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ABSTRACT OF THE DISSERTATION

Distributed Constrained Bayesian Optimization: Autonomous Camera Control

by

Akshay Ajit Morye

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2013

Dr. Jay A. Farrell , Chairperson

This dissertation describes methods to autonomously control an intelligent camera net-

work with changeable pan, tilt, and zoom (PTZ) parameters for the purpose of ob-

taining high resolution facial imagery of randomly maneuvering targets. Every camera

is treated as a self interested decision making agent that works in cooperation with

the other agents in the network to attain a predefined system goal. The per camera

per target image quality is designed and defined mathematically to formulate a dis-

tributed constrained optimization problem. Each camera is restricted to alter its own

PTZ settings. All cameras use information broadcasted by neighboring cameras such

that the PTZ parameters of every camera are optimized relative to the global objective.

At certain times of opportunity, due to the configuration of the targets relative to the

cameras, and the fact that each camera may track many targets, the camera network

may be able to reconfigure itself to achieve a required target tracking specification for

each target with remaining degrees-of-freedom. The remaining degrees-of-freedom can

be used to obtain high resolution facial images from desirable viewing angles for certain

targets. The challenge is to design algorithms that autonomously find these time in-

stants, the appropriate imaging camera, and the appropriate parameter settings for all

viii



cameras to capitalize on these opportunities. The methodologies and solutions proposed

herein involve a Bayesian formulation. The Bayesian formulation automatically trades

off objective maximization versus the risk of losing target tracking performance. The

dissertation describes a mathematical formulation of the visual sensing problem, design

of functions that provide a measure of system performance, development of distributed

methodologies that allows cameras to exchange information and asymptotically converge

on optimal solutions, and incorporation of planning into the PTZ optimization method-

ology. The work herein presents theoretical solutions and analyses of results obtained

on a simulated network of smart PTZ cameras.
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Chapter 1

Introduction

Static camera networks have a lower per camera cost of installation than pan-

tilt-zoom (PTZ) camera sensor networks; however, PTZ camera networks can have

lower total installation cost with greater performance. Static camera networks must

be designed to achieve the coverage and tracking specifications given worst case target

distributions. Installation cost constraints can lead to imagery sequences from static

camera network applications that are quite challenging to analyze. PTZ camera net-

works, with appropriate software and communications, can dynamically reconfigure in

response to application events and actual target distributions to optimize the acquired

imagery sequences accounting for viewpoints and resolution, to facilitate image analy-

sis and scene understanding. It is also desirable in many applications for the tracking

and control mechanisms to be distributed due to bandwidth and security constraints.

In fact, some applications may necessitate the use of a distributed architecture, e.g.

disaster response, military applications, etc.

A prototypical application is a security screening checkpoint at the entrance

lobby of a building. Over the course of each day a high volume of people travel through
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the room. The room is equipped with a fixed number of cameras while the number and

location of people in the room varies with time. Tracking a target is defined as estimating

the position of the target with tracking performance better than a specified threshold T̄.

Imaging a target is defined as obtaining an image of a target with resolution exceeding r̄.

The objective of the camera network is to track (i.e., estimate the state of) all persons

in the room at a specified accuracy level at all times, and to capture high-resolution

images for certain persons in the room at opportunistically selected time instants.

The challenges of such an application are development of algorithms to ensure

accurate propagation of target-related information throughout the distributed network,

analysis of the effect of changing network topology on solution convergence, design of

distributed PTZ optimization algorithms, and the design of objective and constraint

functions suitable to solving the specified problem that also have the properties neces-

sary to ensure convergence. All these factors influence the selection of an optimization

strategy.

In this dissertation, this visual sensing problem is designed using a Bayesian

framework within a game-theoretic paradigm. The Bayesian formulation facilitates au-

tomatic trading-off of objective maximization versus the risk of losing track of any target.

The game-theoretic design allows the global problem to be decoupled into local prob-

lems, one at each camera. The approach is designed with the aim of achieving the global

camera network objective through optimization of local camera objectives.

To perform satisfactory surveillance, the installed smart camera network must

be able to maintain state estimation performance for all targets above a user-defined

threshold, extract information from the changing scene, and obtain high resolution im-

agery for certain targets, at selected time instants. The solution methodologies utilize

distributed constrained optimization (DCOP) methods for computation of the optimal
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camera parameter settings, where the feasible set for PTZ parameters is defined by

constraints on target tracking performance.

1.1 Problem Statement

Facial detection and recognition are processes that are greatly facilitated by

capture of high resolution images of the face from a desired aspect angle [1, 2]. This

dissertation does not discuss facial recognition methods; instead, it focuses on the means

to configure a network of PTZ cameras to opportunistically acquire high resolution facial

imagery. We use the term ‘opportunistic’ as each camera must select its parameters to

satisfy a tracking constraint at all times and to obtain high-resolution facial images at

times-of-opportunity. Such an opportunity may arise due to the high probability of

image capture at a high zoom setting from a superior aspect angle, and when tracking

constraints on all the targets can be simultaneously satisfied. The tracking constraints,

while useful in their own right, are necessary to enable high-resolution imaging. Note

also that, due to the uncertainty of the target motion, the high zoom setting required

by certain cameras to attempt to obtain high-resolution images, will impose tracking

risk that must be accounted for appropriately by the camera network.

1.2 Contribution

A method for distributed, cooperative and parallel optimization on a connected

camera network is defined, analyzed, and implemented in this dissertation. The cam-

era parameter optimization process maximizes a Bayesian value function that accounts

for risk arising from the uncertainty in the estimated target positions, while adhering

to Bayesian constraints on the tracking performance. The value function is designed
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as an ordinal potential function [3], such that it can be decoupled into local objec-

tives known to each camera. The tracking constraint is common to all cameras. With

reasonable assumptions on the connectivity of the network, utilizing a Bayesian con-

strained optimization approach, the proposed solution methodology provides feasible

optimal solutions to perform opportunistic visual sensing of targets maneuvering with

random trajectories. The dissertation includes an enhanced discussion and analysis of

the proposed approach throughout, a detailed simulation example with discussion, de-

velopment of mechanisms for convergence towards the global optima, and discussion of

possible alternative methodologies.

While obtaining high resolution imagery, the camera network may select set-

tings such that they are temporally discontinuous resulting in mechanical wear, and

recording a video feed that is unsuitable for image analysis due to motion blur. To

address this, the dissertation builds on the developed DCOP methods by incorporat-

ing a moving planning horizon optimization approach based on, but distinct from the

well established Model Predictive Control framework [4]. Along with constraints on

the tracking performance, the approach solves a problem that is expected to adhere to

smoothness constraints on the changes in PTZ values. This enables the immediate ac-

tions of the camera control module to consider the future effects of these actions. Such

an approach results in smoother transitions between subsequent PTZ settings, thus

providing a video feed that is smooth and better suited for video analysis and scene

understanding.

4



1.3 Organization of the Dissertation

This dissertation provides a wide-ranging review of research performed in the

context of active vision methods on camera networks.

Chapter 2 investigates the visual sensing problem. The chapter begins with

a description of aspects implicit to the visual sensing problem. This is followed by a

brief literature review of relevant research in the fields of active vision, which is then

followed by a review of recent research pertaining to the visual sensing problem herein.

Subsequently, a detailed problem description along with notation is provided.

Chapter 3 provides an overview of well-known constrained optimization and

game theory concepts. The chapter starts with a mathematical overview of a general

centralized constrained optimization method. Subsequently, the chapter briefly describes

the concept of potentiality within the game-theory literature. The chapter then provides

a general outline of how a centralized constrained optimization problem can be decoupled

into smaller local constrained optimization problems using the concepts of potentiality.

Chapter 4 focuses on the mathematical formulation of the visual sensing prob-

lem herein. The chapter begins with a description of mathematical models associated

with target motion and camera measurements. The chapter them provides a detailed

description of the desired objective function properties along with a general template of

the components that constitute the imaging objective function.

Chapter 5 constitutes the main body of the dissertation. It provides a detailed

description of the PTZ optimization methodology. The chapter first defines the global

imaging value function to be maximized, along with a description of problem constraints

which provide a measure of target tracking performance obtained by the camera network.

After formulation of the global optimization problem, the chapter describes a method
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to decouple the global problem into smaller local problems using the concepts described

in Chapter 3.

Chapter 6 describes the processes involved in distributed optimization. The

chapter states assumptions on network connectivity and communication. Subsequently,

the chapter describes rules for camera parameter broadcasting and replacement. This is

followed with a detailed description of a dynamic average consensus algorithm utilized for

asymptotic convergence of local Lagrange multiplier vectors. The chapter also provides

a certificate of optimality on the solutions computed using the methodology herein.

Chapter 7 focuses on incorporating a planning scheme within the PTZ opti-

mization methodology to provide temporal PTZ smoothness. The chapter first motivates

the importance of planning, and then describes how the proposed approach is distinct

from traditional Model Predictive Control (MPC) methods. Thereafter, the chapter

defines the objective functions and constraints over a planning horizon, and then formu-

lates the problem within a distributed optimization scheme. This chapter then provides

a certificate of optimality on the computed solutions.

Chapter 8 evaluates the proposed method within a realistic simulation environ-

ment. A target scenario is setup within an area to be surveyed by a network of cameras.

This chapter discusses the results hence obtained, and provides a detailed analysis of the

PTZ optimization approach. After evaluation single and multi-trial results of the single-

step optimization approach, the chapter analyzes results obtained on incorporation of a

planning scheme within the optimization approach. The chapter also provides a detailed

discussion on possible solutions and challenges involved in a real-life implementation of

the approach.

The dissertation concludes by providing a direction for future research for high

resolution imaging on a network of smart vision sensors.
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Chapter 2

The Visual Sensing Problem

The research proposed herein falls within the scope of active computer vision

[5–7]. Active vision involves research on cooperation and coordination between many

cameras in a network, for applications such as autonomous surveillance, simultaneous

localization and mapping (SLAM), trajectory planning, etc. There is a large amount of

recent work dealing with networks of vision sensors. The following section provides a

broad outlay of relevant research.

2.1 Literature Review of Existing Approaches

Research in the area of integrated sensing and scene analysis in camera net-

works is evolving and standard metrics for comparison or experimental frameworks are

not yet available. This remains an area of attention as research in active sensing on

camera networks matures. The literature referenced in this section is separated into

areas of research that are of importance to visual sensing on camera networks.
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2.1.1 Tracking in Camera Networks

Some recent work has dealt with computing the statistical dependence between

cameras, computing the camera network topology, tracking over unobserved areas of

the network, and camera handoff [8–14]. However, there is little work that deals with

distributed tracking and camera control in active PTZ camera networks. The most

relevant papers on the topics of tracking and camera parameter selection are discussed

below.

In [15], a distributed cluster-based Kalman filter was proposed as a target

tracking approach. This method required a camera to aggregate all the measurements

of a target to estimate its position before transmitting the result to a central base sta-

tion. The approach in [8], used herein, considers a different network topology where

each camera can only communicate with its neighboring cameras. Each camera has a

consensus-based estimate of each target’s state removing the need to aggregate mea-

surements at a single cluster head.

A method for tracking targets in a network of PTZ cameras was proposed

in [16]. The authors used a mixture of passive and active PTZ cameras to persis-

tently track pedestrians in a virtual environment. This was achieved using a partially

distributed, partially centralized hybrid approach. The method herein considers a com-

pletely distributed solution using consensus algorithms for target state estimation and

a distributed optimization framework for camera parameter selection.

2.1.2 Game-theory in Multi-agent Systems

Game-theory as a tool for designing solutions to multi-agent problems is de-

scribed in [17]. A vehicle-target assignment problem within the game-theoretic frame-
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work was proposed in [18,19]. The standard target assignment problem is different from

a camera-target assignment problem in that the problem described therein is a one-to-

one mapping problem with the stationary targets, whereas the camera-target assignment

problem allows multiple cameras to each track multiple moving targets. Nonetheless,

articles [17–19] provide valuable insight into the challenges faced while designing the

camera parameter optimization as a cooperative game played by multiple cameras.

A game-theoretic camera control approach for collaborative sensing is pro-

posed in [20–23]. In [20], the agents collaborate to optimize a cost function that is the

weighted combination of area coverage over regions of interest while trying to achieve

high-resolution images of specific (highly weighted) targets. The authors proposed a

distributed tracking and control approach that requires the camera control and tracking

to run independently and in parallel. The camera control used game theory to assign

camera settings that provided coverage over regions of interest while maintaining a high

resolution shot of a target. Concurrently, a Kalman-Consensus filter provided tracks of

each target on the ground plane.

The method proposed in this dissertation differs from the one in [20] in that the

camera control is aware of the state of the Kalman-Consensus filter and actively seeks

to provide it with the best measurements. Furthermore our approach considers the

estimate error covariance in addition to the estimated state of each target. This allows

us to gauge the risk of failing to capture a feature when attempting high resolution

shots.

In [21–23], the agents account for risk and include image quality in a weighted

cost function. Collaboration was ensured through a game-theoretic formulation. The

quality of the solution was dependent on the specification of user-defined weights.
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2.1.3 Camera Network Topology

Assumptions on the camera network communication topology play a major

role in the problem solution. Preliminary work on camera networks using independent

cameras that lack coordination is provided in [24]. A method involving machine learning

is utilized in [12, 25] to learn the network topology. In [12], the authors employ unsu-

pervised machine learning to establish links between target activity and the associated

camera views, to decipher communication topology to determine target tracks. In addi-

tion to generating the topological structure of the network based on target motion, the

method in [25] also provides a measure of inter-camera target transition times, which

can be used to support predictive tracking across the camera network. In [13], authors

measure the statistical dependence between observations in multiple camera views to

quantify a potential interconnecting pathway for target tracks between difference cam-

era views, to enable camera handoff. Multi-agent systems with switching topologies are

studied in [26, 27]. Though the studies therein are not based on visual sensing appli-

cations, [26, 27] provide significant insight on methods potentially applicable to mobile

camera networks.

2.1.4 Distributed Computer Vision

Distributed implementation of computer vision algorithms is studied in [28,

29]. Distributed implementation of state estimation algorithms over vision networks is

studied in [30–33]. Though the above articles provide knowledge about the methods

and challenges of implementing a computer vision system in a distributed manner, they

do not focus on decentralized optimization of the PTZ parameters of the cameras to

improve the quality of the acquired imagery.
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A recent research survey [28] identifies various computer vision problems that

can be solved in a distributed fashion within a network topology. The article mentions

the effects of nodes in the network with no measurement information and how such

nodes may affect convergence properties of a distributed algorithm. An analysis for

stability of multi-agent systems is provided in [34] where the communication network

is assumed to be time-variant. The stability analysis is based on graph-theoretic tools

where the authors assume the problem to be convex.

An automated annealing approach for updating Lagrange multipliers within a

constrained optimization framework to reduce dependence on agent inter-communication

is provided in [35]. The method uses the probability collectives framework to generate a

relation between game theory and statistical physics. The authors use a game-theoretic

motivation to develop a parallel algorithm, but consider a non-cooperative game between

agents, where the action of one agent is completely independent of the other agents in

the network. Such an assumption is not appropriate for the application herein.

A systematic methodology for designing agent objective functions is outlined in

[3], using a hierarchical decoupling of the global optimization function into local objective

functions that are aligned with the global objective function. Each agent is modeled as

a self-interested decision maker within a game-theoretic environment, then convergence

proofs from the game theory literature are utilized. Herein, we utilize the methodology

of [3] to decompose a Bayesian value function designed for the opportunistic visual

sensing application into local value functions suitable for distributed implementation.
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Table 2.1: Comparison between camera network reconfiguration strategies

Approach Objective Architecture Results

[20] Area coverage Distributed Local maxima of total area cov-
ered

[22] Hi-res imaging Distributed,
Sequential

Obtained high-res imagery
through weighted Bayesian
utility functions

[36] Static camera
placement

Centralized Global maxima of area covered
while considering occlusion

[37] Weighted area
coverage based
on prior activ-
ity map

Distributed Local maxima of weighted area
covered

[38] Camera to tar-
get assignment

Centralized Track based one to one mapping
(between cameras and targets)
and handoff

Methodology in
Chapters 5 - 7

Hi-res imaging Distributed,
Parallel

• Opportunistic hi-res imaging
using constrained optimization
with certificate of optimality;
• Bayesian framework to address
risk;
• Incorporation of planning using
a moving horizon

2.1.5 Camera Network Reconfiguration

Table 2.1 provides a comparison of the different methods in the literature that

have studied the optimal visual sensing problem for camera network reconfiguration.

It should be noted that these approaches have different objective functions, different

optimization architectures and different are designed to adhere to different performance

criteria.

In [36], authors propose a method that uses a simulated annealing approach to

compute a globally optimal configuration for static camera networks. The approaches

[20, 37, 38] have independent target tracker modules running in the background. The

method in [37] uses the target tracker to generate a prior (activity map) and then

optimizes the PTZ settings on the weighed area. A path-planning based approach is
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proposed in [38], where static cameras track targets, and PTZ cameras obtain high-

resolution images. The authors therein use target tracks to predict the paths of targets

to do assignments requiring minimal camera assignment switching, but break when

targets mingle due to unreliable predictions. The work in [20], while using a distributed

tracker, did not combine the camera control and target tracking modules.

Assuming predesigned static camera placement given certain tasks, the articles

[39,40] define deployment strategies for networks of vision sensors.

Given a map of target activity within the surveyed area, the Expectation-

Maximization algorithm [41] is used to perform area coverage in [37]. Implementations

for tracking a group of people in a multi-camera setup are addressed in [42, 43]. The

methods proposed therein dealt with a centralized processing scheme and did not delve

into the decentralized organization of cameras.

The integrated visual sensing and scene analysis approach described in this

dissertation is a generalization of all of these methods and provides a framework for

optimizing the image acquisition capabilities based on satisfaction of system objectives.

Such an approach provides an optimal allocation of resources and provides overall effi-

ciency to the system.

2.1.6 Optimization over a Planning Horizon

Model Predictive Control (MPC) [4], also called Receding Horizon Control, has

become a popular methodology with applications in control systems where it is desired

for the control sequence to cause the system to evolve optimally over a planning horizon,

subject to constraints on both the control and state variables. At every sampling instant,

the optimizer formulates a new optimal control problem and solves it, based on state

information currently available. Intuitively, MPC is a model-based method to solve an
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optimization problem with constraints that ensures that the resultant immediate action

considers the future effects.

MPC is usually applied to applications with slow dynamics. To address issues

related to the challenges of using MPC for applications with fast dynamics, customized

MPC implementation methods [44, 45] can be designed for systems with a small set

of variables and constraints, and relatively short planning horizons. Such fast MPC

methods utilize the existing problem structure to speed-up computation. Performance

guarantees for MPC can be shown under certain conditions [46].

A typical MPC implementation is often modeled such that a central node

computes all the control inputs. For networks made up of several nodes, it becomes

advantageous, and sometimes even necessary, to perform control using decentralized

methods. A few examples of decentralized implementations of MPC can be found in

[47–53].

A methodology to decouple a typically centralized MPC approach is described

in [54]. Authors focus on the properties of the objective and constraint functions that

make up the problem, and then propose methods and prerequisites for enabling decom-

position into local, distributed MPC problems. Herein, we use mechanisms from [54] to

decompose a global Bayesian constrained optimization problem, designed over a user-

defined time horizon for the opportunistic visual sensing application, into local Bayesian

constrained optimization problems, that are suitable for distributed model predictive es-

timation.
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2.2 Problem Description and Notation

The operating environment includes NC cameras placed at known, fixed lo-

cations and a time-varying number of targets NT (t) with independent and unknown

trajectories. It is possible that NT (t) > NC . All cameras have changeable pan (ρ ∈

[−180◦, 180◦]), tilt (τ ∈ [−90◦, 90◦]), and zoom (ζ ∈ [F , F ]) parameters. We assume the

cameras to have calibrated parfocal zoom lenses [55] that maintain focus with changing

focal length and have a negligible focus error. Although interesting, we do not consider

the effects of calibration of these lenses while designing the system.

In a distributed solution framework, using information up to and including

the last imaging time tk, the i-th camera in the network will be required to optimize its

parameters (ρi(tk+1), τi(tk+1), ζi(tk+1)) for the next imaging instant tk+1, in cooperation

with other cameras to maximize an objective function. The parameters of camera Ci

are organized into a three vector ai = [ρi, τi, ζi]. Any choice of ai yields a field-of-view

(FoVi) for the resulting image. That image may contain multiple targets and each target

may be imaged by multiple cameras. The parameters of all cameras are organized into

a vector a = [a1, . . . ,ai, . . . ,aNc ]. The vector containing all parameter vectors except

those of Ci will be denoted by a−i. Additional notation is summarized in Table 2.2.

2.3 System Processes

For solution of the overall problem, in the time interval t ∈ (tk, tk+1) several

processes occur. Based on the previous images up to and including the image at tk,

the target state estimation process provides a prediction of the mean x̂j(k + 1)− and

covariance matrix Pj(k+1)− for all targets (i.e., j = 1, . . . , NT ) at tk+1. Every camera in
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Table 2.2: Notation Summary

Parameter Variable

Pan, Tilt, Zoom (ρ, τ, ζ)

Min. focal length, Max. focal length F , F
No. of Cameras, No. of Targets in region NC , NT (t)
i-th camera, j-th target Ci, T

j

(ρ, τ, ζ) settings for Ci, all cameras except Ci ai, a−i
(ρ, τ, ζ) settings for all cameras a
Dimension of (ρ, τ, ζ) settings for Ci ai ∈ <ni , ni = 3
Dimension of (ρ, τ, ζ) settings for all cameras a ∈ <n, n = 3NC

(ρ, τ, ζ) settings sequence for Ci, all cameras except Ci Ai, A−i
(ρ, τ, ζ) settings sequence for all cameras A
No. of problem constraints m
Length of planning horizon H
Global Bayesian imaging value over all targets VI(a)
Global Bayesian imaging value over all targets over H VH(A)
Local Bayesian imaging value over all targets VIi(ai)
Local Bayesian imaging value over all targets over H VHi(Ai)
Tracking performance vector for all targets UT (a)
Tracking threshold vector for all targets T̄
Bayesian tracking value vector for all targets VT (a)
Bayesian tracking constraint vector for all targets over H gH(A)
PTZ smoothness constraint vector for all cameras over H qH(A)
PTZ smoothness constraint vector for Ci over H qHi(Ai)
Achieved global imaging value over all targets V̄I(a)
Achieved local imaging value over all targets V̄Ii(ai)
Achieved tracking value vector for all targets V̄T (a)
Lagrange multiplier vector for all targets λ
Camera Ci’s version of λ λi
Lagrange multiplier vector obtained via consensus λ̄
Lagrangian constructed for optimization L(λ,a)

Weight for importance of imagery of T j by Ci wji
Image resolution obtained for T j by Ci rji (ai)

Relative pose quality factor between Ci and T j αji (ai)
State vector for T j xj = [pj ,vj ]>

State est., state est. covariance for T j x̂j , Pj

Fisher Information Matrix J
Measurement Vector, Measurement Covariance u, C
Rotation Matrix from frame a to frame b b

aR
Entity e before, after new measurement e−, e+

Entity e in global frame, frame defined by Ci
ge, ie

Entity e at time-step tk e(k)
Entity e for target T j ej

Entity e at local or global optimum e∗
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Figure 2.1: System block diagram and event time-line: Note that information exchange shown is only

between neighboring cameras. The time-line of procedural events is shown between image sample times.

the network has its own embedded target detection module [8,20,21,56], an Information

Weighted Kalman-Consensus tracker [32] that provides an estimate of the state of each

target, and a distributed camera parameter optimizer.

Remark 1 By the nature of the visual sensing application, depending on the choice of

ai, Camera Ci may image multiple targets each at a different resolution. The attained

resolution, one quantity affecting image quality, is determined by the choice of ai. In

addition, depending on the choice of a any given target may be imaged by multiple

cameras, yielding improved tracking accuracy. �

In Fig. 2.1, the top portion illustrates the information flow and the bottom

portion illustrates the time sequence of processing. Images acquired at tk are first

processed for feature detection and target association. The target detection module in
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each camera takes its raw image and returns the image plane positions of each target

recognized in the image. Communication between cameras is allowed to enhance the

processes of feature detection and association for target recognition [8]. At the end

of this process, each camera has computed the pixel coordinate measurement of each

recognized target within its FoV. Assuming that target T j is within the FoV of camera

Ci, this image frame measurement of the pixel location of target T j by camera Ci valid

at time tk is denoted by iuj(k). This measurement is broadcast to neighboring cameras.

The measurements hence acquired are subsequently utilized for distributed

state estimation [32, 57, 58]. This process ensures that the state of each target is es-

timated consistently by each camera in the network. The algorithm at each camera

only uses its own imagery and data communicated from its neighbors’ on the (possibly)

time varying communication graph. Consistency and accuracy of state estimation are

prerequisites that enable distributed optimization of the network parameter vector a for

high-resolution image acquisition at tk+1. On completion of the target state estimation

process, a prior position estimate gp̂j(k+1)− is available for each target T j at the future

image sampling time tk+1, along with a prior covariance matrix Pj(k+ 1)−. To simplify

the notation, the time argument tk+1 is dropped.

Subsequently, each camera will optimize its parameter settings ai using gx̂j(k+

1)− and Pj(k + 1)− as inputs. In the time interval allotted for optimization, each

camera will have various opportunities to adjust its parameter settings and communicate

its revised settings to the network, such that the entire vector a converges towards

the optimal settings a∗ for the upcoming image at tk+1. This dissertation focuses on

distributed camera parameter optimization.
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Remark 2 If cameras take images with a period Ts, the designer could choose to re-

optimize the camera parameter settings a after every M -th image, resulting in tk = MTs.

In this design, all M images could still be used for target detection and tracking. In

this dissertation, M = 1 is chosen. When a is not optimized for each frame, it could

be interesting to choose M during operations in response to events (e.g., some target

nearing the edge of the FoV, or targets nearing occlusion, etc.). �

Remark 3 It is useful to compare different possible optimization approaches. In a cen-

tralized optimization approach, one entity would receive all the required information and

adjust the entire vector a to maximize the expected value function. Convergence of cen-

tralized optimization methods are very well understood. In distributed approaches, each

agent Ci will only adjust the proposed values of its parameters ai for the next imaging

time. In a distributed sequential optimization approach, while one camera Ci is adjust-

ing ai, all other cameras Cj for j 6= i are idle. Cameras sitting idle potentially save

energy at the expense of time to reach convergence. The convergence of such schemes is

straightforward to analyze as each camera is solving a much lower dimension optimiza-

tion problem. The analysis would be similar to that for the centralized case. Distributed

sequential optimization is analogous to line search methods. In a distributed parallel op-

timization approach, all cameras adjust their parameters simultaneously. Convergence

of this case is more complex, requiring results from optimization and game theory to be

applied to cost functions designed to meet certain technical requirements.
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Chapter 3

Background

This chapter briefly reviews concepts of optimization [59] and game theory

[3, 60] necessary for the solution methodology proposed herein.

3.1 Centralized Constrained Optimization

Consider a standard convex vector optimization (e.g., maximization) problem

with a differentiable primal objective function1 fo and differentiable inequality con-

straints gj

maximize fo(a) (3.1)

subject to gj(a) ≥ 0, j = 1, · · · ,m,

where m is the total number of constraints and a ∈ <n. The Lagrangian L(λ,a) aug-

ments the primal objective function with the constraints

L(λ,a) = fo(a) +

m∑
j=1

λj gj(a) = fo(a) + λ> g, (3.2)

1Throughout this article, we use the notation such as fo(a) for the objective function. The notation

fo(a : xj , j = 1, . . . , NT ) is more precise in making explicit the fact that the value depends on the target

state; however, it is too cumbersome to be effective.
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where g is the vector of constraint functions and λ ∈ <m is the Lagrange multiplier

vector with λj ≥ 0.

Since the objective and constraint functions fo, g
1, · · · , gm are differentiable,

if an optimum a∗ exists, then the Lagrangian L(λ∗,a∗) attains its maximum at the

primal-dual pair (a∗,λ∗) that must satisfy the KKT conditions

∇fo(a∗) +
m∑
j=1

λj∗ ∇gj(a∗) = 0, (3.3)

gj(a∗) ≥ 0, (3.4)

λj∗ ≥ 0, (3.5)

λj∗ gj(a∗) = 0. (3.6)

The KKT conditions provide a certificate for optimality.

In a centralized solution approach, the Lagrangian is maximized by search over

the parameters a and λ. This requires that all data and all parameters are available

at a central controller. Although, proofs of optimality are simpler and well known for

this centralized approach, for reasons stated in the introduction, we are interested in

decentralized solutions.

3.2 Game Theory and Ordinal Potential Functions

For a distributed optimization approach, Ci will only adjust ai and λ. A

challenge in formulating a distributed optimization problem is the decoupling of the

system objective into local objectives, one for each agent. The game theory literature

and the concept of potentiality provides guidance for addressing this challenge.

Consider a ∈ S and ai, bi ∈ Si, where S = S1× . . .×SNC
is the collection of all

possible camera parameter settings in the game G, and Si is the collection of all possible
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camera parameter settings for camera Ci. The sets S and Si for i = 1 to NC , referred to

as action sets within the game theory literature, are compact. Let2 φi(ai : a−i) denote

the local objective function of Ci. Game Gp is a potential game if there exists a potential

function φp : S 7→ < such that ∀a ∈ S and ∀ai,bi ∈ Si,

φp(bi,a−i)− φp(ai,a−i) = φi(bi : a−i)− φi(ai : a−i). (3.7)

Game Go is an ordinal potential game if there exists an ordinal potential function φo :

S 7→ < such that ∀a ∈ S and ∀ai,bi ∈ Si,

φo(bi,a−i)− φo(ai,a−i) > 0

⇔ φi(bi : a−i) − φi(ai : a−i) > 0. (3.8)

Potential games and ordinal potential games allow the global utility maximum to be

achieved by maximization of the local utilities of each camera. When Eqn. (3.8) is

satisfied, the local objective functions are said to be aligned with the global objective.

Given φo(a), if the local utilities are defined as

φi(ai : a−i) = φo(ai,a−i), (3.9)

then it is straightforward to show that the resulting game is a potential game.

Thus, by defining the global objective function as an ordinal potential function

with the individual local camera objectives aligned to it, the game becomes an ordinal

potential game. When the set S is compact, and a game has a continuous potential

function, then the game has at least one Nash Equilibrium. Therefore, given any feasible

initial condition, at each step for which one camera increases its own utility, the global

objective function increases correspondingly, due to G being a potential game. If φo is

2This notation φi(ai : a−i) means that the value of the function φi may depend on both ai and a−i,

but that ai as treated as an independent variable while a−i is treated as a constant by Ci.
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continuous and S is compact then φo(a) is bounded above; therefore, the optimization

converges toward a maxima. At the maxima, no camera can achieve further improvement

and thus a Nash equilibrium is reached.

3.3 Distributed Constrained Optimization

For the distributed approach define the local constrained optimization problem

for the i-th camera

maximize fi(ai) (3.10)

subject to gj(ai : a−i) ≥ 0, j = 1, · · · ,m,

where ai ∈ <ni , and a−i ∈ <n−ni . Thus the local Lagrangian can be formulated as,

Li(λ,ai : a−i) = fi(ai) +

m∑
j=1

λj gj(ai : a−i)

= fi(ai) + λ> g, (3.11)

where g is the vector of constraint functions and λ ∈ <m with λj ≥ 0.

If we define the global objective function as the sum of local objective functions:

fo(a) =

NC∑
i=1

fi(ai), (3.12)

then from Eqns. (3.2), (3.3–3.6), (3.11), and (3.12), ∀a ∈ S, and ∀ai,bi ∈ Si,

L(λ,bi,a−i)− L(λ,ai,a−i) > 0

⇔ Li(λ,bi : a−i)− Li(λ,ai : a−i) > 0, (3.13)

where the objective of each agent is to maximize its local Lagrangian. Therefore, the

local and global Lagrangians are aligned, and the global Lagrangian forms an ordinal

potential function.
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Remark 4 Note that in a potential game, agent Ci can only choose its own action

ai(k + 1). In doing so, Ci will take into account the proposed actions a−i(k + 1) of all

other agents. The actions of all other agents a−i(k + 1) are determined by the other

agents. Because Ci is the only agent able to select ai, consensus between agents is

inappropriate for computation of ai. Instead, a modified flooding approach will be used,

see Section 6.2. At the same time, all cameras must collaboratively choose actions and λ

to ensure that all constraints are satisfied. During distributed optimization each Ci has

a local version of the Lagrange multiplier vector, denoted as λi. A consensus algorithm

is used to ensure the convergence of λi to a single value, see Section 6.3.�

After having had a brief overview of the distributed constrained optimization

process in this chapter, and having looked at the high-level processes that govern the

visual sensing system in Chapter 2, the next chapter will focus on formulating this

physical problem into a mathematical problem which the camera network is tasked to

solve cooperatively.
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Chapter 4

Mathematical Formulation

This chapter focusses on shaping the overall visual sensing problem depicted

in Fig. 2.1 into a mathematical problem. The chapter begins with the definition of

a motion model for targets, and a measurement model that provides measurements of

these targets when imaged by a camera.

The position of the i-th camera in the global frame is indicated by gpi. In

addition to the global frame, each camera defines a frame of reference. The position of

T j in the global frame would be indicated as gpj and in the frame of the i-th camera as

Cipj . The time propagation models [61] for state estimation of T j are stated below.

4.1 System Model

The continuous-time state space model of target T j is

ẋj(t) = F xj(t) + G ωj(t), (4.1)

where j = 1, . . . , NT is the target number and xj = [gpj ; gvj ] with gpj and gvj repre-

senting the position and velocity vectors in the global (earth) frame. The process noise

vector ωj ∈ <3 is assumed to be zero mean Gaussian with power spectral density Q.
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The discrete-time equivalent model is

xj(k + 1) = Φ xj(k) + γ(k), (4.2)

where Φ = eFT is the state transition matrix, γ ∼ N (0,Qd) is the process noise, and

T = tk+1 − tk is the sampling period.

4.1.1 State Estimate Time Propagation

The state estimate and its error covariance matrix are propagated between

sampling instants using [61]

x̂j(k + 1)− = Φ x̂j(k)+ (4.3)

Pj(k + 1)− = Φ Pj(k)+ Φ> + Qd. (4.4)

The covariance matrix Pj− computed using Eqn. (4.4) can be written in block form as

Pj− =

 Pj−
pp Pj−

pv

Pj−
vp Pj−

vv

 , (4.5)

where Pj−
pp is the prior, position error-covariance matrix.

4.1.2 Camera Rotation Matrix

In relation with the global frame of reference g, define mi to be the known

mounting angle for camera Ci. The camera rotation matrix Ci
g R(ai) to compute target

coordinates in the i-th camera’s frame is hence derived as

Ci
g R(ai) = R(ρi) R(τi)

Ci
g R(mi). (4.6)
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The matrix Ci
g R(ai) is a function of the camera mounting angle, the pan angle ρi, and

the tilt angle τi since

R(ρi) =


cos ρi 0 − sin ρi

0 1 0

sin ρi 0 cos ρi

 , (4.7)

and

R(τi) =


1 0 0

0 cos τi sin τi

0 − sin τi cos τi

 . (4.8)

4.1.3 Camera Coordinate Transformations

Target T j ’s position in the i-th camera’s frame, cipj , is related to its position

in the global frame gpj by

gpj = g
ciR

cipj + gpci (4.9)

cipj = ci
g R
[
gpj − gpci

]
. (4.10)

where gpCi is camera Ci’s position in the global frame.

4.2 Measurement Model

Camera measurement models are derived in various references [21,23,62]. This

section presents the final results of the standard pin-hole perspective projection camera

measurement model. Let the coordinates of target T j in the i-th camera frame be

cipj =
[
cixj , ciyj , cizj

]>
. Assuming that T j is in the FoV of Ci,

iiuj =


Fi
sx

cixj

cizj
+ ox

Fi
sy

ciyj

cizj
+ oy

+ iiηj , (4.11)

27



is the standard pin-hole perspective projection camera model for target T j when mea-

sured by camera Ci. In Eqn. (4.11), sx and sy give the effective size of a pixel in

(m/pixel) measured in the horizontal and vertical directions, respectively; Fi is the fo-

cal length setting defined by ai; the point (ox, oy) gives the coordinates of the image

plane center in pixels; and the measurement noise iiηj ∼ N (0,Cj
i ) with Cj

i (ai) ∈ <2×2.

Given the estimated state x̂j
−

via Eqn. (4.4), and the camera model in Eqn.

(4.11), the predicted measurement is

iiûj =


Fi
sx

ci x̂j

ci ẑj
+ ox

Fi
sy

ci ŷj

ci ẑj
+ oy

 . (4.12)

The measurement residual iiũj is

iiũj = iiuj − iiûj . (4.13)

Remark 5 The measurement noise covariance Cj
i in Eqn. (4.11) is dependent on the

parameter settings ai. This is important because, for example, as the focal length in-

creases, the size of a target in the image increases and the pixel uncertainty of its location

changes.

4.2.1 Observation Matrix

The observation matrix Hj
i (ai) is derived using the linearized relationship given

by the first order Taylor series expansion of Eqn. (4.11) around the measurement esti-

mate.

iiuj ≈ iiûj + Hj
i (
gxj −g x̂j) (4.14)

where Hj
i =

∂iiuj

∂gxj

∣∣∣∣
gx̂j

∈ <2×dim(xj).
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The observation matrix is

Hj
i =

Fi
(ci ẑj)2

 gNj>

1

gNj>

2

 =
Fi

(ci ẑj)2
gNj> , (4.15)

where the matrix gNj> is defined as:

gNj> =

 gNj>

1

gNj>

2

 . (4.16)

The symbol Nj is used as each column is normal to the vector from camera Ci’s origin

to the j-th target’s estimated position p̂j :

gNj
1 = g

ciR
ciNj

1
ciNj

1 = (sx)−1
[
ci ẑj , 0,−ci x̂j

]>
gNj

2 = g
ciR

ciNj
2

ciNj
2 = (sy)

−1
[
0,ci ẑj ,−ci ŷj

]>
.

Note that gNj is determined by the target location relative to Ci and g
ciR is a function

of ai. So, Hj
i is a function of both gpj and ai. When T j is not in FoVi, then Hj

i = 0 ∈

<2×dim(xj).

4.2.2 Measurement Update

Using Eqns. (4.13) and (4.15), a measurement update for the state estimates

and error covariances for targets in the area can be performed using several distributed

Kalman-Consensus Filter approaches [33,57,58].
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4.3 The Objective Function

This section discusses the imaging value function VI(a) and the properties

it should possess. The objective is to allow distributed optimization over the camera

network to select camera parameters a such that this imaging value is maximized, subject

to tracking performance criteria.

4.3.1 Properties

The imaging value function should possess the following properties:

• Continuously differentiable: This is necessary for proofs of convergence, and

greatly facilitates the numeric optimization process.

• Increases with image quality: Herein, image quality is defined by two pa-

rameters: the image resolution and the relative pose between the imaging camera

and the imaged target.

• Balanced Risk: Risk is defined as the probability that the target is outside of

the FoV of the cameras that are expected to image it. Risk increases monotoni-

cally with zoom ζ, because the ground-plane area within the FoV decreases as ζ

increases. Herein, we will address risk by using the expected value of the tracking

constraints and the imaging value.

4.3.2 Components

Image resolution rji (ai,
gp̂j), which is a positive real number, will be quantified

by the number of pixels occupied by target T j on camera Ci’s image plane. Given gp̂j ,

the resolution increases monotonically with zoom ζ of the imaging camera.
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Relative pose between camera Ci and target T j is quantified by the pose quality

factor αji (ai,
gx̂j). Given gx̂j , the scalar αji is large when it is likely that target T j is

facing camera Ci and at the center of Ci’s FoV. The quantities αji and rji are defined in

the simulation example (see Chapter 8).

Risk is defined as the probability that the target is outside of the FoV of the

cameras that are expected to image it. Risk increases monotonically with zoom ζ,

because the area under the FoV decreases as ζ increases. Herein, we will address risk

by using the expected value of the tracking constraints and the imaging value.

To understand the drawbacks of using a non-Bayesian value function for the

visual sensing problem, it is informative to briefly consider the simple case where NT = 1

and α1
i > 0 for i = 1, . . . , NC . For this case, if risk was neglected and an imaging value

VI was defined with the properties mentioned above, then each camera would maximize

its focal length and select its pan and tilt parameters to center on the expected target

location. If instead, the value accounted appropriately for risk, then one or more camera

might significantly increase its zoom parameter, while at least one of the remaining

cameras would use lower zoom parameters, to decrease the tracking risk due to the

uncertainty in the estimated target position. The camera at the highest zoom setting

would be the one at the best aspect angle.

The next chapter will focus on a Bayesian formulation of the imaging value

function and the tracking performance constraints based on properties and parameters

defined in this chapter.
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Chapter 5

PTZ Optimization Methodology

As discussed relative to Fig. 2.1, for every image acquired, the network of

cameras detect features and associate them with targets to provide measurements. These

target measurements are used in the Information Consensus Filter [32] that estimates the

j-th target’s state x̂j− with covariance matrices Pj−, at each camera, using the model

in Section 4.1.1. The selection of the camera parameters a will affect the accuracy of

the state estimator at future time instants due to the quality of the images acquired.

The objective is to obtain high-res imagery while tracking all targets at all

times to a specified accuracy T̄. Building on the importance of the Bayesian framework

discussed in Chapter 4, this chapter starts with specification of the global objective and

constraints that are subsequently decoupled into local objectives for each camera.

The global objective function for the constrained optimization problem is de-

signed as a Bayesian imaging value function that accounts for the risk in imaging

the target. Risk will be formulated using the Fisher information matrix defined as

Jj−(k + 1) =
(
Pj−(k + 1)

)−1
.
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5.1 The Global Bayesian Imaging Value Function

We define the global Bayesian image value function as

VI(a) =

NC∑
i=1

NT (t)∑
j=1

E
〈
V j
Ii

(
ai,

gpj
)〉

(5.1)

=

NC∑
i=1

∫
FoVi

NT (t)∑
j=1

V j
Ii

(ai, z) ppj (z)

 dz,

where an example V j
Ii

is defined in Eqn. (8.5) of Chapter 8. Given the assumptions

herein, the probability distribution ppj (z) of the position of T j in the global frame at

the next imaging instant is the Normal distribution N (gp̂j−,Pj−
pp). The dummy variable

z representing target position is used for integration over the ground plane, where the

region of integration is the i-th camera’s FoV.

Each camera integrates over its own FoV. The integral of image quality over

FoVi as a function of probability weighted target position yields the Bayesian value

function, which provides the desired tradeoff between image quality and risk.

5.2 The Bayesian Performance Constraints

The target tracking performance criteria will be defined as a function of the posterior

Fisher Information Matrix Jj+
(
a : gp̂j−,Pj−

pp

)
.

The posterior Fisher information matrix Jj+ for T j in block form is

Jj+ =

 Jj+pp Jj+pv

Jj+vp Jj+vv

 , (5.2)

where Jj+pp represents the posterior position information matrix, which is

Jj+pp = Jj−pp +

NC∑
i=1

Hj >
i Cj −1

i Hj
i . (5.3)

33



As was shown in Section 4.2.1, Hj
i and Cj

i are functions of ai and Hj
i is a function of the

target position. Therefore, Jj+pp depends on a and on the target position. Computation of

the expected tracking accuracy should account for this variation and for the probability

that T j ∈ FoVi.

5.2.1 Bayesian Tracking Value

We define a vector Uj
T (a : gp̂j−,Pj−

pp) as a measure of tracking performance for each

target in the area. For the purpose of this dissertation, we choose

Uj
T (a) = diag

(
Jj+pp

)
. (5.4)

Remark 6 An implementation in [21] utilized a scalar tracking performance utility,

which was defined as the trace of the expected posterior information Jj+pp. Other defini-

tions of Uj
T are of interest as future research. �

Because the quantity Uj
T (a) depends on whether T j is within the FoV of each

camera that is expected to image it, we define the global Bayesian tracking value vector

Vj
T (a) as the expected value of the tracking performance vector Uj

T (a) over the position

of target T j computed across all the camera’s FoVs:

Vj
T

(
a
)

= Epj

〈
Uj
T (a)

〉
=

∫ (
Uj
T (a) ppj (z)

)
dz, (5.5)

where all variables are as defined in Eqn. (5.1) and the summation over all cameras is

accounted for already in eqn. (5.3), which also accounts for prior information.
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5.2.2 Tracking Constraint

Each target’s tracking constraint is

Vj
T (a) � T̄j , (5.6)

where T̄j is the user specified lower bound on the tracking information about target

T j . Due to the reciprocal relation between (scalar) information and covariance, the

reciprocal of T̄j is the upper bound on the covariance of target T j ’s state estimate. The

tracking performance threshold T̄j is hence measured in m−2. The notation ‘�’ in Eqn.

(5.6) indicates a per-element vector inequality. Stacking the Bayesian tracking value

vectors for each target, we obtain

VT (a) =
[
V1
T , · · · ,V

j
T , · · · ,V

NT
T

]>
, (5.7)

and rewrite Eqn. (5.6) for all targets presently in the area as:

VT (a) � T̄, (5.8)

where VT (a), T̄,0 ∈ <m with m = NT (t)dim(gpj). Eqn. (5.8) is the global tracking

constraint.

5.2.3 Global Problem Summary

The constrained global imaging value maximization problem can be written as

maximize VI
(
a : gp̂j−, Pj−

pp

)
(5.9)

subject to
[
VT

(
a : gp̂j−, Pj−

pp

)
− T̄

]
� 0.

The global Lagrangian L(λ,a) is

L(λ,a) = VI (a) + λ>
[
VT (a)− T̄

]
, (5.10)
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where L : (λ,a) 7→ <, and λ ∈ <m is the Lagrange multiplier vector. Thus, to find the

optimal primal-dual pair of solutions (a∗,λ∗) through a central controller, the global

unconstrained problem given by the Lagrangian in Eqn. (5.10) would be solved.

5.3 Decoupling the Global Problem

Due to the desired distributed nature of our solution, we need to decompose the global

problem into smaller local problems that are solvable by each camera.

In our problem formulation, we allow camera Ci to optimize only its own

camera parameter settings ai. Using this system restriction, we define the local Bayesian

imaging value function for Ci as

VIi(ai) =

∫
FoVi

NT (t)∑
j=1

(
wji (t) V

j
Ii

(ai, z) ppj (z)
)
dz. (5.11)

Define VTi(ai) = VT (ai : a−i). This notation concisely indicates that Ci

can only alter ai, where for the purpose of its local optimization a−i is fixed. Note

that VT (ai : a−i) is distinct from VT (ai,a−i) = VT (a) and that maxai∈Si VTi(ai) ≤

maxa∈S VT (a). Each agent will have the constraint VT (ai : a−i) � T̄. While Ci is

changing ai, the other agents are simultaneously changing their sub vectors of a−i and

all agents are broadcasting their current locally optimal values through the network.

Thus the tracking constraint for camera Ci is

VTi(ai) � T̄. (5.12)

Note that,

VTi(ai) � T̄ ⇔ Vj
Ti

(ai) � T̄j for j = 1, . . . , NT (t).

The Fisher Information given in Eqn. (5.3) can be reorganized as:

Jj+pp =

[
Jj−pp + Hj>

−i

(
Cj
−i

)−1
Hj
−i

]
+ Hj>

i

(
Cj
i

)−1
Hj
i .
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For the process of Ci optimizing its parameter vector ai, the contribution from prior

information and all other cameras (term in brackets) is independent of ai and considered

by Ci to be constant and known. The term

[
Hj>

−i

(
Cj
−i

)−1
Hj
−i

]
is computed from a−i

which will be available through the distributed optimization process discussed in Chapter

6.

Thus from Eqns. (5.3-5.5), we can write

Epj

〈
diag

(
Jji

)〉
� T̄− Epj

〈
diag

(
Jj−pp + Jj−i

)〉
, (5.13)

where Jji = Hj>

i

(
Cj
i

)−1
Hj
i and Jj−i = Hj>

−i

(
Cj
−i

)−1
Hj
−i. The right hand side of this

inequality represents, for the current proposed settings of the other cameras a−i, the

expected improvement in tracking accuracy required from Ci for imaging T j to have a

feasible global solution. Targets for which the right-hand side of Eqn. (5.13) is negative

can be removed from the set of tracking constraints for Ci.

5.3.1 Local Problem Summary

From Eqns. (5.11) and (5.12), the local imaging value maximization problem

can be written as

maximize VIi
(
ai : gp̂j−, Pj−

pp

)
(5.14)

subject to VTi

(
ai : gp̂j−, Pj−

pp

)
� T̄.

The local Lagrangian Li(λi,ai) is

Li (λi,ai) = VIi(ai) + λ>i
[
VTi(ai)− T̄

]
. (5.15)

Thus, for camera Ci to find its local optimal primal-dual pair of solutions (a∗i ,λ
∗
i ), Ci

will maximize the local unconstrained Lagrangian given in Eqn. (5.15).
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In this approach, all cameras in the network optimize simultaneously. The

subscript i on λi in Eqn. (5.15) indicates that the Lagrange multiplier vector picked by

camera Ci to solve the problem is a local variable and may not be globally the same

throughout the network. In order to overcome this predicament, cameras in the network

employ a variant of the algorithm described in [63, 64] to perform dynamic average

consensus over the local Lagrange multiplier vectors. This results in a consensus-step

after each optimization-step1. The algorithm is explained in detail in Chapter 6.

5.3.2 Lagrangian as an Ordinal Potential Function

For the problem stated in Eqn. (5.9), note that the global objective of the multi-camera

network defined in Eqn. (5.1) is the sum over the local objectives defined in Eqn. (5.11)

VI(a) =

NC∑
i=1

VIi(ai). (5.16)

At each optimization step κ, the i-th camera adjusts λi(κ) and ai(κ), leaving

a−i(κ) fixed, to solve the problem in Eqn. (5.14) with VIi(ai) defined in Eqn. (5.11).

Dynamic average consensus over λi between optimization steps forces each agent’s local

value toward a non-negative consensus agreement vector λ̄(κ) = 1
Nc

∑
i λi(κ). Conver-

gence of the dynamic game is assured when the local Lagrangians Li(λi,ai), and the

global Lagrangian L(λ,a) form an ordinal potential game.

1Every optimization and consensus step may contain multiple iterations. In fact, they may proceed

simultaneously.
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From Eqns. (5.10), (5.15),and (5.16), ∀λb, λa � 0, let L̃ = L(λb, bi, a−i) −

L(λa, ai, a−i). Thus,

L̃ =

NC∑
i=1

VIi(bi) + λ>b
[
VT (bi, a−i)− T̄

]
−

NC∑
i=1

VIi(ai)− λ>b
[
VT (ai, a−i)− T̄

]
= VIi(bi) +

∑
l 6=i

VIl(al) + λ>b
[
VT (bi, a−i)− T̄

]
−VIi(ai)−

∑
l 6=i

VIl(al)− λ
>
a

[
VT (ai, a−i)− T̄

]
= Li(λb, bi : a−i)− Li(λa, ai : a−i).

Hence, ∀a ∈ S, ∀ai,bi ∈ Si, and ∀λb, λa � 0,

L(λb, bi, a−i)− L(λa, ai, a−i) > 0

⇔ Li(λb, bi : a−i)− Li(λa, ai : a−i) > 0.

Therefore, as explained in Sections 3.2 and 3.3, Eqns. (5.10) and (5.15) form an ordinal

potential game.

5.4 Challenges

Fig. 5.1 depicts the appearance of an example Bayesian Imaging Value function

for a scenario with NT = 2 targets in an area monitored by NC = 1 camera. As shown in

the figure, when NT > 1, the summation of the per target expected imaging value across

the targets for any camera will typically yield a multimodal (i.e., nonconvex) objective

function. Given the expected target positions and their respective distributions, for a

constant tilt angle τ , the plot shows how the value of the objective function changes

versus zoom (ζ ∈ [ζ, ζ]), and pan angle (ρ ∈ [ρ, ρ]), It can be seen that the multi-modal

nature of the function is exaggerated for higher values of ζ. Thus, the possibility of
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Figure 5.1: Non-convexity of the Bayesian imaging value function: The figure is a plot of an example

Bayesian imaging value function that highlights the multimodal nature of the function for scenarios

where NT > 1.

multiple targets makes the visual sensing problem inherently non-convex and provides

challenges in achieving optimal solutions. Non-convexity is further discussed in later

sections.
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Chapter 6

Distributed Optimization

The distributed optimization process can be broken down into three separate

steps, where κ denotes the iteration counter:

1. Camera Parameter Optimization: Each camera Ci computes (ai,λi) to in-

crease Li (λi,ai : a−i) while holding a−i constant. It then communicates the newly

computed local primal-dual pair estimates (i, κ,ai(κ),λi(κ)) and new portions of

a−i to its neighbors Ni.

2. Camera Parameter Replacement: Each camera Cn that is a neighbor of Ci

(i.e. Cn ∈ Ni) receives (i, κ,ai(κ),λi(κ),a−i). It replaces its previous value of

(ai,a−i) using the rules of replacement described in Section 6.2.

3. Consensus on Lagrange Multipliers: Ci performs dynamic average consensus

on its local Lagrange multiplier vector λi(κ) and the Lagrange multiplier vectors

received from cameras in Ni to converge towards a consensus Lagrange multiplier

vector λ̄, using the Lagrange multiplier update law in Eqn. (6.2), defined in Section

6.3.
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This distributed optimization process is then iterated over κ until a stopping criteria is

achieved.

Since the optimization problem described by Eqn. (5.14) is non-convex, any

solution found may only be locally optimal. It is assumed that all agents start with

identical values of a(κ) for κ = 0 and that a(0) is not on the separatrix dividing the

domain of attraction of one local optimum from another.

6.1 Connectivity, Communication, and Consensus

The approach requires the following standard assumptions on the camera com-

munication graph.

Assumption 1 (Connectivity) The camera communication graph is undirected, and

connected, i.e. there exists at least one communication path from each agent to every

other agent in the network.

Remark 7 In [64], each agent changes λ and the entire vector a while computing a dual

solution, then using consensus on both a and λ. Herein, agent Ci only optimizes λ and

ai, which is a subvector of a. When the subvector ai is broadcast to the neighbors of Ci,

they pass it to their neighbors. Each agent receiving a newer value of ai replaces their

older value. Thus, for the approach herein, each camera Ci need only perform dynamic

average consensus on λi and the set of Lagrange multiplier vectors {λn} for Cn ∈ Ni.

Connectivity ensures that the changes to ai and λi by each Ci eventually affect all

agents in the network. The convergence of consensus is asymptotic, but becomes trivial

for strictly feasible solutions, which have λ = 0. The effects of a change in any ai are

fully distributed throughout the network in a finite number of steps, which is less than

the diameter of the network.�

42



Assumption 2 (Weights Rule) There exists a scalar β > 0 such that for each i ∈

[1, Nc], ωii(κ) ≥ β, and ωin(κ) ∈ [β, 1] for Cn ∈ Ni. If cameras Ci and Cn are not

directly connected, then ωin(κ) = 0.

Assumption 3 (Double Stochasticity) Let Bi = Ci
⋃
Ni, and

∑
l∈Bi

ωil(κ) = 1 and∑
i∈Bi

ωil(κ) = 1.

Assumption 2 ensures that all cameras are influential [63] while performing

consensus on the local Lagrange multiplier vectors, and Assumption 3 ensures that all

cameras asymptotically converge to a consensus Lagrange multiplier vector λ̄ � 0 [65].

6.2 Camera Parameter Replacement Rule

We use a variant of the flooding algorithm [66] to propagate the local variables

through the network of cameras. After Ci computes ai(κ), it delivers the information

{i, κ,ai(κ),λi(κ)} to its neighbors Ni, and will rebroadcast to its neighbors any updated

PTZ information, {l,al, κl} for l 6= i, that it received since the last broadcast. Using

rebroadcast, each agent’s parameter updates travel throughout a connected network

exactly one time. For the l-th subvector in C ′is version of a, Ci has a value al(κl) and

a time-stamp κl both computed by Cl, even if Ci and Cl are not neighbors. Because

the network may contain loops, Ci may receive information about other cameras via

multiple paths. Ci will replace its l-th subvector with the received information only if

the time-stamp in {l,al, κl} is more recent than the time stamp corresponding to the

value it is currently using. Otherwise, the message is discarded without rebroadcast.
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6.3 Distributed Lagrangian Consensus

At iteration κ camera Ci receives the set of Lagrange multiplier vectors {λn(κ)}

for Cn ∈ Ni. It also has its local copy of a. Its local computations must jointly optimize

ai and λ (given a−i) while also converging toward agreement across the network on

the value of λ. This section describes dynamic average consensus on the local versions

of Lagrange multiplier vectors. Following the notation in [64], we refer to this as a

distributed Lagrangian consensus algorithm.

Camera Ci iteratively optimizes using the update law [63]:

ai(κ+ 1) = −s(κ) Dai(κ) (6.1)

λi(κ+ 1) = νλi
(κ)− s(κ) Dλi

(κ), (6.2)

where the scalar s(κ) > 0 is the step-size,

Dai = ∇ai Li (λi(κ), ai(κ) : a−i(κ)) ,

and

Dλi
= ∇λi

Li (λi(κ), ai(κ) : a−i(κ))

=
[
VTi (a∗i )− T̄

]
.

The first term in Eqn. (6.2) is the consensus term, which is a convex combination of

λi(κ) and {λn(κ)}:

νλi
(κ) =

∑
l∈Bi

ωil(κ) λl(κ), (6.3)

which always yields νλi
(κ) ∈ <m as a non-negative vector. The second term is the

gradient descent term, which adjusts λi in a coordinated fashion with the change in ai

to converge toward an optimal and feasible solution relative to the local optimization
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problem. The step-size s(κ) > 0 can be adjusted to maintain component-wise non-

negativity of λi.

With Assumptions 1, 2 and 3 , it is shown in [63–65] that for all i = 1, . . . , NC ,

there exist λ̄ � 0 such that

lim
κ→∞

‖λ̄− λi(κ)‖ = 0. (6.4)

6.4 Certificate for Optimality

For the unconstrained maximization problem defined by Eqn. (5.15) for each

agent, the optimal primal-dual pair (a∗i ,λ
∗
i ) must satisfy the KKT conditions:

∇VIi(a∗i ) + [∇VTi(a
∗
i )]
> λ∗i = 0, (6.5)

VTi(a
∗
i )− T̄ � 0, (6.6)

λ∗i � 0, (6.7)

λ∗>i
[
VTi(a

∗
i )− T̄

]
= 0, (6.8)

which provide a certificate of optimality at each agent.

All cameras optimize in parallel. Camera Ci broadcasts a∗i and λ∗i , and new

portions of a−i, to its neighbors who propagate them through the network. While Ci is

locally optimizing its settings, it is accounting for an updated λi, and for each target,

the prior information Jj− and expected new information based on the currently best

settings of all the other cameras a−i.

Optimization stops when either an optimum is achieved, a user-defined stop-

ping condition is met, or the time interval allotted for optimization elapses (see Fig 2.1).

The solution approach described in [21] optimized a weighted combination of tracking

and imaging; whether or not an optimum was achieved, there was no guarantee that
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the tracking specification was achieved. For the approach herein, the KKT conditions

described in Eqns. (6.5 - 6.8) provide a certificate on optimality and feasibility (i.e.,

satisfaction of the tracking specification). Numeric algorithms to solve the constrained

optimization problem defined in Eqn. (5.14), to which the KKT conditions of Eqns.

(6.5–6.8) apply, first find a feasible solution, then search within the feasible set for the

optimal feasible solution. Thus, when the time interval allotted for optimization elapses,

even if the solution is sub-optimal, the solution obtained is guaranteed to be feasible.

This results in all targets being tracked to the specified tracking accuracy at all times,

while procuring high-resolution imagery when opportunity arises. After optimization,

the cameras physically alter their settings to the optimal values in readiness for upcom-

ing images at tk+1.

Thus, by using the replacement step in Section 6.2 and the Lagrange multiplier

update law from Eqn. (6.2), at each consensus iteration κ, every camera maintains an

estimate of the primal-dual pairs of all cameras.
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Chapter 7

Bayesian Visual Sensing with

Planning

While obtaining high-resolution imagery, the camera network may select set-

tings such that they are discontinuous across time. This could result in the optimal

camera parameters at time-step tk being vastly different from those at time-step tk−1.

Apart from leading to mechanical wear of cameras, such discontinuities in the PTZ set-

tings of cameras also lead to motion blur in images, and could generally provide images

that are not well suited for analysis. In this chapter, a method to enforce temporal con-

tinuity in the pan, tilt, zoom (PTZ) settings of smart vision sensors within a distributed

network set up to perform optimal high resolution image capture and aid target state

estimation is proposed.

When designed as an optimization problem to be solved point-wise at a regu-

lar time-step [21, 23], the solution does not consider the future effects of the computed

control actions, since the optimization problem is solved without the aid of a plan-

ning procedure. To address this, the problem is designed as a constrained optimization
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problem over a moving planning horizon H, subject to constraints on target tracking

performance and on the smoothness of PTZ parameters. This enables the immediate

actions of the camera control module to consider future effects of these actions. The

objective function entails the per camera per target imaging quality over horizon H.

The solution approach is designed using a Bayesian framework within a game-theoretic

paradigm. The Bayesian formulation facilitates automatic trading-off of objective max-

imization versus the risk of losing track of any target, while the game-theoretic design

allows the global problem to be decoupled into local problems, one at each camera. The

feasible set for PTZ parameters is defined by constraints on target tracking performance

and the PTZ parameter smoothness constraints. Cameras alter their own PTZ sequences

by using information received from other cameras in the network, and then broadcast

the updated sequences to their neighbors. The challenge is to define algorithms to au-

tonomously perform high-res image capture while adhering to target tracking and PTZ

smoothness constraints, within a distributed framework.

To motivate the benefits of incorporating a planning procedure to the PTZ

optimization method, consider the scenario depicted in Fig. 7.1. Five target trajectories

(shown in different colors) are being tracked within a fully connected network of four PTZ

cameras. We consider five time points for the sake of clarity. Let t = 3 be the current

measurement time instant, and that measurements for all five targets are obtained at

t = 3. Target positions at the current time are represented by human markers that

are color-coordinated with the color of the respective targets trajectory. Every target

trajectory shows target positions (marked by light gray human markers) at which past

measurements were obtained obtained. For a planning horizon of 2 time points forward

from the current measurement instant, the predicted target positions at t = 4 and t = 5
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Figure 7.1: Schematic of a probable scenario for distributed camera control via planning: Fig. a (left)

shows the planned optimal camera FoVs for t = 4, and Fig. b (right) shows the planned optimal

camera FoVs for t = 5. The human markers indicating target positions for the present instant are

color-coordinated with the color of the respective targets trajectory. Target positions for measurements

obtained in the past are indicated by light gray human markers. The FoVs formed by the PTZ parameters

of each camera are represented by light blue shaded polygons. Ground plane positions where cameras

expect measurements to be obtained are shown by crosses.

are indicated by crosses (where cameras expect measurements to be obtained). Fig.

7.1a shows the planned optimal camera FoVs (polygons shaded in light blue) for t = 4,

and Fig. 7.1 shows the planned optimal camera FoVs for t = 5.

Note that the cameras try to maximize the expected imaging value over the

horizon using the target motion model by planning ahead accordingly. For example, at

t = 3, target T 2 was invisible to camera C3 due to occlusion. Also, at t = 5, both T1 and

T2 are expected to come very close to one another (see Fig. 7.1b), and are expected to be

visible to camera C3. This should potentially provide C3 with an opportunity to achieve

a high imaging value (e.g. high-res facial capture) for both T 1 and T 2 at timestep t = 5.

Using a planning horizon should also allow camera C4 to plan on increasing its zoom

value to image target T 3 for time t = 5. Similarly, camera C1 can plan to image target

T 5. Since three of the four cameras zoom into three different targets, camera C2 plans
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to zoom out gradually to enlarge its FoV and thereby to minimize the risk of losing track

on targets. Such an approach should also result in the camera FoVs changing smoothly,

and thus providing a video stream that is better suited for image analysis.

7.1 Moving Horizon

For a user defined planning horizon H, the j-th target’s state estimate and

error covariance matrix are propagated between sampling instants within the horizon

h = 1, . . . ,H using

x̂j(k + h)− = Φh x̂j(k)+, (7.1)

Pj(k + h)− = Φh Pj(k)+ Φh>

+
H∑
h=1

Φh−1 Qd Φh−1> . (7.2)

At time-point tk+1, for horizon H, define

X̂j(k + 1)− = {x̂j(k + 1)−, . . . , x̂j(k +H)−} (7.3)

to be the predicted trajectory for target T j . Also define

P j(k + 1)− = {Pj(k + 1)−, . . . , Pj(k +H)−} (7.4)

to be the set of covariance matrices associated with the corresponding state estimates

in X̂j(k + 1)−. For j = 1, . . . , NT , define

X̂−(k+1) = {X̂j(k + 1)−}, (7.5)

and

P−(k+1) = {P j(k + 1)−}, (7.6)
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Figure 7.2: System block diagram and event time-line: Note that information exchange shown is only

between neighboring cameras. The time-line of procedural events is shown between image sample times.

to be the set of target trajectories and their associated covariance matrices, for all

targets, respectively. For time-point tk+1, and optimization horizon H, define

A(k+1) = {a(k + 1), . . . , a(k +H)}, (7.7)

to be a sequence of camera network PTZ parameters. Given predictions X̂−(k+1) and

P−(k+1), a global objective maximization problem over a moving horizon H is stated as

max
A(k+1)

f
(
A(k+1) : X̂−(k+1), P

−
(k+1)

)
(7.8)

subject to g
(
A(k+1) : X̂−(k+1), P

−
(k+1)

)
≥ 0,

∣∣a(k + h)− a(k + h− 1)
∣∣ ≤ ε,

for h = 1, . . . ,H,

where the objective f is a measure of the imaging value expected to be obtained for

imaging of targets in the area, and g is a measure of the expected target tracking

performance. For the above problem, the first constraint governs the performance of
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the state estimator for target trajectories defined by Eqns. (7.1-7.2), and the second

constraint enforces smoothness over the computed PTZ sequence. The functions f and

g will be defined in later sections.

To compute the optimal solution A∗(k+1), the optimization problem given by

Eqn. (7.8) is evaluated with respect to the distribution of random target trajectories X,

parameterized by mean X̂−(k+1) and covariance P−(k+1) over horizon H. In comparison, a

general Model Predictive Control problem [4] is stated as

max
Ā(k+1),X̄(k+1)

f
(
Ā(k+1), X̄(k+1)

)
(7.9)

subject to x̄j(k + h) = `
(
x̄j(k + h− 1), ā(k + h)

)
,

g
(
Ā(k+1), X̄(k+1)

)
≥ 0,

∣∣ā(k + h)− ā(k + h− 1)
∣∣ ≤ ε,

for h = 1, . . . ,H,

where for j = 1, . . . , NT , the set X̄(k+1) = {X̄j(k + 1)}, with X̄j(k + 1) = {x̄j(k +

1), . . . , x̄j(k +H)}, and the set Ā(k+1) = {ā(k + 1), . . . , ā(k +H)}. The first constraint

of the problem in Eqn. (7.9) indicates that the evolution of the state x̄j(k + h) is

dependent on the computed control input Ā(k+1) via the function `.

The problem setup in Eqn. (7.8) is distinct from that in Eqn. (7.9) since, for a

visual sensing application, the target state trajectory is independent of the control action

A(k+1). Hence, the optimization problem in Eqn. (7.8) does not require constraints on

the state variables X̂(k+1).

52



Remark 8 After solving the optimization problem for time-step tk+1, the controller

directs the network of cameras to reconfigure to PTZ setting a(k+ 1)∗ from the optimal

sequence A∗(k+1). For the purpose of implementation, assuming a horizon of H >= 2,

the PTZ setting a(k+ 2)∗ from the sequence A∗(k+1) could be used as an initial value for

the optimization problem to be solved for tk+2.�

7.2 Moving Horizon Global Bayesian Imaging Value

Given the Bayesian imaging value from Eqn. (5.1), the expected global Bayesian

imaging value at time1 tl over planning horizon H is defined as

VH
(
A(l)

)
=

l+H−1∑
h=l

VI (a(h)) , (7.10)

where A is as defined in Eqn. (7.7). In Eqn. (7.10), the PTZ sequence A(l) is the

optimization variable, and is computed starting from time tl over horizon H. From

definitions in Section 7.1, and from Eqns. (5.1), (7.3) and (7.10), it should be noted

that VH is also dependent on but does not affect the predicted target trajectories X̂−(l),

and their associated covariance matrices P−(l).

7.3 Moving Horizon Tracking Performance Constraints

As explained in Section 5.2, the tracking performance constraints enforce track-

ing of all targets to a specified accuracy T̄. For PTZ settings a(l) at time tl, and given

the expected distribution of target T j ’s position N (gp̂j(l)−,Pj
pp(l)−), the tracking con-

straintfor target T j is a function of the expected posterior Fisher information matrix

Jj
(
a(l) : gp̂j(l),Pj

pp(l)
)+

.

1For ease of notation, we define time tl = tk+1 wherever necessary.
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7.3.1 Fisher Information Over Horizon H

The Fisher information matrix Jj for T j in block form is given by Eqn. (5.2),

from which the posterior position information matrix at time tl is Jj+pp is

Jjpp(l)+ = Jjpp(l)− +

NC∑
i=1

Hj
i (l)
>Cj

i (l)
−1Hj

i (l). (7.11)

As is shown in Section 4.2.1, matrices Hj
i and Cj

i are functions of ai(l) and target

position gpj(l). Therefore, Jjpp(l)+ depends on a(l) and on the distribution of target

positions at tl. For time tl and horizon H, define

J j(l)+ =
{
Jjpp(l)+, . . . , Jjpp(l +H − 1)+

}
(7.12)

to be the set of posterior position information matrices associated with target T j . For

j = 1 to NT , define

J+
(l) = {J j(l)+} (7.13)

to be the set of posterior position information matrices for all targets. Note that the

tracking constraints will have to account appropriately for the probability that T j ∈

FoVi, over horizon H, and hence will be designed within the Bayesian framework.

7.3.2 Tracking Constraints Over Horizon H

As shown in Eqn. (5.6), the tracking constraint for each target for time tl is

Vj
T

(
a(l)

)
� T̄j , (7.14)

where T̄j is a constant tracking accuracy parameter specified by the user and the nota-

tion ‘�’ indicates a per-element vector inequality.
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For j = 1, . . . , NT , stacking the Bayesian tracking value vectors for each target,

we obtain

VT (a(l)) =
[
V1
T (a(l)) , · · · ,VNT

T (a(l))
]>
, (7.15)

and rewrite Eqn. (7.14) for all targets presently in the area as

g (a(l)) = VT (a(l))− T̄ � 0, (7.16)

where g (a(l)) , VT (a(l)), T̄, 0 ∈ <m with m = dim(gpj)NT (l). Eqn. (7.16) is the

global tracking constraint for time tl.

Given the Bayesian tracking constraint in Eqn. (7.16), for time tl and horizon

H, define

gH
(
A(l)

)
=
[
g
(
a(l)

)>
, . . . ,g

(
a(l +H − 1)

)>]>
(7.17)

to be the vector of stacked global Bayesian tracking constraints computed for imaging

instant tl, over optimization horizon H, where gH ∈ <mH . From definitions in Section

7.1, and from Eqn. (5.5), note that gH is dependent on X̂−(l) and P−(l).

7.3.3 Smoothness Constraints Over Horizon H

To enforce a measure of temporal continuity in PTZ space, the optimization

problem includes the constraint

q
(
a(l)

)
= ε− |a(l)− a(l − 1)| � 0. (7.18)

The vector ε =
[
ε>1 , . . . , ε

>
i , . . . , ε

>
NC

]>
∈ <3NC , where for i = 1, . . . , NC , the user

defined upper bound on the permissible change in camera Ci’s PTZ parameters between

successive time-points is εi = [ρ̄i, τ̄i, ζ̄i]
> ∈ <3.
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Given the smoothness constraint in Eqn. (7.18), for time tl and horizon H,

define

qH
(
A(l)

)
=
[
q
(
a(l)

)>
, . . . ,q

(
a(l +H − 1)

)>]>
, (7.19)

to be the vector of concatenated global smoothness constraints computed for imaging

instant tl, over optimization horizon H, where qH ∈ <nH , where n = 3NC .

7.3.4 Global Moving Horizon Problem Summary

The constrained global imaging value maximization problem for imaging in-

stant tl over planning horizon H can be written as

maximize VH

(
A(l) : X̂−(l), P

−
(l)

)
(7.20)

subject to gH

(
A(l) : X̂−(l), P

−
(l)

)
� 0 ∈ <mH ,

qH
(
A(l)

)
� 0 ∈ <nH .

The global Lagrangian L(λ,µ, A) is

L(λ,µ, A) = VH(A) + λ>gH(A) + µ>qH(A), (7.21)

where L : (λ,µ, A) 7→ <, and λ ∈ <mH , µ ∈ <nH are the Lagrange multiplier vectors.

Thus, to find the optimal primal-dual set of solutions (A∗,λ∗,µ∗) through a central

controller, the global unconstrained problem given by the Lagrangian in Eqn. (7.21)

would be solved.
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7.4 Decoupling the Moving Horizon Global Problem

Due to the desired distributed nature of our solution, the global problem in

Eqn. (7.20) is to be decoupled into smaller local problems to be solved by each camera.

Given Eqn. (5.11), we define the local Bayesian imaging value for time tl over planning

horizon H as

VHi

(
Ai(l)

)
=

l+H−1∑
h=l

VIi (ai(h)) , (7.22)

where camera Ci’s PTZ sequence

Ai(l) =
{
ai(l), . . . ,ai(l +H − 1)

}
, (7.23)

is the optimization variable in Eqn. (7.22). From definitions in Section 7.1, and from

Eqns. (5.11) and (7.22), VHi is also dependent on X̂−(l) and P−(l).

7.4.1 Bayesian Tracking Constraints

Define gHi(Ai) = gH(Ai : A−i). This notation concisely indicates that Ci can

only alter Ai, where for the purpose of its local optimization A−i is fixed. Thus we

define the horizon tracking constraint for camera Ci as

gHi(Ai) � 0. (7.24)

Note that while Ci is changing Ai, it utilizes the current locally optimal PTZ se-

quences A−i, which it has received through its neighbors in the network. The constraint

gHi(Ai) = gH(Ai : A−i) is distinct from gH(Ai, A−i) = gH(A), and maxAi∈Si gHi(Ai) ≤

maxA∈S gH(A), where the set S = S1 × . . . × SNC
is the collection of all possible PTZ

sequences, and set Si is the collection of all possible PTZ sequences for camera Ci. Also,

from Eqns. (7.14) - (7.17), for h = 1 to H, and j = 1 to NT (l),

gHi

(
Ai(l)

)
� 0 ⇔ Vj

Ti

(
ai(h)

)
� T̄j .
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The matrix from Eqn. (5.3) can be reorganized as

Jjpp(l)+ =
[
Jjpp(l)− + Hj

−i(l)
> Cj

−i(l)
−1 Hj

−i(l)
]

+ Hj
i (l)
> Cj

i (l)
−1 Hj

i (l). (7.25)

The term
[
Hj>

−i (Cj
−i)
−1 Hj

−i

]
is computed from A−i(l), which are available at Ci

through frequent communication between cameras. Hence, camera Ci regards the brack-

eted term in Eqn. (7.25) to be constant and known.

7.4.2 Local Smoothness Constraints

Define vector

qi
(
ai(l)

)
= εi − |ai(l)− ai(l − 1)| � 0, (7.26)

where εi = [ρ̄i, τ̄i, ζ̄i]
> ∈ <3 is as defined in Eqn. (7.18). From Eqn. (7.26), for time tl

and horizon H, define

qHi

(
Ai(l)

)
=
[
qi
(
ai(l)

)>
, . . . ,qi

(
ai(l +H − 1)

)>]>
, (7.27)

to be the vector of concatenated local smoothness constraints computed for future

imaging instant tl, over optimization horizon H. The horizon smoothness constraint

qHi ∈ <niH , where ni = 3. From Eqns. (7.19) and (7.27), note that

qH
(
A(l)

)
=
[
qH1

(
A1(l)

)>
, . . . ,qHNC

(
ANC(l)

)>]>
. (7.28)

The constraints for camera Ci only include qHi (Ai).

58



7.4.3 Local Moving Horizon Problem Summary

From Eqns. (7.22), (7.24), and (7.27), the local constrained imaging value

maximization problem, for imaging instant tl, over planning horizon H is

maximize VHi

(
Ai(k) : X̂−(l), P

−
(l)

)
(7.29)

subject to gHi

(
Ai(l) : X̂−(l), P

−
(l)

)
� 0 ∈ <mH ,

qHi (Ai(l)) � 0 ∈ <niH .

The local Lagrangian2 Li(λi,µi, Ai) is

Li(λi,µi, Ai) = VHi(Ai) + λ>i gHi(Ai) + µ>i qHi(Ai), (7.30)

where Li : (λi,µi, Ai) 7→ <, and λi ∈ <mH and µi ∈ <niH are the Lagrange multiplier

vectors. Thus, to find its local optimal primal-dual set of solutions (A∗i ,λ
∗
i ,µ

∗
i ), camera

Ci solves the local unconstrained problem given by the Lagrangian in Eqn. (7.30).

7.4.4 Lagrange Multiplier Consensus

In the proposed approach, we choose that cameras in the network optimize

simultaneously. As explained in Chapter 6, the Lagrange multiplier vector λi picked by

camera Ci to solve the problem is a local variable and may not be globally the same

throughout the network, and the subscript i on λi in Eqn. (7.30) explicitly indicates

this.

In order to overcome this predicament, cameras in the network employ the

Lagrange multiplier consensus algorithm explained in Section 6.3 to perform dynamic

average consensus over the local Lagrange multiplier vectors.

2Since gHi

(
Ai(l)

)
= gH

(
Ai(l) : A−i(l)

)
, the i-th camera also uses the PTZ sequences A−i while

computing its local Lagrangian Li. The dependence of Li on A−i is dropped for ease of notation, and

is stated only if needed for explanation.
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7.4.5 Lagrangian as an Ordinal Potential Function

For the problem stated in Eqn. (7.20), note that the global objective of the

multi-camera network defined in Eqn. (7.10) is the sum over the local objectives defined

in Eqn. (7.22):

VH(A) =

NC∑
i=1

VHi(Ai). (7.31)

At each optimization step κ, camera Ci uses PTZ sequences A−i(κ) to adjust

λi(κ), µi(κ), and Ai(κ), leaving A−i(κ) fixed, to solve the problem in Eqn. (7.29) with

VHi(Ai) as defined in Eqn. (7.22). Convergence of the dynamic game is assured when the

local Lagrangian Li(λi,µi, Ai), and the global Lagrangian L(λ,µ, A) form an ordinal

potential game [60].

To prove ordinal potentiality of the global Lagrangian L, ∀λB, λA � 0 ∈ <mH ,

∀µB, µA � 0 ∈ <nH , and ∀µBi , µAi � 0 ∈ <niH , define

L̃ = L(λB,µB, Bi, A−i)− L(λA,µA, Ai, A−i). (7.32)

Thus, from Eqns. (7.21), (7.30), (7.31), and (7.32),

L̃ = VH (Bi, A−i) + λ>B gH (Bi, A−i)

+ µ>B qH (Bi, A−i)− VH (Ai, A−i)

− λ>A gH (Ai, A−i)− µ>AqH (Ai, A−i)

=

NC∑
i=1

VHi (Bi) + λ>B gH (Bi, A−i)

+

NC∑
i=1

µ>Bi
qHi (Bi)−

NC∑
i=1

VHi

(
Ai
)

− λ>A gH (Ai, A−i) +

NC∑
i=1

µ>Ai
qHi (Ai) . (7.33)
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From the definition in Eqn. (7.31), the terms
∑NC

i=1 VHi(Bi) and
∑NC

i=1 VHi(Ai)

from Eqn. (7.33) can be rewritten as

NC∑
i=1

VHi (Bi) = VHi

(
Bi
)

+
∑
j 6=i

VHj

(
Aj
)
, (7.34)

and
NC∑
i=1

VHi (Ai) = VHi(Ai) +
∑
j 6=i

VHj (Aj), (7.35)

respectively. Similarly, from Eqns. (7.21), (7.28), and (7.30) the terms
∑NC

i=1µ
>
Bi

qHi(Ai)

and
∑NC

i=1µ
>
Ai

qHi(Ai) from Eqn. (7.33) can be rewritten as

NC∑
i=1

µ>Bi
qHi

(
Bi
)

= µ>Bi
qHi (Bi) +

∑
j 6=i
µ>Aj

qHj (Aj) , (7.36)

and
NC∑
i=1

µ>Ai
qHi

(
Ai
)

= µ>Bi
qHi (Bi) +

∑
j 6=i
µ>Aj

qHj (Aj) . (7.37)

Therefore,

L̃ = VHi(Bi) + λ>B gH (Bi : A−i) + µ>Bi
qHi (Bi)

+
∑
j 6=i

VHj

(
Aj
)

+
∑
j 6=i
µ>Aj

qHj (Aj)

− VHi

(
Ai
)
− λ>A gH (Ai : A−i)− µ>Ai

qHi (Ai)

−
∑
j 6=i

VHj

(
Aj
)
−
∑
j 6=i
µ>Aj

qHj (Aj)

= Li
(
λB,µBi , Bi : A−i

)
− Li

(
λA,µAi , Ai : A−i

)
. (7.38)

The above analysis shows that, for i = 1 to NC and planning horizon H,

∀A ∈ S, ∀Ai, Bi ∈ Si, ∀λA, λB � 0 ∈ <mH , ∀µA, µB � 0 ∈ <nH , and ∀µAi , µBi �

0 ∈ <niH ,

L(λB,µB, Bi, A−i)− L(λA,µA, Ai, A−i) > 0

⇔ Li(λB,µBi , Bi : A−i)− Li(λA,µAi , Ai : A−i) > 0.
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Therefore, from the definition of ordinal potentiality in [60], Eqns. (7.21) and (7.30)

form an ordinal potential game.

7.5 Distributed Optimization

Similar to the process in Chapter 6, the distributed optimization of PTZ pa-

rameters over a moving horizon can be broken down into three separate steps, where κ

denotes the iteration counter:

1. Camera Parameter Optimization: Each camera Ci computes (Ai,λi,µi) to

increase Li (λi,µi, Ai) while holding A−i constant. It then communicates the

newly computed local primal-dual estimates
(
Ai(κ),λi(κ),µi(κ)

)
and new portions

of A−i to its neighbors Ni.

2. Camera Parameter Replacement: Each neighbor Cn of camera Ci (i.e. each

Cn ∈ Ni) receives
(
Ai(κ),λi(κ),µi(κ), A−i(κ)

)
. It replaces its previous value of

(Ai, A−i) using the rules of replacement described in Section 7.5.1.

3. Consensus on Lagrange Multipliers: Ci performs dynamic average consensus

on its local Lagrange multiplier vector λi(κ) and the Lagrange multiplier vectors

received from cameras in Ni to converge towards a consensus Lagrange multiplier

vector λ̄, using the Lagrange multiplier update law described in Eqn. (6.2), defined

in Section 6.3.

This distributed optimization process is then iterated over κ until a stopping criteria is

achieved.
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Since the optimization problem described by Eqn. (7.29) is non-convex, any

solution found may only be locally optimal. It is assumed that all agents start with

identical values of A(κ) for κ = 0 and that A(0) is not on the separatrix dividing the

domain of attraction of one local optimum from another.

7.5.1 Camera Parameter Replacement Rule

After Ci computes Ai(κ), it broadcasts the information {i, κ,Ai(κ),λi(κ),µi(κ)}

to its neighbors Ni, and will rebroadcast to its neighbors any updated PTZ horizon

information, {l, Al,µl, κl}, that it received since the last broadcast. Using rebroadcast,

parameter updates travel throughout a connected network. For the l-th subvector in

C ′is version of A, Ci has values Al(κl),µl(κl), and a time-stamp κl both computed by

Cl, even if Ci and Cl are not neighbors. Because the network may contain loops, Ci

may receive information about other cameras via multiple paths. Ci will replace its l-th

subvector with the received information only if the time-stamp in {l, Al,µl, κl} is more

recent than the time stamp corresponding to the value it is currently using. Otherwise,

the message is discarded without rebroadcast.

7.5.2 Certificate for Optimality

For each unconstrained maximization problem given by Eqn. (7.30), the KKT

conditions [59] are:

∇VHi(A
∗
i ) +∇gHi(A

∗
i )
>λi

∗ +∇qHi(A
∗
i )
>µ∗i = 0, (7.39)

gHi(A
∗
i ) � 0, qHi(A

∗
i ) � 0, (7.40)

λi
∗ � 0, µ∗i � 0, (7.41)

λi
∗>gHi(A

∗
i ) = 0, µ∗>i qHi(A

∗
i ) = 0. (7.42)
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The optimal primal-dual set of solutions (A∗i ,λi
∗,µ∗i ) computed for the optimization

problem in Eqn. (7.29) must satisfy the KKT conditions given by Eqns. (7.39 - 7.42).

Optimization stops when either an optimum is achieved, a user-defined stopping condi-

tion is met, or the time interval allotted for optimization elapses (see Fig 7.2).

For the approach herein, the KKT conditions described in Eqns. (7.39 - 7.42)

provide a certificate on the optimality and feasibility (i.e., satisfaction of the tracking

and smoothness specifications) of the solution computed. Numeric algorithms to solve

the constrained optimization problem defined in Eqn. (7.29), to which the KKT con-

ditions of Eqns. (7.39 - 7.42) apply, first find a feasible solution, then search within

the feasible set for the optimal feasible solution. Thus, when the time interval allotted

for optimization elapses, even if the solution is sub-optimal, the methodology aids the

network in finding a solution that is feasible. This results in all targets likely being

tracked to the specified tracking accuracy, and all cameras adhering to the smoothness

criterion, while procuring high-res imagery. After optimization, the cameras physically

alter their settings to the optimal values in readiness for upcoming images at tk+1. Thus,

by using the replacement step in Section 7.5.1 and the Lagrange multiplier update law

from Chapter 6, at each optimization iteration κ, every camera maintains an estimate

of the primal-dual solutions of all cameras.
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Chapter 8

Simulation and Analysis

This chapter describes and analyzes results obtained on a realistic Matlab sim-

ulation of the proposed approach. The goal of the simulation is to evaluate the per-

formance of a distributed PTZ camera network using the methods described herein to

obtain opportunistic high-res facial imagery of targets moving in a region, while tracking

all targets at all times to a specified tracking accuracy. Subsequently, the chapter evalu-

ates the moving horizon PTZ optimization approach described in 7 to observe temporal

smoothness on the optimal PTZ parameter sequence.

8.1 Scenario, Setup and Experiment Details

Fig. 8.1, shows a 400 m2 area being monitored by NC = 3 calibrated cameras

located at C1 = [10, 0, 3]>, C2 = [0, 10, 3]>, and C3 = [20, 10, 3]>m. Camera locations

are indicated by colored stars. The boundary of the FoV for each camera is drawn as

a wide solid line in a color coordinated with the color of the position marker of the

camera. Note that the FoV is the area in the interior of this polygon. Every target T j is

modeled as a circular disc of negligible height and a radius of 30 cm. All target discs are
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Figure 8.1: Top-view of 20 × 20 surveillance area at t = 0, before target entry: Camera locations are

indicated by colored stars. The camera’s FoV boundary is drawn on the ground plane using the same

color as its star. The FoV of the camera is the convex area interior of this polygon.

coplanar to the ground plane. The entrance to the area is located at y = 20, x ∈ [9, 11]

and indicated by the cyan hash marks in Fig. 8.1. Targets enter through the entrance

at random times; therefore, the total number of targets in the area is time variant.

When a target T j enters the area, its position coordinates are randomly initialized in

[gxj , gyj , 0]>, where gxj ∈ [9, 11] and gyj = 20.

When a new target is detected, the number of targets NT (t) is increased, and

the target state is augmented to the state vector and included in the imaging and

tracking value functions. The maximum number of targets permissible in the area was

limited such that 0 ≤ NT (t) ≤ NT where NT = 10. To ensure that targets entering

the area are detected, the entrance must be constantly monitored. This is achieved by
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inserting an artificial stationary target at (2, 20, 0) with constant position uncertainty

of 2m2. Once a target is in the room, its motion is generated using the model in Eqn.

(4.2). The exit to the room is located at y = 0, x ∈ [2, 10] and indicated by the black

hash marks in Fig. 8.1. If the target trajectory intersects the wall in this region, then

the target has exited the room, in which case, the target state is removed from the

state vector, excluded from the imaging and tracking value functions, and the number

of targets NT (t) is decreased.

Remark 9 Note that the target trajectory from Eqn. (4.2) may intersect a wall. If the

point of intersection is the exit, then the target exits the area as described above. If the

point of intersection is not the exit, then the target trajectory reflects off the wall. �

As discussed in Section 4.2, the measurement model depends on the camera

parameters. In addition, while the image processing algorithms may compute the cen-

troid of the feature region in the image plane to subpixel resolution, the covariance

matrix used in the state estimation routine must account for the the uncertainty in the

computed centroid relative to the “actual target centroid.” Let nji (ai) represent the area

occupied by T j ’s image on Ci’s image plane measured in sq. pixels. For this simulation,

the estimation routine models the covariance of the measurement1 of T j by Ci as

Cj
i (ai) =


nj
i (ai)
pi

σ2
x 0

0
nj
i (ai)
pi

σ2
y

 , (8.1)

where pi is the pixel resolution of Ci’s image plane (in sq. pixels) and σ2
x and σ2

y (in sq.

pixels) are positive constants. For this simulation, each camera Ci was set to an image

resolution pi of 800× 600 sq. pixels, with σx = σy = 5 pixels.

1For computer vision applications, a model for the measurement covariance matrix is often learned

from training data collected during deployment of the system.
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Based on the properties described in Section 4.3, we define an imaging value

associated with target T j when imaged by camera Ci. Let vector ovj be the target’s

estimated velocity vector. Define the vector oCi to be the i-th camera’s optical axis

direction in the global frame

oCi = g
ciR

cie3, (8.2)

where e3 = [0, 0, 1]>. Define oT j to be the vector from camera Ci’s position to target

T j ’s estimated position. Using the vectors ovj , oCi , and oT j we define the scalars

oc =
oCi · oT j

‖ oCi ‖‖ oT j ‖
, and oo =

oCi · ovj
‖ oCi ‖‖ ovj ‖

. (8.3)

The scalar oc ∈ [−1, 1] yields the maximum possible positive value of 1 if camera Ci

images target T j such that T j is at the center of its FoV. The scalar oo ∈ [−1, 1] has

maximum magnitude when T j ’s motion vector ovj is pointing directly toward or away

from camera Ci.

To define the pose quality factor αji (ai), we use the following assumption.

Assumption 4 (Facial Direction) Target T j faces in the direction indicated by vector

ovj .

From Assumption 4 and Eqn. (8.3), when the scalar oo < 0, T j is likely to

be facing camera Ci. This condition differentiates between targets facing Ci and those

facing away from it. The relative pose quality factor is thus defined as

αji (ai) =


(oc oo)

2 if oo < 0

0 otherwise.

(8.4)

Hence when αji ∈ [0, 1] is large, it is likely that T j is facing Ci and at the center of Ci’s

FoV.
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The imaging value expected to be obtained by camera Ci for imaging T j is

defined as2

V j
Ii

(
ai,

gx̂j , t
)

= wji (t) r
j
i

(
ai,

gp̂j
)
αji
(
ai,

gx̂j
)
, (8.5)

where, the weight wji (t) is defined as the continuously differentiable and bounded func-

tion

wji (t) = σd
(
dj(t)

)
σv

(
V̄ j , V j

Ii
(t)
)
. (8.6)

In Eqn. (8.6), the scalars σd = 1 + 1

1+exp
(
lddj(t)

) , and σv = 1

1+exp
(
lv
(
V̄ j−V j

Ii
(t)
)) . The

symbol dj(t) is the distance between T j ’s estimated position at time t and the exit. The

symbol V̄ j = maxτ<t, i∈[1,Nc]

(
V̄ j
Ii

(τ)
)

is the best image quality achieved for imaging

target T j from any camera and at any prior imaging time, where the imaging value

achieved by camera Ci for imaging T j is

V̄ j
Ii

(
ai,

gxj , t
)

= r̄ji
(
ai,

gpj
)
ᾱji
(
ai,

gxj
)
. (8.7)

In Eqn. (8.7), the scalars r̄ji and ᾱji indicate the imaging resolution and camera to target

pose quality actually achieved. With these definitions σd(t) ∈ [1, 2] and σv(t) ∈ [0, 1].

This definition of wji (t) gives higher value (i.e., emphasizes) those targets nearest to the

exit and those targets for which the value of the next image is expected to improve the

most relative to prior imagery.

All cameras optimize simultaneously, using an interior-point method [67]. The

tracking constraint in Eqn. (5.12) uses T̄ = 1.0 m−2. Ci receives camera parameters

a∗−i through its neighbors, and uses its current parameters ai to implement the method

described in Section 7.5.

2Note that the expectation over Ci’s FoV is applied in Eqn. (5.11).
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8.2 Single Step PTZ Optimization

This section analyzes simulation results obtained while applying the proposed

PTZ optimization approach over a single time-step. The results in Figs. 8.2 - 8.4

correspond to a 31 sec. simulation. All cameras image at a frequency of 1 Hz, with the

first images obtained at time t = 1 second.

8.2.1 Single Trial Results

For this simulation, targets T 1 to T 10 entered the area at times 0.1, 10.2, 11.1,

14.2, 20.4, 22.9, 27.2, 28.8, 30.1, and 30.4 seconds, respectively. Target T 1 left the

area at time 14.4 seconds. No other targets left the area. When T j enters, a camera

monitoring the entrance images it, detects the new target and augments it to its state

vector. Other cameras add the new target to their state vector as they receive the new

target information at the state estimation stage.

Cameras maximize their local Lagrangians Li(λ
∗
i ,a
∗
i ) to satisfy the tracking

spec and maximize their local Bayesian imaging values. Fig. 8.2a shows that the ex-

pected Bayesian tracking value Vj
T (a∗) is greater than the tracking spec, at all times;

therefore, all primal-dual solutions (a∗i ,λ
∗
i ) obtained through local optimization are ex-

pected to be feasible at all imaging instants. Because the solutions are strictly feasible,

using Eqn. (6.8), it is trivial to prove that the dual optimal Lagrange multiplier vectors

for all cameras are λ∗i (t) = λ̄ = 0 ∈ <m, where m = 2NT (t).

The proposed approach utilizes predicted target motion based on state esti-

mates from the last imaging time. Estimation error or unexpected maneuvers by targets,

such as a simulated target reflecting of a wall, can lead to a drop in the accuracy actually
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Distributed Constrained Optimization for Bayesian Opportunistic Visual Sensing

Figure 8.2: Bayesian tracking and imaging values: Fig. a (top left) shows that the camera network

expects to successfully and co-operatively satisfy the tracking constraint T̄ = 1.0 m−2 for every target,

at all times. Fig. b (middle left) shows that the achieved tracking values satisfy the tracking constraint

T̄. Fig. c (bottom left), plots the achieved local imaging value V̄Ii(ai) and the achieved global imaging

value V̄I(a) (i.e., sum of the local values). Figs. d (top right), e (middle right) and f (bottom right)

show the per camera optimal pan angle ρ◦ ∗i , tilt angle τ◦ ∗i and zoom ζ ∗i values, respectively.

achieved. Fig. 8.2b shows the tracking value V̄j
T (a∗) actually achieved by the network.

Various instances of differences between the expected and achieved accuracy can be ob-

served through the simulation time. Since the target motion is a random process, there

is no deterministic guarantee that the achieved accuracy meets the specification.

Fig. 8.2c shows the achieved imaging values of each camera and of the network

of cameras. The peak values occur at those opportunistic times at which the cameras

procure high-res facial images of targets, while the tracking constraints on all targets

are satisfied. A high value for V̄Ii (a∗i ) indicates a high-res facial capture by camera Ci.
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(a) Optimized FoVs at t = 1.
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(b) Optimized FoVs at t = 11.
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(c) Optimized FoVs at t = 15.
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(d) Optimized FoVs at t = 21.
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(e) Optimized FoVs at t = 28.

5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Simulation Time

G
lo
b
a
l
B
ay
es
ia
n
Im

a
g
in
g
V
a
lu
e
p
er

T
a
rg
et

V
j I
(a
)

Opportunistic High-res Facial Capture per Target

 

 
V 1
I (a)

V 2
I (a)

V 3
I (a)

V 4
I (a)

V 5
I (a)

V 6
I (a)

V 7
I (a)

V 8
I (a)

V 9
I (a)

V 10
I (a)

(f) Expected hi-res capture.

Figure 8.3: Top-view of optimized FoVs: Figs. a, b (both top row), c, d (both middle row), and e

(bottom left) show the optimized FoVs at times of opportunity: t = 1, t = 11, t = 15, t = 21 and t = 28,

respectively. Each figure shows the optimized FoVs of the cameras after feasible optimal solutions are

achieved. Fig. f (bottom right) shows the expected per target imaging value V j
I

(
a(t)

)
from Eqn. (8.8).
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Given the target trajectories of this simulation, all cameras availed opportunities for

high-res image capture throughout simulation time.

Figs. 8.2d - 8.2f show the per camera optimized PTZ values versus time. Top-

views of the camera FoVs for a selection of high-res imaging opportunities is shown in

Fig. 8.3.

Figs. 8.3a, 8.3b, 8.3c, 8.3d, and 8.3e show the post-optimization FoVs of the

cameras for time-steps t = 1, t = 11, t = 15, t = 21, and t = 28, respectively. The

posterior estimate of the position of the centroid of each target is marked by a red dot.

The actual position of the centroid of each target is marked by a blue dot. A wide

pink dashed curve indicates the surface area occupied by a target on the ground plane,

relative to the actual target centroid position. Note that the number of pixels occupied

by target T j on the image plane of camera Ci is a function of target surface area, true

target location, and ai. The posterior 1 − σ position error ellipse corresponding to the

estimated position of each target is drawn as a black curve.

Target T 1 enters at time t = 0.1. Cameras collaboratively image T 1 at time

t = 1, where C2 images T 1 with the highest imaging value among all cameras (see Fig.

8.2c). Similarly, C1 obtains an opportunistic high-res image of T 2 at time t = 21. Note

that in all cases, the entrance and all targets are within at least one FoV. Fig. 8.3f plots

the time history of the expected imaging value per target acquired by all cameras:

V j
I

(
a(t)

)
=
∑
i

E
〈
V j
Ii

(
ai(t),

gpj(t)
)〉
, (8.8)

where V j
Ii

(ai) is defined in Eqn. (8.5). The number of curves is different at each time

because the number of targets is time varying. A high-res image capture of T j by

any camera Ci is indicated by a spike in the global Bayesian imaging Value function

V j
I

(
a(t)

)
. The figure shows that for this simulation run, the camera network obtained
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at least one high-res facial image of each target in the area, at times-of-opportunity

distributed throughout the time period of the simulation. Combining the information

from this figure with that from Fig. 8.2c, we see for example that as T 2 moves through

the room, at various times, different cameras have opportunities to image it.

Fig. 8.4 is an example, using time-step t = 21, of the optimization process

that each camera performs before each imaging instance. All cameras simultaneously

perform a few optimization iterations, then broadcast their (approximate) primal-dual

solutions, update their local estimates of a∗ using the sub-vectors received from their

neighbors and resume the optimization process. The broadcast instances are indicated

by the pink dashed vertical lines. This process repeats till an optimum is reached or

time expires.

Remark 10 We start each optimization iteration with a wide FoV. This choice of ini-

tial condition facilitates the search for a feasible solution. This is similar to using a

metaheuristic [68, 69] to aid computation of a feasible solution. �

Remark 11 To achieve high-res imagery and satisfy the tracking threshold, camera

FoV’s alter significantly between successive time instants. Examples of such changes in

pan and tilt values can be seen in Figs. 8.2d and 8.2e throughout simulation time. Such

rapid panning and tilting motion can hamper image quality due to motion blurring and

may also cause mechanical wear in cameras. This is addressed by extending the PTZ

optimization approach into the moving horizon optimization method described in Chapter

7. Results for the moving horizon optimization approach are discussed in Section 8.3. �
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Figure 8.4: Optimization: The maximization of VIi(ai) versus the number of local iterations at time-

instant t = 21. The vertical pink dashed lines indicate local iterations κi at which Ci broadcast pa-

rameters as described in Section 6.2. After the cameras have collaboratively found a feasible PTZ

configuration, C1 and C2 capitalize on the target configuration to obtain images expected to have very

high values.

Remark 12 As seen in Fig. 8.3f, in spite of the formulation of Eqn. (8.6), it is

still possible that the camera will attempt to acquire images of targets with lower image

value than was previously obtained. There are at least two explanations. First, this can

occur inadvertently because a previously imaged target is sometimes visible in the FoVs

of cameras that have been optimized for imaging other targets. Second, as long as the

expected imaging value V j
I is finite, which it always is, the optimization still receives

some value for new imagery, even if it is not of higher quality than previous imagery. �
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8.2.2 Multi-Trial Performance Analysis

This section provides an analysis of the performance of the proposed PTZ

camera network approach using data from N = 100 Matlab simulation runs. Across all

simulation runs, target trajectories and target times of entry were independent, with the

target times of entry designed such that target T j always entered before target T j+1. To

make results comparable, all other parameters (e.g. camera locations, image resolution,

pixel noise, area entrances and exits, etc.) were defined to be the same for all simulation

runs, as defined in Section 8.1.

For a dynamic PTZ camera network, define V̄ j
D(n) to be the maximum global

imaging value achieved for target T j during simulation run n. Similarly, for a constant

(static) PTZ camera network, let V̄ j
S (n) be the maximum global imaging value achieved

for target T j during simulation run n. Define a performance ratio V̄ j
B(n) as

V̄ j
B(n) =

V̄ j
D(n)

V̄ j
S (n)

, (8.9)

where V̄ j
B(n) provides a measure of the relative gain in imaging value achieved by uti-

lizing a dynamic PTZ configuration rather than a static PTZ configuration.
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Figure 8.5: Performance improvement distribution: Imaging performance improvement ratio of dynamic

PTZ camera configuration relative to a static PTZ configuration. Each colored line corresponds to a

distinct target, showing the distribution of the per target performance ratio V̄ j
B (see Eqn. (8.9)) over

100 simulation runs. The range of V̄ j
B values is plotted as bins on the horizontal axis. The dynamic

PTZ config. significantly outperforms the static PTZ config.

Fig. 8.5 shows the distribution (histogram) of the performance ratio V̄ j
B over

N = 100 simulation runs. The network of dynamic PTZ cameras consistently outper-

forms the static camera configuration by procuring images of higher quality. Fig. 8.5

uses a semilog horizontal axis with a maximum of 106. The performance improvement

ratio actually varies from 1 to 1012. Such enhanced image quality is better suited for

image analysis and scene understanding.
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Figure 8.6: Opportunistic imaging distribution: Fig. shows the distribution of the per target achieved

image value over N = 100 simulation runs. Each colored line corresponds to a distinct target, showing

the histogram of values.

Fig. 8.6 displays the histogram of the per target achieved imaging value, which

is denoted by V̄ j
I (a). The number of opportunistic high-res images obtained for target T 1

is greater than those obtained for T 2, and so on. There are at least two explanations.

First, T j always enters before target T j+1; therefore, the cameras likely have more

opportunities to image T j at a higher resolution than T j+1. Second, the difficulty in

acquiring high-res images increases as the number of targets in the area increases, due to

the increase in the number of feasibility constraints (see Eqns.(5.8), (5.12), and (5.14)).
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Remark 13 The camera positions across all simulation runs (static and dynamic) were

left unchanged. The locations were selected so that, for the static configuration, all

locations within the entire area were within the FoV of at least one camera. Altering

the positions of entrances, exits, or the static parameter cameras may provide different

performance than the static configuration used herein. �

This section demonstrates that the proposed method causes the cameras to

cooperate to ensure that all targets are expected to be tracked to an accuracy better

than T̄, and that high-res target images are obtained at times-of-opportunity implicitly

defined by the feasibility constraints. The statistical analysis provides a measure of the

increase in imaging performance obtained while using the proposed method.

8.3 Moving Horizon PTZ Optimization

This section analyzes simulation results obtained while applying the proposed

PTZ optimization approach over a moving planning horizon H (see Chapter 7). The

scenario, setup and experiment details are as defined and described in Section 8.1.

8.3.1 Single Trial Results

The results in Figs. 8.7 - 8.8 correspond to a 31 sec. simulation. All cameras

image at a frequency of 1 Hz, with the first images obtained at time t = 1 second.

All cameras optimize simultaneously, using an interior-point method [67]. The tracking

constraint in Eqn. (7.24) uses T̄ = 1.0 m−2. Ci receives camera parameter sequences A∗−i

through its neighbors, and optimizes its current parameter sequence Ai to implement

the method described in Chapter 7.
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Figure 8.7: Moving horizon optimization with H = 3: Fig. a (top left) shows the tracking value VT (A)

that every camera expects to achieve for every target over planning horizon H = 3. Fig. b (middle

left) shows the tracking value V̄T that every camera actually achieves. Fig. c (bottom left), plots the

achieved local imaging and global imaging values (i.e., sum of the local values). Figs. d (top right), e

(middle right) and f (bottom right) show the optimal pan ρ◦ ∗i , tilt τ◦ ∗i and zoom ζ ∗i , respectively.

A planning horizon of H = 3 time-steps was selected for the purpose of this

simulation. This allows each camera Ci to optimize a sequence of PTZ parameters

Ai(k+1) = {ai(k+1),ai(k+2),ai(k+3)} over the planning horizon H = 3, instead of only

optimizing the PTZ parameters ai(k + 1). Cameras maximize their local Lagrangians

Li(λ
∗
i ,µ

∗
i , A

∗
i ) to satisfy the tracking spec and the PTZ smoothness constraints, and

maximize their local Bayesian imaging values. Fig. 8.7 shows the results hence obtained.

Fig. 8.7a shows that the tracking constraint gH(A) from Eqn. (7.17) is expected

to be satisfied throughout simulation time, i.e., all tracking values VT (A) obtained over

the planning horizon H = 3 are above the horizontal pink dashed line. Therefore, all
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primal-dual solutions (A∗i ,λ
∗
i ,µ

∗
i ) obtained through local optimization are expected to

be feasible at all imaging instants.

The approach utilizes predicted target trajectories based on state estimates

from the last imaging time. Unexpected maneuvers by targets, such as a simulated

target reflecting of a wall, can lead to a drop in the accuracy actually achieved. Fig.

8.7b shows the tracking value V̄j
T actually achieved by the network, collaboratively.

Various instances of differences between the expected and achieved accuracy can be

observed through simulation time. Since target motion is a random process, there is

no deterministic guarantee that the achieved accuracy meets the specification. Because

the expected solutions are strictly feasible, using Eqn. (7.42), it is trivial to prove that

the dual optimal Lagrange multiplier vectors for all cameras are λ∗i (t) = λ̄ = 0 ∈ <mH ,

where m = 2NT (t).

8.3.2 Comparative Analysis

Figs. 8.8a and 8.8b provide a comparison of the post-optimization FoVs com-

puted using the single-step PTZ optimization process (i.e. H = 1) and the moving

horizon PTZ optimization process (i.e. H > 1).

The actual position of the centroid of each target is marked by a blue dot. A

wide pink dashed curve indicates the surface area occupied by a target on the ground

plane, relative to the actual target centroid position. Posterior target centroid tra-

jectory estimates are marked by red dots. The posterior 1 − σ position error ellipses

corresponding to the estimated target trajectories are drawn as black curves.
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(d) Optimization for t = 21 over H = 3.

Figure 8.8: Moving horizon high-res image capture: Figs. a and b (top row) show the optimized FoVs

at time t = 21, for H = 1 and H = 3, respectively. Fig. b shows the future FoVs computed over the

planning horizon H = 3 as dotted polygons. Figs. c and d (bottom row) show the maximization of

VIi(ai) and VHi(Ai) versus the number of local iterations at time-instant t = 21, respectively.
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Figs. 8.8c and 8.8d show the maximization of VIi(ai) and VHi(Ai) versus the

number of local iterations at time-instant t = 21. The vertical pink dashed lines indicate

local iterations κi at which Ci broadcast parameters as described in Sections 6.2 and

7.5.1, respectively. As explained in Section 8.2.1, and as seen in Figs. 8.8a and 8.8c,

at time t = 21, cameras C1 and C2 obtain hi-res images while all three cameras collab-

oratively satisfy the tracking spec. Similarly, Figs. 8.8b and 8.8d show that, using a

planning scheme over a moving horizon of H = 3 timesteps, camera C1 obtains a hi-res

image while all three cameras collaboratively satisfy the tracking spec over the planning

horizon.

In comparison with Fig. 8.8a, the FoVs in 8.8b show that due to constraints

on camera motion, C2 is unable to pan and tilt by an angle sufficient for it to obtain a

high-res image at time t = 21 (also see Figs. 8.2c and 8.7c). This is addressed by using

the planning scheme, as at time t = 21, camera C2 uses the estimated target trajectories

from Eqn. (7.5), and prepares to capture a high-res image at time t = 23. As seen in

Fig. 8.7c, camera C2 successfully captures a high-res image at time t = 23.

Figs. 8.9a - 8.9d show the optimized PTZ parameters for varying planning

horizon lengths H. Results in Fig. 8.9a are obtained when PTZ smoothness constraints

are not applied. Figs. 8.9b - 8.9d show the effects of applying smoothness constraints

over an increasing planning horizon length. Results in Fig. 8.9b are obtained when PTZ

constraints are applied without planning. As can be seen, camera motion is severely

constrained, which results in lower zoom values, likely resulting in low-res image capture.

In comparison to the optimized PTZ parameters in Fig. 8.9a (where H = 1),

the parameters in Figs. 8.9d show that an increase in horizon length to H = 3 results

in temporally smooth panning and tilting of cameras. Also, in relation to the zoom
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(a) PTZ values for (H = 1; NC).
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(b) PTZ values for (H = 1; SC).
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(c) PTZ values for (H = 2; SC).
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(d) PTZ values for (H = 3; SC).

Figure 8.9: Optimal PTZ values: NC - No PTZ smoothness constraints applied; SC - PTZ smoothness

constraints applied. Figs. a and b (top row) show the optimized PTZ values over H = 1, with and

without PTZ smoothness constraints, respectively. Figs. c and d (bottom row) show the optimized PTZ

values when PTZ smoothness constraints are applied over H = 2 and H = 3, respectively.
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values in Figs. 8.9b and Fig. 8.9c, Fig. 8.9d shows high zoom values for more timesteps

during simulation time. This results in cameras likely obtaining more images at higher

resolution. Comparing Figs. 8.9d and 8.9a shows that, although camera motion obtained

while applying PTZ smoothness constraints over H > 1 is constrained, the PTZ values

are significantly smoother than those obtained when no planning is enforced.

Remark 14 Note that the number of local iterations required for convergence to a local

optimal increases with an increase in H (see Figs. 8.8c and 8.8d). This occurs before an

increasing horizon length results in an increase in the number of variables to be optimized

along with an increase in the number of constraints to be satisfied. �

Remark 15 Greater maneuverability in the pan and tilt angle values of the cameras

results in higher zoom values (see Figs. 8.9b and 8.9d). This occurs because greater

maneuverability allows each camera to scan more of the area under surveillance. This

increases the probability of more targets being in its FoV and thus is likely to provide

more opportunities for high-res imaging. �

8.3.3 Multi-Trial Performance Analysis

This section provides a performance analysis of the proposed approach using

data from N = 100 Matlab simulation runs. Target trajectories and target times of

entry were independent across all simulation runs with the condition that target T j

always entered before target T j+1. To make results comparable, all other parameters

(e.g. camera locations, image resolution, pixel noise, area entrances and exits, etc.) were

selected to be the same for all simulation runs, and are defined in Section 8.1.

85



To explain the merits of the proposed approach, we will discuss and analyze

results obtained when implementing four distinct PTZ optimization schemes on common

simulation scenarios. Scheme 1 does not employ planning (i.e. H = 1), nor does it

employ PTZ smoothness constraints. Scheme 2 enforces PTZ smoothness constraints

without planning (i.e. H = 1). Scheme 3 utilizes a planning horizon H > 1 and

optimizes a PTZ sequence while adhering to PTZ smoothness constraints over planning

horizon H. Fig. 8.10 corresponds to results from 21 sec. simulation runs with NT = 4.

Figs. 8.10a, 8.10b, 8.10c and 8.10d show the distribution (histogram) of the maximum

imaging values achieved by the camera network for imaging targets T 1, T 2, T 3 and T 4,

respectively. The Fig. provides a comparative analysis between imaging performance

obtained while employing the distinct optimization schemes described above.

In Fig. 8.10, the imaging performance distribution achieved while imaging

with Scheme 1 is shown by lines colored in red. As discussed in Section 1.2, better scene

understanding and image analysis is likely possible if cameras in the network adhered

to smoothness constraints on their respective PTZ parameters. The green lines show

the detrimental effect on imaging performance when PTZ smoothness constraints are

enforced without planning (also see Fig. 8.9b). Fig. 8.10 shows that the camera network

achieves the best target imaging performance under Scheme 1, and that significant

imaging performance is lost when imaging under Scheme 2.

The cyan and purple lines show the distribution of achieved imaging perfor-

mance when the camera network images using the proposed approach with planning

horizons of H = 2 and H = 3, respectively. By comparing the green lines with the cyan

lines, it can be deduced that incorporating a planning horizon along with enforcement

of PTZ smoothness constraints leads to an improvement in imaging performance. The
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Figure 8.10: Imaging performance distribution: NC - No PTZ smoothness constraints applied; SC -

PTZ smoothness constraints applied. Fig. shows the comparative imaging performance achieved while

imaging target T j when cameras optimize their PTZ parameters using varying horizon lengths.

lines in purple show that further performance improvement is observed by increasing

the planning horizon to H = 3 (also see the zoom values obtained in Figs. 8.9c and

8.9d).

Remark 16 Note that the achieved imaging value can differ from the expected imaging

value since the imaging value achieved is a function of the number of pixels occupied

by a target on the camera’s image plane (see Eqn. 8.5). A minor random deviation

in the target’s true position from its expected position results in a pixel count on the

image plane that is often different from the expected pixel count. This may result in the

imaging value obtained to be significantly different than the expected imaging value. �
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8.4 Discussion of Implementation Issues

For convex problems, the proposed distributed optimization methodology would

converge to the unique global optimum for each imaging time instant. As with many

practical applications, visual sensing problems such as the one considered herein are

inherently non-convex (refer to Fig. 5.1), and thus the solution obtained may only be

locally optimal. The large variable space makes design of an exhaustive search impracti-

cal. In addition to being non-convex, the local imaging value and the constraint functions

are nonlinear. Our implementation used the Matlab function ‘fmincon’, which is offered

as part of the Optimization Toolbox and is designed to solve nonlinear optimization

problems with nonlinear constraints.

To facilitate the search for a feasible solution, at the start of each optimization

interval, we initiated each camera using the optimal pan and tilt values from the end of

the prior optimization interval, but reset the zoom parameter to its minimum value (i.e.,

widest FoV). The wide FoV initialization was preferred as it enhances feasibility and

convexity of the value function, see Fig. 5.1 and Remark 10. This initialization method

ensures that all agents begin the optimization process from the same value of a. This

initialization worked well in the sense that a feasible solution was found for every imaging

instant of every trial; nonetheless, alternative initialization and relaxation techniques,

could be investigated.

The moving horizon optimization approach described in Chapter 7 is a process

that requires frequent replanning as the visual sensing application as a process with fast

dynamics. MPC applications with a large number of variables and lengthy planning

horizons utilize FastMPC methods [44] to generate look-up tables for reduction in com-

putation time. Target motion is stochastic and hence using a predetermined look-up
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table of objective function values for the visual sensing application is inappropriate.

Since the imaging value is a function of target trajectories, using Machine Learning

algorithms [70] to generate a probabilistic metric on target trajectories for generation

of FastMPC look-up tables could help reduce computation power consumed. These are

interesting topics for future research.

Finally, it is important to note that if the initial parameters of the cameras

were not identical and were distributed about a saddle point of the value function, such

that some initial parameter vectors were in the domains of attraction (DOA) of different

local optima, then different agents could conceivably converge toward different locally

optimal points prior to communicating their new settings. After the communication,

there would be no guarantee that the camera parameter settings of different agents are

all within the DOA of the same locally optimal point. We ensured that all agents start

with the same value for a. This issue and methods to ensure convergence to the global

optimum are interesting areas for future research.
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Chapter 9

Conclusion and Future Research

This dissertation addressed the design of a method for a distributed network

of smart imaging sensors to collaboratively track all targets to a specified accuracy

while also acquiring high resolution images at times-of-opportunity. Subsequently, the

problem of maintaining temporal smoothness on the optimal PTZ parameters, while

obtaining high-res imagery is also addressed. The solution uses a Bayesian framework

that trades off higher imaging value versus increased risk of the target not being in the

field-of-view.

The single-step Bayesian imaging value depends on the target’s expected po-

sition, direction-of-motion, image resolution and camera relative pose. Along with the

above, the Bayesian imaging value computed over a planning horizon also depends on

the target’s predicted trajectory and the associated covariance matrices, which are de-

rived from the distributed state estimator. The imaging performance obtained is also

dependent on the length of the planning horizon. The proposed approach results in

optimized PTZ parameters that are temporally smooth.
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The approach includes a dynamic target weighting scheme. In the example,

we demonstrate the utility of this feature in two ways. First, the importance of a target

increases as the target approaches the exit, to help ensure that all targets are imaged

at least once. Second, the weight at any time instant for a target is dependent on the

image quality previously acquired for that target; therefore, subsequent images of each

target receive little value unless a better quality image is expected to be acquired.

The method proposed herein allows all agents to optimize simultaneously. The

global optimization problem is formulated as a potential game with the global objec-

tive decoupled into smaller local problems with aligned local objectives. A Lagrangian

consensus algorithm is used to perform distributed, co-operative and simultaneous op-

timization across all cameras in the network. This formulation enables use of existing

convergence proofs from the game theory literature. Convergence of the Lagrange mul-

tiplier vector is achieved by consensus methods and of the camera PTZ parameters is

achieved by a modified flooding algorithm. Future research could explore probabilistic

communication schemes [71] to decrease communication loading and latency issues.

It is possible to design alternative optimization methods that use a combi-

nation of parallel and sequential processing. Graph partitioning [72] is a branch of

optimization that decouples an existing communication graph into smaller subgraphs,

often dynamically, subject to problem constraints. A property implicit to a visual sens-

ing application is that the communication graph and the vision graph [29] are often

different. This occurs since every camera in the network may not obtain a measurement

of every target in the area, which often results in cameras [33] ‘naive’ with respect to

certain targets. Using vision graph discovery methods to design a set of constraints, the

existing communication graph Gc could be decoupled into smaller subgraphs Gj , on the

basis of measurements on target T j . Agents that are nodes of subgraph Gj may optimize
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sequentially, while subgraph Gj optimizes in parallel with respect to other subgraphs

in the network. This topic is largely unexplored and could provide beneficial results,

especially in scenarios where a network of cameras is assigned to survey a large area

with camera visibility constraints.

The method proposed herein can be extended to locally convex discontinuous

functions using the subgradient-based distributed constrained optimization approaches

described in [63, 64]. Though preliminary work on modifying the approach therein for

application to a visual sensing problem was done in [73], further research on the method

is required.

Design of alternative imaging value functions and constraints that are depen-

dent on advanced image processing techniques to aid target gait [74], gesture [75], and

activity [76] recognition is another interesting topic. As discussed in Remark 2, vari-

ous alternative designs are possible for M > 1. For example, a sequence of high rate

images could be taken with various focal lengths allowing a complete reformulation of

the trade-off between risk and image quality. Implementation on a Camera Network

test-bed is also of interest and in process.

Fault-tolerant systems are designed to be operational in spite of a reduction

in throughput or an increase in response time in the event of some partial failure.

Evaluation of fault tolerance could be of vital importance for self configuring camera

networks deployed for surveillance applications.

The visual sensing problem is inherently non-convex (refer Fig. 5.1), and thus

the solution obtained is only locally optimal. We avoid cameras from reaching domains

of attraction of different local optima by ensuring frequent communication between

cameras by setting an arbitrary rate of communication between cameras in relation

with the per camera local optimization iteration counts. Finding a relation between the
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camera communication rate, the local optimization iteration count, and the planning

horizon length is an interesting problem and worth investigating since it may provide a

per-application analysis of computation vs. communication cost.

To aid computation of feasible solutions, we initiate optimization iterations at

every camera with a wide FoV. Other such relaxation techniques to perform constraint

relaxation are worth researching.

The method proposed herein can be extended to locally convex discontinuous

functions using the subgradient-based distributed constrained optimization approaches

described in [63, 64]. Though preliminary work on modifying the approach therein for

application to a visual sensing problem was done in [73], further research on the method

is required.

Design of alternative imaging value functions and constraints that are depen-

dent on advanced image processing techniques to aid target gait [74], gesture [75], and

activity [76] recognition is another topic worth pursuing.
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