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Abstract— Measurements that significantly deviate from
those predicted by the model or from the normal pattern
of sensed data are considered as outliers. Since outliers can
degrade the performance of state estimation, outlier accom-
modation is critical. The traditional Neyman-Pearson Kalman
filter approach is to ignore all residuals greater than a designer
specified threshold. The criticism of such techniques is that they
allow missed detections to pass through undetected thereby
corrupting both the state estimate and covariance. This causes
the state estimation gain and all subsequent outlier decisions
to be based on an invalid model.

In sensor rich applications, where large numbers of sensor
measurements are available, all the sensor data may not be
needed to achieve the system accuracy specification. Global
navigation satellite systems (GNSS) is one such sensor rich
application since various satellite systems are available, each
of which supplies more than the minimal number of satellites
needed to estimate the system state. Using more data than is
required to meet the specification exposes the state estimate
to unneeded risk of outlier inclusion. This paper formulates
and solves the state estimation problem from the perspective of
minimizing risk while achieving a performance specification.

I. INTRODUCTION

An outlier is an observation that deviates from other
observations or the model prediction by enough to arouse
suspicion that it was generated by a different mechanism [1].
The outlier detection problem is fundamental to data-driven
applications including: system identification, state estimation
[2], image processing [3], mapping [4], etc. In recent years,
autonomous vehicles have found application in tasks such
as navigation, search and rescue, and real-time monitoring
with rich information sources [5], [6]. Due to advances in
information technology, larger and larger amounts of data
are collected in databases. Hampel [7] estimates that a
routine data set may contain 1− 10% outliers. Achieving
a performance specification and accurately predicting when
it is or is not achieved are critical goals. Hence, outlier
accommodation continues to attract much attention.

In applications such as navigation, the environment is
signal rich: images contain many features and GNSS com-
prises many separate systems each of which oversupplies
the number of satellites necessary for state estimation. To
achieve a specified level of state estimation accuracy, the full
set of measurements is typically not required. If the full set
of measurements was used, then the state estimate will have
been exposed to unnecessary risk, while predicting through
the computed covariance that it is over-performing relative
to the specification, all the while likely including outliers
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that make the state estimate and performance prediction
incorrect. Various proposed approaches [8] try to detect and
remove outlier measurements detected relative to a threshold
fixed at design time. The choice of that threshold entails a
tradeoff between missed detections and false alarms. When
the threshold is fixed at design time, it is independent of
the actual measurements available and the actual accuracy
performance that is achieved.

In sensor-rich environments, the state estimation problem
can be considered from fresh perspectives built around
optimization, e.g., [4], [9]–[11], that do not explicitly char-
acterize each measurement is an outlier or inlier. In fact,
this distinction is generally not observable. In [4], [9], latent
variables are introduce to deactivate outliers in pose graph
problems. The authors of [10] search for a maximum subset
of pose graph measurements that are consistent with the
same system. The least soft-thresholded squares approach
developed in [11] uses a quadratic cost for residuals up to
a given magnitude with a linear penalty thereafter, thereby
decreasing the effect of outliers.

This article focuses on estimating the state vector to
achieve a specified level of performance while incurring
minimum risk. The resulting approach shares ideas with and
was motivated by [10]. Where [10] focuses on choosing the
maximal set of measurements self-consistent with a model,
our approach herein focuses on achieving a specification
with minimal risk. Implementation of our approach uses the
indicator variable method introduced in [10].

Selecting a subset of measurements is similar to the sensor
selection problem [12]–[15], which chooses a given number
of measurements to minimize a cost function, e.g.: entropy,
or log volume of the confidence ellipsoid. Our problem
which minimizes risk with a constraint on performance is
distinct from the sensor selection problem that minimizes a
cost with a constraint on the number of chosen sensors.

The paper is organized as follows. Section II, the problem
notation is presented and the unobservability of outlier is
discussed. Section III, we present the problem formulation
as an constrained convex optimization to select a set of
measurements to achieve a lower bound on the information.
Section IV solves the optimization in two steps. Section V
discusses an example simulation application.

II. PROBLEM STATEMENT

A. Notation

Let xk ∈ Rn represent the state vector at discrete-time k.
The equation for the time-evolution of the state is:

xk = Φk−1xk−1 +Gk−1uk−1 +ωk−1 (1)
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where Φk ∈ Rn×n and Gk ∈ Rn×`. The variables u, ωk ∈ R`

are a vector of user-determined (known) inputs and white
Gaussian process noise with ωk ∼ N (0, Qk), respectively.
We assume the availability of a known Gaussian prior
probability function (PDF) N (x+k−1, P+

k−1).
The measurement vector zk is modeled as:

zk = Hkxk +ηk (2)

where Hk ∈ Rm×n is the measurement matrix and η ∼
N (0, Rk) represents white Gaussian measurement noise.
The covariance matrix Rk is assumed to be invertible and
diagonal1. In addition to measurement noise, zk may be
affected by outliers at some time instants.

A canonical representation of N (µ, P) is given by the
information matrix J = P−1 and the information vector ζ =
P−1µ . The information vector and matrix are propagated to
time k from k−1 using eqn. (1) as [16]:

J−k = (Φk−1(J+k−1)
−1

Φ
>
k−1 +Qk)

−1

ζ
−
k = J−k

[
(Φk−1(J+k−1)

−1
ζ
+
k−1)+Gk−1uk−1

]
.

(3)

At time k a measurement zk related to the state xk becomes
available which is assumed to be generated in accordance
with eqn. (2). Assuming use of the optimal gain, the infor-
mation vector and matrix are updated according to:

J+k = H>k R−1
k Hk + J−k

ζ
+
k = H>k R−1

k zk +ζ
−
k .

(4)

B. Hypotheses testing

Standard approaches to accommodating outliers include
two stages: a) residual generation (RG), which can be
accomplished by least squares [17], recursive least squares
[18], parity space [19], etc.; and, b) decision making (DM)
[20]. Standard decision making methods test the residual
rk = zk −Hkx̂ between each measurement and its expected
value relative to a threshold confidence bound β :

||z−Hx̂|| ≤ β . (5)

When condition (5) fails then an outlier has been detected.
For outlier identification eqn. (2) is modified to

zk = Hkxk + s+n (6)

where s∈Rm is the unknown outlier vector. Unfortunately, xk
and s cannot both be estimated from zk because the number
of constraints m is less than the number of unknowns m+n.
Therefore, the outlier estimation problem is unobservable.

Hypotheses testing solves this issue by adding structure to
s that decreases the number of unknowns. For example, to
detect single outliers consider each i = 1, . . . ,m separately.
Defining s = µiei changes eqn. (6) to

zk = Hkxk +µiei +n (7)

1Note that there is no restriction attached to this assumption. The
solution can be used for any invertible covariance matrix by using the
transformation z′ = Σrz with R−1 = Σ>r Σr , the measurement model for z′
is:

z′ = H ′x+η
′ where H ′ = ΣrH , η

′ ∼N (0, I)

where I is the identity matrix.

where ei ∈ Rm is the i-th column of the identity matrix and
µi ∈ R is the outlier magnitude. With this model, for each
i, there are only (n+ 1) unknowns, so both x and µi can
be estimated as long as m ≥ n + 1. In this case, if µi is
sufficiently large, the i-th element of zk is classified as the
outlier.

The above approach can be extended to detect `-tuples of
outliers by including ` parameters and ` columns of the iden-
tity matrix. The resulting problem is solvable for `≤ (m−n)
as long as Hk augmented with the appropriate columns of
the identity matrix is full rank; however, reliability of the
test decreases as (m−n− `) decreases. Also, the number of
hypotheses grows rapidly with `:

m−n

∑
`=1

(
m
`

)
=

m

∑
`=1

m!
(m− `)!`!

Outlier identification executes consecutively for each alterna-
tive hypothesis. Depending on the number of hypotheses, this
testing can have high computation cost. If the actual outlier
is not in the hypotheses set, or even if it is, depending on
the decision threshold, it may be missed.

C. Summary of Approach

This article considers an alternative approach motivated
by the ideas in [10]. Instead of focusing on outlier rejection,
the goal herein will be to estimate the state vector xk with
specified accuracy J+k ≥ J` when measurements uk−1 and zk
are given, with least risk of the state estimate being corrupted
by outliers.

III. PROBLEM FORMULATION

From the Maximum A Posteriori (MAP) perspective the
state estimate is [16]:

x?k = argmax
xk

p(xk,xk−1,uk−1,zk)

= argmax
xk

p(xk−1)p(xk|xk−1,uk−1)p(zk|xk)

Given the Gausian assumptions for the prior, process, and
measurement noise, the negative log-likelihood can be em-
ployed to convert the solution into the minimization of an
equivalent least-squares cost function:

x?k = argmin
xk

(
‖(Φk−1xk−1 +Gk−1uk−1)− xk‖2

Qk

+‖Hkxk− zk‖2
Rk
+‖xk−1− x̂k−1‖P+

k−1

) (8)

where the squared Mahalanobis norm of vector r with covari-
ance Σ is denoted by ||r||2

Σ
= r>Σ−1r which is equivalent to

||r||2
Σ
= ||Σ 1

2 r||2. The notation x̂ will be used to represent the
expected value of x. At this point, we drop the subscript k in
the optimization variable xk for simplicity. Eqn. (8) is a least-
squares problem that can be efficiently solved, to yield the
standard Kalman filter in information form. That approach
does not address the existence of outliers. Therefore, outliers
will cause both the state estimate and the computed error
covariance to become inaccurate.

In [10], the main new idea was to change the focus
from detecting outliers to finding the largest subset of the
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measurements that can be consistently produced by the
assumed measurement model. Their approach introduced a
binary vector b = (b1 b2 · · · bm)

> with bi ∈
{

0,1
}

that
will be used to disable or enable a measurement. If bi = 1, the
ith measurement is in the optimization process and if bi = 0,
the measurement is ignored. Therefore, eqn. (8) becomes

x?k , b? = argmin
x,b

(
‖xk−1− x̂+k−1‖P+

k−1

+‖(Φk−1x̂+k−1 +Gk−1uk−1)− x‖2
Q

+‖Φ(b)
(
Hx− zk

)
‖2

R
) (9)

where Φ(b) = diag(b) and the variables x̂k−1, P+
k−1, uk−1 and

zk are known.
The model and prior are always trusted (i.e., outlier-free).

Therefore, the first and second term of the optimization can
be propagated using eqn. (3) yielding:

x?k ,b
? = argmin

x,b

[
‖x− x−k ‖

2
P−k

+‖Φ(b)>(Hx− zk)‖2
R
]

subject to: bi ∈
{

0,1
}

for i = 1, . . . ,m,
(10)

where x−k = Φk−1x̂k−1 +Gk−1uk−1 represents the prior state
vector estimate and P−k = Φk−1P+

k−1Φ>k−1 + Q is the prior
covariance.

The cost function in eqn. (10) can be written as

C(x,b) = ‖r(x,b)‖2 (11)

where r(x,b) = Abx− cb with

Ab =

[
ΣRΦ(b)>H

ΣP−k

]
and cb =

[
ΣRΦ(b)>zk

ΣP−k
x−k

]

and (P−k )−1 = (ΣP−k
)>(ΣP−k

) and R−1 = Σ>R ΣR. For any fixed
b, the minimum cost C(x,b) as a function of x quantifies
the risk associated with using the measurements selected by
those indices with bi = 1. The i-th element of the binary
vector b determines whether or not the i-th row of Ab and cb
is non-zero. When b is given, the optimization problem in
(10) for x is a least-squares problem that can be converted
to the Normal equation

Abx = cb.

As currently stated, the minimum risk associated with
(10) is achieved for b = 0 ∈ Rm×1 (i.e., discarding all the
measurements). In [10], the authors proceeded by finding
the largest subset of the given measurements for which there
exists a configuration which explains those measurements.

Alternatively, herein, we consider an approach that finds
the set of measurements that satisfy a performance speci-
fication with minimum risk. The performance constrained
optimization problem is

x?k ,b
? = argmin

x,b
C(x,b)

subject to: J+b ≥ Jl

bi ∈
{

0,1
}

for i = 1, . . . ,m,

(12)

where Jl is an user-defined minimum accuracy specification
and J+b is the posterior information matrix corresponding to
the using the measurements that have bi = 1.

Note that the solution of this problem is not to simply
select the smallest residuals that yield observability. One
reason is the existence of a prior, which may make mea-
surements in certain directions less useful. A second reason
is that satisfaction of the performance constraint will require
the selected rows of H to be sufficiently distinct.

The diagonal covariance matrix R can be written as

R =
m

∑
i=1

σ
2
i eie>i . (13)

Using eqn (13) and the definition of Φ(b) following eqn. (9),
the Fisher information matrix Jb in the optimization (12) is

J+b = H>Φ(b)>
( m

∑
i=1

1
σ2

i
eie>i

)
Φ(b)H + J−k

= H>
( m

∑
i=1

b2
i

σ2
i

eie>i
)

H + J−k

=
m

∑
i=1

b2
i

σ2
i

h>i hi + J−k

(14)

where hi is the ith row of H.
Therefore, the optimization problem becomes:

P1 : min
x,b

[
‖x− x−k ‖

2
P−k

+‖
m

∑
i=1

bi

σi
eie>i (Hx− zk)‖2

]
subject to:

( m

∑
i=1

b2
i

σ2
i

h>i hi + J−k
)
≥ Jl

bi ∈
{

0,1
}

for i = 1, . . . ,m.

Problem P1 is not convex. By using the binary definition of
b, b2

i = bi, so that P1 is completely equivalent to

P2 : min
x,b

[
‖x− x−k ‖

2
P−k

+‖
m

∑
i=1

bi

σi
eie>i (Hx− zk)‖2

]
subject to:

( m

∑
i=1

bi

σ2
i

h>i hi + J−k
)
≥ Jl

bi ∈
{

0,1
}

for i = 1, . . . ,m

which is separately (not jointly) convex in x and Boolean for
b. By replacing the nonconvex constraint b ∈

{
0,1
}m with

the convex constraint b ∈ [0,1]m, P2 is relaxed to:

P2r : min
x,b

[
‖x− x−k ‖

2
P−k

+‖
m

∑
i=1

bi

σi
eie>i (Hx− zk)‖2

]
subject to:

( m

∑
i=1

bi

σ2
i

h>i hi + J−k
)
≥ Jl

bi ∈ [0,1] for i = 1, . . . ,m.

(15)

which is a convex problem separately in x and b with convex
feasible set for b.

Note that the feasible set for the relaxed optimization in
P2r contains the feasible set for P1. Therefore, the objective
value of P2r is a lower bound on the objective value of P1
[13].
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IV. SOLUTION METHOD

A. General Case

Problem P2r is a convex problem for either variable x or
b, separately, but not jointly. Hence, problem P2r can be
solved by using multi-convex programming by alternatively
updating b and x using the modified algorithm described
below [21]. The proximal terms are added in the cost
function (see below) where the convergence of this algorithm
is proved in [22]. This problem is solved iteratively. The
iteration number will be indicated by a right superscript `,
starting at zero.

1) Selecting the measurements: In this step, the optimal
b`+1 is found for fixed x`k. Consequently the first term
‖x−x−k ‖

2
P−k

in problem (P2) will be dropped because it
is independent of b. Based on [23], the proximal term
λ‖b−b`‖2 is required to penalize the change of b`+1

in comparison with b`, the optimization in standard
form will be:

P3 : min
b
‖

m

∑
i=1

bi

σi
eie>i (Hxk− zk)‖2 +λ‖b−b`‖2

subject to: Jl−
( m

∑
i=1

bi

σ2
i

h>i hi + J−k
)
≤ 0

bi ∈ [0,1] for i = 1, . . . ,m.

where λ > 0 is the user-defined proximal parameter.
This is a least squares problem constrained by a
linear matrix inequality (LMI). Since, the constraint
on information matrix is in positive definite cone (see
Appendix), optimization P3 is a standard semidefinite
programming (SDP) problem and can be efficiently
solved by interior point methods.

2) State update: In this step, the variable x`+1 is opti-
mized with fixed b`+1. The proximal term β‖x− x`‖2

penalizes the change of x`+1 in comparison with the
last iteration. The optimization is:

P4 : min
x

[
‖x− x−k ‖

2
P−k

+‖
m

∑
i=1

bi

σi
eie>i (Hx− zk)‖2

+β‖x− x`‖2
]

where β > 0 is the user-defined proximal parameter.
which is an unconstrained least squares optimization
problem. The gradient of the cost function C(x) is:

∇xC(x) =2P−
−1

k (x− x−k )

+2H>Φ(b)2R−1(Hx− zk)+2β (x− x`).
(16)

The optimal value for xk can be computed as the roots
of the gradient which results:

xk = D−1(P−
−1

k x−k +H>Φ(b)2R−1zk +βx`)

where D = (P−
−1

k +H>Φ(b)2R−1H +β I).
To initiate the optimization solution, the two steps are in-

terchangeable. If an initial value of x is accurate (J−k is large),
the algorithm can start with Step 1 to optimize b for fixed x.
When the initial value of x is not accurate (J−k is small), the

optimization can be started with Step 2 to find x assuming all
the measurements are selected i.e. bi = 1 for ∀i = 1, · · · ,m
which is equivalent to applying Least Squares method to
estimate x. In either case, subsequent optimization steps are
employed iteratively until the convergence criteria is met.

B. Specification for Reduced State

Sometimes maximizing a subset of the posterior infor-
mation matrix Js ∈ Rs×s with s ≤ n is of interest. We can
define a transfer matrix {V ∈ Rn×s|Vi j = 0,1∀i, j} such that
VV> ∈ Rn×n is a block matrix. The entries in the block
matrices of VV> are equal to one if the corresponding block
matrix in Jb is of interest otherwise they are equal to zero.

By using transfer matrix V , we will have:

P5 : min
x,b

[
‖x− x−k ‖

2
P−k

+‖
m

∑
i=1

bi

σi
eie>i (Hx− zk)‖2

subject to: V>
( m

∑
i=1

bi

σ2
i

h>i hi + J−k
)
V ≥ Jls

bi ∈ [0,1] for i = 1, . . . ,m.

where Jls ∈ Rs×s is an user defined lower bound for a
subset of the posterior information matrix. Equivalently, the
optimization (P5) can be solved by an algorithm similar to
the algorithm in Section (IV) and the optimal value of x and
b will be computed by iteratively updating b and x in two
steps optimization.

V. NUMERICAL RESULTS

This section discusses a Matlab implementation to evaluate
the performance of the approach proposed in Section IV-B.
We will first consider the case without outliers, then evaluate
our approach where outliers exist.

A. Setup Details

Assume a sensor moves with unknown white Gaussian
acceleration. The state vector x(k) = [p>, v>, a>]> ∈ R9

comprises the 3D position, velocity and acceleration. The
task is to estimate the state of the sensor as a function of
time using sensor position measurements z(k)∈Rm available
at time instants tk = kT for k = 1,2,3, · · · . At each time step
the first three columns of the H matrix are an m×3 random
matrix. All other columns are zero. For observability, three
linearly independent position measurements are required.
To simulate a sensor-rich environment, this example uses
m= 10. For the results that include outlier measurements, the
outlier rate will be 20%. The information lower bound for the
position components is selected to be 4 m2. The remaining
diagonal elements of the lower bound are set small enough
to have no impact (i.e., always feasible). At the conclusion
of the optimization (15), the real values of b were mapped
back to binary values using threshold of 0.1.

B. Results

The minimum risk approach proposed herein will be
compared with two Kalman filters (KF) each using m mea-
surements. One will be immune from outliers. The other will
be subject to with outliers at the stated rate, without outlier
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(a) Position Information Matrix Comparison (b) Position Error Histogram

Fig. 1: Performance Comparison

rejection. The data includes time propagation at 125HZ and
position measurement at 1 HZ.

Fig. 1a shows the temporal progression of the square-
root of the horizontal position components p1 and p2 of
the computed information matrix during one example run.
(i.e. [J(t)]1 and [J(t)]2 as propagated by eqns. (3, 4) At
each integer second a measurement update occurs which
increases the information matrix. Between the measurement
time instants the position information decreases due to the
accumulating velocity and acceleration uncertainty. For the
KF both with or without outliers, the progression of the
computed information matrix is identical, because the KF
is unaware of the outliers. For the KF that is immune from
outliers, this information temporal progression is correct. For
the KF that is affected by outliers, both the state estimate and
the information matrix are wrong with the information matrix
being too large (i.e., optimisitic). For the minimum risk (MR)
approach, after k = 1 the information increase achieves the
lower bound (blue), but is not as large as the Kalman filter,
due to the cost function penalizing risk.

The position error vector is

E(k) = ‖ p̂(k)− p(k)‖ (17)

where p̂ and p are estimated and true position states,
respectively. Simulations lasting 50 seconds were repeated
for 100 experiments with different randomly chosen initial
conditions, outlier profiles, and acceleration sequences. Fig.
1b compares the position error histograms of the three
methods. While the KF that is unaffected by outliers slightly
outperforms the MR approach, the MR approach does satisfy
the 0.5 m position error specification. The KF that is affected
by outliers has position errors up to 6 m.

VI. CONCLUSIONS
This paper presents a novel approach to improve the

robustness of a state estimation when the measurement data

may contain outliers. The core contribution of this article
is changing the focus from outlier detection, to looking for
a subset of measurements which have minimum risk while
achieving a lower bounded information for state estimation.
We present a solution for the case when accuracy specifica-
tion for a subset of information is of interest. We proposed
a general, but tractable framework, for real-time linear state
estimation. Our final formulation (Problem P2r) is a con-
strained separately convex linear least squares optimization
and can be solved by interior point methods. The simulation
results herein were not real-time due to the computational
load of solving SDPs. Algorithms with faster computation
are of research interest. Extensions to nonlinear and sliding-
window application and real-time implementation are of
interest for future work.
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VII. APPENDIX

Positive Semidefinite Analysis For Information Constraint:
The covariance matrix is positive definite then based on eqn.
(3), posterior information matrix J−k which is the inverse of
covariance J−k = P−k

−1 is also positive definite. The second
term of Jb as H>Φ(b)>R−1Φ(b)H is positive definite.

Using the definition of positive definite matrices, assume
a nonzero a = [a1, a2, · · · , am]

> ∈ Rn to have:

a>H>Φ(b)>R−1
Φ(b)Ha = (Φ(b)Ha)>R−1(Φ(b)Ha)

where
(
Φ(b)Ha

)
j = ∑

n
i=1H jiai. Subscript j denotes the jth

entry of a vector and H ji represents the i jth entry of matrix
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Φ(b)H. By using the diagonal representation of R, eqn. (VII)
will be:

a>H>Φ(b)>R−1
Φ(b)Ha =

m

∑
j=1

n

∑
i=1

1
σ2

j
(H jiai)

2

which is greater than zero ∀a 6= 0. Hence,
H>Φ(b)>R−1Φ(b)H is positive definite. Consequently,
the information constrained is positive definite if and only
if the lower bound Jl is chosen to be positive definite matrix.
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