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ELECTRONIC STRUCTURE OF METALS AND SEMICONDUCTORS: 
BULK, SURFACE, AND INTERFACE PROPERTIES 

Steven Gwon Sheng Louie 

Materials and Molecular Research Division, Lawrence Berkeley Laboratory 
and Department of Physics, University of California 

Berkeley," California 94720 

ABSTRACT 

A theoretical study of the electronic structure of various metals 

and semiconductors is presented with the emphasis on understanding t~2 

properties of these materials when they are subjected to extr~me 

conditions and in various different configurations. 

Among the bulk systems studied, the properties of cesi~~ under 

high pressure are discussed in terms of the electronic structure 

calculated at various cell volumes using the pseudopotential method . 

Local fields or umklapp processes in semiconductors are studied within 

the random phase approximation (RPA). Specifically the dielectric 

response matrix £QQ'(s.=O,w) is evaluated numerically to determine the 

effects of local-field corrections in the optical spectrum of SL 

Also, some comments on the excitonic mechanism of superconductivity 

potl'lltial method is next extended to c;J1clJi:lt(, thl' vlectroni.' strurlllri.' 

of a transition metal Nb. The calculation is performed self-consistently 

with the use of a non-local ionic potential determined from atomic 

spectra. Finally the theory of the superconducting transition 
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temperature T is discussed in the strong-coupling formulation of the 
c 

BCS theory. The Eliashberg equations in the Matsubara representation 

are solved analytically and a general T equation is obtained. 
c 

In addition to the above study of bulk properties, a new method 

is developed using pseudopotentials in a self-consistent manner to 

describe non-periodic systems. The method is applicable to localized 

configurations such as molecules, surfaces, impurities, vacancies, 

finite chains of atoms, adsorbates, and solid interfaces. Specific 

applications·to surfaces, metal-semiconductor interfaces and vacancies 

are presented here. 

For surfaces, the new scheme is employed to calculate the electronic 

structure of the Si(lll) surface for three different structu~dl models 

(ideal, relaxed and reconstructed). Surface states are identified 

and analyzed throughout the two-dimens iona1 Brillouin zone. Chargl~ 

densities and electronic density of states are presented and discussed. 

The effects of relaxation on the electronic structure of the GaAs (110) 

surface are also investigated. Similar studies are carried out for 

metal surfaces with the Al (Ill) surface and the Nb(OOl) surface 

considered as prototypes for the simple s-p metal and the transition 

metal surfaces. 

a series of four inll'rLil'L'S or ill,'rL'aslJlg hL'nliclllHldl'lor iOJlicity i:-:; 

studied. The series consists of interfaces of Al (modeled by a 

jellium core potential) in contact with the (Ill) surface of Si and 

the (110) surfaces of GaAs, ZnSe and ZnS. The different types of 
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states existing near the interfaces are identified and analyzed in terms 

of a local density of states and their individual charge densities. The 

calculated Schottky barrier heights are in good agreement with 

experiments. In addition, a model involving metal-induced states in 

the semiconductor band gaps near the interface is presented for the 

ionicity-dependent behavior of the metal-semiconductor Schottky barrier 

heights. 

Finally. as an example of vacancies in semiconductors, the 

electronic structure of a neutral vacaQcy in the Si crystal is cal-

culated for the ideal and two model reconstructed geometries. Vacancy 

states are identified and their charge densities are presented. 
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I. INTRODUCTION 

We present a theoretical study on the electronic structure of 

various metals and semiconductors. Particular emphasis is placed on 

understanding the changes in the properties of these systems when they 

are subjected to extreme conditions and in various different configura-

tions. The pseudopotential method has been employed extensively to 

calculate the bulk, surface and interface electronic structure of the 

systems studied. Superconductivity is discussed both in the weak-

coupling and the strong-coupling formulation of the BCS theory. 

We begin in Section II with the discussion of the bulk proper~.ies 

of solids. The electronic structure of cesium under high pressure is 

examined in Sec. IIA. The calculated results indicate that many of 

the properties of Cs under pressure arise from the changes in the 

characteristics of the conduction electrons which become increasel), 

d-like as the volume contracts. Local fields or umklapp processes in 

semiconductors are discussed next in Sec. lIB. An expression for ~~~e 

dielectric response matrix EQQ,(S,W) in the random phase approximation 

(RPA) is derived via a diagrannnatic approach. The matrix EQQ,(S.=O.w) 

is then evaluated to study the ~ffectR of loral-field corrertions in 

the optical sp(,ctrum of Si. Some' commt-nls on thl'('x('itonic m(·ch.,nislIl 

of superconductivity which invo]vt>s a mE'tal-semiconductor interface are 

presented and the role of local fields is discussed. Section IIC is 

on bulk Nb. We show that, with the inclusion of a non-local d-potential, 

the pseudopotential method can be extended to calculate the electronic 
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structure of transition metals. The calculations were performed self­

consistently with the Nb+5 ionic core pseudopotential determined from 

atomic spectra. In Sec. lID we explore the theory of the superconducting 

transition temperature. The Eliashberg equations in the Matsubara 

representation are solved analytically using a self-consistent, 

variational procedure. An e>-"l'ression for the superconducting transi tion 

temperature T is derived. Unlike the NcMillan equation, this T 
c c 

equation is shown to be a valid solution of the Eliashberg equations for 

all electron-phonon coupling strength and for different shapes of t~e 

electron-phonon interation spectrum, a 2F(w). 

The remaining three sections are on non-periodic systems. In 

Sec. IlIA a new method which extends the pseudopotential scheme to 

localized configurations is presented. These calculations are done 

self-consistently and the approach is applicable to problems such as 

atomic and molecular states, solid surfaces, impurity and vacancy 

states, finite chains, adsorbates, and solid in·terfaces. Our results 

on the semiconductor surfaces are presented in Sec.IIIB. Specifically, 

we have studied the electronic structure of the Si(lll) surface using 

three different structure models - the ideal structure, a relaxed 

structure and a (2 xl) reconstructed structure. The effects of relaxation 

the lIIl'tal ~urLH':L'S witll Llle Al (III) surf:II:l' .JIlJ the Nh«()(J I) ~;tIl~LI('l' 

considered as prototypes for the simple s-p metal and the transition 

metal surfaces. In all of the cases studied, surface states with 

different characteristics are found to exist over a wide range of 
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energies; and our results are in general agreement with available 

experimental data when the appropriate restructuring of the surface 

is included. 

In Section IV we·apply our method to study the metal-semiconductor 

interfaces. The interfaces studied are interfaces of Al (modeled by a 

j,ellium core potential) in contact with the (111) surface of Si and 

the (110) surfaces of GaAs, ZnSe and ZnS. The electronic structure 

of the Al/Si interface is discussed in some detail in Sec. IVA and the" 

results for the metal-zincblende semiconductor interfaces are presented 

in Sec. IVB. Metal-semiconductor Schottky barrier heights in very 

good agreement with experiments were obtained. Our results indicate 

that, within the jellium-semiconductor model, intrinsic semiconductor 

surface states do not playa dominant role in determining the Schu~tky 

barrier heights. In particular the intrinsic surface states which 

e?{isted in the fundamental gaps of the semiconductors for the "free" 

surface case are found to be removed by the presence of the metal 

(r = 2.07) and new types of metal-induced gap states (MIGS) occur in 
s 

this energy range. In Sec. IVC the role of ionicity in metal-

semiconductor Schottky barriers is investigated. We show that the 

variations in the experimental barrier heights for different metals in 

terms of a simple model involving the MIGS in th~ semiconduetor band 

gap. 

Finally. in Section V we study the electronic properties of 

vacancies in covalent semiconductors. Specifically we have calculated 



: 

-4-

the electronic structure of a neutral vacancy in the Si crystal using 

the method discussed in Sec. IlIA. The energies of the localized 

vacancy states and their corresponding charge density distributions 

were obtained. In addition to the ideal structure, the effects of 

structural reconstruction on the Si vacancy states were also investigated 

through the use of two model reconstructed structures. 
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II. BULK 

.A. Electronic Structure of Cesium under Pressure 

In this section we present some calculations on the electronic 

properties of cesium under high pressure. The calculations are based 

on the pseudopotential method. l We have calculated the band structure, 

the density of states, and the charge density of the conduction 

electrons at c~ll volumes V equal to O.S V , 0.4 V and 0.3 V where 
000 

V is the cell volume at normal pressure. The conduction electron 
o 

density of states is further separated into contribu~ioris from s-, p-

and d-like components. In addition, the topology of the Fermi surfaces 

at the above volumes was determined. 

The present calculations were performed to try to gain some informa-

tion about the many interesting properties of cesium under pressure. 

2-'S 
Experiments show that cesium undergoes three phase transitions in 

the pressure range of one to fifty kilobars. At room temperature arid 

under hydrostatic pressures, X- ray3 and neutron diffraction
4 

measure-

ments show that there are three discontinuities in the volume versus 

pressure curve. The first discontinuity occurs at 23.7 kbar 

(V/V. = 0.63). At this pressure cesium undergoes a transition from ~ 
o 

bec structure (CsT) to D fcc structure (CsII) with a small reduction 

in volume. TIle next discontinuity occurs at 42.2 khar (V/V = 0.45). 
o 

The latter transition is a first orderisostructural ~ransition. The 

structure of the new phase, CsIII, is fce as in CsII but the volume 

drops by 9%. The third transition, CsIII to CsIV, occurs at 42.7 kbars 
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(V/V = 0.41) where the cell volume of cesium drops by 2.4%. The 
·0 

structure of CsIV has not been determined. 

The above transitions are also evident in resistivity versus 

356 
pressure measurements. " The resistivity as a function of pressure 

decreases initially, reaches a minimum at 8 kbar. It then increases , 
with increasing pressure with a discontinuous rise at 23.7 kbar where 

bcc CsI transforms to fcc CsII; it becomes anomalously large near 42 kbar. 

Two spikes in the resistivity were observed at 42.2 kbar and 42.7 kbar; 

they correspond to the CsII-III and the CsIII-IV transitions respectively. 

The resistivity data are also interesting at higher pressures. The 

resistance of cesium drops steadily after the 42.7 kbar transition, and 

there is a second anomalous region near 120 kbar where the resistivity 

. 1 . 6 
r~ses steep y to a max~mum. 

The bulk modulus of cesium also behaves anomalously at the higher 

7 pressures. Below the 42 .. 7 kbar transition and above 120 kilobars, 

the bulk modulus is a linearly increasing function of pressure. In 

between, however, cesium becomes anomalously stiff; the bulk modulus 

increases abruptly and reaches a value at 120 kbar which is two orders 

of magnitude higher than its value at 43 kbar. Finally, cesium has 

the interesting property that it becomes superconducting at low 

R 
L('PI]>"r;llurl' .11111 Ili/ ',Ia pn'sHIII-". '1'111' :;lIjll.,,. .. lllldlll'l ill/', II-;In::il il'lI 

temperature is found to be 1.5°" at 120 kbar and the transition 

temperature is a decreasing function of pressure. 

TIle CsI-II transition at 23.7 kbar was first explained by 

Bardeen9 and later confirmed by experiment. 3 The isostructure 
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0.45) is more complicated. Previous 

have attributed it to the change of the 

character of the conduction electrons from 6s to 5d, which occurs when 

the lattice is compressed to critical volume. This idea was first 

d b . h 10 propose y Stern eimer in 1950. However his model gives the mixing 

of the s- and d-waves at lower pressure than the observed value. 

. 13 
Recent calculation by Yamashita and Asano. has shown that the 

cesium d-bands are broader than those obtained by Sternheimer. Using 

the APW method, Yamashita and Asano have calculated the band structure 

of cesium as a function of various cell volumes arid they have examined 

the Fermi surfaces at those volumes. Cqlculations of total energy 

14 15 versus volume ' have also been done which show a first order 

isostructural transition but at too low pressure. 

4 
As noted by Ndlhan, recent experimental and theoretical evidence 

indicate a continuous s-d transition rather than an abrupt one as 

previously believed .. The present calculation is the first attempt 

using the pseudopotential method to look at the isostructural transi-

tion of cesium .. A band structure is calculated throughout the Brillouin 

zone which yields a detailed calculation of the density of states and 

of the electronic charge density. The calculation is described below 

.in section 1, the results are given in sectibn 2, and some discussion 

of the results is presented in section 3. 

1. Methods of Calculation 

a. Band structure. In applying the pseudopotential method to 

obtain the electronic band structures, we have used the pseudopotential 
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p2 
H = =- + 2m v 

p 
(1) 

where V is a weak pseudopotential which is taken to be a superposition 
p 

of atomic pseudopotentials. V which is energy" dependent can be 
p 

decomposed into a local and a non-local component 

However, for a limited energy range, the energy dependence may be 

ignored. 

(2) 

In the case of cesium, for the local pseudopotential, we used 

Animalu's16 screened model potential form factors. The form factors 

are defined as 

(3) 

where V is the local atomic pseudopotential, Q is a reciprocal lattice 
a 

vector, and Q is the priDitive cell volume. To compute the energy bands 

at high pressure, i.e. different primitive cell volume and different 

£'s, the form factors must be appropriately scaled. We scaled the 

form factors in the following way. Let n' and Q' be the primitive cell 

volume and the reciprocal lattj ("t' vector :It a new pressure, then thv 

new form factors are given by 

-iG'·r
d

3
r e - - -

= ~, V(Q') (4) 
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The atomic pseudopotential is weak because the repulsive potential 

from the orthogonalization terms cancels the strong atomic potential. 

However the cancellation is different for the different angular momentum 

components of the conduction electron wavefunction. In uSing a local 

pseudopotential one has assumed that the cancellation is the same for 

each angular momentum component. 

In cesium the core has configuration 

(5) 

The cancellation for ~=O and 1 is expected to be good over the whole 

core. For ~=2 there is some cancellation arising from the 3d and 4d 

core states, but it can only cancel the atomic potential up to the n=4 

shell. It leaves the potential in the n=5 shell uncancelled and the 

d-component of the conduction electrons will see a deeper attractive 

potential. 

At normal pressure the conduction electron wave function is mostly 

s-like; the ~-dependent effect will not be important. However, at 

high pressures, there is a large s-d mixing. The ~-dependent part of 

the potential is then very important. To account for the incomplete 

cancellation, we have added a non-local correction to the local form 

factors of the form 

2 2 
= A2 Pxp (-r /R ) P 2 

17 (6) 

A2 is the well depth, R is the well size, and p~ is a projection 

operator acting on the d-component of the' wnvefunction. 
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Since there was .no experimental information on the band structure 

of cesium at high pressure, A2 and R were determined by adjusting them 

to fit our band structure at V/V = Q.5 to the band structure calculated o 

by Yamashita and Asano
l3 

at the same volume. With some further 

adjustments of VL, we obtained a good fit for the values A2 = -3.2 

rydbergs and R = 1.275 A. The largest discrepancy is 0.5 eV at the 

point L in the Brillouin zone. The scaled local form factors and the 

d-potential for the various cell volumes are given in Table 1. (G, is 

in units of 2n/a where a is the lattice constant.) We have not scaled 

the size and the depth of the d-well since we assumed these are 

properties of the atomic core and the d-well is very localized. Even 

at V/V = D.15, the radius of the inscribed sphere is larger than R. 
o 

Thus the same d-well was used in the band structure calculation at 

V/V = 0.5, 0.4 and 0.3. The most important band structure effects 
a 

for VIVo's come from the d-potential and the scaling of VL is not 

critical. 

b; Density of states. Once the band structure has been obtained, 

the density of states N(E) may be calculated from 

2 
N(E) = 

N 
:E ~ t')(E-E (k» n ~ k n 

(7) 

where N is the number of primitive cells and N(E) is norm:llizcd to the 

number of states per atom. To calculate the s, p and d contributions 

to the density of states, we define the i-character of a wavefunction 

IjJn~ (r) in -the following quantity 

.. 
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( 8) 

where the integrals are to be taken over the inscribed sphere. By 

assuming that the fractional mixing of the various angular momentum 

components of the wavefunction outside of the inscribed sphere is the 

same as those in the inside, the partial density of states may be 

calculated and 

(9) 

with 

N(E) = N (E) + N (E) + Nd(E) . s p 
(10) 

This is a reasonable definition for the partial density of states 

because the inscribed sphere contains 75% of the primitive cell volume. 

Equations (7) and (9) were numerically evaluated using the Gilat-

Raubenheimer technique. 18 At volume V/V = 0.5, a grid of 125 points 
o 

in the fcc irreducible Brillouin zone was used in the calculation. 

At volumes V/V = 0.4 and V/V = 0.3, a grid of 308 points was used. 
o 0 

The reason for the grid size variation is that 308 points were needed 

for the charge density calculation at volumes V/V = 0.4 and V/V 0.3. 
o 0 

c. Electronic charge density. From the density of states we 

obtained the Fermi energy EF by the following normalization 

E 
1 = f F N(E) dE . (11) 
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The band charge density of the conduction electron in a given band, n, 

may then be calculated from 

Pn (.r) = 2e 2: \V* n1(.r) 1Pn1 (.r) 
kEBZ 

En(1)~EF 

and the total charge density is 

= L P (r) . n ..... 
n 

(12) 

(13) 

To obtain sufficient convergence for the charge. density calculation, 

the wavefunctionslJin1 were expanded in a basis set of about 85 plane 

waves. And because the Fermi surfaces at V/V = 0.4 and V/V = 0.3 
o 0 

are more distorte'd than the Fermi surface at V /V = 0.5, to insure 
o 

good convergence, a grid three times the size of the grid at V/V = 0.5 
o 

was used. 

2.- Results 

The scaled form factors, d-well parameters. and lattice; constants 

used in the calculations are listed in Table I. At all thrt::e volumes 

v = 0.5 V • 0.4 V and 0.3 V • the structure is assumed to be fcc. 
o 0 0 

a. Calculated band structures. The band structures of .cesium at 

V/v = 0.5, 0.4 and 0.3 are shown in Fig. 1. They were calculated with 
o 

a matrix size determined by the cutoff energies
l9 

El = 19.1. E2 = 40.1; 

the non-locald-wellwas not included in the Lowdin perturbation 

19 
schem~. The values for the d components of the wavefunctions are 

indicated along the symmetry directions. In all three cases the bottom 

band is mostly s-like near r an~ is mostly d-like ne~r X and ~ in the 
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Brillouin zone. There is approximately equal mixing of s- and d-

character near the point L. Tl;le second band is almost completely 

d-like; it has a small amount of p-mixing near L
2

, which becomes 

completely p-like at the L point. 

Our calculated band structures for contracted volumes are in 

13 qualitative agreement with those obtained by Yamashita and Asano. 

The volume dependence of the band structure behaves in a reasonable 

way in both calculations; Le., the 'energies in the region near X for 

the first two bands drop with decreasing volume with respect to fl. 

The X3 state drops below the Fermi level at VIVo 

gap increases as the volume decreases. The second band doubled its 

width when the volume changes from 0.5 V to 0.3 V . 
o 0 

b. Calculated densities of states. The densit;ies of states and 

the separate s, p and d components (as defined in section l.b) are 

shown in Figs. 2-4. The origin of the energy scale is taken to be at 

E(f1) = 0 for all three volumes V/V = 0.5, 0.4 and 0.3. 
o 

As seen from Fig. 2, even at V/V = 0.5, there is a large d 
. 0 

component in the density of states below the Fermi level. The 

contribution of the d-waves to the density of states 

increa~es with decreasing volume for states below the Fermi level. 

This is consistent with the s-d transition arguments originally 

prop()s~d by Sl0rnheiml!r. 10 HowevL'r, the trn\1si t ion apPp3rs to hi' 

continuous rather than abrupt. To make this quantitative, we have 

calculated the total number of states or the fractional amount of 

charge distrihut<:d amonl!, the s, p ,1nd d statt~S in the inscrihed sphere 
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by integrating the partial densities of states, i.e . 
• 

E 

Q£ = J F N£(E)dE • (14) 

The results are presented in Table II. The d component of the total 

charge, Qd' changes from 0.21 to 0.31 then to 0.54 as the volume changes 

from V/V 
o 

0.5 to 0.4 to 0.3. Here our results differ quantitatively 

from those of Ref. 13 where a higher d-mixingswas found at the above 

volumes. These authors find that the mixing ratio of the d-ccmponent 

changes from 0.47 to 0.70 as the volume decreases from V/V 
o 

0.5 tG 

0.4. The differences may arise because of the different band structure 

methods involved. 

At the Fermi energy~ both the density of states and the contribu-

tion from the d-waves, N(EF) and Nd(EF), increase with decreasing 

volumes. N(EF) increases from 1.64 to 1.91 and Nd(EF) increases from 

0.56 to 0.86 as the volume changes from V/V = 0.5 to 0.3. (The 
o 

density of states is in units of states/eV-atom.) This incr~ase in the 

density of states at the Fermi energy may be related to the fact that 

Cs becomes superconducting at high pressures (and low temperatures). 

c. Electronic charge densities in the (100) plane. The charge 

densities of the conduction electrons in cesium are shown for the (100) 

p] ane in Figs. 5-7. The separate charge densities for the two lowest 

bands and the total c!wrgl' dens i lY an' given. 

At volume V/V = 0.5, the Fermi level is below the second banJo 
o 

Hence the charge density of the bottom band is the total conduction 

electron charge density. The charge density is shown in a contour plot 
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in Fig. 5 in units of e/Q where Q = a 3/4 is the volume of the primitive 

cell. Near the atomic site the charge density is spherically symmetric 

about the cesium atom. It,has a maximum of 1.81 at the atomic site and 

decreases to a minimum of 0.65 half way along the lines connecting the 

atom to the second nearest neighbors. This arises from the fact that 

the occupied states are at the lower energies of band I and they are 

therefore mostly s-like. 

At volume VIVo = 0.4, a portion of the second band around X3 is 

below the Fermi level. Therefore the total charge density has 

contributions from both band 1 and band 2. They are shown separately 

in Fig. 6. As seen from Fig. 6(a), the charge density of the first 

band is no longer spherically symmetric about the Cs atoms. The 

distortion arises from the increase in d-mixing in band I near X which 

comes from the lowering of band 2 in this region. The Xl wavefunctions 

are mainly d3z2-r2 and the charge density is moved out from theator.:lic 

sites consistent with the signature of the d3z2_
r

2 symmetry which can 

be seen from the shapes of the contours. The charge density of the 

second band has the interesting feature that charges are concentrated 

along the nearest neighbor direction with local maxima occurring 

about halfway between the atoms. This is not too surprising since the 

charge density of band 2 arises from states in the region around X3 

where the wavcfunctions arc principally d
XY 

At V/V = 0.4, the 
o 

contribution of hand 2 to the total charge is very small (-n) and the 

toial charge distribution is mainly that of the first band. 
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More charge is moved away from the atomic sites as the volume 

decreases. At V/V = 0.3, (see Fig. 7), the total charge density has 
o 

a uniform background density of -0.7 with local maxima along the lines 

~onnecting the nearest neighbor atoms. In the (100) plane the charge 

density of band 1 is uniform except for the four lobes from the 

d 2 2 states. 3z -r Because of the further lowering of X3 ' the second band 

now contributes l5/~ to the total charge. As seen from Fig. 7 (b), tile 

charge density of band 2 is almost completely d xy This gives the 

total charge density of cesium at V/V = 0.3 a strikingly covalent­
o 

bonding-like character. 

d. Fermi surfaces. \.]e have examined the Fermi surface of cesium 

at V/V = 0.5, 0.4 and 0.3. The resulting Fermi surfaces are less 
o 

distorted than those given in Ref. 13, but the qualitative behavior as 

a function of volume is approximately the same. They are shown in 

Figs. 8-10. 

As seen from Fig. 8, the Fermi surface at V/V = 0.5 differs 
o 

considerably from the characteristic spherical behavior usually seen 

in the alkali metals. Sizable necks have formed around the points L 

and X. Since a large portion of the U~.] plane is below the Fermi level, 

this plane contains the region in the Brillouin zone where most of 

the occupi~d d-like states are concentr~t~d. As the volume dccr~nses 

to V/V = 0.4, the occupied conduction electron states shift towards 
o 

the zone edge, i.e. towards states with larger k-values. Figure 9 

shows that at V/V = 0.4 a larger portion of the U}""W plane is below 
o 

the Fermi level and contributions from the second band appears around X. 
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However, we do not find the contribution near Wand K which is found 

in Ref. 13. A new sheet arises from the fact that X3 drops below the 

Fermi level; it is almost completely d-like. As the volume decreases 

to 0.3 Vo(the Fermi surface is shown in Fig. 10), E(X
l
), E(X

3
) and 

E(L
l

) are all lower than E(r
l
); thus most of the occupied states are 

now concentrated around X and L instead of r .. A small pocket is 

formed around K. 

3. Discussion 

In summary, our calculation is generally consistent with previous 

calculations. The conduction electrons become more d-like as the 

volume decreases (see Table II). From our band structure calculation, 

X3 'drops below the Fermi level at a volume V - 0.45 Vo. This may be 

related to the first order isostructural transition of Cs at V/V = 0.45. 
o 

According to Lifshitz,20 as each band drops below EF there is a 

discontinuity in the slope of the density of states as a function of 

volume. This could lead to a first order isostructural transition, but 

the quantitative aspects of this approach have not been determined. 

At a volume V = 0.5 V , we get a charge density resembling that 
o 

expected of an alkali metal; i.e. the conduction electrons are s-like. 

However, at volumes smaller than 0.4 V the picture is quite different. 
o 

Cesium becomes a transition met~l. Covalent bonding charge begins to 

build up along the line joining the nearest neighbor atoms and we would 

expect a stiffening of the lattice. This change is consistent with the 

anomalous behavior in the bulk modulus. 
7 

Mc~~an noted that almost all 

of the pretransition elements and many of the d- and f-transition 
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elements near the beginning of each series have this type of abrupt 

increase in the bulk moduli. This behavior is associated with the 

transfer of electrons from bands of mainly sand p character to bands 

of mainly d character. 

It is interesting to compare our charge density of cesium at 

v/v = 0.3 to those of NbC and NhN. The charge densities of band 5 
o 

?1 
in l\'bC and NbN- have the same type of covalent bonding character 

along the Nb-Nb direction asiri the charge density of cesium at very 

high pressure. Both NbC and NbN have high superconduction transition 

temperatures, T , which are associated with the occurrence of anomalies 
c 

22 23 
in the phonon dispersion curves of these compounds.' These 

anomalies 'have been attributed to interactions involving charge density 

. h d 24 Wlt symmetry. xy . Thus it is conceivable that the mechanism which 

caused high transition temperature in l\~N and NbC is responsible for 

Cs becoming superconducting under high pressure. The covalent nature 

f h b d · b .. 1 ... 25 . h h o t e on lng appears to e lntlmate y connecteu Wlt t e occurrence 

of superconductivity. 

We have also explored the pressure dependence of the Knight shift 

in cesium. 
26 133 McWhan and Gossard have measured the Cs nuclear 

resonance frequency shifts ~v/v at 4.2°K at pressures up to 50 khnr. 

They found that the increase in ~v/v with pressure observed in previous 

experiments
27 

extends to higher pressure, with ~v/\l (30 kbar) ~ 2ll\l/\l 

(1 kbar). At 50 kbar, however, ~v/\l drops by 25% relative to the 

30 kbar value. The Harniltonian
28 

for the interaction of the jth 

nuclear spin in a solid with th~ conduction electrons iR 
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2 8n 3r··(R,··l:.·)-R..r .. 
h I ~ ( ~() +. 1J 1 1J 1 1J = Y Y ' .... -3 R..U t·· 5 e n - i 1 1J r .. 

1J 

2 
9.. 
-1 

+ -3-) (15) 
r .. 

1J 

where r .. = r.-R. and r. is the position of the ith electron, R. is the 
.... lJ -l .... J .... 1 -J 

position of the jth nucleus, and y and yare the gyromagnetic ratios 
e n 

of the electron and nucleus, respectively. One usually considers only 

the hyperfine contact interaction and neglects core-polarization effects, 

then the isotropic Knight shift is given by 

t.H 
K = - = 

H 
(16) 

where A is a constant in which the many body effects have been absorbed. 

To make a rough estimate of the Knight shift as a function of 

pressure in cesium, we calculated l:llPk(O) I 20 (E\,-EF) at various cell k _ ~ 

volumes. Relative to its value at ~ne bar, ~11P~(0)120(E~-EF) 
increases to a maximum ~ 2 at V/V = 0.4 (-40 kbar) and then decreases 

o 

slowly as the volume contracts further. This result shows the same 

'qualitative trend as observed in Ref. 26. The discrepancy in the rate 

which K drops at high pressures may result from the d core-polarization 

effect since the d-electron paramagnetism produces negative frequency 

,Shift terms through core polarization mechanism. 

F h f 11 . . b H' 29 lId I urt er, 0 oW1ng a suggestIon y C1ne, we lave exp ore tIC 

,effects of screening on the cryst<1l potential. As the volume decrC'3scs 

the screening by the sand p electrons becomes less efficient. And, 

as the potential gets stronger, the d-character of the conduction 

electrons becomes more dominan t. In turn since the d-electrons are less 
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efficient in screening, the d-well deepens further. A "run-away" 

situation can then occur resulting in a phase transition. In order 

to examine this possibility we have calculated the electron-electron 

interaction in the Hartree-Fock-Slater sense using the pseudocharge 

30 density in the manner of Appelbaum and Hamann.· We find at each 

volume that the exchange term dominates. At high pressure, the 

Hartree-Fock potential is positive and a maximum at the atorni~ site; 

and is negative and a minimum at the "bonding" region. This lends 

support to Heine's speculation which may be a possible scheme for 

understanding the phase transition in the 42 kbar region. 

B. Local Fields in Semiconductors 

Recently much effort has been made to understand the role of 

microscopic electric fie~ds on various physical properties of 

II ' I'd 31-43 crysta 1ne so 1 s. In this section ~~ shall examine Some of the 

effects ·of local-field correc~ions in semiconductors. In particular 

we will discuss the optical spectrum of SI and the role of umklapp 
'-

processes in the proposed excitonic mechanism of superconductivity. 

Within the linear response theory, a Small perturbing electric 

field of frequency wand wavevector .9. + Q in a crystal will establish 

respollses with frcqu('Il('Y iii and W:Jv(.'vl'clors g + ro'. wh('rc' r: nnd r:' :lrl' ...... - ............. 

reciproc~l lattice v0ctors. Till' micros(,onic fil']ds of wavev0ctors n+C' /' .:.L _ 

are generated from the applied perturbing field through umklapp 

processes. In the case of cubic crystals, the dielectric responses of 

the solid for longitudinal fields may be described by a matrix in £ and 

G' 44 
-' 
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l: EG G,(q,W)E(q+G',w) = E t(q+G,w), 
G' ".,.,,'......... -- -......, per -- --

(17) 

where E is the total field in the crystal and E is the applied 
pert 

perturbing field. Microscopic-field effects (or local-field effects) 

are traditionally ignored by assuming the off-diagonal elements of the 

dielectric response matrix to be zero. However the off-diagonal elements 

can be important when considering local-field corrections to optical 

31-33 34 35 spectra, plasmon dispersion in metals, , valence-electron 

d . 36 d 1 . d . 37-41. . d d' 1 ens~ty, an att~ce ynam~cs ~n sem1.con uctors an ~nsu ators. 

An expression for the dielectric response matrix, EG G'(~'w), -,-
has been derived, within the RPA, by Adler and Wiser. 44 In section 1 

below we present an alternate derivation of the dielectric matrix 

using the diagramatic approach. The optical properties of Si and the 

excitonic mechanism of superconductivity are discussed in sections 2 

and 3 respectively. 

1. The Dielectric Response Matrix 

The unperturbed one-particle Green function for an electron in a 

crystal is defined by 

G ( 1 , 2) = - i < 0 I T { IV ( l) IV +( 2) } I 0) n 
o 

(18) 

where T is the time order operator, n is the crystal volum~ and ~(i) 

the field operaror at space-time (r.,t.) is given by 
-1 ~ 

= L: ¢ k (r.)C k(t.)O 
k n,_ ~ n 1. 

n,_ 
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with ¢ k and C k are Bloch states and their corresponding destruction . n,_ n, 

operators. Hence 

G (1,2) = -i 
o L: 

n,k 
n' k' '-

And since for Fermions 

where fnk is the Fermi-Dirac distribution function, we have, in energy 

space, 

where 0 ~ +0 and nn~ > 0 « 0) if £nk > EF « EF)· Also since ~nk are 

Bloch states, periodic translation symmetry implies that G is a 
o 

matrix G~,Q'(~'£) in momentum (Fourier) sp~ce with indexes Q,Q' being 

reciprocal lattice vectors and S restricted in the first Brillouin 

zone, i.e. 

o 
Go (s. + Q, a + Q', e:) = GG,G' (a,e:) --
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Similarly each interaction line in a periodic medium is a matrix in Q 

and Q'. The Dyson equation for the interaction between two.electrons 

now becomes 

v = v' + v P V (20) 

= where V is the screened interaction with VGC ' (s."w) = V(s.,+Q, s.,+Q', w), 

v is the bare Coulomb interaction with vQQ.' (s"w) - v (s.+f)CiQ.Q, and P is 

the irreducible polarizability. 

From Eq. (20), the dielectric matrix is given by 

r5~r..' -~, vGG"p GltG' = 
~ G ...,... --

(21) 

Hence we only need to evaluate P,Q,Q' to obtain the dielectric matrix. 

The diagram for the irreducible polarization in the RPA is given in 

Fig. 11. The physical interpretation of the diagram is the following: 

At space-time l, the electron gains S. + Q from the interaction. Between 

land 2, the electron can loose or gain any Q-vectors due to the lattice 

background. Finally, at 2, the electron looses S + Q' to the 

interaction. 

45 
We may now evaluate P~, using the Feynman rules 

PGG,(q,w) = 2i ~ J~o G (£+K,£+L+G',p )G (£-g+L,£-g+K-G,p -w) 
pKL 1T 0 - - - 0 0 - - - 0 
"-'--

(22) 

where the factor of 2 is for the spin of the electron and E and bare 

reciprocal lattice vectors. Let us first consider the £. + 1S.£. + 1: ::;um. 

Defining £.1 = £. +~, £.2 = £. +!:: then 
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A = 2: Go(El'£2+Q',Po)Go(£2-S, £l-S-Q. po-w) 
Pl'£2 

= 
. * i(S+Q) 0 Xl 3 * -i (g+,G' ) 0 X2 3 

~ J¢>n'l£l(Xl)e¢>n~(.El)d rlJ ¢>n~(L2)e ¢>n'1£,(L2)d r 2 

n'ls,' 

ip 6 i(p -w)6 
o 0 

x e e 
(p -£ k + in v) (p -w-£· '1,' + in '1,,) o n' . n~ 0 n ~ n ~ 

Again, using periodic translation symmetry. we have ~' equal to ~ + .s + 1; 

where ~ is a reciprocal lattice vector which brings 1£ +.s back to the 

first Brillouin ~oneo Hence we have 

i( q+,G) 0 X -1 (q+,G ') ox. 
A = 2: (n 'k + .s I e Ink) (nk I e - In' k + .s) 

nn' 

ip 6 i(p -w)6 
o 0 

x e e 
(p - £ 1, + in 1,) (p - w - £ '1,+ + n '1,+ ) 

o n~ n~ 0 n ~ ~ n ~ ~ 

Performing the integral over p , we have 
o 

i 
d

ip cS i{p -w)6 IXlp 0 () 
o e e 

J Tn (p - E + in )(p - w - £ + 
-..ex> 0 n~ nk 0 n t k+.,g 

r - f 
= _ n 'k+!l __ I~ 

r: 'Ir.+ - C t. - -h-) -+-1-::-{; 
n ~ ~ n~ 

and therefore 

p ~' (!! • w) = 2 L: 
.Ii 

nn' 
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Substituting PGG , into Eq. (31), we obtain the following expression44 

for the dielectric matrix 

£fQ' 2:E 
~nn' 

£ - £ - W + iO 
n'ls+.g nls 

i(~+~)·~ -i(.g+~)·X 
x (n'ls+.sle Inls> (nlsle In'ls+.g) (23) 

(NOTE: we have set h=l in this section.) 

2. Local-field Effects in the Optical Spectrum of Si 

. 31 32 Two recent Physical Rev~ew Letters ,. have been published on local~ 

field corrections to the optical spectrum -of diamond; however, the two 

calculations give quite different results. By inverting the dielectric 

response matrix, Van Vechten and Martin,3l using the pseudopotential 

method, and Hanke and Sham.
32 

using a linear combination of atomic 

orbital (LeAO) method, have calculated the macroscopic dielectric 

function for diamond in the random phase approximation (RPA). 

Van Vechten and Martin find that local-field effects shift the strength 

of the imaginary part of the dielectric function, £2(w), to the energy 

region just above the main optical peak. This behavior increases the 

discrepancy between the calculated £2(w) and experiment. In an attempt 

to improve agreement with experiment, Van Vechtcn and Martin included 

the effects of dynamical correlation in their calculation of £2(W) via 

a one-parameter model. Hanke and Sham, on the other hand, find that 

local-field effects weaken the strength of £2(w) in the energy region 

from the m~in peak (- 12 eV) to 20 eV and that the positions of the 
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prominent peaks in £2(W) are shifted in the opposite direction needed 

to achieve good accord with experiment by approximately 0.5 eV. Hanke 

and Sham then include exchange effects (beyond the RPA) into their 

calculation of the macroscopic dielectric function and are able to 

achieve better agreement with experiment. 

To gain some new irisights into the effect of local-field corrections 

to optical spectra of covalent solids, we present here a calculation 

of the dielectric function of silicon with local-field effects included. 

Using an extremely accurate band structure from the empirical pseudo-

potential method. we have calculated the RPA dielectric response matrix, 

£~~,(q=O,w). for silicon and inverted it to obtain the macroscopic 
~'l.! ....... 

frt?quency dependent dielectric function. We find that (1) local-field 

corrections do not shift the prominent peak positions of £2(w) and 

that (2) local-field corrections do improve the calculated dielectric 

function as compared to experiments at energies higher than the main 

optical peak. In particular. agreement wi th measured energy-loss 

spectra is significantly better when local-field effects are included. 

In analyzing the optical spectrum. the incident light of frequency 

u! may be viewed as a perturbing field of vanishingly small wavevector. 

The macroscopic dielectric function is given by44 

lim 1 --"----

s.-+{) [c -1 {!! ,Ul)]O 0 

-'-
(24) 

where £-1 is the inverse of the matrix £~.~,. We use here a symmetric 

form of the dielectric response matrix 
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i(~+Q)'£ -i(S+Q')'x 
x (~+s, n ' lei ~ , n) < 1s, n lei ~+.9- ' n '} , 

where Q is the crystal volume, fO is the Fermi-Dirac distribution 

function, and I~,n} and E (k) are- eigenstates and eigenvalues 
n 

of the unperturbed Hamiltonian. t Q•
Q 

(,s,u') is just the 

(25) 

46 
usual Cohen-Ehrenreich dielectric function (no "local-field effects). 

Equation (25) differs from Eq. (23) and from the definition of EQf' in 

Refs. 43 and 44 by a factor of 1.9-+£ 1/1£.+£' I. The difference arises frorr. 

whether the electric field or the potential is used in Eq. (17). Both 

approaches lead to the same macroscopic dielectric function. 

To evaluate the required matrix elements and eigenvalues in Eq. (25), 

we have calculated a band structure for silicon using the empirical 

d . 1 h d 1 Th l' b"d 47 .. 11 pseu opotent1a met 0 . e resu t1ng an structure 1S 1n exce ent 

agreement with the optical gaps and photoemission experiments. Each 

CQ,Q,(q=O,w) was evaluated in energy intervals of 0.125 eV up to 100 eV. 

The summation over wavevector was performed by evaluating the wave-

functions and eigenvalues on a grid of 308 ~-points in the irreducihle 

zone. The matrix size of the dielectric response m~trix involved in the 

inversion for Eq. (24) was chosen to be 59 x 59. containing ,C!-vl'ctors 

through the set (222). Symmetry can be invoked to reduce th~ number 

of c.Q.Q' elements which need be calculated to 72." ConvergencL' of the 

macroscopic dielectric function was confirmed by inversion of (Q • .c!' 
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including sets of £-vectors through (111), (200), (220), (311), and (222) 

respectively. 

In order to establish the accuracy of the calculated £c C" we 
-'-

have tested our results using the. sum rules as derived by Johnson, 
48 

00 

b w 1m EQ,Q,(~,w)dW 'IT 2 [0 (.G-f' ) ] A ( ;.. ( , ) -.2 W (0) e ~+C)·e ~+G , P P-.. ........ - ........ -... (26) 

where W
p

2 = 4TIne 2/m is the plasma frequency, o (,G) are the Fourier 

transforms of the valence-electron density, and e <.g+Q) isa unit vector 

in the £.+,Q, direction. In Table III ,,'e list our calculated resul ts for 

the specific cases ~ =~' and ~ 0, ~' ¢ O. The integral appearing in 

Eq. (26) was evaluated over a l00 eV range, in.intervals o'f 0.125 eV. 

Our results demonstrate good internal con~istency except for the 

diagonal elements for the higher Q-vectors. This arises from the 

fact that 1m Ef,f,(q=O,w) becomes more extended in frequency as Ifi 

increases and that the integrand in Eq. (26) is linearly weighted with 

frequency. Better results can be obtained if we extend our integrations 

beyond the 100 eV range. As far as the optical properties are concerned, 

this high energy behavior is unimportant, and our values forEf,~' 

in the region considered should be very accurate. 

The calculated imagin,lry part of the macroscopic dielectric 

function with (Adler-Wiser) and without Ioeal-field (Cohen-Ehrenreich) 

corrections, c
2

(w) and 1m (Q,Q(w) respectively, is given in fjg. 12 

together wi th the ex-perimental measurement of Philipp and Ehrenreich. 49 

From Fig. 12 we sec that local-field corrections do not alter. the 
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prominent peak positions, although they do alter the strength of the 

dielectric function. Compared with the usual 1m £Q,Q(W)' £2(w) has 

less strength at energies below the main optical peak, thus increasing 

the discrepancy with experiment. At energies higher than the main 

optical peak, the strength of £2(W) is reduced from that of 1m £0 O(W) 
-'-

until approximately 7 eV. Beyond this point £2(W) is larger than 

44 
an event which must transpire if the well known sum rules 

are to be satisfied. This behavior results in an overall improvem2nt 

in £2(~) at higher energies as compared with experiment. Excitonic 

effects, particularly on the lower energy side of the main optical peak, 

which are not included in our calculation, should further improve the 

agreement between our '(2 (w) result and experiment in the low energy 

region. The effect of these electron-hole interactions tends to 

increase the oscillator strength, hence the strength of £2(W)' at the 

. 32 50 lower energ1es. ' 

Another improvement of £(w) arising from local-field effects at 

higher energies is reflected in the calculated energy-loss spectrum of 

silicon as indicated in Fig. 

magnitude of the peak of 1m 

13. We note a drastic decrease in the 

1 (----) through the inclusion of local­
dw) 

field effects, and a shifting of the peak by approximately 1.2 eV to 

1 
. 51 ower energ1es. Both these effects'result in significantly better 

, 49 52 agreement with experlm0nts.' However, effects other than local-

f ' Id ,53, h 1 b 'bl f I f h 1e correct10nS, m1g t a so e respons1 e or at east some 0 t e 

discrepancy between experiment and the calculated Im(l/EQ,Q(W». 
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In conclusion we remark that there are now three calculations on 

the effect of local-field corrections to the optical spectra of covalent 

solids using the RPA formalism. All three calculations give different 

results indicating that work remains to be done to establish firmly the 

influences of local-field effects. 

3. Some Comments on the Excitonic Mechanism of Superconductivity 

54 
Allender, Bray and Bardeen (ABB) have e)..'"Plored the possibility 

of using electronic polarizability to induce Cooper pair formation and 

superconductivity in a system consisting of a thin metal layer on a 

semiconductor surface, i.e. a Schottky barrier. The process considered 

involves the tunneling of metal electrons at the Fermi surface into the 

-. d h h· b h . ". I . 11 55 sem1con uctor gap were t ey ~nteract y exc ang~ng v~rtua exc1tons 

56 
Shortly after ABB introduced their model, Inkson and Anderson 

(IA) used a dielectric function approach to estimate the pairing 

interaction, and reported that the attractive interaction between 

electron pairs was stronger in the metal side of the Schottky barrier 

than in the semiconductor side. In reply ABB
57 

quescioned the detailed 

structure of the IA semiconductor dielectric function arid its 

appropriateness with respect to the ABB model. 

In this section we deal mainly with the IA objection to ABB and 

discusses the pairing interaction in genC'ral. It is shown that the 

IA model for the metallic dielectric function does yield a more 

attractive pairing interaction than their model semiconductor 

dielectric function; however, the pairing interactions differ 

from those calculated here. It is also demonstrated that a 
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semiconductor dieiectric function based on a pseudopotential band 

calculation does not yield an attractive interaction. It is proposed 

that if an attractive interaction is possible via the exchange of 

excitons, umklapp processes or local fields are necessary. 

a. Calculation. Following ABB, the N(O)V parameter of BCS can be 

written as 

N(O) V ::: A - II ex 
(27) 

where A is the attractive electron-electron coupling constant arising 
ex 

from exciton exchange and II is the repulsive Coulomb-parameter. 

. 25 
In analogy with the phonon induced effective interaction ABB 

arrive at the following expression 

P Bw 2 ] 
II - A ex 

(28) 

where w is the electron plasma frequency in the semiconductor, w is . P g 
-+ 

the average semiconductor gap, c(q) is a wavevector dependent dielectric 

constant for a metal of equal electron density and B is a numerical 

factor which accounts for the decay of the metallic electron wave 

. functions into the semiconductor and the fraction of time the metal 

electrons spend in the semiconductor. ARB introduce a screening factor. 

a. and the exciton coupling const;mt becomes 

A == abt,: w 2lw 2 
ex p g 

(29 ) 

In favorable cases. ABB estimate A - 0.2-0.5. These values would . ex 

give substantial increases in the superconducting transition temperatures 
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of metal films. 

IA approach the pairing interaction from a different point of view. 

They argue that the total interaction, attractive exciton and repulsive 

coulomb, can be treated using the wavevector and frequency dependent 

dielectric function, 
-+ 

£ (q,w), appropriate to the semiconductor. s 

express the total interaction as 

4TIe 
2 

-+ 
Vt(q,w) = -+2-+ 

q £ (q,w) 
s 

The IA form for £ is 
s 

£IA 1 + A = s 1 + AB 

2 2 

They 

(30) 

(31) 

where A = £ - I, 
o 

and k-l constant, 

B = ~ w 2 ' £0 is the static electronic dielectric 

Wp . 
and ware the screen1ng length and plasmon energy 

p 

of an equivalent electron density metal. 

IA IA 
If £ -+ 00, then it is expected that £ -+ £ 

o s m 
a 

dielectric function appropriate for a metallic system. Therefore 

using the above expressions, 

1 1 1 --:::::--+-
IA IA £ e: £ 0 

(32) 

s m 

for ~ »1. Equations (30) and (32) show that the total interaction 
o 

in the semiconductor is equal to the total interaction in a metal plus 

an added repulsive term. IA therefore ~onclude that the semiconductor 

is less favorable than the metal for superconductivity. 

• 
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To obtain the N(O)V parameter or the frequency-dependent kernel of 

h BC5 . K(~) 58. • d t e equat10n, u, 1t 1snecessary to 0 a Fermi surface average 

of thewavevector dependent interaction, V
t

, 

(33) 

where. 6 = hw/EF, and k and k' are the initial and scattered electron 

• -+, -+ -+ 
wavevector, 1.e., k = k + q. It is K(o) which must have attractive 

regions for the pairing interaction to be positive. It is not sufficient 

to have negative regions of the wavevector dependent interactions, V
t

. 

59 To calculate K(6), we assume a metal-semiconductor interface 

with electron densities appropriate to· Al and 5i, i. e. r - 2 and 
s 

£ 
o 
IA 

£ 
s 

10. We first evaluate K(6) for the IA model dielectric functions 

and £IA 
m 

In Fig. l4(a) the kernels appropriate to E and £ are 
s m 

displayed. The IA metal kernal is more favorable for superconductivity 

since it is less repulsive at low frequencies and the attractive region 

is larger than the attractive region obtained using the IA semiconductor 

dielectric function. This is in accord with the IA calculations. 

However, a more relevent question is how good are the IA 

approximations to begin with. IA The £ is constructed to approximate 
m 

the frequency and wavevector dependent dielectric function for a metal. 

£IA coincides with the RPA or Lindhard60 dielectric function for ~ = 0 
m 

-+ 
and for w = 0, q «k

F
. A better approximation for the metal kernel 

would be to use the Lindhard dielectric function in Vt . The results 

(Fig. 14(b)) show that K(6) is repulsive for all 8. Thus the 
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attractive region found using cIA is a result of their model and is 
m 

not found in the more realistic Lindhard model. 

It is also possible to do a more realistic calculation ofK(6) 

-+ . 61 
using the numerical values for the c(q,w) of Ge. The calculation for 

-+ 
the Ge c(q,w) was based on a pseudopotential calculation of the energy 

band structure and ~avefunctions, and is therefore expected to be more 

1 - - than C'IA rea lStlC "-
s 

The results which appear in Fig. l4(c) indic,Jtc-

thatK(6) is repulsive for all frequencies. 

b. Discussion and Conclusions 

So we have e>..-plored the IA obj ection to the ABB model based on 

IA IA 
C and C . and we have shown that the kernel of the BCS equation, s m 

K(6), (and therefore the BCS parameter N(O)V), is repulsive for all 

frequen~ies ~f the total interaction used is based on a realistic 

semiconductor dielectric function. ~~at does this imply about ABB? 

In their reply to lA, ABB emphasized that the reason that IA did 

IA 
not obtain a favorable result was that the pole of E 

s 
did not have 

the proper q dependence. However, as we have shown, the problems are 

more serious than this and in fact CIA is more favorable for super­
s 

conductivity than the more realistic Ge calculation. 

The essential point is that the peak in the dielectric function 

!N:j.ll give a zero iil K(6). A qualitative reason for this is th:1t the 

pc;]k jn the dielectric function signals;] tr;]nsverse excitat:ion (v]c-ctron-

hole or excitonic resonance) and in this approximation the electrons ar£> 

not coupling to this mode. The strongest coupling comes near the zero 

of th~ dielectric function i.e. plasmon exchange. A similar effect 
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occurs in the electron-phonon interaction. Electrons interact only with 

longitudinal modes unless umklapp processes are invoked. In the exciton 

case the coupling could arise via local-field effects. 

One method of including local-field effects in the dielectric 

function is through the use of a dielectric tensor It1cc,. IA addressed 

themselves to this problem and calculate the frequency dependence of 

some off-diagonal terms in the dielectric tensor. They conclude that 

the dielectric tensor still has a pole at wand that the coupling to 
g 

the excitons is still zero, i.e. the kernel will be zero at w. Two 
g 

problems arise: (1) The formalism for using the dielectric tensor to 

evaluate the kernel and pairing interaction is not adequately discussed. 

For the phonon case, a generalized susceptibility will have a pole at 

the transverse phonon, frequencies, yet it is known that electrons couple 

to transverse phonon modes (via umklapps). (2) It is not clear that 

the approximate calculations for the IA dielectric tensor are sufficiently 

accurate to rule out attractive pairing interactions. 

The ABB approach circumvents (1) by computing Aex using Eq. (28). 

We presume that ABB have assumed that local fields are included in this 

expression. This coupling constant is large for small w , but small 
g 

w usually implies small local fields in covalent systems~ ABB suggest 
g 

PbTl! wldeh is parti~lly ionic to ovcrcomt> LIds prohlC'llI. 

It would be useful in estimatirtg the coupling to use a local-field 

semiconductor dielectric function which was computed for a realistic 

semiconductor for w and q. To our knowledge the only semiconductor 

local field dielectric function
62 

in the literature is given as a 
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~ 

function of w, but for q = O. To show why this approach or some other 

is desireable to obtain reliable values for A we can make estimates 
ex 

assuming the ABB form to be correct for the interaction including local 

fields. 

If we take the Phillips - Van Vechten63 model for the dielectric 

function and identify w with the Phillips average gap, then 
g 

2 
W 

£ =l+--P-
o w 2 

g 

and assuming Eq. (29) to be valid, we obtain 

(34) 

A = ablJ(£ - 1) • (35) ex 0 

I I 0 2 11 - 1 to 1 ABB estimate a - 5 to 3 ' b - • , ~ 3 2 and using £0 - 5 to 30, 

then), ""'.05 to 1. O. Leaving out phonons this would give estimates 
ex 

of the transition temperature from zero (repulsive total N(O)V) to ex-

traordinarily large values. Estimates for b by ABB are consistent 

with recent self-consistent Schottky barrier calculations64 for the 

penetration of metallic electrons. The parameters a and lJ can be 

evaluated more carefully, but'it would still be more reassuring to use 

a total local-field dielectric function and/or Some other method to 

estimate N(O)V for the exciton interaction. 

In conclusion, our calculation of the total semiconductor kernel 

yields a repulsive interaction. This together with the IA arguments 

would suggest that the ABB results should be, reconsidered;' however, we 

feel that the umklapp contribution should be included explicitly before 

a firm conclusion is reached. 
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C. Electronic Structure of Bulk Nb 

We present in this section a self-consistent calculation of the 

electronic structure of bulk ni~biurn using the pseudopotential method. 

Early non-self~consistent band structure calculations have been done for 

65 Nb using the modified orthogo,nalized plane wave method (MOPW), the 

augmented plane wave method (APW),66 and the empirical pseudopotential 

67 
method. All these calculations are in good agreement with each other 

and with F~rffii surface experiments.
68 

Using a Slater-Koster parametriza­

tion of the AP\.J band structure,66 Pickett and Allen69 have recently 

calculated a joint density of states for Nb which agrees reasonably \"'ell 

with the imaginary part of the dielectric function £2(W) obtained' from 

experimental reflectivity data. 70 A seif-consistent APW calculation done 

71 
by Anderson et a1., however, gives results differing significantly 

from the other calculation particularly at the point H. 

In the following we will first discuss our method of calculation 

and then present our results on the band structure and densit:v of 

states of bulk Nb. The obtained results are consistent with experi-

68 70 72 
ments ' , and with previous non-self-consistent calculations. In 

addition, we will present charge distributions for the total valence 

electrons and also for states in particular energy ranges, 

1. Methods of Calculation 

TIle elpctronic structure of Nb was calculated from a pseudopntential 

Hamiltonian 

2 
H = P- + V + V

H 
+ V 2m pH x 

(30) 
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where V is a weak pseudopotential taken to be a superposition ofNb+5 
ps 

ionic pseudopotentials 

v (r) 
ps -

= ~ Vi on (r - R ) 
ps -n 

R 
-n 

And for the" ionic potentials we have used a ~-dependent non-local 

pseudopotential of the form 

vion = ps 

(37) 

(38) 

where p~ are projection operators for the various angular momentum 

components. The non-local nature of the Nb+s pseudopotential accounts 

for the differences in the repulsive potentials that each angular 

momentum component of the electron wavefunction sees as a result of 

core orthogonalization. 

The potentials Vs ' Vp and Vd were obtained by fitting the experi­

mental spectroscopic term values of the Nb+4 ion (i.e. the~~+s plus 

73 one electron system). 
ion 

In addition, we demanded that when V WuS 
ps 

used to calculate the Nb neutral atom self-consistently, it would 

reproduce the eigenvalues and the positions of the wavefunction 

maxima calculated by Herman and Skillman. 74 A comparison of our 

results with tllose from experiment and Herman and Skillman is given 

in Table IV. Figure 15 is a plot of our V , V and Vd ionic pseudo­
s p 

potentials. It can be seen that the d-electrons feel"a much weaker 

core orthogonalization repulsion than the sand p electrons. 



0 0 ~.} :1 t~~ 
,-

0 v • 0 t.:i !i A 2 • 

-39-

In our self-consistent scheme, the ionic pseudopotential is 

screened with a Hartree-like screening potential V
H 

and a local 

exchange potential of the Slater type V obtained from the pseudocharge 
x 

dens i ty P (t) by 

and 

v (r) 
x 

(39) 

_ 3ae2 3 1/3 pl13(y) 
(8n) ...... (40) 

where a, the exchange parameter,. is chosen to be 0.79. The iteration 

process is started with approximating the Vps + VH +Vx term in the 

Hamiltonian (Eq. 36) by a potential constructed from a superposition of 

the self-consistently screened atomic pseudopotentials. With this 

starting Hamiltonian, the valence charge density is calculated and the 

screening potentials VH and Vx are derived. The new VH and V are x 

then put back into the Hamiltonian. The process is repeated until self-

consistency in the screening potentials is reached. 

In the present calculation, plane waves with a maximum reciprocal-

lattice vector corresponding to an energy of 10.2 Ry were used in the 

basis set. This corresponds to about 80 plane waves in the expansion 

of the eigenfunctions; another 60-80 plane waves were included by sccond-

order perturbation theory. In the iteration towards self-consistency. 

eigenvalues and eigenvectors were calculated for a grid of 8 special 

132 
points in the irreducible part (1/48) of the bec Brillouin zone. The 

Fermi level EF was then determined by 
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n 
WIr . e (E

F 
- E (~.» = z 

~i n ~ 
(41) 2 

wherez is the number of electrons per primitive cell, Wls.. is the 
~ 

appropriate weight for each special point and e is the Heaviside step 

function. Finally the valence charge density was determined from the 

wave functions of the occupied states. 

After self-consistency has been obtained, we further calculated 

the energies and wavefunctions of 285 k-points in the irriducible zone. 

With these results, we obtained the detailed band structure, density .. 
of states, and valence charge density for bulk Nb. The charge distri-

but ions for states under the various peaks in the density of states 

curve were ·also examined. 

2. Results 

The calculated band structure En(t) for Nb plotted along the 

symmetry directions of the bcc Brillouin zone is shown in Fig. 16. 

h d · h . b d 1 l' 65-6 7 
T is result is in goo agreement w~t prev~ous an ca eu atlons. 

Table V compares some of the principal energy levels of the present 

band structure with those of previous calculations. The main differences 

are: the lowest r
l 

level for the present calculation is -0.8 eV lower 

than the previous results and the r l2 - r 25 , g~p is -0.8 eV wider. 

Figure 17 shows the calculated density of states (DOS) tagether 

with the DOS from Math(!iss' APW calculation.
b6 

The two curves arv in 

quite good agreement and are consistent with the photoemission data of 

72 Eastman. Table VI gives the positions of the peaks in the DOS of 

the present calculation in comparison with previous results and 
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experiment. Also our calculated value for N(E
F

) is 1.1 states/eV-atom 

which is a very good agreement with the empirical value of 0.91 states/ 

eV-atom obtained by McMillan. 75 

The valence charge density in the (110) and (100) planes are shown 

in Fig. 18. The positions of the Nb atoms are indicated by the dots. 

The charge density is zero at the atomic nuclei because of the highly 

repulsive core. It then rises up sharply to form lobes around the 

atoms showing a distinct d-like character. The distance of tLe peaks 

of the charge density from the atoms in the crystal agrees well with 

the position of the peaks of the d-electrons in the isolated Nb atom. 

In addition to the lobes, there is a uniform charge background distri-

buted in the space between the atoms. 

Plotting the charge distributions for states under the various 

peaks in the DOS reveal that they have quite different characters. 

The charge distribution for states under the lowest peak A with energies 

from -6.5 to -2.0 eV is shown in Fig. 19(a). The charge distribution 

is mainly s-like with a small admixture of d 2 2 char~cter. The 
3z -r 

charge distributions for peak B (-2.0 to -0.75 eV) and peak C (-0.75 to 

0.60 eV), shown in Fig. 19(b) and 19(c) respectively, are very similar 

with the charge concentrated mainly in the bonding d-like lobes along 

the line joining two neighboring atoms. The charge for the highest .Jnd 

unoccupied IW.11\ n (0.6 to 'i.8S eV) h:ls :J distinct d 2 2 :mel d 2 2 
3z -r " -~. 

character around t.he atomic sites. 

We have also determined the Fermi surface of Nb from the calculated 

band structure. Th~ calculated Fermi surface is in satisfactory 
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agreement with previous calculations and with experiment except for one 

point. The Fermi surface in the present calculation does not cut across 

the 1: symmetry line (f - N) in contrast to Mattheiss' result
66 

and to 

de Haas van Alphen experiments.
68 

It can be seen from our band 

structure in Fig. 16 that, along the ~ direction, the third band just 

miss cutting the Fermi level by -0.1 eV. This discrepancy can be easily 

resolved by a very slight change in the potential. 

3. Conclusions 

In conclusion we have present a calculation of the band structure 

of Nb using a self-consistent pseudopotential method and obtain results 

which are in good agreement with Matheiss' APW calculation and are 

. 68 70 72 
consistent with exper~mental results. " This demonstrates the 

applicability of the self-consistent pseudopotential method in calculating 

the electronic structure of transition metals. We shall use this same 

Nb+S ionic pseudopotential later to study the surface properties of Nb. 

D. Theory of the Superconducting Transition Temperature 

There has been recent interest and controversy concerning the 

h . 1 fl· 75-79 f 1 1· h d· t eoret1ca ormu at10n or ca cu at1ng t e supercon uct1ng 

transition temperature. T • especially for strong electron-phonon 
c 

coupling. The most widely used approach was developed hy M~Mi]lan75 
? 

who, using the interaction spectrum a-F(tIl) for Nb as a modf'l, numerically 

80,81 
solved the linearized gap equation in the strong-coupling formulntion 

82 of the BCS theory and obtained an interpolation formula for T .. c 

However, Allen and Dynes 79 have shown recently from tbeir dp.tailed 
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numerical studies of the Eliashberg equations that the McMillan T 
c 

equation is not valid for large electron-phonon interaction parameter, 

i.e. A>2. 
. ·83 

More recently Leavens has questioned the large A 

asymptotic form of the Allen-Dynes result and has stated that these 

results are incorrect. 

In this section the Eliashberg equations 80 expressed in the 

Matsubara representation are solved analytically uSing a self-

consistent, variational procedure. An expression for T is thus derived 
c 

from these equations and the results are compared with exact numerical 

solutions. It is shown that our T equation is valid for all ranges c . 
2 

of electron-phonon coupling strength and for different shapes of a F(w). 

Both our analytical and numerical results concur with the observation 

made by Allen and 

coupling i. e. T 
c 

and 

79 Dynes on the asymptotic limit of T for 
c 

- IA ( w2
) , where A and (w

n > are defined by 

2 
2f a F(w) dw 

w 

very strong 

(42) 

(43) 

As will be described later, our results indicate that the discrepancies 

pointed out by Leavens were resulted from an imprecise definition of 

the condition for the asymptotic limit by Allen and Dynes. 

1. The Eliasberg Equations 

In the Matsubara representation the gap equation is given in the 

f 
76,79 

orm 



where 

and 

K 
ron 

= A m-n 

A 
n 

(K 
mn 

2 J 
o 

... 44-

p(T)o ) ~ = 0 , 
mn n 

dwiiF(W)W 
2 2 W +(2nnT) 

(44) 

m 

(45) 

(46) 

)'0 is just the electron-phonon parameter defined in Eq. 42. lJ is the 

* Coulomb param~ter which is related to the better known l.l by 

(47) 

and ~ is a modified gap parameter evaluated at the imaginary frequency 
.n 

iw = i(2n+l)nT. ~ becomes 6 flw I at T = T where 6 has the meaning 
n n n n c n 

of the usual gap parameter. In this formulation T is that value of 
c 

T for which the maximum eigenvalue of Eq. 44 is zero, i.e. p (T) = O. max c 
79 

Allen and Dynes have calculated T using an iterative procedure 
c 

2 in which T , lJ and the shape of a F(w) is held fixed and A is solved 
c 

so that p (T) = O. Alternately, an equivalent but perhaps more max c 

appealing method is to fix a 2
F(w) (i.e. A ) and l.l and study p (T). 

n max 

This is illustrated in Fig. 20 for the cas(' of Ph. 

\~e now sho,,"' that, in addition to the numerical results, a general 

and relatively simple analytical e~~ression for T can be obtained from 
c 

the Eliashberg equations. 
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All the detailed information about the superconductivity mechanisms 

is contained in A and~. On the other hand. we need only a few 
n 

moments of a 2F(w} to get an accurate approximation for A. Specifically, 
n 

2 
they are A, <w ) and WI which . og 

W log 
1

. lin 
1m ( n) 

n-+O W 

is defined by79 

(48) 

A gives the strength of the electron-phonon interaction and ~w2) 
2 

together with WI provide information about the shape of a F(w). We . og 

find that A can be approximated very accurately for the cOmr:lonly studied 
n 

2 a F(w) spectra (Pb, Hg, etc) by the expression 

A = A 
n 

2 
n 

o. 

n
2 + 1.68 n n + n

2 
o 0 

(49) 

2 I . where B = (/( W ) WI ) - 1 and n og 0 
~W2)/ 2nT is the phonon cu~off 

in units of 2nT. For the Einstein spectrum 8 is, zero and Eq. (49) is 

exact. B is 0.161 for Pb and 0.690 for Hg. 

To obtain an expression forT , we construct the following trial 
c 

gap function 

6 
n ~ 

n TuCT = 
n 

\ a C2~-no -b) --:(-2-n+-i-:-)n-T-
c 

n ~ N 

~ 0 n > N 

2 
where N = n W /.; (w ) and w is the Coulomb cutoff, e.g. w -- band 

o e e e 

(50) 

width or electronic plasma frequency. The parameters nand b (hence 
o 

T ) are to be determined by the two linear equations 
c 
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N 

L KO 6 = 0 
n=O n n (51) 

and 

N 

L ~n6n = 0 . 
n=O 

(52) 

The trial gap function b. is a Fermi-like function which changes most 
n 

rapidly near the phonon cutoff ~nd reduces to the two-square well model 

in the limit of small T , i.e. n »1. 
c 0 

Since in general w »1< w2 } , Eq. (52) yields 
e 

N-l 00 

b (1 + 2fl L 2n
l
+l) = 2p L 

n=O n=O 

1 1 
( )(2n+1 ) 
1+2n - nO 

and, for large N, we get 

00 

ben ) = 
o 

2fl L ( ~-n) (2;+1 ) 
n=O 1+2 0 

w 
1 + ~ (tn (n _....::e:.....-) + 1.9635) 

o 

(53) 

(54) 

Using Eqs. (45), (49), (51) and (54), we finally obtain the following 

relation for n 
o 

~ (1 + b') 

where F is a simple series 

F(n , S, ~) 
o 

(55) 

". 
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6 

2 
n 

o 
2 

n + 1. 6Bn (n+1) 
o 0 

-1 
x (1 _ b) ( 1 _ b) 1 

1+2-no 1+2n-no 2n+l 

b ' = ben ) ( 1 - b) 
o 1+2-no 

-1 

Equation (55) gives n and hence is our "new T equation since 
o c 

(56) 

(57) 

n =.,!{ w2 ) / 2TIT. F(n.B .lJ) is a very rapid convergent series for 
o c 0 

parameters of interest and can b~ evaluated using a hand calculator. 

Therefore, for given 8, lJ and A, one can readily solve for n and hence 
o 

T from Eq. (55). 
c 

The transition temperatures obtained from Eq. (55) are in excellent 

agreement with the exact numerical solutions of Eq. (44). In Fig. 21 

the calculated T using the new T equation for 8=0.0. 0.161 nnd 0.690 
c c 

* (corresponding to th~ Einstein, Pb and Hg specira) and lJ = 0.1 are 

shown. In this figure the exact results obtained by diagonalizing 
, .. ~ 

matrices of the size of -64x64 are indistinguishabi~ from the r~suits 

obtained from Eq. (55). Also shown in Fig. 21 is the T from the 
c 

J'lcNillan equation and the two experimental data points for Pb and Hg. 84 

As seen in Fig. 21. the McMillan equation has the spurious effect of 

saturating at large A. In Fig. 22, the experimental T for six 
c 

elemental superconductors with considerable different A and different 

shapes of a 2F(w) are compared with the calculated values using Eq. (55) 
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* , 84 and the appropriate measured values of A,]J and B. The agreement 

is rather remarkable considering the simple assumptions in our derivation 

of the T equation. The parameters used and the calculated results are 
c 

presented in more details in Table VII. We have also computed T for 
c 

the 23 alloys and amorphous metals given in Table I of reference 79; 

the agreement between the calculated and measured values is comparable 

to the results in Fig. 22. 

We next examine the asymptotic limits of T using our model. 
c 

For simplicity we shall only consider the case ot]J : 0 (i.e. b : 0). 

F(n ,8, ]J:O) is a monotonically increasing function of n with 
o 0 

, 1.3140 2 
for -+ 0 n n 

0 0 

F(n ,B,]J:O) -+ (58) 
0 I ~nn + 0.9635 + dB) for n -+ 00 

, 0 0 

where c(B) is a constant for a fixed B. In the limit of weak and strong 

coupling, we obtain: a) i » 1 implies that F(n o ,8,]J:0) is very lercie 

and using Eq. (58) we have 

T 
c 

2 
= 1. 13 ./<. Lll ) e 

l+A 
A 

feB) 

where feB) is a facto~ of order unity (for B : 0, f : 1/12). 

(59) 

b) 1/1. « 1 implies that F(n .. B) is very small and again usin~ Eq. (58). 
o 

we obtain 

(60) 
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Our expression for T therefore reduces to the familiar McMillan 
c 

exponential form for small A and goes to an asymptotic form identical 

to that obtained numerically by Allen and Dynes for very large A. 

83 
Returning to the questions raised by Leavens, we concur with the 

conclusion that large A alone does not imply that the asymptotic regime 

has been reached. We agree that the c6ndition A > 10 given in Eq. (24) 

79 of Allen and Dynes is not sufficient, however 'the main conclusions 

of Allen and Dynes are not incorrect. The crucial point is that the 

n dependence of A is essential in determining the asymptotic region. 
n 

2 This depends on the shape of a F(w) and hence our 8 parameter. For 

example., in the case cited in Ref. 83, an interaction spectrum with 

a2F(w) = 6(~ - 0.2) + 106(w - 10) will have A = 12 and 8 = 9.64. In 

our model, these values give a Tc - 0.16 l(w2
) which does not voilate 

the inequality T ~ 0.116A (w) discussed in Ref. 83 and is not in the 
c 

asymptotic limit. 

In conclusion we have derived an T equation which has been 
c 

demonstrated to be valid for all ranges of coupling strength and for 

22* 
different shapes of a F(w). In our model, T depends on <w }, A, ~ 

c 

and 8. Information about these quantities can be obtaine9 from a
2

F(w) 

2 
through tunneling measurements, the phonon spectrum F(w) for (w ) and 

8, heat capacity measurements for A and isotope effect measurements 

* for ~ . Conversely the measured T can be used to obtain information 
c 

* on A and ~ via Eq. (55). For example, Eq. (55) will be useful for 

studying the dependence of T on the shape of a 2F(w) (L e ~ 8) which 
c 

depends on phenomena such as phonon softening. 
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III. SURFACE 

A. Self-consistent Pseudopotential Method for 
Non-periodic Systems 

In view of their technological significance, non-periodic systems 

such as solid surfaces, solid-solid interfaces and vacancies in solids 

have been,subjects of intensive investigations both experimentally and 

85-87 theoretically in the past few years. However, the properties il; 

these systems are still far from being well understood. 

In this section we introduce a powerful yet simple method for 

calculating the electronic structure of non-periodic systems. The 

method is an extension of the self-consistent pseudopotential procedure 

discussed in Sec. IIC to localized configurations. This approach 

is applicable to problems such as atomic and molecular states, solid 

surfaces, localized impurity and vacancy states, finite chains or 

layers, adsorbates, and interfaces between solids. The scheme has many 

of the advantages of the standard pseudopotential calculations in that 

it uses a simple plane wave expansion and the starting potential can be 

obtained from bulk experimental data. We shall discuss the method in 

general in this section and specific applications to surface-s. inter-

faces, and vacancies will be discussed in sub~E!qu~nt s~ctions. 

The method discuss~d here is straightforward and initially involves 

putting the local configuration of interest into the stru~ture factor. 

In the pseudopotential formulation, the crystalline pseudopotential form 

factors,V(f). are written in terms of atomic potential form factnr~. 

Va(f) through the structure factor S(Q), 
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v (,Q) = L S (,Q) Va (,Q) 
T 

a 

= e iQ-.r.a 
(61) 

where f is a reciprocal lattice vector and.r. are ~he basis vectors to 
a 

the various atoms in a primitive cell. The basic scheme is to include 

in S(f) the essential features of the local configuration. In the case 

of a molecule, the structure factor can be constructed to create a 

cell with a molecule and sufficient empty space around the molecule to 

provide isolation from the next molecule when the cell is repeated. 

For a stirface, usual periodicity can be ietained in two dimensions dnd 

a slab of space can be inserted to provide a surface in the third 

dimension. The impurity or vacancy problem requires a cluster of host 

atoms surrounding the site of interest. Ultimately the cell chose!"! is 

repeated indefinitely to allow the use of the pseudopotential method. 

A similar approach specifically designed for surfaces has been used by 

Kleinman et al.
88 

to calculate some properties of Al and Li surfaces. 

. . 30 89 Self-cons1stency , is essential in obtaining realistic solutions 

since the c~lculations will start with potentials derived for bulk 

calculations_ It is necessary to allow the valenc~ electrons to react 

to the boundary conditions imposed by the local configuration and the 

resulting readjustment and screening is a fundamental part of the 

problem. Also, the self~consistent screening potential has to he 

completely general and is not necessarily a superposition of atomic 

potentials. Self-consistency is restricted to the valence electrons 

since a fixed ion core pseudopotential is used. Changes in the core 
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electrons due to feedback from valence electrons are neglected since 

they are localized in a limited region around the ion cores and not 

significant for determining the valence-electron and bonding properties 

of the system. 

In the scheme described above, the configuration of atoms and 

spaces can be as complex as desired. The ultimate limitation on the 

number of atoms is the amount of computer time necessary to generate 

the eigenvalues and eigenfunctions through solution of the secular 

equation. The basis set is formed by Bloch waves expanded in terms 

of free electron eigenfunctions. 

The starting potential can be an ionic model potential fit to 

atomic term values and screened approptiately or a potential obtained 

from measurements on bulk solid state properties. In both c~ses the 

results are the same once self-consistency is reached. The problems 

with the method come mainly via the artificial long-ranged symmetry 

imposed, but most of the consequences can be dealt with. Sam.'? exat:;pl~s 

are: the interaction between configurations; estahlishing a zero of 

energy; the fact that the potential which should depend continuously on 

wavevector, q, is approximated by form factors at q's equal to the f's - -
of the chosen lattice structure; and the symml>try of th(, configur.1tioll 

to snme extent suggests the choice of Inttic(·s. t-1ost of thp ahovl' 

potf'ntial proh1ems art" el iminat~d or redu("(·d by taking largc' enougll 

cells and cells of the appropriate structure or symmetry. 

The steps in our self-consistent procedure are shown in Fig. 23. 

The self-consistent loop is iniriated with a starting potential which 
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is usually taken to be an empirical pseudopotential from a crystalline 

calculation. From the resulting total valence charge density P(L) , a 

Hartree-like scr~ening potential is derived via the Poisson equation, 

90 
and an exchange potential of the Slater type 

is calculated. The sum of V
H 

and Vx is then the total screening 

potential for the valence electrons. This screening potential is 

(62) 

(63) 

added to an ionic pseudopotential V. generated by the ionic cores of 
10n 

the atoms to form a new total pseudopotential for the next iteration. 

New screening potentials are derived and the process is repeated until 

self-consistency is reached. The use of a statistical exchange of the 

above form for atoms, molecules and solids has been discussed widely 

in the literature
90 

and been proven to yield satisfactory results. 

We note that there are no adjustable parameters related to the 

properties of the localized configurations in the calculations. The 

only parameterR went into the calculations are (1) the structure. i.e. 

the position of the atoms, and (2) the ionic potentionals, V. V. 
1011 Jon 

can be determined from atomic spectra as discussed in Sec. IIC. 

As for the structure, one has to go to experiments for guida~ce. More 

details on the method will bE:.' presented when we discuss the individual 

applications in the following s~ctions. 
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B. Semiconductor Surfaces 

L Si( 111) Surfaces: Unreconstructured(1xl) and Reconstructed (2 X I) 
Model Structures 

In this section we present self-consistent pseudopotential cal-

culations on Si(lll) surfaces~ Three different surfac~ models have been 

studied and the resulting calculated density of states curves and 

electronic charge density distributions have been examined to extract 

the essential physical features of the various models. In each case 

the calculations were carried to self-consistency following the procedure 

presented in the preceding section. The requirement of self-consistency 

proves to be absolutely necessary to account for the modified screening 

in the surface region. 

The three different models for the Si (111) surface studied art:.>: 

a) An unrelaxed, unreconstructed surface, in which all surface 

atoms remain at their exact "bulk" positions, 

b) A relaxed surface, in which the outermost atomic layer is 

rigidly relaxed inwards by an amount of ~ = 0.33 A. These two models 

91 
have been studied by Appelbaum and Hamann in the only previously 

existing self-consistent approach to the problem. and their results are 

basically confirmed by our calculations. In addition we find new types 

of surface stnles Clnd are able to pr(:'s<.>nt density of sUites ClIrVl!s. 

The third mode 1 we studic'd is 

c) A (2 Xl) reconstructed surface. in ~hich atoms of the outermost 

atomic layer are alternatively moved inward and outward to form a (2x!) 

planar unit cell. This model has been refin~d in a second step as 

92 first proposed by Han~man by moving atoms of tbe second atomic lay~r 
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slightly laterally, the effect of which was small compared to the 

effect of the "buckling" at the first step. The predominant result of 

this (2 xl) reconstruction is the splitting of the "dangling-bond" 

surface state in the gap into two separate peaks corresponding to two 

separate surface bands one of which is occupied. This essential 

f i'· d . h . 93 d i b' d eature s 1n goo agreement W1t exper1ments an s not 0 tal-ne in 

the other two models. 

The method used to obtain the electronic surface structure in a 

self-consistent fashion has been discussed in Sec. IlIA and will be 

presented in some more detail in Sec. IVA when we discuss the metal-

semiconductor interfaces, therefore we only review the essential 

94 
features here. The, local configuration in the present case is a 

12-layer slab of Si, simulating two non-interacting surfaces. The slab 

is placed in a periodic lattice spaced -4 layers apart to preve'?-t 

interaction between the different slabs (or surfaces). This artifact 

has the enormous advantage that the system can now in principle be 

treated as any periodic crystal and that the pseudopotential method 

in its standard form can be applied. A self-consistent treatment, 

however. is necessary to achieve the correct screening of the atoms 

in the nei~1borhood (-3 to 4 atomic layers) of the surfaces. 

One problem which arises when simulatinR surfaces by finite slahs 

of atoms periodically repeated. is spurious structure in the density 

of states due to the "unreal" periodicity of slabs perpendicular to the 

surfaces. Spurious two-dimensional sinRularities occur. Their number 

increases with the numher of atomic layers per slah. For the "true" 
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surface case these singularities become "dense" and disappear. For 

finite slab calculations all structures in the density of states have 

to be investigated in this spirit. Similar problems are encountered 

when simulating an amorphous material by large unit cells periodically 

95 repeated. 

As discussed in Sec. IlIA the calculations are initiated with an 

empirical pseudopotential carried over from crystalline calculations. 

From the resulting total charge density, screening and exchange 

. 1 d· d d dd d . S .+4 . . 1 94,96 potent1a s are er1ve an a e to an atom1C 1 1on-potent1.a. 

New screening and exchange potentials are derived and the process is 

repeated until self-consistency (stability of the eigenvalues or stability 

of the input versus output potentials within 0.1 eV) is reached. For 

the ideal and relaxed structures, a density of states curve has been 

computed from 336 k-points in the two-dimensional Brillouin zone at 

each iteration to guarantee a precise location of the Fermi level. 

The total charge density could then be derived from all states with 

energies below the Fermi level. Plane waves with a maximum reciprocal-

lattice vector corresponding an energy of 2.7 Ry were used in the basis 

set. This corresponds to about 180 plane waves for the twelve-layer 

(lXl) structure. Another 340 plane waves up to an energy cutoff of 6 Ry 

were included by second-order perturbation theory. From the self-

consistent calculation an ionization potential of about ~ = 4.0 eV was 

obtained for the relaxed surfac€'. We shall discuss the calculations 

for the (2 Xl) structure in detail later. 
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In Fig. 24 the crystal structure of Si is viewed in perspective 

along the [110] direction. The [111] direction is vertical. A 

horizontal (111) surface is obtained by cutting all vertical bonds in 

a plane. An excellent overall impression of the behavior of the 

electronic states at the Si (111) surface can be obtained by considering 

the total, self-consistent valence charge distribution, as presented in 

Fig. 25 for the unrelaxed surface model. The figure shows charge 

density contours in a (110) plane cutting the (111) surface at right 

angles (see Fig. 24). The plotting area starts midway between two 

films and extends about 4 1/2 atomic layers into the bulk. The atomic 

(unrelaxed) positions are indicated by dots. Moving deeper into the 

crystal, the charge distribution closely resembles the Si bulk charge 

densities; near the surface, it decays rapidly into the "vacuum". This 

rapid decay assures the required "vacuum" and hence the decoup1ing of 

the films. No surface states can be recognized on this plot, since 

only a small number of them exists in a continuum of decaying bulk-like 

states. 

Figure 26 displays the two-dimensional band structure of a twelve. 

layer Si (111) film based on the self-consist~nt potential for the 

relaxed surface model. The band structure is presented for surface 

k-vectors ~I between reO,O). M(1/2,O). K(1/3,1/J) and r(O,O) in the 

hexagonal Brillouin zone. The 24 valence bands can be roughly divided 

into 3 bulk groups, representing the 6 low-lying s-li~e bands, 6 bands 

of mixed s- and p~character, 11 p-like bands and one separate p-Uke 

dangling-bond band in the fundamen tal gap. The three groups of band!';. 
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would with increasing film thickness approach continua separated by 

several gaps in which most of the surface states appear. 

Let us first discuss the dangling bond bands in the fundamental gap. 

Suppose a Si bulk crystal is cut every 12 layers parallel to the (Ill) 

plane and the pieces are gradually separated from each other. With 

:increasing distance one state each would split away from both the 

valence-bands and the conduction bands to meet about at half-gap to 

form the two fold degenerate dangling bond surface band corresponding 

to the broken bonds on either side of the Si films. In Fig. 26 the 

two bands are not exactly degenerate corresponding to some weak 

interaction (-0.2 eV) still present between opposite surfaces of the 

12 layer films. If the surfaces are unrelaxed and unreconstructed 

the two dangling bond bands show almost no dispersion parallel to the 

surface. i.e. they would appear extremely flat in the band structure 

plot. If the outermost atomic layer is relaxed in'-1ard, the dangling 

bond band shows an increased dispersion parallel to the surface 

together '-1ith a slight overall shift of the bands (see Fig. 27). 

In contrast to the dangling bond surface band '-1hich exists through­

out the two-dimensional Brillouin zone independent of relaxation, other 

surface states sho'-1 up only in parts of the two-dimensional Brillouin 

zone and some depend on relaxation. They are indicated at the high 

symmetry points r, K and M by dots in Fig. 26. A region of particular 

inten'st is around the point K. Strongly local ized surface states 

exist in the gap between -7 eV and -9 eV independent of surface 

relaxation. These states merge into the continuum at M and become 
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strong surface resonances. A similar behavior is found around K between 

-2eV and -4 eV. Even though the existence of these surface states 

does not depend upon relaxation, their exact energy position is a 

function of relaxation. Other surface states appear only after 

relaxation like the splitting away of the lowest valence band pair 

between -9.5 eV and -12.5 eV throughout the zone. All these findings 

have qualitatively also been obtained in a recent analytical model 

calculation by Yndurain and Falicov~7 

Density of states curves for the self-consistent results for the 

unrelaxed and relaxed surface models are presented in Fig. 27. Since 

these curves represent the total density of states for a 12 layer slab, 

their overall features strongly resemble those of the Si bulk density of 

states. The results for the (2 xl) reconstructed surface (insert) are 

obtained for a 6 layer slab. They shall be discussed later together with 

12 layer (2x1) reconstructed surface calculations. To locate structures 

associated with surface states (no distinction is made in the present 

case between bona fide surface states and strong surface resonances), 

,we investigated the charge density distributions for small energy 

intervalsscanni~g the entire width of the valence bands. As already 

mentioned, because of the existence of artificial two-dimensional 

singularities not all sharp structures in the density of states cor-

respond to surface states. The locations of surface states and strong 

surface resonances (for the relaxed case) are indicated by arrows in 

Fig. 27. Their labelling corresponds to the regions around high 

symmetry l-points in the two-dimensional Brillouin zone, from which 
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they originate (see dots and labelling in Fig. 26). The surface state 

energies are given in Table VIII and compared to experimental data 

obtained from UPS measurements on (2 xl) and (7 X7) reconstructed 

surfaces. Also indicated in Table VIII are the results of the self­

consistent.pseudopotential calculation of Appelbaum and Hamann (AH)91 

and of the empirical tight-binding calculation of Pandey and Phillips 

(pp)98 on unreconstructed relaxed Si(lll) surfaces. 

We now examine some of the individual surface states. In particular 

we investigate the points r(center) and K(corner) of the two-dimensional 

hexagonal Brillouin zone. Model calculations
97 

indicate that K rather 

than M (edge midpoint) is a point of special interest to study surface 

states. 

We first discuss the results at r. Below the energy zero which 

was chosen to coincide with the bulk valence band edge EV we find (in 

agreement with Appelbaum and Hamann9l and Pandey and Phillips98) three 

surface states. Two of them are degenerate and close to EV representing 

the transverse back bonds with charge localized between the first and 

second atomic layer. The third state is localized at the bottom of 

the valence bands and is predominantly s-like around the outermost 

atoms. With the "dangling bond" state above EV' which we shall discuss 

later, there are four surface states at r which agrees with the 

98 
classical tight binding concept. The si tua tion, ho,",'ever is diff~rent 

at K. We find only one "pure" transverse back bond K
tb

, the remaining 

states K
1b 

and K1b , having more longitudinal or s-like character. 

The interesting feature is that some states K1b , (at -2.0 eV and -9.7 eV) 
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have most of their charge localized between the second and third layer 

in contrast to the state KR.b (at -8.5 eV) which is a mixture of s-like 

and p-like states at the outermost atoms giving rise to a charge 

distribution between the first and second layer. In Fig. 28 we show 

a contour map of the charge of the state KR.b' at -2.0 eV. We would 

like to stress the fact that surface states apparently can "penetrate" 

into the second longitudinal bond which puts a limitation on the 

91 position of a "matching plane" separating the surface region from the 

bulk. The appearance of surface states at K in the second longitudinal 

bond increases the number of surface states from four to five which 

has been predicted by model calculations97 but which is in contrast 

to the findings of Pandey and Phillips.98 At the point M the situation 

is similar but less pronounced with some of the surface states merging 

into the bulk continuum. 97 

Let tis now examine the surface states in the energy gap above EV. 

As shown in Fig. 27 we find for the unrelaxed, unreconstructed surface 

~ very flat surface band about mid gap. This almost dispersionless 

band is half occupied, placing the Fermi level right at the peak. 

The charge distribution of these (either occupied or empty) mid gap 

surface states is very much "d~mgling bond"-like exhibiting a pronounced 

p-likecharge centered at the outermost atoms. When the last atomic 

layer is relaxed inward, the back bonds get stronger resulting in a 

mixing of the "dangling bond" states with lower lying back bond states. 

This increases the interaction between the individual "dangling bonds" 

via the second atomic layer and the dispersion of the surface band 
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increases. In fact, the resulting density of states exhibits the 

asymmetric shape of critical points expected for a planar triangular 

network of s- or n-like orbitals. The critical points are labelled 

Kd and rd in Fig. 27 indicating their origin in js-space. A charge 

density plot for the states Kd is shown in Fig. 29. It exhibits the 

very pronounced "dangling bond" character. The unoccupied states fd 

show a stronger mixing with back bonds. As for the unrelaxedcase 

there is only one surface band which is half occupied. This changes 

qualitatively when we consider the (2 xl) reconstructed surface. 

. 92 
We have used the Haneman model in calculating the electronic 

structure of .the metastable (2xl) phase of the Si (111) surface. The 

structural paramet~rs entering our (2 xl) reconstructed surface mod~l 

are the following: alternating rows of atoms have been raised by 0.18 A. 

and lowered by 0.11 A, and second layer atoms have been shifted 

laterally as indicated by the arrows in Fig. 30 such as to approximately 

preserve the length of the back bonds. This choice of parameters may 

not represent an optimum choice~ In particular, since these parameters 

represent an overall outward relaxation of the outermost atomic layer, 

some surface states which depend on inward relaxation like the states 

rib at the bottom of the valence bands will become delocalized. Our 

main interest in this study however is the behavior of the electronic 

states in the vicinity of the gap and their dependence on the character 

of the reconstruction (buckling with preserving the length of back 

bonds). The planar unit cell now contains 4 atoms. First preliminary 

calculations have been done on six-layer slabs separated by 3 bond 
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lengths of empty space. The corresponding density of states in the 

vicinity of the valence band edge, obtained from 72 ~-points in the 

two-dimensional Brillouin zone is shown as an insert in Fig. 27. As 

expected, qualitative changes compared to the unreconstructed (lXl) 

case oc'cur. Doubling the real space unit cell in one dimension 

corresponds to folding back the Brillouin zone in certain directions. 

Thus two surface bands appear separated by a gap resulting from the 

potential perturbation of the reconstruction. This behavior is reflected 

by the density of states in Fig. 27 showing two peaks which now cor-

respond to two different bands. In Fig. 27 the density of states does 

not vanish between the two peaks, thus leaving the surface semi-metallic. 

In fact the gap between the two surface bands is comparable or smaller 

than their dispersion. We believe that this behavior is an artifact 

of only including 6 layers per slab. 'The surface states on opposite 

surfaces of the slab show too much interaction, consequently causing 

the semimetallic behavior. 

To obtain more quantitative results (2Xl) calculations with 12 

layers per slab have been performed. Because of the large matrix size 

(about 320 plane waves were included to obtain the same convergence as 

for the unreconstructed cases), the self-consistent calculations were 

based on a two-point scheme «O,O)f and (1/2,1/2)K'). For the final 

self-consistent potential several ~I-points along high symmetry 

directions have also been included. A band structure showing the 

bands in the vicinity of the fundamental gap is presented in Fig. 31. 

The two dangling bond surface bands are split by a gap of ~ 0.27 eV 
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throughout the zone. They show some dispersion of only about O.2eV. 

The Fermi-level falls between the two bands, thus creating a semi-

conducting surface. To obtain a density of states curve for these 

bands a four term Fourier expansion for the band energy E(l5tI) has been 
..... 

fitted to the calculated band structure at the four l5t1-points r, M', M 

and K', and subsequently evaluated over a fine grid of l5t1-points of the 

two-dimensional Brillouin zone. The results are shown in Fig. 32 

(bottom). Two structures are found separated by about 0.4 eV 

corresponding to the two surface bands. The lower surface band which 

overlaps with states arising from bulk and other surface bands is 

d b E E 0 E . 1 h .. d 93 h centere at a out = V = . xper~menta p otoem~ss~on ata s ow 

structure at somewhat lower energy (E ~ -0.5 eV). Further lowering 

of the calculate surface band and better agreement with experiment 

can probably be obtained by using a different choice of atomic 

displacement parameters. Our results, however, show the definite trend 

of splitting the dangling bond surface bands combined with an overall 

lowering because of the buckling structure. 

Also indicated in Fig. 32 (top) is a joint density of states (JDS) 

for optical transitions between the lower and the upper surface bands. 

Matrix-element effects have not been considered in this plot. The JDS 

curve can be qualitatively compared to infrared absorption measureme.nts
99 

(broken line). A quantitative comparison is not reasonable because of 

the ad hoc choice of atomic displacement parameters and because of 

probable strong excitonic effects. It is also instructive to calculate 

the charge density distributions for states inside the two peaks in 
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the density of states of Fig. 32 (bottom). The corresponding charge 

(or hypothetical charge for the unoccupied upper band) is displayed 

in Fig. 33 in a (210) plane intersecting the surface at right angle. 

This plane corresponds to the (110) plane of the unreconstructed surface. 

The buckling raises the surface atom on the left hand side and lowers 

the surface atom on the right hand side. Due to lateral shifts the 

second layer atoms are slightly moved out of the (210) plane. The 

states show very interesting real space behavior. Electrons in states 

originating from the lower peak labelled dout are located predominantly 

on those atoms which have been raised and avoid those atoms which have 

been lowered. Conversely the wavefunctions for unoccupied states of the 

peak labelled din are concentrated around those atoms which have been 

loWered. The surface thus exhibits a (2 Xl) p:attern of nearly two-fold 

occupied dangling bond states centered at every.second row of atoms. 

Roughly speaking the unpaired dangling electron of every second surface 

atom (in) is transferred to. its neighboring atom (out) where .it pairs 

up with another electron. thus creating an ionic semi-conducting surface. 

This result thus provides an explanation to the absence of electron 

100 
spin resonance Signal from a clean Si (Ill) surface. 

In summary. we have applied the self-consistentpseudopotent ial , 

method for local "non-periodic" configurations discussed in Sec. IlIA 

to several Si (111) surface models. Three different surface model~ 

have been studied including unreconstructed, relaxed and unrelaxed 

(IXl) surfaces which also have been investigated by Appelbaum and 

91 
Hamann in the only previously existing self-consistent calculation. 
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Their results are basically consistent with our calculations. In addition 

new types of surface states corresponding to the longitudinal back bonds 

between the second and third atomic layer are found and complete density 

of states curves are presented. A buckled (2 Xl) surfacie model such as 

proposed by Haneman (with preserved back bond lengths) has been used 

to study the (2 Xl) reconstructed surface. The salient experimental 

results on (2 XI) Si (111) surfaces can be understood on the basis of 

this model. Upon reconstruction the dangling bond band is split and 

lowered considerably in energy. The surface is found to be semiconduc-

. ting thus producing an infrared absorption peak at low energies and 

eliminating the electron spin resonance signals from the surface. 

2. Relaxation Effects on the (110) Surface of GaAs 

We continue our study of semiconductor surfaces in this section 

h h (10) f f G h · 1 1 1 . 101-105 wit tel sur ace o· aAs. Numerous t eoret~ca ca cu at~ons 

have been performed for the ideal (110) surface of GaAs. Employing a 

variety of techniques these calculations provide. a consistent picture 

of the intrinsic surface states occurring near the Fermi level. 

Occupied ariion derived states are found to exist near the valence 

band maximum and empty cation derived states exist in the semiconductor 

band gap. 
. 93(a) 105-108 

Although early exper~mental work' seemed to 

lend support for this interpretation more recent work has yielded 

contrar~ evidence. 

] 06 
With respect to the empty cation states, Eastman and Freeouf 

have made partial yield photoemission measurements on a series of 

zincblende (110) surfaces. They observed a correlation betwef'n the 



0 0 (,) U 1 ,-
0 b~ Q ,:;,,1 ;;) t) 6 • 

-67-

position of the empty cation states, measured to lie within the band gap, 

and Schottky barriers. Based upon suggestions first put forth by 

109 
Bardeen, they asserted that the empty cation states playa prominent 

role in the determination of the Schottky barrier height. However, 

110 . 
recent theoretical studies have shown that semiconductor surface 

states are not present at the metal-semiconductor interface in the 

energy range of the band gap, and it is the metal induced gap states 

(MiGS) that are related to the properties of Schottky barriers. 

In addition, recent studies on GaSb l11 and GaAs112 have suggested 

that there exist .!!2. empty surface states within the band gap. Evidence 

for a higher placement of empty cation states comes from a model for 

113 
(110) surface relaxation as proposed by Rowe and coworkers. In 

order to account for the insensitivity of the cation surface states to 

106 113 .. 105 114 metal overlayers ' and oxygen adsorbates, , they proposed 

that the surface cations must relax inward. This type of relaxation 

is expected to move the cation states to higher energy relative to the 

b lk 1 b d o 106 u va ence an max1mum. 

E 1 0 1 ·d· 93(a) f fOIl d· . 0 ar y exper1menta eV1 ence or . 1 e an10n states occurr1ng 

h b h b Od 105,115,116 The near t e valence and,maximum as also· een quest10ne • . 

theoretical calculations indicate a strong and narrow surface band 

near the valence band maximum; however, recent photoemission is in 

116 poor agreement with this res'ult. ' The photoemissionwork suggests 

that only a rather broad surface feature, possibly obscured by bulk 

valence band states, is cOlnpatible with the experimental data. 
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Thus, to assess the effe,ets of relaxation on the GaAs (110) surface 

we have considered a model similar to the one proposed by Rowe, et a1. l13 

2 In this model we allow the cations to relax inward to form<- an sp 

configuration and the anions to relax outward such that the bond lengths 

are preserved. A very similar model has been used in the prevJous 

section to account for the reconstruction occurring for the (Ill) Si 

f
' 92,117 

sur ace. ' We find that the empty cation states are moved to 

hiiher energies; however, the leading edge of these states still lies 

within the band gap. In addition~ the character of the cation states 

is dramatically changed. The charge density is not localized outw~rd 

along the cation dangling bonds as for the ideal surface, but inward 

between the first and second surface layers. This could account for 

the insens~tivity of these states to metal over1ayers and gas adsorbates. 

With respect to the filled states the unrelaxed As dangling bond states 

move to lower energies and become obscured by bulk states in agreement 

. h h h" k 116 Wlt t e recent p otoemlSSlon wor . 

To calculate the electronic structure for the proposed model, we 

consider an eleven layer slab of GaAs with the (llO) surface exposed 

to vacuum on both sides. The slab is repeated in a super-lattice and 

the electronic structure is calculated following the self-consistent 

procedure described in Sec. IlIA. The ionic pseudopotentials (deter-

mined by model calculations and hulk considerations) used are the sam~ 

as those given in Ref. ]04. 

In Fig. 34 a local d~nsity of states (LDOS) is presented for the 

relaxed surface. The histogram density of states was prepared by 
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weighting each eigenvalue contribution to a given energy interval by 

the corresponding charge density localized within the specified 

1 
64,104 ayer. The first layer corresponds to the surface layer; the 

fifth layer deep within the bulk. The result for the first layer for 

an ideal surface is also displayed in Fig. 34. The local density of 

states for a given layer has the physical significance of giving the 

probability of finding an electron of a given energy E in that specified 

layer. Prominent peaks arise from surface states on the GaAs (110) 

surface are shown in Fig. 34 as shaded areas in the LDOS. 

. 91 94 97 98 In contrast to SI surface ca1cu1at~?ns; , , , the lower surface 

states on GaAs are not significantly altered by relaxation. However, 

this is ,not the case for the anion and cation dangling bond surface 

states occurring near the band gap. These states are significantly 

altered in both in energy position and charge localization. The filled 

. anion states are lowered in energy by' nearly 1 eV as compared to the 

ideal case. Since strong bulk contributions occur within th~ same 

region, this result could account for the absence of filled surface 

·b· . h h·· k 116 state contr~ ut~ons ~n t e recent p otoem~ss~on wor • The lowered 

energy position for the filled states is a natural outcome of the bond 

angle deviations occurring at the surface anion site. Within our model 

3 relaxation, the sp anion bonding configuration is made mon' s-like, 

henc~. lowering the energy of the states. This hehavior is analogous 

92,117 
to the buckled Si reconstruction as suggested by Haneman. 

As ~xpected the empty cation states show the opposite trend; they 

move to hi,gher energies with the sp2 configuration. 113 A detaiied 
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density of states for the cation derived empty surface states for both 

the ideal and relaxed surface is given in Fig. 35. This density of 

states was constructed by a Fourier interpolation scheme between 20 

t-points in the surface Brillouin zone. The band gap in GaAs is 

1.4 eV, thus the center of mass of the empty surface band density of 

states has moved above the conduction band minimum. However, the 

threshold of the calculated surface band remains in the band gap. The 

minimum of this band occurs along the < 001) bulk direction and is a 

result of significant mixing between anion and cation states along this 

direction. Our results are only compatible with the Eastman and 

. 106 
Freeouf data provided either the center of mass is exciton shifted 

downward in energy or the threshold of the surface band is exciton 

enhanced. 

It is possible that a relaxation model could be constructed in 

which the threshold is raised, but it appears within the limits of our 

calculation that this would require an unphysical stretching of th~ 

anion-cation bonds along the surface layer. This conjecture is based 

upon the result that the threshold appears to be insensitive to changes 

in the bond lengths as calculated by relaxing the cation but not 

altering the positions of the surface anions. 

Finally. in Fig. 36 we display the pseudocharge density for the 

cation surface states. 
104 .. 

For the ideal surfac~ these states protrude 

into the vacuum region and would be expected to interact strongly with 

surface adsorbates. In the relaxed case we would not expect this to 

occur as the states are localized inward between the first and second 
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surface layers. These states are predominantly p-like at the cation 

site with considerable s-like admixture. The strengthening of the back 

lobe of the p-like orbital by inward relaxation is to be expected by 

. 91 
analogous behavior calculated for relaxed Si surface states. 

In summary we have self-consistently determined the electronic 

structure of a model relaxed GaAs (110) surface. We final that this 

model can account for the insensitivity of the empty cation derived 

surface states to metal overlayers, and the lack of evidence for occupied 

anion surface states in recent photoemission measurements. Also with 

relaxation of the surface, the empty cation derived surface band becomes 

more dispersive. The center of mass lies above the conduction band 

minimum: however, the threshold of ~he surface band remains within the 

bulk band gap. 

C. Metal Surfaces 

Theoretical progress in the understanding of the electronic 

properties of metal surfaces has lagged considerably behind that of 

semiconductor surfaces in recent years. Simple s-p metal surfaces lack 

the wealth of interesting experimental data which have attracted the 

theorists to work on semiconductor surfaces. On the other hand, 

although transition metal surfaces are of great intere~t because of 

their possible technological applications, the complexity of the 

d-electrons has made realistic calculations on these surfaces 

prohibitively difficult. Thus far, the only self-consistent calculations 

. 118 
on simple metal surfacE.·s are those on the jellium model and on 

119 120 monovalent metals • which do not have occupied surface states 
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hence preclude them from participating in the self-consistent screening; 

and, as of yet, there are no fully self-consistent calculation for the 

electronic structure of transition metal surfaces. 

As an attempt to improve the above situation, we have performed 

self-consistent calculations on the electronic structur~of a polyvalent 

s-p metal surface (the A2(111) surface) and that of a transition metal 

surface (the Nb(OOl) surface). Because of the greater interest in 

transition metal surfaces, emphasis will be placed on the Nb(OOl) 

surface in the discussions. 

1. Al (Ill) Surface 

We followed the procedure discussed in Sec. IlIA to calculate, 

using self-~onsistent pseudopotentials, the electroni~ structure of 

a (Ill) surface of aluminum. The local configuration in the present 

case consisted of a twelve layer ~ slab with a vacuum region of three 

interlayer distances for each surface over which the wavefunctions of 

the slab are allowed to decay. As in the semiconductor surface 

1 1 · h An + 3 .. d . 1 d· H· An . 1 ca cu atl.ons, t e;c., l.onl.C pseu opotent1a use 1S a e1ne- 1ma u 

core potential121 which has been fitted to a 4-parameter curve in 

Fourier space 

V. (q) = 
10n 

(64) 

with parameters a
l 

= -0.7758, a
2 

= 1.0468, a
3 

= -0.13389, and 

a4 = -0.02944. The units are such that if q is entered in atomic 

units, V(q) is given in Ry. The potential has been normalized to an 

3 
atomic volume of 112.36 (a.u.) • 
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At each iteration in the self-consistent process, the required 

screening potential and the Fermi level, E
F

, were determined by cal­

culating the eigenvalues and eigenvectors avera grid of 294 points 

in the two dimensional Brillouin zone. The final calculated value 

for EF was 0.85 Ry above the conduction band minimum in good accord 

with the bulk value of 0.86 Ry. The obtained value for the work 

function cP is 0.38 Ry, which unfortunately cannot be compared directly 

to the experimental value of 0.31 available for polycrystalline At. 122 ,123 

Let us now discuss the surface states on the A'iv (111) surface. 

To determine the existence of surface states we have examined the 

charge density for all eigenvalues below EF at high symmetry points 

i'n the two dimensional zone. Our results indicate the existence of 

surface states below EFat r and at K in agreement with the results of 

previous non-self-consistent calculations by Caruthers, Kleinman and 

124 . 125 
Alldredge, but not with that of Boudreaux. At r one surface 

state occurs at 0.33 Ry below EF and at K we find two surface states 

at 0.15 Ry and 0.07 Ry below E
F

. 

Among the three surface states, the most localized (in real space) 

state is the upper state at K at 0.07 Ry. The charge density distribu-

tion for this state is shown in Fig. 37. The top figure shows the 

charge density averaged parallel to the surface and plotted as a function 

into the bulk. The bottom figure is a contour plot for the charge in 

the (110) plane. This state occurs in a rather large energy gap in 

the projected band structure
124 

and its decay is more rapid than the 

other state at K at 0.15 Ry or the surface state at r. As seen from 



-74-

Fig. 37, the charge density of this state is localized in a "cavity" 

near the surface formed by the first and second atomic layers. Since 

this state occurs quite near EF and is localized strongly near the 

f . t . t d b h ~ 11 . 124 sur ace, 1 1S expec e to e c em1ca y act1ve. 

The surface state at 0.15 Ry at K is not as localized as the upper 

state discussed in the previous paragraph, and is quite sensitive to 

the surface potential. As with the 0.07 Ry state at K it has charge 

localized in the cavity regions, but peaks further from the surface. 

Finally, the surface state at r, which occur in the bulk band gap at L 

in the three dimensional zone, decays very slowly falling only by 10% 

from the peak value at the surface to the mid-poirit of the slab. 

2. Nb(OOl) Surface 

We would like to discuss in some detail in this section the 

electronic structure of a transition metal surface. A self-consistent 

pseudopotential calculation is presented for the (001) ideal surface 

of Nb. To our knowledge, this is the .first fully self-consistent 

calculation for a transition metal surface. The band structure and 

real space distribution of the electrons near the surface are deter-

mi·ned. Surface states of different angular momentum character are 

found to exist over a wid~ range of energies and over different portions 

of the two-dimensional Brillouin zone. Our calculations predict strong 

surface features in the density of states in th~ range of 0-2 eV above 

the Fermi energy. 

Previous calculations85 ,126-l29 on transition metal surfaces can 

be roughly divided into three groups: 
. 127 

(1) Greens-function calculations 
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of the density of states of semi-infinite crystals using ad-function 

tight-binding Hamiltonian (i.e. neglecting the effects of sp-d 

hybridization). (2) band calculations on semi-infinite crystals by 

matching wavefunctions across a potential barrier constructed to 

128 represent the surface, and (3) band calculations on thin films using 

multiple-scattering, tight-binding or OPW methods. l29 

Although the above calculations have provided useful information 

about band narrowing and some properties of surface states, their 

limitations have motivated us to attempt the present calculation. Some 

of the limitations of these calculations are: None of these calculations 

are fully self-consistent; tight-binding calculations usually involve 

a limited basis set and some important effects of dehybridization at 

the surface are neglected; and Greens-function calculations provide 

only information about the surface density of states without giving 

surface bands and their k-space distribution. Pseudopotential calcula-

tions when carried out in a self-consistent fashion (Sec. IlIA) will 

avoid most of these shortcomings. 

The remainder of this section is organized as follows: In section 

a the methods of calculation are discussed. In section b the results 

for the electronic structure of the Nb(OOl) surface are presented 

together with the projected band structure ·~f bulk Nb on the (001) 

surface. And in the final section c a summary and some discussion 

are presented. 

a. Calculations. Let us first discuss the calculation on the 

projected band structure (PBS). Since bona-fide surface states can 

only occur in the gaps of the projected bulk part of the two-dimensional 
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130 . 
(2D) band structure, a knowledge of the projected band structure of 

the three-dimensional (3D) bulk crystal on a crystal face will be 

extremely helpful in analyzing surface states on that surface. For 

this reason we have projected the bulk band structure of Nb on the 

(001) surface using a method similar to that discribed in Ref. 131 

by Caruthers and Kleinman. 

For the (001) face of the bcc lattice, the surface lattice vectors 

are l! 
"-= a x 

c ' 
12. = a y 

c ' 
where a 

c 
is the bcc cubic lattice constant and 

x, y, z are the usual cubic unit vectors. The 2D Brillouin zone (BZ) 

for this surface unit cell is then a square (Fig. 38 top) with primitive 

reciprocal lattice vectors ~x = 2n/a
c
x and ky = 2n/a

c
y. To obtain the 

PBS, we construct the smallest 3D unit cell of the bcc lattice which 

is compatible with the 2D surface unit cell and determine the 3D band 

structure of Nb according to this new unit cell. The allow energies 

at a point ~I = (kx ' ky) in the 2D BZ are then the energy eigenvalues 

at all the points (~I' k z) such that -K/2 ~ kz ~ Kz/2 where Kz is the 

primitive reciprocal lattice vector along the z~direction for the new 

3D unit cell. In the present case, the new unit cell is just the bcc 

cubic cell and the new BZ is a cube inscribed in the standard BZ 

(Fig. 38 bottom) .. Also the band structure E (~) for the new cell can 
n 

be easily obtained by folding back the eigenvalues in the standard BZ 

into the new zanf'. For this purpose we have us~d the band structure 

calculated in Sec. lIC. The PBS for the (OOl) surface of Nb were 

obtained from the eigenvalues of 285 ~-points in the irreducible part 

(1/48) of the standard BZ. 



fl 0 "-I .~t!) U .<:,J 6 0 <!i ~ 6 , 
-77-

In calculating the surface electronic structure, we employed the 

self-consistent method developed in Sec. IlIA. A nine-layer slab of 

Nb with the (001) surfaces exposed to both sides is used to simulate 

two noninteracting surfaces. The slab is placed in a periodic super-

lattice with the slabs separated by a distance equivalent to 6 atomic 

layers of Nb. Screening is achieved using a Hartree potential derived 

via Poisson's equation and a Slater-type exchange potential. The only 

input to the calculation eonsists of the structure (i.e. the atomic 

positioris) and a fixed ionic pseudopotential for the Nb+S ion cores. 

The Nb+S ionic potential used here is the same potential used in 

Sec. lIC which is a R,-dependent nonlocal pseudopotential of the form 

2 

where PR, are projection operators for the various angular components 

(6S) 

of the electron wavefunction. The potentials Vs' Vp ' Vd were obtained 

by fitting the spectroscopic term values of the Nb +4 ion (Le. the Nb +S 

plus one electron system) and they are depicted in Fig. IS. When 

used in self-consistent atomic and bulk band structure calculations. 

h o Nb+S i' d . 1 h . ld 1 11 t ~s on~c pseu opotent~a as proven to y~e resu ts agree we 

with experiment and other calculations. (See Sec. IIC.) 

In the present calculation we have used the same convergence 

criteria as in the bulk calculation (Sec~ IlC). The electronic .wave-

functions were eXpanded in a basis set consisting of approximately 

1000 plane waves; an additional 1000 plane waves were treated by 

second-order perturbation techniques. Using symmetry, the Hamiltonian 
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matrix was reduced to two - 500x500 matrices since the central plane of 

the slab is a reflection plane. Because of the large matrix size, the 

self-consistent calculations were based on a three special-point 

132 scheme. However, for the final self-consistent potential, a total 

of 15 ,k-points in the irreducible part (1/8) of the 2D square Brillouin 

zone has been included. 

With the results at the 15 ,k-points, we obtained the self-

consistent valence charge density, the local density of states for the 

64 electrons near the surface, and the charge densities ,for the various 

surface states. The surface states were identified by examining the 

charge density for all eigenvalues below the vacuum level at the 15 

,k-points. 

b. Results. The PBS for the Nb(OOI) surface is shown in Fig. 39. 

We have scanned the entire irreducible part of the square zone by 

examining ,k-points along lines parallel to the ~ line (f toM) in equal 

intervals. Each small figure in Fig. 39 shows the PBS along one of 

such lines. For example. Fig. 39(a) is the PBS along the ~ line 

whereas Fig. 39(i) corresponds to the one point X. As seen from the 

figures there are a number of absolute gaps in the PBS. Synunetry gaps 

which we will discuss later are not shown in these figures. We note 

that the absolute gaps tend to be located \o.'ell far away from the zone 

center r and tend to be the widest at off high-symmetry points. 

From the PBS one therefore expects most of th'e surface states to 

occur away from the zone center and have energies in the wider gaps. 

Our surface results indeed show that most of the prominent surface 
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states occur in the big gap, Gl, positioned just above to Fermi level 

EF between 0 and 3 eV and in the smaller gap, G2. positioned between -2 

and '"-1 eVe The k-space extension of the!:;e two major gaps in the PBS 

is shown in Fig. 40. 

Let us now proceed t.o the surface results. Figure 41 !:i.hows the 

total. self-consistent valence charge density for the Nb (001) surface. 

The charge density distribution on the (110) plane is plotted in 

Fig. 41(a) and that on the (100) plane is plotted in Fig. 41(b). \-!e 

find that, after only a few layers into the bulk, the charge density 

is virtual identical to the bulk charge density presented in Fig. 18 

in Sec. IIC. Some of the noticable changes in the charge distribution 

near the surface are that the atoms on the second layer have a slightly 

higher charge density which can be understood in terms of the Friedel 

oscillations and that the charge density at the surface atoms become 

less directional and more s-like. 

104 The local density of states (LDOS) curves are presented in 

Fig. 42. The first layer corresponds to the surface layer; the fifth 

layer at the center of the slab. As stated in section (a), fifteen 

~-points in the irreducible part of the 2DBZ were used to calculate 

the LD05. In addition, to ascertain the surface features, a difference 

curve obtained by subtracting the LDOS at the center of the slab from 

the LDOS at the surface is present in Fig. 43. 

"'way from the slIrface in layer 5, the LDOS ~tron~ly resembles the 

bulk Nb spectrum given in Fig. 17; slight differences arise becaus0 

of the use of a smaller number of .\s.-points and also because of some 

influence of the surfaces. The observed changes at the surface layer 
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are mostly due to surface states and partly due to d~stortions of the 

bulk-state wavefunctions at the surface. (In this section we shall 

make .no distinction between bona fide surface states and strong surface 

resonances.) Narrowing of the rms width of the LDOS is observed for 

the surface layer. The regions A, B, C and D shown in Figs. 42 and 43 

indicate the regions where some of the prominent surface bands are 

found. 

The increase in the density of states at the surface layer in the 

energy range of 0 to 2 eV arises mainly from the contributions of 

three surface bands (TI, T2 and T3). These three surface bands occur 

in the absolute energy gap GI located just above the Fermi level in the 

two-dimensional projected band structure (PBS). As seen from Fig. 40 

the GI gap encompasses nearly 70% of the irreducible zone extending 

from M to over 2/3 of the way to r along the ~ direction and similarly 

to nearly touching X along the Y direction. The existence of these 

surface bands in the above gap is not very sensitive to the potential 

used. Their dispersion is ..... 2.5 eV for two of the bands (T2 and T3) 

and - 0.4 for the other (Tl). The increase in the density of states 

at the surface layer in the energy region D, on the other hand, arises 

from occupied surface states in the smaller gap G2. 

Figure 44 shows the various calculated surface bands along the 

high symmetry lines together with the PBS. Also indicated in Fig. 44 

are some of the symmetry gaps along the symmetry lines. (Symmetry gaps 

are gaps at high symmetry points or along symmetry lines in the .PBS 

in whl.ch bulk states of a given symmetry are forbidden but where states 

of other symmetry may exist.) In Fig. 44 vertical crosshatching is used 
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to show the extend of bulk states with ~l' Yl ,2 and 1::1 symmetry; 

horizontal crosshatching is used to show the extent of bulk states 

with llZ and r,2 symmetry; and the dash curves are the surface (bona-fide 

or strong resonance) bands. 

Let us first discuss the surface states in the Gl gap. There are 

four surface bands in this gap. Three of them are the Tl; T2 and T3 

surface bands. As discussed earlier the Tl band is very flat in 

~-space, where as the T2 and T3 bands are relatively dispersive. The 

extent of these states encompasses a large fraction of ~-space. 

The fourth band of surface states is found at - 3.0 eV in a small 

region near N. 

The T2 and T3 surface states yield similar charge distributions. 

These two bands follow each other closely in ~-space with a typical 

. 133 
energy separation of -0.5 eV which vanishes near M. The character 

of the two bands is for the most part d with admixtures of d zx,zy xy 

and d 2 2 depending on the value of t. For example along 1:: the T2 x -y 

band is of 1::1 symmetry (see Table IX) • Its character is therefore 

mainly of dz(x+y) with admixture of dxy The T3 band along this 

direction is however of 1::2 symmetry and its character is therefore 

mostly of d ( ) with admixture of d 2 2 At the point M the two z x-y x -y • 

bands merge to a two-fold degenerate state with mainly d character. 
, zx,zy 

The band Tl, on the other hand, is almost solely of d 2 2 character , 3z -r 

throughout ~-space. Finally the upper, fourth band existed only near 

M is mostly of d 2 2 character. In terms of spectral weights, the 
x -y 
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T2 and T3 states are mainly concentrated in energy regions B andC 

whereas the TI states are concentrated in region A. 

A natural, but perhaps over-simplified interpretation of the above 

surface bands is that the T2 and T3 surface states are states principally 

derived fiom the two bonding orbitals d and d of the surface atoms 
zx zy 

which are broken by the formation of the surface; They split off as 

two surface bands into the above discussed band gap from the bonding 

and anti-bonding part of the spectrum. Similarly the Tl surface states 

are d3 2 . 2 orbitals which split off from the anti-bonding part of the z -r . 

spectrum and move down into the band gap to form one surface band. 

There are other surface states near the Fermi leve1.For example, 

at r, a surface state of d3z2-r2 character is found ina rl symmetry 

gap at 0.2 eV. Also found near EF is an unoccupied surface band in a 

31 symmetry gap in the PBS along the 3 direction and, just below this 

~l gap, an occupied band of strong surface resonances. The two bands 

merge and become weak surface resonances at r. Since the state at f 

and those in the above two bands are well defined surface states _only 

at their respective symmetry points, they do not contribute much to the 

LDOS. 

In Fig. 45, the charge densities of the states in regions A, B 

andC. are presented. These include both bulk and surface states. We 

note that the ch3rge for all three regions arehi~lly localized on 

the first layer indicating that these regions are essentially composed 

of surface states. SinceTl states are dominant in region A, the 

charge density plot for this region (Fig. 45(a» shows a strong charge 
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lobe protruding out into the vacuum region along the z-direction 

perpendicular to the (001) surface. Although it cannot be seen from 

the plot. the charge density is completely symmetric about the z-axis 

giving the charge distribution a striking d3zL r2 character. In 

contrast, the charge densities for regions Band C have their maxima 

protruding out into the vacuum region at a 45 0 angle with respect to 

the normal; they are nearly symmetric with respect to the z~axis. 

Therefore they are mostly of d character with some admixture of zx,zy 

d and d 2 2 character. From Fig. 45. one can also see the reason 
xy x -y 

for the rather large dispersion for the T2 and T3 states. The charge 

densities for these states overlap quite strongly between neighboring 

surface atoms where as there are virtually no overlap of charges for 

theTl states. 

Other prominent surface states found are two occupied surface 

bands in the energy region D. Similar to the TI, T2 and T3 states. they 

appear in an absolute gap, the G2 gap, in the PBS (Fig. 44). But, 

unlike the former states. they are not dangling-bond-like. The k-space 

extension of this lower gap (Fig. 40) consists of a strip extending 

from midway along the t line to the point X. The surface charge distri-

butions for the states in the upper band T4 are primarily d -like. 
xy 

whereas the states in the lower hand TS arc prim~rily d 2 2-]ik0. 
x -y 

Howpver. the charge diBtrihutions for thcs(' Btal('s do change signifiC:lntly 

over different parts of t-space. In some regions charge is shiftl'd 

from the first layer to the second layer. 
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To illustrate some of the characteristics of the indiv.idual surface 

states, we have plotted the charge density distributions for the five 

surface states at the point k = (3/8,1/4) 2n/a. This k-point was chosen 
c 

for the reasons that all five surface bands TI-T5 extend to this point 

and that it is a general point in the 2DBZ. Figure 46 shows the charge 

density distribution for the Tl state at E = 1.6 eV·. The charge distri-

bution on the surface atom is d
3z

2_
r

2 - like and has virtually no 

overlap with the charge from nearby surface atoms. Figure 47 shows the 

charge density distribution for the T2 state at E = 0.8 eV. Comparing 

th~ charge distribution on the (110) plane (Fig. 47(a)) with that rin 

the (100) plane (Fig. 47(b)), we see that the charge distribution on 

the surface atom is of d character with an admixture of d zx,zy . xy 

character. Overlap of charges along the (010) direction is considerable 

which is consistent with the large dispersion of the T2 band. Figure 48 

shows the charge density distribution for the T3 state at E = 0:4 eV. 

The charge distribution is again d -like.· But unlike the T2 state. zx,zy 

it has an admixture of d 2 2 charge distribution. Again the overlap 
x -y 

of charges along the (010) direction is appreciable. Figure 49 shows 

the charge density distribution for the occupied T4 state at E = -1.7 

The charge density for this state is not as highly localized on the 

surface atoms a~ the states in the GI gap. The charge extends into 

the second layer and is mostly of d -character with a small admixture xy 

of d character. Finally. the charge density distribution for 
xz.zy 

the state T5 at E = -2.0 eV is presented in Fig. 50. The chargp is 

eV. 

localized on the secorid-Iayer atoms, but extends quite far into the slah. 
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Analysis of the T5 band show that this band changes character as it move 

towards to point X. At X the charge density distribution is d 2 2-1ike x -y 

and localized on the outermost Nb atoms. 

c. Summary and Conclusions. In summary we have calculated the 

electronic structure of the (001) ideal surface of niobium using a self-

consistent pseudopotential method. Surface states are identified 

and analyzed throughout the two-dimensional Brillouin zone. When 

compared to the semiconductor surface states, the surface states on 

the Nb(OOl) surface are much more complex both in their extent in 

~-space and in their charge density distributions. 

Our results also show that most prominent surface bands appear in 

gaps of the PBS which are located well away from the zone center. Since 

we do not expect the positions of the gaps in the PBS for the (001) 

surface of most transition metals to change by much, this situation 

will likely to occur on other transition metal surfaces and therefore 

it is not adequate to analyze the surface properties of transition 

metals by just examining the r point. 

Finally, to our knowledge there is no published experimental data 

134 135 ' on the (001) surface of Nb; measurements ' have been done on the 

(001) surfaces of Mo and W. A rigid-band interpretation of our results 

can be made for Mo and W provided that screening at the surface does 

not significantly alter the energies of the surface states. We also 

note that spin-orbit interactions are not necessary for the existence 

of the surface states discussed. 136 
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IV. METAL-SEMICONDUCTOR INTERFACE 

In this section we study the electronic struct"ure of metal-

semiconductor interfaces. 

Experimentally the behavior of the Schottky barrier height ¢b for 

metal-semiconductor (m/s) interfaces as a function of the metal 

electronegativity is found to be dramatically different depending on 

h h h . d . ·1 .. 137 w et er t e sem1con uctor 1S cova ent or 10n1C. For covalent semi-

conductors <Pb is approximately constant for all metals, whereas for 

ionic semiconductors, <Pb is strongly dependent on the metal contact. 

Furthermore the transition from covalent behavior to ionic behavior 

appears to be a rather sharp transition which occurs at a critical 

ionicity. 

. 109 138-141 
While there have been a number of theories and speculat10ns • 

and various mechanisms have been proposed to explain these properties 

of the barriers, a definitive explanation has yet to emerge bec~use 

of the lack of detailed information on the microscopic nature of m/s 

interfaces. A necessary step toward understanding the properties of 

Schottky barriers should therefore involve a systematic study of the 

eler.tronic structure of a series of m/s interfaces as a function of 

increasing semiconductor ionicity. Our present work is motivated hy 

these considerations. 

The interfaces studied in this section are interfaces of Al 

(modeled by a jellium core potential with r = 2.07) in contact with 
s 

the ideal (111) surface of Si and the ideal (110) surfaces of GaAs, 
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ZnSe and ZnS. We find that, within the jellium-semiconductor model, 

the electronic structure of the four interfaces under investigation 

is qualitatively similar.· Moreover we find that the experimentally 

observed variation in ¢b for different metals in contact with semi­

conductors of different ionici~y can be understood quantitatively in 

terms of a simple model involving metal-induced states in the semi-

conductor band gap. 

The remainder of the section is organized as follows: In Section A 

the methods of calculation and the electronic structure of the metal-Si 

interface are discussed in some detail. In Seciion B the results for 

the el~ctronic structure of the metal-zincblende semiconductor 

interfaces are presented. In Section C the ionicity-dependent behavior 

of the Schottky barrier height is examined. And in the final Section D 

some discussion and conclusions are presented. 

A. AI/Si Interface 

In this section we present self-consistent pseudopotential cal-

culations on the electronic structure of a metal-Si interface. The 

calculations model an AI-Si interface with a jellium potential 

representing the aluminum ion potential in contact with the Si (111) 

surface. This model describes an ideal or intimate interface. i.e. 

there is no oxide layer between the two materials. A local density 

of states (LDOS) which displays the density of states as a function of 

distance away from the interface has been calculated for this AI-Si 

junction. Various states which exist near the interface are identified 

and discussed in terms of the LDOS and their charge densities. Our 
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calculated interface barrier height is found to be in excellent agree-

. h . 1 1 142 ment W1t recent exper1menta resu ts. To our knowledge, this is 

the first realistic se1f-consistent calculation for a metal-semiconductor 

interface. 

Metal-semiconductor interfaces are of great importance because of 

their rectifying properties which are crucial to the operation of many 

electronic devices. Much experimental efforts have been devoted to 

the study of their properties. With the advent of recent ultra-high 

vacuwn techniques, 'ideal interfaces can now be fabricated and studied 

. 142-146 systemat1ca11y, and the detailed electronic structure at the 

. 144-146 interface can be probed using modern photoemission techn1ques. 

On the theoretical side, metal-semiconductor interfaces have been the 

f h d d l · 109,138-141,147-149 subject 0 muc iscussions an specu at10ns. 

Many models have been proposed to explain the interface properties. 

However, regretably, past theoretical investigations into their 

electronic structure have been mostly qualitative or semi-quantitative. 

A clear picture of the ~lectronic structure at a metal-semiconductor 

interface has yet to emerge. 

Experimentally, the electrical barrier height ¢B (Schottky barrier) 

at a metal-semiconductor interface can be accurately determin~d using 

many different methods (I-V, C-V, photoelectric, etc.). To avoid 

confusion over n- and p-type semiconductors, we measure here the 

barrier height from the Fermi level EF to the semiconductor conduction 

band. For covalent semiconductors such as Si and G~, the barrier 

height is found to be virtually independent of the metal contact and 
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~f the doping in the semiconductor. 137 ,142,149 Bardeen109 attributed 

this behavior of the barrier height to a high density of surface states 

in the semiconductor band gap; i.e. the filling or emptying of these 

surface states pins the Fermi level to a nearly constant value. 

Heine,138 on the other hand, pointed out that semiconductor surface 

states cannot exist in the semiconductor gap if this energy range is 

inside the metallic band. He suggested that the pinning of the Fermi 

level is due to states of a different type in the semiconductor gap. 

These states are composed of the states from the tails of the metallic 

wavefunctions decaying into the semiconductor side. 

Th . 139,141 h' h d l' . 1 . I . 
eor~es w ~c 0 not exp ~C1t y 1nvo ve extra states ~n 

the semiconductor gap have also been proposed to explain the barrier 

height behavior. Inkson,139 uSing a model dielectric function 

formulation, proposed that the pinning of the Fermi level is due to the 

narrowing of the semicondcutorgap at the interface. According to 

Inkson, the screening of the valence and conduction bands of the 

semiconductor is different near the interface. This causes the 

valence band to bend up and the conduction band to bend down and 

eventually the bands merge together at the interface for a covalent 

semiconductor. In addition, Phillipsl4l claimed that polarizability 

effects play the dominant role at the metal-semiconductor interface. 

He suggested that it is the elementary excitations and chemical bonding 

at the interface which determine the behavior of the Schottky barrier. 

The purpose of the present work is to study the electronic 

structure of a metal-covalent semiconductor interface in detail using 
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the AI-Si junctio~ as a prototype and to gain some insights into the 

nature of metal-semiconductor Schottky barriers. The model and methods 

of calculation present here can be applied to general metal-semiconductor 

contacts. The main features of this calculation which are absent in 

previous work are (1) a realistic interface is constructed through a 

jellium-semiconductor model and (2) the calculation is self-consistent. 

It is noted that, as in all previously existing self-consistent surface 

calculations, self-consistency in the present context means self­

consistency in the electronic responses to a given structural model. 

In the remainder of this section we shall -first discuss in section I 

in some detail the model for the interface and the steps in the self­

consistent calculations. In section 2 the results for the electronic 

structure of the Al-Si interface are presented. And in the final 

section 3 some discussion and conclusions are presented. 

1. Calculations 

Our model for an ideal metal-semiconductor interface consists of 

jellium in contact with a semiconductor described in the pseudopotential 

formalism. Present experimental and theoretical methods do not allow 

a detailed determination of the geometry at the metal-semiconductor 

interface; however, we believe that the important properties of the 

interface are dominated by the properties of the free electrons 

residing next to the semiconductor surfac~. The present model is 

expected to contain all of the essential features of a metal-semiconductor 

interface. 
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The method we have employed to calculate the electronic structure 

of the AI-Si interface is similar to the method which we have used in 

Sec. III for the surface calculations. The main difficulties in 

calculating the electronic structure of solid interfaces are: 

(1) Periodicity along the direction perpendicular to the interface 

is absent. Therefore the established methods for bulk calculations 

which depend on the periodicity of crystalline solid cannot be used. 

(2) Self-consistency is essential in obtaining realistic solutions. 

It is necessary to allow the electrons to react to the boundary con-

ditions imposed by the interface and the resulting readjustment and 

screening is a fundamental part of the problem. 

The essence of our method is to retain (artificial) periodicity perpendi-

cular to the interface and thus allow the use of well established tools 

in pseudopotential crystal calculations to calculate the interface 

electronic structure. In addition, tOhe method goes beyond the usual 

pseudopotential approach through the requirement of self-consistency. 

For the present calculation, we consider a unit cell consisting of 

a slab of Si with the (Ill) surfaces exposed to a jellium of Al density 

on both sides. This cell is then repeated and the electronic structure 

of the system is calculated self-consistently. The basic idea consists 

of considering periodic interfaces wllich are separated by largp 

distances, and then ohtaining the essential features of a singlc 

interface by calculating the electronic structure of this periodic 

system. The unit cell used consists of 12 layers of Si plus an equi-

valent distance of jellium. It is spanned in two dimensions by the 
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shortest lattice vectors parallel to the Si (111) surface i.e. hexagonal 

lattice vectors with the length of 7.26 a.u. and by a long c-axis of 

length c = 71.1 a.u. 3 The volume of the cell is equal to 3241 (a.u.) . 

\~ith ,the above geometry, the jellium edge is one-half of a Si-Si 

bond length away from the atoms on the Si (Ill) surface. This is a 

physically reasonable choice since the length of a AI-Si bond is 

approx-imately the same as a Si-Si bond. To simulate non-interacting 

interfaces, the Si and the Al slab sizes have to be chosen such that 

(a) the bulk properties of the materials'are adequately reproduced and 

(b) the surfaces from opposite ~ide of the same slab do not interact 

appreciably. 94 
Calculations on the Si (111) surface and various test 

calcualtions on jellium slabs of Al density showed that the assumed 

slab thickness which is equivalent to 12 layers of Si satisfies the 

above requirements well. 

The electronic structure of this "periodic" system can now be 

solved in a ~elf-consistent manner usirig pseudopotentials. The steps 

leading to a self-consistent solution are shown in Fig. 23. We expand 

the electron wavefunctions in plane waves with reciprocal lattice 

vectors, Q: 

(06) 

This leads to a matrix eigenvalue equation of the usual kind 

(67) 
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1 which is solved by standard methods. Here, the Hamiltonian matrix 

elements are of the form 

h
2 

2 = 2m It+QI o~ e' + V (f,Q') 
~,..! ps 

(68) 

where Vps(f.Q') are the pseudopotential matrix elements. In general 

the pseudopotentials are non-local and energy dependent. l However,· for 

bulk Si and Si surfaces, local pseudopotentials are known to yi~ld 

satisfactory results. Therefore local pseudopotentials will be used 

throughout for the present calculation. 

The self-consistent cycle is initiated by the following potential 

Si .Al . 
V (Q) = S{f)V (lei) + v· (f). start emp - start 

(69) 

The first term 1s the starting potential for the Si slab arid the 

second term is the starting potential for the Al slab. The Si structure 

factor 
M 

seQ) = 1 ~ N L 
T. 
~ 

-iQ'T -i 
e 

describes the positions of the' Si atoms in the unit cell. 

(70) 

V
Si (IQI) emp . 

are Si atomic pseudopot~ntial form factors derived from empirical bulk 

1 1 · 47 ca C'1I :ltlons. Sinci..· empiric:ll furm f:-lctors :-Ire only known for 

discrete f vectors and the Q vectors are different for different ~rvst~l 

structures, .:l continuous extrapolation is performed to obt:1in till' furm 

factors corresponding to the new f vectors in the interface problem. 

We fitted a curve of the form 
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V(q) (71) 

to the 3 form "factors for bulk Si V(lll) = -0.2241 Ry,V(200) = 0.0551 Ry, 

V(311) = 0.0724 Ry and renormalized it for the different unit cell 

volul'le. The four parameters a.in Eq. 
1. 

(71) are given in Table X. The 

potential is normalized to an atomic volume of 270 (a.u.)3 and the 

units are in Ry if q is entered in a.u. 

A starting potential for the Al slab is less obvious. \ve assumed 

that in zeroth order, the Al electronic charge is uniform and confined 

completely inside the Al slab. Then the Hartree part of the electron 

screening will cancel the positive jellium background and the starting 

potential for the Al slab can be taken to contain only an exchange term 

where ex = 0.79 and P~/13 (G) are the Fourier components of the jellium 
Je -

density to the one-third power. Here we have replaced the non-local 

(72) 

Hartree-Fock exchange potential, V (r.r'). by the statistical exchange 
x 

model of Slater. 90 ,l50 The choice of ex = 0.79 will be discussed later. 

In. principle, for n sel f-consistent calculation, the st.,rting potentials 

should be unimportant. However, in practice, a good starting potential 

reduces the numher of iterations needed enormou~ly. 

From Eq. (67) we obtain the b~nd structure E (k) and the pseudo­
n 

wavefunctions ~nk(L)' To'perform the next step in the self-consistent 
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loop, the total valence charge density 

* p (.t:.) = 2 I I 1jJ nls (.t:.) IjJ nls(.t:.) 
n ls 

(73) 

En(ls,) E;; EF 

has to be accurately determined. This requires good convergence in the 

electrortwavefunctions and a precise location of the Fermi le~el. To 

assure good convergence, the electronic wavefunction were expanded in 

a basis set consisted of approximately 270, plane waves. This expansion 

I corresponds to a kinetic energy cutoff E = IG 12 ~ 2.7 Ry. . 1 ""max In 

addition, another 300 plane waves were included via Lowdin's perturba-

. h 1 t~on sc eme. The total valence charge deDsity was evaluated at 21 

ls,-points in the irreducible part (1/12) of the two-dimensional 

hexagonal Brillouin zone with the Fermi level determined by demanding 

charge neutrality in the unit cell. That is, the Fermi level is 

determined by filling the eigen levels in the Brillouin zone until the 

number of occupied levels correspond to the number of electrons in the 

unit cell required by charge neutrality. 

We note that, for our "periodic" system, we should in principle 

evaluate the total charge over the whole 3-dimensional Brillouin zone. 

However, for a large elongated cell as·in the present case, the energies 

and wavt'functions are quite independent of the ~-vectors'al()ng the 

c-direction. As we shall see later, the final charge density away 

from the interface is in good accord with bulk calculations thus 

indicating that our sampling in ~-space is sufficiently fine and the 
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wavefunctions are converged. 

Once the valence charge density p<,~) is known in terms of its 

Fourier components p(~), the Hartree-Fock type screening potentials 

VH and Vx can be evaluated easily. VH' the so-called Hartree screening 

potential, is the repulsive Coulomb potential seen by an electron and 

is generated by all the valence electrons. It is related to the 

valence charge density by Poisson's equation 

(74) 

and can be written as a Fourier series 

VH (.t:) = L VH(,G)eif".t: 

~ 

(75) 

with 

2 
VH(,G) = 4ne ~(~l) 

1,G12 
(76) 

Physically overall charge neutrality in the solid requires that 

VH(,G=O) = -V. (,G=O) where V. is the ionic potential generated by 
~on ~on 

h ". S . +4 . d b h ... 11' 1 b t e pos~t~ve ~ ~on cores an y t e pos~t~ve Je ~um sa. Therefore, 

for the present calculations, we can arbitrarily set VH(,G=O) = 

v. (~O) = O. Numerically, however, the divergent character of 
~on 

VH(G) and V. (r.;) for small ,G-values causes some problem with the - ~on .x:. 

stability of the sel f-consistency process. This is discussed in 

detail in Ref. 94. The Hartree-Fock exchange potential was approximated 

uSing the Slater exchange model, as we have done for the Al starting 

potential. In ,G-space, the exchange potential then has the form 
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where CI. = 0.79 and pl/3(Q) a!e Fourier components of pl/3(.t). The 

justification for the present value for CI. is that this choice of a 

will bring Slater's exchange in an approximate agreement with Wigner'slSI 

interpolation formula at the average valence charge density of Al and S1. 

Thus. from the total charge density. the electronic screening potential 

VSCR(.t) (78) 

is obtained at each iteration in the self-consistent loop. 

Aft.r th. screening potential is determined. the self-consistent 

process is continued by adding VSCR to an ionic potential V. to form , ~on 

a potential for the next iteration. The ionic potential consists of 

two terms 

v. (.G) = S (Q) V~i (Q) + ~l (Q) 
10n ~on 10n 

(79) 

h h f . . d b h S . +4. . d h were t e 1rst term 1S ,generate y t e 1 ~on1C cores an t e 

second term is generated by the Al slab. SeQ) is the Si structure 

'factor as defined in Eq. (70). 

First let us discuss ~l. This is just the Coulombic potential 10n 

generated by repeated slabs of uniform positive charge. For an origin 

at the center of a metallic slab, 0 1 has the form 10n 

2 
-8ne n+ sin Gza/2 

C G ,,3 
z 

(80) 
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where a is the width of the jellium slab, C is the length of the unit 

cell along the direction (z) perpendicular to the interface and n+ is 

the positive background density. 

For the Si ion core potential, we have used an atomic model 

potential which was fitted to atomic term values by Abarenkov and 

Heine.
96 

The repulsive cores of the ionic model potentials as given 

by Abarenkov and Heine are nonlocal (Le. R,-dependent). For the present 

1 1 · 1 1" h F . h" .. Ih b ca eu at10n, a oca, on t e erm1 sp ere approx1mat10n as een 

made and the Fourier transform of the resulting local potential was 

fitted to a 4-parameter curve 

V~i ( ) 10n q (81) 

Thevqlues of the b. 's are given in Table X. The normalization and the 
1 

units for Eq. (81) are the same as those for Eq. (71). Using the 

parameters given in Table X, this ionic core potential has proven to 

yield excellent results in bulk and surface self-consistent calcula-

. 94 t10ns. 

With the above Vion ' the first two cycles of the self-consistent 

loop were performed using 

vO) ( ) 
IN L = V start (X) 

v(2)( ) v. (.t) + 
(1) 

= V SCR (X) IN L 10n 

However, due to the divergent character of VH and V. mentioned 10n 

earlier, an input potential V1N which deviates from the truly 

(82) 
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self-consistent potential will lead to an output potential which 

"overshoots~' and is further away from the true potential. Therefore 

further iterations based on a straightforward extension of Eq. (82) 

would not yield a converging potential. This unstable behavior of the 

screening potential especially for very small ~-vectors is commonly 

. . 94 118 120 found l.n surface calculatl.ons. ' , The procedure to deal with 

these instabilities is to compute adj usted input potentials vi~) CQ) 

for n > 2 from preceding input and output potentials. This can be 

done by obtaining the input potential of ,the nth iteration from a 

linear combination of input and output potentials of the (n-l)th 

iteration or from inspecting V
OUT 

versus V
IN 

graphs separately for 

each small~. A detailed discussion of this problem and the procedures 

to overcome it are given in Ref. 94. The criterion for self-consistency 

is now the stability of the adjusted ,input screening potential as 

compared to the output screening potential calculated from Eq. (78). 

In the present calculation, the final self-consistent potential is 

stable to within 0.01 Ry. 

After self-consistency has been'reached, the electronic structure 

of the interface can then be analyzed in terms of charge densities. 

For this purpose, charge densities have been calculated as a function 

of different energy intervals and different ~-points in the Brillouin 

zone. In addition, we performed a local density of states (LDOS) 

calculation for the AI-Si interface. This LDOS which displays the 

density of states in real space, facilitates the identification and 

illustrates the characteristics of the various kinds of states at the 
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interface. Analogous to the projected density of states in tight binding 

calculations, the LDOS for a giv~n region in real space is given by 

N. (E) = 
1 

(83) 

where ~I is the wavevector parallel to the interface, n is the band 

index, ~Ik is the electronic wavefunction and n. is the volume of the 
"41 ' n 1 

chosen region. Physically N.(E) can be interpreted as the probability 
1 

that an electron with energy, E. is found in the region i. 

2.· Resul ts 

In this section our results for the AI-Si interface are discussed. 

We find that four different types of states can exist near the AI-Si 

interface. Aside from the usual states which are bulk-like in both 

materials, there are states with energy below the Al conduction band 

which are bulk-like in the Si side but decay rapidly in the Al side. 

Also, in the two-dimensional Brillouin zone, we find extra metal 

induced gap states (MIGS) in the semiconductor energy gaps whenever 

the range of the gap is inside the metallic band. They are somewhat 

similar to the states suggested by Heine, i.e. they are bulk-like in 

Al and decay rapidly in S1. However, at the Si surface, these MIGS 

retain the characteristics of the "fn:e-~urface" Si surface states 

which existed in the absence of the metal. It is these states which 

pin the Fermi level and dominate the properties of the AI-Si junction. 

In addition, we find truly localized interface states which decay in 

both directions away from the interface. These appear in the Si energy 

gaps in the energy range below the Al conduction band. 
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First let us examinp the total~ self-consistent valence charge 

density. The total charge density is a good indicator of the quality 

of the present work. For the present calculations to adequately 

represent non-interacting interfaces, the charge densities away from the 

interface should resemble the bulk densities of the two materials. 

Figure 51 displays the total valence charge density in a (110) plane 

along with the function Ptotal(z) which is the total charge density 

averaged parallel to the interface with z being the direction perpendi-

cular to the interface. For the purpose of discussing the charge 

densities and the local density of states, we have also divided the 

unit cell into 12 equal regions (slices) as shown partially in Fig. 51(b). 

The jellium edge is indicated by the double dashed line. Only the 

charge within a few angstroms from the interface is significantly 

perturbed from the bulk values. The charge densities in region I and 

II d . "1 dVI . d d ·hblkd .. 47.152 an reglons. an· are 1n goo aecor Wlt u enSl.t1es. 

The slight differences between the present Si charges away from the 

interface and those calculated in Refs. 47 and 152 are due to the 

difference in the cutoff energy El . 

From Fig. 51(b) one sees the well known Fridel oscillations in the 

Al charge density and there is a net transfer of charge from aluminum 

to silicon. On the Al side, regions I and II each contain 7.9% of 

the total charge in the unit cell where as region III contains only 

7.6%. On the Si side, regions V and VI each contain 8.8% of the total 

charge but region IV contains 9.1%. Thus approximately 0.3% of the 

total charge in the unit cell has been tran~ferred from region III 
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to region IV. A dipole potential with an electric field pointing toward 

the Si side is hence set up at the interface. This is a consequence 

of equalizing the Fermi levels in the two materials. As seen from 

Fig. 51(a), the Al charge is spilling into the empty "channels" in the 

Si charge density and into the dangling bond sites. The charge density 

at the dangling bond sites in the present case is significantly higher 

than a sum of the jellitJrn electron charge density and the Si charge 

density from the free surface calculations. This indicates the 

formation of a metallic-covalent like bond between Si and a jelliurn 

of Al densi ty. 

Figure 52 displays the self-consistent pseudopotential V in a sc 

(110) plane along with V(z) which is V averaged parallel to the . sc sc· 

interface. The total charge density discussed earlier is the self-

consistent response to this potential. The potential on the Al side 

is flat and does not show pronounced Fridel oscillations. Similar 

behaviors have been found in self-consistent calculations on the Al 

118 surface using the jellium model. In the course of self-consistency, 

the Si potentials on the first two layers are made slightly deeper 

than the Si potentials further away from the interface. As expected, 

the perturbation to the Si potentials due to the presence of the metal 

94 
appears to be milch less than the perturbation due to the free surface. 

Now let us discuss the local density of states (LDOS) as defin.:>d 

in Eq. (83). We have calculated the LDOS for the six regions indicated 

in Fig. 51 by using twenty-one points in the irreducible part of the 

two-dimensional zone. The histograms of the LDOS for the six regions 
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are shown in Fig. 53. To facilitate comparisons, the density of states 

of bulk Si from Ref. 47 is superimposed on the LDOS of regions IV to 

VI and a free electron density of states (i.e. N(E) - IE) is super-

imposed on the LDOS of regions I to III. The Fermi level is indicated 

by the dashed line. Most of the interesting features appear in the 

LDOS of region IV. To investigate the energy positions of the extra 

states and their origins, we subtracted the LDOS of region VI from the 

LDOS of region IV to obtain a difference local density of states (DLDOS). 

The result is presented in Fig. 54. The positive portion of the 

histogram indicates an addition of states in that particular energy 

range in region IV and the negative portion of the histogram shows a 

depreciation of states. 

The LDOS reveals much information about the electronic structure 

of the interface. From the position of the Fermi level and the position 

of the conduction band edge of the se~iconductor, one can calculate 

the barrier height at the interface. We obtained a barrier height of 

0.6 ± 0.1 eV for the Al-Si interface which is in excellent agreement 

with the recent experimental re"sul t of O. 61eV. There are other 

experimental values for the Al-Si barrier height ranging from 

-0.55 eV to -0.70 eV. (See for example Ref. 149) However, we believe 

that the value from Ref. 142 is the best for an ideal Al-Sl interface 

because of the ultra-high vacuum conditions used in this particular 

experimen t. 

The various types of states which appear near the interface can 

be seen from the LDOS. States with energy below -11.1 eV (Le. below 
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the onset of the Al conduction band) are bulk-like in Si and do not 

penetrate into the bulk of A!. Of course there are states with higher 

energy which can behave similarly. For example. at the k-point K. 

stateR with energy up to -6.5 eV are below the Al conduction band. 

To illustrate this type of states, the charge density for all states 

with energy below -ll.s eV is presented in Fig. 55. On the Si side. 

the charge density contours strongly resemble the charge density 

contours for the bottom band of bulk Si 47 whereas the charge on the 

Al side is completely zero. The slightly higher charge density at the 

first two layers is most likely due to Friedel oscillations. 

From the LDOS of region IV (Fig. 53) or the DLDOS (Fig. 54). we 

see that the dips in the bulk Si density of states which are due to 

gaps in the Si band structure are being filled up by either interface 

stateR or }UGS at the interface. The extra states centered at --8.2 eV 

are partially interface states and partially HIGS whereas the states 

centered at --s.n eV and states in the optical gap are MIGS. 

The MIGS in the optical gap are of particular importance because 

the density of these states sensitively influences the position of the 

Fermi level with respect to the semiconductor band edges. These states 

have a charge density which is metallic 1n the Al slab. becomes 

dangling-band-like at the 51 surface. and dpcay rapidly to zero in 

the-' Si slab. The charge density for _ these' states in the thc'rmal gnp. 

i.e. states with energy between 0 arid 1.2 eV. is plotted in Fig. sh 

along with p(z) which is the same charge density averaged parallel to 

the interface. The dangling bond surfacp. stat~s which exist at these 
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energies for the free surface case have been matched to the continuum 

of metallic states. Thus; as seen from Fig. 56(a), the charge is quite 

uniform in the Al slab but retains the dangling bond character at the 

Si surface. We note that the charge density displayed in Fig. 56 is 

for all states with energy in the thermal gap. The decaying rates are 

different for states at different energies. The charge for states 

near midgap decays most rapidly into the Si side. 

An examination of the LDOS of region IV from -1.0 to 2.0 eV 

indicates that there is an apparent asymmetry in the distribution of 

extra states about the optical gap. A plausible physical explanation 

is the following: The states in the optical gap are derived from the 

valence band and the conduction band. Note the large depreciation 

of states near -1.8 eV and near +4.0 eV. (See Fig. 54) Since these 

MIGS are dangling-bond-like (i.e. p -like) in region IV and the top 
z .." 

of the Si valence band is p-like whereas the bottom of the conduction 

band is s-like, bulk states from the top of the valence band will be 

"robbed" to form the MIGS while only states higher in the conduction 

band will be strongly affected by the formation of the lonGS. Therefore 

the depreciation of bulk state densities will be larger at the top 

of the Si valence band than at the bottom of the conduction band. 

rllis T(!sul tsin the app.1rcn t asymmetry. 

TIl(' interface· state·s centered at -8.S cV. lahellt'cJ SKin Fi~. 53, 

appear near the point K in the two-dimensional hexagonal Brillouin zone. 

At first sight. localized states should not appear because there are 

aluminum states in this energy range. This appearance of interface 
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states is a band structure effect. Near the point K in ~-space.the 

Si two-dimensional band structure has a gap between -7.2 eV and -9.5 eV 

which is below the Al conduction band. In Fig. 57 we show a schematic 

diagram of the projected band structure of the bottom two bands of Si 

together with the projected band structure of AI. The Fermi levels of 

the two materials have been set equal. The lowest gap at K is the gap 

that we are discussing. Silicon surface states existing in this gap 

cannot be matched with any Al states because there are no Al states 

with the same energies and ~-vectors. A contour map of the charge 

density of the interface states at K at -8.5 eV is shown in Fig. 58. 

The charge density is s-like and highly localized on the outermost Si 

atoms. The charge is almost completely confined in region IV. Similar 

state!'; .with the same energy and character have been found in Si surface 

calculations. However the charge for states found in surface calcula­

tions are less localized. 

3. Summary and Discussions 

We have studied the electronic structure of a metal-covalent 

semiconductor interface using an AI-Si system as a prototype. A 

jellium-semiconductor model has been constructed for the AI-Si 

interface. The electronic structure of the interface was then calculated 

using a method involving self-consistent pseudopotentials. The model 

and methods of calculation used in the present s~ction have widpr 

application than just the AI-Si sys.tem; these techniques can be 

extended straightforwardly to calculate the electronic structure of 

other metal-semiconductor interfaces. 
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Fpur different types of states are found to exist near the 

interface. The characteristics of these states have been analyzed 

in details in terms of their charge densities. Our local density of 

states results indicate a high density of MIGS in the Si thermal gap 

near the AI-Si interface. This implies a pinning of the Fermi level 

by these MIGS which is consistent with experimental results. It is 

important to note that, in the present calculation, we have used a 

statistical exchange model for the exchange potential. Hence both 

the valence bands and conduction bands see the same screenirig potential. 

Al~o, fiom examining the structure of the local derisity of states, there 

does not seem to be a merging of the valence band with the conduction 

band near the interface. Therefore, the pinning of the Fermi level 

can be explained without invoking Inkson's argument of merging of the 

bands due to difference in the screening of the valence band and the 

conduction band at the interface. Furthermore, it is not very meaning-

ful to talk about a band picture as a function of distance away from 

the interface on such a microscopic scale. 

The present calculation is for a high density metal, AI, in 

contact with Si. For metals with a low density of s-p electrons, 

interface states can coexist with MIGS in the energy range of the Sj 

optical gap such as in the -7.2 to -9.5 eV gap in the present cnlculn-

tion. Under such conditions, one expectsth':lt an even higher d(·nsity 

of extra states will appear near midgap and the Fermi level is again 

pinned in the thermal gap. This may be an explanation of why surface 

states continue to exist in the GaAs gap when an overlayer of Cs14s.146 
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or Pd
144 

is placed on GaAs. Both Cs and Pd are metals of low s-p 

electron densities. 

B. Metal-Zincblende Semiconductor Interfaces 

In this section we extend the analysis in Sec. IVA to the metal­

zincblende semiconductor interfaces. The interfaces studied are 

interfaces of Al (modeled by a jellium core potential) in contact with 

the ideal (110) surfaces of GaAs, ZnSe and ZnS. 

1. Calculations 

As in Sec. IVA we are considering intimate mls interfaces and 

approximate the system by replacing the metal with a jellium model and 

describing the semiconductor in the pseudopotential formalism. Since 

the methods of calculation have discussed at length in Sec. IVA, we 

shall only briefly describe some of the essential features of the 

method and will be mainly concerned with the parameters needed in the 

calculations. 

The calculations were carried out by constructing an elongated 

unit cell which, in two dimensions, is spanned by the shortest lattice 

vectors parallel to the appropriate semiconductor surface and, in the 

third dimension, by a long c axis extending over M atomic layers of the 

semiconductor and N layers of equivalent thickness of jellium metal. 

(Here the thickness of one layer is the interatomic distance between 

planes of semiconductor atomS parallel to the .interface; and~ the 

length of the c axis is therefore equal to M + N interplane distances.) 

The numbers used were M = 11 and N = 7 for m/GaAs and m/ZnSe and N = 11 

andN = 9 for m/ZoS. 
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There are no adjustable parameters in the calculations. The only 

input consists of the structure (i.e., the geometry of ,the interface) 

and the ionic pseudopotentials of the semiconductor ion cor~s which 

are determined from atomic spectra. Since we use a jellium-semiconductor 

model, the structure is determined by the crystal structure of the semi-

conductors except for the placement of the edge of the positive jellium 

core. This edge has been taken to be at a distance of one-half of an 

interlayer distance away from the outermost semiconductor atoms. The 

ion core potentials V. used are local pseudopotentials whose, Fourier 
~on 

transforniS are of the form given in Eq. (81) with the parameters, h., 
, ~ 

fitted to a Heine-Abarenkov core potential. 104 In addition to the 

ionic core potentials, a starting potential is needed to initiate the 

self-consistent loop (Fig. 23). For this purpose we have used the 

empirical pseudopotentials V obtained from bulk calculations with emp 

Fourier transforms expressed in a 4-parameter curve given by Eq. (71). 

The parameters b. and a. for the various semiconductors used in the 
1. ~ 

calculations are listed in Table XI and XII respectively. 

Using the same convergence criteria as in Sec IVA, a basis set 

of approximately 500 plane waves was employed in expanding the wave-

functions in the calculations. An additional -]200 plane waves were 

al~o incluued via Lowdin'H perturbation sch('me.] The lolal v.:llcnC'L' 

charge density peL) needed for each iter~tion was determined by a five 

point s~mpling over the irreducible part of the rectangular zone. The 

points included the symmetry points r, X, X' and M and one general 

153 point in the center of the irreducible zone. This set of points 



-llO-

yields an accurate charge density and, at the same time, allows the 

use of symmetrized plane waves to reduce the sizes of the Hamiltonian 

matrices and hence the computation time for diagonalization. 

2. Results 

In this section, the electronic structure of the three metal­

zincblende semiconductor interfaces is presented. 

We have chosen the interfaces m/Si, m/GaAs, m/ZnSe, and m/ZnS to 

study because the semiconductors composing this series are of the same 

crystal structure and of increasing ionicity. Within our model, we 

find that the calculated electronic structure of the four m/s interfaces 

is qualitatively very similar. In all four cases, as found in Sec. IVA, 

the intrinsic surface. states which existed in the fundamental gaps 

of th~se semiconductors l04 are removed by the presence of the metal 

and new types of states occur in this energy range. These metal­

induced gap states (MIGS) are bulk-like in the metal and decay rapidly 

into the semiconductor with some of the characteristics of the 

semiconductor-vacuum surface states (which exist in the absence of the 

metal) weakly retained at the semiconductor surface. In addition, 

truly localized interface states which have charge densities decaying 

in both directions away from the interface are found for energies near 

the lower part of the semiconductor valence band. 

Before we discuss the individual states, l~t us examine the self­

consistent, valence charge densities for the three metal-zincblende 

semiconductor interfaces. They are shown in Figs. 59 to 61. In each 

figure the total valence charge density is displayed in two different 
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planes containing the two types of semiconductor surface atoms. The 

units are normalized to one electron per unit cell. Several interesting 

features are seen from the figures: ,(1) Charge densities in the bulk 

configuration are essentially the same as those found in the third 

layer into the semiconductor showing that the significant influence 

of the interface is quite short range (i.e. in the order of 2 to 3 atom 

layers). (2) Owing to the stronger potential of the anions, charge 

is increasingly localized on the anions as the ionicity of the semi-

conductor increases. And (3), for all three interfaces, the charges 

on the outermost semiconductor atoms are slightly higher than the 

charges on the atoms deeper in the slab. This probably results from 

the presence of the metal which lowers the potential of the surface 

atoms. 

In Fig. 62 the local density of states for the m/GaAs system is 

displayed for four regions. Each region con'tains one atomic layer. 

Region D is at the center of the semiconductor slab. Region C is the 

layer containing the outermost semiconductor atoms. Region B is 

adjacent to region C on the metallic side. The boundary betweenC and 

B defines the interface. And finally region A is at the center of the 

metallic slab. The LDOS 'Was evaluated according to Eq. (83) 'With 

5 ~-points in the irreducible zone to calculate the histograms.
1S4 

The LDOS for the m/ZnSe and m/ZnS interfaces are calculated in the same 

manner; these are shown in Figs. 63 and 64 respectively. Although the 

number of ~-points used is too small to reproduce a nice IE curve for 

the free-electron-gas density of states on the metallic side, it yields 
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most of the prominent features of interest. A LDOS curve of much finer 

quality for the m/Si interface was obtained in Sec. IVA with the use of 

21 ~-points in the irreducible zone. 

The region of most physical interest is region C whose LDOS 

essentially describes the energy spectrum of the electrons on the 

semiconductor surface. The darkly shaded areas in Figs. 62 to 64 

indicate the MIGS in the semiconductor thermal gaps. Also indicated 

(by the lighter shaded areas) are the energies of the localized inter­

face states. The MIGS in the thermal gaps have, as we shall show in 

the next section, a large influence on the Fermi level Ey and thus 

playa dominant role in determining the behavior of the m/s Schottky 

barriers. 

Figure 65 displays the charge profiles ~(z)/~(O) of the penetrating 

tails of the MIGS in the thermal gap for the four m/s interfaces 

studied as a function of distance z into the semiconductor. Here ~(z) 

is the charge density for the MIGS averaged over the states in the 

thermal gap and averaged parallel to the interface with z = 0 at the 

interface. We note that the overall behavior of the charge profiles 

for Si and GaAs is quite similar and that the average penetration 

distances are considerably shorter than previously believed. The 

differences in the shurt rang(' oscillations in the cklrr,e profi Il'S 

mostly arise from the difference in the atomic arrangement betw~cn the 

two types of semiconductor surfaces (Si (Ill) and GaAs (110». 

We shall only discuss and illustrate the interface states at the 

m/ZnS interface to avoid redundancy. The characteristics of the 
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interface states for the other two systems are qualitatively similar. 

The lowest lying interface states at the tn/ZnS interface (see Fig. 64) 

are localized strongly on the outermost sulfur atoms and have s-like 

character in their charge distribution. These states split off from 

the bottom valence band of ZnS and form a narrow interface band 

extending over the whole Brillouin zone. The corresponding charge 

density given in Fig. 66 is extremely localized on the sulfur surface 

atoms with practically zero charge on the zinc atoms. A surface band, 

very similar to this s-like interface band, has been found in calcul-

i" h (110) f f· bl d ." d 155 at ons on t e sur ace 0 Z1nc en e sem1con uctors. The 

surface states are, however, located at higher energies in the anti-

symmetric gap instead of at the bottom of the spectrum. These s-like 

interface state are therefore intrinsic to the semiconductor surface 

with energies shifted because.of the presence of the metal. 

Two additional interface bands a·re found at --5 eV below the ZnS 

valence band maximum. Unlike the previously discussed states, these 

interface states exist over a rather small region in ~~space at the 

zone edge around the point M. The charge distribution differs from 

the s-like state since it is p-like around the outermost sulfur atoms. 

The charge density for a state at M in the lower of the two interface 

bands is given in Fig. 67. Figure 67(a) shows the charge density 

contours in a (liO) plane containing the surface Zn at6ms. Figure ~7(b) 

shows the charge density contours in a (110) plane parallel to the 

interface containing both types of semiconductor surface atoms. As 

seen from the figure, the charge is highly localized on the outermost 
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semiconductor layer with the maxima of the p-like lobes lying in the 

(110) plane. The other interface state at M belonging to the higher of 

the two bands has a~ery different charge distribution which is displayed 

in Fig. 68. The charge is again p-like around the S atom. However, 

the charge lobes for this state are pointing along the back-bond 

direction between the first layer S atoms and the second layer Zn atoms. 

Surface states somewhat similar to these states are also found in 

f 1 1 · 155 sur ace ca cu at10ns. 

Our results are consistent with recent experiments on metal 

overlayers which have provided information on the electronic structure 

of mls interfaces in the energy range of the semiconductor band gap. 

Rowe et al. 113 have found that the intrinsic surface states on the 

(Ill) and (100) semiconductor surfaces are removed by metall ic over layers 

and extrinsic metal-induced states are found within the band gap. 

Their findings on the Ge (110) surface is however somewhat ambiguous. 

Similar extrinsic metal-induced states are found but they are weaker 

and the intrinsic surface states appear not to completely removed by 

the thin metallic overlayers. 

C. Ionicity and the Theory of Schottky Barriers 

In this section some of the properties of m/sSchottky barriers 

and their relation to the calculated electronic structure are examined. 

The calculated barrier heights for the four mls interfaces studied 

b h · h d'" 142,149 are presented in Ta Ie XIII toget er W1t the measure ~b', The' 

calculated values were obtained by determining the pOSition of the 

conduction band minimum of the bulk semiconductor relative to the 
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Fermi level EF via the local den'sHy of states. Considering the sizes 

of the the,rmal gaps of the more ionic crys ta1s, the agreement ob tained 

between theory and experiment is quite good. 
. . 

Empirically the barrier height ¢b(m,s) obeys the re1ation137 

(84) 

h X · h P 1· G d 1 .. 156 f h' 1 d S were , 1S t e au 1ng- or y e ectronegat1v1ty 0 t e meta an 
m 

and ¢o are constants depending on the semiconductor. As an example, 

the experimental barrier heights142 ,149 for our four semiconductors 

are presented in Fig. 69 as a function of the X of various metals. 
m 

l-1oreover' the slope or "index of interface behavior" S is found to be 

a smooth function of 6X = XA-XB, the electronegativity difference of 

the anions and cations in the semiconductor. Since 6X provides a 

measure of the ionicity of the semiconductor, S is also a, function of 

the semiconductor ionicity. For <Pb expressed in units of electron 

volts, S is small -0.1 for semiconductors with 6X < 0.5 but S is -1.0 

for semiconductor with 6x > 0.9. In addition, there is a well defined 

and rather sharp transition in the value of S at 6X -0.7 to 0.8 (see 

Fig. 70). 

As we have discussed earlier, the standard explanation for S 

relies on the Bard('en model which attributes this behavior of ~lb to 

the density of surface states existing in the semiconductor hand gnp. 

However arBuments had been presented by Heine l38 which showed that 

semiconductor surface states do not exist in the fundamental gap for most 

138-141 
mls interfaces and many alternate theories have since been proposeJ. 
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Physically the barrier height is determined by the requirement that 

in equilibrium the Fermi levels of two materials in contact are equal. 

This is achieved by creating an electric dipole potential ~ at the 

interface. Hence, in the one-electron theory, the density of the MIGS 

in the semiconductor thermal gap and their penetration into the semi-

conductor will strongly influence the behavior of ¢b' The extent of 

their penetration can be measured by a penetration depth 6 defined 

by p(6)/p(0) = lie. From Fig. 65 6 is' equal to -3.0 A and -2.8 A for 

Si and GaAs respectively. As the ionicity of the semiconductor 

increases, 6 hO\vever rapidly reduces to -1.9 A for ZnSe and to -0.9 A 

for ZnS. 

The other quantity which is relevent to the behavior of ¢b and 

related to the HIGS is the surface density of states For D (E). 
s 

energies in the semiconductor thermal gap. we define 

D (E) 
-1 J r N (E .X) dzdA. o ~ E~ E = A s A 0 

g 
(85) 

where A is the interface area, N(E,L) is the LDOS as defined in Eq. (83) 

and the integral over z is to be evaluated from the interface to deep 

into the bulk of the semiconductor. Thus -eD (E) gives the density s . 

of localized surface charge per unit energy on the semiconductor 

surface. The calculated D (E) are depicted in Fig. 71. The avera~ed 
s 

D near the center of the gap for Si and GaAs which both have about the 
s 

.same S is approximately the same. Two trends which can be observ('d 

from Fig. 14 are that D (E) decreases for more ionic semiconductors 
s 

and D (E) has a relatively flat mini~um over the center region of the 
s 
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The D for m/ZnSe is essentially identical to that of m/ZnS s 

except its magnitude is .... 30% higher. Hence it is omitted from Fig. 71. 

From an electrostatic point of view, the fact that both 0 and D 
s 

decrease for more ionic semiconductor crystals implies that the change 

in ~ with respect to a change in EF will be small for ionic semiconductors 

and larger for covalent semiconductors. Therefore we expect from the 

calculated 6 and D that S will be large for ionic crystals and small 
s 

for covalent crystals. 

To estimate the influence of 6 and D on the barrier height, we 
s 

use the following simple model to calculate S(s). 
157 Cowley and Sze 

had used a somewhat similar approach to obtain the interface density 

of states in terms of the experimentally determined S. In this model, 

o and D are assumed to be quantities intrinsic to the semiconductor s 

(i.e. they are independent of the metal contacts) and also D is taken 
s 

to be approximately constant over the" central portion of the thermal 

gap. Calculations on metal-Si interfaces using surface Green function 

methods have shown that D is approximately constant for a wide range s 

f 1 
140,158 o meta s. In this model, we have also made use of the 

empirical relation that the metal work function <Pm is linear in Xm, 

i.e. ¢ = AX + B with A = 2.27 and B = 0.34 for <P expressed in m m m 

electron volts. 156 ,159 

For a semiconductor of electron affinity X in contact with a s 

metal, the electric dipole potential established at the interfac~ is 

(86) 
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The change in 6 for a metal of slightly different X in contact with 
m 

the same semiconductor is therefore 

Using simple electrostatic arguments, another expression for d6 is 

(S7) 

(88) 

where 0eff is the effective distance between the center of mass of the 

negative charge transferred to the semiconductor due to the change in 

<Pb and the center of mass of the positive charge left behind in the 

metal. This distance is the true distance divided by the appropriate 
... 

dielectric screening function £,i.e. 6eff 
= (t /£ + t /£ ). 

m m s s 
We may 

approximate t by our calculated 0 and t /£ by the typical screening 
s m m 

length in a metal which is -o.SA. Equations (4), (7) and (8) then 

yield the followingS
160 

s = 2.3 
2 l+4ne D (0.5+0/£ ) 

S . S 

The dielectric screening for potential fluctuations in the distance 

161 
of the order of 6 has been found to be ~2 by Walter and Cohen for 

(89) 

our four semiconductors. Hence we may evaluate S using the cn]culatcd 

values of 0 and D and E = 2. They are presented in Table XIII 
s s 

together with the experimentall:t determined S. The agreement between 

theory and experiment is surprisingly good for this very simple model. 
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Although our .results are for intrinsic semiconductors at zero 

temperature, the calculated ~b and S will be essentially the same as 

those for doped semiconductors at finite temperature. ,he areument 

is as follows, for typical doping density of n ~ 1017 cm- 3 , a small 

charge accumulation of -10
12 

electrons/crn
2 

at the semiconductor surface 

will result in band bending on the order of volts. Hence, with 

D s 
14 2 

10 leV-cm, only a slight change (-0.01 eV) in EF at the inter-

face is needed to account for the band bendings caused by impurities 

or thermally excited electrons. 

We have also examined the sensitivity of our results to the only 

uncertain parameter in the calculations, i. e. the placemen"t of the 

jelliumcore edge. Our results appear to be quite insensitive to this 

parameter. In the case of the m/Si interface, a change of 25% in this 

parameter left ~b and 0 essentially unchanged and only" changed Ds by 

f A "1 b . h b d b L' 1 140,160 a ew percent. SImI ar 0 servatIon as een ma e y OUIS et a . 

They have performed non-self-consistent calculations on mls interfaces 

using a Green function method. 

D. Discussion and Conclusions 

Using a self-consistent pseudopotential method, we have studied 

the electronic structure of a series of mls interfaces of increasing 

se~iconductor ionicity. Our results are consistent with recent 

, 1 I 113 h' h 'd' d h h' , , experIments on meta over ayers w IC In lcate t at t e IntrInsIC 

surface states on the semiconductor surfaces are removed by metallic 

over layers and extrinsic metal-induced states are found within the 

energy range of the band gap. Hence, contrary to the Bardeen model 
t 
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and the recent speculations made by Eastman and Freeouf,106 intrinsic 

~emiconductor surface states do not appear to play a dominant role in 

determining ¢b' Detailed experimental information on the electronic 

structure of these m/s is however not available at present for comparison-. 

We have also examined the question of ionicity in the behavior of 

Schottky barrier heights. A simple model involving the MIGS has been 

constructed to estimate S. We find that both ¢b and S can be satisfac­

torily determined using the self-consistent pseudopotentia1 results for 

the more covalent semiconductors and somewhat less accurately for the 

more ionic semiconductors. Our results suggest that the important 

properties of Schottky barriers are mostly incorporated in the one­

electron, je11ium-semiconductor type of model. Other effects not 

included in the present calculations such as many-body effects and 

bonding between metal and semiconductor atoms are most likely necessary 

before complete agreement between theory and experiments for the more 

ionic semiconductors can be achieved. 
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V. VACANCIES IN SEMICONDUCTORS: A Si NEUTRAL VACANCY 

Despite numerous theoretical investigations, the detailed 

electronic structure of deep defect states in semiconductors remains 

162 essentially an unsolved problem. The main difficulties arise from 

the fact that deep levels in the semiconductor gap imply a strongly 

localized defect potential often combined with structural reconstruction 

in the vicinity of the defect. Consider the case of an isolated 

neutral vacancy (VO) in Si. Several different methods of calculation 

have been employed leading. to quite different results. Among them 

defect molecule calculations163 ,164 qave provided only qualitative 

information about the Si vacancy levels; as of yet no connection with 

the band structure has been established. Results from one-electron 

methods using clusters of Si atoms such as the Extended HuckelMethod 

strongly depend on the size of the cluster, the basis functions used, 

and the boundary conditions imposed.165 ,166 Finally, studies considering 

the vacancy as a perturbation on the perfect Si crystal give results 

ranging from having only resonant vacancy states in the Si conduction 

band167 to having localized states anywhere in the forbidden gap 

depending on an arbitrary scaling of the perturbing vacancy pseudo­

. 1 168 potent1a . 

Experimentally the energy levels for the neutral vacancy (VO) in 

Si are not well determined. However, they are believed to be deep 

169,170 (at least a few tenths of an eV) in the forbidden gap. Moreover, 

f 1 . 169. . f d h b h th rom e ectron paramagnet1C measurements, 1t 1S oun t at ot e 
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singly positive (V+) and negative (V-) charged states of the Si vacancy 

undergo a structural reconstruction. + For the V state, a tetragonal 

Jahn-Teller distortion is observed; and for the V state, a mixed 

tetragonal and trigonal distortion is found. A similar type of 

reconstruction is expected for the VO state. 

In this section the electronic structure of a neutral vacancy in 

Si is studied using the self-consistent pseudopotential method 

dev~loped in Sec. IlIA. To study the effect of lbcalreconstruction 

we have considered three different structural models for the Si vacancy: 

the ideal undisturbed structure and two differently reconstructed 

structures. Self-consistency in the present context means the self-

consistent electronic response to a given structural model. Among tfie 

above mentioned methods for calculating the electronic properties of 

a semiconductor vacancy, only the defect molecule c~lculations are 

self-consistent in this spirit. To our knowledge, the present work 

is the first calculation of a Si vacancy in which bulk band structure 

effects are included and which at the same time is self-consistent. 

In the present calculations, the lattice vacancies are repeated 

periodically to form a superlattice of vacancies embedded in the 

infinite Si crystal and the electronic structure of this periodic 

system is cnlcu1ated ReI f-consil:itently. Hence the vacancy levels ;In' 

spread into bands with dispersion in k-spac(·. Tile .Imount of dispC'rsjon 

provides a measure of the localization of the vacancy states. It is 

found that localized vacancy states in the gap and strong resonance 

states in the valence band existed for the three structural models. 
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The characteristics of these states have been studied by analyzing their 

charge densities. In addition, a tight-binding model has been fitted 

to the vacancy bands for the ideal case. From the fitted tight-binding 

parameters, the "dispersionless" energies of vacancy levels which 

correspond to isolated vacancies can be extracted. 

The remainder of this section is organized as follows: In 

S~ction A the steps in the self-consistent calculations and the tight-

binding model are discussed. In Section B the results for the 

electronic structure of the Si neutral vacancy for three structural 

models are presented and discussed. In the final Section C some 

conclusions' are presented. 

A. Calculations 

In this section a description is given of the self-consistent 

calculations, carried out for the three structural models of the 

neutral Si vacancy. In addition a tight-binding model used to fit 

the vacancy bands for the ~deal vacancy is presented. 

1. Self-consistent Pseudopotential Calculations 

As discussed in Sec. III A, the method employed here for the 

calculation of a local configuration consists of periodically repeating 

the particular local configuration to form Ll superlattice. Self-

consistent pseudopotentials are then used to compute the electronic 

structure. The steps leading to a self-consistent solution to the 

vacancy problem are schematically shown in Fig. 23. The method has 

b f 11 h 1 1 · f S' d' . I 1 172 een applied success u y to t e ca cu at10n 0 a 1 1atom1C mo ecu e 

and to the calculaOtions of crystalline surfaces (Sec. III) and solid 
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interfaces (Sec. IV). A detailed discussion of the method has been 

given in Sec. IlIA and Sec. IVA; it therefore will only be briefly 

described below. 

Two essential features of the method are: (1) Self-consistency 

in the potential is required to allow for the correct electronic 

screening ar9und the vacancy site and (2) periodicity is retained 

artificially which permits the use of standard pseudopotential 

techniques. 

For the present case of a Si vacancy, the infinite Si crystal is 

divided into large fcc unit cells each containing 54 atoms. Neutral 

vacancies are simulated by removing an identical atom from each cell. 

The different structural models involve different reconstructions 

for the positions of the atoms surrounding the vacancy site. Test 

runs with various cell sizes indicated that at least 54-atom unit cells 

are needed to quantitatively provide the essential physics of the 

, 
system. In the 54-atom unit cell neighboring vacancies are separated 

by six Si-Si bonds. The self-consistent loop (see Fig. 23) is initiated 

with an empirical pseudopotential carried over from crystalline 

calculations. From the resulting total charge density, a Hartree 

screening potential and an exchange potential of the Slater type are 

derived and added to an atomic Si+4 ion-pseudopotential to form a new 

total pseudopotential for the next iteration. New screening and 

exchange potentials are derived and the process is repeated until 

self-consistency (stability of input vs. output potentials within 

0.005 Ry) is reached. 
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The self-consistent cycle is initiated using the followng starting 

potential 

Vstart (.G) = S (Q) V
S i (! Q ! ) 
emp 

where Q are reciprocal lattice vectors and the Si structure factor 

1 seQ) = 
M 

M 

L 
T. 
~ 

-iG·T ........ -i 
e 

describes the positions of the atoms in the large 54-atom unit cell. 

V!!p(!.G!) are the Si atomic pseudopotential form factors fitted to 

empirical bulk calculations. 47 They are derived from a continuous 

. extrapolation of the form 

where the four parameters a. are given in Table XIV. The potential 
~ 

(90) 

(91) 

(92) 

V!!p(q) is normalized to an atomic volume of 137.6 (a.u.)3 with units 

in Ry if q is entered in a.u. Using this starting potential, the band 

structure E (~) and the wavefunctions ~ ~(~) can then be calculated 
n n~ 

1 using standard methods, i.e. expanding the electron wavefunction in 

plane waves with reciprocal lattice vectors and diagona1izing the 

Hamiltonian matrix to obtain electronic energy E (~) and the electronic 
n 

wavefunction ~n~. 

To perform the next step in the self-consistent loop. the total 

valence charge density 
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(93 ) 

has to be evaluated. There are 106 occupied bands in the band structure 

scheme (no spin-orbit interaction). For reasonable convergence of the 

wavefunctions, a matrix size of the order of 750 by 750 is needed when 

the Hamiltonian is expanded in plane waves. This corresponds to a 

kinetic energy cutoff
l 

El = 1.G;a) ::::: 2.7 Ry. In addition, another 

-SOO plane waves were included via Lowdin's perturbation schemel to 

further improve the accuracy of the eigen-energies. To avoid a full 

Brillouin zone evaluation of the total charge density at each iteration 

of the self-consistent process, the total charge density peL) is 

approximated by the charge density evaluated at one point k = r. The 

point r was chosen because, among the high symmetry points, Pr(L) 

provides a good representation of peL) for crystalline Si. At the bond 

and atomic sites, Pr(L) of bulk Si is within 10% of the charge density 

given by a full zone calculation. The choice of high syrnnletry points 

is necessary because the Hamiltonian matrix can then be reduced ~y 

using symmetrized plane waves. 

Once peL) is known, the Hartree screening potential VH and the 

Hartree-Fock-Slater exchange potential V are evaluated using 
x 

and 

(94 ) 

(95) 

.. 
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where a = 0.79 and p(Q) and pl/3(Q) are the Fourier components of peL) 

1/3 
and p (~) respectively. Justification for the use of the Slater 

exchange potential and the choice of a are discussed in detail in 

Ref. 94. VH and Vx together form the electronic screening potential 

of the system. They are then added to an ionic potential 

V. (G) = S(G)V~i (G) 10n- ....., 10n""" (96) 

to form an input potential for the next iteration. Si For V. , we have 10n 

used a local approximation of a Abarenkov-Heine atomic model potential96 

which is fitted to the following 4-parameter potential 

V~i (q) = 
10n 

(97) 

The values of the b.'s are given in Table XIV. The normalization and 
1 

the units for Eq. (97) are the same a.s those for Eq. (92). 

The calculation is continued by repeating the whole cycle. 

However, due to the divergent character of VH and V. for small ~'s, 10n 

self-consistency cannot be achieved straightforwardly by using the 

output screening potential from one iteration as the input screening 

potential for the next iteration. An alternative procedure to the one 

suggested in Ref. 94 is used in the present calculations. The input 

screening potential of the nth iteration is taken to be a weighted 

linear combination of the input and output screening potentials of 

th the n-l iteration. The criterion for self-consistency is the 

stability of the subsequent output screening potentials. In the present 
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calculations, the final self-consistent potentials are stable to within 

0.005 Ry. 

2. Tight-binding Model 

tn this subsection a tight-binding model l73 for interacting p-like 

atomic states in a fcc lattice is described. This model will be used 

later to analyze the vacancy levels of the Si vacancy in the ideal 

crystal structure. We consider a fcc array of atoms which have 3-fo1d 

degenerate p-like atomic levels (p ,P ,P). Then Bloch functions of 
x y z . 

the form 

1JJI (~) 

iIs·.:E 
1 \ e . n P (r-R ) 
- l Y ~ -n IN n 

ils: .:E 
1 Len P (,t-E ) 
~ n z n 

(98) 

are constructed and the band structure E (Is) is given by diagonalizing 
n 

(1JJl IH l1JJl >-E (1JJI IHI1JJ2) ( IiJI IHI1JJ} 

(1JJ2 IHI1JJ l ) ,< 1JJ2 1H 11JJ2>-E ( 1JJ2 1H 11JJ 3> (99) 

(1JJ 3 IH I1JJ I > (1JJ 3 IHI1JJ2) ( 1JJ 31 H 11JJ 3) - E 

where ls is the wavevector, .:En are the lattice positions and H is the 

crystal Hamiltonian. Assuming only nearest neighbor interactions, 

the Hamiltonian matrix can be expressed in terms of three parameters: 

(1) u, the energy of the isolated atomic states, (2) 0, the interaction 
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energy between parallel orbitals centered at neighboring atoms which 

point along the line connecting the atoms, and (3) n, the interaction 

energy between parallel orbitals centered at neighboring atoms which 

are perpendicular to the line connecting the'atoms. Denoting 

~ = (~l'~2'~3) with ;i in units of 2n/a where a is the lattice constant 

of the fcc superlattice, the matrix elements are given by: 

+ cosn(;1+;3)]+2n[cosn(;2+~3)+cosn(;2-~3)J 

( 1/J2 1H 11/J2) = u+(a+n) [COS1T( ;2+;3)+cOS1T( ~2-;3)+cosn(;2-~1) 

+ cosn(~2+;l)]+2n[cosn(~3+;1)+cosn(~3-~l)] 

(1/J3 IHI1/J3) = u+(a+n) [cosn(;3+~1)+cOS1T(~3-~1)+cOS7i(~3-~2) 

+ cos1T(~3+~2) J+2n[cosn(~l+~2)+cosn(~l-~2)] 

(1jJ2IHIIjJ~ = (n-a)[cosn(~1-~2) - ~osn(~1+~2)J 

(1jJ3 IH11jJ1) = (n-a) [cosn(;1-;3) - cosn(~1+~3)] 

(1jJ3 IHjIjJ2) = (n-a)[cosn(~2-~3) - cosn(~2+~3)] (lOO) 

For some high symmetry k-points, the eigenvalues can be obtained 

easily without diagonalizing the 3x3 matrix, Eq. (99). At k = (0,0,0), 

(ljJiIH11jJ) = u + 4a + 8n and (1jJ.llilljJ) = 0 for i::l= j. Therefore. the 
. 1 l. , J 

energies for tilt, three hands arc dcgenernte .1t r nnd have the' energy 

E(k=r) = u + 4a + 8n . (101) 
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At ~ = X = (1,0,0) one has (~1IHI~2> = u-4a, (~2IHI~2> = u-4TI, 

(~3IH 11)13> = u-4TI and (~i IHllJij > = 0 for i '* j. Thus two energy 

eigenvalues exist at X: one is singly degenerate 

E (~=X) = u-4a 
1 

the other is doubly degenerate 

1. Ideal Structure 

E (~=X) = u-4TI 
2 

B. Results and Discussions 

(102) 

(103) 

The first structural model used to study the electronic structure 

of a neutral Si lattice vacancy is the "ideal" structure. In this 

structure, the atoms surrounding the vacancy site remain in their 

cyrstalline positions after the vacancy is created. A portion of the 

Si crystal structure is shown in Fig. 72(a). Every Si atom is 

tetrahedrally coordinated and the valence electrons form covalent bonds 

linking the neighboring atoms. As a results of creating a vacancy, 

four bonds are broken (see Fig. 72(b». The electrons which previously 

participated in the broken bonds will tend to localize around the 

vacancy site and localized vacancy levels are expected to appear among 

the energy eigenvalues of bulk Si. In the present calculations, we 

have ·found both vacancy states deep in the Si thermal gap and strong 

resonant states embedded in the bulk bands. 

Before discussing the individual vacancy states, first the total, 

self-consistent valence charge density as given by the approximations 



o u 6 u 

-131-

discussed in Sec. A shall be examined. A necessary condition for the 

present calculations to repres-:nt non-interacting Si vacancies is that 

the charge density away from the vacancy site should closely resemble 

the charge density of bulk Si. Figure 73 displays the total valence 

charge density in a (110) plane for the ideal structure. The vacancy 

site is located at the center of the unit cell (open circle) and the 

atoms are indicated by full dots. Note that, for the center chain 

of atoms, both an atom and the associated covalent bonds are missing. 

The top and bottom chains are complete. .Their charge densities are in 

. 47 
good accord with densities obtained from bulk calculations (which 

illustrates the local nature of the lattice perturbation). 

As mentioned earlier, vacancy levels which are dispersionless 

in ls-space ·for an isolated vacancy will appear as bands in the present 

periodic model. For the ideal structure, three vacancy bands in the 

Si thermal gap and one strong resonant band in the energy range of the 

valence bands are found. More weak resonant states corresponding to 

perturbed back bonds may exist in the valence bands. Figure 74 shows 

the energies·of the vacancy bands at ls = r. The top figure depicts 

the positions of the t=O vacancy states with respect to the Si bulk 

d . f 47 ens1ty 0 states. The three states 1n the gap are degenerate in 

energy at r. In the bottom figure, the energy levels at r for several 

runs in the self-consistent procedure are shown. The first row shows 

the.energy levels of bulk Si in the 54-atom unit cell structure. The 

empirical pseudopotential from Ref. 47 is used. There are 108 occupied 

valence bands separated from the conduction bands by the Si thermal 
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gap (shaded area in Fig. 74). The second row shows the energy levels 

for the 53-atom unit cell (i.e. 53 Si atoms plus one vacancy) calculated 

using the empirical pseudopotential. The last row shows the energy 

levels for the 53-atom ~nit cell using the final self-consistent 

potential. The vacancy states are indicated by the arrows. Not~ that 

the final self-consistent vacancy levels appear significantly deeper 

in the forbidden gap than those calculated from the empirical pseudo­

potential. However, the energy of the resonant state at E - -8.2 eV 

is pinned in energy by the minimum of the density of states and changes 

only slightly in the course of achieving self-consistency. 

In Fig. 75(a) the charge density contour map for the vacancy 

states in the gap is displayed. The plotting plane is the same as 

in Fig. 73 «110) plane) and the plotting area is enclosed by the two 

horizontal dashed lines in Fig. 73. As expected from the fact that 

these states appear deep in the gap, their charge density is fairly 

localized around the atoms surrounding the vacancy site. There is 

practically no charge built up on the atoms of neighboring chains, 

however, some charge overlap between vacancy states within the same 

chain is present. The charge distributions are dangling-bond-like, 

i.e. mostly p-like with a small mixture of s character. Figure 75(b) 

shows the charge density contour plot for the resonant state in the 

valence band. Again the charge density is highly localiied on the 

atoms surrounding the vacancy site. However, for this state. the 

charge distribution is mostly s-like around the atoms. Although these 

plots are calculat~d for states at r, they are representative for'the 
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vacancy states, since it is found that the charge distributions of the 

vacancy states are virtually identical for all ~-points in the fcc 

Brillouin zone. 

The origin of the vacancy states can be understood using a simple 

molecular orbital picture. 174 In this model, one assumes that in 

first order only the electrons in the broken bonds are significantly 

perturbed and that the wavefunctions of the vacancy states can be 

represented by a combination of atomic orbitals. Specifically, each 

molecular orbital (a single-electron vacancy state) is expressed as 

a linear combination of the dangling bond orbitals (a,b,c,d) of the 

four atomS next to the vacancy site. Because of the symmetry of a 

Si vacancy in the ideal structure, the molecular orbitals must trans-

form under the operation of the group Td according to irreducible 

representations of that group. Suitable single-electron wavefunctions 

thus are 

v = a + b + c + d 

t = a + b - c - d x 

t ,= a - b - c + d t2 Y 

t = a - b + c - d (104) 
Z 

The resonant vacancy state at E - -8.2 eV has the symmetry of the 

state aI' whereas the three states in the Si gap can be associated 

with the above t2 states. This simple picture which correctly 

describes the symmet'ry of the vacancy stateS found, does not of course 

account for the dehybiidization of sp3 hybrids around the vacancy. 

The dehybridizBtion into's-like and p-like,states is, however 
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,. , 

appreciable as seen from Fig. 75. Moreover the simple model does not 

include possible resonant state due to perturbed back bonds. 

The dispersions of the vacancy states in ~-space which in a tight-

binding picture are caused by the interactions between vacancies in 

the superlattice shall now be examined. The dispersion for the 

resonant vacancy state at E - -8.2 eV is found to be very small 

(4Ll eV) ~ This is confirmed by Fig. 75(b) in which virtually no 

overlap between orbitals centered at neighboring vacancy sites is 

found. However, the dispersion of the three vacancy states in the gap 
. 

is appreciable which can be seen by the presence of charge between 

neighboring vacancy sites (see Fig. 75(a». This result indicates 

that the 54-atom unit cell chosen is not large enough to completely 

decouple the. individual vacancies. In Fig. 76 symmetries and dispersions 

of the states in the gap along the 6. direction from r to X are shown 

schematically. In the ideal structure the three states are degenerate 

in energy at r with E = 0.9 eVe Along 6., they split into one non-

degenerate band (6.3) and one two-fold degenerate band (6.5), At X the 

energy values are E2 (X) = 0.7 eV for the two-fold degenerate states 

and El(X) = -0.3 eV for the non-degenerate state (all energies are 

given with respect to the valence band maximum). 

An estimation of the position of the energy levels for a single 

non-interacting vacancy is obtained using the tight-binding model 

described in Sec. A.2. Assuming that the dispersions of the vacancy 

bands in the Sf gap are completely due to nearest neighbor interactions 

among the "p-like" single-electron vacancy states, the energy levels 

... 
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u for an isolated vacancy can be obtained by solving Eq. (101), (102), 

and (103) simultaneously. This yields the following expression for u: 

(lOS) 

Using the calculated values for E(r), EI(X) and E2(X), the energy for 

the three-fold degenerate vacancy state in the gap for an isolated 

vacancy is u = 0.5 eVe At present no experimental data are available 

which allow comparison of this calculated value. 

The radial dependence of the various one~electron potentials of 

interest for the ideal neutral Si lattice vacancy are displayed in 

Fig. 77. Non-spheri~al contribution~ to the potentials are negligibly 

small in the ideal structure. As described in the previous section 

the self-consistent calculations are based on a l~ttice of Si
4+ ionic 

potentials V. with one vacant lattice site (solid curve). The long 
10n 

range Coulomb tail of this missing S{4+ ion is completely screened 

by the Hartree-exchange potential VHX of four defect electrons (dashed 

line) as calculated fro,m the total, self-consistent valence charge 

distribution. The resulting vacancy potential VSC (dotted line) is 

of short range similar to the empirical Si pseudopotential V (dashed emp 

dashed dotted dotted line) as used in crystal calculations. Compared 

to V • however, VSC shows a more repulsive core and a deeper well emp 

around LAo A similar difference has been obtained in recent self-
- 94, 

consistent surface calculations. Also shown for comparison is the 

self-consistent pseudopotential VSC (atom) obtained for an isolated 

atom by a calculation based on the same ionic Si
4+ potential Vion 
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(dashed dotted curve). Even though the vaca~cy and the atomic 

potentials show comparable amplitudes for the repulsive core and the 

attractive bonding region, the self-consistent atom~c potential is 

of considerably longer range and extends up to about 4 A. This 

difference is due to the presence of covalent bonds in the crystalline 

case or dangling bonds in the vacancy case which lead to an increased 

electron density between 1 and 2 A and thus to a stronger screening 

decreasing the effective range of the potential. 

2. Reconstructed Structures 

Results presented in the previous subsection indicated that, in 

the ideal structure, there are three vacancy states in the Si thermal 

gap which are degenerate in energy. For a neutral vacancy, only one 

of the three states (neglecting spin) is occupied. This situation 

is unstable with respect to Jahn.,..Teller distortions175 which lead to 

structural changes. + Indeed, as discussed earlier, the charged V and 

V states for the Si vacancy are observed to undergo Jahn-Teller 

distortions which produce an uniaxial asymmetry in the electronic 

wave function along the cubic [100] direction. Although there exists 

no experimental data on the detailed structure of a neutral vacancy 

at present, it is generally believed that a similar type of distortion 

tak~s place for the neutral vacancy. 

To study the effects of Jahn-Teller distortions on the vacancy 

levels, the electronic structure ofa neutral vacancy is calculated 

for two differently reconstructed structural models. The first 

reconstructed structure is obtained by shortening the distance between 
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atoms d and g and between atoms e and f in Fig. 72(b) by an amount equal 

to 0 = 0.48 dO where dO is the crystalline value of the Si-Si bond 

length. This is done by symmetrically moving the atoms toward each 

other along the connecting line. This type of distortion produces an 

asymmetry along the cubic [lOOJ direction. The estimated value for 6 

is chosen to be in approximate agreement with the displacement found 

by Swa11·n176. h· d f f·· M . 1 1n 1S stu y 0 vacancy ormat10n uS1ng orse potent1a s. 

This value does not present an optimum choice, it merely represents a 

trial value. Figure 78 shows the total self-consistent charge density 

for this reconstructed structure (Rec I). As for the ideal case the 

charge density away from the vacancy is very much bulk-like. 

However the charge density near the vacancy site differs significantly 

from that obtained for the ideal structure. There appears Bond like 

charge between the. two atoms which have been moved closer to each other 

whereas the stretched back bonds become considerably weaker. 

The effects of Rec I on the resonant vacancy· level are small; its 

energy remains at --8.0 eV. The effects of the distortion on the 

vacancy states in the gap, on the other hand, are significant. They 

are shown schematically in the center portion of Fig. 76. The three-

fold degeneracy at r is lifted by the uniaxial distortion. The lower 

band (lahelled 6
3

) remains in the gap, whereas the two-fol d degenera te 

band (labelled 6~) merges with tile conduction band structure. The 

highest fully occupied band is now 6
3

, separated hy a finite> ~ap from 

unoccupied states indicating that no further symmetry reduction 

(i.e. Jahn-Teller distortion) is needed to stabilize the system. In 
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addition, a new (empty) vacancy band, labelled '\' appears in the gap. 

This state is induced by the chosen vacancy reconstruction and has its 

wavefunction localized at the vacancy site. Rec I has the net effect 

of moving the four atoms surrounding the vacancy site closer towards 

the vacancy site. This distortion stretches and weakens the back bonds. 

Some back bonding charge as a consequence is spread out and transferred 

to the second nearest back bonds, which cBtises an increased vacancy-

vacancy interaction in the present model. This effect is also' 

recognizable from the increased dispersion of the /:'3 vacancy band 

between r and X (see Fig. 76, ,middle). In analogy to the Si (111) 

surface, Rec I corresponds to an outward relaxation and therefore seems 

l 'k 1 177 un 1 e y to occur. 

~o study the effects of an opposite movement of atoms, another 

reconstructed structure, Reconstruction II (Rec II) is considered. 

The type and symmetry of distortions for this structural model is 

identical as for Rec I except for 6 = -0.48 dO' which correspond~ to 

a contraction of back bonds and a net relaxation away from the vacancy 

site. Figure 79 shows the total, self-consistent char,ge density for 

Rec II. As compared to Fig. 78. charge has been removed from the, 

immediate vacancy regi on and has ,been transferred into the hack bonds. 

As for Rec I, the distortion does not significantly affe~t thr 

resonant vacancy level at about -8.0 eV. The behavior of the vacancy 

bands in the gap is shown on the right portion of Fig. 76. For,Rec II, 

only one vacancy band (/:'3) exists in the Si thermal gap. This band 

is fully occupied and separated by a finite gap from empty states. 
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Thus, the type of distortion of Rec II which lowers cubic symmetry 

leads to a Jahn-Teller stable situation. The strengthening of back 

bonds localizes the vacancy induced charge fluctuations which results 

in a decrease of dispersion of the vacancy bands along ~ (see Fig. 76). 

In contrast to Rec I, no empty vacancy state is found in the gap of SL 

The ~5 vacancy levels become resonant levels with the conduction bands. 

While the exact atomic positions of the reconstructed vacancy 

environment are still unknown, Rec II-type relaxations are expected 

to occur most likely. Analogies to the Si (111) surface relaxation l77 

support this model. More experimental, spectroscopic information 

about the neutral Si vacancy is needed to clarify the situation. 

C. Conclusions 

The neutral lattice vacancy in Si has been studied embedded in a 

large 54-atom super cell using a self-consistent pseudopotential 

formalism. The method allows us to calculate self-consistently the 

response of valence electrons to an arbitrary arrangement of ionic 

cores. Thus three different structural models of the atoms surrounding 

the vacancy have been investigated. These models are: the ideal 

undistorted Si structure, (Rec I) a uniaxial [100] distortion of the 

four atoms closest to the vacancy with a net relaxation towards the 

vacancy site and (Rec II) a uniaxial [100] distortion with a net 

relaxation away from the vacancy site. 

In each model one strong resonant, virtuallY dispersionless band 

is found around -8.0 eV in the valence band region. Its character is 

predominantly s-like on the four atoms surrounding the vacancy. In 
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addition vacancy bands appear in the fundamental gap, strongly influenced 

by the structural model used. In the ideal undistorted Si structure 

a threefold degenerate vacancy band is found with an estimated energy 

center of 0.5 eV above the valence band edge. This level is onefold 

(neglecting spin) occupied which causes Jahn-Te11er instabilities. 

+ 
Spin-resona~t experiments on charged V and V vacancies indicate the 

existence of a uniaxial [100] Jahn-Teller type distortion, which can 

be assumed to also exist for the neutral vacancy. Both reconstruction 

models Rec I and Rec II result in a uniaxial [100] distortion. In 

both cases (inward and outward relaxation) one vacancy level is split 

away to lower energies resulting in a Jahn-Teller stable sit~ation. 

Analogous considerations to the Si (111) surface relaxations favor 

model Rec II in which the four atoms surrounding the vacancy are 

relaxed away from the vacancy sit~, resulting in an increase in 

strength of back bonds. The studies presented have about the type 

of vacancy reconstruction existing in Si do not allow conclusive 

results and call for more experimental, spectroscopic information. 
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FIGURE CAPTIONS 

Fig. 1. Calculated band structure at three volumes for fcc Cs along 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. S. 

several axes of high symmetry in the Brillouin zone. The 

energy is given in eV and the energy origin is taken to be at 

r l · The values for the volumes were (a) V/V = 0.5, 
0 

(b) V/V = 0.4, (c) V/V = 0.3. The numbers along the bands 
0 0 

indicate the d-tharacter of the wavefunction. 

Density of states for Cs at V/V = 0.5 in units of states/eV 
o 

atom. s. p, andd denote the components of the density of 

states from the three angular momentum states. 

Density of states for Cs at V/V 
0 

0.4. See Fig. 2. 

Density of states for Cs at V/V = 0.3. See Fig. 2. 
0 

Electronic charge density for the occupied states of Cs at 

V/V 
0 

= 0.5 in the (100) plane. The charge density is in units 

of em where n is the primitive cell volume~ 

Electronic charge densities for the occupied states of Cs at 

V/V = 0.4 in the (100) plane. 
0 

(a) Band I, (b) Band 2, 

(c) Sum of band 1 and band 2. 

Electronic charge densities for the occupied states of Cs at 

V/V 
0 

= 0.3 in the (100) plane. (a) Band 1, (b) Band 2. 

(c) Sum of band I and band 2. 

A section of the Fermi surface of Cs at V/V = 0.5. The 
0 

hatched region represents the occupied states. 
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A section of the Fermi surface of Cs at V/V = 0.4. 
o 

The 

hatched region represents the occupied states. The cross 

hatched region represents the component of the Fermi surface 

corning from band 2. 

A section of the Fermi surface of Cs at V/V = 0.3. 
o 

Fie. 9. 

See 

Fig. 11. The irreducible polarization propagator in the RPA for 

periodic systems. 

Fig. 12. Calculated E: 2{W) for Si, with (dashed curve) and without 

(dotted curve) local-field effects, compared with experiment 

{solid curve), from Ref. 49. 

Fig. 13. Calculated energy-loss spectra forSi, with (dashed curve) 

and without (dotted curve) local-field effects, compared 

with experiment (solid curve) from Ref. 49. 

Fig. 14. The frequency dependent kernel K(e) (N(O)V parameter) for a 

screened Coulomb interaction using the semiconductor and 

metallic dielectric function model of Inkson and Anderson. 

Parameters appropriate for At and Si were used. (b) The 

frequency dependent kernel K(e) (N(O)V parameter) for a 

screened Coulomb interaction using the Lindhard dielectric 

function (parameters are appropriate for At). (d The 

frequency dependent kernel Kee) (N(O)V parameter) for a 

screened Coulomb interaction using a dielectric function 

calculated from a pseudopotential band structure for Ge. 
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Fig. 15. +5 
Nb i~nic pseudopotentia1s. Vs ' Vp and Vd plotted as a 

function of r. 

Fig. 16. Electronic band structure of Nh. Energy scale is zeroed at EF• 

Fig. 17. Density of states for bulk Nb. (a) Present calculation and 

(b) Mattheiss' calculation from Ref. 66. 

Fig. 18. Contour plots of total valence charge distribution of bulk 

Nb in the (a) (110) plane and (b) (100) plane. The charge 

density is normalized to 1 electron per unit cell. 

Fig. 19. Partial charge densities for states in the energy ranges 

(a) -6.5 to -2.0 eV, (b) -2.0 to -0.75 eV (c) -0.75 to 0.60 eV 

and (d) 0.60 eV to 5.85 eV. The charge density for each 

energy range is normalized to 1 electron per unit cell and is 

plotted on the (110) plane. 

Fig. 20. The pair-breaking parameter Pi as a function of temperature 

from the solutions of the gap equation, Eq. (44). 

Fig. 21. T /Aw2
) plotted versus A. c The solid curves are results 

calculated using the new T equation (Eq.55) for various 
c 

2 shapes of a F. The same curves also represent the exact 

solutions of the Eliashberg equations (see text) since the 

two results are indistinguishable on the scale of the plot. 

The dash curve is the McMillan equation usinR the prefactor 

/< w2 ) /1.20 instead of 60/1.45. The experimental points are 

84 taken from tunneling data. 

Fig. 22.' Calculated T from Eq. (55) plotted versus experimental T for 
c c 

six elemental superconductors. The experimental values are 

84 taken from tunneling data. 
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Fig. 23. Steps in the self-consistent procedure for the calculation 

of the electronic structure of localized configurations. 

Fig. 24. Perspective view of the Si crystal structure projected on a 

(110) plane. The [111] direction is vertical. The (Ill) 

surface is obtained by cutting the vertical bonds in a 

horizontal plane. 

Fig. 25. Total valence charge distribution for an unrelaxed Si (Ill) 

surface. The charge is plotted as contours in a (110) plane 

intersecting the (111) surface at right angles. The plotting 

area starts in the vacuum and extends about 4~1/2 atomic 

layers into the crystal. The atomic positions and bond 

directions are indicated by dots and heavy lines respectively. 

The contours are normalized to electrons per Si bulk unit ' 
a 3 

c 
cell volume nO = ~ 

Fig. 26. Two-dimensiona;l band structure of a twelve layer Si (111) 

film (relaxed surface model). The energy is plotted as a 

function of ~I in the two-dimensional hexagonal Brillouin 

zone. The various surface states or strong surface resonances 

at high symmetry points are indicated by dots and labelled 

according to the description in the text. 

Fig. 27. Density of states curves for the self-consistent results on 

twelve layer films for the relaxed (broken line) and 

unrelaxed (solid line) surface geometry. Surface states are 

indicated by arrows and labelled according to Fig. 26. 

Inserted is the density of states in the vicinity of the 
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fundamental gap for a six layer (2 Xl) reconstructed surface 

model. 

Fig. 28. Charge density contours in a (110) plane cutting the relaxed 

(Ill) surface of the longitudinal back bond state K£b" 

Fig. 29. Charge density contours of the occupied partK
d 

of the 

dangling bond states for the relaxed surface model. 

Fie. 30. Schematic representation of t~e ideal and (2 Xl) reconstructed 

Si (Ill) surface. The reconstruction is done according to 

92 
Haneman's model and leaves the surface buckled as indicated 

by arrows. The slight lateral shifts of second layer atoms 

are also indicated by arrows. 

Fig. 31. Two-dimensional band structure around the fundamental gap 

for a (2 x l) reconstructed Si (Ill) twelve layer film. The 

folded back Brillouin zone is indicated in the insert. 

Fig. 32. Calculated joint density of states curve for low energy 

transitions between dangling bond bands of (2 xl) Si (Ill) 

(top). Also indicated is the experimental absorption £2(W) 

as obtained in Ref. 99. The bottom figure shows the regular 

density fo states for the two dangling bond bands (d. and 
1n 

d ) of (2 XI) Si (Ill). 
out 

Fig. 33. Charge density contour plots for the d;lIlg1ing bond st.,tc's 

d (top) and d. (bottom) of (2xl) Si (111). The charge is 
out 1n 

plotted in a (210) plane of (2 Xl) Si which corresponds to the 

(110) plane of (lXl) Si. The raised and lowered atoms are 

marked by arrows. 
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Fig. 34. Local density of states in arbitrary units for a relaxed (110) 

surface of GaAs. The local density of states at the surface 

layer for the ideal case is also displayed. 

Fig. 35. Density of states (in arbitrary units) of the empty cation 

derived surface band for both the ideal and relaxed cases. 

Fig. 36. Pseudocharge density of the cation surface states for a relaxed 

surface. The charge density contour map is normalized to one 

electron per unit cell, n = 812 A3. . c 

Fig. 37. The top figure shows the charge density averaged parallel 

to the surface and plotted as a function into the bulk for the 

surface state at K at 0.07 Ry. The bottom figure shows the 

charge density for this state in the (110) plane. The charge 

density is normalized to 1 electron per unit cell. 

Fig. 38. Brillouin zone for the 2-dimensional square lattice and the 

3-dimensional bcc lattice. 

Fig. 39. Projected bulk band structure for the (001) surface of Nb. 

(see text) 

Fig. 40. Extents of the two major absolute gaps in the projected 

band structure of the Nb (001) surface. 

Fig. 41. Total valence charge density of the Nh (001) surface plotted 

on (a) the (llO) plane and (h) the (lOO) pInneo The charj.!,l' 

density is normalized to on0 c].cctron per unit cell. 

Fig. 42. Calculated local density of states curves for the Nh (001) 

surface. 
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Fig. 43. Difference curve for the local density of states at the Nb 

(001) surface. (See text) 

Fig. 44. Surface bands (dashed curves) and the projected band structure 

for the Nb (001) surface. 

Fig. 45. Charge-density contour plots for the three energy regions 

(a) region A, (b) region B, (c) region C. (see text) The 

char-ge density for each region is normalized to 1 electron 

per unit cell and is plotted for a (100) plane cutting the 

Nb (001) surface. 

Fig. 46. Charge density distribution of a Tl surface state at 

~ = O/B, 1/4) 2rr/a at E = 1.6 eV pl'otted on (a) the (110) c 

plane and (b) the (100) plane. The charge density is 

normalized to 1 electron per unit cell . 

. Fig. 47. Charge-density contour p'lot of a T2 surface state at 

k = (3/B,I/4)2rr/a at E = O.B eV. Plotting planes and 
c ' 

'normalization are the same as in Fig. 46. 

Fig. 4B. Charge-density contour plot of a T3 surface state at 

k = (3/8,l/4)2rr/a at E = 0.4 eV. See Fig. 46 for plotting . c 

planes and normalization. 

Fig. 49. Charge-density contour plot of a T4 surface state at 

t = (3/8.1/4)2rr/a at E = -1.7eV. See Fig. 46 for plottin~ 
c 

planes and normalization. 

Fig. 50. Charge density distribution of a T5 surface state at 

k = (3/B,l/4)2rr/a at E = -2.0 eV plotted on the (110) 
c 

plane. The charge density is normalized to one electron per 

unit cell. 
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3 

Fig. 51. (a) Total valence charge density contours in a (110) plane. 

Fig. 52. 

The Si atoms are indicated by dots. (b) Total valence charge 

density averaged parallel to the interface and plotted along 

the direction perpendicular to the interface. The charge 

densities are normalized to one electron per unit cell. 

(a) Contour plot of the final self-consistent potential V 
sc 

in a (110) plane. (b) Final self-consistent potential averaged 

parallel to the interface and plotted along the direction 

perpendicular to the interface. The potential values are in 

rydbergs. 

Fig. 53. Local density of states in arbitrary units as defined by 

Eq. (83). The regions are as shown in Fig. 5l(b). 

Fig. 54. Difference local density of states (DLDOS) obtained by 

subtracting the LDOS of region VI from that of region IV. 

The units are the same as in Fig. 53. 

Fig. 55. Charge density contours for states with energy below -11.5 eV 

in the same plane and normalization as in Fig. 5l(a). 

Fig. 56. (a) Charge density contours for MIGS with energy betwe~nO and 

1.2 eV in the same plane and normalization as in Fig. 51(a). 

(h)'Charg~ density in (a) averaged parallel to the interface 

and plotted along the direction perpendicular to the 

interface. 

Fig. 57. Schematic diagram of the bottom two bands of the Si band 

structure (horizontally hatched) projected to the two-

dimen~ional Brillouin Zone. Superimpo~ed on it is the 
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projected Al conduction band (vertically hatched). SK 

denotes the interface states discussed in the text. 

Fig. 58. Charge density contours for the interface states at K in the 

same plane and normalization as in Fig. 5l(a). 

Fig. 59. Total valence charge density for the m/GaAs interface plotted 

in the (110) plane containing the (a) Ga surface atom and 

(b) As surface atom. The charge density has been normalized 

to one electron per unit cell. 

Fig. 60. Total valence charge density for the m/ZnSe interface plotted 

in the (110) plane containing the (a) Zn surface atom and 

(b) Se surface atom. Normalization is as in Fig. 59. 

Fig. 61. Total valence charge density for the m/ZnS interface plotted 

in the 010) ,plane containing the (a) Zn surface atom and 

(b) S surface atom. Normalization is as in Fig. 59. 

Fig. 62. 

Fig. 63. 

Fig. 64. 

Local 

units 

Local 

Local 

density of states 

as defined by Eq. 

density of states 

density of states 

for the m/GaAs interface in arbitrary 

(83) . 

for the m/ZnSe interface. 

for the m/ZnS interface. 

Fig. 65. -Charge distributions of the penetrating tails of the MIGS in 

the semiconductor thermal gap. p(z) is the total charge 

dcnRity for these stater-; averilgt'cl par:Jlle} to tlH.' interf:ICt' 

with 7.. :: 0 .1 t the edge of the oj <.'11 i urn cort',' 

Fig. 66. Charge dp.nsity of the s-like sulfur interface states in the 

same plane as Fig. 6l(b). rhe charg<' density is again 

notmalized to onp electron per unit eel]. 
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Gharge density of an interface state at M at -5.1 eVe 
! 

(See text.) 

Fig. 68. Charge density of an interface state at M at -4.6 eVe 

(See text.) 

Fig. 69. Experimental values of the barrier heights for four semi-

conductors in contact with various metals. X is the 
m 

electronegativity of the metal in the Pauling-Gordy scale. 

Data were taken from Ref. 142 (Si) and Ref. 149 (GaAs, ZnSe, 

ZnS). 

Fig. 70. The index of interface behavior S from Ref. 137. 

Fig. 71. Surface density of states as defined in Eq. (85). 

Fig. 72. Structure of cubic Si (a) and an undistorted Si lattice 

vacancy (b). 

Fig. 73. Total, self-consistent valence charge density displayed in a 

(110) plane for a neutral SI vacancy in.an ideal, unrecon-

structed structure. The charge values are normalized to one 

electron per unit cell which extends over 53 atoms and one 

vacancy. 

Fig. 74. (top) Crystalline density of states for Si with the position 

of strong resonant and vacancy levels at r. (bottom) Energies 

at r for the perfect 54-atom unit c~ll crystnl u~in~ nn 

empirical pseudopotential, for th(, ideal vacancy using the> 

Rame empirical pseudopotential and for the ideal vacancy 

using the final self-consistent pseudopotential are given. 

Note the lowering of the vacancy level in the funcamental gap. 
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, 
Fig. 75. Charge density plots in a (110) plane (area enclosed by 

dashed lines in Fig. 73) of (a) the vacancy states in the 

fundamental gap and (b) the strong resonance around -8.2 eVe 

Fig. 76. Schematic energy diagram of dispersion between r and X and 

order of the Si vacancy levels in the fundamental gap asa 

function of different reconstruction models. For Rec I and 

Rec II, X is along the distorted [100] directiori. 

Fig. 77. Radial dependence of various Si atomic and vacancy potentials. 

Fig. 78. Total self-consistent valence charge density for a neutral 

Si vacancy in a reconstructed environment (Rec I). The 

distances between the four atoms surrounding the vacancy are 

pair wise decreased, re~ulting in a [100] uniaxial distortion 

and a net relaxation towards the vacancy. Units are as in 

Fig. 73. 

Fig. 79. Total self-consistent valence charge density fora neutral 

Si vacancy in a reconstructed environment (Rec II). The 

distances between the four atoms surrounding the vacancy 

are pair wise increased. resulting in a [100] uniaxial 

distortion and a net relaxation away from the vacancy. 

Units are as in Fig. 73. 
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Table I. Parameters used in the Cs calculations. Form factors (in Ry), 
d-well depth (in Ry), d-well radius (in A), and lattice 
constants (in A). 

V/V 
o 

vO) V(4) V(8) V(ll) A2 R a 

0.5 -0.0276 -0.0205 0.0011 0.0001 -3.2 1.275 6.175 

0.4 -0.0314 -0.0165 0.0010 0.0000 -3.2 1.275 5.732 

0.3 -0.0292 -0.0084 -0.0004 0.0000 -3.2 1.275 5.208 
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Table II. Cs. Calculated Fermi energies (in eV), density of states 
and partial.densities of states at EF, and the amount of 
charge distributed to s-, p- and d-states as defined in text. 
(The density of states is in units of states/eV-atorn.) 

v/V 0.5 0.4 0.3 
0 

EF 1.28 1.10 0.56 

N(E
F

) 1.64 1.90 1.91 

NS (EF) 0.90 0.94 0.89 

Np(EF) 0.18 0.19 0.16 

N d (EF) 0.56 0.77 0.86 

Qs 0.70 0.62 0.41 

Qp 0.09 0.07 0.05 

Qd 
0.21 0.31 0.54 
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Table III. Sum rules from Eq. (26) for E:Q,Q and E:Q,Q' in units of (eV)2 

in the limit q-+O along the x-direction. 
, ..... 

a, 
( 2-)Q' /w 1m E:Q,Q' dw 

2!. '2 P (.(!-.(! , ) 
e(q+Q) ·e(q+,G') (2n),G 21T 2 wp p(O) - -

(000) (000) 415.6 433.5 

(111) (111) 431.6 433.5 

(200) '(200) 430.1 433.5 

(220) (220) 403.2 433.5 

(311) (311) 311.8 433.5 

(222) (222) 278.4 433.5 

(000) (111) -50.9 -54.7 

(000) (200) 0.0 0.0 

(000) (220) 11.5 10.3 

(000) (311) 21.6 20.2 

(000) (131 ) 7.2 6.7 

(000) (222) 15.5 15.0 
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Table IV. (a) Comparison of the calculated ionic energy levels with 
experimental data from spettroscopy.73 (b) Self-consistent 
Nb atom: A comparison of our results with those of Herman 
and Skillman. 74 

(a) Nh+4 

Level 

4d 
5s 
5p 
5d 
65 

Calculated 
Energy (Ry) 

-3.657 
-2.953 
-2:448 
-1.725 
-1.635 

(b) Self-consistentNb atom 

4d 
5s 

Energies (Ry) 
Present Calculation 

0.354 
0.340 

Postions of Maximum of rR(r) (in a.u.) 

4d 
5s 

Present calculation 

1.48 
3.00 

Experimental 
Energy (Ry) 

-3.63 
-2.95 
-2.45 
-1. 71 
-1.56 

Her~an and Skillman 

0.45 
0.40 

Herman and Skillman 

1.41 
3.12 
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Table V. Comparison of energy levels between the present calculation 
of the Nb band structure and previous calculated results. 
(Energies are in eV with EF ~O.) 

r l 
r

25
, r 12 Hi2 r 25 , N

l
, 

Predominant 
S d d d d Character p 

Present 
·Calculation -6.06 0.15 3.07 -3.22 5.83 2.32 

APW66 -5.30 0.41 2.80 -3.81 5.17 2.33 

EPM67 -5.20 0.51 2.59 -3.70 5.68 2.18 

Self-consisted -5.24 . 0.55 3.25 -4.24 5.97 2.25 
AP\.,t71 
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Table VI. Principal peak positions in the calculated lfu density of 
states are compared with peaks in photoemission 
data and previous ca1c~lations. 

E>""Periment 72 
(Photoemission) 

-2.3 

-1.1 

-0.4 

... 2.4 

-1.4 

-0.2 

2.5 

3.0 

I' 

Theory 

-2.6 

-1,.4 

-0.4 

2.6 

Present 
Calculation 

-2.5 

.-1.4 

-0.4 

2.6 

3.2 

3.8 
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Table VII. Experimental parameters for six elemental superconductors . 84 

Tc (Calc.) is calculated using Eq. . (55). 

Materials (OK) (OK) 
(OK) (OK) 

* W t'fWL}. B A ~ T (Expt.) T (Calc.) log c c 

:Pb 56 65 .161 1.55 0.105 7.20 7.15 

In 68 89 .309 0.805 0.097 3.40 3.22 

Sn 99 .12l .222 0.72 0.092 3.75 3.88 

Hg 29 49 0.690 1.62 0.098 4.19 4.07 

Tl 52 64 0.231 o ~ 795 O.1li 2;36 2.:20 

Ta 132 148 0.121 0.69 0.093 4.48 4.69 

'-. 
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Table VIII. Calculated energies of surface states and strong surface 
resonances of the relaxed Si (111) surface at T (center), 
K (corner) and M (edge midpoint) of the two-dimensional 
Brillouin zone. Also indicated are experimental (UPS) 
results for (2 Xl) and (7x7) reconstructed surfaces. The 
energy zero is taken at the bulk valence band edge EV. 

SCLCg ARe ppf experiment 

(1 xl) relaxed surface (2xl) Ox]) 

r 1.2 rd 0.88 1.04 

-1.5(2x) rtb -L9S(2x) -1. 71 (2x) --1.0d _1.Sa 

-12.7 r Lb -12.87 -12.9 -11. 7
a -12.3a 

-o.sa 
K 0.5 Kd 0.11 -0.4Sb O.la 

-0.6c 

, -2.0 KLb , 

-4.2 Ktb -5.65 

-8.5 ~b -8.35 _7.Sa 

-9.8 K
Lb

, -9.6 
" 

M 0.5 Md 0.04 0.17 

-2.6 M
tb

, 

-3.1 Mtb -3.55 -3.78 _3.6a 

-8,1 ! 
-8.7 ~b 

-10.7 ~b' 
-

a) ref. 93(e); b) ref. 93(a); c) ref. 93(b); d)'ref. 93(d): 'E!)ref. 91; 
f) ref. 98; g) this work. 
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Table IX. Character tables and transformation of d functions in the 
2-dimension square Brillouin zone. 

1: E Md 

}:1 1 1 
2 2 3(x+y) 3z -r , xy. 

}:2 1 -1 2 2 z(x-:-y) x -y , 

[., E M x 

[.,1 1 1 
2 2 2 2 

3z -r • x -y • zx 

[.,2 1 -1 xy, zy 

y E M y 

1 1 
2 2 2 2 

Y1 3z -r • x -y • zy 

Y2 1 -1 'KY, zx 
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Table X. Parameters entering Eqs. (71) and (81) to define the 
empirical and ionic Si pseudopotentia1s. 

VSi v~i 
emp ~on 

a1 
0.17459 hI -0.57315 

a2 2.22144 h2 0.79065 

a 3 0~86334 h3 -0.35201 

a4 1.53457 b4 -0.01807 
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The ionic core potential parameters, hi. The 30tentials are 
normalized to an .atomic volume of ·152.3 (a.u.). The form 
of the poteritial is given by Eq. (81). The units for v(q) 
are Ry if q is given in a.u. (The Ga potential is valid 
only for q ~ 3 a.u.) 

Ga As Zn Se S 

b
1 

-0.3384 -0.7057 -0.3056 -2.3258 -5.4101 

b2 1. 3305 1.0448 1. 3412 0.5283 0~3275 

b 3 0.4466 0.1662 0.0802 ":'0.5740 -0.8169 

b4 0.0071 -0.0151 --0.0086 -0.0321 -0.0250 

-~ 
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Table XII. The empirical starting potential parameters, a,. 
Normalization and units are as in Table XI. TRe form of 
the potential is given by Eq. (71). 

Ga As Zn Se S 

al 
1.2214 0.3474 6.7008 0.2334 0.2361 

a2 2.4495 2.6203 1.4983 3.3858 3.3630 

a3 
0.5445 0.9335 0.6696 0.7266 0.7243 

a4 -2.7148 1.5677 -4.7128 2.2012 2.1900 

/' 
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Table XIII. Theor~tical and experimental values for the Schottky 
barrier height 4>b(eV) and the index of interface behavior S. 
Ds in units of 1014 states/eV-cm2 is the surface density 
of states used to obtain the calculated S. 

6Xa d 4>b(cal) 4>bn(expt) D S(cal) S(expt) s 

AI-51 0 0.6 ± 0.1 0.6b 4.5 . 0.1 ,0.1 

A1-GaAs 0.4 O.B ± 0.2 o,ac 5.0 0.1 0.1 

AI-ZriSe 0.8 0.2 .± 0.2 2.0 0.4 0.5 

AI-ZnS 0.9 0.5 ± 0.2 O.Bc 1.4 0.7 1.0 

a) Ref. 156 
b) Ref. 142 
c:) Ref. 149 
c;i) Ref. 137 

" 
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Table XIV. Form factor parameters fo~ the empirical Sipseudopotential 
Vemp (Eq. "92) and for the ionic Si4+ pseudopotential V. 
(Eq. 97). 10n 

V V. emp 10n 

a = 1 0.34270 b = I 
-1.12507 

a = 2 2.22144 b = 2 0.79065 

a = 3 0.86334 b3 = -0.35201 

a4 = 1.53457 b4 = -0.01807 
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