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EPIGRAPH

Neutrinos, they are very small.

They have no charge and have no mass

And do not interact at all.

The earth is just a silly ball

To them, through which they simply pass,

Like dustmaids down a drafty hall

Or photons through a sheet of glass.

They snub the most exquisite gas,

Ignore the most substantial wall,

Cold shoulder steel and sounding brass,

Insult the stallion in his stall,

And scorning barriers of class,

Infiltrate you and me! Like tall

and painless guillotines, they fall

Down through our heads into the grass.

At night, they enter at Nepal

and pierce the lover and his lass

From underneath the bed - you call

It wonderful; I call it crass.

—John Updike

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Neutrino Physics . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Weak Interaction . . . . . . . . . . . . . . . . . 7
1.1.2 Neutrino Mixing and Sterile Neutrinos . . . . . . . 14
1.1.3 Neutrino Oscillations . . . . . . . . . . . . . . . . . 18
1.1.4 The MSW Effect . . . . . . . . . . . . . . . . . . . 20
1.1.5 The Quantum Kinetic Equations . . . . . . . . . . 27

1.2 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.1 The FLRW metric . . . . . . . . . . . . . . . . . . 31
1.2.2 Dynamics on the FLRW metric . . . . . . . . . . . 33
1.2.3 Thermal properties of the early universe . . . . . . 36
1.2.4 A thermal history of the universe . . . . . . . . . . 43

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 2 Coherent Active-Sterile Neutrino Flavor Transformation in the
Early Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3 Resonance Sweep in the Early Universe . . . . . . . . . . . 67
2.4 Big Bang Nucleosynthesis Concerns . . . . . . . . . . . . . 74

vi



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 3 Lepton Number-Driven Sterile Neutrino Production in the Early
Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3 Sterile Neutrino Production in the Early Universe . . . . . 82

3.3.1 The Quantum Kinetic Equations . . . . . . . . . . 82
3.3.2 The Quantum Zeno Ansatz . . . . . . . . . . . . . 86

3.4 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Chapter 4 Neutrino-Accelerated Hot Hydrogen Burning . . . . . . . . . . . 116
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.3 Neutrino-Induced Hydrogen Burning Mechanisms . . . . . 118
4.4 Side Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5 Example: Supermassive Stars . . . . . . . . . . . . . . . . 124
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.A Calculation of Weak Rates . . . . . . . . . . . . . . . . . . 127

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Chapter 5 Quantum Coherence of Relic Neutrinos . . . . . . . . . . . . . . 131
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3 Neutrino Evolution . . . . . . . . . . . . . . . . . . . . . . 132
5.4 Gravitational Induced Decoherence . . . . . . . . . . . . . 138

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Appendix A Physical Constants and Natural Units . . . . . . . . . . . . . . . 143
A.1 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.2 Length and Time . . . . . . . . . . . . . . . . . . . . . . . 144
A.3 Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

vii



LIST OF FIGURES

Figure 1.1: Charged current weak interaction vertices. . . . . . . . . . . . . 9
Figure 1.2: Neutral current weak interaction vertices. . . . . . . . . . . . . . 10
Figure 1.3: One loop thermal contributions to the neutrino self energy. . . . 11
Figure 1.4: The neutrino mass hierarchy. . . . . . . . . . . . . . . . . . . . . 16
Figure 1.5: Time evolution of the temperature, scale factor, and statistical

degrees of freedom in the early universe. . . . . . . . . . . . . . . 55

Figure 2.1: Landau-Zener jump probability and potential lepton number as
a function of scaled resonance energy. . . . . . . . . . . . . . . . . 71

Figure 2.2: Final potential lepton number as a function of its initial value
is shown for the case where all individual initial lepton numbers
are equal Lνe = Lνµ = Lντ and the active-sterile vacuum mixing
parameters are as in Fig. 2.1 . . . . . . . . . . . . . . . . . . . . 72

Figure 2.3: The original νe distribution function, the final νe distribution
function, and the final νs distribution function. . . . . . . . . . . 73

Figure 2.4: Primordial nucleosynthesis 4He abundance yield as a function of
δm2 for the νe → νs channel. . . . . . . . . . . . . . . . . . . . . 75

Figure 3.1: Results for calculation using the quantum Zeno ansatz. . . . . . 93
Figure 3.2: Sterile neutrino production for different initial lepton numbers. . 100
Figure 3.3: Sterile neutrino production for different sterile neutrino masses. . 102
Figure 3.4: Sterile neutrino production for different active-sterile neutrino

mixing angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 3.5: Sterile neutrino production for different neutrino scattering rates. 105
Figure 3.6: Sterile neutrino energy spectrum for an “in play” sterile neutrino

dark matter candidate. . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 3.7: A comparison of the quantum Zeno ansatz with a solution of the

quantum kinetic equations. . . . . . . . . . . . . . . . . . . . . . 109

Figure 4.1: Key weak decay rates as a function of electron anti-neutrino flux. 119
Figure 4.2: Fraction of neutron captures on 15O, 14O, and p . . . . . . . . . 120
Figure 4.3: Qualitative picture of hydrogen burning under the influence of a

prodigious electron anti-neutrino flux. . . . . . . . . . . . . . . . 121
Figure 4.4: Conditions for break-out into the rp-process. . . . . . . . . . . . 122
Figure 4.5: Comparison of energy generation rates for the pp-chain and CNO

cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 4.6: Rates of relevant weak decays at a distance of 100 Schwartzschild

radii from the center of a supermassive star. . . . . . . . . . . . . 125

viii



Figure 5.1: The normal and inverted mass hierarchy for neutrinos. . . . . . . 133
Figure 5.2: (ρ

(0)
ν − ρν)/ρν as a function of redshift. . . . . . . . . . . . . . . 135

Figure 5.3: The lightest mass eigenvalue as a function of Ωνh
2. . . . . . . . . 137

Figure 5.4: The separation of mass eigenstates as a function of redshift. . . . 139

ix



LIST OF TABLES

Table 1.1: Experimental best-fit values for neutrino mass and mixing param-
eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Table 1.2: The contents of the universe. . . . . . . . . . . . . . . . . . . . . . 37
Table 1.3: Cosmological parameters from WMAP. . . . . . . . . . . . . . . . 56

Table A.1: Fundamental Physical Constants in cgs units. . . . . . . . . . . . . 144
Table A.2: Derived Physical Constants in natural units. . . . . . . . . . . . . 145

x



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, George Fuller, without

whom this dissertation would not be possible. His support – financial, scientific,

and professional – has been an invaluable aspect of my graduate tenure and a great

boon for my career. I appreciate the opportunities he has given me, from providing

me the means to travel to conferences around the world, to ensuring my funding,

especially during the time of my wedding. His physical insight has allowed me to

achieve a greater appreciation of physics, and in particular astroparticle physics, a

field I would never have envisioned myself in before entering graduate school.

I would like to thank a couple of my colleagues who have facilitated me in the

work that appears in this dissertation. Justin Kao, who has helped me with many

computational aspects associated with this work, and Christel Smith, who I have

collaborated with, shared an office with and commiserated about the travails of

graduate work with.

Six years in graduate school can be a tiring ordeal; I would like to thank those

who have helped me pass the time: those who I have shared an office with, those who

I have grilled with, and those who I have spent countless hours at CASS tea time

with. I would like to acknowledge those who allowed me to take my mind off work,

including the Monday night volleyball group, Sunday Softball, and the Pomerado

Community Band. I am grateful for the camaraderie of Teddy Yu, Megan Kennedy,

Daniel Wu, Stephanie Chan, Ginna & Nate Vandelinder, Marc & Lauren Rafelski,

and many others who have helped me to live life to its fullest.

I would be remiss without acknowledging the National Science Foundation and

Department of Energy who have funded the grants that have paid my tuition and

stipend throughout my graduate tenure. I am also thankful to the Achievement

Rewards for College Scientists (ARCS) Foundation, Inc. for financial support.

Finally, and most importantly, I would like to thank my family. I am very for-

tunate to have four loving parents who have supported my endeavors throughout

my life, in particular financially supporting my Caltech education. A special debt

xi



of gratitude is owed to my wife who has loved and supported me throughout this

entire process. I appreciate her enduring support, understanding, and sacrifices she

continues to make to allow me to pursue a career in science.

Chapter 2, in part, is a reprint of material previously published as C. T. Kishi-

moto, G. M. Fuller, and C. J. Smith, “Coherent Active-Sterile Neutrino Flavor Trans-

formation in the Early Universe”, Physical Review Letters 97, 141301 (2006). I was

the primary investigator and author of this paper.

Chapter 3, in full, is a reprint of material previously published as C. T. Kishimoto

and G. M. Fuller, “Lepton Number-Driven Sterile Neutrino Production in the Early

Universe”, Physical Review D78, 023524 (2008). I was the primary investigator and

author of this paper.

Chapter 4, in full, is a reprint (with the exception of the citation style, which

has been revised to ensure consistency with the rest of the dissertation) of material

previously published as C. T. Kishimoto and G. M. Fuller, “Neutrino-Accelerated

Hot Hydrogen Burning”, Astrophysical Journal 656, 1104 (2007). I was the primary

investigator and author of this paper.

Chapter 5, in part, is a reprint of material previously published as G. M. Fuller

and C. T. Kishimoto, “Quantum Coherence of Relic Neutrinos”, Physical Review

Letters 102, 201303 (2009). I was the primary investigator and author of this paper.

xii



VITA

2003 Bachelor of Science with Honor in Physics, California
Institute of Technology, Pasadena, CA

2003-2004 Teaching Assistant, University of California, San Diego

2004-2009 Research Assistant, University of California, San Diego

2009 Doctor of Philosophy in Physics, University of Califor-
nia, San Diego

PUBLICATIONS

G. M. Fuller and C. T. Kishimoto, “Quantum Coherence of Relic Neutrinos”, Physical
Review Letters 102, 201303 (2009).

C. T. Kishimoto and G. M. Fuller, “Lepton Number-Driven Sterile Neutrino Pro-
duction in the Early Universe”, Physical Review D78, 023524 (2008).

C. J. Smith, G. M. Fuller, C. T. Kishimoto and K. N. Abazajian, “Light Element
Signatures of Sterile Neutrinos and Cosmological Lepton Numbers”, Physical Review
D74, 085008 (2006).

C. T. Kishimoto, G. M. Fuller and C. J. Smith, “Coherent Active-Sterile Neutrino
Flavor Transformation in the Early Universe”, Physical Review Letters 97, 141301
(2006).

C. T. Kishimoto and G. M. Fuller, “Neutrino-Accelerated Hot Hydrogen Burning”,
Astrophysical Journal 656, 1104 (2007).

xiii



ABSTRACT OF THE DISSERTATION

Falling through Spacetime: four studies in neutrino astrophysics

by

Chad T. Kishimoto

Doctor of Philosophy in Physics

University of California San Diego, 2009

Professor George Fuller, Chair

For a significant fraction of the history of the universe, neutrinos freely fall

through spacetime. While they only weakly interact with matter, neutrinos have a

significant impact in astrophysics. Experimental neutrino physics and observational

cosmology are amidst an interesting era, where precision measurements in both fields

have significantly improved scientific understanding of the standard model of particle

physics and of the universe. Experiments in neutrino physics have not only discerned

that neutrinos are massive particles, but have also measured their relative masses

(but not their absolute masses) and the quantum mechanical mixing matrix that

is a consequence of these differing mass scales. Meanwhile, precision cosmological

observations have determined the energy content of the universe, which in turn has

presented a self-consistent story of the history and evolution of the universe and its

contents.

The topics discussed in this dissertation are based upon an interplay between

these two fields, at times pushing the envelope, but always focused upon the basic

physical processes that affect massive neutrinos in an expanding universe. A hearty,

pedagogical introduction is presented to highlight the relevant neutrino physics de-

scribed in this work and an overview of cosmology, strongly biased toward the early

universe, the paradigm in which much of the work in this dissertation is based.

Sterile neutrinos in different regimes of mass and mixing with active neutrinos are

xiv



proposed as well as asymmetries between the number density of active neutrinos and

antineutrinos in the early universe. The consequences of these two propositions are

discussed in terms of observables such as primordial light element abundances and

the observables related to a sterile neutrino dark matter candidate. Neutrino emis-

sion from high-entropy electron-positron plasmas are introduced, and the effects of

this large flux of neutrinos and antineutrinos on hot hydrogen burning are explored.

Finally, the nature of the cosmic neutrino background, a relic of the hot Big Bang, is

discussed as they freely fall through spacetime from weak decoupling to the present

epoch.
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Chapter 1

Introduction

Throughout this dissertation, with the exception of Chapter 4 and where ever it

is otherwise stated, natural units will be used where ~ = c = kB = 1. Since there

are four independent units associated with these physical constants (length, mass,

time, temperature), making three dimension-full constants dimensionless results in

one remaining unit. In this dissertation, energy is used as the remaining unit, in

particular the MeV is a useful unit when discussing astroparticle physics in the early

universe. Appendix A summarizes the conversion between these units.

1.1 Neutrino Physics

The story of the neutrino begins in 1896 with the chance discovery of radioactivity

by Henri Becquerel [1]. In 1914, James Chadwick found that the energy spectrum of

β-radiation was continuous, not discrete as was the case for α- and γ- radiation [2].

This result presented a fundamental problem: quantum mechanics dictates that the

energy levels of the nucleus are quantized, so a continuous spectrum of β-radiation

would be inconsistent with energy conservation.

In response to this apparent contradiction, Wolfgang Pauli proposed the existence

of a light, neutral fermion which he called a “neutron” (this preceded the discovery of

the neutron). In an open letter to attendees at the Gauverein meeting in Tübingen

1
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in December 1930, Pauli addresses the “Dear Radioactive Ladies and Gentlemen,”

proposing a “desperate remedy to save . . . the law of conservation of energy.” By

proposing this light, neutral fermion, “the continuous beta spectrum would then

make sense with the assumption that in beta decay, in addition to the electron, a

neutron [neutrino] is emitted such that the sum of the energies of neutron [neutrino]

and electron is constant” [3]. Pauli remained apprehensive of his proposition, re-

marking that “I have done something very bad today by proposing a particle that

cannot be detected; it is something that no theorist should ever do.” Obviously, atti-

tudes among theoretical particle physicists have changed where unexplained signs of

energy non-conservation are met with the proposal of new particles and the existence

of undetected (and sometimes undetectable) particles are theorized with impunity.

In 1932, Chadwick discovered the neutron. As it became evident that the particle

was not the “neutron” proposed by Pauli, a new name had to be adopted. Enrico

Fermi coined the term neutrino (“little neutral one”) as a pun on the Italian word

for neutron. In 1956, Frederick Reines and Clyde Cowan, Jr. performed the first

successful neutrino detection experiment. The experiment was designed to detect

antineutrinos from a nuclear reactor using a large tank of water. Energetic antineu-

trinos capture on protons in the water (inverse β-decay), producing a positron and

a neutron,

ν̄e + p→ n+ e+. (1.1)

A liquid scintillator was used to observe the high energy photons that result when the

positron quickly annihilates with an electron in the water. To improve the quality of

the signal, CdCl2 was added to the water. The cadmium nuclei capture the neutron,

releasing a photon. This provides a consistency check where a neutrino capture

induces photons from electron-positron annihilation followed by a photon produced

when the neutron is captured (on a timescale determined by the mean free liftetime

of the free neutron in the cadmium solution) [4].

Parity is conserved in the gravitational, electromagnetic, and strong interactions,

and it was widely believed that parity was also conserved in weak interactions. If

parity is conserved, then both left-handed and right-handed particles have the same
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interactions. (Particles of a given handedness are eigenstates of the chirality oper-

ator and handedness is a relativistic invariant. When particles are massless, then

their chirality is equivalent to their helicity — the relationship between spin and

momentum.) However, Tsung Dao Lee and Chen Ning Yang proposed that parity

may be violated in weak interactions [5]. This conjecture was confirmed by C. S.

Wu and her collaborators [6]. Goldhaber, Grodzins and Sunyar determined that

parity is maximally violated; that is neutrinos are left-handed and antineutrinos are

right-handed [7].

The Glashow-Weinberg-Salam standard model is the cornerstone of the current

theoretical understanding of the weak interaction. AT its core is the SU(2) × U(1)

gauge group, proposed by Sheldon Glashow to unify the electromagnetic and weak

forces [8]. Weinberg [9] and Salam [10] built upon Glashow’s electroweak model

the theoretical foundations that successfully describe the weak interaction. They in-

troduced the Higgs mechanism to the standard model which, whenever electroweak

symmetry is broken, allows the gauge bosons that mediate the weak force to be mas-

sive. Charged current interactions (e.g., β-decay) are mediated by the W+ and W−

bosons. A natural consequence of the Glashow model was the existence of previously

unobserved weak neutral currents which are mediated by the Z0 boson. Gerardus

’t Hooft and Martinus Veltman showed that this standard model was renormaliz-

able [11], making the theory more attractive to theorists. The experimental discov-

eries of neutral current interaction in 1973 [12] and of the W± and Z0 bosons in

1983 [13, 14] established the standard model as the prevailing theory in describing

the weak and electromagnetic interactions.

The width of the decay of the Z0 boson constrains the number of generations of

active neutrinos. The width of the Z0 decay (in energy) is proportional to its decay

rate, both into particles that can be observed and into “invisible” particles (i.e., neu-

trinos). Using Fermi’s golden rule, the invisible decay rate (or the “invisible width”

as it is commonly called) is proportional to the strength of the weak interaction and

the number of neutrinos (with mν . mZ0/2) that are coupled by the weak neutral

current. The number of generations of active neutrinos was fixed at three from the
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results of Z0 decay experiments performed at the Large Electron-Positron (LEP)

collider at CERN [15].

This completed the standard model of the weak interaction. There are three

generations of leptons (electrons, muons, and tauons and their associated neutrinos)

corresponding to the three generations of quarks. The three generations of neutrinos

are called the three active neutrino flavors — νe, νµ, and ντ . Charged current in-

teractions — whose interaction vertices change down-type quarks to up-type quarks

and charged leptons to their associated neutrinos (and vice versa) — are mediated by

the W− (W+) boson, while neutral current interactions — whose interaction vertices

do not change the type of particle — are mediated by the Z0 boson.

The neutrinos were considered massless, as there was no evidence to the contrary,

although there was the sticky situation that there is no symmetry that protects

neutrinos from being massive (for example, gauge symmetry and general covariance

protects photons from being massive). If neutrinos are massless, then left-handed

neutrinos and right-handed antineutrinos, the chiral states that are participate in

the weak interaction, are considered in the standard model while neglecting their

parity-related counterparts (right-handed neutrinos and left-handed antineutrinos),

which are not affected by the weak interaction.

Maki, Nakagawa, and Sakata suggested that neutrinos, like quarks, may oscil-

late between flavors. If neutrinos have different masses, then each neutrino flavor

state may be a superposition of multiple mass states, which would result in one fla-

vor oscillating into another [16]. This conjecture was verified (by accident) by the

Homestake experiment conducted by Raymond Davis, Jr. and his collaborators in

the Homestake Gold Mine at Lead, South Dakota. In the experiment, a 100,000

gallon tank of dry cleaning fluid, perchloroethylene, was placed 1,478 meters below

ground in the mine. The inverse β-decay reaction

νe + 37Cl → 37Ar + e−, (1.2)

was utilized to detect neutrinos produced in the fusion reactions in the core of the sun

(in particular, the β+-decay of 8B). The radioactive argon atoms were then counted
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to discern the number of neutrino reactions that took place in the experiment. The

data implied that there was a large deficit of neutrinos coming from the sun. Ap-

proximately one-third as many neutrinos were detected as were predicted by the

standard solar model [17, 18]. This is known as the solar neutrino problem. While

this result was met with obvious skepticism, it has withstood increased scrutiny and

more sophisticated experiments. Neutrinos change their flavor between the time they

are produced in the core of the sun and the time they travel to Earth.

Further experimentation at the Sudbury Neutrino Observatory, along with other

experiments, validated this interpretation of the solution to the solar neutrino prob-

lem. The Sudbury Neutrino Observatory (SNO) is a heavy water Cerenkov detector

located in the Creighton mine in Sudbury, Ontario, Canada. A water Cerenkov

detector detects neutrinos by detecting the charged leptons (often electrons and

sometimes muons) created in neutrino interactions. These ultra-relativistic charged

leptons travel faster than the speed of light in water (approximately 0.75c), emitting

a cone of Cerenkov radiation about its direction of motion.

In the SNO experiment, one kiloton of heavy water (D2O) is used to detect solar

neutrinos through charged current interactions (νe + d → 2p + e−), neutral current

interactions (να + d → p + n + να), and elastic scattering interactions (να + e− →
να + e−) which incorporate both charged and neutral current interactions (for α = e,

µ, τ). By measuring both charged current and neutral current interactions, SNO

determined the total flux of neutrinos (of all flavors) coming from the sun. The

data confirmed the Homestake results that one-third of the expected flux of electron

neutrinos were detected, and found that the total neutrino flux was consistent with

the expected electron neutrino flux calculated from the standard solar model [19, 20].

Experimental measurements of neutrinos created in the atmosphere, in partic-

ular the ratio of muon neutrinos to electron neutrinos, has also provided evidence

for neutrinos being converted from one flavor to another. Atmospheric neutrinos

are created when high energy cosmic rays bombard the atmosphere, creating pions,

whose main decay channel is into muons and muon neutrinos. In turn, the muons
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decay into electrons and both electron and muon neutrinos,

π+ → νµ + µ+ → νµ + ν̄µ + νe + e+

π− → ν̄µ + µ− → ν̄µ + νµ + ν̄e + e−. (1.3)

The atmospheric neutrinos have energies of ∼ 100 MeV to ∼ 100 GeV, much higher

energies than the solar neutrinos. By inspection of the reactions (1.3), the ratio of

the neutrinos fluxes ought to satisfy

φνµ + φν̄µ

φνe + φν̄e

≈ 2. (1.4)

Water Cerenkov detectors are able to discern the difference between electron

and muon neutrinos at these energies. Neutrino-nucleon collisions produce charged

leptons of the same flavor as the neutrino. The charged lepton is then distinguished

by the shape of its Cerenkov radiation. The first evidence of the ratio of muon

neutrinos to electron neutrinos being different from the theoretical value came from

the Kamioka Nucleon Decay Experiment (Kamiokande) located in the Kamioka mine

in the Gifu prefecture of Japan, where this ratio was significantly smaller than two.

This observation, combined with an angular variation of this ratio strongly supports

the interpretation that quantum mechanical oscillations are responsible for muon

neutrino disappearance [21].

An understanding of the solar neutrino problem and atmospheric neutrino oscil-

lations have provided us a window into neutrino physics beyond the standard model

where neutrino masses were not included. This points toward the idea that neutrinos

have mass and that they have nonzero mixing between flavors. It is an exciting time

in neutrino physics, as experiments on solar neutrinos, atmospheric neutrinos, and

neutrinos produced in nuclear reactors and accelerators, have combined to constrain

the parameters of the neutrino mixing matrix [just as the CKM matrix describes

oscillations in the quark sector, the MNS (Maki-Nakagawa-Sakata) matrix describes

neutrino oscillations] and the differences of the squares of the neutrino masses. While

a lot of headway has been made in these experimental aspects, there remains a lot of

work to be done, including further constraining the parameters in the mixing matrix

and determining the absolute masses of the neutrinos.
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1.1.1 The Weak Interaction

The weak interaction is aptly named, as it is about 1011 times weaker than elec-

tromagnetic interactions and about 1013 times weaker than strong interactions. How-

ever, the weak interaction plays an integral role in creating the universe that we live

in. Unlike the other fundamental forces, the weak interaction is capable of changing

protons to neutrons (and vice versa), enabling the primary mode of energy genera-

tion in the universe: the fusion of four protons to helium nuclei. The weak reactions

are much slower than the electromagnetic and strong reactions in the reaction chain

that culminates in nuclear fusion, so the weak reactions are the rate-limiting steps

in the energy generation process. While the weak interaction may be weak, it holds

a mighty role in determining the evolution of astrophysical objects.

The Glashow-Weinberg-Salam standard model has served as the theoretical ba-

sis for the understanding of the weak interaction. There are three generations of

fermions, and each generation has two quarks, a charged lepton, and a neutrino

(which is also a lepton) :

Quarks
up charm top

down strange bottom

Leptons
e− µ− τ−

νe νµ ντ

The properties, other than mass, are very similar across generations. Up-type quarks

(up, charm, top) have a charge of +2/3 e, while down-type quarks (down, strange,

bottom) have a charge of −1/3 e. The charged leptons have a charge of −e while the

neutrinos are neutral. The mass of the particles increase with successive generations

(when moving from left to right above). Quarks participate in all four fundamental

forces, but at low energies are constrained to be in color singlets — bare quarks

do not exist at low energy scales. Charged leptons, on the other hand, are not

affected by the strong force but experience the other three forces, while neutrinos

only participate in the weak and gravitational interactions.

The weak interaction is mediated by three gauge bosons, W+, W−, and Z0. The

mass of the W± bosons is mW± = 80.398± 0.025 GeV and the mass of the Z0 boson
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is mZ0 = 91.1876 ± 0.0021 GeV [22]. The large masses of the gauge bosons are

responsible for both the weakness of the weak interaction and the fact that the weak

interaction is a short-range force. This range of the force can be estimated from

Heisenberg’s Uncertainty Principle and the mass of the bosons to be ∼ 10−3 fermi (a

fermi is approximately the size of a proton). So, the weak interaction is essentially

a contact force.

Charged current interactions are mediated by the W± bosons. In a charged

current interaction, down-type quarks are converted to up-type quarks or charged

leptons are converted into their associated neutrino (or vice-versa), accompanied by

the exchange of a W− (or W+) boson. Figure 1.1 shows examples of a number of

charged current interactions. There is one complication when it comes to the charged

current interaction with quarks. Quarks mix with other quarks of the same type in

other generations. This mixing allows any up-type quark to have a charged current

interaction with any down-type quark; the strength of this interaction modified by

the Cabibo-Kobayashi-Masakawa (CKM) matrix. The CKM matrix is a unitary

matrix that contains the observable effects of quark mixing (i.e., quantum mechanical

superposition) [23, 24]. As a result, the β-decay of a neutron (a neutron has quark

content udd) is similar to the β-decay of a Λ particle (quark content usd), where

both particles decay to a proton, electron, and electron antineutrino. The neutron

decay has d→ u and the Λ decay has s→ u; this is an example of a flavor changing

charged current interaction in the quark sector.

Neutral current interactions are mediated by the Z0 boson. As seen in Figure

1.2, the neutral current affects any particle with weak charge (that is, any particle

that participates in the weak interaction) and does not change the particle. However,

one may ask in a similar vein to the discussion of flavor changing charged currents,

does quark mixing create flavor changing neutral currents? Can an up-type quark

be converted into a different up-type quark through the neutral current? Glashow,

Iliopoulos and Maiani showed that since the CKM matrix is unitary, there are no

flavor changing neutral currents [25]. This is called the GIM mechanism. An inter-

esting point is that the interaction vertices shown for the neutral current in Figure
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Figure 1.1: Examples of charged current, weak interaction vertices for both W− (top)
and W+ (bottom). In the Feynman diagrams, ` = e, µ, τ .

1.2 are the same as those in the electromagnetic interaction when replacing Z0 → γ

and working with particles that have electromagnetic charge. This is a consequence

of the electroweak theory of Glashow, Weinberg and Salam, in which the Z0 and γ

are very closely related.

The strength of the weak interaction is described by the Fermi coupling constant,

GF , and is equal to

GF =
g2

4
√

2m2
W

, (1.5)

where g ∼ O(1) is the coupling constant of the W± bosons in the standard model (it

is the weight of the vertices in Figure 1.1). Because the W± bosons are very massive,

the Fermi coupling constant is small; the weak interaction is indeed weak. The decay

of a muon, µ− → e− + νµ + ν̄e, provides a means to determine the Fermi constant

because the interaction of four leptons is more theoretically tractable than working

with hadrons. The mean lifetime of a muon to decay is

τ−1
µ =

G2
Fm

5
µ

192π3
f(me/mµ), (1.6)

where f(x) is a well calculated function, me/mµ ≈ 0.004, and corrections of the order
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Figure 1.2: Examples of neutral current, weak interaction vertices. In the Feynman
diagrams, fw is any particle that interacts with the weak interaction.

m2
µ/m

2
W ∼ 10−6 are neglected. Experiments have measured the Fermi constant to

be [22]

GF = 1.166 37± 0.000 01× 10−11 MeV−2. (1.7)

Two important quantities in the discussion of the evolution of neutrinos in the

early universe are the forward scattering potential and the scattering rate resulting

from weak interactions with thermal populations of particles. For example, as a

photon travels through a material, it attains a self-energy from its electromagnetic

interactions with the electrons in the material. This alters the dispersion relation

of the photons, acting as an index of refraction; the real part acts as an effective

mass (due to the forward scattering potential) and the imaginary part reflects the

scattering rate. Similarly, as a neutrino travels through a medium with weak charge,

it gains a self-energy that can also act as an index of refraction [26]. Figure 1.3 shows

the Feynman diagrams of the leading order contributions to the neutrino self energy.

The forward scattering potential for neutrino να, V (να), can be separated into a

number of additive categories, for neutrino scattering off:

• neutrino background of a different flavor. Evaluating the tadpole graph [Fig.

1.3(a)] for the neutral current forward scattering of να off νβ for β 6= α yields

Vνβ
(να) = ±

√
2GF

(
nνβ

− nν̄β

)
, (1.8)

where the upper sign is for neutrinos and the lower sign is for antineutrinos.
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Figure 1.3: One loop thermal contributions to the neutrino self energy. (a) The
tadpole graph includes neutral current scattering off any species in the early universe.
(b) The bubble graph includes both neutral and charged current scattering off leptons
with the same flavor as the neutrino.

• neutrino background of the same flavor. The forward scattering potential is

calculated from both the tadpole and bubble graph [Fig. 1.3(b)]. In the tadpole

graph, energy and momentum conservation constrains the four-momentum of

the Z0 boson to be zero, so that the propagator is simply igµν/m
2
Z . However,

this is not the case with the bubble graph, so the full vector boson propagator

is necessary. As long as the neutrino energy is small compared to the W± and

Z0 bosons, the propagator can be expanded in powers of m−2
Z and the neutral

current forward scattering potential is

Vνα(να) = ±2
√

2GF (nνα − nν̄α)− 8
√

2GFpν

3m2
Z

(〈Eνα〉nνα + 〈Eν̄α〉nν̄α) . (1.9)

• background nucleons. The neutral current forward scattering potential off neu-

trons and protons (and their antiparticles) is

Vnuc(να) = ∓GF√
2

(nn − nn̄)± GF√
2
(1− 4 sin2 θW ) (np − np̄) , (1.10)

where sin2 θW = 0.231 19 ± 0.000 14 [22] is the Weinberg angle (or the weak

angle) [9].

• charged lepton background of a different flavor. The neutral current forward
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scattering potential off charged leptons of a different flavor is

Vβ(να) = ∓GF√
2
(1− 4 sin2 θW ) (nβ− − nβ+) . (1.11)

• charged lepton background of the same flavor. Forward scattering off charged

leptons of the same flavor is a combination of both neutral and charged currents

interactions,

Vα(να) = ±
√

2GF (nα− − nα+)− 8
√

2GFpν

3m2
W

(〈Eα−〉nα− + 〈Eα+〉nα+) . (1.12)

It is useful to write the forward scattering potential as V = A+B +C, where A

is the neutrino-matter interaction term, B is the neutrino-neutrino interaction term,

and C is called the “thermal” term, the lowest order correction to the A and B terms.

In the early universe, charge neutrality implies that ne− − ne+ = np − np̄, and it is

expected that nµ− − nµ+ ≈ nτ− − nτ+ ≈ 0. In this approximation, the A potential is

A(να) =
√

2GF

[
δαe(0.5 + 2 sin2 θW ) (ne− − ne+)− 0.5 (nn − nn̄)

]
, (1.13)

and the B potential is

B(να) =
√

2GF

[
(nνα − nν̄α) +

∑
β=e,µ,τ

(
nνβ

− nν̄β

)]
. (1.14)

The C potential is

C(να) = −8
√

2GFpν

3m2
Z

(ρνα + ρν̄α)− 8
√

2GFpν

3m2
W

(ρα− + ρα+) , (1.15)

where ρi is the total energy density in species i. Assuming the background particles

are in thermal equilibrium [see, e.g., Equation (1.80)] and neglecting particle chemical

potentials,

C(να) = −14π

45
sin2 θWα

−1G2
FpνT

4
(
cos2 θW + 2

)
, (1.16)

where α−1 = 137.035 999 679(94) [22] is the fine structure constant. The first term

is relevant for all neutrinos, while the second term is only included when the charged

lepton of the same flavor has an ultra-relativistic thermal population.
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In general, there may be a flavor off-diagonal term in the neutrino-neutrino for-

ward scattering potential which can be calculated from the bubble graph with an

incoming neutrino of one flavor and outgoing neutrino of another flavor, interacting

through the neutral current with f ∈ {ν1, ν2, ν3}. If the number densities of all three

flavors of neutrinos are equal, then the off-diagonal forward scattering potential is

GIM suppressed. Otherwise, the neutrino-neutrino off-diagonal forward scattering

potential must be calculated and included self-consistently in any calculation [27, 28].

Similarly, the total scattering rate can be deduced from a number of additive

categories, assuming all ultra-relativistic thermally populated particles share a com-

mon temperature and do not have significant particle-antiparticle asymmetries (no

chemical potentials), for neutrino scattering off:

• other neutrinos. Assuming that all three neutrino flavors are in thermal equi-

librium, the total neutrino-neutrino scattering rate is

Γν(να) ≈ 7π

27
pνG

2
FT

4. (1.17)

• charged leptons and antileptons. Any charged lepton that is ultra-relativistic

and in thermal equilibrium in the early universe will contribute to the total

scattering rate

Γβ(να) ≈
[(
−(−1)δαβ0.5 + sin2 θW

)2
+ sin4 θW

] 7π

27
pνG

2
FT

4, (1.18)

while any charged lepton that is no longer ultra-relativistic will contribute a

negligible amount to the total scattering rate.

As will be discussed in the next section, chiral symmetry is restored in the early

universe for T > T c
QCD ∼ 170 MeV, so at these high temperatures, the universe is

filled with a quark-gluon plasma, instead of a photon-baryon plasma. For T . T c
QCD,

the baryons are non-relativistic and will have a minimal effect on the total scattering

rate. However, for T & T c
QCD, free quarks will thermally populate the universe. The

bare quark-neutrino interaction remains an active area of research [29, 30].
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1.1.2 Neutrino Mixing and Sterile Neutrinos

In the Glashow-Weinberg-Salam standard model, particle masses are generated by

the Higgs mechanism. Yukawa couplings between particles and the Higgs field result

in particles having mass. However, there is no a priori reason that the Higgs ought to

interact with the particle fields in the same manner as the weak interaction’s gauge

bosons. Thus, in general, it is expected that the weak eigenstates are not coincident

with the mass eigenstates (eigenstates of the Higgs interaction).

In the quark sector, the CKM matrix describes this inconsistency between weak

and mass eigenstates, and is responsible for flavor changing charged currents. Now,

if neutrinos also have mass, then the weak states and the mass states may be related

in a similar manner,

|να〉 =
∑

i

U∗αi|νi〉, (1.19)

where να are the weak (flavor) states, νi are mass states, Uαi are the elements of the

Maki-Nakagawa-Sakata (MNS) unitary transformation, and the indices α = e, µ, τ

and i = 1, 2, 3.

The MNS neutrino mixing matrix is a 3 × 3 unitary matrix, which can be

parametrized by three mixing angles one phase. In terms of these three mixing angles

(θ12, θ23, θ13) and the CP -violating phase, δ, the mixing matrix may be written as

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.20)

where sij = sin θij and cij = cos θij.

What is the significance of the CP -violating phase? The CP -transformation

takes particles into antiparticles and vice versa, so the CP -violating phase ought
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Table 1.1: Experimental best-fit values for neutrino mass and mixing parameters
using a global analysis of data including solar, atmospheric, reactor and accelerator
experiments [31].

δm2
21 7.65+0.23

−0.20 × 10−5 eV2

|δm2
31| 2.40+0.12

−0.11 × 10−3 eV2

sin2 θ12 0.304+0.022
−0.016

sin2 θ23 0.50+0.07
−0.06

sin2 θ13 < 0.040 (2σ limit)

to describe any differences between neutrinos and antineutrinos. Taking the CP -

transformation of Equation (1.19) yields the mixing for antineutrinos

|ν̄α〉 =
∑

i

Uαi|ν̄i〉. (1.21)

The difference between the two linear transformations is a complex conjugation.

Looking at the dependence on δ of the MNS matrix, if δ is an integral multiple of π

then CP is conserved, otherwise δ gives a measure of the violation of CP -symmetry.

Experiments using neutrino detectors in mines have been successful in constrain-

ing a number of neutrino mass and mixing parameters. Experimental measurements

of the oscillations of neutrinos produced in the atmosphere, nuclear reactors, and par-

ticle accelerators along with measurements of neutrino flavor transformation of solar

neutrinos have combined to measure two of the three mixing angles and constrain the

third mixing angle, θ13. These experiments have also measured the difference in the

square of the mass eigenvalues, δm2
ij = m2

i −m2
j . Table 1.1 summarizes the best-fit

values of these neutrino mass and mixing parameters, analyzing the data from all of

the neutrino experiments.

While significant progress has been made in determining the neutrino mass and

mixing parameters, there remains a number of unanswered questions. The mixing

angle θ13 is constrained to be small but has not been measured, and the CP -violating

phase, δ, remains unconstrained since θ13 is small. While the two independent mass

squared differences are measured, there is no measurement of the absolute mass scale
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Figure 1.4: The neutrino mass hierarchy for the normal mass hierarchy on the left
and the inverted mass hierarchy on the right. Also indicated are the approximate
relationship between the mass and flavor states.

and no determination of the mass hierarchy (i.e., the sign of δm2
31). There are two

scenarios when discussing the neutrino mass hierarchy as shown in Figure 1.4, the

normal mass hierarchy where there are two light neutrinos and a heavier neutrino,

and the inverted mass hierarchy where there are two heavy neutrinos and one lighter

neutrino.

Terrestrial experiments continue to search for θ13, with hopes of also uncovering

the neutrino mass hierarchy and the CP -violating phase [32]. Other experiments are

attempting to measure neutrinoless double β-decay or the end-point energy of the

β-decay of tritium to deduce the absolute mass scale of the neutrinos [33, 34]. It

is possible that astrophysics may be just as successful in uncovering the remaining

parameters as any terrestrial experiment. The combined analysis of the cosmic mi-

crowave background radiation, the luminosity distance to type Ia supernovae, and

baryon acoustic oscillations has provided an upper limit on the sum of the neutrino

masses,
∑
mν < 0.67 eV [35], which is a more stringent constraint than any labora-

tory experiment. Finally, if a galactic supernova is observed by the neutrino detectors

around the world, its temporal and energy spectrum could lead to a measurement of

both θ13 and the neutrino mass hierarchy [36, 37].

The Liquid Scintillator Neutrino Detector experiment at Los Alamos National

Laboratory, observed neutrino oscillations in a neutrino beam created by a parti-
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cle accelerator. In 2000, the LSND collaboration released results that suggested

δm2 ∼ 1 eV2 [38]. If there were only three neutrino states, then only two indepen-

dent mass squared differences would be expected. So, the introduction of a third

independent mass squared difference would imply the existence of a fourth neutrino.

Since the measurement of Z0 decay has eliminated the possibility of a fourth active

neutrino, the interpretation would be that this fourth neutrino would be a sterile

neutrino. A sterile neutrino is a theoretical type of neutrino that has weaker than

weak interactions. The results of the LSND experiment have since been refuted by

the mini-BOONE experiment [39], but the idea of the existence of a sterile neutrino

remains an attractive one to theorists.

If neutrinos were massless, then left-handed chirality states (those that the weak

interaction acts upon) would be equivalent to left-handed helicity states (spin and

momentum of the neutrino are anti-parallel). However, since neutrinos are massive,

a left-handed chirality state is a linear superposition of left- and right-handed helicity

states. For massive particles, chirality is a relativistic invariant while helicity is not.

It is simple to see that helicity is not relativistically invariant. Suppose we have a

particle with left-handed helicity, its spin and momentum are anti-parallel. Taking

a suitable Lorentz boost will change the direction of the momentum while leaving

the spin unchaged. A left-handed helicity state in one frame can be a right-handed

helicity state in another frame.

What happens to the orthogonal combination of left- and right-handed helicity

states? It has been argued that this naturally leads to the introduction of right-

handed chirality states into the standard model. Many extensions to the standard

model include a right-handed neutrino which, since the weak interaction current is

left-handed, has no weak interactions. These sterile neutrinos would be irrelevant

unless they coupled to the weak sector. The symmetries of the models allow sterile

neutrinos to mix with active neutrinos through mass terms (Yukawa coupling to the

Higgs field), while some models couple the sterile neutrinos to the active neutrinos by

introducing scalar fields [40–43]. In this disssertation, active-sterile neutrino mixing

is considered solely through a mass term.
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If sterile neutrinos have vacuum mixing with active neutrinos, then sterile neu-

trinos will experience the weak interaction, albeit at a much weaker level. Consider

active-sterile neutrino vacuum mixing with just one active and one sterile neutrino

(hence, parametrized by a mixing angle θ), then the strength of the weak interaction

is ∼ G2
F sin2 θ. Measurements of the Z0 decay width constrain sin2 θ to be very small.

The sterile neutrino was first proposed by Pontecorvo in the discussion of mass in

the neutrino sector [44]. Sterile neutrinos have been proposed to solve a number of

outstanding problems in astrophysics. The emission of sterile neutrinos in a preferred

direction during a supernova could be responsible for pulsar kicks, resulting in some

pulsars having large peculiar velocities [41, 45]. Active-sterile neutrino oscillation

may help to take energy out of the core of a supernova, reinvigorating the shock

wave by depositing this energy in it [46, 47]. Some models of dark energy involve

the decay of a sterile neutrino [48], while there are many models that suggest sterile

neutrinos as a dark matter particle [49–51], including in Chapter 3 of this dissertation.

Since sterile neutrinos have nonzero weak interactions, they can be created in

the early universe. One of the attractive qualities of sterile neutrino dark matter is

that it is not as dark as it ought to be. A sterile neutrino may decay into a lighter

neutrino and a photon. In the rest frame, this sends the photon with an energy of

half the sterile neutrino mass. The decay rate for νs → να + γ is very small,

Γ ≈ 6.8× 10−33 s−1

(
sin22θ

10−10

)( ms

1 keV

)5

, (1.22)

and is highly sensitive to the mass of the sterile neutrino. However, if sterile neutrinos

comprise the dark matter, then there are a lot of sterile neutrinos in the universe,

so that their decay may be observable in a galaxy cluster where there is a lot of

dark matter sitting in its potential well. This allows astrophysics to constrain sterile

neutrino parameters that could not be probed in the terrestrial laboratory.

1.1.3 Neutrino Oscillations

The quantum mechanical consequence of neutrino mixing as in Equation (1.19)

is that neutrino flavors will oscillate. For simplicity, we begin with 2 × 2 neutrino
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mixing, say between νµ and ντ . A 2 × 2 unitary transformation is parametrized by

one mixing angle θ, so that the relationship between the flavor states and the mass

states is

|νµ〉 = cos θ|ν1〉+ sin θ|ν2〉

|ντ 〉 = − sin θ|ν1〉+ cos θ|ν2〉. (1.23)

In vacuum, the mass eigenstates satisfy

Ĥv|νk〉 = Ek|νk〉, (1.24)

for the vacuum Hamiltonian Hv, where Ek =
√
p2

ν +m2
k is the energy-momentum

dispersion relation. If at t = 0, the neutrino is created in state |νµ〉, then using the

time evolution operator, Û(t) = e−iĤvt, at a later the time the wavefunction of the

neutrino is

|ν(t)〉 = cos θ e−iE1t|ν1〉+ sin θ e−iE2t|ν2〉. (1.25)

Assuming that the neutrino is ultra-relativistic, pν � mk, then

E2 − E1 ≈
δm2

2Eν

, (1.26)

where pν ≈ Eν and δm2 = m2
2 −m2

1.

The probability that the neutrino will be measured in state ντ at a time t, when

the neutrino has traveled a distance L ≈ t, is

Pνµ→ντ (L) = sin2 2θ sin2

(
δm2L

4Eν

)
≡ sin2 2θ sin2

(
2π
L

`v

)
, (1.27)

where the vacuum neutrino oscillation length is

`v =
4πEν

δm2
≈ 1000 km

(
Eν

1GeV

)(
δm2

2.5× 10−3 eV2

)−1

. (1.28)

On the other hand, the probability that the neutrino is measured in state νµ is the

complement,

Pνµ→νµ(L) = 1− sin2 2θ sin2

(
δm2L

4Eν

)
. (1.29)
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The atmospheric neutrino anomaly is the result of neutrino oscillations. Atmo-

spheric neutrinos are created by cosmic rays hitting the atmosphere, creating pions,

which in turn decay to νµ and νe in reactions (1.3). The result is that twice as many

muon neutrinos and antineutrinos are created than electron neutrinos and antineutri-

nos. However, the measurement of this ratio was approximately 60% of the expected

value [21]. Neutrinos are created in this process with energies Eν ∼ 100 MeV to

∼ 100 GeV, which correspond to oscillations lengths of `v ∼ 100 km to ∼ 100, 000 km

when using δm2 ≈ δm2
31. Atmospheric neutrinos travel anywhere from about 20 km

for neutrinos created in the atmosphere at the zenith of the neutrino detector site

to about 13, 000 km for neutrinos created in the atmosphere at the nadir, on the

other side of the planet. Since the path length is of order the neutrino oscillation

length, atmospheric neutrinos are well suited for probing neutrino oscillations with

δm2 ∼ δm2
31. This mass squared difference is often referred to as the atmospheric

mass splitting, δm2
atm = δm2

31.

In general, 3 × 3 neutrino mixing should be considered, as in Equation (1.19).

The transition probability is

Pνα→νβ
= δαβ − 4

∑
k>j

<
[
U∗αkUβkUαjU

∗
βj

]
sin2

(
δm2

kjL

4Eν

)

+ 2
∑
k>j

=
[
U∗αkUβkUαjU

∗
βj

]
sin

(
δm2

kjL

2Eν

)
. (1.30)

The final term indicates that it is possible for neutrino oscillation experiments to

determine the neutrino hierarchy (i.e., the sign of δm2
31).

1.1.4 The MSW Effect

In the previous section the evolution of the weak states in vacuum was discussed.

However, whenever a neutrino travels through a medium with weak charge, its evo-

lution is altered by forward scattering, just as a photon traveling through a medium

with electric charge has its evolution altered by forward scattering. For simplicity,

consider 2 × 2 neutrino mixing between νe and νx ≈ (νµ + ντ )/
√

2, and a forward
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scattering potential that has no off-diagonal terms. The total Hamiltonian is the

sum of the vacuum Hamiltonian and the diagonal forward scattering potential Ĥm,

Ĥm|να〉 = Vα|να〉, (1.31)

where Vx ≈ (Vµ + Vτ )/2. Using the one-parameter 2× 2 mixing scheme in Equation

(1.23) with the substitutions µ → e and τ → x, the Hamiltonian written in the

(νe νx) basis is

Ĥf =

(
Eν +

m2
1 +m2

2

4Eν

+
Ve + Vx

2

)
Î +

δm2

4Eν

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)

+
∆V

2

(
1 0

0 −1

)
, (1.32)

where ∆V ≡ Ve − Vx, and Î is the identity matrix.

The Schrödinger equation can be written in the flavor basis after the flavor states

are multiplied by a suitable phase factor to remove the trace of Hf ,

i
∂

∂t

(
νe

νx

)
=

[
δm2

4Eν

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)
+

∆V

2

(
1 0

0 −1

)](
νe

νx

)
. (1.33)

In the usual quantum mechanical practice, the Hamiltonian is diagonalized to de-

termine the mass (energy) states. The one-parameter unitary transformation [e.g.,

Equation (1.23)] with effective matter mixing angle θM ,

tan 2θM = tan 2θ

(
1− 2Eν∆V

δm2 cos 2θ

)−1

, (1.34)

diagonalizes the Hamiltonian in the mass basis,

i
∂

∂t

(
νM

1

νM
2

)
=
δm2

eff

4Eν

(
−1 0

0 1

)(
νM

1

νM
2

)
, (1.35)

where the effective mass squared difference is

δm2
eff =

√
(δm2 cos 2θ − 2Eν∆V )2 + (δm2 sin 2θ)2, (1.36)
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with the tacet assumption that δm2 > 0 (the mixing angle is fixed so that this

assumption is realized) .

By analogy, the matter-affected neutrino oscillation probabilities are

Pνe→νx = sin2 2θM sin2

(
δm2

effL

4Eν

)
, (1.37)

and Pνe→νe = 1−Pνe→νx . One important point to emphasize is that the oscillations

are maximal when sin2 2θM = 1, or δm2 cos 2θ = 2Eν∆V . This resonance condi-

tion holds no matter how small the vacuum mixing angle is, and corresponds to a

maximum in the oscillation length, `M,res = 4πEν/(δm
2 sin 2θ).

As a neutrino travels through a medium, the forward scattering potential that it

experiences changes in time ∆V → ∆V (t). Hence, the mass states that are found

by diagonalizing the Hamiltonian are only instantaneous energy eigenstates, and the

flavor states may be written in terms of these instantaneous energy eigenstates,

|νe〉 = cos θM(t)|νM
1 (t)〉+ sin θM(t)|νM

2 (t)〉

|νx〉 = − sin θM(t)|νM
1 (t)〉+ cos θM(t)|νM

2 (t)〉. (1.38)

The Schrödinger equation, written for a wavefunction in this instantaneous mass

basis, |ψ(t)〉 = a1(t)|νM
1 (t)〉+ a2(t)|νM

2 (t)〉, is

i
∂

∂t

(
a1

a2

)
=

[
δm2

eff

4Eν

(
−1 0

0 1

)
− dθM(t)

dt

(
0 i

−i 0

)](
a1

a2

)
. (1.39)

If the off-diagonal terms in Equation (1.39) are small, then the evolution of the

wave function is simple,

ak(t) = ak(0) exp

[
−(−1)ki

∫ t

0

δm2
eff(τ)/4Eν dτ

]
, (1.40)

and the νe survival probability is

Pad
νe→νe

(t) =
1

2
+

1

2
cos 2θM0 cos 2θM(t)

+
1

2
sin 2θM0 sin 2θM(t) cos

(∫ t

0

δm2
eff(τ)

2Eν

dτ

)
, (1.41)
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where θM0 = θM(t = 0). This is the solution in the adiabatic limit. That is,

the off diagonal terms are small enough that the neutrino will remain in the same

mass eigenstate that it was created in. In the survival probability, the lone phase,∫
δm2

eff/2Eν dτ , is large so that small differences in neutrino energy result in large

differences in the phase. Thus, in an energy interval in the far-field limit, the final

term in Equation (1.41) averages to zero.

In astrophysical environments, neutrinos are typically created in a flavor state

in a very dense environment, such as the core of a star or in the early universe,

then stream toward lower densities. This means that |∆V (t = 0)| � δm2/Eν .

Thus, cos 2θM0 ≈ −sgn [∆V ] . Typically, the forward scattering potential of electron

neutrinos is larger than the forward scattering potential of other active neutrinos,

especially in the core of a star, where the forward scattering potential is dominated

by the number density of electrons. In this case, cos 2θM0 ≈ −1, and the asymptotic

νe survival probability is

Pad
νe→νe

≈ sin2 θ. (1.42)

The interpretation of this result is at the heart of adiabatic quantum mechanics.

At t = 0, the neutrino is created in state νe in the dense environments described

above with cos 2θM0 ≈ −1:

|ν(t = 0)〉 = |νe〉 ≈ −|νM
2 (t = 0)〉. (1.43)

As the neutrino travels, the off-diagonal terms of the Hamiltonian are small, so that

the neutrino remains in its original state up to a phase, |ν(t)〉 ≈ eiφ(t)|νM
2 (t)〉. This

is the adiabatic approximation. Once the neutrino travels to where the forward

scattering potential becomes negligible, the instantaneous mass states become the

vacuum mass states and |ν(t → ∞)〉 ∝ |ν2〉 = sin θ|νe〉 + cos θ|νx〉. As a result, the

νe survival probability is

Pad
νe→νe

= |〈νe|ν(t→∞)〉|2 ≈ sin2 θ. (1.44)

This adiabatic flavor transformation is known as the Mikhail-Smirnov-Wolfenstein

(MSW) effect [52, 53].
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Describing dimensionfull numbers as “small” is not useful, so the adiabaticity

parameter is defined as the ratio of the diagonal terms to the off-diagonal terms of

the Hamiltonian in Equation (1.39),

γ =
δm2

eff

4Eν |dθM/dt|
=

(
δm2

eff

2Eν

)2
1

sin 2θM |d(∆V )/dt|
. (1.45)

When the adiabaticity parameter is large (� 1), the adiabatic solution presented

above is successful in describing the neutrino flavor transformation dynamics. The

adiabaticity parameter is minimized at the MSW resonance condition

2Eν∆V (tres) = δm2 cos 2θ, (1.46)

where δm2
eff is minimized and sin2 2θM is maximized. Thus, the minimal adiabaticity

parameter is

γres =
δm2

2Eν

Dres
sin2 2θ

cos 2θ
, (1.47)

where D = |d log(∆V )/dt|−1 is the density scale height.

There are two ways to heuristically understand the adiabaticity parameter. First,

consider the physical width of the resonance, δ`, as the distance the ultra-relativistic

neutrino must travel in order to traverse the resonance. One way of describing this

width is the physical width associated with the full width at half-maximum of the

peaked function sin2 2θM(t),

δ` ≈
∣∣∣∣d log(∆V )

dt

∣∣∣∣−1
δ(∆V )

∆V
≈ 2Dres tan 2θ. (1.48)

The adiabaticity parameter at resonance is

γres ≈ π
δ`

`M,res

, (1.49)

the ratio of the width of the resonance to the neutrino oscillation length at resonance.

This uses the basic idea of adiabaticity in quantum mechanics. If the quantum

system is allowed to undergo many oscillations in the timescale at which the system

is changing, then it will not transition into other energy states, although the energy

eigenstates and eigenvalues may be changing in time. (Ref. [54] also discusses this
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relationship, however, note that there is a factor of two difference in the definition of

the resonance width between this dissertation and Ref. [54]. However, this does not

change the overall mathematics and the heuristic picture presented in both works.)

Another way to understand the adiabaticity parameter is to consider the differ-

ence in the energy eigenvalues at resonance, δEν,res = δm2 sin 2θ/(2Eν). Then, the

adiabaticity parameter at resonance is

γres ≈ δ` δEν,res/2. (1.50)

This formulation of the adiabaticity parameter tempts one to think about the Heisen-

berg energy-time uncertainty relationship (∆E∆t & 1/2). The neutrino remains

in the resonance width for ∆t ∼ δ`, so the quantum uncertainty in its energy is

∆EH ∼ 1/(2δ`), and the adiabaticity parameter is γres ∼ δEν,res/(4∆EH). If the

uncertainty in the energy is small compared to the energy gap between the two en-

ergy states, then transitions between energy states is suppressed, and the evolution

is adiabatic.

When γres . 1, the quantum mechanical evolution is not adiabatic and the evo-

lution of both mass states, and the transitions between them, must be accounted

for. The Parke formula follows the evolution of the neutrino in the instantaneous

mass states, and performing the same average as above over large energy-dependent

phases, the νe survival probability is

Pνe→νe =
1

2
+

(
1

2
− Pc

)
cos 2θM0 cos 2θM(t), (1.51)

where Pc is the νM
1 
 νM

2 crossing probability at resonance [55]. As was the case

above, in an astrophysical environment, when cos 2θM0 = −1, the asymptotic νe

survival probability is

Pνe→νe = (1− Pc) sin2 θ + Pc cos2 θ. (1.52)

What remains is to determine Pc, which ought to depend of γres. One common

ansatz for the crossing probability is the Landau-Zener level crossing probability

[56, 57],

Pc,LZ = e−πγres/2. (1.53)
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The Landau-Zener crossing probability is predicated on the assumption that the for-

ward scattering potential is linear, and extends indefinitely. While it is unphysical for

a linear forward scattering potential to extends from +∞ to −∞, it remains a useful

approximation since the forward scattering potential is often at least locally linear

near the MSW resonance. Ref. [58] presents an analytic derivation of the Landau-

Zener crossing probability and shows that when the evolution is non-adiabatic, cor-

rections due to the finite size of the regime in question become significant. Work

has been done to determine Pc for more general profiles of ∆V (t) and to consider

the corrections to the Landau-Zener crossing probability in extreme non-adiabatic

conditions [59].

In the sun, ∆V (t) =
√

2GFne(t). When electron neutrinos are created in the

core of the sun by the weak reactions in the nuclear fusion chain reaction, the high

density of electrons in the core means that νe is most closely associated with νM
2 .

The charged current interactions between electrons and electron neutrinos (which

are absent with µ or τ neutrinos) add to the effective mass of the νe so that it is

effectively the heavier mass state. As the neutrinos freely stream from the core of

the sun toward Earth, they experience an MSW resonance and νM
2 transforms into

νM
1 with probability Pc. Thus, when the neutrinos reach earth, a fraction Pc of them

are in mass state νM
1 and (1−Pc) are in mass state νM

2 , so that the total fraction of

neutrinos measured as electron neutrinos is Pc cos2 θ+(1−Pc) sin2 θ < 1. This deficit

is the solar neutrino problem, which can be theoretically explained by considering

the MSW effect and experimentally confirmed by detecting all the neutrino flavors

that the initial νe were transformed into.

There is one sticking point in the discussion of neutrino mixing presented here.

For oscillations in and out of matter, the Schrödinger equation was used with a rela-

tivistic kinetic energy. The Schrödinger equation is used in non-relativistic quantum

mechanics, but the neutrinos are ultra-relativistic. It is ironic that since neutrinos

are so very ultra-relativistic, the Schrödinger equation is effective in describing the

evolution. Neutrino oscillations and the MSW effect are the result of quantum in-

terference and hence depends on the evolution of the phase of the quantum states.
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Treating neutrinos relativistically using the Dirac equation yields the same results

as presented above [60].

1.1.5 The Quantum Kinetic Equations

Until now the coherent quantum mechanical evolution of neutrino states has

been discussed. However, in some environments the density and temperature are

large enough that neutrinos may scatter off a background of particles (and other

neutrinos) making the decoherent evolution of neutrino states an interesting field

to study. Astrophysical environments when the decoherent evolution of neutrinos is

important include the dense cores of supernovae and the hot, dense plasma of the

early universe.

The quantum kinetic equations (QKEs) are a set of nonlinear, integro-partial

differential equations that describe the evolution of the single particle density matrix,

ρ =
∑
αβ

ραβ|να〉〈νβ|, (1.54)

where the sum is over all relevant flavor states in the problem. The evolution of the

N -particle density matrix, ρ(N) =
∏

i⊗ρi, is governed by the S matrix,

ρ(N)(t0 + ∆t) = Ŝ(∆t)ρ(N)(t0)Ŝ
†(∆t). (1.55)

The QKEs are a mean field theory, so a single density operator is assumed to describe

the evolution of each neutrino state, and the degrees of freedom of all but one neutrino

are integrated out [61, 62]. The density operator is a Hermitian operator, so it can be

described as the real linear combination of the generators of SU(N), for N neutrinos,

and the identity,

ρ = P0

(
ÎN + P · σN

)
, (1.56)

where σN are the N2−1 generators of SU(N) (for N = 2 they are the Pauli matrices

and N = 3 they are the Gell-Mann matrices), P0 is an overall normalization factor

proportional to the total number of neutrinos, and P is a polarization vector that

describes the occupation number of the neutrinos and the coherences between them.
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There are two distinct components of the polarization vector: P‖, which describes the

terms on the diagonal, corresponding to the occupation numbers (for N = 2, this is

the x̂3 direction, while for N = 3, this is the x̂3 and x̂8 directions), and the directions

perpendicular to this, P⊥, which describe the off-diagonal terms, corresponding to

the quantum coherences.

In general, the quantum kinetic equations have three components that describe

the evolution of P: a term that deals with the coherent neutrino mixing and matter

enhanced effects, a term that repopulates the occupation probabilities, and a term

that dampens quantum coherences as a result of inelastic scattering. Generically,

the QKEs look like

dP

dt
= V ×P + (repopulating P‖)− (damping P⊥),

where the generalization of the cross product to N -dimensions is (V×P)i = fijkVjPk,

where fijk are the structure constants of SU(N), can be used to describe neutrino

oscillations and the MSW effect in the coherent limit.

Chapter 3 discusses solutions of the quantum kinetic equations with two neutri-

nos in the early universe. While the assumptions of homogeneity and isotropy in

the early universe and of near thermal equilibrium among active species can simplify

the calculation of the relevant elements of the QKEs [63], the solution of the QKEs

remains a computationally intensive process. There are a number of pitfalls when

solving the QKEs to describe neutrino evolution in an environment where decoher-

ence affects the quantum dynamics. First, the number of independent nonlinear

integro-partial differential equations scale as N2, so dealing with more than two neu-

trinos becomes overwhelming. Perhaps the biggest deterrent to solving the QKEs

is that neutrino oscillations create high-frequency oscillations which make numerical

solutions difficult and time consuming. One strategy that has been used to circum-

vent these problems is to approach the problem with a Boltzmann-like equation for

the distribution functions (or equivalently the occupation numbers) [50, 63].

In Chapter 3, two neutrino mixing between an active neutrino and a sterile

neutrino is considered, exploring how decoherence can serve to populate the ster-
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ile neutrino states by scattering out of active neutrino states. It is common to use a

Boltzmann-like equation to explore this process,

Dfs(E, t)

Dt
= Γ(να → νs) (fα(E, t)− fs(E, t)) , (1.57)

where D/Dt is the usual convective derivative and Γ(να → νs) is the scattering rate

of να to νs. Jpw can one understand this scattering rate? A weak interaction fixes

the neutrino in active state να. The neutrino then travels approximately its mean

free path before interacting again with a background particle. As the neutrino travels

without inelastically scattering, it oscillates between να and νs. When the neutrino

once again interacts, it now has a probability of being in state νs, because of neutrino

oscillations. The neutrino state either scatters from να into νs or remains as να, but

its oscillations begin anew.

Naively, it would seem that a higher scattering rate would result in a higher pro-

duction rate of νs from να. However, the scattering rate of να → νs is proportional to

Γα sin2(2πτ/`M), where Γα is the scattering rate of να with the background particles,

and τ . 1/Γα is the time between scatterings. So, as the scattering rate becomes

large compared to the in-matter oscillation length, the να → νs scattering rate is

proportional to Γ−1
α . This is the quantum Zeno effect. When dealing with a quan-

tum system with discrete energy levels, observing the system too often will suppress

transitions between the energy levels [64].

Careful analysis of this problem has shown that this picture can provide a consis-

tent picture of να → νs scattering if the “measurement rate” is one half of the total

scattering rate. The effective να → νs scattering rate is

Γ(να → νs) ≈
Γα

2
〈Pνα→νs〉, (1.58)

where 〈Pνα→νs〉 is the ensemble-averaged probability that the neutrino collapses into

the sterile state,

〈Pνα→νs〉 =

〈
sin2 2θM(t) sin2 2πτ

`M

〉
, (1.59)

where t is the absolute time scale, and τ is the time since the neutrino state was last

observed. If the rate at which neutrinos are observed is Γα/2, then the probability
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that a neutrino is unobserved after a time interval τ is e−Γατ/2. Assuming that

sin2 2θM does not change significantly on a time scale Γ−1
α , then

〈Pνα→νs〉 = sin2 2θM

〈
sin2 2πτ

`M

〉
= sin2 2θM(t)

∫ τ ′�Γ−1
α

0
e−Γα(t)τ/2 sin2 2πτ

`M (t)
dτ∫ τ ′�Γ−1

α

0
e−Γα(t)τ/2 dτ

.

(1.60)

If the total scattering rate and the neutrino oscillation length in medium also do not

appreciably change on timescales of Γ−1
α , then the να → νs scattering rate is

Γ(να → νs) ≈
Γα

4
sin2 2θM

1

1 + 1
64π2 Γ2

α`
2
M

. (1.61)

This is referred to as the quantum Zeno ansatz [65]. It must be noted that the

scattering rate presented here differs in form the scattering rate presented in Equation

(3.20). The difference manifests itself in a factor of 4π in the definition of the neutrino

oscillation length. The form presented here remains consistent with the rest of the

introduction. In Chapter 3, the quantum Zeno ansatz is compared to a solution of

the quantum kinetic equations and it is found that the quantum Zeno ansatz is a

successful approximation of the decoherent evolution of the neutrino states. Figure

3.7 compares the two solutions. As expected, the quantum Zeno ansatz works better

far away from resonances (sin2 2θM and `M are peaked functions at these resonances)

than near to the resonances. This is consistent with the arguments made in deriving

the quantum Zeno ansatz.

The quantum Zeno ansatz provides a computationally attractive alternative to

the quantum kinetic equations. The quantum Zeno ansatz follows the distribution

functions which do not suffer from the oscillatory behavior in the density matrix.

Quantum coherences, which are responsible for the να → νs scatterings, are treated

in the scattering rate in a very simple manner without following the details of the

quantum mechanics. By working with distribution functions instead of density op-

erators, the number of independent evolution equations scales like N instead of N2.

While the quantum Zeno ansatz remains a nonlinear, integro-partial differential equa-

tion (in general, the matter mixing angle and oscillation length depends on integrals

of the distribution functions), it is significantly less computationally demanding in
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determining the evolution of neutrinos in environments where decoherence dominates

the quantum mechanical evolution [51].

1.2 Cosmology

Cosmology is the study of the origin and evolution of the universe. Within

the past decade, the astrophysical community has conducted high-precision obser-

vations that have advanced our knowledge of the history of the universe by leaps

and bounds. By combining these observations — including the anisotropies in the

Cosmic Microwave Background (CMB), the fluxes from type Ia supernovae, the dis-

tribution of matter on all scales (from clusters of galaxies to the Lyman-α forest)

— with large-scale computer simulations, cosmologists have been able to elucidate a

self-consistent picture of the contents of the universe and its evolution.

The topics in this dissertation span a large fraction of the 13.72± 0.12 Gyr [35]

history of the universe. Chapter 3 discusses sterile neutrino production within the

first microsecond of the lifetime of the universe, Chapter 2 discusses active-sterile

neutrino transformation within the first minute of the lifetime of the universe, and

Chapter 5 discusses the evolution of neutrinos freely streaming through spacetime

from the time they decouple from thermal equilibrium, 1 second into the lifetime of

the universe, to the present epoch nearly 14 Gyr later.

1.2.1 The FLRW metric

One of the central principles in cosmology is the cosmological principle: on large

scales (& 100 Mpc), the universe is homogeneous and isotropic. As a result, there

exists a preferred frame where space-like hypersurfaces with constant time are ho-

mogeneous and isotropic. The conditions of homogeneity and isotropy imply that

the metric (often written in the form of the spacetime interval) takes the form

ds2 = −dt2 + gij(t,x)dxidxj, (1.62)
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where the Einstein summation convention is used and the standard notation where

Roman indices apply to only spacelike dimensions, while Greek indices include all

spacelike and timelike dimensions.

If each t = const hypersurface is maximally symmetric, then the cosmological

principle is satisfied for all t. A spacelike manifold is both homogeneous and isotropic

if and only if it is maximally symmetric [66]. Homogeneity and isotropy implies that

the spatial metric, gij, may depend on time only as an overall multiplicative factor.

Isotropy implies that the the spatial metric is spherically symmetric about each point.

As a result, the spacetime interval can be written in the form

ds2 = −dt2 + S2(t)
[
B(r)dr2 + r2dΩ2

]
, (1.63)

where dΩ2 = dθ2 + sin2 θ dφ2.

A maximally symmetric space is defined by its curvature, κ. The Riemann curva-

ture tensor for such a space must be a function of only the curvature and the metric,

and must possess all the symmetries related to the interchange of indices,

Rijkl = κ (gikgjl − gilgjk) . (1.64)

Comparing this expression with the three-dimensional Riemann curvature tensor

derived from the spacelike component of Equation (1.63), results in the metric:

ds2 = −dt2 + S2(t)

(
dr2

1− κr2
+ r2dΩ2

)
.

It is conventional to rescale S(t) → a(t) = S(t)/
√
|κ| for κ 6= 0, where a(t) is

known as the scale factor, resulting in the Friedmann-Lemâıtre-Robertson-Walker

(FLRW) metric [67–70],

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
, (1.65)

where

k =


+1 positive curvature, closed universe

0 zero curvature, flat universe

−1 negative curvature, open universe

.
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Geodesics in the FLRW metric have constant spatial coordinates, that is x =

(r, θ, φ) = const. As a result, these spatial coordinates are called comoving coordi-

nates. A fiducial observer has fixed comoving coordinates and observes the universe

to be homogeneous and isotropic. (Observers on Earth are not fiducial observers

because of peculiar velocities due to, for example, the Earth’s orbit about the Sun,

the galactic center, and the center of the Local Group.) The time coordinate, t, is a

“universal time” and is the proper time measured by each fiducial observer. The as-

sumptions of homogeneity and isotropy have given us a family of preferred reference

frames and a notion of simultaneity between these frames (i.e. the ability to define

a universal time).

The scale factor, a(t), describes the “size” of the universe. Consider two fiducial

observers who have fixed comoving coordinates. The proper distance between these

two observers is proportional to the scale factor at the time the measurement is

made. Observationally, the universe is expanding, so we expect da/dt > 0 at the

current epoch.

1.2.2 Dynamics on the FLRW metric

The symmetries (or equivalently Killing vectors) of the FLRW metric imply that

the spacelike (three-)momentum (p) of particles traveling upon geodesics is inversely

proportional to the scale factor,

p ∝ 1

a(t)
. (1.66)

In cosmology, this result is most often used in describing photons traveling through

the expanding universe. A photon’s wavelength is inversely proportional to its mo-

mentum. If a photon has a wavelength of λi at time ti (i = 1, 2), then

λ1

λ2

=
a(t1)

a(t2)
. (1.67)

This implies that in an expanding universe, if t1 < t2, then λ1 < λ2. That is,

photons become “red-shifted” as they travel through the universe. In astrophysics,
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it is convenient to define the redshift, z(t), in relation to this effect,

1 + z(t) =
a(t0)

a(t)
, (1.68)

where t0 is the time of the present epoch. For an ultra-relativistic particle, energy is

proportional to momentum, so its energy also redshifts. However, it is important to

remember that it is the particle momentum, not energy, that redshifts. In Chapter

5, the implications of the redshifting of neutrinos is explored.

What remains is to determine the evolution of the scale factor. To do this, the

contents of the homogeneous and isotropic universe are modeled as a perfect fluid

with energy momentum tensor

T µν = (ρ+ P)uµuν + Pgµν , (1.69)

where uµ is the four-velocity of the bulk fluid flow, ρ is the energy density of the fluid,

and P is the pressure. Homogeneity and isotropy require that both ρ and P only

depend on time. The solution to the Einstein field equations (with the “cosmological

constant”) yields the Friedmann equations [67]:

H2(t) ≡
(
ȧ

a

)2

(t) =
8π

3m2
pl

[
ρ(t) +

Λm2
pl

8π

]
− k

a2(t)
(1.70)

ä

a
(t) = − 4π

3m2
pl

[(
ρ(t) +

Λm2
pl

8π

)
+ 3

(
P(t)−

Λm2
pl

8π

)]
, (1.71)

where H ≡ ȧ/a is the Hubble parameter. The Hubble constant, H0, is the value of

the Hubble parameter at the current epoch.

It is common practice to describe the cosmological constant as a form of dark

energy, an unseen (thus, “dark”), constant energy density that fills all of space. The

equation of state (pressure as a function of energy density) of this form of dark energy

is

PΛ = −ρΛ = −
Λm2

pl

8π
. (1.72)

While the prospect of a negative pressure is counter-intuitive, it is merely a statement

that as the universe adiabatically expands, the total amount of dark energy in a
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comoving volume increases (P = −∂E/∂V ). Current data suggests that at the

present epoch, dark energy makes up approximately 73% of the energy density in

the universe. Although current data is consistent with the cosmological constant as

the dark energy, there remains a plethora of viable theories regarding the content of

dark energy [35].

The evolution of the energy density and pressure follows from the general rel-

ativistic analog of energy and momentum conservation: the stress energy tensor is

divergenceless (T µν
;ν = 0, the “;” corresponds to the covariant derivative). It follows

that
dρ(t)

dt
= −3

ȧ

a
(t) [ρ(t) + P(t)] . (1.73)

It is often convenient to work in terms of the scale factor a as a timelike variable.

a(t) is typically a monotonically increasing function of time (the sign of da/dt from

Equation (1.70) is chosen to agree with observations of the expanding universe), so

the inversion, t(a), may be performed, allowing the history of the universe to be

described in terms of scale factor instead of time. If k = +1 (a positive spatial

curvature, closed universe), there exists an epoch when da/dt < 0, representing an

era of contraction of the universe. This is not the case in the history of the universe,

so this complication is avoided.

Given the equation of state, P(ρ), of the contents of the universe, Equation

(1.73) can be solved to determine the evolution of the energy density as a function

of the scale factor, ρ(a). It is conventional to classify the contents of the universe

in three categories: matter (non-relativistic particles), radiation (ultra-relativistic

particles), and dark energy (cosmological constant or some other exotic particles).

Some particles (e.g., neutrinos) may be created as radiation but as their momenta

redshift, become matter at a later epoch.

Non-relativistic matter includes both baryons and dark matter. Although dark

matter has not been directly detected, its gravitational effects have been observed for

decades. First proposed by Zwicky in 1933 to compensate for unseen mass in galaxy

clusters [71], the composition of dark matter remains a hot topic in both theoretical

and experimental astroparticle physics. Current data suggests that there is five
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times as much non-baryonic dark matter in the universe as baryonic matter. Matter

particles have very little pressure, that is Pm � ρm, thus it follows that ρm ∝ a−3.

This is consistent with the notion that the energy density of matter is proportional

to its number density which, in turn, is inversely proportional to the proper volume

of a comoving region. If the energy density of the universe is dominated by non-

relativistic matter, the Friedmann equation [Equation (1.70)] tells us that the time

evolution of the scale factor is a(t) ∝ t2/3.

The radiative energy density consists of ultra-relativistic particles. At the cur-

rent epoch, the cosmic microwave background radiation dominates this energy den-

sity, but in the early universe many other species were also ultra-relativistic. In a

homogeneous and isotropic gas of ultra-relativistic particles, the equation of state

is Pr = ρr/3, so ρr ∝ a−4. This is also consistent with the number density of

ultra-relativistic particles being proportional to a−3 along with the redshifting of the

energy of ultra-relativistic particles as the universe expands. If the energy density

of the universe is dominated by radiation, the time evolution of the scale factor is

a(t) ∝ t1/2.

Finally, if the dark energy is a result of the cosmological constant (or a vacuum

energy), then its equation of state is PΛ = −ρΛ. It follows that ρΛ is constant,

as was described above. If the energy density of the universe is dominated by the

cosmological constant, the time evolution of the scale factor is a(t) ∝ eHt. However,

if there are other components of the dark energy, then its equation of state would

be different and hence its energy density will evolve with scale factor. While current

results are consistent with a cosmological constant, further observations strive to

discern between the cosmological constant and a number of other models of dark

energy.

1.2.3 Thermal properties of the early universe

In the early universe, the scale factor is much smaller than it is at the current

epoch. Since the momentum (and hence the energy in the case of radiation) of a
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Table 1.2: The contents of the universe, including the evolution of the energy density
in each component with scale factor and the evolution of the scale factor with time
if the energy density of the universe is dominated by a single component. Also
included is the fraction of the total energy density that each component comprises
at the current epoch [35]. Missing from this table are the neutrinos which at early
times behave as radiation but at late times may behave like matter. The fraction
of the total energy density in neutrinos is constrained to be between 0.05 % and
0.7 % [35, 72].

Evolution Contents Fraction

Matter
ρm ∝ a−3 Baryons 4.6 %
a(t) ∝ t2/3 Dark Matter 23 %

Radiation
ρr ∝ a−4

CMB 0.002 %
a(t) ∝ t1/2

Dark Energy
ρΛ = const Cosmological constant/ 73 %
a(t) ∝ eHt Vacuum energy (?)

particle is inversely proportional to the scale factor, the energy in the radiation field

is much larger than it is today. Considering the evolution of the energy density with

scale factor of the different components summarized in Table 1.2, it follows that there

is an era in the early universe when ρr � ρm � ρΛ. This is known as the radiation

dominated era and is of principle interest in Chapters 2 and 3 in this dissertation.

The radiation dominated era spans the first 50,000 years (approximately) of the

lifespan of the universe.

The high energy density in radiation and a high number density of baryons results

in a fully ionized universe. (This era of ionization extends into the matter dominated

era for ρr & ρm/3.) In this photon-baryon plasma, the interaction rate is large

compared to the expansion rate of the universe. Thus, the plasma may be considered

to be in thermal equilibrium. [Since the FLRW metric does not have a timelike

Killing vector (i.e., “energy” is not a conserved quantity in an expanding universe),

the contents of the universe are not strictly in thermal equilibrium; rather the plasma

in the early universe undertakes a series of local thermodynamic equilibria, connected
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by the adiabatic expansion of the universe. In a homogeneous and isotropic universe,

net heat exchange cannot occur between a comoving volume and its environment.

The expansion of the universe is adiabatic unless there are non-equilibrium dissipative

processes that generate entropy.]

A particle is in local thermodynamic equilibrium if its scattering rate (Γ = n〈σv〉)
is large compared to the expansion rate of the universe (H = ȧ/a). In a homogeneous

and isotropic medium, the number density of a species in thermal equilibrium (here-

after, “thermal equilibrium” will denote local thermodynamic equilibrium), dni, in an

energy interval dEi is equal to the product of the density of states and the thermally

averaged occupation number,

dni =

[
gi
p2

2π2

(
dEi

dp

)−1

dEi

]
·
[
exp

(
Ei − µi

Ti

)
± 1

]−1

, (1.74)

where p = |p| is the magnitude of the spacelike momentum, Ei(p) is the energy-

momentum dispersion relation, gi is the number of internal degrees of freedom (often

related to the spin by gi = 2si + 1, but there are notable exceptions: photons have

gγ = 2 as a massless gauge boson, and neutrinos of a given flavor have gνα = 1

since the weak interaction only couples to left-handed neutrinos), µi is the chemical

potential, Ti is the temperature, and the (+) is applicable for fermions and the (−)

is for bosons. For a massive particle, Ei(p) =
√
p2 +m2

i , and this distribution can

be written in familiar form,

dni =
gi

2π2(~3c2)

pEi dEi

e(Ei−µi)/kBTi ± 1
, (1.75)

where the physical constants are reintroduced for illustrative purposes.

In general, each thermal species in the early universe may have a separate tem-

perature. However, if the scattering rate of two species upon each other (i.e. the

inelastic scattering rate, the rate at which the two species can efficiently share energy

with each other) is large compared to the expansion rate of the universe, then they

will share a common temperature. Furthermore, if species are in chemical equili-

birium — for the chemical reaction between thermal species, A + B � C +D, the
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forward and reverse reaction rates are large compared to the expansion rate of the

universe, λAB→CD = λCD→AB � H — then their chemical potentials satisfy

µA + µB = µC + µD. (1.76)

The chemical potential is zero for particles that can be created or destroyed in ar-

bitrary numbers, such as the photon or Z0. Thus, any particle-antiparticle pair

that annihilates into and is repopulated by these particles have equal and opposite

chemical potentials for both the particle (µi) and antiparticle (µı̄), µi = −µı̄.

Thermodynamics of the radiation dominated era are of primary importance in this

dissertation. Hence, the dynamics of the universe are governed by ultra-relativistic

particles (mi � Ti). This dissertation is concerned with thermal populations of

gauge bosons (photon, gluon, W±, and Z0) which have zero chemical potentials,

and a large array of fermions (quarks and charged and neutral leptons, and their

antiparticles) which, in general, may have a chemical potential with µi = −µı̄ for

particle-antiparticle pairs.

For ultra-relativistic bosons,

ni =
ζ(3)

π2
giT

3
i (1.77)

ρi =
π2

30
giT

4
i . (1.78)

While, for ultra-relativistic fermions,

ni =
3ζ(3)

4π2
· F2(ηi)

F2(0)
giT

3
i (1.79)

ρi =
7π2

240
· F3(ηi)

F3(0)
giT

4
i . (1.80)

In the above equations, ζ(3) ≈ 1.202 06 is the Riemann zeta function of argument

3, ηi ≡ µi/Ti is the degeneracy parameter, and

Fk(η) ≡
∫ ∞

0

xk dx

ex−η + 1
, (1.81)

is a function that is useful when dealing with thermal distributions of fermions.

Finally, since µı = −µı̄ (if the particle-antiparticle pair is in chemical equilibrium,
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the pair will also be in thermal equilibrium and thus share a common temperature),

it is also useful to compute

ni − nı̄ =
1

6
giT

3
i

(
ηi +

1

π2
η3

i

)
(1.82)

ρi + ρı̄ =
7π2

120
giT

4
i

(
1 +

30

7π2
η2

i +
15

7π4
η4

i

)
. (1.83)

In using the Friedmann equation, Equation (1.70), to describe the expansion rate

of the universe, it is important to compute the total energy density ρ =
∑

i ρi. The

total energy density can be written in terms of the photon temperature,

ρ =
π2

30
g T 4

γ , (1.84)

where g is the effective statistical weight in ultra-relativistic particles, which is cal-

culated as a weighted sum of the bosonic (gb) and fermionic (gf ) degrees of freedom,

g =
∑

bosons

gb

(
Tb

Tγ

)4

+
7

8

∑
fermions

gf

(
Tf

Tγ

)4

, (1.85)

allowing each species to have a different temperature (in practice, the high densities in

the early universe and the strength of the electromagnetic interaction result in most

of the relativistic species in the early universe having the same temperature as the

photons; notable exceptions include exotic particles produced out of equilibrium and

neutrinos after they decouple from the plasma). In writing this, corrections of order

η2 are neglected. The degeneracy parameters, ηi, are expected to be small because

the relative asymmetries of particles an antiparticles (∼ ηi) are small. Measured

baryon asymmetries imply that |ηe±| ∼ 10−9 [35] and measurements of primordial

abundances imply that |ην | . 0.1 [54].

Using the equation of state for ultra-relativistic particles (Pr = ρr/3), the total

proper entropy density can be written in a similar form

s =
2π2

45
gs T

3
γ , (1.86)

where gs is the effective entropic statistical weight in ultra-relativistic particles, which
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is calculated as a similar weighted sum of the bosonic and fermionic degrees of free-

dom,

gs =
∑

bosons

gb

(
Tb

Tγ

)3

+
7

8

∑
fermions

gf

(
Tf

Tγ

)3

. (1.87)

The only difference between the expressions for g and gs is the dependence on the

temperature of the individual species. Since it is common for each species to have the

same temperature, the two expressions are often blended into one statistical weight,

as is done in Chapter 3.

Since the expansion of the universe is adiabatic, the total entropy in a comoving

volume (∝ gsa
3T 3

γ ) is conserved. As a result, the relationship between the tempera-

ture of the plasma and the scale factor of the universe is

Tγ ∝ g−1/3
s a−1. (1.88)

When considering the adiabatic expansion of a gas of ultra-relativistic particles, the

adiabatic invariant, V 1/3T = const, implies that Tγ ∝ a−1. What causes the discrep-

ancy between these two behaviors? The difference lies in the physical mechanisms

that cause gs to evolve in time. There are two main causes for a changing gs: phase

transitions and particle-antiparticle pair annihilation.

In a cosmological phase transition, the energy scale of the universe (∼ Tγ) is

reduced to a point where spontaneous symmetry breaking results in a loss of degrees

of freedom in the plasma of the early universe. One example is the QCD transition

(a.k.a. the quark-hadron transition) which occurs at a temperature ∼ 170 MeV [73].

The QCD transition is precipitated by the breaking of chiral symmetry, forcing free

quarks and gluons to be bound into color singlets (i.e., hadrons: baryons and mesons).

The result is that a large fraction of the degrees of freedom prior to the transition in

quarks (gf = 12nq, where nq is the number of relativistic quarks; immediately prior

to the QCD transition nq = 2 or 3, depending on if the strange quark is relativistic)

and gluons (gb = 16) are lost. In this phase transition, latent heat is released, serving

to heat up the plasma of the universe.

In the early universe, particle-antiparticle pairs are in equilibrium — their pro-

duction rate is equilibrated with their annihilation rate. When the temperature of
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the plasma falls to the point where the number density of photons with the threshold

energy to create the particle-antiparticle pair becomes exponentially suppressed (i.e.,

mi & Tγ), the production rate of the particle-antiparticle pair will fall off exponen-

tially. This will result in a reduced number density of the particle and antiparticle

in the equilibrated plasma. The entropy that was once in these particle and antipar-

ticle populations is transferred to the thermally coupled components in the plasma,

resulting in heating the plasma.

These concerns are no longer relevant for particles once they fall out of thermal

equilibrium with the rest of the universe. Once these particles’ scattering rate be-

comes smaller than the expansion rate of the universe, they are effectively decoupled

from the plasma of the universe. If, in addition, the annihilation rate of the species

(or any other rate the destroys but does not repopulate the species) is small compared

to the expansion rate of the universe, then the particle species will freely fall through

spacetime with its momentum redshifting and its number density proportional to

a−3.

If a species decouples from the plasma of the universe at a scale factor aD (corre-

sponding to a temperature TD
i ), then at a later epoch the number density of particles

in a momentum interval dp is

dni =
gi

2π2

p2 dp

e(Ei−µi)/T D
i ± 1

, (1.89)

where Ei = Ei[p(a/a
D)] is the energy-momentum dispersion relation corrected for

the redshifting of the momentum, and notice that this expression is in terms of

momentum in contrast with Equation (1.75); it can be argued that working with

momenta instead of energy is a natural way to describe decoupled particles because

the momentum of decouple particles redshift, not their energy.

If the decoupled species is ultra-relativistic (e.g., photons, which decouple from

the plasma at Tγ ∼ 0.2 eV), then the number density of the decoupled particles is

ni =
gi

2π2
T 3

i (a)

∫ ∞

0

x2 dx

ex−µi/Ti(a) ± 1
, (1.90)

where the “temperature” Ti(a) = TD
i (aD/a). The result is that the temperature of
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this distribution of decoupled particles is proportional to a−1, as is the case for a ther-

mally coupled particle while the number of degrees of freedom remain unchanged.

While this “temperature” is not strictly a temperature in a thermodynamic sense

[the decoupled particle distribution is not a result of a thermal equilibrium at tem-

perature Ti(a)], it is a “color temperature” — a parameter that describes the energy

distribution of the decoupled particles as in Equation (1.75). Another result is that

the degeneracy parameter, ηi = µi/Ti(a), is constant for decoupled particles. This is

true because the number density of the decoupled particles must be proportional to

a−3.

The story becomes slightly more complicated if the decoupled particle has a rest

mass. As the universe expands, its momentum redshifts and there is a point where

the particle’s kinematics becomes non-relativistic. In this case, the “temperature” of

the distribution can still be regarded as being proportional to a−1 when describing a

momentum distribution (not the typical energy distribution). This point is discussed

in Chapter 5.

1.2.4 A thermal history of the universe

The expansion of the universe was first observed by Edwin Hubble in the 1920’s

as he observed that the apparent recessional velocity (redshift) of distant galaxies

was proportional to the distance to these galaxies [74]. In the FLRW metric, neglect-

ing peculiar velocities, two galaxies have fixed comoving coordinates so the proper

distance between these two galaxies is proportional to the scale factor. As the uni-

verse expands, the proper distance between the two galaxies increases, which in the

rest frame of one galaxy appears to be a recessional velocity. The measured redshift

is a result of the expansion of the universe, not the result of the Doppler effect due

to a recessional velocity.

If this expansion is extrapolated backward in time, the scale factor decreases and

the energy density of the universe increases. As described above, the high energy

density of photons and high number density of baryons results in the ionization of the
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universe. At this phase transition between an ionized plasma and neutral baryons

(commonly referred to as “recombination”), the CMB is created. The CMB last

interacted with the matter in the universe at this “surface of last scattering.” The

existence of the CMB and its thermal spectrum are among the triumphs of the Big

Bang theory in describing the evolution of the universe.

Continuing the extrapolation backward, the plasma of the universe reaches a high

enough temperature (and thus high enough density) that thermal seas of neutrinos

and antineutrinos of all flavors are in thermal equilibrium. This is the furthest point

to which there is evidence that this extrapolation makes some sense. Although the

analogous cosmic neutrino background cannot be detected, the effects of the thermal

seas of neutrinos are imprinted in the primordial abundances of the elements as a

result of Big Bang Nucleosynthesis (BBN). The observations of the primordial helium

and deuterium abundances are consistent with thermal seas of neutrinos in the early

universe.

However, as theorists, we can continue the extrapolation to higher temperatures

and densities, including those that cannot be probed in terrestrial laboratories. This

thought experiment may be continued until the scale factor tends to zero, thus the

size of the universe goes to zero and the density and temperature diverge. This

singularity is regarded as the “beginning” of the universe and is referred to as the

“Big Bang.” The first 10−43 seconds of the lifetime of the universe is beyond the

realm of current (well-accepted) physical theories. It is believed that this is the era

where quantum gravity is important in describing the physics of the universe.

The next significant event is inflation, thought to occur approximately 10−34

seconds (a temperature on the order of 1019 MeV) after the Big Bang. The era of

inflation was the brainchild of Alan Guth in 1980, who proposed it to solve a number

of problems with the Big Bang theory. While cosmology based on the FLRW metric is

largely successful in describing the observable universe, a number of questions remain

unanswered: why does the universe appear to be largely flat, homogeneous, and

isotropic even though distant parts of the universe were never causally connected?

what is the origin of the inhomogeneities that evolved into large scale structure in
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the universe? and where are the exotic particles, such as magnetic monopoles, that

many theories predict should have been created in the early universe?

The idea, originally proposed by Guth [75] and modified by Linde [76] and Al-

brecht and Steinhardt [77], is that a type of vacuum energy dominates the energy

density during inflation, resulting in an exponential growth of the scale factor of the

universe. In all, the universe undergoes at least 60 e-foldings in expansion. During

this expansion, the proper distance between two fiducial observers increases at a rate

faster than the speed of light; the space between them expands, no particle (nor

information) travels at a speed faster than the speed of light. This “super-luminal”

expansion allows regions of the universe that would otherwise appear to have never

been in causal contact to have been in causal contact in the distant (pre-inflation)

past. The prodigious universal expansion dilutes the number density of exotic par-

ticles and serves to reduce the curvature of the universe. Inflation puts the “Bang”

in the Big Bang.

Since the CMB and BBN imply that the universe was once hot and dense (post-

inflation), the period of inflation was followed by a period of reheating, where a

significant amount of entropy was created in the universe. Typically, reheating is

assumed to return the universe to its pre-inflation temperature, but studies of the

CMB and primordial light element abundances (from BBN) suggest that the mini-

mum reheating temperature of the universe is around 4 MeV (although this does not

suggest a prescription for baryogenesis) [78].

The current theory of inflation involves a scalar field, the inflaton, that undergoes

a phase transition in the early universe. At which point, the inflaton “slowly rolls”

from a false vacuum toward the actual vacuum (exponential expansion). During this

expansion, quantum fluctuations in the inflaton field produce the seeds of the density

fluctuations that will eventually form large scale structure in the universe. Once

the inflaton field reaches the vacuum, its “potential energy” is dissipated through

particle creation (entropy generation / reheating) (see, e.g., Ref. [79] for details).

While encompassing a very brief timescale (∼ 10−32 seconds), inflation is a key

concept in understanding the universe and its evolution. Tests of the inflationary
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theory include probing the CMB and large scale structure for the power spectrum of

the density perturbations created during inflation, searching for polarization of the

CMB resulting from gravitational waves due to inflation, and the direct search for a

primordial gravitational wave background from the inflationary era.

After the inflationary era, the universe adiabatically expands and, as discussed

above, the temperature of the plasma decreases. As the temperature decreases, a

number of phase transitions occur and thermonuclear reactions freeze out of equilib-

rium. One of the first phase transitions is the electro-weak transition which occurs

when the universe is at a temperature T c
EW ∼ 100 GeV [80], which corresponds to

approximately 25 picoseconds after the Big Bang. (There are possibly other phase

transitions that precede this one, for example, spontaneous symmetry breaking be-

tween the strong and electro-weak forces, but these are at energy scales much higher

than are testable in terrestrial experiments.) At this transition, the intermediate

vector gauge bosons (W+, W− and Z0) become massive as the electro-weak symme-

try (SU(2)×U(1)) is broken [81]. Before the transition, the electro-weak symmetry

protects the intermediate vector gauge bosons from acquiring mass. As a result, the

weak force is long-range and is unified with the electromagnetic force. After the

transition, the now massive bosons quickly become non-relativistic and decay.

As the temperature of the plasma continues to decrease, the number density of

photons with the threshold energy to repopulate particle-antiparticle pairs decreases.

Once Tγ . mi, the particle-antiparticle production rate is exponentially suppressed

(when Tγ . mi, the production rate is roughly proportional to n2
γe
−2mi/Tγ ). While

thermal and chemical equilibrium continue to obtain, the particle-antiparticle anni-

hilation rate (∝ ninı̄) is equal to the production rate, and as a result the number

density of the particle and the antiparticle become exponentially suppressed. This

result can also be derived from the particle distribution function, Equation (1.75),

in the non-relativistic limit. Eventually, the temperature of the plasma becomes low

enough that the annihilation (and production) rate becomes small compared to the

expansion rate of the universe so the number densities will be proportional to a−3.

Perhaps the most interesting and well studied phase transition in the early uni-
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verse is the QCD transition which occurs when the temperature drops to T c
QCD ∼

170 MeV. At this transition, chiral symmetry is spontaneously broken, forcing the

asymptotically free quarks and gluons that populate the plasma being bound into

baryons (three quarks) and mesons (quark-antiquark bound pair). Before the QCD

transition, gs ≈ 61.75, which includes gluons and the three lightest quarks; after the

QCD transition, gs ≈ 17.25, as the gluon and quark degrees of freedom annihilate

as they are confined in relativistic pions (mπ ∼ 140 MeV) and other non-relativistic

hadrons. The nature of this transition remains an active area of research [73, 82, 83],

and may affect the production of a dark matter candidate sterile neutrino [51, 84].

After the QCD transition, the universe continues to adiabatically expand and

the temperature of the photon-hadron plasma continues to decrease. Soon after

the phase transition, the pions and muons become non-relativistic and, as described

above, annihilate with their antiparticles. At this point in time (Tγ . 100 MeV),

the photon-baryon plasma of the universe is comprised of thermal populations of

ultra-relativistic electrons, neutrinos and their antiparticles, along with significantly

fewer protons and neutrons and virtually nothing else that once existed in the hot

quark-gluon plasma.

The thermal seas of active neutrinos are thermally coupled to the baryons and

electrons in the plasma through weak scattering (in turn, these fermions are thermally

coupled to the photons through electromagnetic scattering, resulting in the neutrinos

and photons being thermally coupled). The neutrinos will decouple from the rest of

the plasma when the temperature and density has decreased to a point where the

weak scattering rate is small compared to the expansion rate. This point where the

neutrinos decouple can be estimated; the weak scattering rate is

Γw = n〈σv〉 ∼ G2
FT

5
γ , (1.91)

since the number density of particles with weak charge, n ∼ T 3
γ , and the thermally

averaged scattering cross section, 〈σ〉 ∼ G2
FT

2
γ . Comparing the scattering rate to the
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expansion rate, H ∼ T 2
γ /mpl, results in

Γw

H
∼
(

Tγ

1 MeV

)3

. (1.92)

The neutrinos decouple when Tγ ∼ 1 MeV. A detailed analysis of neutrino scattering

off of electrons and positrons in the plasma yields a neutrino decoupling tempera-

ture of TD
νe
≈ 1.8 MeV for electron neutrinos and TD

νµ,ντ
≈ 3.1 MeV for µ and τ

neutrinos [85]. Electron neutrinos decouple at a lower temperature than the other

active neutrinos because they have a higher scattering rate. At this stage of the

early universe there is a thermal population of electrons but not muons nor tauons,

so electron neutrinos have an “extra” charged current scattering while the others do

not.

Since the mass of the electron is me = 0.511 MeV, the electrons and positrons

will become non-relativistic after the neutrinos decouple and will annihilate with each

other. When the electrons and positrons annihilate, the entropy that was once in

their (ultra-relativistic) thermal populations is transferred to the thermally coupled

components of the plasma. So to first order, as the electrons and positrons annihilate,

the temperature of the photon-baryon plasma will increase while the “temperature”

of the neutrinos continues to be proportional to a−1. The result is that after the

electrons and positrons have annihilated, the neutrino and photon temperatures are

related by

Tν =

(
4

11

)1/3

Tγ. (1.93)

However, since both neutrino decoupling and electron-positron annihilation are

not instantaneous events, there is some overlap between the two. Since the cross

section of neutrino interaction with matter is proportional to the square of its energy,

higher energy neutrinos remain coupled with the plasma to a lower temperature

than lower energy neutrinos. As a result, the annihilation reaction e+e− → νν̄

serves to heat the neutrinos, at least those with high energies (i.e., the rate of this

reaction is not insignificantly small compared to the expansion rate). This results

in a distorted neutrino spectrum of neutrinos at high energies (more significant for
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electron neutrinos than µ or τ neutrinos because of higher cross sections due to

charged current scattering) and since some entropy is deposited into the populations

of active neutrinos, the photon-baryon plasma is reheated to a slightly lesser extent

than if the neutrinos were unaffected [85, 86].

In this era, neutrinos play an integral role in big bang nucleosynthesis. At early

times (Tγ & 1 MeV), the photon-baryon plasma is in nuclear statistical equilibrium

(NSE). In NSE, the processes that create a given nucleus is in chemical equilibrium

with processes that destroy it, so the abundances of nuclei in NSE are prescribed by

the Saha equation,

X(A,Z) ≈
g(A,Z)

2

(
2
√

2ζ(3)√
π

)A−1

A5/2

(
T

mN

)3(A−1)/2

ηA−1XZ
p X

A−Z
n eB(A,Z)/T , (1.94)

whereXi is the mass fraction of species i, (A,Z) is a nucleus with mass number A and

atomic number Z, g(A,Z) is the effective statistical weight of the nucleus, mN ≈ mp is

the nucleon mass, η is the baryon-to-photon ratio, and B(A,Z) is the binding energy

of the nucleus:

B(A,Z) = Zmp + (A− Z)mn −m(A,Z). (1.95)

Since Tγ � mp and the baryon-antibaryon asymmetry is small compared to the

number density of photons, the baryon-to-photon ratio is very small. Measurements

of the CMB imply that η ≈ 6× 10−10 at the time the CMB decouples which corre-

sponds to η ≈ 3× 10−10 at the beginning of the BBN epoch since electron-positron

annihilation increased the number density of photons relative to baryons. The small

baryon-to-photon ratio means that the entropy-per-baryon is very large (s/nb ∼ η−1).

The highly entropic environment of the early universe favors the existence of nuclei

with small atomic numbers over those with large atomic numbers

For T & 1 MeV, the baryon content of the universe is contained in either free pro-

tons or neutrons. The ratio of neutrons to protons is set by the chemical equilibrium
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of three weak reactions

νe + n 
 p+ e−

ν̄e + p 
 n+ e+ (1.96)

n 
 p+ e− + ν̄e.

If the neutrinos have a Fermi-Dirac spectrum with chemical potential µνe and tem-

perature Tγ, while chemical equilibrium obtains, the neutron-to-proton ratio is

n

p
≈ e−δnp/Tγe−(µνe−µe)/Tγ , (1.97)

where δnp ≡ mn − mp = 1.293 MeV is the neutron-proton mass difference [54].

As discussed in the previous section, the small baryon-to-photon ratio and assum-

ing charge neutrality implies that |µe/Tγ| ∼ 10−9, while the limits on the neutrino

chemical potentials are much less stringent, |µνe/Tγ| . 0.1.

The neutrinos and baryons remain in chemical equilibrium until the reaction rates

become small compared to the expansion rate which occurs when Tγ ≈ 0.7 MeV. This

occurs at a lower temperature (and thus at a later time) than when the neutrinos

thermally decouple from the photon-baryon plasma. The neutrinos affect the baryon

content even when it has come to the point where it cannot efficiently share energy

with the plasma. At this point, the neutron-to-proton ratio is n/p ≈ (1/6)e−ηD
νe ,

where ηD
νe

is the degeneracy parameter (chemical potential divided by temperature)

when the neutrinos chemically decouple from the baryons. This value of the neutron-

to-proton ratio would be frozen in at this point, if not for the fact that free neutrons

decay into a proton, electron, and antineutrino with a mean lifetime of 885.7± 0.8 s

[22]. As a result, the neutron-to-proton ratio continues to decline.

As the universe continues to expand, the plasma cools and the baryon density

decreases, so that the reaction rates that create light nuclei slow down to the point

where NSE is lost. For example, at Tγ ≈ 0.6 MeV, 4He falls out of NSE because

the reactions that create the nucleus becomes slow compared to the expansion rate.

The reaction chain that creates 4He nuclei begins with deuterium, an elements whose

relatively small binding energy (BD = 2.224 MeV [87]) results in a small equilibrium
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concentration in NSE. This “deuterium bottleneck” is responsible for all of the other

light elements falling out of NSE because the reaction chains that create each of

those nuclei begin with the formation of deuterium and the baryon densities are low

enough that three-body reactions are not significant.

One could imagine that once the temperature of the photon-baryon plasma has

cooled below the binding energy of deuterium, it would become energetically favor-

able for deuterium to form. However, since there are ∼ 109 photons per baryon,

the formation of deuterium is suppressed. By examination of the Saha equation,

deuterium production becomes significant around Tγ ∼ 70 keV [85]. However, once

a significant fraction of deuterium is created, reactions that use deuterium to create

heavier nuclei become significant, and deuterium falls out of NSE.

Once the deuterium bottleneck is subverted, nearly every neutron in the photon-

baryon plasma is captured into a 4He nucleus since it is the most tightly bound

nucleus among the light elements. When the calculation is done, in the standard

model (with thermal distributions of neutrinos and ην � 1) the neutron-to-proton

ratio is approximately 1/7 at this point in time, resulting in a mass fraction of 4He

of approximately 25%. The early universe would be solely comprised of protons

and 4He if not for the fact that the eventual paucity of non-4He nuclei causes the

rate at which 4He forms to become small compared to the expansion rate and the

abundances of the elements are “frozen in.” Nuclei heavier than 7Li are not created

during BBN because there are no stable nuclei with A = 5 or 8, a low baryon density

suppresses three-body reactions (such as the triple-α reaction to form 12C), and

coulomb repulsion becomes significant as the temperature decreases.

Big Bang Nucleosynthesis calculations have been carried out that time evolve

the abundances of nuclei in an expanding universe, following a reaction network of

nuclides. Using the baryon-to-photon ratio measured in observations of the CMB,

the 4He mass fraction is Yp = 0.2429, and the deuterium abundance relative to

hydrogen is D/H = 2.543 × 10−5 [88]. These values agree, within errors, with the

observationally inferred primordial abundances. However, the uncertainty in the

observationally determined primordial abundance is quite large. The primordial 4He
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mass fraction is likely between 23% and 26% [89–91], while the statistical uncertainty

in D/H is between 15% and 30% [92].

Historically, primordial light element abundances have been used to infer a mea-

surement of the baryon density in the universe. A comparison of the observationally-

inferred primordial abundances of 4He and D with calculated BBN abundances can

be used to determine the baryon-to-photon ratio (η). A larger value of η means that

deuterium would begin to form at an earlier time (from the Saha equation, XD ∝ η)

so the deuterium bottleneck is resolved when the neutron-to-proton ratio is slightly

higher, resulting in a larger 4He yield. Since the neutron-to-proton ratio is solely

affected by neutron decay at this time, the 4He abundance weakly increases with

increasing η. However, a larger value of η would keep processes that convert deu-

terium into 4He in chemical equilibrium longer. The result is that D/H is strongly

dependent, decreasing function of η. This strong dependence allows measurements

of D/H to provide a high precision measurement of η, at least when we assume the

standard model of BBN (zero neutrino chemical potentials and no exotic physics).

The derived value of η using primordial elemental abundances is in good agree-

ment with the CMB-derived value [92–95]. While the fractional uncertainty in the

4He abundance may be smaller than that in the measurement of D/H, systematic

errors in inferring the 4He abundance from the observations [91] along with the weak

dependence of the abundance on η may doom it as a probe of the baryon content

of the universe. However, the D/H ratio as measured by isotope-shifted hydrogen

absorption lines along the line of sight to high redshift QSO’s may improve the sta-

tistical uncertainties as newer telescopes provide many more QSO lines of sight [88].

It would be interesting if the uncertainty in the D/H measurement, and hence

on the BBN-inferred value of η, could rival the uncertainties in inferring η from the

CMB. In this scenario, precision measurement of primordial abundances can serve

as a probe of non-standard physics in the early universe [88]. Comparing observed

primordial abundances with those predicted by BBN calculations can prove to be

a novel method toward studying new physics in the early universe. Discrepancies

between theory and observation can lead to a better understanding of nuclear reaction
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rates or of weak or exotic physics. Chapter 2 discusses changes in the 4He abundance

with the introduction of a light sterile neutrino and lepton numbers in the active

neutrinos. Ref. [88] looks at this scenario and its effects on the primordial abundances

of deuterium, 4He, and 7Li, while Ref. [87] discusses the potential effects on the BBN

calculations of an arbitrary neutrino distribution function.

Big Bang Nucleosynthesis light element abundances may be a useful probe into

weak physics, and possibly exotic physics, in the early universe. BBN abundance

yields are sensitive to the expansion rate of the universe during the BBN epoch and

the evolution of the neutron-to-proton ratio. In this vein, the neutrino distribution

functions are pertinent to both concerns. For example, if there was a net lepton

number in the neutrino sector (that is, asymmetry between the neutrino and an-

tineutrino number densities for a given active flavor), then the neutrinos would have

Fermi-Dirac distribution functions with non-zero chemical potentials. The non-zero

chemical potentials will increase the energy density of neutrinos in the early universe,

and in turn increase the expansion rate of the universe, resulting in the weak rates

freezing out of equilibrium at an earlier epoch, with a higher neutron-to-proton ratio.

However, if there is a positive chemical potential, there is an excess of neutrinos over

antineutrinos, boosting the reaction n+ νe → p+ e−, which reduces the neutron-to-

proton ratio. The effect on the expansion rate is of order (µ/Tγ)
2 while the effect on

the weak reaction rates is of order (µ/Tγ), so the primordial abundance of 4He, deu-

terium, and 7Li ought to decrease with increasing lepton numbers (or equivalently

increasing chemical potentials) [88]. This analysis may be done with respect to the

current observational measurements of the primordial light element abundances to

place an upper bound on the degeneracy parameter (chemical potential divided by

temperature) for neutrinos in the early universe, |ην | . 0.1 [54].

By the time the photon-baryon plasma has cooled to Tγ ∼ 10 keV, the BBN rates

have fallen below the expansion rate and the abundances of the light elements are

set. This corresponds to the first three hours in the lifespan of the universe. The

photon-baryon plasma contains approximately a 3:1 ratio by mass of hydrogen to

helium nuclei, enough electrons to ensure net charge neutrality, and approximately
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109 photons per baryon. As the universe continues to adiabatically expand, the

temperature of the plasma continues to decrease, and the temperature of the neutri-

nos, although they are chemically and thermally decoupled from the photon-baryon

plasma, continues to decrease as well and is approximately 70% of the temperature

of the plasma. Very little of interest occurs in the next ∼ 100, 000 years. Figure

1.5 shows the temporal evolution of a number of quantities of interest in the early

universe.

When the plasma has cooled to Tγ ≈ 0.77 eV, the energy density in radiation is

equal to the energy density in matter. The radiation dominated era has ended, and

the matter dominated era has commenced. Once again, one would expect that since

the ionization energy of hydrogen is 13.6 eV that by this time, neutral atoms would

have formed as electrons are captured by nuclei. However, just as above, the large

number of photons per baryon means that the electrons will remain free until the

photons have cooled to a temperature significantly less than the ionization energy.

Energetic photons in the exponential tail of the distribution are sufficient to maintain

ionization equilibrium. Analysis of the Saha equation (applied to the ionization

equilibrium p+e− 
 H+γ) along with observations of the CMB determine that when

Tγ ≈ 0.26 eV, the photon-baryon plasma has sufficiently cooled so the protons and

electrons have “recombined” (although there were not combined in the first place)

to form hydrogen atoms. At this phase transition, where the number density of free

electrons has been drastically decreased, the photons (which were kept in thermal

equilibrium through scattering off free electrons) decouple from the baryons. So, at

“recombination,” the photons cease to interact with the baryons. These photons

comprise the CMB and have not significantly interacted (electromagnetically) with

matter since it has left this “surface of last scattering.”

Observations of the CMB have improved the understanding of the evolution of

the universe. The CMB was first discovered by Arno Penzias and Robert Wilson

in 1965 [96]. It is a nearly isotropic background radiation with a “temperature” of

2.725 K. The era of conducting precision cosmology began in earnest with the results

of the COsmic Background Explorer (COBE) satellite in the 1990’s that discovered
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Figure 1.5: The time evolution of a number of important quantities in the early
universe. The top panel shows the evolution of the temperature of the photon-baryon
plasma (solid), Tγ, and the evolution of the scale factor (short dashed). The long-
dashed curve that slightly deviates from Tγ at late times is the neutrino temperature,
Tν . The bottom panel shows the two effective statistical weights in ultra-relativistic
particles as described in the previous section. The solid curve is for g, the statistical
weight associated with energy and the dashed curve is for gs which is associated with
entropy. The shaded region is the QCD phase transition.
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Table 1.3: Cosmological parameters derived from WMAP five-year data, baryon
acoustic oscillation data, and supernovae data.

Cold Dark Matter closure fraction Ωc 0.228 ± 0.013

Baryonic closure fraction Ωb 0.0456 ± 0.0015

Dark Energy closure fraction ΩΛ 0.726 ± 0.015

Baryon to Photon ratio η (6.202 ± 0.016)× 10−10

Hubble Constant h 0.705 ± 0.013

Age of the Universe (Gyr) t0 13.72 ± 0.12

anisotropies (about 1 part in 105) in the temperature of the CMB [97]. Since then, a

number of ground-, balloon-, and satellite-based studies have improved the precision

of the measurements of these anisotropies in the CMB.

The state-of-the-art in CMB measurements have come from the Wilkinson Mi-

crowave Anisotropy Probe (WMAP), whose five-year data has recently been ana-

lyzed [35]. Combined with luminosity distance measurements to Type Ia supernovae

and measurements of baryon acoustic oscillations, measurements of the spatial cor-

relations of the part-in-105 anisotropies of the CMB allow for precision cosmology in

measuring the energy content and evolution of the universe. Table 1.3 outlines a few

key results from the analysis of the five-year data from WMAP. The closure fraction

of a variety of components of the universe is reported as a fraction of the critical

density,

ρcrit ≡
3m2

plH
2
0

8π
= 8.096× 10−35 h2 MeV4 = 10.54h2 keV cm−3, (1.98)

where the Hubble constant is parameterized by h, which is the Hubble constant in

units of 100 km s−1 Mpc−1,

h =
H0

100 km s−1 Mpc−1 . (1.99)

The closure fraction at the current epoch, Ωi, of a species i is the ratio of its energy

density to the critical energy density, Ωi ≡ ρi/ρcrit. If
∑

i Ωi = 1, then the universe
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is flat. That is, every constant time hypersurface is flat, the spacelike metric may be

characterized globally by a Euclidean metric. Observations from the WMAP satellite

are consistent with a flat universe,
∑

Ωi = 1.0050± 0.0060 [35].
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Chapter 2

Coherent Active-Sterile Neutrino

Flavor Transformation in the Early

Universe

2.1 Abstract

We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein (MSW) reso-

nant active-to-sterile neutrino flavor conversion driven by an initial lepton number in

the early universe. We find incomplete destruction of lepton number in this process

and a sterile neutrino energy distribution with a distinctive cusp and high energy

tail. These features imply alteration of the non-zero lepton number primordial nucle-

osynthesis paradigm when there exist sterile neutrinos with rest masses ms ∼ 1 eV.

This could result in better light element probes of (constraints on) these particles.

2.2 Introduction

Recent advances in observational cosmology and in experimental neutrino physics

promise a well constrained picture for the evolution of the early universe. The exis-

tence of a light sterile neutrino (νs) presents an immediate problem: how do sterile
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neutrinos affect primordial seas of active neutrinos να or ν̄α (α = e, µ, τ) and con-

sequentially affect the standard big bang paradigm? In this chapter we study the

lepton number-driven transformation of active neutrinos to sterile neutrinos in the

epoch of the early universe after weak decoupling, when neutrinos propagate coher-

ently. This process could leave both the active neutrinos and sterile neutrinos with

distorted, non-thermal energy spectra [1].

A non-thermal νe or ν̄e spectrum could lead to significant modification in the

relationship between lepton number and Big Bang Nucleosynthesis (BBN) 4He abun-

dance yield [1, 2]. Concomitantly, a distorted νs distribution function changes closure

mass constraints on light sterile neutrinos [1, 3], allowing rest masses and vacuum

mixing angles for these species in the range (0.4 eV < ms < 5 eV) suggested by the

LSND experiment [4, 5] and probed by the mini-BooNE experiment [6]. While the

results of the mini-BooNE experiment has since refuted the LSND results [7], there

remains a significant unconstrained parameter space in this mass range.

Section 2.3 describes a mechanism for populating νs states through lepton number-

driven coherent να → νe transformation. Section 2.4 outlines the effects of a lepton

number and the distorted νe spectrum on BBN predictions of the primordial 4He

abundance.

2.3 Resonance Sweep in the Early Universe

Active neutrinos propagating in the homogeneous early universe experience a

potential stemming from forward scattering

V = 2
√

2ζ(3)π−2GFT
3Lα − rαG

2
FEνT

4, (2.1)

where T is the photon/plasma temperature, Eν is the neutrino energy, rα is a nu-

merical coefficient which depends on the number of relativistic charged lepton de-

grees of freedom and can be found in Refs. [1, 8], GF is the Fermi constant, and
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ζ (3) ≈ 1.202 06. Here the potential lepton number is

Lα ≡ 2Lνα +
∑
β 6=α

Lνβ
, (2.2)

where the individual lepton numbers are given in terms of the neutrino, antineu-

trino, and photon proper number densities by Lνα ≡ (nνα − nν̄α)/nγ. Current ob-

servational bounds on these are |Lνα | < 0.1 [9–11], and could be slightly weaker

if there are additional sources of energy density in the early universe [12, 13]. We

have neglected contributions to V from neutrino-baryon/electron scattering since we

consider relatively large lepton numbers with L � η, where the baryon-to-photon

ratio is η ≡ nb/nγ (see Refs. [1, 8]). The second term in V is negligible for the

temperatures characteristic of the post weak decoupling era, T < 3 MeV.

The scattering-induced de-coherence production [14–19] of seas of νs and ν̄s, with

rest mass ms ∼ 1 eV, could be avoided if theses species are massless for T > 3 MeV,

inflation has a low reheat temperature [20], or there exists a preexisting lepton num-

ber |Lνα | > 10−3 [1, 21]. However, a lepton number could subsequently, after weak

decoupling, drive [1] coherent medium-enhanced MSW [22, 23] resonant conversion

να → νs or ν̄α → ν̄s, depending on the sign of the lepton number. (Resonant de-

coherence production of sterile neutrinos with ms ∼ 1 keV with accompanying νs

spectral distortion was considered in Refs. [8, 24].) The MSW condition for the

resonant scaled neutrino energy ε = Eres
ν /T is δm2 cos 2θ = 2εTV , or

εL =

(
δm2 cos 2θ

4
√

2ζ(3)π−2GF

)
T−4, (2.3)

where δm2 ≡ m2
2 −m2

1 is the difference of the squares of the vacuum neutrino mass

eigenvalues. For illustrative purposes, we consider 2× 2 vacuum mixing with a one-

parameter (vacuum mixing angle θ) unitary transformation between weak interaction

eigenstates |να〉, |νs〉, and energy/mass eigenstates:

|να〉 = cos θ|ν1〉+ sin θ|ν2〉;

|νs〉 = − sin θ|ν1〉+ cos θ|ν2〉. (2.4)
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As the universe expands, the temperature falls, causing the resonance to sweep

from low to higher values of the scaled neutrino energy, ε. This resonance sweep

converts active neutrinos into sterile neutrinos, reducing L, which accelerates the

resonance sweep rate. Since the resonant value of the neutrino scaled energy in-

creases monotonically with time, we can use ε as a time-like variable in describing

the evolution of the neutrino distribution functions.

The evolution of L is dictated by the resonance sweep rate and the dimensionless

adiabaticity parameter. The adiabaticity parameter, γ, is proportional to the ratio

of the width of the MSW resonance, δt = |1/V dV/dt|−1 tan 2θ, and the neutrino

oscillation length at resonance, Losc = 4πEν/(δm
2 sin 2θ). Combining the expansion

rate of the universe in the radiation dominated epoch with the conservation of co-

moving entropy density and the forward scattering potential V , the adiabaticity

parameter is

γ ≈
√

5ζ3/4(3)

21/8π3

(δm2)1/4mplG
3/4
F

g1/2

sin2 2θ

cos7/4 2θ
L3/4ε−1/4

∣∣∣∣∣1 +
ġ/g

3H
− L̇/L

3H

∣∣∣∣∣
−1

, (2.5)

where mpl is the Planck mass, g is the total statistical weight for relativistic species

in the early universe, and

H ≈
(

4π3

45

)1/2

g1/2 T
2

mpl

(2.6)

is the local Hubble expansion rate. If the onset of resonant flavor conversion occurs

in the epoch between weak decoupling and weak freeze out, then initially γ � 1

for the active-sterile mixing parameters of interest [1]. However, when the fractional

time rate of change of L becomes larger than the expansion rate of the universe, the

evolution of the system can be non-adiabatic with γ < 1.

Large values of γ result when many oscillation lengths fit within the resonance

width. In this case there will be a small probability of jumping from the high mass

eigenstate to the low mass eigenstate. In turn, this implies efficient flavor trans-

formation at the MSW resonance. Alternatively, a small value of γ means that

the resonance width is much smaller than an oscillation length, and the neutrino
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jumps between the two mass eigenstates, resulting in virtually no flavor transfor-

mation. To describe intermediate cases we use the Landau-Zener jump probability,

PLZ = exp(−πγ/2) [25, 26], which gives the likelihood for a neutrino at resonance to

make the jump between mass eigenstates. It is valid in the limit where the change in

V across the resonance width δt can be regarded as linear. This is a good approxi-

mation in part because the resonance width is small compared to the causal horizon

length for the values of θ and the conditions in the early universe considered here.

It follows that the evolution of the potential lepton number as the resonant scaled

neutrino energy sweeps from 0 to ε is

L(ε) = Linitial − 1

2ζ(3)

(
Tν

T

)3 ∫ ε

0

x2(1− e−πγ(x)/2)

ex−ηνα + 1
dx, (2.7)

where Tν is the temperature of the active neutrino distribution function with degen-

eracy parameter ηνα ≡ µνα/Tν , and where µνα is the να chemical potential.

The evolution of the active neutrino spectrum is dictated by three conspiring

factors: the MSW resonance condition (Eq. 2.3), the adiabaticity parameter (Eq.

2.5), and the evolution of potential lepton numbers through active-sterile conversion

(Eq. 2.7). We solve Eqs. (2.3), (2.5) and (2.7) simultaneously and self-consistently

to obtain γ and L as continuous functions across the entire range of ε.

Resonant conversion of active neutrinos to sterile neutrinos begins at ε� 1. The

resonance sweeps to higher values of ε as the temperature of the universe drops.

When L̇/L � H, we have γ � 1, and adiabatic conversion of active neutrinos to

sterile neutrinos ensues. However, this trend cannot continue. Note that the right

hand side of equation (2.3) is a monotonically increasing function of time, while the

left hand side is a peaked function if one assumes continued adiabatic conversion of

neutrino flavors. At this peak, this assumption fails. Taking the time derivative of the

resonance condition, Eq. (2.3), shows that the sweep rate is ε̇ ∝ T−5Ṫ (d(εL)/dε)−1.

At the peak, d(εL)/dε = 0, causing the sweep rate to diverge. Taking the time

derivative of both sides of Eq. (2.7) and assuming that Tν/T is constant, we conclude

that L̇ ∝ ε̇. With this relation, it follows from equation (2.5) that the MSW resonance

is no longer adiabatic. We define εmax as the particular value of ε at this peak,
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Figure 2.1: Landau-Zener jump probability e−πγ/2 (solid curve) and potential lepton
number given as a fraction of its initial value (dashed curve) are shown as a function
of MSW scaled resonance energy Eν/T . Here we assume δm2 = 1 eV2, sin2 2θ = 10−3,
and initial individual lepton numbers Lνµ = Lντ = 0.15 and Lνe = 0.0343.

implicitly specified by

1

2ζ(3)

ε3max

eεmax−ηνα + 1
= Linitial − 1

2ζ(3)

(
Tν

T

)3 ∫ εmax

0

x2

ex−ηνα + 1
dx. (2.8)

Our complete continuous solution for γ shows that neutrino flavor evolution /

transformation is adiabatic for ε < εmax, but becomes (quickly) progressively less

adiabatic for ε > εmax. For ε ≥ εmax, our solution yields a large, but finite reso-

nance sweep rate, and concomitant large fractional lepton number destruction rate,

L̇/L � H, leading to γ . 1. This behavior continues through the heart of the active

neutrino distribution until the resonance sweep rate decreases to a point where γ � 1

again. This last transition back to adiabatic evolution occurs at ε = εf ∼ O(10),

approximately where L(εf ) = 1/(2ζ(3))ε3f/(e
εf−ηνα + 1). (Note that this is the same

condition as for εmax.) Resonance sweep continues to higher ε, adiabatically convert-

ing active neutrinos to sterile neutrinos.

The evolution of the Landau-Zener jump probability e−πγ/2 and the history of

the potential lepton number as a fraction of its initial value are both shown in

Figure 2.1 for the particular case where δm2 = 1 eV2, sin2 2θ = 10−3, and where we
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Figure 2.2: Final potential lepton number as a function of its initial value is shown
for the case where all individual initial lepton numbers are equal Lνe = Lνµ = Lντ

and the active-sterile vacuum mixing parameters are as in Fig. 2.1

assume initial lepton numbers near their conventional upper limits, Lνµ = Lντ = 0.15

and Lνe = 0.0343. For this particular case εmax = 1.46, and Figure 2.1 shows the

rather abrupt (but continuous) change to non-adiabatic evolution for ε ≈ εmax. In

this example, the final transition back to adiabatic evolution occurs at εf ≈ 8.9.

Altogether, more than 90% of the initial potential lepton number is destroyed for

this case. We find that the fractional depletion of potential lepton number is ∼ 90%

across a wide range of initial values of this parameter. This, in turn, suggests that

this new solution will result in little change in existing closure mass constraints on

light sterile neutrinos [1]. Figure 2.2 shows the final potential lepton number as a

function of its initial value for the same active-sterile vacuum mixing parameters but

for the case where all initial individual lepton numbers are equal.

Figure 2.3 shows the original νe Fermi-Dirac energy distribution,

f(Eν/Tν) =
1

T 2
νF2(ην)

E2
ν

eEν/Tν−ην + 1
, (2.9)

where F2(ην) ≡
∫∞

0
x2/(ex−ην + 1)dx, and final νe and the νs energy distribution

functions resulting from νe → νs resonance sweep for the example parameters of Fig.

2.1. Forced, adiabatic resonance sweep to εc.o. would result in complete depletion of
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Figure 2.3: Shown are the original νe distribution function (dashed curve), the final νe

distribution function (lighter solid curve), and final νs distribution function (heavier
solid curve) all as functions of scaled neutrino energy Eν/T for a νe → νs resonant,
coherent flavor conversion process with δm2 = 1 eV2, sin2 2θ = 10−3, and individual
lepton numbers as in Fig. 2.1. Vertical dotted lines indicate εmax and εc.o..

the initial potential lepton number. εmax and εc.o. are shown for this case in Fig. 2.3.

Forced, adiabatic resonance sweep would result in a final νe spectrum identical to the

initial one except cut-off (hence, “c.o.”), with zero population, for Eν/T ≤ εc.o.. The

νs distribution in this case would be simply the complement. By contrast, with the

full resonance sweep solution presented here we see that the actual final νe spectrum

has a population deficit relative to the original distribution, even for Eν/T > εc.o..

Likewise, the actual final νs spectrum will now have a tail extending to higher Eν/T .

Including simultaneous active-sterile and active-active neutrino flavor transformation

in a full 4×4 scheme will modify this result, but we can expect some general features

of our solution to remain. In particular, although neutrino flavor evolution will start

out adiabatic, the transition to non-adiabatic evolution could be altered by, e.g.,

active-active neutrino mixing partially “filling-in” depleted νe population [1].

It is useful to have an analytic expression for the νe distribution function as a

function of temperature T . For T > Tmax, where Tmax is defined by Eqn. (2.3) with
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ε = εmax and L = L(εmax),

fνe(ε) =

 0 ε ≤ εres(T )

fν(ε) ε > εres(T )
, (2.10)

where εres(T ) is the solution of Eqn. (2.3). For T < Tmax,

fνe(ε) ≈



0 ε ≤ εmax

fν(ε)− 2ζ(3)
F2(ην)

(
T
Tν

)3
εmaxLmax

ε2
εmax < ε < εf

0 εf < ε < εres(T )

fνe(ε) ε > εres(T )

. (2.11)

At early times (or equivalently, large T ), the resonance sweeps through the νe

energy distribution efficiently converting νe → νs. Once T = Tmax, the resonance

sweeps nearly instantaneously through the heart of the νe energy distribution, con-

verting νe → νs, albeit at a reduced efficiency (1−e−πγ/2). The sweep then continues

at large values of ε, efficiently converting νe → νs.

2.4 Big Bang Nucleosynthesis Concerns

The BBN 4He yield can depend sensitively on the shape of the νe energy distribu-

tion function [1, 27, 28]. This is because the neutron-to-proton ratio n/p is a crucial

determinant of the 4He abundance and, in turn, this ratio is set by the competition

among the charged current weak neutron/proton interconversion processes:

νe + n 
 p+ e−;

ν̄e + p 
 n+ e+; (2.12)

n 
 p+ e− + ν̄e.

The net rate for the forward direction in the first of these processes will be reduced

if νe-population is removed via νe → νs, resulting in a larger n/p and, hence, a larger

4He yield. Likewise, a negative potential lepton number-driven ν̄e → ν̄s scenario
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Figure 2.4: Primordial nucleosynthesis (BBN) 4He abundance yield as a function
of δm2 for the νe → νs channel and the indicated initial individual lepton numbers
(same as in Fig. 2.1). Standard BBN (zero lepton numbers, no sterile neutrinos)
is the heavy dashed horizontal line. The case for BBN with the indicated lepton
number, but no active-sterile mixing is the light dashed horizontal line. The case
for forced, adiabatic resonance sweep to εc.o. is the light dotted line. The full non-
adiabatic solution is given by the heavy solid line.

could result in ν̄e spectral depletion which will result in a smaller n/p and, hence, less

4He. Removing νe (ν̄e) population at higher Eν/T values in the energy distribution

function accentuates these effects because the cross section for the νe (ν̄e) capture

process scales as E2
ν and because the Fermi-Dirac spectral peak, where neutrino

populations are large, corresponds to values of neutrino energy satisfying Eν/T > εc.o.

for the potential lepton numbers L of interest here. As a consequence, our full

resonance sweep scenario can result in significant alteration in 4He yield over the

forced, adiabatic scenario.

We have computed the BBN 4He abundance yield with a version of the Kawano-

Wagoner-Fowler-Hoyle code [29, 30] modified to allow for dynamic alteration/distortion

in the neutrino energy distribution functions. The results of these calculations for

the initial lepton numbers adopted in the example of Fig. 2.1 are shown in Figure

2.4. The standard (zero lepton number, no sterile neutrinos) BBN 4He abundance

yield mass fraction is ≈ 24% when we adopt neutron lifetime τn = 887.8 s and
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η = 6.1102× 10−10. The adopted value of η corresponds to the central value of the

cosmic microwave background radiation acoustic peak-determined WMAP 3-year

data, η = (6.11 ± 0.22) × 10−10 [31]. The observational error in η corresponds to a

±0.03% range in the calculated 4He abundance yield.

Alternatively, the case with the example lepton numbers but with no active-

sterile neutrino mixing gives a healthy 4He yield suppression. However, once the

spectral distortion is included the 4He yield is larger than in standard BBN. Given

that the observationally-inferred helium abundance is between 23%− 26% [32] (and

possibly more precisely determined [33, 34]), we see that the dramatically larger

4He yield in the cases with νe spectral distortion may allow for new constraints

on a combination of lepton number and sterile neutrino masses. Our resonance

sweep solution gives a larger 4He yield than in previous models of active-sterile

neutrino transformation which employ, e.g., forced, adiabatic resonance sweep to

εc.o. [1]. This shows the sensitivity of BBN abundance yields to sterile neutrino-

induced active neutrino spectral distortion. This effect eventually may allow light

element probes/constraints on the sterile neutrino sector which complement those of

mini-BooNE and may extend to sterile neutrino mass/mixing parameters currently

inaccessible experimentally.
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Chapter 3

Lepton Number-Driven Sterile

Neutrino Production in the Early

Universe

3.1 Abstract

We examine medium-enhanced, neutrino scattering-induced decoherent produc-

tion of dark matter candidate sterile neutrinos in the early universe. In cases with a

significant net lepton number we find two resonances, where the effective in-medium

mixing angles are large. We calculate the lepton number depletion-driven evolution

of these resonances. We describe the dependence of this evolution on lepton num-

bers, sterile neutrino rest mass, and the active-sterile vacuum mixing angle. We find

that this resonance evolution can result in relic sterile neutrino energy spectra with a

generic form which is sharply peaked in energy. We compare our complete quantum

kinetic equation treatment with the widely-used quantum Zeno ansatz.

80
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3.2 Introduction

In this paper we examine the physics which determines the relic densities and

fossil energy spectra of neutrinos in the very early universe. The existence of new

kinds of electroweak singlet “sterile” neutrinos, νs, with subweak interactions remains

a controversial possibility. The experimental establishment of nonzero neutrino rest

masses fuels legitimate speculation on this issue.

Moreover, this issue could be important because sterile neutrinos with rest masses

ms ∼ 1 keV are interesting dark matter candidates. The minimalist model for this

dark matter scenario is where sterile neutrinos are coupled to active species via mass

terms that give vacuum mixing. In turn, the simplest model along these lines is

where active neutrino scattering-induced decoherence gives rise to a relic density of

sterile neutrinos [1].

These simple models, however, are challenged. Vacuum active-sterile neutrino

mixing, which is necessary to produce the sterile neutrinos from an initially purely

active neutrino population, also enables a non-GIM suppressed radiative decay chan-

nel (νs → νe,µ,τ +γ) for sterile neutrinos. As a consequence, the best constraints and

probes of this sector of particle physics come from the modern x-ray observatories

[2–11]. These constraints arguably eliminate the simplest models for decoherence-

produced sterile neutrino dark matter.

However, there remain processes for sterile neutrino production which can pro-

duce the correct relic density for dark matter yet evade all current bounds. These

viable models include, for example, sterile neutrino production associated with in-

flation [12], Higgs decay [13–15], and lepton number-driven medium enhancement

[3, 16].

The concept of lepton number is a slippery one if sterile neutrinos exist and mix

in vacuum with active species. In essence, lepton number can be created [17, 18]

or destroyed [19, 20] by active-sterile neutrino interconversion. The current obser-

vational bounds [19, 21–27] on the electron, muon, and tau lepton numbers of the

universe are relatively poor, at least on the scale of these quantities required to af-
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fect active-sterile neutrino conversion. Therefore, it may be important to examine

in detail how lepton number influences scattering-induced decoherent production of

sterile neutrinos in the early universe. This is the objective of this paper.

In what follows we investigate how the coupled interplay of sterile neutrino pro-

duction, lepton number depletion, and the expansion of the universe determine the

relic sterile neutrino densities and energy spectra. In Sec. 3.3 we describe in-medium

active-sterile resonances and how these influence decoherent sterile neutrino produc-

tion. In this section we also discuss the relationship between the quantum kinetic

equations and the quantum Zeno approximation. In Sec. 3.4 we discuss the approach

we employ to solve for lepton number and νs spectral evolution. In Sec. 3.5 we discuss

results. Conclusions are given in Sec. 3.6.

3.3 Sterile Neutrino Production in the Early Uni-

verse

There is a long history to the general problem of the production of sterile neutrinos

νs from an initial population of purely active neutrinos να (α = e, µ, τ) [1, 3, 16,

17, 28–30]. In low density environments in supernovae and the early universe, the

dominant νs production channel will be the coherent Mikheyev-Smirnov-Wolfenstein

(MSW) process [31, 32]. However, neutrino propagation may not be coherent in the

higher density regions of core collapse supernovae and the pre-neutrino-decoupling

epoch in the early universe. In these environments, scattering-induced decoherence

is the principal way in which sterile neutrinos are produced. Here we concentrate on

the decoherent production channel since this will dominate the production of dark

matter candidate sterile neutrinos.

3.3.1 The Quantum Kinetic Equations

The evolution of a system of active and sterile neutrinos can be formulated in

terms of the density operator for a neutrino with given scaled momentum ε ≡ pν/T ,
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with pν the neutrino momentum and T the temperature in the early universe. (Here

we use natural units in which ~ = c = kB = 1.) The density operator for scaled

momentum ε is

ρ(ε, t) =
∑
i,j

ρij(ε, t)|νi〉〈νj|, (3.1)

where the summation is performed over neutrino flavor states, e.g., |νi〉 with i =

e, µ, τ, s and ρij(ε, t) are the corresponding density operator matrix elements which

are momentum and time dependent. Here we take the temperature T (t) to be a

function of the Friedman-Lemâıtre-Robertson-Walker time coordinate t, defined by

the solution of the zero-curvature Friedman equation(
ȧ

a

)2

=
8πρ(t)

3m2
PL

, (3.2)

where a(t) is the scale factor, ρ(t) is the total energy density of the universe, and

mPL is the Planck mass.

For illustrative purposes, we consider 2 × 2 vacuum mixing between an active

and sterile neutrino with a one parameter (vacuum mixing angle θ) unitary trans-

formation between the weak eigenstates |να〉 (α = e, µ, τ), |νs〉 and the energy-mass

eigenstates |ν1〉, |ν2〉:

|να〉 = cos θ|ν1〉+ sin θ|ν2〉;

|νs〉 = − sin θ|ν1〉+ cos θ|ν2〉. (3.3)

In this 2× 2 formalism, it is convenient to decompose the density operator as

ρ(ε, t) =
1

2
P0(ε, t) [1 + P(ε, t) · σ] , (3.4)

where σ is the Pauli spin operator, P0(ε, t) is a normalization factor proportional

to the total number of neutrinos (active and sterile) with scaled momentum ε, and

P(ε, t) acts as a polarization vector in weak isospin space.

The diagonal matrix elements of the density operator,

fα(ε, t) ≡ ραα(ε, t) =
1

2
P0(ε, t) [1 + Pz(ε, t)] (3.5)

fs(ε, t) ≡ ρss(ε, t) =
1

2
P0(ε, t) [1− Pz(ε, t)] , (3.6)
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are proportional to the number density distributions of the neutrino species. The

density operators are normalized so that the neutrino number densities are given as

products of the above matrix elements and the zero chemical potential Fermi-Dirac

distribution:

nα(ε, t) = fα(ε, t)
T 3(t)

2π2

ε2

eε + 1
; (3.7)

ns(ε, t) = fs(ε, t)
T 3(t)

2π2

ε2

eε + 1
. (3.8)

The quantum kinetic equations can be derived [33, 34] from the time evolution

of the density operator. In a homogeneous and isotropic universe, these equations

can be given in terms of the time evolution of the functions P0(ε, t) and P(ε, t) as

defined in Eq. (3.4),

∂

∂t
P(ε, t) = V(ε, t)×P(ε, t)

+ [1− Pz(ε, t)]

[
∂

∂t
lnP0(ε, t)

]
ẑ

−
[
D(ε, t) +

∂

∂t
lnP0(ε, t)

]
P⊥(ε, t) (3.9)

∂

∂t
P0(ε, t) = R(ε, t), (3.10)

where P⊥ = Pxx̂+ Pyŷ, and the functions V, D, and R are defined below.

The vector V(ε, t) corresponds to the coherent quantum mechanical evolution of

the neutrino states in the early universe, and is given by

V(ε, t) =
δm2

2εT (t)
(sin 2θ x̂− cos 2θ ẑ) + Vα(ε, t)ẑ, (3.11)

where δm2 = m2
2 −m2

1 is the difference of the squares of the vacuum neutrino mass

eigenvalues. The first term represents vacuum neutrino oscillations, while the second

term introduces matter effects through the forward scattering potential [35, 36]

Vα(ε, t) =
2
√

2ζ(3)

π2
GFLα(t)T 3(t)− rαG

2
F ε T

5(t), (3.12)

where ζ(3) ≈ 1.20206, GF is the Fermi constant, and rα is a dimensionless coefficient

which depends on the number of charged lepton degrees of freedom and can be found
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in Refs. [3, 19]. The potential lepton number is

Lα(t) ≡ 2Lα(t) +
∑
β 6=α

Lβ(t). (3.13)

The individual lepton numbers are

Lα(t) =
nνα(t)− nν̄α(t)

nγ(t)
, (3.14)

where nνα , nν̄α , and nγ are the neutrino, antineutrino and photon number densi-

ties, respectively. Here we neglect contributions to the forward scattering potential

from neutrino-baryon and neutrino-charged-lepton interactions since we will consider

lepton numbers much larger than the baryon to photon ratio [3, 19].

The decoherence function D(ε, t) and the repopulation function R(ε, t) can be

simplified by assuming thermal equilibrium of the background plasma [37]. The

decoherence function corresponds to the loss of coherence resulting from collisions

with particles in the early universe, and is proportional to the total scattering rate

Γα(ε, t) of neutrinos να,

D(ε, t) =
1

2
Γα(ε, t). (3.15)

Using the assumption of thermal equilibrium, the total scattering rate can be

written as

Γα(ε, t) ≈ yα(t)G2
F ε T

5(t), (3.16)

where we have neglected corrections of order the lepton number Lα. The numerical

coefficient yα(t) primarily depends on the number of relativistic particles with weak

charge that are populated in the thermal seas of the early universe at epoch t.

For example, at temperatures 1 MeV . T . 20 MeV the total scattering rate mostly

stems from interactions with other neutrinos and e± pairs, so that ye ≈ 1.27 and

yµ,τ ≈ 0.92 [3]. However, at higher temperatures there can be appreciable populations

of other charged leptons and quarks which will increase the total scattering rate.

The repopulation function R(ε, t) dictates the evolution of P0(ε, t). Since P0 is

proportional to the total number of neutrinos with scaled momentum ε, the repopu-

lation function corresponds to scattering into and out of neutrino states (να and νs)
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with scaled momentum ε. Assuming that each populated species, with the exception

of να and νs, has a thermal spectrum, the repopulation function can be written as

R(ε, t) = Γα(ε, t)

[
eε + 1

eε−ηα(t) + 1
− fα(ε, t)

]
, (3.17)

where ηα is the degeneracy parameter (ratio of the chemical potential to the tem-

perature) associated with the Fermi-Dirac spectra of να and ν̄α with lepton number

Lα,

Lα =
π2

12ζ(3)

(
ηα +

1

π2
η3

α

)
. (3.18)

This form of the repopulation function is valid for temperatures above the neutrino

decoupling temperature, where the active neutrinos are able to efficiently exchange

energy and momentum with the plasma of the early universe.

The effect of the repopulation function is to drive the distribution of the active

neutrino toward a Fermi-Dirac spectrum consistent with a lepton number Lα,

nα(ε, t) ∝ fα(ε, t)
ε2

eε + 1
→ ε2

eε−ηα(t) + 1
. (3.19)

3.3.2 The Quantum Zeno Ansatz

The quantum kinetic equations, even in their simplified form with the assump-

tions of homogeneity and isotropy of the early universe and thermal equilibrium in

the background plasma, comprise a system of coupled nonlinear integro-partial dif-

ferential equations that are difficult to solve. Past works have employed the quantum

Zeno approximation to circumvent these difficulties [3, 29]. We write the quantum

Zeno ansatz as a Boltzmann-like kinetic equation,

∂

∂t
fs(ε, t) +

(
dε

dt

)
∂

∂ε
fs(ε, t) ≈ 1

4
Γα(ε, t) sin2 2θM(ε, t)

[
1 +

(
Γα(ε, t)`m(ε, t)

2

)2
]−1

× [fα(ε, t)− fs(ε, t)] , (3.20)

where the effective matter mixing angle θM is defined by

sin2 2θM(ε, t) =
V 2

x (ε, t)

|V(ε, t)|2
= sin2 2θ

[
sin2 2θ +

(
cos 2θ − 2εT (t)

δm2
Vα(ε, t)

)2
]−1

,

(3.21)
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and the neutrino oscillation length is

`m(ε, t) = |V(ε, t)|−1 =

[(
δm2

2εT (t)
sin 2θ

)2

+

(
δm2

2εT (t)
cos 2θ − Vα(ε, t)

)2
]−1/2

.

(3.22)

The dε/dt term takes into account the change in the scaled momentum of a neutrino

propagating along its world line through the expanding early universe. Using the

conservation of comoving entropy and assuming radiation domination, this is

dε

dt
=

ε

3g

dg

dt
, (3.23)

where g is the effective statistical weight in relativistic particles and is calculated

with a weighted sum of the bosonic (gb) and fermionic (gf ) degrees of freedom,

g =
∑

bosons

gb +
7

8

∑
fermions

gf . (3.24)

For example, at temperatures 1 MeV . T . 20 MeV the plasma of the early universe

consists of photons (gb = 2), e± pairs (gf = 4), and neutrinos and antineutrinos of

all three active flavors (gf = 6), so g ≈ 10.75, where we neglect corrections of order

the lepton numbers.

Using the quantum Zeno ansatz instead of the full quantum kinetic equations

eases computational demands by allowing calculations to be performed with dis-

tribution functions (amplitude squared) instead of with quantum amplitudes. The

former approach avoids the computational pitfalls of rapidly varying complex phases

that plague the latter. In Sec. 3.5, we will compare the sterile neutrino production

rates calculated by the quantum kinetic equations to those implied by the quantum

Zeno ansatz.

Inspection of the quantum Zeno ansatz, Eq. (3.20), suggests that maximal ster-

ile neutrino production should occur when sin2 2θM = 1. This corresponds to the

resonance condition in the coherent MSW process,

δm2 cos 2θ =
4
√

2ζ(3)

π2
GFLεresT 4 − 2rαG

2
F ε

2
resT

6. (3.25)
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The solutions to Eq. (3.25) are the resonant scaled momenta

εres(t) =

√
2ζ(3)

π2rαGF

L(t)

T 2(t)

(
1±

√
1− π4rαδm2 cos 2θ

4ζ2(3)L2(t)T 2(t)

)
. (3.26)

Therefore, resonances occur when the following condition is met:

|L(t)|T (t) ≥ π2

2ζ(3)

√
rαδm2 cos 2θ. (3.27)

In Sec. 3.5 we will discuss the results of our numerical calculations and the effects

of these MSW-like resonances and this resonance condition. The production of sterile

neutrinos from an initial active neutrino distribution reduces the potential lepton

number L. Furthermore, the expansion of the universe results in a decrease of the

temperature T . These two trends together ensure that the resonance condition, Eq.

(3.27), will be violated at some point. However, the enhancement in sterile neutrino

production associated with this MSW resonance is suppressed by the quantum Zeno

effect.

The quantum Zeno effect is the result of scattering-induced decoherence interrupt-

ing the accumulation of quantum phase, suppressing quantum transitions between

two discrete states [38]. In the quantum Zeno ansatz, this effect is represented by

the multiplicative factor, [
1 +

(
Γα`m

2

)2
]−1

.

The ratio of the neutrino oscillation length, `m, to the mean scattering length, Γ−1
α ,

determines the level of suppression stemming from the quantum Zeno effect.

If the neutrino oscillation length is much larger than the scattering length, `m �
Γ−1

α , quantum coherence is lost before significant quantum phase can be accumulated,

suppressing the transition. This is the case at the MSW resonances because at reso-

nance the neutrino oscillation length is maximal. The suppression of sterile neutrino

production at the MSW resonances means that maximal sterile neutrino production

occurs at a time that does not correspond to an MSW resonance. However, since we

will be considering small values of sin2 2θ, the MSW resonances have small widths
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and as a result we nevertheless have maximal sterile neutrino production near to

these MSW resonances.

Far from resonance, there is little suppression from the quantum Zeno effect.

This results from a coincidence in the functional form of the forward scattering

potential and total scattering rate. At temperatures much larger than the resonance

temperature, the product Γα`m approaches a constant much less than 1, while at

temperatures much lower than the resonance temperature, Γα`m rapidly falls as the

temperature of the expanding universe decreases.

There is another possibility for maximizing the sterile neutrino production rate.

This occurs when the potential lepton number has decreased and/or the temperature

has fallen to a point where the resonance condition, Eq. (3.27), is no longer satisfied

and there are no MSW resonances. In this scenario, sin2 2θM reaches a local max-

imum but is less than 1, which means that the neutrino oscillation length tends to

be much smaller than in the resonant case. Additionally, this occurs at later times,

and thus lower temperatures, during the expansion of the universe, which means

the product Γα`m is significantly smaller than in the resonant case. As a result, the

overall sterile neutrino production rate can be higher than in the resonant case and

would have a broader peak than in the resonant case. With the right conditions, this

nonresonant production of sterile neutrinos can become significant.

Throughout this section we have discussed the transformation properties of να ↔
νs using the quantum kinetic equations and the quantum Zeno ansatz. However,

to consider the general problem of neutrino transformation in the early universe,

we must also include its CP -counterpart, ν̄α ↔ ν̄s. The quantum kinetic equations

and quantum Zeno ansatz are similar for the ν̄α, ν̄s system with a few alterations.

The forward scattering potential Vα [Eq. (3.12)] is adjusted by replacing Lα with

−Lα, and the total scattering rate Γα [Eq. (3.16)] is replaced by one appropriate

for antineutrinos, Γ̄α. However in the early universe, to lowest order, these two

scattering rates are equal, Γα ≈ Γ̄α.

In this paper we will consider large lepton numbers which helps to avoid the

necessity of considering both neutrinos and antineutrinos. For a large positive lep-
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ton number, all of the action occurs in the neutrino sector. The effective matter

mixing angle for antineutrinos is significantly less than their vacuum mixing angles,

while neutrinos may experience the MSW-like resonances discussed above. For large

negative lepton numbers, the same is true, but for the CP -counterpart.

3.4 Calculations

Calculating the evolution of the active and sterile neutrino distribution functions

remains a daunting task. In addition to the quantum Zeno ansatz, Eq. (3.20), we

must elucidate the lepton number evolution. We assume that the active neutrinos

are in thermal equilibrium in the early universe and that active-sterile neutrino con-

version is the only flavor changing interaction. The former assumption of thermal

equilibrium is a good one before weak decoupling where the high temperature of

the universe (T & 3 MeV) ensures that the weak interaction time scale is much

shorter than a Hubble time, the time scale for the expansion of the universe. The

latter assumption amounts to assuming that there is no exotic physics other than

active-sterile neutrino oscillations. For the epoch before weak decoupling, the time

evolution of the lepton number Lα is

d

dt
Lα(t) = − 1

4ζ(3)

∫ ∞

0

dε
ε2

eε + 1

∂

∂t
fs(ε, t). (3.28)

Together, the quantum Zeno ansatz [Eq. (3.20)] and lepton number evolution

[Eq. (3.28)] form a formidable system of integro-partial differential equations. To

simplify the situation, we assume that the effective statistical weight, g, is constant.

Strictly speaking, this is not the case in the early universe because species fall out of

thermal equilibrium as time progresses and the temperature decreases. However, a

well accepted detailed history g(t) does not currently exist. As a result, for illustrative

purposes, we will assume that g is constant.

By making this assumption we benefit in a number of ways. The temperature

evolution of the universe, T (t), is greatly simplified. As different species fall out

of thermal equilibrium, particle-antiparticle pair annihilation reheats the universe,
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resulting in a complicated temperature evolution. The temperature evolution, as

given by the Friedman equation, the conservation of comoving entropy, and assuming

radiation domination, is

1

T

dT

dt
= −

(
4π3

45

)1/2

g1/2 T
2

mPL

. (3.29)

Since T (t) is a monotonically decreasing function of time, we can invert it to find

t(T ). We are then able to perform our calculations as a function of temperature.

In addition, a constant g means that, by Eq. (3.23), dε/dt = 0. As a result, the

quantum Zeno ansatz becomes an ordinary differential equation for a family of sterile

neutrino distribution functions, parameterized by ε. The only coupling between the

different values of ε that remains is found in the lepton number evolution, Eq. (3.28).

We choose a value of g that is representative of the early universe before the QCD

transition, 170 MeV . T . 1 GeV. In this epoch, the plasma of the early universe

consists of photons (gb = 2), gluons (gb = 16), e± and µ± pairs (gf = 8), neutrinos

and antineutrinos of all three active flavors (gf = 6), and up, down, and strange

quarks and antiquarks (gf = 36), so g ≈ 61.75, where we neglect corrections of order

the lepton numbers and baryon to photon ratio. At higher temperatures the other

quarks come into the picture, but at this point the time scale for expansion in the

early universe is so fast that there is little net effect from the difference in g values.

We use the forward scattering potential given in Eq. (3.12), which is accurate at

times after the QCD transition and for lepton numbers much larger than the baryon

to photon ratio. However, we are interested in times before the QCD transition

where gluons and free quarks thermally populate the early universe. The proper

form of the forward scattering potential remains an open area of research [39, 40].

The results presented in this paper will remain relevant unless the total forward

scattering potential arising from the quarks is many orders of magnitude larger than

the forward scattering on color singlet baryons and mesons with the same net baryon

number.

On the other hand, the total scattering rate is greatly influenced by the additional

species thermalized before the QCD transition. However, since neutrino-quark inter-
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actions are not well studied, the total scattering rate in the QCD epoch remains a

question mark. We use the values given in Sec. 3.3.1, although our calculations deal

with a different epoch in the early universe. In addition, we calculate the effects of an

increased scattering rate, by assuming that this rate is proportional to the number

of relativistic particles with weak charge populated in the early universe.

We solve the system of integro-differential equations posed by the quantum Zeno

ansatz for different values of ε, and the lepton evolution. Using Eq. (3.29), we change

variables to follow the sterile neutrino distribution functions and lepton number

as a function of the declining temperature of the expanding universe. The initial

conditions are chosen so that there are initially no sterile neutrinos, fs = 0, and the

initial lepton number is a free parameter, but we assume that there is an equivalent

lepton number in each of the active neutrino species. The initial (final) temperature

for the calculations is chosen to be high (low) enough that the choice of this has no

effect on the final outcome (sterile neutrino spectrum and final lepton number).

For illustrative purposes, we choose to work with electron neutrinos as the sole

active species which mixes with sterile neutrinos (α = e). We do not include mixing

with νµ or ντ ; this includes active-active mixing with νe and among themselves, and

active-sterile mixing with νs. This is unrealistic, since the neutrino mixing matrix

could be quite complicated. However, our simplistic model will at least serve to

illustrate trends in sterile neutrino production and lepton number depletion [3, 19].

In addition to the numerical procedure outlined above, we also solve the quantum

kinetic equations, Eqs. (3.9−3.10), for a given value of ε. Using the lepton evolution

calculated with the quantum Zeno ansatz, we compare the evolution of the sterile

neutrino distribution function between the two methods. The principal difficulty in

solving the quantum kinetic equations is the need to resolve rapidly varying complex

phases. To ease these computational demands, we employ an eighth-order Runge-

Kutta method [41] which allows the use of a larger time step to solve the problem.
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Figure 3.1: Results for our calculation using the quantum Zeno ansatz. In this
calculation, we take the sterile neutrino rest mass ms = 64 keV, vacuum mixing
angle sin2 2θ = 10−10, and initial lepton number Le0 = 1.1 × 10−3. The upper left
panel shows the cumulative sterile neutrino production history in terms of its closure
fraction in the current epoch, Ωsh

2. Below that, in the lower left corner, is the lepton
number history. The upper right panel displays the final νs spectrum as a function
of scaled momentum ε. In the lower right panel is a plot that tracks the resonant
values of ε as our calculation evolves in temperature.
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3.5 Results

The particulars of phenomena revealed by the calculations described in the last

section depend on the assumed values of sterile neutrino mass ms, vacuum mix-

ing angle θ, and initial lepton number, Le0, in each active neutrino species. (As

discussed above, we take Le0 = Lµ0 = Lτ0.) Some ranges of the sterile neutrino

parameters can be ruled out by the x-ray observations [2–11] or by observations of

smaller-scale large scale structure (e.g., the Lyman-α forest) coupled with structure

formation calculations [9, 42–44]. Bounds on the lepton numbers from big bang

nucleosynthesis considerations [21–24] are much larger than those employed in our

calculations. It is important to note that these lepton number limits constrain the

final lepton numbers, not the initial lepton numbers. However, other parameter val-

ues remain unconstrained by these considerations and, therefore, are still “in play”

for providing a relic sterile neutrino density which could comprise some or all of

the dark matter. The observed dark matter closure fraction, Ωc, is measured to

be Ωch
2 = 0.1105± 0.0039 where h ≡ H0/100 km s−1 Mpc−1, with H0 the Hubble

parameter [45].

A set of parameters that produces the correct relic mass density to be the dark

matter, but is nevertheless ruled out by x-ray observations provides particularly in-

structive cases. These parameters give lepton number depletion and sterile neutrino

production histories which show a variety of possible behaviors associated with res-

onant and nonresonant evolution. Scenarios associated with these parameters give

distinctive features in the final relic sterile neutrino energy spectrum which are di-

rectly attributable to the way the MSW resonance sweep couples with lepton number

depletion.

Results for an example set of these parameters are shown in Fig. 3.1. For this

case we have taken ms = 64 keV, sin2 2θ = 10−10, and Le0 = 1.1 × 10−3. Using the

quantum Zeno ansatz, our calculations yield a sterile neutrino relic density which is

consistent with the observed dark matter closure fraction.

The panel in the lower right of Fig. 3.1 shows the sweep history of the two MSW
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resonances (i.e., as in Eq. 3.26). The resonant scaled momentum (εres) of each

resonance has a characteristic behavior. As the universe expands, the temperature

T drops, and lepton number is depleted, these resonances first diverge and then

converge in scaled momentum. At a temperature ∼ 950 MeV, the temperature has

fallen and the lepton number has been depleted to a point where the resonance

condition, Eq. (3.27), cannot be satisfied and so subsequently there can be no MSW

resonances.

The lepton number history and the cumulative sterile neutrino production his-

tory (as measured by its closure fraction in the current epoch Ωsh
2) are shown in the

lower and upper left-hand panels of Fig. 3.1, respectively. The temperature where

MSW resonances cease to exist corresponds to an abrupt shift in the sterile neu-

trino production mechanism, from resonant to nonresonant production. Roughly 70

percent of the total relic sterile neutrino density is produced resonantly. At temper-

atures slightly above those characteristic of the resonance cessation event, there is

an epoch of precipitous depletion of lepton number and concomitant production of

sterile neutrinos.

The sharp decline in lepton number and the subsequent loss of resonance are a

consequence of the coupling between the sweep of the MSW resonances and lepton

number evolution. As the MSW resonances sweep through the νe distribution, and

νe’s are converted to νs’s, lepton number is lost. In turn, the decreasing lepton

number accelerates the resonance sweep rate. This positive feedback loop results in

the precipitous depletion of lepton number. This process ends once MSW resonances

cease to exist, as seen in our calculations.

This behavior, coupled with the dominance of resonant νs production, results in

a characteristic set of peaks in the relic sterile neutrino energy spectrum

fν(ε) ≡ fs(ε, Tf )
ε2

eε + 1
, (3.30)

where Tf is the final temperature in the calculations. These features are seen in

the upper right panel of Fig. 3.1. In this figure, there are two distinct peaks seen at

ε ≈ 0.2 and ε ≈ 1.15, and a smaller peak at ε ≈ 0.5. The three peaks are the result of
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different physical processes. Understanding these processes provides physical insight

into the mechanism of sterile neutrino production.

Since the magnitude of the lepton number is small throughout the calculation,

|Le| � 1, we can make the approximation that fe(ε, T ) ≈ 1, neglecting corrections

of order the lepton number. As a result, Eq. (3.20) can be solved analytically if we

use the lepton number evolution Le(T ) from our calculations. This will provide an

analytical backbone upon which to base our analysis.

Using this approximation, the solution to the quantum Zeno ansatz yields a relic

sterile neutrino energy spectrum

fν(ε) ≈
ε2

eε + 1

(
1− exp

{
−
∫ Tf

T0

γ(ε, τ) dτ

})
, (3.31)

where

γ(ε, T ) ≡ 1

4Ṫ (T )

Γe(ε, T ) sin2 2θM(ε, T )

1 + 1
4
Γ2

e(ε, T )`2m(ε, T )
(3.32)

is the νe ↔ νs conversion rate per unit temperature interval. In theory, the initial

temperature T0 →∞, but in practice is chosen as described in Sec. 3.4.

For a fixed value of ε, γ(ε, T ) is a sharply peaked function of temperature T

whenever MSW resonances exist. This is the result of this function’s proportionality

to sin2 2θM , which has sharp peaks when sin2 2θM = 1 at the MSW resonances

discussed above. The locations in temperature of these resonances are implicitly

given by the solutions of Eq. (3.25) for a fixed value of ε.

However, the widths of the peaks in γ(ε, T ) do not correspond to the widths

of the associated MSW resonances. Both sin2 2θM(ε, T ) and `2m(ε, T ) are sharply

peaked functions. The resonance width of both functions is δT ≈ H tan 2θ (see, e.g.

Ref. [19]), where H is the density scale height at resonance and is defined as

H ≡
∣∣∣∣ 1

Ve

dVe

dT

∣∣∣∣−1

res

(3.33)

=

∣∣∣∣∣ 5T − 8
√

2ζ(3)

π2δm2 cos 2θ
GF εLT 3

(
1− d logL

d log T

)∣∣∣∣∣
−1

res

.
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In the neighborhood of each resonance, Γ2
e`

2
m/4 � 1, so near resonance

γ(ε, T ) ≈ 1

Ṫ (T )Γe(ε, T )

sin2 2θM(ε, T )

`2m(ε, T )
. (3.34)

The sharp peaks in both sin2 2θM(ε, T ) and `2m(ε, T ), in a sense, cancel each other

out. This is because the ratio of these functions,

sin2 2θM(ε, T )

`2m(ε, T )
=

(
δm2 sin 2θ

2εT

)2

, (3.35)

is no longer strongly peaked.

A measure of the width of the resonances in γ(ε, T ) can be obtained by setting

Γ2
e`

2
m/4 = 1. Far from resonance, Γ2

e`
2
m/4 . 1, so that γ(ε, T ) ∝ ε T 2 sin2 2θM , which

means γ(ε, T ) has the same resonant shape as sin2 2θM . When Γ2
e`

2
m/4 & 1 closer

to the resonance, γ(ε, T ) ∝ ε−3T−10, which means the peaked behavior is truncated

and the location of the maximum of the neutrino conversion rate is displaced from

the location of the MSW resonance to a slightly lower temperature. The change in

the forward scattering potential required to satisfy this condition is δVe ≈ Γe/2. The

width in temperature space corresponding to this potential width is

δT (ε, Tres) =

∣∣∣∣δVe

Ve

∣∣∣∣
res

∣∣∣∣ 1

Ve

dVe

dT

∣∣∣∣−1

res

≈ ε Tres

δm2 cos 2θ
Γe(ε, Tres)H. (3.36)

If we restrict ourselves to values of ε for which MSW resonances are possible

(ε < 1.15 for the calculations done with the parameters in Fig. 3.1), then the sharp

peaks in γ(ε, T ) allow us to make the approximation:∫ Tf

T0

γ(ε, τ) dτ ≈
∑

i

giγ(ε, Tres,i)δT (ε, Tres,i), (3.37)

where gi is a numerical coefficient of order unity, Tres,i is the temperature of the MSW

resonance for scaled momentum ε, and the sum is performed over every resonance.

This approximation breaks down when two resonances begin to overlap, a situation

we will discuss below.
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The product

γ(ε, Tres)δT ≈
1

2

δm2

2εTres

sin2 2θ

cos 2θ

(
Ṫ−1H

)
, (3.38)

is equal to one-half of the the dimensionless adiabaticity parameter defined in Eq.

(38) of Ref. [19], but with the flavor off-diagonal potential set to zero, Beτ = 0.

Note also that the density scale height in this work, H, is defined as the width

in temperature of the MSW resonance, but the density scale height in Ref. [19],

H = Ṫ−1H, is defined as the physical width of the MSW resonance.

If the gi in Eq. (3.37) are equal to π, then this result is equivalent to the Landau-

Zener approximation. However, these numerical coefficients depend on the shape of

the resonances, in particular on the shape of the forward scattering potential Ve. On

the other hand, the coherent νe → νs probability is only equal to the Landau-Zener

approximation when the forward scattering potential is linear. It is interesting to

see the relationship between the coherent νe → νs conversion through the coherent

MSW process and scattering-induced decoherent νs production. Reference [16] used

this result without this analysis.

The low-ε peak is the product of two opposing factors: a νe spectrum that in-

creases and a νe → νs conversion probability that decreases as ε increases. At small

values of ε, the number density of νe with scaled momentum ε that are available to

be converted into νs is proportional to ε2.

The lower right panel in Fig. 3.1 shows that at these ε values there are two

resonances, one at a high temperature (& 2000 MeV) and another at a lower tem-

perature near the resonance cessation event (∼ 1000 MeV). At these temperatures

δT ∝ ε T 3|d logL/d log T − 1|−1, so that the product γ(ε, Tres)δT in Eq. (3.37) is

proportional to ε−2T−7
res |d logL/d log T − 1|−1. Consequently, the contribution from

the low-temperature resonance is dominant over the contribution from the high-

temperature resonance. At small values of ε (ε . 0.4), the relic sterile neutrino

distribution is

fν(ε) ≈
ε2

eε + 1

(
1− exp

{
−κε−2T−7

res

∣∣∣∣d logL
d log T

− 1

∣∣∣∣−1

res

})
, (3.39)
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where κ is a constant that depends on sterile neutrino parameters and physical

constants, and Tres = Tres(ε) is the low-temperature solution to Eq. (3.25). This

distribution can be seen graphically in the lower right panel of Fig. 3.1.

Examination of Fig. 3.1 reveals that Tres(ε) is a slowly decreasing function of ε

(e.g., a factor of 4 increase in ε leads to a 15 percent decrease in Tres). As a result,

ε−2T−7
res remains a decreasing function of ε. In addition, d logL/d log T is maximal

immediately preceding the resonance cessation event and decreases with increasing

temperature. It follows that |d logL/d log T − 1|−1 is also a decreasing function of

ε. Thus, the cumulative νe → νs conversion probability, 1− e−
R

γ dτ , is a decreasing

function of ε. The interplay between this and the increasing spectrum of νe produces

the peak seen at low values of ε.

The high-ε peak corresponds to the maximum value of ε (εmax) for which MSW

resonances exist. At this value of ε, the MSW resonance equation, Eq. (3.25), has

only one positive temperature solution (a double root). In the case shown in Fig.

3.1, this occurs at εmax ≈ 1.15.

For ε < εmax, the energy spectrum increases as ε increases, and as it approaches

the maximum value, it increases at a greater rate until it hits the peak. Here, the

proportionality to ε loses the sway it had at lower values of ε because the fractional

changes are an order of magnitude smaller. In this regime, the high-temperature

resonance moves to lower temperatures where it becomes significant in contributing

to the νe → νs conversion probability. Additionally, as the two resonances approach

each other, the peaks tend to blend with each other, enhancing the value of
∫
γ dτ ,

culminating with the merger of the two peaks. The sharp increase in fν indicates

the point at which this phenomenon becomes significant.

For values of ε slightly larger than εmax, the energy spectrum falls off precipitously.

This is because neutrinos with ε > εmax have no resonances, and thus sterile neutrino

production is suppressed compared to the regime with resonant production.

The mid-ε peak corresponds to the last resonant value of ε. At the temperature

where MSW resonances cease to exist, there is an abrupt transition from resonant to

nonresonant sterile neutrino production. During the final stages of resonant sterile
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Figure 3.2: The four panels present the same quantities as in Fig. 3.1. In this figure,
we have taken ms = 64 keV, sin2 2θ = 10−10, and three different values for the initial
lepton number: Le0 = 0.76 × 10−3 (short dashed curves), 1.1 × 10−3 (long dashed
curves), and 1.3× 10−3 (solid curves).

neutrino production, there is a large conversion rate of active neutrinos to sterile

neutrinos, producing a large lepton number loss rate, leading to a smaller resonance

width. Immediately after the resonance cessation event, lepton number is depleted

at a far lower rate, as only nonresonant conversion remains. This leads to the low-

temperature side of the resonance being much broader than the high-temperature

side. As a result, there is an enhancement in the νe → νs conversion probability

that is maximized at the last resonant ε. This effect is significantly smaller than the

effects associated with the two peaks discussed previously.

Figures 3.2 - 3.4 show the effects of changing each of the three free parameters in

our calculation. Figure 3.2 presents the effects of changing the initial lepton number

in each active neutrino species, but leaving the sterile neutrino mass and vacuum



101

mixing angle fixed. Figure 3.3 shows the effects of changing the sterile neutrino

mass, and Figure 3.4 shows the effects of changing the vacuum mixing angle θ. Each

figure displays the same four panels as discussed for Fig. 3.1. The results discussed

above serve as a guide to understanding the trends in these figures.

In Fig. 3.2, we have taken ms = 64 keV and sin2 2θ = 10−10. We have varied

the initial lepton number and show three cases, corresponding to Le0 = 0.76× 10−3,

1.1× 10−3, and 1.3× 10−3.

The resonance cessation event occurs at a higher temperature for lower initial

lepton numbers. We can understand this result using the resonance condition, Eq.

(3.27). Since we assume that initially the lepton number is equal in each active

neutrino species and we only allow νe-νs neutrino oscillations, the potential lepton

number can be written as L(T ) = 2Le0 + 2Le(T ). Most of the initial νe lepton

number is depleted by νe → νs conversion, so that at the cessation event L ≈ 2Le0.

As a result, lower initial lepton numbers mean an earlier (higher temperature) loss

of resonance.

The maximum resonant ε, εmax, increases with increasing initial lepton number.

As seen in Eq. (3.26), the upper resonance is proportional to L/T 2. This implies

that the resonant scaled momenta can reach higher values for higher initial lepton

numbers. For ε . 2.2 there are more νe available to convert into νs at a given value

of ε as ε increases.

We must perform the same analysis done above in estimating the cumulative

νe → νs conversion probability. Preserving the proportionality to the potential lepton

number and sterile neutrino mass and mixing angle, we have

γ(ε, Tres)δT ∝ ε−2T−7
res

∣∣∣∣d logL
d log T

− 1

∣∣∣∣−1

res

L−1m4
s sin2 2θ, (3.40)

where the assumed sterile neutrino mass is ms ≈
√
δm2. The relevant resonance

temperatures are approximately equal to the temperature of the resonance cessation

event, which increases with decreasing initial lepton number. In our calculations,

T−7
res dominates over L−1, so in concert with the trend for εmax, increasing the initial
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Figure 3.3: The four panels present the same quantities as in Fig. 3.1. In this figure,
we have taken Le0 = 1.1 × 10−3, sin2 2θ = 10−10, and three different values for the
sterile neutrino rest mass: ms = 45 keV (solid curves), 64 keV (long dashed curves),
and 79 keV (short dashed curves).

lepton number leads to a larger (in magnitude) loss of νe lepton number,

∆Le = − 1

4ζ(3)

∫ ∞

0

fν(ε) dε. (3.41)

Consequently, the number density of sterile neutrinos produced, nνs = −nγ∆Le,

increases with increasing initial lepton numbers. Thus, the sterile neutrino closure

fraction, Ωs ∝ msnνs , also increases with increasing initial lepton number.

In Fig. 3.3, we have taken Le0 = 1.1× 10−3, sin2 2θ = 10−10 and varied the sterile

neutrino rest mass. In this figure we show the results of our calculations for sterile

neutrino masses ms = 45 keV, 64 keV, and 79 keV.

It is clear from this figure that the resonance cessation event occurs at higher

temperatures for higher masses. This trend can be understood by noticing that

the right hand side of Eq. (3.27) is proportional to ms. Therefore, with the same
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arguments as above, but now with a fixed lepton number, equality in Eq. (3.27)

(which marks the end of resonances) is reached at higher temperatures for higher

assumed sterile neutrino masses.

In this calculation, at high temperatures (T & 2000 MeV) the resonant values of

ε do not depend on sterile neutrino mass. Using the proportionality in Eq. (3.40),

lepton number depletion, and the concomitant sterile neutrino production, will be

highest for the higher mass sterile neutrinos, at least early on. As a result, the highest

mass sterile neutrino will have the lowest value of εmax and the highest temperature

at which the resonance cessation event occurs.

The two competing factors in Eq. (3.40), T−7
res and m4

s, nearly balance each other,

but the higher value of εmax for lower sterile neutrino masses results in a larger (in

magnitude) value of ∆Le. However, it can be seen in the lower left panel of Fig.

3.3 that the values of ∆Le for the three sterile neutrino masses shown do not differ

by much. As a result, the sterile neutrino closure fraction, the relevant quantity

in searching for a dark matter candidate, increases for increasing assumed sterile

neutrino mass.

In Fig. 3.4, we have taken ms = 64 keV and Le0 = 1.1× 10−3 but have employed

different values of the vacuum mixing angle θ. The figure shows three cases, for

sin2 2θ = 0.5× 10−10, 1.0× 10−10, and 2.0× 10−10.

For the vacuum mixing angles that we are concerned with here, the locations of

the MSW resonances are insensitive to the value of θ (since cos 2θ ≈ 1− 0.5 sin2 2θ).

As a result, differences in the evolution of εres are linked to the differences in the lepton

number evolution. At high temperatures (T & 1500 MeV for this calculation), the

resonances sweep through the νe distribution at the same rate, but the proportionality

to sin2 2θ in Eq. (3.40) leads to a larger sterile neutrino production for larger vacuum

mixing angles. As a result, the resonance condition, Eq. (3.27), will be violated at

the highest temperature for the highest mixing angle. Thus, the largest mixing angle

corresponds to the highest resonance cessation temperature and the smallest value

of εmax.

The combination of the proportionality of the cumulative νe → νs conversion rate
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Figure 3.4: The four panels present the same quantities as in Fig. 3.1. In this figure,
we have taken ms = 45 keV, Le0 = 1.1 × 10−3, and three different values for the
vacuum mixing angle: sin2 2θ = 0.5× 10−10 (solid curves), 1.0× 10−10 (long dashed
curves), and 2.0× 10−10 (short dashed curves).
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Figure 3.5: The four panels present the same quantities as in Fig. 3.1. In this figure,
we have taken ms = 64 keV, Le0 = 1.1× 10−3, and sin2 2θ = 10−10. We present two
calculations, one with a low total scattering rate Γe as discussed in section 3.3.1 (solid
curves), and one with a higher total scattering rate Γe → 3.5Γe (dashed curves). For
T & 950 MeV, the cumulative sterile neutrino production history, lepton number
history, and resonant values of ε are nearly identical in the two calculations.

to sin2 2θ, along with the weak dependence of the resonant temperatures and εmax

on the vacuum mixing angle, result in resonant production of sterile neutrinos being

highest for higher values of vacuum mixing angle. However, this is just the tip of the

iceberg. Nonresonant scattering-induced decoherent production of sterile neutrinos

is also proportional to sin2 2θ. As a result, higher vacuum mixing angles generally

result in a higher sterile neutrino closure fraction.

In Fig. 3.5, we adopt the same parameters as in Fig. 3.1 (ms = 64 keV, sin2 2θ =

10−10, and Le0 = 1.1× 10−3), but we modify the calculation by increasing the total

scattering rate, Γe. In the calculations for Figs. 3.1 - 3.4, we have used a value of

ye = 1.27 in the total scattering rate, Eq. (3.16). However, as discussed in Sec.



106

3.3.1, this is a value that is relevant for temperatures much lower than those in our

calculations.

We modify our calculations by assuming that the total scattering rate is propor-

tional to the number of weak degrees of freedom that are in thermal equilibrium in

the early universe. The value ye ≈ 1.27 stems from νe scattering on e± pairs and

neutrinos and antineutrinos of all three active flavors. However, for the temperatures

that we are concerned with here, there are also µ± pairs and up, down, and strange

quarks and antiquarks thermally populated in the early universe. By including all

three quark colors and the fact that the weak current is left-handed, we modify the

total scattering rate by a factor of 3.5. In other words, in testing the sensitivity to

the scattering rate, we substitute Γe(ε, T ) → 3.5Γe(ε, T ).

This calculation shows that there is little effect in the resonant conversion regime.

This result can be understood by noticing that γ(ε, Tmax) ∝ Γ−1
e and δT ∝ Γe.

Therefore, the resonant production of sterile neutrinos is only weakly dependent on

the total scattering rate. In Fig. 3.5 this is readily apparent, because the evolution of

the resonant scaled momentum and the lepton number (and consequently the sterile

neutrino production history) are nearly identical for T & 950 MeV.

The most dramatic effect of an increased scattering rate can be seen in the sterile

neutrino production history after the resonance cessation event. Roughly 55percent

of the final sterile neutrino relic density is produced nonresonantly (compared with

30 percent in the lower Γe case). This is because away from resonance the quantum

Zeno effect is less efficient at suppressing sterile neutrino production, allowing the

νe → νs rate to increase with Γe.

Another effect of the increased scattering rate is seen in the sterile neutrino en-

ergy distribution function. The most significant difference is that the high-ε peak is

not as sharply peaked in this case. This is due to the combination of two processes.

Nonresonant sterile neutrino production for ε > εmax is enhanced with a larger scat-

tering rate, producing a less steep drop off. The merging of the two resonances that

created the sharp peak in the low Γe case is less effective for a larger Γe. As discussed

above, the peaks are broader with a smaller amplitude. Consequently, when these
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Figure 3.6: The sterile neutrino energy spectrum as a function of scaled momentum
ε for an “in play” sterile neutrino dark matter candidate with ms = 12 keV, sin2 2θ =
3.2×10−11, and Le0 = 4.8×10−3 (solid curve). Also shown is a Fermi-Dirac spectrum
normalized so that both spectra would produce the same number density of sterile
neutrinos (dashed curve).

peaks come together, the result is a smaller cumulative sterile neutrino production.

To this point we have only discussed sterile neutrino dark matter candidates

that are ruled out by the current X-ray observations. In Fig. 3.6 we present the

energy spectrum for a sterile neutrino dark matter candidate that is still “in play”

as far as the x-ray observations are concerned. To evade the x-ray limits, we must

reduce the sterile neutrino mass and/or vacuum mixing angle. From the studies we

conducted above, we know that the relic sterile neutrino closure fraction is more

strongly dependent on mass than on mixing angle. Therefore, we must reduce both

mass and mixing angle to get under the x-ray limits. However, to get the correct

relic density we also increase the initial lepton number and the scattering rate as

discussed above for Fig. 3.5.

For this calculation we use a sterile neutrino rest mass ms = 12 keV with vacuum

mixing angle sin2 2θ = 3.2× 10−11 and initial lepton number Le0 = 4.8× 10−3. The

sterile neutrino properties are just below the current x-ray constraints, while the
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initial lepton number is much less than the best constraints on the lepton numbers

in the early universe. We display only the energy spectrum because the other three

panels do not provide much physical insight in this case.

For this case our calculations give εmax ≈ 200, which means that the resonance

sweeps through the entire νe distribution. As a result, the high-ε peak cannot be

seen in Fig. 3.6. The mid-ε peak is at ε ≈ 60, so that is also missing. We are left

with the low-ε peak and a long tail at higher ε that eventually disappears because of

the scarcity of neutrinos in the νe distribution at these scaled momenta.

For this particular case the resonance cessation event occurs at T ≈ 100 MeV,

but as discussed above, this corresponds to ε ≈ 60. The low-temperature resonance

for more relevant values of ε (i.e., ε ∼ 3) occurs at temperatures ∼ 170 MeV. Since

the resonances persist to such low temperatures, there is very little nonresonant

production of sterile neutrinos. As a result, the relic sterile neutrino density produced

is relatively insensitive to the total scattering rate. However, this temperature is of

interest in the early universe as it is the epoch of the QCD transition. The nature

of this transition affects the specifics of the sterile neutrino production [46] but in

broad brush should serve to enhance the final sterile neutrino closure fraction.

Also plotted on Fig. 3.6 is a Fermi-Dirac spectrum whose normalization is chosen

to have an equivalent sterile neutrino density. The peak in the sterile neutrino

spectrum is at ε ≈ 1, while the Fermi-Dirac spectrum peaks at ε ≈ 2.2. We see that

a significant fraction of the total sterile neutrino density has smaller values of ε than

in its Fermi-Dirac counterpart. Nonetheless, the high-ε tail of the distribution yields

an average value of ε, 〈ε〉 ≈ 2, compared to an average ε of 3.15 for a Fermi-Dirac

spectrum. As a result, the sterile neutrino population produced in our calculations is

“colder” by a factor of about 1.6 than an equivalent population with a Fermi-Dirac

spectrum. This is qualitatively consistent with the findings in Ref. [16], but the

sterile neutrino population here is not as cold.

Our numerical calculations show that the sterile neutrino rest mass, vacuum

mixing angle, and initial lepton number parameters which produce the correct dark

matter closure fraction, but which evade X-ray bounds, produce relic νs energy spec-
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Figure 3.7: The solid curve is the sterile neutrino conversion rate per unit tempera-
ture interval, |dfs/dT | for ε = 1 in our calculations withms = 64 keV, sin2 2θ = 10−10,
and Le0 = 1.1× 10−3. The dashed curve shows the fractional difference between the
rate inferred from a solution of the quantum kinetic equations to the rate implied by
the quantum Zeno ansatz.

tra which are qualitatively similar to that in Fig. 3.6. Since this generic spectrum

is skewed relative to a Fermi-Dirac form toward lower values of ε, viable dark mat-

ter sterile neutrinos which are produced via lepton number enhancement should be

“colder” than their rest masses would suggest.

Finally, in Fig. 3.7 we perform a consistency check to determine the validity of

the quantum Zeno ansatz that we have used throughout our calculations. To do this,

we use the sterile neutrino parameters and initial lepton numbers employed in the

calculations for Fig. 3.1 (ms = 64 keV, sin2 2θ = 10−10, and Le0 = 1.1 × 10−3), and

also use the smaller total scattering rate discussed above. We solve the quantum

kinetic equations presented in Sec. 3.3.1 for ε = 1, using the lepton number evolution

from our calculations.

Plotted in Fig. 3.7 are the instantaneous νe → νs conversion rate per unit tem-

perature interval, |dfs/dT | (solid curve), and the fractional difference between the

rate inferred from our solution to the quantum kinetic equations and the rate given



110

by the quantum Zeno ansatz (dashed curve). Note that the actual conversion rate is

always slightly larger than the rate from the quantum Zeno effect, but in general the

two agree within a few percent. Note also that the differences change by an order of

magnitude at the resonances.

Since the actual rate is possibly slightly higher than the rate we used with the

quantum Zeno ansatz, we probably under-produce sterile neutrinos in our calcula-

tions. The interval between the two resonances is an important one in determining

the final sterile neutrino production. If corrections on the order of a percent occurred

for all our values of ε, this could increase the temperature of the resonance cessation

event and, in turn, increase the ultimate relic sterile neutrino density, possibly in

a nonlinear fashion. Our numerical calculations show that a 1 % increase in the

conversion rate gives a 0.3 % increase in relic sterile neutrino density. We conclude

that a small change in the conversion rate does not lead to a significant change in

the relic sterile neutrino density.

3.6 Conclusions

One option for producing viable sterile neutrino dark matter is lepton number

enhancement of scattering-induced decoherence. The calculations presented here ad-

dress the basic physics of this production process. A key conclusion of our work

is that the interplay of lepton number depletion and resonant sterile neutrino pro-

duction leads to a set of generic peak features in the relic sterile neutrino energy

spectrum. We have studied how these peaks depend on the assumed initial lepton

number, the magnitude of the assumed active-sterile coupling (i.e., the vacuum mix-

ing angle), and the sterile neutrino rest mass. We conclude that relic sterile neutrinos

with parameters that evade x-ray constraints will have a characteristic single-peak

energy spectrum. This spectrum will be “cold” compared to a Fermi-Dirac form

spectrum with the same integrated relic number density. This could relax to some

extent Lyman-alpha forest constraints on sterile neutrino rest mass [47].

We have compared the widely-used quantum Zeno ansatz with a full quantum
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kinetic equation treatment of scattering-induced decoherence production of sterile

neutrinos in the early universe. Our conclusion is that the quantum Zeno approx-

imation is adequate, at least during the epoch in the early universe when ∼ keV

mass sterile neutrinos are produced.

Finally, we should note the limitations of this study and point out the topics

that need further detailed examination. The calculations presented here are crafted

to study the physical effects which determine relic sterile neutrino energy spectra.

They only treat schematically the microphysics of scattering degrees of freedom and

finite temperature in-medium effects. We have attempted to gauge the sensitivity

of final relic νs densities and energy spectra to these issues by simply varying the

prescription for active neutrino scattering rates. Though we find that our generic

spectral features are relatively insensitive to changes in these rates, our calculations

nevertheless cannot serve to predict relic densities accurately.

At least three aspects of our calculations for sterile neutrino production and

lepton number depletion are simplistic: (1) we have allowed only a single channel,

νe → νs, for sterile neutrino production; (2) we have taken initial, preexisting lepton

numbers in all active neutrino species to be the same; and (3) we have not allowed

mixing between active neutrino flavors. As for the last point, the study in Ref. [19]

suggests that dynamically including active-active mixing should be roughly similar

to having a larger initial value of Le0 in our model. The idea being that as νe are

converted to νs, some νµ and ντ neutrinos convert into νe. In essence then, the net

lepton number in the mu and tau neutrino seas serves as a reservoir that “feeds” the

νe sea as sterile neutrinos are produced. In fact, the measured active-active mixing

parameters may suggest mixing between the flavors is efficient and that equality of

lepton numbers is a plausible assumption [22]. A larger reservoir of active neutrinos

feeding into νe → νs would not change the qualitative aspects of our conclusions on

the interplay of lepton number depletion and neutrino asymmetry-enhanced sterile

neutrino production in the early universe.

In contrast, if there were more than one kind of sterile neutrino, or if there were

multiple channels of active-sterile conversion (e.g., νµ,τ → νs in addition to νe → νs),
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then both lepton number depletion and sterile neutrino production histories might

be different than those calculated here. In fact, a key conclusion of our work is

that these histories, as well as the relic sterile neutrino energy spectrum that goes

with them, are a product of the potentially complicated coupling between the sterile

neutrino production channels and the way lepton numbers evolve. This is a rich

problem which deserves further consideration.
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Chapter 4

Neutrino-Accelerated Hot

Hydrogen Burning

Throughout this chapter, the standard short-hand nomenclature for nuclear re-

actions is used A(B,C)D, which is equivalent to the reaction A+B → C +D. For

example, the capture of an electron anti-neutrino on a proton to form a neutron and

positron is written as p(ν̄e, e
+)n.

4.1 Abstract

We examine the effects of significant electron anti-neutrino fluxes on hydrogen

burning. Specifically, we find that the bottleneck weak nuclear reactions in the

traditional pp-chain and the hot CNO cycle can be accelerated by anti-neutrino

capture, increasing the energy generation rate. We also discuss how anti-neutrino

capture reactions can alter the conditions for break out into the rp-process. We

speculate on the impact of these considerations for the evolution and dynamics of

collapsing very- and super- massive compact objects.
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4.2 Introduction

Hydrogen burning involves the conversion of four protons into an alpha particle,

two positrons, neutrinos and photons. The principal bottleneck involved in this

process is the weak interaction conversion of protons into neutrons. For decades the

primary mechanisms of hydrogen burning have been an astronomical staple. Bethe

and Critchfield [1] first elucidated the proton-proton chain (pp-chain) where the

weak conversion is accomplished by two protons interacting to become a deuteron,

p(p, νee
+)d. von Weizsäcker [2] and Bethe [3] independently described the CNO cycle,

where carbon is used as a catalyst in hydrogen burning, and the weak conversion of

protons to neutrons occurs through the positron decay of isotopes of oxygen with

half lives of about 100 seconds.

A large flux of electron anti-neutrinos (ν̄e) could alter the hydrogen burning

paradigm. Anti-neutrino capture could perform the necessary conversion of protons

to neutrons. The ν̄e-capture cross sections of relevance are very small, but depend

strongly on neutrino energy. The smallness of these cross sections allows energetic

neutrinos to escape from deep within a compact object, where the temperature and

other energy scales are high, and freely stream to where hydrogen burning is oc-

curring. Nevertheless, if ν̄e-capture is to have a significant effect on hot hydrogen

burning, a truly prodigious flux (φν̄e & 1040 cm−2 s−1) and large neutrino energy

(〈Eν̄e〉 & a few MeV) would be necessary. It should be kept in mind, however, that

to affect hydrogen burning, the ν̄e-capture rates need only be comparable to the

corresponding positron decay rates.

The difficulty would be to find an environment capable of producing these fluxes

of neutrinos, yet quiescent enough that simple hydrogen burning could be rele-

vant, and the products of such burning could be ejected into space. High entropy

electron-positron plasmas are efficient engines for the production of neutrinos and

anti-neutrinos of all flavors. Possible environments that may merit future investiga-

tions into the effects of anti-neutrino capture on hydrogen burning include high mass

accretion disks and collapsing very- and super- massive objects.
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In this paper, we investigate the effects of a prodigious neutrino flux on hot hy-

drogen burning. In section 4.3 we point out the effects of anti-neutrino capture on the

rate limiting steps in both the pp-chain and the β-limited CNO cycle, and its implica-

tions for the energy generation rates. In section 4.4, we examine the consequences for

the rp-process and energy generation mechanisms. In section 4.5, we consider the case

of a supermassive star collapsing on the general relativistic Feynman-Chandrasekhar

instability, and the effects of its internal neutrino production on hydrogen burning

in its envelope. We give conclusions in section 4.6.

4.3 Neutrino-Induced Hydrogen Burning Mecha-

nisms

The rate limiting step in the pp-chain is the weak interaction conversion of two

protons into a deuteron, a positron, and an electron neutrino. A significant flux

of electron anti-neutrinos allows an alternate mechanism to be favored, where anti-

neutrino capture on a proton creates a neutron and a positron (ν̄e + p → n + e+

has been considered in supermassive objects in Refs. [4] and [5]). This step would

be followed by a fast radiative proton capture to form a deuteron. Comparing the

two reaction rates: p(p, νee
+)d vs. p(ν̄e, e

+)n(p, γ)d, we find that for the prodigious

anti-neutrino fluxes discussed in the introduction (φν̄e & 1040 cm−2 s−1, 〈Eν̄e〉 &

a few MeV) the anti-neutrino capture path is significantly faster in relevant astro-

physical environments. This provides not only a new reaction path for hydrogen

burning, but increases the energy generation rate by several orders of magnitude.

The β-limited CNO cycle, or hot CNO cycle, proceeds at a rate dictated by the

positron decay of 14O and 15O, with half lives of 71 s and 122 s, respectively (see, e.g.,

Refs. [6] and [7]). These decays likewise could be augmented by electron anti-neutrino

capture, 14O(ν̄e, e
+)14N and 15O(ν̄e, e

+)15N. Figure 4.1 shows the acceleration of the

relevant weak rates as a function of total electron anti-neutrino flux for an assumed

Fermi-Dirac ν̄e-energy spectrum with average ν̄e-energy 〈Eν̄e〉 = 10 MeV and zero
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Figure 4.1: Key weak decay rates as a function of electron anti-neutrino flux, as-
suming a Fermi-Dirac ν̄e-energy spectrum with zero chemical potential and average
ν̄e-energy 〈Eν̄e〉 = 10 MeV. The solid lines, labeled λ14 and λ15 are the total weak
decay rates of 14O and 15O, respectively, through positron decay and anti-neutrino
capture. The dashed line is the rate of conversion of a proton to a neutron via
anti-neutrino capture alone.

chemical potential. The flux at which anti-neutrino capture becomes important scales

appoximately as 〈Eν̄e〉−2. For a large enough flux (φν̄e & 1039 cm−2 s−1 in the case

of Figure 4.1), the reaction rates are proportional to the incident flux of electron

anti-neutrinos. Our weak rate calculations are described in Appendix 4.A.

Additionally, the CNO cycle is accelerated by the presence of free neutrons. The

strong interaction reactions 15O(n, p)15N and 14O(n, p)14N have a significantly larger

cross section than the electromagnetic reaction n(p, γ)d. As a result, neutrons are

diverted from the modified pp-chain into the CNO cycle. Figure 4.2 shows how

the neutrons created by p(ν̄e, e
+)n are distributed between the competing reactions

15O(n, p)15N, 14O(n, p)14N and n(p, γ)d. Notice that for an assumed Fermi-Dirac

ν̄e-energy spectrum with 〈Eν̄e〉 = 10 MeV and zero chemical potential, the ratio of

neutron captures on 15O to 14O to p is approximately 4.5 : 2 : 1 for a large range of

ν̄e-fluxes. The calculations used in producing Figure 4.2 employed (n, p) rates takn

from Ref. [8]. It should be kept in mind that the branching ratios apparent in Figure

4.2 may vary with different reaction rate sets (see, e.g., the NACRE compilation [9]).

However, general qualitative conclusions and trends drawn from Figure 4.2 are valid.
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Figure 4.2: Fraction of neutron captures on 15O (f15),
14O (f14) and p (fnp), assuming

a Fermi-Dirac ν̄e-energy spectrum with zero chemical potential, average ν̄e-energy
〈Eν̄e〉 = 10 MeV and X/Z ′ = 100, where X is the hydrogen mass fraction and Z ′ is
the mass fraction in carbon, nitrogen and oxygen isotopes.

Figure 4.3 illustrates the most significant reaction flow paths involved in hydro-

gen burning when a significant ν̄e-flux is present. The pp-chain is modified as anti-

neutrino capture allows the circumvention of the slow p(p, νee
+)d reaction. Also in-

cluded are the triple-alpha process, which would provide a path between the pp-chain

and CNO cycle, and the break out into the rp-process via 15O(α, γ)19Ne(p, γ)20Na

[10].

4.4 Side Effects

A large flux of electron anti-neutrinos certainly accelerates the weak rates that

provide the bottleneck in hot hydrogen burning. However, since this flux also in-

creases the rates of other positron decays, a number of side effects are possible.

A principal mechanism for break out into the rp-process involves the reaction

path 15O(α, γ)19Ne(p, γ)20Na. The criteria for break out into the rp-process can be

found in the competition between proton capture on 19Ne, and the decay of 19Ne
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Figure 4.3: Qualitative picture of hydrogen burning under the influence of a prodi-
gious electron anti-neutrino flux. Shown are a modified pp-chain, β-limited CNO
cycle, and the less significant triple-α reaction and break-out to the rp-process.
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Figure 4.4: Conditions for break-out into the rp-process, assuming a Fermi-Dirac
ν̄e-energy spectrum, zero chemical potential, and 〈Eν̄e〉 = 10 MeV. The plotted
contours are for, in ascending order, φν̄e = 1038,40,42 cm−2 s−1. Zero neutrino flux is
indistinguishable from φν̄e = 1038 cm−2 s−1.

through positron emission and now, anti-neutrino capture. Thus for densities and

temperatures that satisfy the inequality

ρXλpγ(
19Ne) > λw(19Ne), (4.1)

break out into the rp-process will occur [10]. Here the density ρ is in g cm−3, X is

the hydrogen mass fraction, λw(19Ne) is the total weak decay rate of 19Ne (positron

emission and ν̄e-capture), and λpγ = NA〈σv〉pγ, where NA is Avagadro’s number and

the thermally averaged product of cross section and speed is taken from Ref. [8].

Note that the more recent work in Ref. [9] gives rates for 19Ne(p, γ)20Na which differ

from those from Ref. [8], especially at low temperatures. However, for the range of

temperature conditions of interest here, our adopted rate for this process lies within

the range of rates predicted in Ref. [9].

Including a large flux of electron anti-neutrinos would result in higher weak decay

rates (λw). This increase in the right hand side of equation (4.1) would require an

increase in temperature (increasing λpγ(
19Ne)) for a given density at which break

out into the rp-process would occur. Figure 4.4 shows the effects of an electron

anti-neutrino flux on the conditions necessary for break out into the rp-process.

The pp-chain is the dominant process of energy generation in the sun, while the
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Figure 4.5: Comparison of energy generation rates for the pp-chain and CNO cycle
at a temperature of 5× 108 K. The contours are where the energy generation rates
are equal for the two hydrogen burning mechanisms for values of X/Z ′ = 10, 100
(from right to left). Larger ν̄e-fluxes and average energies favors the pp-chain, while
smaller fluxes and average energies favor the CNO cycle.

CNO cycle is dominant in stars that are more massive. However, with a large flux of

electron anti-neutrinos, these processes become independent of temperature so long

as the temperature is high enough to guarantee that proton capture remains com-

paratively fast. A high flux of electron anti-neutrinos allows the pp-chain to compete

favorably with the CNO cycle. For example, Pruet, et al. [11] have studied nucle-

osynthesis in supernova winds where hydrogen “burning” is completely dominated

by νe and ν̄e capture on free nucleons ( see also Ref. [12]).

The scarcity of 15O in comparison to free protons means that for large anti-

neutrino fluxes and average energies, the pp-chain is the dominant mechanism in

hydrogen burning at temperatures that the CNO cycle would traditionally dominate.

Figure 4.5 shows a comparison between the energy generation rates of the pp-chain

and the CNO cycle for X/Z ′ = 10 and 100, where X is the hydrogen mass fraction

and Z ′ is the mass fraction in carbon, nitrogen, and oxygen isotopes. For large anti-

neutrino fluxes and average energies, the pp-chain is the dominant energy generation

mechanism, while for low fluxes and average energies the CNO cycle takes over.
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4.5 Example: Supermassive Stars

Now we consider the case of a supermassive star, a star so massive that it collapses

on the general relativistic Feynman-Chandrasekhar instability (M & 5 × 104M�)

[13]. If such objects did exist, for example in the early universe, their homologous

cores would emit copious fluxes of neutrinos and anti-neutrinos of all flavors during

their collapse [14]. Ref. [14] examined the collapsing core of a supermassive star,

calculating the luminosity and energy spectrum of neutrinos emitted. The total

neutrino luminosity was found to be

Lν ≈ 2.8× 1057
(
MHC

5

)−1.5
erg s−1, (4.2)

where MHC
5 is the mass of the homologous core in units of 105M�. Additionally

they found the energy spectrum of neutrinos of all flavors to fit remarkably well to

a Fermi-Dirac spectrum with a higher temperature than the central plasma tem-

perature (Tν ≈ 1.6T ) and a degeneracy parameter (chemical potential divided by

temperature) ην ≈ 2. The νe and ν̄e emissivity in these objects predominantly comes

from thermal electron-positron pair annihilation. (See Ref. [15] for a complete dis-

cussion of neutrino/antineutrino production processes.)

We can check the effect of this flux of neutrinos and antineutrinos on the nuclear

physics in the gas in the envelope of the star. As a point of reference, we choose

a radius of 100 Schwarzschild radii (r = 3 × 1012MHC
5 cm) where the gravitational

binding energy of a nucleon is approximately equal to the nuclear energy liberated

in these reactions, so there is a chance that any new nuclear physics that occurs as a

result of ν̄e-capture could be relevant. By “relevant” we mean that it is conceivable

that material from this location could avoid being swallowed by the black hole form-

ing in the core. Only a detailed simulation with general relativistic hydrodynamics

could reveal whether or not material affected by ν̄e-capture is ever ejected into space.

We are now free to repeat the analyses done above, but with one free parameter, the

mass of the collapsing homologous core.

Figure 4.6 shows the acceleration of the relevant weak rates as a function of

homologous core mass. The anti-neutrino capture rate is proportional to (MHC
5 )−4.
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Figure 4.6: Rates of relevant weak decays at a distance of 100 Schwartzschild radii
from the center of a supermassive star with homologous core mass MHC

5 × 105M�.
As in Figure 4.1, the solid lines are the total rates of decay of 14,15O, and the dashed
line is the proton to neutron conversion rate through anti-neutrino capture alone.

We see that the effects of anti-neutrino capture on the decay rates of 14O and 15O

become insignificant for large homologous core masses (MHC
5 & 0.4). If supermassive

stars ever formed, it is conceivable that they were in the first generation of stars

with primordial initial abundances. In this case the CNO cycle would be negligible,

at least initially [13]. However, even in this case, the energy generation rate of the

pp-chain would be boosted by several orders of magnitude. It would be interesting

to see if this added energy source would have a discernible effect on the eventual fate

of a collapsing supermassive star.

Including a hydrogen burning phase in the final stages of the collapse of a su-

permassive star may affect the eventual fate of its baryons. Hydrodynamic, post-

Newtonian calculations done in Ref. [13] show that initially metal-free supermassive

stars will collapse to black holes. A fully relativistic simulation in axial symmetry

deduces that the supermassive star collapses to a black hole surrounded by some

remaining gas in an ambient disk [16].

The principal nucleosynthetic issue is whether any material that had experienced

ν̄e capture-affected hydrogen burning escapes being incorporated into a black hole.

Of course, there is the prior issue of whether material at the relatively low tem-
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peratures and densities which characterize hydrogen burning ever experiences high

ν̄e-fluxes. Both issues are related: to see nucleosynthesis products of ν̄e capture-

affected hydrogen burning, the material must be ejected before the point at which

nuclear burning proceeds past simple hydrogen burning and approaches or attains

nuclear statistical equilibrium (NSE). We are skeptical that these conditions can be

met. Fully relativistic numerical simulations could settle these issues.

Obviously, the NSE nucleosynthetic yield is uninteresting in the context of this

paper. However, a mass shedding scenario could be conducive to conditions that

favor hydrogen burning and the rp-process. Speeding up weak decays could affect

the relative abundances of the rp-process elements. A simulation that follows these

species and their chemical reactions would be necessary to address this issue.

4.6 Conclusions

In this paper we have examined the effects of a prodigious flux of electron anti-

neutrinos on hydrogen burning. We have found that the traditional positron decay

bottlenecks in hydrogen burning can be removed and replaced by much faster ν̄e-

capture reactions under some conditions. This would result in an increase of several

orders of magnitude in the energy generation rate over what would be expected

without such a flux.

Additionally, the ν̄e-flux would alter the conditions necessary for break-out into

the rp-process, increasing the temperature necessary to do so at a given density. If

conditions allow the break-out into the rp-process, we could expect an acceleration

of the flow toward the iron-peak facilitated by and accelerated by ν̄e-capture.

When applied to the neutrino flux emitted in the final stages of the collapse of

a supermassive star, interesting changes from current simulations may occur on the

lower end of the supermassive star mass spectrum. Whether or not these effects are

relevant, remains an open question that can only be answered by simulations that

are able to include hydrogen burning during the final collapse of the star.

Important issues that remain open include finding an astrophysical environment
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where the effects discussed here could take place. Accretion disks surrounding black

holes may provide a combination of high accretion rates and hot, high entropy disks

which could produce the necessary fluxes of electron anti-neutrinos. (See for exam-

ple Ref. [17] for a discussion of neutrino emission in lower mass accretion disks.)

Supermassive stars may exhibit this effect, though there is uncertainty related to

whether or not these objects ever existed. Computer simulations would be useful to

determine any changes in the expected nucleosynthetic yield, and the effects of their

possible distribution into the surrounding IGM.

We would like to thank S. E. Woosley, Y.-Z. Qian and A. Heger for useful discus-

sions. This work was supported in part by NSF grant PHY-04-00359 and the TSI

collaboration’s DOE SciDAC grant at UCSD. C.T.K. would like to acknowledge a

fellowship from the ARCS Foundation, Inc.

Chapter 4, in full, is a reprint (with the exception of the citation style, which

has been revised to ensure consistency with the rest of the dissertation) of material

previously published as C. T. Kishimoto and G. M. Fuller, “Neutrino-Accelerated

Hot Hydrogen Burning”, Astrophysical Journal 656, 1104 (2007). I was the primary

investigator and author of this paper.

Appendix 4.A Calculation of Weak Rates

In this work we calculate the ν̄e-capture rates in the manner described in Refs.

[18–20]. We employ measured discrete states only.

Our 14O(ν̄e, e
+)14N rate calculation includes only the 14O ground state (spin and

parity Jπ = 0+) and the measured weak branches to the 14N ground state (Jπ = 0+,

log10 ft = 7.3), first excited state (Jπ = 1+, log10 ft = 3.5), and second excited state

(Jπ = 1+, log10 ft = 3.1). Contributions to the stellar rate from thermal excitation

of parent states are small here as a result of the high first excited state excitation

energy (5.17 MeV) and the temperatures of interest. Likewise, branches to higher

excited states in 14N are not significant. A possible exception is the first isobaric

analog state in 14N (Jπ = 0+) at excitation energy of 8.62 MeV. This branch will
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have a large matrix element but will be Q-value-hindered relative to the 0+ → 0+

ground state to first excited state, pure Fermi branch.

Our 15O(ν̄e, e
+)15N rate calculation includes only the ground state (Jπ = 1/2−)

branch. This channel has a large matrix element, corresponding to log10 ft = 3.6.

Branches to 15N excited states will not be significant. 15N states below 9.15 MeV

excitation energy have positive parity and the branches from the 15O ground state to

them will be forbidden. We note, however, that 15O and 15N are isospin mirrors. This

can be a significant fact for stellar weak interaction rates, as it implies large Fermi

and Gamow-Teller matrix elements coupling each parent state with its daughter

isobaric analog state [18, 19]. Thermal excitation of 15O excited states would open

weak branches to corresponding isobaric analog states in 15N. This is not likely at

the temperatures of interest because the first excited state of 15O is at about 5.2 MeV

excitation.

Our calculation of the 19Ne(ν̄e, e
+)20Na rate includes only the ground state of

19Ne (Jπ = 1/2+) and branches to the ground (Jπ = 1/2+) and third excited state

(Jπ = 3/2+) of 19F. The first of these branches, with log10 ft = 3.2, dominates the

rate. We note, however, that 19Ne and 19F are isospin mirrors. Since temperatures

are high near CNO cycle breakout, thermal excitation of the first (Jπ = 5/2+) and

second (Jπ = 1/2−) excited states can be expected to carry a fraction of the total

weak rate. However, on the assumption that the matrix elements for these branches

are identical to that for the ground-to-ground transitions, inclusion of these branches

makes little difference (< 1%) for the rates and our conclusions.
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Chapter 5

Quantum Coherence of Relic

Neutrinos

5.1 Abstract

We argue that in at least a portion of the history of the universe the relic back-

ground neutrinos are spatially-extended, coherent superpositions of mass states. We

show that an appropriate quantum mechanical treatment affects the neutrino mass

values derived from cosmological data. The coherence scale of these neutrino flavor

wavepackets can be an appreciable fraction of the causal horizon size, raising the

possibility of spacetime curvature-induced decoherence.

5.2 Introduction

In this letter we point out a curious feature of the neutrino background and the

potential implications of this both for models of neutrino clustering and for astro-

physical limits on neutrino rest mass. With Standard Model interactions, neutrinos

and antineutrinos in the early universe should be in thermal and chemical equi-

librium with the photon- and e±-plasma for temperatures T > Tweak ∼ 1 MeV. For

T � Tweak, the neutrinos and antineutrinos will be completely decoupled, comprising

131



132

seas of “relic” particles freely falling through spacetime with energy-momentum and

flavor distributions reflecting pre-decoupling equilibrium plus the expansion of the

universe. This is analogous to the presently-decoupled cosmic microwave background

(CMB) photons. These photons had been coupled and in thermal equilibrium in the

early universe when T > Tem ≈ 0.26 eV.

Experiments have demonstrated that the neutrino energy (mass) eigenstates |νi〉
are not coincident with the weak interaction (flavor) eigenstates |να〉. These bases

are related by the Maki-Nakagawa-Sakata (MNS) matrix, |να〉 =
∑

i U
∗
αi|νi〉, where

α = e, µ, τ , and i = 1, 2, 3 denotes the mass eigenstates, with corresponding vacuum

mass eigenvalues mi, and where Uαi are the unitary transformation matrix elements

(parameterized by 3 mixing angles θ12, θ23, θ13, and a CP -violating phase δ).

Absolute neutrino masses remain unknown, but the neutrino mass-squared differ-

ences are measured. Studies of atmospheric neutrinos reveal a characteristic mass-

squared splitting, |δm2
atm| ≈ 2.4 × 10−3 eV2, associated with νµ 
 ντ mixing with

sin2 θ23 ≈ 0.50. Likewise, solar neutrino observations and reactor-based experimental

data suggest that the solar neutrino deficit problem is solved by flavor transforma-

tion in the νe 
 νµ/τ channel and that the characteristic mass-squared difference

for this solution is δm2
� ≈ 7.6× 10−5 eV2, and that sin2 θ12 ≈ 0.31. Current experi-

mental limits on θ13 are sin2 θ13 ≤ 0.040 (2σ limit) [1]. The CP -violating phase and

ordering of the neutrino mass splittings remain unconstrained by experiment. In

the “normal” neutrino mass hierarchy the solar neutrino mass-squared doublet lies

below the atmospheric doublet; in the “inverted” mass hierarchy it is the other way

around. This is illustrated in Fig. 5.1.

5.3 Neutrino Evolution

For T > Tweak, prior to decoupling, solutions of the quantum kinetic equations

for neutrino flavor evolution show that neutrinos will be forced by weak interaction-

mediated scattering into flavor eigenstates [2, 3]. At epoch Tweak, corresponding to

scale factor aweak, the neutrino distribution functions for each flavor will be two-
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Figure 5.1: Neutrino mass eigenvalue ordering in the “normal mass hierarchy” on
the left and the “inverted mass hierarchy” on the right.

parameter, Fermi-Dirac black bodies, with the number density of να’s in energy

interval dEν given by

dnνα =
1

2π2
· p2

eEν/Tweak−ηνα + 1

(
dEν

dp

)−1

dEν , (5.1)

where we employ natural units with ~ = c = kB = 1, the degeneracy parameter

(ratio of chemical potential to temperature) for neutrino species να is ηνα , and where

the neutrino energy-momentum dispersion relation is

Eν =
∑

i

|Uαi|2
(
p2 +m2

i

)1/2
, (5.2)

with p = |p| the magnitude of the spacelike momentum. Here we will ignore small

spectral distortions between νe and νµ,τ from e±-annihilation.

Subsequent to decoupling, these pure flavor states can be regarded as collisionless,

simply free falling through spacetime with their momentum components redshifting

with the scale factor, p ∝ a−1. As a result, the number density of να at an epoch

with scale factor a is

dnνα(a) ≈ T 3
ν (a)

2π2
· ε2dε

eEν(a)/Tweak−ηνα + 1
, (5.3)

where Tν(a) = Tweakaweak/a is an effective “temperature” of the neutrinos, ε =

p/Tν(a) is a co-moving invariant, and the energy-momentum dispersion relation is

Eν(a) ≈ Tweak

(
ε2 +

∑
i |Uαi|2m2

i

T 2
weak

)1/2

. (5.4)
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In both of these expressions, we have neglected corrections of order (mi/Tweakε)
4

which are small since experimental measurements of neutrino masses havemi . 1 eV,

Tweak ∼ 1 MeV, and small values of ε are suppressed in the neutrino distribution

function, Eq. (5.3). The energy-momentum dispersion relation, Eq. (5.4), leads to

the standard choice for the effective mass of a neutrino in flavor state να,

m2
eff,να

=
∑

i

|Uαi|2m2
i . (5.5)

This is the dynamical mass for an ultrarelativistic neutrino of flavor να. However,

we will show that when the neutrino momentum redshifts to a point where the

neutrino’s kinematics become less relativistic, this effective mass is no longer relevant

in characterizing the energy-momentum dispersion relation.

Examining Eqs. (5.3) and (5.4), we notice that the distribution function for να

maintains a self-similar form with ε and ηνα being co-moving invariants. This form

is suggestive of, though subtly different than, a Fermi-Dirac blackbody with tem-

perature Tν and degeneracy parameter ηνα . The energy distribution functions for

neutrinos in mass eigenstates are a weighted sum of the flavor eigenstates,

dnνi
=
∑

α

|Uαi|2dnνα . (5.6)

If the degeneracy parameters for the three flavors were all equal, then the distribution

function for the mass states would have the same Fermi-Dirac form. This follows

from unitarity,
∑

α |Uαi|2 = 1. However, in general the distribution functions of neu-

trinos in mass eigenstates would not have a Fermi-Dirac form where the degeneracy

parameters were not identical for all three active flavors.

CMB- and large scale structure-derived neutrino mass limits typically are pred-

icated on an assumption that these distribution functions have a Fermi-Dirac black

body form. This assumption is invalid when the energy spectra of the various neu-

trino flavors are not identical, i.e., when the neutrino degeneracy parameters (or,

equivalently, the corresponding lepton numbers) are unequal.

The measured solar neutrino mixing parameters coupled with Big Bang Nucle-

osynthesis (BBN) considerations limit ηνα < 0.15 [4, 5] for all flavors and dictate that
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Figure 5.2: (ρ
(0)
ν − ρν)/ρν as a function of redshift. Solid curve is for m1 = 1 meV in

the normal neutrino mass hierarchy and the dashed curve is for m3 = 1 meV in the
inverted hierarchy.

the degeneracy parameters be within an order of magnitude of each other [4, 6, 7].

Consequently, the spectral and number density differences for the neutrino flavors

stemming from disparate lepton numbers cannot be large, but conceivably could be

. 15%. Nevertheless, as neutrino mass limits improve with future higher precision

CMB experiments and better large scale structure observations, it may be neces-

sary to include the possibility of non-Fermi-Dirac energy spectra in these neutrino

mass analyses. For the remainder of this letter, we will assume that all the neutrino

degeneracy parameters are zero to illustrate another important result.

However, there is a more general issue associated with determining neutrino

masses from cosmological data. A naive method of calculating ρν , the energy density

of neutrinos in the universe, is to use the effective mass in Eq. (5.5) and the number

density distributions of neutrinos in flavor eigenstates,

ρ(0)
ν =

∑
α

∫
(p2 +m2

eff,να
)1/2dnνα . (5.7)

However, if we wish to calculate the energy density of these quantum mechanical



136

particles, we ought to consider the energy (mass) eigenstates in the calculation,

ρν =
∑

i

∫
(p2 +m2

i )
1/2dnνi

=
∑
i,α

∫
|Uαi|2(p2 +m2

i )
1/2dnνα . (5.8)

At late times (large scale factors or equivalently small redshifts), the momenta of

the neutrinos have redshifted to a point where they are comparable to the neutrino

masses. We note that in this case the quantum mechanically consistent calculation

diverges from the naive approach of using the effective neutrino masses. Fig. 5.2

shows the fractional difference between these two calculation techniques. At large

redshifts, neutrino momenta are large enough that all three mass eigenstates are

ultrarelativstic and masses have little effect on the overall energy density. On the

other hand, at low redshifts, neutrino momenta have redshifted to a point where the

kinematics of the neutrinos is no longer ultrarelativistic and rest mass becomes sig-

nificant in the overall energy density. At this point the difference in the two methods

manifests itself in the difference between the quantum mechanical expectation value

for the mass, 〈m〉, and the root-mean-squared mass expectation value, 〈m2〉1/2.

As can be seen in Fig. 5.2, the disparity in calculating the value of ρν becomes

significant, of order 10%, for redshifts of order 1 − 10, at least for m1 ∼ 1 meV.

This could be important because this is the epoch of structure formation in the

universe where the energy density in neutrinos and the character of their kinematics

are relevant to the formation of large scale structures.

One method of experimentally determining the mass of the neutrino using the

CMB is by inferring the transfer function in the matter power spectrum at large

wavenumbers (or small scales). Massive neutrinos contribute to the closure frac-

tion in cold dark matter at the current epoch (as inferred by measurements of the

CMB power spectrum), but at higher redshifts, when structure formation occurs,

these neutrinos may act as hot dark matter. As a result, the amount of cold dark

matter at these earlier epochs is reduced, suppressing the formation of large scale

structure compared to a situation without massive neutrinos. A comparison of the
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Figure 5.3: The lightest mass eigenvalue as a function of Ωνh
2. Solid curves use

the quantum mechanical calculation method described here, while dashed curves use
the naive method illustrated in Eq. (5.7). The curves on the left correspond to the
normal neutrino mass hierarchy, while the curves on the right are for the inverted
hierarchy. Also plotted is the limit from the WMAP 5-year data, Ωνh

2 < 0.0071
(95% confidence limit).

observationally-inferred matter power spectrum with the power spectrum expected

without the effects of massive neutrinos implies Ων , the closure fraction contributed

by neutrinos. Determining the energy density in neutrinos at late times is an impor-

tant aspect of this procedure and is necessary in deriving neutrino masses.

This is a concern since the naive computation of neutrino energy densities differs

from the quantum mechanical method. Fig. 5.3 shows the relationship between the

lightest mass eigenvalue (m1 in the normal hierarchy or m3 in the inverted hierarchy)

and the measured value of Ων . We see that the limit on Ωνh
2 for excluding the

inverted hierarchy is reduced by about 15%. (Here h is the Hubble parameter in

units of 100 km s−1 Mpc−1.) In addition, at low mass values, we see that the mass is

a very sensitive function of Ωνh
2. As a result, mass measurements using this method

are sensitive to the precision in the inferred measurement of Ωνh
2. A 10% error in

the measurement of Ωνh
2 would prevent us from inferring a lightest neutrino mass
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. 5 meV. For neutrino masses . 10 − 20 meV, there can be a significant error in

determining the lightest mass eigenvalue if the quantum mechanical treatment we

present here was not used.

The current observational limits (shown in Fig. 5.3 as the five-year WMAP data

[8]), are nowhere near the regime where a consistent quantum mechanical treatment

is necessary. However, the quantum mechanical analysis may be relevant for higher

precision future neutrino mass inferences based on transfer function arguments.

One possible complication has not been discussed. It has been claimed that the

phase space density of the relic neutrinos is high so that quantum coherence between

momentum states may develop as a result of fermion exchange symmetry [9]. We

note that the initial distribution of neutrinos, Eq. (5.1), is determined by Fermi-

Dirac quantum statistics because it reflects emergence from an environment where

thermal equilibrium obtains. Moreover, the general relativistic analog to Liouville’s

Theorem assures us that as these neutrinos freely stream through spacetime, their

proper phase space density remains unchanged and therefore continues to respect

the Pauli principle.

5.4 Gravitational Induced Decoherence

There is a second, peculiar effect born from the fact that these relic neutrinos

decouple from the plasma of the early universe in flavor eigenstates. A decoupled relic

neutrino να can be regarded as a coherent superposition of mass states with common

spacelike momentum p. As the universe expands and this momentum redshifts

downward, there will come an epoch where the higher rest mass component of this

flavor wavepacket will tend toward a nonrelativistic velocity, while the lower mass

components speed along at nearly the speed of light. From this point onward the

spatial scale of the coherent flavor wavepacket will grow rapidly with time. The net

result is that at the present epoch, and at the redshift z ∼ 1 epoch where neutrinos

are falling into dark matter potential wells, the relic neutrinos are coherent structures

with sizes considerably larger than the spatial scale of the gravitational potential wells
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Figure 5.4: The separation of mass eigenstates as a function of redshift. Solid curve
for ν1− ν3, long dashed curve for ν2− ν3, and medium dashed curve for ν1− ν2. The
causal horizon is the short dashed curve.

of galaxies and, in some cases, comparable to the causal horizon size.

Using the normal neutrino mass hierarchy scheme andm1 = 1 meV, Fig. 5.4 shows

how the size of a relic neutrino flavor wavepacket would grow with the expansion of

the universe.

The more massive components of these neutrino flavor wave packets become non-

relativistic very early on, and it is interesting that the two different possibilities

for the neutrino mass hierarchy yield quite different kinematic histories for the relic

neutrinos. For example, with m1 = 1 meV in the normal neutrino mass hierar-

chy, the measured neutrino mass-squared differences imply that m2 ≈ 8.7 meV, and

m3 ≈ 49 meV. Consequentially, as the wave packets for the three mass eigenstates

redshift in the expanding universe, the wave packet corresponding to each of the three

mass eigenstates tends to become non-relativistic at three distinct epochs, z ∼ 5, 50,

and 300 respectively. These are the epochs in which mass eigenstates separate as the

neutrino flavor wavepacket travels through spacetime, as can be seen in Fig. 5.4.

On the other hand, the inverted neutrino mass hierarchy would yield a different
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history. The three neutrino masses would be m3 = 1 meV, m1 ≈ 49 meV, and

m2 ≈ 50 meV, which would imply that the lightest mass eigenstate would tend to

be non-relativistic at z ∼ 5 while the two heavier mass eigenstates would become

non-relativistic at z ∼ 300.

If the lightest neutrino mass eigenvalue is � 1 meV, then the relic neutrinos

might be coherent flavor eigenstates consisting of superpositions of relativistic and

nonrelativistic components at the epoch z ≈ 2 when these particles begin to fall

into the gravitational potential wells associated with galaxies. Though the role of

spacetime curvature in quantum state reduction is not settled [10–12], an obvious

set of questions is posed.

First, does the process of “capturing” a neutrino into a gravitational potential well

lead to flavor wavepacket de-coherence? Given the disparity between the relatively

small local spacetime curvature scale and the flavor wavepacket size in this example,

it is plausible that the gravitational tidal stress induces de-coherence. In this picture,

the neutrino clustering/capture process would be tantamount to a “measurement,”

with capture occurring when flavor wave function collapse yields a nonrelativistic

mass-energy eigenstate.

However, this line of reasoning calls into question the premise of coherent flavor

eigenstates at the epoch when neutrinos are captured into, e.g., clusters of galaxies.

Fig. 5.4 shows that the relic neutrino flavor wavepackets can have spatial extents that

are on the order of the causal horizon size. In this case, the wavepacket sizes are

comparable to the spacetime curvature scale of the universe itself. In this picture, the

complete de-coherence history of the relic neutrinos could be obtained only through

solution of a fully covariant Dirac-like field development equation with all matter

and dark matter distributions plus a prescription for de-coherence (wave function

collapse).

An alternative possibility is that de-coherence would never happen. In this picture

spacetime curvature would merely cause the relic neutrino flavor wavepackets to suffer

phase space distortion as they fall through spacetime and into gravitational potential

wells.
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In either case, unitarity implies that the comoving number density of neutrinos

at a given mass is fixed. As a result, unless there is new physics associated with

curvature-induced decoherence, the accretion history of neutrinos in potential wells

should depend only on the neutrino masses and, in particular, the mass hierarchy.
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Appendix A

Physical Constants and Natural

Units

Table A.1 lists a number of physical constants that are relevant in the presen-

tation of this dissertation. The values presented are the current (2006) values as

recommended by the Committee on Data for Science and Technology (CODATA),

and may be found on the website of the National Institute of Standards and Tech-

nology (NIST): http://physics.nist.gov/cuu/Constants/index.html . The val-

ues are presented in a common form representing both the mean value and stan-

dard uncertainty (1-σ uncertainties), where (a.bcde± 0.00fg)× 10h is repesented as

a.bcde(fg) × 10h. The values are given in cgs (centimeter-gram-second) units [as

opposed to SI, a.k.a mks (meter-kilogram-second), units], which are commonly used

in astrophysics.

Throughout this dissertation, with the exception of Chapter 4 and where it is

otherwise noted, natural units are used where ~ = c = kB = 1. By removing three

dimensionful constants, which incorporate four independent physical units, we reduce

the number of dimensions to one. It is useful in astroparticle physics to express all

units in terms of MeV. Table A.2 includes a number of derived physical constants

that are useful in understanding natural units. The errors shown are consistent not

only with the individual errors of the parameters, but also with covariance between
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Table A.1: Fundamental Physical Constants in cgs units. Source: 2006 CODATA
values.

Constant Value

Boltzmann Constant kB 1.380 6504(24)× 10−16 erg K−1

Electron Mass me 9.109 382 15(45)× 10−28 g

Electron Volt eV 1.602 176 487(40)× 10−12 erg

Gravitational Constant GN 6.674 28(67)× 10−8 erg cm g−2

Neutron Mass mn 1.674 927 211(84)× 10−24 g

Proton Mass mp 1.672 621 637(83)× 10−24 g

Reduced Planck constant ~ 1.054 571 628(53)× 10−27 erg s

Speed of light in vacuum c 2.997 924 58(exact)× 1010 cm s−1

the experimental values of the fundamental physical constants presented in Table

A.1.

A.1 Temperature

The temperature is converted using the Boltzmann constant,

T = kBT =
[
8.617 343(15)× 10−2

]
T9 MeV,

where T9 = T/(109 K) is the temperature in units of 109 K.

A.2 Length and Time

As is commonly the case in relativity, we set c = 1, which allows us to relate

temporal scales to spatial scales,

1 s = 1 light-second = 2.997 924 58× 1010 cm.

By using the relationship ~c = 1, a length scale can be related to an inverse

energy scale,

1 cm =
1 cm

~c
= 5.067 731 16(13)× 1010 MeV−1.
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Table A.2: Derived Physical Constants using natural units. Source: 2006 CODATA
values.

Constant Value

~c 1.973 269 631(50)× 102 MeV fm

Boltzmann Constant kB 8.617 343(15)× 10−11 MeV K−1

Electron Mass mec
2 0.510 998 910(13) MeV

Fermi Constant GF/(~c)3 1.166 37(1)× 10−11 MeV−2

Neutron Mass mnc
2 9.395 653 46(23)× 102 MeV

Planck Mass mplc
2 1.220 892(61)× 1022 MeV

Proton Mass mpc
2 9.382 720 13(23)× 102 MeV

As a result, a density is given by

1 cm−3 = 1 cm−3 (~c)3 = 7.683 503 55(58)× 10−33 MeV3.

A.3 Mass

As is also the case in relativity, setting c = 1 allows us to identify masses with

energies,

1 g = (1 g) c2 = 5.609 589 12(14)× 1026 MeV.

Some useful figures of merit are the mass of a nucleon (proton or neutron) is approx-

imately 1 GeV, and the mass of an electron is approximately 500 keV.

Another important figure of merit is the mass of the sun. The solar mass, M�, is

often a convenient unit in astrophysics whose measured value from the Particle Data

Group is

M� = 1.988 4(2)× 1033 g,

or expressed in MeV,

M� = 1.115 4(1)× 1060 MeV.

The Planck mass is a mass scale that can be created by the physical constants ~,
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c, and GN , and is defined as

mpl =

√
~c
GN

= 2.176 44(11)× 10−5g,

or in MeV,

mpl = 1.220 892(61)× 1022 MeV.

The Planck mass is significant in this dissertation in its relationship to Newton’s

gravitational constant in natural units,

GN =
1

m2
pl

.




