastic strain

rates, i.e.

(2.90)



The viscoplastic strain rate is assumed to be inde-
pendent of the stress rate and is considered as an initial
strain increment in the virtual work expressions. Combining

Eqs. (2.88, 89) gives

) VP, I VP

S10 7 Crake By = Ex) = S 19 - Sy (2.91)
where

I

S1a = Croke Exe
and - P (2.92)

VP _

S19 = Croke Exe

may be defined as the "instantaneous" and "viscoplastic" stress
increments, respectively, possessing the same invariance

properties as SIJ' The virtual work expression, Eq. (2.73), can
now be modified for viscoplasticity problems by the substitution

into it of Eq. (2.91) for the stress increment SIJ’ which results

in
. I VP 1
By
~ . I VP vP
= Bf(po up Sup + Sy 8Epy - Spg seqy - Syg gy
0

-+

1
SIJ G"IJ) dv

+

. I 1 v
o W - oMy = Jlog up sup ¥ Spy 8k * (Spy - Spy) gy
0

VP

Comparison of Eq. (2.93) with Eq. (2.73) reveals two changes

arising from the consideration of the viscoplastic strain. The

34



last term in the integrand of Eq. (2.93) gives rise to a
viscoplastic pseudo-loading term. Also, the initial stresses
caused by the viscoplastic strains make a contribution to the

geometric stiffness of the system.
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3. INCREMENTAL CONSTITUTIVE RELATIONS

FOR PLASTICITY AND VISCOPLASTICITY

3.1 Incremental Theory of Plasticity

The mathematical theory of plasticity is divided into
two subclasses -~ one which treats the deformations in a material
to be path-independent and relates the total plastic strain compo-
nents to the current state of stress; the other which is an incre-
mental theory and relates the increments of plastic strain to the
increments of stress, the current state of stress and the accumu-
lated plastic strains. The former, referred to as the deformation
(or Hencky) theory, is similar to nonlinear elasticity except
for the concept of elastic unloading in the plastic region, while
the latter, referred to as the flow or incremental theory, is a
path-dependent theory and necessitates integration along the
loading path to determine the total strains. The two theories
can be shown to be equivalent in the case of proportional or
radial loading where ratios between the stress components remain
unchanged during the deformation process. For nonradial loading,
however, it has been established that the deformation theory is
inadequate, especially during load reversals, and superior results
are obtained through the use of the flow theory. Finally,
although the deformation theory is the more tractable of the two
from the analytical point of view, the flow theory can be
employed without difficulty in the solution of problems using

the incremental techniques of numerical analysis and is used in
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this investigation.

In flow theory, the response of an elastic-plastic
material is governed by three conditions [71]:

i) initial yield condition

ii) flow rule

iii) hardening rule
The initial yield condition specifies the state of stress for
which plastic flow sets in, the flow rule relates the plastic
strain increments to the stresses, stress increments and
plastic strains, and the hardening rule governs the modifi-
cation of the yield function during the deformation process.

Although many mathematical forms have been proposed
for the yield condition, the most general representations
express the initial yield function as a surface in the stress
space, convex and containing the origin. The extension of the
infinitesimal theory of plasticity to the special case of
small strains, large rotations is based on the use of the 2nd
Piola-Kirchhoff stress and the postulate thaf the physical com-
ponents of the Cauchy stress tensor in surface coordinates
of the deformed shell are approximately equal to the compo-
nents of the P-K stress in the undeformed configuration [43].
It follows from this that the mathematical representation of
the yield function is the same in both the Cauchy and P-K
stress spaces.

Consider a deformable body, in its current config-

uration B; at time t, as it moves through the deformation space
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from an initial configuration By to a "final" configuration
B, (see Fig. 2.1). The yield condition in this current

configuration B; may be expressed as

1P

1

where H is the hardening parameter depending on the entire
history of motion of the body, and the plastic strain tensor
1E¥J is obtained through the use of constitutive relations
and not from the kinematics of deformation.

The initial yield surface is only a function of the
stress. In the case of initially isotropic materials it
reduces to a function of invariants of the stress tensor.
Further, since hydrostatic pressure of the order of the yield
stress does not affect the yielding and plastic deformation

of metals [67], the yield condition can be written as
F(J2, J3) = k (3.2)

where k is a constant, and J, and J3 are the second and third

1
invariants of the deviatoric stress tensor SIJ defined as

1. _ 1
SIJ = S

1

S (3.3)

1,
IJ 3 KK "1J

and
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1 (3.4)

Experimental evidence indicates that the yield condition

can be approximated by the von Mises yield criterion [68,69]
1 2
F('Syy) = F(J2) = Jp = k (3.5)

where

k = initial yield stress in pure shear.

Using the isotropic hardening law, the subsequent
yield surfaces, also referred to as the loading surfaces, can

be written as
1 1p

This hardening law implies that the shape of the yield surface
remains unchanged but undergoes uniform expansion in stress
space, Fig. 3.1(a). The Bauschinger effect is not accounted
for by this law; in fact, it predicts a negative Bauschinger
effect. To account for this, one may use the kinematic
hardening rule suggested by Prager [70] or the modification
of it proposed by Ziegler [71]. In the case of Prager's
kinematic hardening rule, Fig. 3.1(b), the initial yield
surface is translated in the direction of the increment of

strain, i.e.,
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_ P
apg = € Eqy

and (3.7)
2 1 N
%19 7 %10 7 %10

where the parameter ¢ is determined experimentally and g is
a tensor representing the incremental translation of the

yield surface. The loading surfaces can then be represented as
f=F(Sy- ag)=0 (3.8)

It must be noted that the use of a constant parameter
c, termed the hardening co-efficient, in Eq. (3.7), regardless
of the state of stress, restricts the kinematic hardening law
to linear hardening materials. Although some empirical
methods have been proposed [72,73] for obtaining a variable
hardening co-efficient for nonlinear hardening, there exists
no theoretically established procedure for the evaluation
of this parameter and further research must be directed
toward this subject. This study makes use of the isotropic
hardening law alone and the presentation that follows is
based on this rule.

The hardening parameter H for isotropic hardening

may also be written as
1

where two measures of hardening are possible for Kp- The
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work-hardening parameter is given by

IJ
kp = KP(Of dNP) (3.10)

where the increment of plastic work is given by

P 1 p

1 1
dW, = S EIJ dt = SIJ EIJ

p (3.11)

IJ

while the strain-hardening parameter is expressed as

p = <l f de") (3.12)

where the equivalent plastic strain is defined as

P

P_ 2 P 1%

Both of these measures are identical for isotropic hardening [74].
The form of the function Kp is determined from some experi-
ment, e.g., a simple uniaxial tension test may be used.

Assuming the existence of a plastic potential g, the
flow law is given as

‘a3 (3.14)

3 SIJ

where i is a non-negative scalar. As a result of Drucker's
normality rule which asserts that the incremental plastic strain

vector is normal to the yield surface, the plastic potential

g is taken to be the same as the yield function f and Eq. (3.14)



becomes

1. .
Ery =2 35 (3.15)
d SIJ

which is then referred to as the associated flow rule.

During loading from one plastic state to another, the

consistency condition df = 0 is imposed on the yield function.

1 1
Since f is a function of Spg and EP from Eq. (3.6),

1J°
this gives
af = 30 s+ 35 P =0 (3.16)
3 SIJ ) EIJ

The plastic strain increment E¥J can be determined from

Eq. (3.15) if the proportionality factor i can be determined,

1 .
Er, = d(Er) = adt 3 = T (3.17)
aSIJ aSIJ

The generalized Hooke's law is given as

_ _ P
S ® Bk (EKL EKL) (3.18)

where
Erake = »0xdaL + Sp8a) * Mg (3.19)

and u, A are the Lame constants defined in section 2.5.

Substituting Eq. (3.18) into Eq. (3.16), one gets

_ _of P of P _
df = ;rs— EIJKL (EKL - EKL) + ?Eﬁ EIJ 0 (3.20)
IJ IJ

Now, using the flow rule, Eq. (3.17), for the plastic strain
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increments in Eq. (3.20), one gets

af

T EIJKL (EKL - dx __Zlif_) + da _?'fﬁ "?'L =0 (3.21)
9 SIJ ) SKL ) EIJ d SIJ
which can then be solved for da,
_ of
) SIJ

where

-1 of of

= 3 e - 4 (3.23)

) SIJ ) SKL ) SIJ ? EIJ

Substitution of Eq. (3.22) into Eq. (3.17) gives

P

Ero = Ak Ex (3.24)
where
o af af
Aokt P T T Ewvk (3.25)
2515 3 Sy

This gives an expression for the plastic strain increments

in terms of the strain increments. Finally, substituting

Eq. (3.24) into the generalized Hooke's law, Eq. (3.18), the

incremental stress-strain law is obtained as

St = Crak Exe (3.26)

where

Crak = Eroke = Eromn Amnke (3.27)



For von Mises yield criterion and isotropic hardening,

the partial derivatives are given by [38]

of _ 3 lg
T T S
) SIJ 20
. P oW
of of P 1
Ip = —0p e T C-LH S (3.28)
where
o = equivalent stress = v3J, (3.29)
and H' = pr can be determined from a uniaxial tension test,
de
Fig. 3.2. It can be shown that
L (3.30)
H Et E
Defining ¢ = Et/E, one can get [38]
h = 1 = 2(1+y) (1-2) (3.3])
3u+H’ E[3-z(1-2v)]
Eq. (3.25, 27) can then be simplified to
_9uh e g
Ak T T Ptk (3.32)
and
Crake = #(8daL + S118ak) ¥ 2épgdk1
2 1 1_ -2
- 9% h SIJ SKL / o (3.33)

These equations will have to be modified for the generalized
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plane stress state used in the analysis of shells.

In addition to the constitutive relations, it is also
necessary to have criteria for loading and unloading in
the incremental solution procedure. Three types of behavior
are recognized and are termed

i) Loading,

ii) Neutral loading, and

iii) Unloading.
The state of stress is examined to see if f <O or f =0,
the former indicating an elastic state and the latter a
plastic state; f > 0 constitutes an inadmissible state.

The three paths associated with the plastic state are

characterized by

So>
f-<-0
or (3.34)
1
_..?_f_ S 200
as IJ<
1J

Loading is a change from one plastic state to another
accompanied with strain hardening; f = 0, % > 0.
Unloading is said to occur when the plastic strain rate
reduces to zero (IE?J =0); f=0, % < 0.

Neutral loading is a change from one plastic state to another

without any change in the plastic strain rate; f = 0, f = 0.
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3.2 Constitutive Theories for Viscoplasticity

3.2.1 General

The classical theories of plasticity are restricted
to inviscid media so that time effects may be disregarded.
As such, these theories are inadequate for dealing with the
many practical problems involving highly strain rate sensitive
material behavior. There have been numerous experimental
investigations to study the behavior of materials under high
rates of loading, providing useful information in the development
of constituitve theories. Most metals exhibit some degree of
rate sensitivity in their stress-strain relations depending on
several factors like crystalline structure, magnitude of
strain rate and temperature. In the case of metals with face
centered cubic (FCC) structure as in Aluminum, there is no
appreciable strain rate effect over a large strain rate region
and temperature variation, but beyond about 10u sec.- pure
Aluminum exhibits considerable increase in yield stress
over the static value. But metals with body centered cubic
(BCC) structure are fairly rate sensitive over a large range
of strain rates. For example, steel has an athermal zone
between 300 to 400° F. but shows considerable rate sensitivity
at lower temperatures; the yield stress of mild steel increases
by a factor of 2.5 over a range of 10-6 to 102 sec.-l in strain
rate [75].

Many attempts have been made to formulate constitutive
laws for rate sensitive materials, motivated primarily by the

need to study elastic-plastic wave propagation and permanent



deformation of structures subjected to blast or impact
loadings, as for example in the explosive forming of metal
parts, projectile impact on armor plates, etc. There is

also a class of problems for which strain rate effects may be

important although the inertia terms remain small.

3.2.2 Flow Theory for Viscoplasticity

The uniaxial behavior of viscoplastic materials
was described by Malvern [76] in terms of reference, static
stress-strain functions. The viscoplastic strain rate was
considered to be proportional to the excess stress above this
reference, the proprotionality factor being a function of
the material viscosity. Lubliner [77] proposed a quasi-
linear differential form of constitutive equation that con-
tained as special cases the rate-dependent theories of
Sokolovsky [78] and Malvern [76] as well as the rate-independent
theories of von Karman [79], Rakhmatulin [80], and Taylor [81].
Also, Lubliner modified Malvern's theory by imposing a limiting
maximum dynamic stress-strain curve. Perzyna [82] gave a multi-
axial form of Malvern's law by the generalization of a more
restricted viscoplastic law introduced by Hohenemeser and
Prager [83]. Perzyna and Wojno [84] extended the multiaxial
theory to finite strains. The basic assumption of all these
theories is that viscoplastic deformations occur only when
a certain threshold static yield surface is exceeded below which

the response is purely elastic. Linearized versions of
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of these viscoplastic laws have been used for the analytical
solution of some simple cases [85,86] but more complex problems
may be considered by the use of numerical techniques such
as the finite element methods.

Following Perzyna, the viscoplastic strain rate is

assumed to be given by

l- -
By =7 <o m) > —2 (3.35)
2'S;,

where

y is a material viscosity co-efficient and

F is a scalar yield function.

In terms of the static loading surface, Eq. (3.6), the
function F is expressed as
1 1 yp
VP
H( EIJ)

(3.36)

The expression for the viscoplastic strain rate, Eq. (3.35),
assumes that the material obeys the von Mises yield criterion
with isotropic hardening and the associated flow rule for static
deformations, and Eq. (3.36) implies that the viscoplastic
strain rate depends on the amount by which the static loading

surface is exceeded. The notation < > in Eq. (3.35) means that

< ® (F) > = ¢ (F) when ¢ (F) > 0

0 when ¢ (F) <0 (3.37)
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In other words, viscoplastic deformation occurs only when
¢(F) exceeds zero. Different functional forms have been
proposed for ¢ [87] to describe the process and the simplest

form is chosen in this study,
®(F) = F - (3.38)

It should be noted that 7 > 0 constitutes an inadmissible
state in the theory of inviscid plasticity, the plastic state
being identified by F = 0, but in viscoplasticity 7 > 0

is admissible and indicates viscoplastic flow. Using

Egs. (3.28, 36, 38) in Eq. (3.35), one obtains

1

VP _ -
g H 2 /3T,
A3 /33, - H 1q
2 W3 /33, 1
or,
4 H 1 v3Jp
H/V/3 VANTY
1-yp
E =
IJ < /3‘3‘2‘
0 when T 1<0 (3.39)
where vy = Zg— Y

A dynamic yield criterion can be obtained by

squaring both sides of Eq. (3.39).
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2 2
1:yp 1:yp HoY 1,
ey Epy = (‘ i ) S Su

H /3 Y3J,
" I, = —152— . y J
2 = " < - /§j;> 2
or,

My = § (Bl -H) = Fy (3.40)

40
3d, = /I_2+H=H—Y—-+1 (3.41)

< |x

where I, is the second invariant of the viscoplastic strain
rate tensor, and Eq. (3.41) represents an expanded yield
condition for rate-sensitive materials. It is clear that
as y»» Eq. (3.41) reverts back to the static von Mises

yield condition. Eq. (3.39) can now be written as

1-yp e \!
P oo o x [ H\'s
A Ry = 1J
5+ )
or,
L ( Tl )15 (3.42)
1J H/YV3 \1 + /T,/y 1

Since vI, = Fy from Eq. (3.40), one gets
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12vp Y F_\ la
E = ( ) S (3.43)
IJ H/ Y3 1T+F IJ
Again, it is seen from Eq. (3.42) that as y » = these

equations represent inviscid plasticity:

) 1,

1 2 1 . 1.

E¥5 = — ¥, =408 (3.44)
H/Y3

The computational scheme for viscoplastic analyses
can now be described. Each load increment applied on the
body produces an instantaneous elastic strain and the

corresponding stress increment can be computed as

E

I -
S St

19 C

E = E E

IJKL “KL IJKL ~KL (3.45)

This increment is added to the total stress and the scalar
function F is computed. If F < 0 no viscoplastic deforma-
tions occur. If F > 0 the viscoplastic strain rates are
computed as per Eq. (3.43) and the increments in visco-

plastic strains are simply

I

E1g Ery dt (3.46)

for sufficiently small time increments. The total equivalent
viscoplastic strain is computed and the new value of H', the
hardening parameter, evaluated using the uniaxial static
stress-strain curve. The "viscoplastic" stresses are

computed as
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W VP
Sy T Eroke Exe (3.47)

and the stress increments can be written as (see section 2.6)

I
IJ

VP
1J

E -
1J

VP

-3 1J (3.48)

S = S

1J S

S

and the total stresses are

2 1
S = S

19 +S

(3.49)

IJ 1J

The viscoplastic strain increments are then treated as

initial strains as discussed in section 2.6.

3.2.3 Use of Viscoplasticity for Plasticity Solutions

It was shown in the previous section that the visco-
plasticity equations degenerate to give inviscid plasticity
results as the material parameter y tends to infinity. An
alternative approach is to use any arbitrary value of y but
make use of time as an artifice and let an equilibrium plastic
state, F = 0, be attained as a result of "viscoplastic"
deformations. The instantaneous response in this procedure
is purely elastic and the resulting state of stress might fall
outside the static yield surface, see Fig. 3.3. This creates
the situation where F > 0 which is inadmissible in classical
plasticity but not so in viscoplasticity. Now, "viscoplastic"
deformations are allowed to take place with time and gradually
the stresses are redistributed until the state of stress at

no point exceeds the yield surface, i.e. F =0, Fig. 3.3.
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The resulting equilibrium state is them the rate-independent

elastic-plastic solution for the given problem.

3.3 Generalized Plane Stress

The stress-strain transformation matrix given by
EIJKL for elastic and CIJKL for elastic-plastic deformations
must be condensed to the generalized plane stress case for
thin or moderately thickshell applications. For axisymmetric

deformations, one can assume

S12 = Sz3 = S33 = 0
S12 = Sp3 = S33 = 0 (a)
Eyp = Ey3 = 0
The stress-strain relation can then be written as
S.o ® Croke Bk * Cross EBas (3.50)
and
S33 = Cygy Egp * C3szsz Ezg = O (3.51)

Solving for Ej; and substituting into Eq. (3.50) gives

S E

1w - ok Ea

where
C
T = C C 33KL (3.52)

IJKL IJKL - 1J33 C3333
This modified stress-strain matrix can be obtained using
Gaussian elimination technique. For plane stress problems,

in addition to the conditions (a) one can assume



1
S22 = Sz = 0 (b)

Then the equations for S,, = 0 and S33 = 0 can be solved

simultaneously to give E,, and E33 which can be substituted in

St = Crake Exke * Crozz B2z * Cpgss Ess _(3'53)

to give a modified stress-strain relation for plane stress

problems,

S CrakL

19 EKL (3.54)

where E}JKL can be obtained in the calculations using

Gaussian elimination.
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4. NUMERICAL ANALYSIS OF NONLINEAR PROBLEMS

4.1 Sources of Nonlinearities in Structural Systems

The nonlinearities in the behavior of a structure may
be due to physical or geometrical causes. These are referred to

as physical or material nonlinearities and geometrical nonlin-

earities. The material nonlinearities are caused by the use of
materials that are characterized by nonlinear constitutive laws.
Modern design methods, which make use of materials we]i beyond
their elastic 1limits, make the consideration of this type of non-
linearity essential in most structural problems. The geometric
nonlinearities, on the other hand, are due to finite deformations
of the structure. Large deformations of bars, plates and shells
are typical cases in which this type of nonlinearity must be con-
sidered. Two separate aspects of geometric nonlinearity may be
recognized:

i) the use of the complete kinematic expression for
finite strains, i.e. inclusion of nonlinear terms
in the strain-displacement relations, and

ii) the use of deformed configuration to obtain the
equations of motion which, as a consequence, become
dependent on the total deformations.

For many structural problems it is essential to consider both
physical and geometrical nonlinearities. The equations of motion
for these problems are in the form of nonlinear differential or
integro-differential equations depending on whether differential
or integral forms are used to describe material behavior. These
equations are quite complex for most practical problems and

necessitate the use of numerical solution techniques.
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4.2 Solution Methods

Efficient solution methods are required for the numerical
analysis of nonlinear structural systems. A great number of methods
have been proposed in recent years due to the surge of activity in
this field and many survey papers [32, 88, 89, 90] have dealt with
them in detail. These methods fall into one of the following three
classes [42]:

Class I - Incremental methods (no equilibrium checks).

Class II - Direct or iterative methods.

Class III - Modified incremental methods (with equilibrium

checks).

I. Incremental methods. In these methods the load is applied in small

increments and a sequence of linear analyses are carried out. For

each step the increments in displacements, strains and stresses are
computed and the information is used for the next step. Several
variants are possible depending upon the scheme used for estimating

the stiffness of the structure at any step. These methods are extreme-
ly fast but they all suffer from the disadvantage that, in general,
equilibrium at any particular load level is not satisfied and the
solutions tend to drift away from the true solution unless very small
load steps are taken.

I1. Direct methods. The total load on the structure is applied and

the response is computed by using any one or a combination of several

known iterative techniques. Although many efficient procedures can

be obtained, the major drawback of this class of methods is that they

cannot be applied to problems that are path-dependent, such as plastic

deformations using flow theories of plasticity.
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ITII. Modified incremental methods. These methods involve the combined

use of the methods of Classes I and II. As in Class I the total load
is applied in a series of load steps but the equilibrium is checked at
each load level and iterative methods of Class II are applied repeated-
ly until the desired degree of accuracy is achieved for the equilibrium
convergence. Many computational schemes are possible in this class.

One particular scheme called the residual load method or one-step

iteration method [26] involves the calculation of the unbalanced forces

at the end of each load increment and their application as additional
pseudo-loads in the next increment. Computationally this is equivalent
to the Class I methods and requires no significant increase in compu-
tation time over the conventional pure incremental method. The appli-
cation of the unbalanced forces helps in reducing the drift and results
in substantially improved results. This residual load method has been
used in the present study.

4.3 Linearized Incremental Equations of Motion

The incremental equations of motion are obtained by equating
the incremental virtual work done by the internal stress fields to the
incremental virtual work done by the external loads. The required
virtual work expressions were derived in Chapter 2. The case of non-
conservative loading using the residual load approach is considered
in this section. Equating the expressions for incremental virtual

work given in Egs. (2.73, 81), one obtains

.1 1J 1.1 2 Po 0 J WM K
j[pou sup + (516, + "sMen )10V - J p2 N x| XMy ¥y supan

Bo %6



I 1.1

¢
- -JZpE?-NJ Iy sugda + Jp 2lsu; av - [(po iloup + sMse v
3B o Bo By (4.1)

The second integral on the left hand side of this equation is linear

in displacement increment u and hence has the form of a stiffness term,
and is present only for nonconservative loading. This is a nonsymmetric
term and can be neglected for most engineering applications, as dis-

cussed in section 2.4. Deleting this term and using the constitutive

equation
I0 _ ~IJKL
one can rewrite Eq. (4.1) as
" IJKL 110 _ 2 P 0
J[pou sup + (c1KU g, b+ sMen  )I0v - J b= N x| sugda
Bo 9B
#o “floudv - {(o ilou. + 'sVse, )av (4.2)
P I 0 I IJ )
By By
Recalling that
EIJ = eIJ + 19 (2.20)

where €1 is linear in u, and g quadratic in u, Eq. (4.2) can be

written as

1 1
- u-[R-# G- £ (4.3)
where
susMeiio=  fo il sup dv (a)

By
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TJKL
Su -« K «u = fC e, 6e;, dv (b)
u-% " 5 KL ®®19
- Ky (upew = Bf ¢ ey ongy + g sery) v (e)
0
su - K (uI,uJ)-g = f CIJKL L 714 dv (d)
Bo
U - KG - u = f ]'SLJ (SnIJ dv (e)
u-R 5
2 0
su - R = [P w X sup aa
By P
2.1
+ fpo f GUI dv (f)
By
1.,
69 . M . g = fpo lijI GUI dv (9)
By

1
and finally, the internal resisting force, ER, is given by

1
sU - ER = f 1SIJ S ey dv (h)
By

Defining the total loading term including out-of-balance forces

as R, i.e., ,
R o= R-Mli- (4.4)
one obtains the incremental equations of motion as
sy - [M- U+ Ko+ K+ K +Kehoul = ou-R  (4.5)

Inspection of Eqs. (a) through (h) shows that the nonlinearities
in Eq. (4.5) arise from the presence of the stiffness terms 51
and K, which depend on the displacement increment u itself. The
terms Ko and Kg, the incremental ana geometric stiffnesses,
respectively, are independént of u and constant for a given
increment. Assuming the displacement increments u to be small,

K1 and K, can be neglected since their contributions, Ky + uand
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K, + u, are of quadratic and cubic orders in u and 1likely to be
small compared to K, - u and EG + U which are linear in u.
Furthermore, accuracy in the evaluation of the incremental tangent
stiffness for any step is less critical than the need to satisfy
the equilibrium requirements in order to avoid excessive drift in
solutions obtained using the methods discussed in section 4.2.
Hence, Tlinearization of Eq. (4.5) is achieved here by elimina-
tion of K; and K,. The linearized incremental equations of mo-

tion are then given by

su+ [M- U+ (Ko+Ke)-ul=osu-R (4.6)

1
Finally, the correct expressions for K,, K. and fR

(part of R) can be obtained from Eqs. (b, e and h) by the use of

strain-displacement relations:

2@, = Up;q + Uy + " uK| +u uKI
10 1|9 " 9|1 KIT © 9 © “K|I J

(2.19)
_ K
and 2nyq = U Y 5

Damping forces

The incremental equations of motion given by Eq. (4.6)
do not include the effect of damping forces but may be extended
to include them in a straightforward manner for the case of
viscous damping forces which are proportional to velocity.

Eq. (4.6) is modified to

su-[M.u+cC-i(

~ -~

1 =
+
—~
]
o
+
e
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Defining R=R-C+ U= R-M« {i-C- u- F (4.8)
one gets

69-[M-ii+

~ ~

[N gp]

U+ (Kg+Kg) -ul=6u-R  (49)

The damping coefficient C may be taken as a combination of mass
proportional and stiffness proportional damping. This is known as
Rayleigh damping which is the same as the two-term approximation
to the Caughey series [91]. This damping coefficient can be
written as

C=aM+ a(K (4.10)

0)t=o
where

a and B8 are the mass proportional and stiffness propor-
tional damping factors, respectively, and (Iso)t=0 is the incre-
mental stiffness for the first time step, i.e. at time t=0. For

convenience of notation, let

(Ko)pog = Ko 5 €= aM+ 8% (4.11)
C then remains constant for the structure throughout the analysis.
This assumption is made because the damping mechanism in any
structure is really quite complex, and it is difficult to justify
the use of anything but the simplest idealizations.

It is worth noting that mass proportional damping causes
negligible damping in higher modes whereas stiffness proportional
damping has the tendency to suppress them. This property might
be used to advantage in problems wherein undesirable higher modes
need to be eliminated. Certain numerical integration schemes,

like the Houbolt or Wilson-Farhoomand, introduce artificial



viscosity to achieve this effect but the use of stiffness
proportional damping may provide better means of suppressing

unwanted modes.

4.4 Numerical Integration of Equations of Motion

The normal mode superposition procedure for the
solution of the equations of motion is applicable only for linear
dynamic analysis. Even in the case of linear prob]ems; however,
it may be more advantageous to use the so-called step-by-step
or direct integration when analyzing large systems subjected to
short duration loads where a large number of modes may be excited.
Blast or impact problems are generally solved using such direct
integration methods. For problems involving physical and/or
geometrical nonlinearities the only feasible approach is through
the use of direct integration operators.

The direct integration of the governming equations of
motion involves the determination of the approximate solution at
any time t + At from the known solution for displacements,
velocities and accelerations at time t. The initial data at time
t=0 are sufficient to initiate such "single-step" methods.

There are also some methods which require the knowledge about
the state of motion prior to time t (i.e. at t-at, t-2at, etc.)
in order to advance the solution from t to t + At. These are
termed "multi-step" methods [97] and require special starting
procedures,

Several step-by-step methods have been introduced and

discussed in the literature [49;f92-99]. Their properties with
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regard to accuracy and stability have been studied extensively
for linear dynamic analysis, but much work remains to be done
pertaining to their application to nonlinear problems. The
choice of the integration method for nonlinear dynamic analysis
has been found to depend on the formulation used to set up the
equations of motion. The Newmark method [92], for instance, has
been reported by Stricklin, et al [48] to degenerate, leading to
unstable solutions, when applied to problems wherein the non-
linearities are treated as pseudo-forces in the formulation.
This formulation gives rise to spurious oscillations which are
left uncontrolled by the standard Newmark method, but may be
damped out by the use of integration operators, such as the one
due to Houbolt [95], that possess inherent artificial viscosity.
The discretized form of the linearized incremental

equations of motion, Eq. (4.9), may be written as

[M] (i} + [C] i} + [Ko + Kgl {u} = {R) (4.12)
Defining the tangent stiffness at time t as

[Kt] = [K0 + KG] (4.13)

one gets

[M] @y + [C] {8} + [K.] {u} = {R} (4.14)

The Newmark and Wilson-Farhoomand methods are used in this study
to solve Eq. (4.14), and are discussed briefly in the following

sections.
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4.4.1 Newmark Generalized Acceleration Method

A family of step-by-step methods was presented by
Newmark [92] for the solution of problems in structural dynamics.
The solution at the end of a time step is expressed in terms of
a Taylor series with the remainder given by quadrature formulas.
Two free parameters of integration, yand 8, indicate how much of
the acceleration at the end of the interval enters into the
relations for velocity and disp1acement at the end of the interval.
A number of different methods may be obtained by varying the
values of vy and 8. The value of y = 0.5 insures that no spurious
damping forces arise. v greater than 0.5 introduces artificial
damping while v less than 0.5 gives rise to negative damping,
involving self-excited vibrations solely due to the numerical
procedure. Although no direct physical interpretation of 8 is
possible, it was pointed out in [92] that certain values of B8
correspond to specific ways of acceleration variation over each
time interval --e.g. B= é corresponds to a linear acceleration
assumption while g = % corresponds to a constant average acceler-
ation.

For undamped vibrations, the choice of 8 = 0 leads to
an explicit solution algorithm, provided the mass of the structure
is approximated by a diagonal Tumped mass matrix. The use of any
other value for B or the inclusion of damping forces or nondia-
gonal mass matrix leads to implicit integration methods that
require the solution of a system of equations at each step to
advance the solution. The method obtained using y = 0.5 and

B = 0.25 is known to be unconditionally stable for linear problems



and stability limits can be estabished for other values
parameters.

Following [92],

. 2., 1.
{fu} =y at {u} + (1 - y) at {°W}

2 o
) = ot iy + (5 - 8) at” (i) + ot {0

2,
Solving for { u}l,

2. 1 , 1 1. T . 1,
{u} = —, {u} -~ —— {u} - —{ur + {0
B At B At 28
Hence,
. 1 1 - 1 1.
{u} = —— {u} = —{u} - —{ u}
g8 At g At 28

Substituting Eq. (4.17) into Eq. (4.15),

. Y 1. 1,
)= — (- X gur - (-1)at L
B At B 28
Eqs. (4.18, 19) may be rewritten as

1
B At

1 gl
B At 28

{u} 5 {u} - {A}; {A}

. 1.
Y {u}-1{B}; {BY=X{qg}+ (X1
B At B 28

RO,

Substituting Eqs. (4.20, 21) into Eq. (4.14) and recall
definition of‘{ﬁ} from Eq. (4.8), one gets

([ + ]t? M) + X— [c]) tu} = R} - [MICid-[CDC )

B A B At

-'{IFR}+[M]{A}+[C]{B}

of these

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
1
{ i}
(4.20)

1
) At { U}
(4.21)

ing the

(4.22)
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The equations for the Newmark method may be summarized as shown

in Table 4-1. Note that the left superscripts ! and 2 refer to

configurations B; and B, at times t and t + At, respectively.

Table 4-1. Newmark Method of Direct Integration

a0='—]—2' b1= 12=ao
8 At B At
Y ]
a, = —— = a,y b, =-——=-a
1 ogat O 2 gt 2
1 I
a, = —— = a. At b,=-—=-(a, +1)
2 gat 0 P 28 3
aa=_l..'| b=__1_.=al
28 b gt
a=l-'| b:;l:-(a +])
L 8 5 8 L
a_ = (X -1) at b, = (1-X1)at=-a
5 28 6 23 5
2 1 1. 1.
[K,+a,M+a Cl{ub= (R - CF}+[M] Gap U+a, i)
1. 1,
+ [C] {a, u+a ul

or,
K] () = (R

Solve for the incremental displacements {u}. Then,

2.. 1, 1. 1,
{u}={ur+ b, {u} + b2 {u} + b3 { u}
2, 1. 1. 1.,
{u} ={ur+ bu {u} + b5 { u} + b6 { u}

2 1 .
{u}l = { u} + {w}
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4.4.2 Wilson - Farhoomand ©-Method

The linear acceleration method belonging to the Newmark
family of step-by-step procedures (y = %, B = %) was modified by
Wilson [49] in order to obtain an unconditionally stable algorithm.
The acceleration was assumed to vary linear over an interval
T = 2 At where At is the time increment. After solving for the
pseudo-displacement increments between t and t + T, the
complete solution at t + At 1is obtained using linear interpolation
for acceleration and consistent kinematic relations for velocities
and displacements, i.e. quadratic and cubic variations, respective-
ly. This method was shown to be unconditionally stable for linear
systems but possessed considerable amount of artificial damping,
more than sufficient to suppress the spurious oscillations of
discretized systems.

A further extension of this method was made by
Farhoomand [93] to reduce the integration errors and obtain an
optimal value of t. The acceleration was assumed to vary linearly
during the time interval 1 =6 At, where the parameter © must be
chosen with regard to the accuracy and stability of integration.
The value of © = 1 represents the linear acceleration method,
and o = 2 the modified "averaging" method of Wilson. It was
shown by Bathe and Wilson [94] that © must be chosen greater
than 1.37 for unconditional stability. It can also be seen from
[94] that, although strong damping of the higher modes is re-
tained, the integration accuracy of the lower modes is much im-
proved by choosing © = 1.4 instead of 2.

The details of derivation of the o-method may be found



in [45, 93], and only a summary of the equations useful for the

computer coding is presented in Table 4.2.

Table 4-2. Wilson - Farhoomand ©-Method of Direct Integration

T = 9 At
3 = % b, = - g? ) "g;
ax = g-= 2 a, b3 =1 --%
a3 = a, = 2 b, = %E
a5 = % by = A§? be = ;i

. 1
Load extrapolation {Ry, } = ('R} + o {*R - 'R}
Let {u*} represent pseudo-displacement increments

during the time interval t to t + ¢

. 1..
[K, + ag M+ a, C] {u¥} = Ry, } - ('F'}+ [M] {a 'u+ay i}

1

+[C] (o, 0 +a, D)

OY',
[K*] {u*} = {R*}
Solve for the pseudo-displacement increments {u*}

Then,

2... _ . 1. 1.

{u} = b1 {u*} + b2 {"u} + b3 {"u}

2. 1. 1 2.,

{u} = {up+b, { U+ U}

ur = Cureoat Cfwy + by (UG} + b {20
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4.4.3 Algorithmic Damping and the Use of § Control in Newmark
Method

The frequency spectrum of a continuous system is
truncated when the system is idealized by a discrete model as in
the finite element methods. The number of modes in the discrete
system is limited by the finite number of degrees of freedom
associated with it and the maximum frequency is termed the cut-
off frequency. While the lower frequencies may be approximated
quite well, the higher frequencies of the discretized system are
in considerable error compared to those of the continuous system.
The use of direct integration procedures implies a common value
of the time step, At, for all the modes. The integration errors
in the period and/or response amplitude depend on the values of
At/Ti where Ti is the period of vibration for mode i. Choice of
a At small enough to integrate the highest modes accurately
requires the use of excessive computing effort. Indeed, there is
the question of whether such an approach is justifiable in view
of the statement above regarding the large errors in the discrete
high frequencies. The methods of Houbolt, Wilson, etc., possess
inherent artificial viscosity which causes the higher modes to be
damped out when the At is chosen to insure accuracy in the
response of Tower modes. This might be justified and indeed
necessary in problems where the lower modes dominate the response,
as is the case in most structural vibration problems.

The widely used constant average acceleration method of
Newmark (y = %, B = %), on the other hand, introduces no artifi-

cial viscosity into the solution procedure, and will preserve the



undesirable higher modes. These higher modes will have large er-
rors in their time periods due to the discretization as well as
the integration procedures. The inability of this Newmark
method to suppress undesirable higher modes may be rectified by
taking advantage of the property of the integration parameter y
mentioned earlier in section 4.4.1, i.e. artificial damping may
be introduced by choosing y>0.5.
Letting

y = 0.5+ (4.23),
where § is a positive value, artificial viscosity can be
introduced into the solution to any desired degree. Use of this
§ control requires modification in the value of 8, and Goudreau
[98] has shown that B8 must be greater than 0.25 to preserve
unconditional stability for linear systems. The relationship

between 8 and § is given as [98]
B > 0.25 (1 + 5)2 (4.24)

The advantage of using § control with the Newmark family of g
methods over methods possessing inherent artifical viscosity is
that the amount of damping introduced may be controlled by an
independent parameter § instead of being fixed by the choice of
the time step for integration of the incremental equations of
motion.

In the case of impact problems, the response is not
dominated by a few low frequency modes, and as At -~ 0, any stable
integration procedure can be made convergent to the exact solution

of the discrete system. However, this may be hardly worthwhile
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due to the spurious high frequency oscillations of the discrete
system and it may be preferable to introduce artificial damping
into the solution procedure. Nevertheless, there are certain
structures so sensitive to even small amounts of damping that no
algorithmic damping may be tolerated and in such cases the
Newmark B methods with & = 0 must be used. Also, it is
recommended to use the Newmark methods over the Wilson-Farhoomand
o-method when considering suddenly applied loads, discontinuous
load history or if the system is released suddenly from a
defiected position as the o-method has been shown in such cases
to magnify rather than suppress the response of the inaccurate

higher modes [98, 99].

4.5 Numerical Example of the Solution Procedure

A numerical example is presented in this section to
illustrate the accuracy of the solution procedure for dynamic
analysis of shells of revolution. The transient response of a
shallow, spherical, thin cap was studied by Klein and Sylvester
[44] and Stricklin, et al [48]. The geometry, material proper-
ties and load history of this cap are given in Fig. 6.8. A
suddenly applied uniform external pressure of 100 psi was applied
to this cap and the finite element analysis was carried out using
the Newmark method (v = 0.5, 8 = 0.25) with a time step of
10 x 10°° seconds. The discretization was achieved by the use
of five degenerate isoparametric elements (see Chapter 5) from the
apex to the boundary and the mass distribution was approximated

by a diagonal lumped mass matrix.
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The time variation of the apex displacement is plotted
in Fig. 4.1 and agrees very closely with the results of Stricklin,
et al [48]. The period of vibration is also in excellent
agreement with the theoretical result of 493 u-sec. computed
using the chart for shallow caps presented in Fig. 8.5 of the
book by Kraus [100]. The peak amplitudes are slightly greater in
the present study because the Newmark method with no artificial
damping has been employed, whereas Stricklin used the Houbolt
method which introduces damping into the solution.

Further examples illustrating the efficacy of the
computer programs developed for elastic, elastic-plastic and

elastic-viscoplastic analyses are deferred until Chapter 6.
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5. FINITE ELEMENT FORMULATION

The finite element method is used for the numerical solu-
tion of the linearized incremental equations of motion derived in
section 4.3. This method was first introduced by Turner et al [14]
and is basically an extension of the Ritz method, with the field
variables being expanded over a series of subdomains instead of
over the total region. Interpolation polynominals are used to des-
cribe these variables within a subregion or finite element in terms
of their values at selected nodal points of the element. Using the
direct stiffness method of displacement formulation, the discretized
equations of motion are obtained for the total region. The dis-
placements at nodal points are then obtained by numerical solution
of these algebraic simultaneous equations. Several excellent
treatises have been published that give detailed discussions of the
finite element method as well as its mathematical background [18-21,
101, 102].

A great variety of elements have been developed over the
years for use in the analysis of linear as well as nonlinear problems.
The isoparametric family of elements [103] uses the same interpol-
ation formula to describe the geometry as well as the displacement
field. Although successfully used in both static and dynamic elastic-
plastic analyses of axisymmetric shells, the use of these elements
is computationally inefficient for inelastic analysis of moderately
thick shells. This is due to the excessive number of degrees of
freedom employed (at least a quadratic displacement variation across
the thickness is required to insure convergence [104]), and the fact

that integration across the thickness cannot be made separately.
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Incompatable displacement modes that are condensed before solution
[104, 106] may be used to reduce the number of degrees of freedom
and thus improve the efficiency of these elements.

Construction of discrete models to represent thick shells
or shells with sharp discontinuities in their geometry 1ike cut-
outs or stiffeners may necessitate the use of one or more of the
elements belonging to the isoparametric family. However, in prob-
lems involving thin or moderately thick shells, considerable economy
in computational effort may be achieved by the use of degenerate
jsoparametric elements [107], Fig. 5.1. Different parametric rep-
resentations are used to describe the geometry and displacement
fields of these elements. Relaxation of the classical Kirchhoff-
Love hypothesis of thin shell theories permits shear deformations
to be included, thus enabling moderately thick shells to be repre-
sented by such elements. Although excellent results are obtained
for moderately thick shells, it was found [108, 109] that signifi-
cant errors arise when these elements are employed in the analysis
of thin shells due to shear deformations being allowed in a pure
bending mode as a result of the relaxation of Kirchhoff-Love hypo-
thesis. Larsen [43] used the cubic element, see Fig. 5.1, for most
applications since the excessive strain energy due to shear was
most dominant in the case of elements with linear and quadratic dis-
placement variations. The same cubic element is also used in the
numerical examples presented in this report. The finite element
formulation outlined in this chapter follows along the same line of
development presented by Larsen [43].

5.1 Geometric Representation

The geometry of a shell element is described in a global
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Cartesian system (r, z) and a local natural system (£, n). The local
system is, in general, curvilinear and any point within an element

has its coordinates such that
S1<E<+] Sl<ns+ (5.1)

The £ - axis bisects the shell thickness and describes the middle
surface while the n - axis is simply defined as an axis along which
£ = 0 and not necessarily as the normal to the middle surface. The
inner and outer faces of the shell are represented by n = -1 and
n = +1, respectively. The "normal" angle 6 is defined as the angle
between the r - and n - axis, see Fig. 5.2. In addition, an aux-
jliary orthogonal system (s, t) is also introduced with the s - axis
coinciding with the £ - axis of the local natural system, Fig. 5.2.
The global and natural coordinates of any point are re-
lated by means of a transformation in terms of interpolation poly-
nominals and nodal point coordinates. For any point (£, n) within

an element, the global coordinates (r, z) can be written following

[107], as
r M r; M 1 cos 8,
Il=z 4>1-(a)l|+n25¢,- (a)h,-' ‘(5‘2)
z i=1 y 3 i=1 sin 0,
i i
where ¢, (£) are interpolation polynomials,
hi = thickness at node 1,
8: = "normal" angle at node i, and

1

(ri,zi) = global coordinates of node i.

The number of nodal points M, and hence the order of the polynomials,
is determined by the element type used. The interpolation poly-

nomials for linear, quadratic, cubic and quartic elements are given
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in Appendix A.

5.2 Displacement Field

The basic assumptions in describing the kinematics of the
element are:
i) plane sections initially normal to the middle
surface remain plane, but not necessarily normal
to the middle surface after deformation, and
ii) displacement normal to the middle surface is constant
through the thickness.
The classical Kirchhoff-Love hypothesis used in thin shell theories
is relaxed. This permits shear deformations and hence moderately
thick shells may be considered.
For any point (£, n) within an element, the global dis-

placements (u, w) are then given by the following displacement field:

u N Uy N ) -sin ei
= E ¢-i (E) +n Z 3 ¢.| (E) h'l G.i (5-3)
w i=1 W, i=1 coS ei
where
(ui, wi) = global displacements of node i, and
o, = rotation of the normal at node i,

i
are the three degrees of freedom (DOF) at each node, Fig. 5.2. The

first term in Eq. (5.3) represents the middle surface displacements
and the second term, the effect of the rotation of the normal.
The same displacement field is assumed for both the in-

1
cremental displacements, u, and the total displacements, u. The

order of the interpolation polynomials should be equal to or greater
than the order of the polynomials used in describing the geometry of

the element, i.e. N > M, and M = N has been chosen for simplicity
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in this study.
If the vector of nodal point displacements and rotations

is denoted by {G}, the Eq. (5.3) may be written in the symbolic form
{u} = [o,] {u} (5.4)

Finally, the displacements can be transformed from the global to

the auxilary coordinate system (s, t) by the relation

uy cos ¥ sin Y u
Uz "[-sin Y cos w] W (5.5)
where the angle y(&) is defined in Fig. 5.2.

5.3 Strain-Displacement Matrices

The increment in Lagrangian strain between configurations

B, and B,, referred to By, is decomposed into linear and nonlinear

parts by
Elg= ety (2.20)
where
- 1, K 1, K
2 ey = uppg *ugpp | uggg ]y vkl
: (2.19)
2 Nyq = uK uK
1J ‘I |J
The linear part may be rewritten as
_ KoLK K | 1,.K
2 eqy= (6 + .I)uKIJ + (67 + lu IJ)uKII (5.6a)

or

= 1K 1K
2 epg = Fopupg+ TR U (5.6b)
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For axismmetric deformations, the three coordinate axes are
identified with the meridional (s), hoop, and transverse normal
(t) directions, respectively.

Hence,

o = W2y = u2|53 =uld[, =0

—
<
—
N
I
—
[ =4
N
—
1]
—
<
N
w
1}
—
| =4
w
N
I}
o

(5.7)

Love's first thin shell approximation postulates that the tran-
sverse normal stresses are negligible, i.e.
§33 = 1833 = ¢ (5.8)
and this postulate is also retained for moderately thick shells
in order to avoid the constraints imposed on the transverse
direction by the assumed displacement field. However, the second
assumption in section 5.2 implies that
udly = d|3 =0, F3; =1 (5.9)
An inconsistency arises from the mutually exclusive nature
of the two conditions, U3|3 = 0 and S33 = 0, and the generalized
plane stress approach is used to remove the inconsistency. The
following approximations are then made:
(W3l2)" = (Es9)” (5.10)
and
(1F?3)* -1+ (1533)* (5.11)
where the asteriks indicate physical components. The condensation.
of the constitutive relations for the generalized plane stress,
using Eq. (5.10), was described in section 3.3. If Ej3 << 1,

133 << 1, the deformation gradient !F3; may be approximated by



unity, but Eq. (5.11) must be used in problems where thickness
changes are significant. The strains E;; and lE;; are evaluated
using constitutive relations and not from kinematics. The con-
stitutive relations themselves are given in terms of physical
components and as such no distinction is made between physical
and tensor components in the following development.

The linear part of the strain increment is related to
the displacement gradients by means of a deformation gradient

matrix, i.e.

{e} = [A] {u} (5.12)
where
- <e> = <e) ey 23> (5.13)
= (3U1 U duy dup "
Uy> = <3s ¥ 3T 3s (5.14)

and [A] is a deformation gradient matrix which can be obtained
using Eq. (5.6b). This gives

{ 3
[e);) [PFL, 0 0 IR

2613 ]'F:."g 0 IF:."]_ 1F?3 e

Using Eq. (5.6a) the transformation [A] between the strain incre-

ments and the displacement gradients can be rewritten as

T olu, .
1+ 55 0 0 3s
1
[A]J=]| o 1+ -4 0 0 (5.16)
r
Aluy 0 1+ 23ty 1+ 1E3;
| ot 35

(5.15)"
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This transformation has to be recomputed at each step, but the
transformation matrix [B], which relates the displacement
gradients {ua} to the vector of incremental nodal point displace-
ments and rotations {G}, depends only on the undeformed configura-
tion and the interpolation polynomials, and consequently remains
unchanged throughout the analysis. The relationship is given as
{u,} = [B] W) (5.17)
and a similar transformation also relates {lu } to {13,
{lu,} = [B] {'u} (5.18)
The matrix [B] may be decomposed into
[B(g,n)] = [B1(g)] + n [Ba(g)] (5.19)
where both [B;] and [B,] depend only on ¢ and the dependence of
[B] on n is kept as a multiplying factor outside the matrix [B,].
Derivation of these displacement gradient matrices was given by
Larsen [43] and is presented here in Appendix B. Combining Egs.

(5.12, 17) the linear part of the strain increment is obtained as

( 2 2
| (6 6
"
It =71 (;) T (5.21)
n U 3y
L 33J L 39S ot J

The right hand side of this equation can be obtained easily once
the displacement gradients {u,} are obtained using Eq. (5.17).
However, an explicit nonlinear strain - displacement relation
will be needed in the development of the geometric stiffness

matrix and can be written as
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[ nll \ <l]> [Hll] {l‘;} \

1] - )
1 UPPY } = E' <u> [Hyp] {u} } (5.22)
L LI <u> [Hy3] {u}

J
th row of [B,] and [B,], respec-

If <b1>i and <b2>ildenote the i
tively, the submatrices [H;;], [H,,] and [H13] can be written in
the form [43] :

[Hy11 =[]y + n [v]; + n2 [o],

[Ha21 = [T1, + n [n], + n? [, (5.23)
[Hy3] = [r]3 + n [7]3 + n? [al;
where
[r]y = {by}y <by>y + {by}y <by>y
[r]; = {b1}; <by>;
[rl3 = {by}; <by>3
[r], = {by}y <by>; + {by}; <by>; + {by}y <by>y
+ {by}y <by>,
[7]2 = {by}s <by>; + {by}s <by>;
[n13 = {by}; <by>3 + {by}; <by>3
[2]y = {bx}hy <by>; + {b}y <by>,
[0z = {ba}s <by>;
[e]s = {ba}; <by>3

These submatrices can be computed at each integration
point within an element. They depend only on £ and again the
dependence on n is merely in the form of multiplying factors. As
is the case with [B;] and [B,], these submatrices also remain
constant throughout the analysis since they are obtained directly

from [B;] and [B,].



88

A final point to be noted with regard to the strain-
displacement relations concerns the singularity in hoop strains
at the apex. This may be removed by the application of L'
Hospital's rule. If the tangent to the middle surface at the
apex is horizontal, the hoop and meridional strains are set
equal.

5.4 Element Stiffness Matrices

The incremental stiffness matrix [Ko] and the geometric
stiffness matrix [KG] are considered in this section. These
element stiffness matrices that are present in the statement of
linearized incremental equations of motion, Eq.(4.9), are ob-
tained using Eqs. (4.3b, e) together with the expressions derived
in section 5.3 for the strain - displacement matrices. The
volume integrals are evaluated using numerical quadrature.

While integration along the meridional direction is performed
using Gaussian quadrature, an option has been provided to use
either Gaussian or Simpson integration in the transverse direction.
In the case of elastic - plastic deformation, the onset of
yielding (at the extreme fibers) in an element can be detected
promptly if Simpson integration is used in the transverse
direction, whereas there may be a delay if Gaussian quadrature is
used since the monitoring stations associated with the latter

are all placed in the interior of the element.

The element stiffness matrix is the sum of [KO] and [KG].
The stiffness matrix for the entire structure is obtained by the
standard assembly process of the direct stiffness method.

5.4.1 Incremental Stiffness [Kol




This matrix may be obtained using Eq. (4.3b)
with the linear strain - displacement expression in Eq
sul - Ky - d=fct e  se, v
By

since

{e} = [A] [B] {u}

{se} = [A] [B] {ou}
and

dV = 2rr drdz = 2mr|Jd|dndg
one can obtain

(K] = 2n \1 Y (81" (37 [C] (a1 [8] v [g] dnde
-19 -1

Defining

[0l = (a7 [C] [A]

1 el
[K,] = 2n S S (817 [0] [8] r |9 dnd
=17 1

Since

[B(g,n)] = [By(g)] + n [By(£)]

one can rewrite [Ko] as

together
. (5.20)
(4.3b)

(5.24)

(5.25)

(5.26)

(5.19)

(K] = 2n j’l ([8,17 0,1 [8,] + (8,17 [0, [B,] + [B,1" [D,][B,]
-1

+ [8,17 [D;] [B,]) dt

(5.27)

where [D;(g)], [D,(£)] and [D3(g)] are obtained by integrating

across the thickness, i.e.

()1 =_f 101 r(gan) [3(eam)] an
[02(6)1 =_f (D] r(gun) [3(esm)] dn

.1-"'1"12 (0] ri ) | I(e m)l dn

[D3(g)]

(5.28)
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These integrations are performed rather easily by using the
expressions derived in Appendix B for r and |J|. The abcissas
and weights for quadrature formulas can be obtained from standard
mathematical tables [110].

The matrix [Ko] is seen to consist of four terms, Eq.
(5.27). The first term accounts for membrane action alone, and
the last term for bending alone. The second and third terms
represent the coupling between membrane and bending which
vanishes in the case of flat plates or shallow shells undergoing

small elastic deformations.

5.4.2 Geometric Stiffness [KGJ
The nonlinear strain - displacement relation of Eq.
(5.22) is substituted into Eq. (4.3e) for the evaluation of this

part of the element stiffness

GQT © Kg - g = 151 snpg v (4.3e)
B
0
= [<sn> {1S} dV
B
0
where
<8n> = <8n én n >
11 22 13
and

{15}] = <1sl1 1g22 21513,

Taking the variation of Eq. (5.22), one gets
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ényy = <su> [H;1] {u}
Snao = <su> [Hy,] {G} (5.29)
smis = <swH([H51" + [Hy5]) ()

where [Hy;], [Hy2] and [H;3] are defined in section 5.3. Upon

substitution of these expressions into Eq. (4.3e) one gets

<éu> [KG:I {u} = <su> Bf(lsll[Hll] + 1S22[H,,]
0

#2318 L0 0T+ M) @V @ (5.30)

or,
[Kgd = 2n Sl Sl <18> [ [Hy,] {r [3] dnde
[Hy2]
L%([H13]T + [Hy3]1)]
1 .1 -[F]: +n [ﬂ]: + n? [QJIH
: zn\ \ 38> | [r]; + n [n]; + n2 [al5 | * |J]dnde
-7 A1

_[r]; +n [w]§ + n? [912_ (5.31)

where

[P]: = [r]i for i = 1,2
[r15 = 3 ([r1} + [rls)

* *
and similar definitions hold for [n]i and [9]1.

Define the following row vectors:
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1
(6> = | 95 rtenlaten] an
-1
1
<Ml(€)> = % n <1S> Y‘(Em) IJ(E;,T])I dn (5.32)
-1
]l
<My (g)> =_S n? <18> r(g,n) [Jd(g,n)| dn

Eq. (5.31) can then be simplified to

[Kg1 = 21 £ E gy [Ty + My Dl + g CaT) o (5.33)

.th
where Moi’ Mli and Mzi represent the i

elements of the vectors
defined in Eq. (5.32).

Note that the stress vector <!S> in Eq. (5.32)
must be post-multiplied by

e ] -

Tar?

?J_J

1
T |

-

The integrations across the n - direction are again simplified
by the use of expressions obtained in Appendix B for r(g,n)
and |J(g,n)].

5.5 Element Mass Matrix

The use of the same displacement field assumptions
that are used for element stiffness evaluation leads to a con-
sistent mass matrix formulation and can be obtained from Eq.
(4.3a). The advantage of using such a mass matrix is the

existence of upper bounds when used in conjunction with a dis-



placement compatible finite element [46,47], but this advantage
is lost if incompatible displacement modes are added to an
element. The primary disadvantage lies in the greater com-
putational effort involved compared to the physical lumped mass
procedure. As also pointed out in [47],‘computations required
for evaluation of consistent mass matrix involve functions of
higher order than those that occur in stiffness computations
and a larger number of integration points within the element
may be needed to avoid problems in numerical sensitivity.
Whereas derivatives of the displacement field are
involved in the integrals for evaluation of stiffness, the ex-
pressions for mass matrix are only in terms of the polynomials
assumed in the displacement field and not their derivatives.
Since the accuracy in polynomial representation of a field
variable is always superior to that of the derivatives (obtained
from differentiation of the polynomials), it is justifiable to
use an independent lower order displacement field assumption to
approximate the inertia forces. The simplest form is obtained
when the total mass of an element is taken into account by means
of physical lumped masses assigned to the element nodal points,
resulting in a diagonal lumped mass matrix. Lumping the masses
at the nodes is quite straightforward for simple elements but
may present some difficulties in the case of more complex elements
for which special procedures may have to be devised. Appendix C
presents the procedure used in the case of the four nodal point
degenerate isoparametric element used in this study and is similar
to the procedure presented in [105] for isoparametric elements

except for the addition of rotatory inertia terms.



5.6 Element Damping Matrix

The effect of damping forces on the structure are
included in the incremental equations of motion as discussed
in section 4.3. Once the mass and incremental stiffness matrices
have been evaluated for an element, the damping matrix is ob-
tained, following Eq. (4.10), as
(€] =a [M] +8[°K] (5.34)

where

[OKO] is the incremental element stiffness at zero time
and

a,B8 are the mass and stiffness proportional damping factors,
respectively.

5.7 Consistent Nodal Forces

5.7.1 Internal Resting Forces

The internal resisting forces acting at the nodal

points of an element are obtained using the virtual work expres-

sion
su - 1R = [151 e ) av (4.30)
- - B
= f <se> {1S} dv
By
Since

{e} = [A] [B] {u},
{se} = [A] [B] {su}

and Eq. (4.3h) can be rewritten as
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su - 1FR = <su> f [B]T [A]T {1S} dv
By

~ ~

or

R P peoaT T
(Fy = 2nf f1B]' [A1' 1S} r |J] dnde (5.35)
-1-1
Recalling that

[B] = [By(g)] + n [By(£)] (5.19)

and defining )

o (e)r = f 117 038 rlean) [3(eun)] dn
-1

1
m(e)y = o 017 083 rlean) [3esn)] dn

-1
one obtains the internal resisting forces in an element as

1
{1FRy = 2“./([31]T Ny + [8,17 (N))) de (5.37)
-1
Numerical integration is used in both the ¢- and n- directions
and a direct assembly of element force vectors gives the
internal resisting force vector for the entire structure.

5.7.2 Viscoplastic Pseudo - Loading

The last term in the virtual work expression of Eq.
(2.93) gives rise to the viscoplastic pseudo - loading which can
be evaluated for each element in a manner analogous to that used

for the internal resisting forces,

A

su - R = f<oes (5VP} av (5.38)
u i

= <su> 181" [a1" s'Py av

B
0
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or,
®% = [ 18" 1" 5"y ay (5.39)

By
where SVP ‘is the time dependent viscoplastic Piola - Kirchhoff

stress increment between B, and B, and is given by Eq. (2.92).

Let (VP17 = <sVP SYP o5VP,

and define .
(0,1 = f 1" 8" r(ean) [9(eam)] dn
and - (5.40)
N f [2175"P3 r(ean) [a(e,n)] dn
-1

Proceding as in section 5.7.1, the viscoplastic pseudo - loading

can be obtained as

RYP 2nf([81] 1, + [B,1 (Oy}) de (5.41)

5.7.3 Externa]]y,App11ed Loading

The element nodal force vectors, {2R}, due to traction
type loading can be obtained using the virtual work expressions
derived in section 2.4 for the nonconservative and conservative
loads.

Nonconservative Loading

For a pressure type nonconservative loading, the
nodal load vector is given by

~ p
su - 2R = -J('{au}T = 217 1T (N} dA (4.3f)
3B,
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From Eq. (5.4) one has

u -
;wf =[]

In order to make the matrix multiplications in Eq. (4.3f) con-

sistent, {éu}T

must have three components, éu, due and éw. The
displacement in the circumferential direction vanishes for
axisymmetric deformations; sue = (). Hence, addition of a row
filled with zeroes to the matrix [¢u] is made to get a new trans-

formation matrix [$h], and

u
}ue = o{= [3,] (u (5.42)
w

tou}! = {ou}’ 5,1 (5.43)

which gives

Substituting this into Eq. (4.3f) one gets

~ ~

R e N S LS s LU (5.44)
B

From the requirement of conservation of mass

-z-‘l = det [IF] (5.45)

The unit normal to the middle surface may be decomposed as,



Fig. 5.2,
<N> = <- siny o0 cos y> (5.46)

Finally, if {2p} is the vector of hydrostatic pressure magnitudes

at the nodal points,

2p = <¢> {2p} (5.47)

where <¢> is the vector of interpolation polynomials.

Defining
_ [7ar \? 32 \212
o= [G6) + (32)] (5.48)
the differential surface area is given as

dA = 27r(g) B(g) dt (5.49)

The element load vector is then given by

{2R} = -2« jd[ah]T <¢> {2p} [F117 (N} r(g) () det [1F)de
- (5.50)

Conservative Loading

In the case of conservative loading the element nodal
force vector for surface traction can be obtained starting from

the virtual work expression of Eq. (2.84)

su - 2R = [ su; (IF'1)¥J 29
- " 9B,

dA

The load intensity at any point on the loading surface is given

by

98



2P1

———— (5.51)

————————-

gzpli <¢>
2p2

with 2p; and 2p, being the load intensities in the r- and

z- directions, respectively, in configuration Bz' <¢> is a
vector consisting of interpolation polynomials ¢i(£) and

Zﬁl and 262 are vectors of load intensities at nodal points.
As discussed in section 2.4, the lcad intensities 2p; and

2p, must then be expressed in terms components 2p$, 0, 2p§
along the convected base vectors 291. As in the case of non-

conservative loads, one can also write

<fu> = <¢5|;> [;U]T (5.43)
and
dA = 27 r(g) 8(g) dt ‘ (5.49)

which when substituted into the virtual work expression, have

[ > C)

1 1

<su> 2nj [a'u]T [PF'1 0 jr (2) 8(e) de
-1 c

2
Y
L 2

O

[ =<
N

)
n
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or,
r A
C
1 201
{2R} = 2n [WU]T ['Ft1 4 o }r (¢) B(g) dg (5.52)
-1 2,.C
L sz

The inverse of the deformation gradient is obtained numerically

and Eq. (5.50) or (5.52) is integrated using Gaussian guadrature.

The load vector for the entire structure is obtained by direct

assembly of the element nodal force vectors.
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6. NUMERICAL EXAMPLES

6.1 Description of Computer Programs

Two separate programs have been written using the
formulation presented in the foregoing sections for the nonlinear
static and dynamic analysis of shells of revolution under
axisymmetric loading. The coding is in Fortran IV for use on
CDC 6400.

The programs use basically high speed, in-core storage,
except small segments where Tow speed, tape-simulated disc stor~
age is used for displacement gradient and stress-strain matrices.
Dynamic storage allocation is utilized whereby the total core
storage requirements are separated into fixed and variable parts.
The fixed part consists of instructions, non-subscripted
variables, and arrays independent of the size of each individual
problem. The variable part consists of an array A that appears
in the blank COMMON.

The fixed storage requirement for the binary versions
of the programs is approximately 56000 (octal). The variable
requirement is calculated within the programs for any given
problem (depending on the number of elements, nodal points, etc.).
The field length required for execution is reset within the
programs using system function LOCF and system subroutine MEMORY
which are available on the CDC 6400 computer at the University of
California, Berkeley.

PROGRAM NLAXDP: This is the program for nonlinear

analysis of elastic-plastic shells of revolution under axisym-
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metric static and/or dynamic loads. The von Mises yield criter-
ion, and isotropic hardening laws are used in the flow theory of
plasticity. The program consists of:

MAIN program computes the variable storage require-
ments, dynamically assigns the needed storage and drives the
major subroutines.

INPUTD subroutine reads and echos the geometric and
material data and initializes all matrices.

STIFFNS. The displacement gradient matrices are
computed during the first increment at integration and nodal
points and stored on discs for use during subsequent increments.
The stress-strain matrix is read from a tape and numerical
integration is used for evaluation of element stiffness matrices
with four or six Gaussian integration points in the meridional
direction and two to seventeen Gaussian or Simpson stations over
the thickness (the minimum of two Gaussian points is sufficent
for elastic problems). The element mass and damping matrices
remain constant for the entire analysis. They are computed
during the first increment and stored on a disc along with the
linear elastic element stiffnesses. These matrices can be re-
covered from the disc for use in the subsequent increments.
Recomputation of incremental element stiffnesses can then be
avoided for those elements which are found to be in the elastic
loading or unloading range. The stress-strain matrix is trans-
formed according to the deformation gradients, and incremental
and geometric stiffnesses are assembled for the entire system.

The equilibrium modal forces are also computed from the stress



field.

DISPL. This subroutine imposes the boundary condi-
tions, triangularizes the system stiffness matrix and also drives
the load generating subroutines NODLOD and DYNLOD, and the
equation solver NUMSYM. The incremental and total nodal
displacements are computed and, in the case of dynamic analyses,
the accelerations and velocities at the nodal points are also
computed.

STRESS computes the strains and Piola-Kirchhoff
stresses at integration and nodal points, and also transforms
these stresses to Cauchy stresses. The plastic strain incre-
ments are computed and the MATP subroutine is called which
checks the loading criterion, interpolates material properties
given in discrete form and determines the stress-strain relation-
ship for elastic-plastic deformations. A1l stress-strain
matrices are stored on disc and all the required stress results
are printed out.

PROGRAM VISPAX: This program treats large displacement

static and/or dynamic analysis of shells of revolution made of
elastic-viscoplastic materials. It can also be used to obtain
elastic-plastic solutions when the time parameter is used as an
artifice. This program is very similar to the elastic version of
the previous program. The main difference is in the STIFFNS
subroutine where pseudo-loading due to viscoplastic strains is
computed.

VISPL subroutine computes the equivalent viscoplastic

strain rates, increments of viscoplastic strains and stresses,
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and also interpolates material property data given in discrete
form to obtain the new values of static loading surface.

These programs have been provided with restart
capability. An external magnetic tape is supplied by the user
and an index array in the data deck specifies the steps at the
end of which the requisite restart information is to be placed on
this tape. The solution can then be restarted at any step N in a
new run if the required information at the end of step N-1 is
available on the tape.

This restart provision is extremely useful from many
viewpoints. It enables the analyst to carry out a solution in a
truly incremental manner in that he can apply a certain number of
load or time steps, study the results obtained, and decide on the
next series of steps to be applied or even go back to some
previous stage of computation if he judges it necessary to alter

the load increments or time steps.

6.2 Elastic and Elastic-Plastic Analyses

Several examples will be presented in this section to
illustrate the capability of Program NLAXDP in solving static
and dynamic problems for elastic and elastic-plastic material

behavior.

6.2.1 Static Analyses

An example of shallow spherical cap was presented in
section 5.5 to illustrate the capability of the program to
perform linear dynamic analyses using lumped mass idealization and

step-by-step time integration. Before proceeding further with
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large displacement dynamic analyses problems, the accuracy of
the program for highly nonlinear analysis is demonstrated in the

case of two static problems.

6.2.1 (a) Elastic Shallow Spherical Cap

The theoretical as well as numerical analysis of the
nonlinear behavior of spherical caps have been pursued by a
great many investigators. Yaghmai [36] gave an exhaustive review
of these works and presented a bibliography of this field
including experimental investigations.

The deformation mode depends on characteristic
geometric properties of the shell. One such parameter is defined
by Kornishin [11] as

k= a /Rh (6.1)
where R is the radius of the middle surface, h is the shell
thickness and a 1is the radius of the horizontal projection of

the shell. Another commonly used parameter is
2
A =121 -0 ) e (6.2)

where v 1is the Poisson's ratio for the material. The parameter

introduced by Weinitschke [112, 113],
2
w2 = A2(1 -v2) Ra?/h (6.3)

where o 1is the half angle of the opening of the shell, is only
a slight variation of Eq. (6.2), and for small values of a both
A and u will be identical. For clamped shells with uniformly

distributed pressure, axisymmetric deformation mode prevails for
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5.5.

=
1A

A clamped shallow spherical cap with the parameter

K

3 1is considered as an example problem. The non-dimensional
toad-deflection curve shown in Fig. 6.1 1is obtained from the
tabulated values of the power series solution given by

Kornishin [111], and is valid for any thin shell for which k=3
and Poisson's ratio v = 0.3. The results of finite element
analysis, carried out using the incremental solution procedure
together with an equilibrium correction at each step, is also
shown in Fig. 6.1 and shows excellent agreement with Kornishin's
solution. Seven elements were used to discretize the shell from
the apex to the support and a nondimensional load increment of
0.54 was used throughout. It is interesting to note that the
apex deflection is overestimated in the region where the slope of
the curve is small but the solution is quickly brought back
toward the theoretical solution because of the use of

equilibrium correction.

6.2.1 (b) Elastic-Plastic Torispherical Pressure Head

The static analysis of a torispherical pressure head
under internal pressure, including the effects of both material
and geometric nonlinearities, is taken up as the next example.
The shell is shown as an insert in Fig. 6.2 and has the following

dimensions:



108

600
/
— —
/5":"_‘
500} ///-
— / ..._-—-—""‘-‘ " "
5 / o am— ¢ & -
e " 12
. "
w 400} // 50" ™
[0
>
[75]
wn
W
2 o8
Q
Z 3001 100
=
[
w
’—
Z
200} :
:EESF::;T] STUDY NON-LINEAR
ool — REF [3€] GEOMETRY
.= REF. [36] LINEAR GEOMETRY
0 ] g 1 1 1
) 0.1 0.2 0.3 0.4 0.5 06

NORMAL DEFLECTION AT APEX (IN.)

FIG. 6.2 ELASTIC-PLASTIC ANALYSIS OF
TORISPHERICAL PRESSURE HEAD



109

o
1]

100 in. R

100 in.

20 in. h

0.8 in.

-~
1]

The material is assumed to be elastic-perfectly plastic and to

have the following properties:

6
Young's modulus, E = 30 X 10 psi
Poisson's ratio, v = 0.3
Yield stress, oy = 30,000 psi

A total of 20 finite elements were used to discretize the shell
from the apex to the support. Eight equal elements were used
over the sphere, eight equal elements over the torus and four
elements over the cylindrical portion. Four Gaussian integration
points were used in the meridional direction and eleven Simpson
points across the shell thickness. Very refined load increments
of 5 psi were applied in order to obtain accurate solution in the
nonlinear range.

This shell was studied earlier by Yaghmai [36] using
the incremental formulation based on moving reference configura-
tion and by Larsen [43] who used a Lagrangian formulation. The
load-deflection curve for the apex displacement is plotted in Fig.
6.2 and compared with the results of Yaghmai (Ap=7.5 psi) and Lar-
sen (Ap=10 psi). The linear solution given by Yaghmai is also
plotted in the same figure. The present results indicate that the

nonlinear behavior of the shell is much softer than predicted in
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the earlier works. However, the load-carrying capacity is still
considerably higher than in the linear analysis and can be taken

advantage of in the design of such structures.

6.2.2 Dynamic Analysis

Examples presented in this section are:
(a) undamped forced vibrations of an elastic cantilever
(linear geometry),
(b) elastic-plastic response of a simply supported beam (1linear
geometry), and
(c) elastic and elastic-plastic dynamic response of a shallow

spherical thin cap (linear and nonlinear geometry).

6.2.2 (a) Linear Forced Vibrations of Cantilever

The geometry and material properties of an elastic
cantilever beam and time history of the load to which it is
subjected are shown in Fig. 6.3. The undamped forced vibration
analysis of this beam was carried out as a trial problem. Both
the Newmark (y = 0.5, 8 = 0.25) and Wilson (0 = 1.4) methods were
used and the results compared with the known exact solution. The
time increment used in the analysis is 0.004 sec. and the results
for the cantilever tip deflection normalized with respect to the
static solution are plotted in Fig. 6.4.

The effect of damping inherent in the Wilson o method is
to reduce the value of the peak amplitude compared with the Newmark
method and this can be observed in Fig. 6.4. Even the Newmark meth-
od which does not introduce any artificial viscosity into the numeri-
cal integration is seen to have reduced the peak amplitude to slight-

ly below 2.0 but this can be attributed to the discretization error
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involved and not to the solution procedure itself. The elongation

in time period is a function of the ratio At/T and can be reduced
if shorter time increments are used in the analysis. It has been
pointed out by Goudreau and Taylor[}1{]that the Wilson 8 method
exhibits very poor behavior for suddenly applied loads or if the
system is suddenly released from a deflected position, and the
initial inaccuracies in the solution in this example may be due

to the nature of the algorithm itself.

6.2.2 (b) Elastic-Plastic Response of Simply Supported Beam

A simply supported beam is subjected to uniformly
distributed pressure p(t) and the results are compared to some
nondimensional peak values reported by Baron et al [115]and by
Nagarajan and Popov [105], The material is assumed to be elastic-
perfectly plastic and Fig. 6.5 shows the geometry and material
properties of the beam. Taking advantage of symmetry about the
midspan, one half of the beam was considered in the finite element
analysis and five equal elements were used for the discretization.
Two types of load-time variation were considered as shown in Fig 6.5:
step pressure loading and a suddenly applied load which decays
exponentially.

The peak elastic-plastic response of the beam was determined
for p(t) = 0.75 p, in the case of step pressure loading, and for
p(t) =2 poe't/to in the case of esponentially decaying load. Here
Po is the value of the static collapse load and t,= T/2, T being the
fundamental period of the beam.

The midspan deflection, §, is normalized with respect to
A, the static elastic deflection corresponding to the load p,.

Fig. 6.6 shows the variation of 6/A with time for the step pressure
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load and also shows the curve given in Ref. [105]. The peak
value of 2.17 compares well with the value of 2.22 of Ref. [105]
and 2.28 of ref. [115].

The fundamental period of this beam is 0.0049 sec. for
linear elastic undamped vibration and the maximum value of &§/A for
such vibrations would be 1.5. As can be seen from Fig. 6.6, in
the case of elastic-plastic analysis the peak value is greater and
the time period elongated due to the plastic deformations which
cause softening of the system.

Fig. 6.7 shows the variation of &§/A with t/T and also
the curves given in Refs. [105, 115]. The time increment has to
be chosen much smaller for this problem because the exponentially
decaying load is more complex than the step function, and its
Fourier components range over the entire frequency spectrum, thus
exciting several modes of vibration in the beam.

6.2.2 (c) Shallow Spherical Cap

The shallow sperical cap shown in Fig. 6.8 has been
studied by many authors, most extensively by Stricklin et al [116]
and more recently by Nagarajan and Popov [105]. A linear elastic
dynamic analysis of this cap with a 100 psi step pressure was
studied in Sec. 4.5 as a trial problem.

The geometry, material properties and the load-time his-
tory are given in Fig. 6.8. Because of the symmetry of the structure,
only one half of it needed to be studied and a total of five elements
were employed to discretize the shell cap from the apex to the sup-
port. The Newmark (y = 0.5, 8 = 0.25) method was used with a time
step of 10 x 10'6 sec. Uniform external step pressures of 445 and 600

psi were applied on the cap and dynamic analyses were carried out for
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elastic and elastic-plastic cases assuming linear as well as non-

linear geometry.

(i) 445 psi Step Pressure

The apex displacement of the cap vs. time is plotted in
Fig. 6.9 for the different cases. Comparing the linear and nonlinear
elastic responses, it can be seen that the period of vibration is
greater for the nonlinear response. The inward radial motion gives
rise to a softening system whereas the outward motion causes the
system to stiffen and the effect of this is that the absolute peak
displacement of the apex is greater for the nonlinear analysis during
the inward motion and lower during the outward motion. In the case
of the plastic analysis, although the plastic yielding during inward
radial motion causes a softening of the system, the peak amplitudes
are lower than in the elastic responses. The frequencies of the
first several modes of vibration of a shell cap are clustered rather
close to the fundamental frequency and have a significant effect
on the response. This causes a number of minor oscillations which
result in repeated elastic unloading and plastic yielding, and the
damping introduced thereby lowers the peak amplitude of motion.

The nonlinear elastic-plastic response of the cap bears
a similar. comparison with the linear solution as the comparison between
the nonlinear and linear elastic responses. A1l the curves indicate
that the vibration occurs about the static solution.

The linear elastic-plastic response is compared in Fig. 6.10
with the solution given in Ref. J05]. It can be noted that, except
for the initial peak amplitudes, the two results show excellent
agreement. Isoparametric finite elements are used in Ref. [105]

while degenerate isoparametric elements are employed in this study.



APEX DISPLACEMENT (IN)

— — ELASTIC } LINEAR

.04 __.__ ELASTIC-{ GEOMETRY
T PLASTIC
/ .
~=--= ELASTIC / \\‘
NON-LINEAR I" \
ELASTIC-[ GEOMETRY , \t‘
PLASTIC [
02k
At = lI0u - SEC,
NEWMARK METHOD
y =05 [:0.25
TIME (SEC.X1076)
° :
800
-.02- STATIC
SOLUTION
-04f

FIG.6.9 DYNAMIC RESPONSE OF SHALLOW SPHERICAL

CAP UNDER UNIFORM EXTERNAL STEP
PRESSURE OF 445 PSI

120



APEX DISPLACEMENT (IN.)

0.04

121

———= REF. [los]
PRESENT STUDY
NEWMARK_METHOD
y=0.5[3:0.25 N
0.02 At = |0/.L - SEC.
TIME (SEC.X 10™6)
0 " : + ;
200 400 600 800 10Q0
-0.02

-0.04

-0.06

-0.08

STATIC
KS OLUTION

FIG.6.10 SHALLOW SPHERICAL CAP UNDER

UNIFORM EXTERNAL STEP PRESSURE
OF 445 PS| — ELASTIC-PLASTIC,
GEOMETRICALLY LINEAR ANALYSIS



122

0.04
At =10p -SEC.
NEWMARK METHOD WITH 8 CONTROL
—8:0 y:=05 B=0.25
--—=8=0.05 y =0.55 3=0.276
0.02 4 R
z -6
= TIME(SEC.XI0™°)
= 0 200 400 600 800 1000
W
s
s
O STATIC
< Y)LUT!ON
[a 8 '0-02 =
2/
o
P
W
a.
< 004}
‘I
’I
-0.06} =
'0-08

FIG.6.11 EFFECT OF USING NEWMARK METHOD WITH
8 CONTROL— ELASTIC-PLASTIC,
GEOMETRICALLY NONLINEAR ANALYSIS
OF SHALLOW SPHERICAL CAP UNDER
UNIFORM EXTERNAL STEP PRESSURE
OF 445 PSI



123

While the transverse normal stresses are retained in the former, the
latter formulation assumes that these stresses are negligibly small.
This affects the effective stress patterns which control the plastic
loading and contributes to the differences between the two solutions.
Finally, the effect of using the § control in Newmark's
method is demonstrated in Fig. 6.11 for the geometrically nonlinear,
elastic-plastic analysis of this cap for 445 psi step pressure. The
apex displacement-time graph from Fig. 6.9, using the standard New-
mark method, is replotted in Fig. 6.11 along with the solution obtained
using § = 0.05 in Newmark's method. As can be seen from this figure,
the primary effect of this & control is to smooth out the roughness
in the response and is the result of the damping introduced in the
higher modes. A small amount of damping is also presented in the
lower modes as a result of which the amplitude peaks are slightly

damped as may be seen in Fig. 6.11.

(ii) 600 psi Step Pressure

In order to illustrate more clearly the effect of the
nonlinearities on the response, a higher magnitude of pressure, a
600 psi uniform external step pressure was applied on the cap.

Fig. 6.12 shows the apex displacement as a function of time for the
different cases. The damping of the peaks, period elongation and
phase shift are now much more pronounced for the nonlinear analyses.
It is also apparent that the mean value about which the cap vibrates
is greater in the elastic-plastic cases than in the elastic
cases where vibration takes place about the static solution. This
indicates a greater permanent deflection in the elastic-plastic cases,
even though the static solutions are almost identical for elastic

and elastic-plastic analyses since this system is only mildly

nonlinear when a pressure-type loading is applied statically.
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The geometrically linear, elastic-plastic analysis of
this study is compared once again (Fig. 6.13) with the results
given in Ref. J05]. The agreement is very good except for the
initial peak value and the same discussion holds as in the case
of 445 psi. In addition, the use of § = 0.05 in the present
analysis introduces a slight damping of the peaks and smooths out

some minor oscillations in the response.

6.3 Elastic - Viscoplastic Analyses

The examples in this section demonstrate the capability

of Program VISPAX for solving problems in which the material is

assumed to behave in an elastic-viscoplastic manner. In addition,

elastic-plastic solutions are also obtained using this program

following two different approaches:

(a) Obtain viscoplastic solutions for several values of the material
viscosity parameter y and extrapolate for y > « (theoretically,
elastic-plastic solutions are obtained as vy = = ).

(b) Use time as an artifice to let the system reach equilibrium
states (i.e. the effective stresses at all points in the structure

are either on or inside the static loading surface).

6.3.1 Simply Supported Beam

A simply supported beam shown in Fig. 6.14 is considered as
the first example for elastic-viscoplastic analysis. The nondimensional
load defined in Fig. 6.14 is applied at a rate of 2 X 104 sec.”!
The static stress-strain curve is assumed to be elastic-perfectly
plastic. Two values of the viscosity coefficient are considered in

the analysis and inertia forces are neglected. Four elements are

used to discretize half the span and a 6 X 13 integration scheme is
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used for each element.

The normalized load-displacement curves are given in
Fig. 6.14 up to a value of p = 1.0 which would be the collapse
value were the load to be applied in a quasi-static manner. Fig.
6.14 also shows the theoretical elastic-plastic curve given by Prager
and Hodge [J17] for quasi-static loading and it is instructive to
compare it with the results of the present study. As expected the
curve for the Tower value of y is closer to linear elastic behavior
while the higher value of y corresponds closer to the elastic-
plastic solution. The elastic-perfectly plastic solution can be
achieved in the 1imit as y tends to infinity as discussed in section
3.2.3, and pursued further in the examples of a fixed end beam and
torispherical pressure head.

6.3.2 Fixed End Beam

The elastic-plastic analysis of a fixed end beam using
viscoplasticity formulation is considered next. The geometry of the
beam is shown as an insert in Fig. 6.15. The static stress-strain
curve is elastic-perfectly plastic and the material has the following

properties:

E=30X7100psi v=0.3 = 50,000 psi

%y
The beam is discretized using seven elements from a fixed end to the
midspan - two elements of 1.5 in. length near the fixed end, three
elements of 3 in. length and again two 1.5 in. long elements near the
midspan. The integration is performed using 4 X 11 scheme for each
element.

The norma]ized.1oad-def1ection for the midspan is presented

in Fig. 6.15,and Fig. 6.16 shows the midspan deflection as a function

of a normalized time parameter. Fig. 6.15 also shows the result
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obtained by using an elasto-plastic beam theory which accounts for the
gradual growth and propagation of plastic zones [118, 119]. Each
increment of load is applied elastically and then viscoplastic effect
is introduced because the stresses exceed the static yield surface.
This artifically induced effect continues until steady state elastic-
plastic solution is obtained. This is observed in Fig. 6.16 which
shows the displacement-time curves for each of the increments of load
application. The load-displacement progression towards the theoretical
elastic-plastic solution can be seén in Fig. 6.15. As the load level
increases, the steady state solutions show lack of convergence to
the theoretical curve and is quite characteristic of numerical
solutions to problems involving asymptotic behavior. It would be
necessary to make further refinements in discretization of the beam

to obtain better convergence.

6.3.3 Torispherical Pressure Head

The elastic-plastic behavior of a torispherical pressure
head was studied in section 6.2.1(b). The elastic-viscoplastic behavior
of the same is studied here and elastic-plastic solutions are also
obtained using viscoplasticity approach. The geometry of the pressure

head is identical to that analyzed in section 6.2.1(b)

D

100 in. R

100 in.

20 in. h =0.8 in.

1]

r

The static stress-strain curve is elastic-perfectly plastic, with
yield stress qy = 30,000 psi, Young's modulus E = 30 X 106 psi and
Poisson's ratio v = 0.3.

A total of 20 finite elements were used to describe the

shell from the apex to the support. Eight equal elements were used
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over the sphere, another eight equal elements over the torus and the
remaining four elements for the cylinder. Four Gaussian integration
points were used in the meridonal direction and eleven Simpson points
across the thickness.

The viscoplastic solution was studied for four different

values of the material viscosity coefficient, y, from 400 sec.”! to

5000 sec.'] and the internal pressure was applied at the rate of

10 X 100 psi/sec. Inertia effects were neglected but geometric non-
linearities were included in the analyses. Fig. 6.17 shows the plots
of internal pressure vs. apex deflection for these viscoplastic
analyses and also the elastic-plastic solution obtained in section
6.2.1(b). It can be seen that the viscoplastic solutions are stiffer
and predict higher load carrying capacity for the lower values of

Y, but as y increases the solution comes very close to the elastic-
plastic solution. Since elastic-plastic solution is expected as y- =,
a simple extrapolation precedure is used as shown in the auxiliary
plots in Fig. 6.17. The apex displacement, w, is plotted as a function
of 1/y at two selected levels of internal pressure, 450 and 500 psi.
For instance, the deflection at 450 psi for the four different values
of vy are plotted and joined by a curve which can then be extrapolated
for 1/y = 0, i.e. vy = ». In this case, the extrapolated curve
indicates that the apex displacement at 450 psi internal pressure
should be about 0.265 in. for an elastic-plastic solution. Similarly,
an apex displacement of about 0.6 in. is predicted at 500 psi for an
elastic-plastic pressure head. This pressure head was also analyzed
for elastic-plastic behavior using the second method mentioned in
section 6.3 in which time is used as an artifice in the viscoplasticity

solution. The elastic-viscoplastic solution for y = 400 sec.”! given
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in Fig. 6.17 was carried out until the internal pressure reached the

value of 450 psi. Then the solution was allowed to progress with time

towards a steady state elastic-plastic solution. Fig. 6.19 shows the

displacement-time curve reaching a steady state at about 0.265 in.

and this is also shown in the load-displacement graph in Fig. 6.18.

The elastic-plastic solution of section 6.2.1(b) is also plotted in

Fig. 6.18. The pressure was then increased to 500 psi using 10 psi

increments in the viscoplastic analysis. Once again, displacement was

allowed to increase with time in an artifical viscoplasticity solution.

The solution reaches a steady state at about 0.61 in. as can be seen

from Fig. 6.19. It may be observed now that these steady state elastic-

plastic displacements compare excellently with the results obtained

by extrapolating for y tending to infinity in the viscoplastic analyses.
Comparing these results with the elastic-plastic solution

taken from section 6.2.1(b) it appears that this pressure vessel has

an even softer behavior and lower collapse load than indicated by the

extremely refined elastic-plastic solution obtained earlier, and

caution must be exercised before accepting such analyses to have

converged if the results therefrom are to be used for design purposes.
This example clearly demonstrates the capability of the

viscoplastic analysis program to arrive at elastic-plastic solutions.

The approach using a large value of y in the viscoplastic analysis

appears to be more economical than the other in which stress redistribution

leads to steady states. This is due to the well known disadvantage of

the initial strain formulation which requires the latter scheme to

use a large humber of pseudo-time steps or iterations, especially

as the stiffness becomes very small. The direct application of

elastic-plastic analysis with refined load steps might require less
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computational effort than either of the two viscoplasticity schemes;
however, in the case of important and sensitive structures, it is
desirable to have independent alternate methods which can be used

to verify the accuracy and reliability of any one analysis.

6.3.4 Dynamic Analysis of Shallow Spherical Cap

Elastic-viscoplastic dynamic response analysis was conducted
for the same shallow spherical thin cap studied in section 6.2.2(c).
The dimensions of the cap are given in Fig. 6.8. The static stress-
strain curve was assumed to be elastic-plastic with linear strain
hardening and the material properties corresponding to this are also
given in Fig. 6.8. The viscosity coefficient, vy, of the material
was assumed to be 400 sec.-!

A total of five finite elements were used to discretize
the shell cap from the apex to the clamped support. The Newmark
method with § control (§ = 0.05, y = 0.55, B = 0.276) was used with
a time step of 10 X 1076 sec. Uniform external step pressure of
600 psi was applied on the cap and dynamic analyses were carried out
assuming both linear and nonlinear geometry.

The apex displacement of the cap vs. time is plotted in
Fig. 6.20. The results of the elastic analyses given earlier in
Fig. 6.12 are also repeated in the figure to facilitate comparison.

The viscoplastic responses exhibit lower peak values,
elongated time periods and phase shifts compared to the elastic
analyses. Also, the viscoplastic vibrations take place about a
greater permanent displacement than the elastic vibrations which
occur about the static solution. It may be noted that the visco-
plastic responses obtained here are, in fact, very similar to the

results of the elastic-plastic analyses in section 6.2.2(c), and
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Fig. 6.21 enables direct comparison of these results. Except for
the differences in the initial peak values, there is close agreement
between the elastic-plastic and viscoplastic responses for both
linear and nonlinear theories. This is attributed to the fortuitious
choice of the value for y and indicates that the chosen value of 400
sec.”) is a good estimate of the viscosity coefficient for this

material.
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7. SUMMARY AND CONCLUSIONS

A numerical method has been presented for nonlinear
static and dynamic analysis of shells of revolution under axi-
symmetric loading. The physical nonlinearities arise from the
consideration of elastic-plastic or elastic-viscoplastic
material properties, and the geometric nonlinearities are due to
large displacements caused by finite rotations. An incremental
variational formulation using the Lagrangian mode of description
of motion was used to obtain the incremental equations of motion
which were subsequently modified to take into account the mater-
ial constitutive behavior. The displacement increments during
each step were assumed to be small which enabled the equations to
be considered in their linearized form. The accuracy of the
incremental solution procedure was improved by applying an
equilibrium correction to each step.

The symmetric Piola-Kirchhoff stress and Lagrangian
strain were used in all the constitutive relations. Flow theory
of plasticity with von Mises yield criterion and isotropic
hardening were employed in the case of elastic-plastic analyses
and the tangent stiffness approach was used in the variational
formulation. Rate sensitive material behavior, on the other hand,
was treated using an initial strain formulation wherein visco-
plastic pseudo-loads were obtained as a result of the decompos i-
tion of stress increments into "instantaneous elastic" and
“delayed viscoplastic" components. The same yield condition and

hardening rule were employed as in the case of inviscid plasticity
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and the viscoplastic strain rate (lumping together both the
plastic and viscous effects) was related to the amount by which
the static loading surface was exceeded at any given time.

The modified incremental technique was used for the
numerical analysis of nonlinear problems. In the case of
dynamic analysis, direct integration of the equations of motion
was carried out using step-by-step solution procedures. While
the Rayleigh form of viscous damping in the structure may be
considered, it is also possible to introduce into the solution
any desired amount of artificial viscosity by appropriate choice
of parameters in the direct integration algorithms. Finally,
the finite element formulation was based on the degenerate
isoparametric element with cubic displacement variation. Both
thin and moderately thick shells may be considered as a result
of the relaxation of Kirchhoff hypothesis.

A number of numerical examples were presented to
illustrate the accuracy of the computer programs developed for
the analysis of both plane stress and axisymmetric problems.

Very good comparisons were obtained with either available exact
solutions or existing numerical solutions. The capability of

the viscoplasticity formulation, not only to treat rate sensitive
materials but also to serve as an artifice for obtaining elastic-
plastic solutions, was demonstrated using two different approaches.
Several extensions may be made to the computer programs developed
during this investigation. A kinematic hardening rule may be
introduced into the plasticity relations to enable consideration

of both 1inear and nonlinear hardening of materials. In the case



of viscoplasticity, more experimental studies are needed to

guide the choice of viscosity parameters for different materials.
Different functional forms may also be established for the scalar
function used in viscoplastic constitutive relations, and in-
corporated very easily in the computer programs. An automated
technique for selection of time steps can improve the

efficiency in the use of viscoplasticity formulation for

arriving at steady state elastic-plastic solutions.

The efficiency of the coding and program organization
should be studied carefully, and any possible improvements
implemented before these programs are used for the analyses of
large systems. Isoparametric quadrilateral elements with addi-
tional internal degrees of freedom may be included in order to
analyze axisymmetric solids with sharp discontinuities in geome-
try. The study of dynamic buckling of shells may be developed
as a further extension of the present investigation. The
modification to extend the analysis capability to general three
dimensional problems should be possible without too much diffi-
culty, but the amount of computer time required may become

prohibitive for any practical problem.
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APPENDIX A. INTERPOLATION POLYNOMIALS

The following are the interpolation polynomials for

linear, quadratic, cubic and quartic elements shown in Fig. 5.1.

Linear element Nodal points (-1, +1)
1
¢1(§)=§(1'E)
1
¢, (£) = 5 (1 + g)

Quadratic element Nodal points (-1, 0, +1)

¢, (8) =-36(1-¢)
¢, () = (1 -¢%)

05 () = - (1 +¢)

NI

Cubic element Nodal points (-1, -é, o, +§, +1)

6, (8) = 0 (1= ) (-1 + 9¢%)

0, (6) == (1-36) (1-¢7)
¢, (8) = ¢ (1 +35) (1-¢%)
0, (8) = = (1 +5) (-1+9¢")

Quartic element Nodal points (-1, -

ce(1-8) (1-4

1
Os +§s +])

1

Es
2

)

¢, (&)

6, (€)= =& (1-28) (1-¢)
0y (£) =1 - €2 (5 - 4?)
6, (€) =3¢ (1+28) (1-¢7)

05 (8) = =& (1+8) (1-4)



APPENDIX B. DISPLACEMENT GRADIENT MATRICES

The procedure for evaluation of the displacement
gradient matrices [B,] and [Bz] is outlined in this appendix.

The geometry and displacement field for degenerate
isoparametric elements are given by

{r; - ZN: (&) % §+ n Z >4y (8) b 3cos eit (5.2)
i=1

r4 sin ei

and

-sin 0,

N u; N
Z%-(E){ €+n Y 5 ¢; (&) hy %coseia (5.3)
i=1 Y i=1 1

P Y

= c

Ny
1}

The chain ru)e of differentiation gives

9 2

ar 1 13
T detJ (9] (8.1)

9 3

FY3 n

where [J] is the Jacobian matrix given by

9z a3z
an =~ ¥
(o] = (B.2)
_ar  or
an 13
and
= . dzar _ azoar
IJI = det J ) 3 an (B.3)

Combining Eqs. (5.2) and (B.3), one gets
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NI -

1
9] = (¢i,g rytzm ¢1.E hi cos ei) ¢j hj sin ej

¢j hj cos ej

Ny -

=1
Let p'IJ -3 ¢1 o ¢J (B.4)
- : - 1
Then |J| = Pij (hj (ri sin 8; - 2, cos ej) t+5nh, hj
(sin ej cos 6, - cos ej sin ei”
Define:
Jp (g) = Pij hj (ri sin 65 - 24 cos ej)
_ 1 - .
J, (g) = Pij 3 hi hj (sin ej cos 6, - cos ej sin ei)
Then
19l = 9, (g) + n 9, (&) (B.5)
Defining
{PS} = Pij hJ sin ej
PC} = .. N. .
{PC} P1J hJ cos eJ
<SP> = Pij hi sin ei
(B.6)
<CP> = Pij h,i cos e1
<RP> = Pij ri
<IP> = Pij Z1

one can write J, (£) and J, (g) in the form

J, (&)

<r> {PS} - <2> {PC}

J, () = <h cos o> {PS} - <h sin o> {PC}



The global displacement gradients can be derived in a

similar manner using Eqs. (5.2, 3) and the chain rule of

differentiation, Eqs. (B.1, 2), e.q.

u_ 1 (é!.éz._ 2!.25)
r 3] \eg an ~ an 3t
1 [ . 1 .
= TjT-(E ¢j hj sin ej (¢i,g u; =3 ¢i,g hi sin e, “i)
' 1 . 1 .
+ (¢j,£ Z 5 ¢3¢ hj sin ej) 5 ¢; hy sin e, u.i)
or
ou _ 1 1 .
T T:]T (<u> {PS} + <ZP> {h sin 6 a} + 57 (<SP> {h sin 6 a}
- <h sin o o> (PS))) (8.7)
Similarly, expressions can be obtained for g¥3 %3 %%, and %%

1
3¥-= T%T- (- <w> {PC} + <RP> {h cos 6 a} + 5 n{<CP>{h cos 6 a}
- <h cos 6 o> {PC})) (B.8)
u _ 1 1 .
+ =7 (65 U = 5 n o5 hyosin oy ag) (B.9)

v _ T%T (- <u> {PC} - <RP> {h sin & a}

- 3 n (<CP> (h sin 6 o} - {h sin 6 a} <PC>))  (B.10)

-F}r (q~> {PS} - <ZP> {h cos 6 a}
+ 310 <hcos 6> (PS} - <SP> {h cos 0 a})) (B.11)

In Eqs. (B.7-11), |J| and r are functions of ¢ and n.

These equations may be written as
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u _ 1

'F = F (<b:>3 + n <b;>3)
su _ 1
—a—z- = T:]T (<b¥>u + n <b;>u)
W

1 * *
or 9T (<b1>s + n <b2>5)

where the vectors <bf>i, <bg>i, i = 1,5 can be obtained from

Eqs. (B.7-11). For example,

<b’1‘>1 = < {PS}, O <ZP>, h, sin e, {PS}, 0 <ZP>, h

(1 X 3N)

, sin e,
and

<b§>1 = < % (<SP>1 - <PS>1) h1 sin 8, %(<SP>2-<PS>2) h2 sin 92

(1 X N)

For a cubic element, these vectors have the dimensions 1 X 12

for <b¥> and 1 X4 for <b3>
i i

A coordinate transformation from the global (r,z) system
to the local (s,t) system yields <by>; and <by>., 1= 1,4.

This can be achieved by a transformation matrix [T], i.e.,



[ (au)
9S ar
u w
r oz

< au, 5 = 1
o u
X 4 %5 v )
U2 u

Las °0Z

J
4 x 1 3w
LBY‘J
5 X 1

This matrix [T] ca