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ELECTRONIC STRUCTURE OF METALS AND SEMICONDUCTORS:
BULK, SURFACE, AND INTERFACE PROPERTIES

Steven Gwon Shéng Louie
. Materials and Molecular Research Division, Lawrence Berkelevaaboratory

and Department of Physics, University of California
Berkeley, California 94720

ABSTRACT

A thédretical study of the electronic structure of vériops metals
and semiconductors is presented with fhe emphasis on. understanding fhe
propefties of these materials when they are suﬁjécted tb extreme
conditioné and in various different configurations.

Ahang the bulk systems studied, the properties of cesium under
high pfesgure are‘discuSSed in.terms of the electronic structure
calculated at various cell volumes using Ehe pseudopotential méfhod.
Local fields or umkiapp processes inbsémiconducﬁors are studied within
the random phase épproximation (RPA). Specifiéally the-dielectriq
response matrix EGG.(3=0,Q) is-evalgafed numericaliy'té detéfminevthe
effects.of local-field corrections in the optical spectrum of Si.

Also, sbme comments on the excitonic mechanisﬁ of'supercondﬁctivify

arc prosontqd and the role of local fields is disruésud. The pscuado~
potential methud.is next exlendud to calculate the cvlectronic structure
of a transition metal Nb. Thg caléulation is performed self-consistently
with the use of a non-locéi ionic poténtial de;ermined.from atomic

spectra. Finally the theory of the superconducting transition



temperature TC is discussed in the strong-coupling formulation of the

BCS theory. The Eliashberg equations in the Matsubara representation
v \

are solved analytically and a general Tc_equation is obtained.

In addition to the above study of bulk properties, a new methbd
is developed using pseudopotentials in a self-consistent manuer to
describe non-périodié systems. The method is applicable to localized
configurations such as mdlecules, surfaces, impurities, vacancies,
finite chains of atoms, adsorbates, and solid interfaces. Specific
applications to surfaces, metal-semiconductor interfaces -and vacancies
are presented here.

For suffaces, the new scheme is empioyed to calculate the electronic
structure of the Si(111) surface for three different structural models
(ideal, relaxed and reconstructed). Surface states are identified -
and analyzed throughout the two-dimensional Brillouin zone. Charge
densities and electronic density of states are presented and discussed.
The effects of relaxation on the electronic structure of the GaAs (110)
surface are also investigated. Similar studies arebéarri;d out for
-metal surfaces with the Al (111) surface and the Nb(00l) surface
considered as prototypes for the simple s-p metal and the transition
metal surfaces.

For metal-scemiconductor interfaces, the electronic structure of
a scries of (our interfaces ol increasing I.\;umicnn(lm'tur ioniclty is
studied. The series consists of interfaces of Al (modeled by a
jellium core potential) in contact with the (111) surface of Si and

the (110) surfaces of GaAs, ZnSe and ZnS. The different types of

e
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states existing near the interfaces are .identified and analyzed in terms

of é local density of states and their individual charge densities. The

calculated_Schottky barrier héights aré in good agfeement with
experiments. In addition, afmodel involving metal-induced states in
the semiconductor band éaps near the interface is presented for the
ionicity-dependent behavior of the-metalfsemiconduétor Schottky barrier
heights. -

Finally, as an example of vacancies inlsemicondUCtors, the
élec:ronic structure of a neutrél vacancy in the Si crystal is cal-
culated for tﬁeiideal and two mode1 reconstructed gedmetfies. Vacancy

states are identified and their charge densities are presented.
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I. INTRODUCTION

We preseﬁt a theoretical study on the electronic stfﬁcture of
various metals and semiconductors. Particular emphasis is placed on
understanding the changés in the properties of thgse systems when they
aré subjected fo extreme conditions and in Vérious.différent configura-
tions. The pseudoﬁotenfial method has been employed extensivély to
calculate tﬂe bulk, sﬁrfaée and interface electronic structurc of the
systems studied. Supercénductivity is discussed both iﬁ the weak-
cohpliﬁg and the strong-coupling formulaﬁionlof the BCS fhééry.

We begin in Section II with the discussion of‘tﬁe bulk properties
of sblidé. The electronic strucgure of cegium under high pressure is
examined in Sec. IIA. Thé calcuiatéd results indicate that many of
the propertiéé of Cs under pressure arise from the changes in thé
characteristics of the conduétion electrons which become incréasely
d-like‘as fhe volume contracts. Local fields or umklapp processes in
semiconduéfors are discussed next in Sec; IIB. An expfession fér the

dielectric response matrix €,.,(g,w) in the random phase approximation

| £e |
(RPA) is derived via a diagrammatic approach. The matrix‘egg,(3=0,m)
is then evaluated to study the effects of local-field corrections in
the optical spcctruﬁ of 8i. Somc comments on the.oxvitnnic mecﬁnnism
of suberconductivity which involves a métaf—semiconductor interface are
“presentedAand the role of 1local fieldé'is discussed; Sectioﬁ I1C is

on bulk Nb. We show that, with the inclusion of a non-local d-pot¢ntial,

the pseudopotential metbod can be extended to calculate the electronic



structure of transition metals. The calculations were petformed self-
consistently with the Nb ionic core pseudopotential determined from .
atomic spectra. In Sec. IID we explore the theory of the superconducting

transition temperature. The Eliashberg equations in the Matsubara

representation are solved analyticallg‘using a self-consistent,
variationgl pfocédure. An expression for the superconducting traﬁsition
tehperature TC is derived. Unlike the McMillan equation, this TC
equation is Sh0wn to be a valid soiution of the Eliashberg equations for
all electron-phonon coupling strength and for different shapes of the
‘electron-phonon interation spectrum, aZF(w).

The remaining three sections are on non-periodic systems. 1In
' ‘Sec. IIiA a new method which extendé the pseudopotential scheme to
10¢élized configurations is presented. These calculations are done
self-consistently and the apprbach is applicable to problems such as
atomic and moleculér states, éolid surfaces, impurity and vacancy
states, finite chains,‘adsorbates, and solid intérfaces. dur results
on the semiconductor surfaces are presented in Sec. IIIB. Specifibally,
we have studied the electronic structure of the $i(111) surface using
three different structure models -'ﬁhe ideal structure, a relaxed
structﬁre and a (2x1) reconstructed structure. The effects of relaxation
on the GCaAs (110) curface. are also studied.  Tn Sce. THE we cxamine
Lﬂc wetal surtaces with the ALCHIY) surface and the Nb(OOT) surface
considered as protofypes for the simple s-p metal and the transition
‘metal surfaceé. In all of the cases'sfudied; surface states with

different characteristics are found to exist over a wide range of



energies; and our results are in general agreement with available
eXperiméntal data when the>appropriate réstfucturing of the su?faée.
is includgd.

In Secfion Iv we-applyrour method to.study‘the métal;Semiconductof
interfaces. The interfaces studied ére inteffaces-of Ai (modeled by a
jellium core potential) in contact with the (111) surface of Si and
the (110) surfaces of GaAs, ZnSe and ZnS. The electrdnic structure
of the Al1/Si interface is discussed in some detail invSec..IVA and the -
results for the metal-zincblende semiconductor interfaces are presented
in Sec. IVB. Metal-semiconductor Schottky barrier heights in very
good agreement with experiments were obtained. .Our results indicate
that, within the jellium~semiconductor model, intrinsic semiconductor
surface states do not play a3 dominant role in detefmining the Schottky
barrier heights. In particular the intrinsic surface states which
existed in the fundamental gaps of the semiconductors for the "free"
surface case are found to be removed by the presence of the metal
(rs = 2.07) and new types of metal-induced gap states (MIGS) occur in
this energy range. In Sec. IVC the role of ionicity-in metal-
semicondﬁctor Schottky barriers is investigated.‘ We show that the
variations in.the experimental barrier heights for different metals in
contact with various semiconductors cim be anderstood quantitatively in
tcrms of a Simple model involving the MIGS in the semiconductor band
gap.

Finally, in Section V we study the electronic properties of

vacancies in covalent semiconductors. Specifically we have calculated
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tbe electroﬁic structure of a neutral vacancy in the Si crystal using

the methoa discussed in Sec. IIIA. The energies of the localized

vacancy étates ana'their corresponding chargé density distributions

were obtained. In addition to the ideal structure, the effeéts of
structural reconétruction on the Si vacancy states were aléo investigéted

through the use of two model reconstructed structures.
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IT1. BULK

A. Electronic Structure of Cesium under Pressure

In this section we present some calculations on the electronic
properties of cesium under high pressure. The célculations are bésed
on the pseudo&qtential méthod.1 We have calculated the band structure,
the density of states, and the charge density of the conduction
electrons at cell volumes V equal to 0.5 Vo,.0.4 V0 and 0.3 Vo where
Vo is the cell volume at normal pressure. The conduction electron
density of states is further separated into contributions from s-, p-
and d¥1ike components. In addition, the fopolbgy of the Fermi suriaées
at thé abéve volumes was determined.

The present calcuiations‘were performed to try to gain some informa-
tion about the many interesting properties of cesium under pressure.
I-:xperim'entsz'-.5 show that cesium undergoes three phase transitions in
the pressure range of one to fifty kiiobérs.' At room temperétufe and
under hydrostatic pressures, X—ray3 and neutron diffractiona measure-
ments show that there afe three discontinuities in the volume vefsﬁs
pressure curve. The first discontinuit§ occurs at 23.7 kbar
(V/VO = 0.63). At this_pressure cesium‘undergoes a transition from a
bcc structure (CsI) to a fcc structdré (Cs11) with a small reduction
in volume. The next discontinuity occurs at 42.2 kbar (V/\lo = 0.45).
The latter transition is a first order-iséstructural transition. The
structure of the new phase, CsIII, is fec as in CsII but the volume

drops by 9%. The third transition, CsIII to CsIV, occuré at 42.7 kbars



v(V/V§ = 0.41) where the cell volume of .cesium drops by 2.47%Z. The
structure of CsIV has not been determined.
~ The above transitions are also evident in resiétivity versus

‘ 3,5,6
pressure measurements.

The resistivity as a functibn ofbpressure
decreases initiélly, reaches a minimgm at 8 kbar.: It‘then increases

with increasing pressure'wi;h a discontinuous rise at 23.7 kbar where

béc Csl transforms to fcc CsII{'it.becomes'anomalously large neér AZ‘kbar.
Two spikes in the resistivity were observed at 42.2 kbar and 42.7 kbar;
they corfespond to the CsII-III and the CsIII-IV transitions respectively.
The resistivity data are also interesting at higher pressures. Thé
resistance of cesium drops steadily after the 42.7 kbar transition, and
there is a second anomalous region near 120 kbar where the'réSistivity
rises steeply to a maximﬁm. ’

The bulk modulus of cesium also behaves’anomaloﬁsly at the higher
pressures.7 Below the 42.7 kbar transition and above 120 kilébars,
thevbulk modulus is a linearly increasing function of pressure. In
between, hdwéver, cesium becomes anomalously stiff; the bulk modulus
increases abruptly and reaches a value at 120 kbar which is two orders
of magnitude higher than its value at 43 kbar. Finally, cesium has
the interesting property that.it beéomes supercoﬁductingvat low
temperature and hiph |n‘(-.~:rmr('v.8 The :;nm,ﬁ'vnn(hu't ing, transition
temperature is found to be 1.5°R at 120 ‘kbar and the tranSition
temperature is a decreasing'fupction_of pressure.

The CsI-1I1 transition at 23.7 kbar was first explained by

9 . . -3 L '
Bardeen” and later confirmed by experiment.™ The isostructure
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transition at 42.2 kbar (V/Vo = 0.45) is more complicated. Previous

0- .
10-12 have attributed it to the change of the

iheoretical investigétions
chéracter of the conduction electrons from 6s to 5d, which occurs when
the lattice is compressed to critical volume. This idea was first
proposed by Sternheimer;o in 1950. However hié model gives the mixing
of the s- and d-wavés at lower pressure than the observed valﬁe.
Recent calculation by:Yama;hita and Asanol,'3 has shown that the

cesium d-bands are broader than those obtained by Sternheimer. Using
the APW method, Yamashita and Asano have calculated the band structure
of cesium as a function of various cell volumes and they have examined
the Fermi surfaces at those volumes. Caiculations of ;otal energy

14,15
versus volume

have also been done which show a first order
isostructural transition bﬁt at foo low pressure.

As noted by McWhan,A recent experimental and theoretical evidence
indicate a continuous s-d transition rather than an abrupt one as
previously believed. - The present calculation is the first attempt
using the pseudopotentiai me%hod_to look at the isostructural transi-
tion.of cesium.. A band structure is calculated throughout the Brillouin
zone whigh yields.a détailed calculation of'the-density of states and
of the electronic chargé density. The calculation is described below
‘invsection 1, the resul;s are given in section 2, and some.discussion

of the results is presented in section 3.

1. Methods of Calculation

a. Band structure. In applying the pseudopotential method to

obtain the electronic band structures, we have used the pseudopotential



Hamiltonian

Hedl 4 v ' |
- 2m : L (1)

where'Vp is a weak pseudopotential which is taken to be a superposition
of atomic pseudopotentials. Vp which is energy' dependent can be

decomposed into a local and a non-local component

‘ vp'= v (B) + Vg, (E) . (2)

NL

‘However, for a limited energy‘range, the energy dependence may be
ignbfed. |

In the case of cesium, for the iocai pseudopotential, we used
Aﬁimalu's16 screened model potential form factors. The form factors

are defined as

-iG-'r 3

V(@ = [V (D e dr - (3)

where Va is the local atomic pseudopotential; g'is a reciprocal.lattice
vector, and Q isbthe primitive.cell volume. -To compute the energy bands
at high pressure, i.e. different primitive cell volume and different
G's, the form factors must be éppfopriatély scaled. We scaled the
form factors in the following way. Let Q' and G' be the primitive cell
volume and the rcciprocal'latticc vector at a new pressure, then the

new form factors are given by

viEe) =g [ v, (@ e1€L g

= o v(.l') . v - (4)
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The atomic pseudopotential is weak because the repulsive potential
from the orthogonaiization terms cancels the strong atomic potential.
However thﬁ'cancellation is different for the different*angulaf momentﬁm
components éf the conduction éleEtron wavefunction. 1In using a local
pseudopotential one has assumed that the cancellation is the same for
each angular momentum component.

In cesium the core has configuration
(120262 20)° (32 (392 30) () 2 (4p) 8 (5) 2 (40) 0 (5p) © (5)
Tﬁé cancellation for %=0 and 1 isvexpected to be éood over the whole
core. For £=2 there is some canceliation arising from the 3d and 4d
core states; but it can bnly cancel the atomic potential ﬁb to the n=4
shell. It leav;s the potential in the n=5 shell uncancelled and the
d-component of the coﬁduction electrons will see a deeper attractive
pbtential.

At normal pressure the conduction electron wavefunction 1s mostly
.s—like; the f£~dependent effect Qill not be important. However, ;t
| high pressures, there_is a large s-d mixing. The Qf-dependent part of
the potential is tﬁen very importang.' To accounﬁ for the incomplete
cancellation, we havg'added a non-local correction to the local form

factors of the form

17

V§L(£) = A2 exp(-rz/Rz)Pz (6)

A, is the well depth, R is the well size, and P, is a projection

operator acting on the d-component of the wavefunction.
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Since there was no experimental information on the Eand structure
.of cesium at high pressuré;'A2 aﬂd R were determined by adjusting them
to fit our band structure at V/V0 = 0.5 to the band structure calculated
by Yamashita and Asano13 at the séme volume. With some further

2
rydbergs and R = 1.27SvA. The largest disérepancy is 0.5 eV at the

adjustments of VL; we obtained a good fit for the values A, = -3.2

point L in the Brillouin zone. The écaled local form factors and the
d-potential for the various cell volumes are given in Table I. (G is
in units of 2m/a where a is the lattice constant.) We have not scaled
the size and the depth of the d-well since we assumed these are
properties of the atomic core and the d-well is very localized. Even
at V/Vo = 0.15, the radius of tbevinscribed sphere is larger than k.
Thus the same d-well was used in the band structure calculation at
V/V0 = 0.5, 0.4 and 0;3.‘ The most important band structure effects
for V/Vo's come from the d—potential and the scaling of Vv, is not

critical.

b. Density of states. Once the band structure has béen obtained,

the density of states N(E) may be calculated from

NE) =2 T SGE () )
n : :

z
k
where N is the number of primitive cells and N(E) is normali;cd to the
number of states per atom. To calculate the s, p aﬁd d cohtributions
to the dénsity of states, we define the f-character of a wavefunction

wnk(E) in the following quantity

~
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fw:k(z)lenk(z)d3£ ,
Cy(n,k) = —— (8)

* . 3.

wﬁere_the integrals are to bé.taken §ver the inscribed sphere. By
assuming that the fractional mixing of the various angular momentum
components of the wavefunction outside of the inécribed sphere is the
same as those in the inside, the partiél density of states may be

calculated and

Ng(B) =2 ] T Coln,k) (E-E_ (X)) - 9)
n . .

}
k
with

N(E)

N (E) + N (E) + N,(E) . ' (10)
s P d _

This is a reasonable definition for the partial-dédsity of states

-because the inécribedfsphere contains 75% of the primitivé‘cell'volume.
Equations (7) and (9) were numerically evaluated using:the Gilat-

Raubenheimer technique.18 At volume V/Vo = 0.5, a grid of 125 points

in the fcc irreducible Brillouin zone was used in the calculation.

At volumes V/Vo = 0.4 and V/VO‘= 0.3, a grid of 308 points was.usea.

The reason for the grid size vériation is that 308 points weré needed

for the charge density calculation at volumes V/Vo = 0.4 and V/V0 = 0.3.

c. Electronic charge density. From the density of states we

obtained the Fermi energy E_ by the following normalization

F
E, _
1=[" NE) < . | 1D
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The band charge dénsity of the‘conduction electron in a given band, n,

may then be calCuléted from

o (x) = 2 :E: V) Yy (12)
KEBZ '
E,(K<Ep

and the total charge density»is
o = ] o (0 - o ay
‘n : :

‘ To obtain sufficient convergence for the charge density talculation,
the Qavefﬁnctions wﬂk were expanded in a basis set:of abﬁut_85 plane
waves. And because the Fermi surfaces at V/Vd = 0.4 and V/VO.= 0.3 -
are more distortéa thaﬁ(the Fermi surface at V/Vo = 0.5, to insure
good conyergence, a grid three times the'size of the grid at V/Vo = OLS
was used.
2. Results

The scaied form factors, d-well parameters, and lattice constants
used in the caléulations are listed in TableVI. At ail‘three voiumes
V=20.5 A 0.4 v, and 0.3 Vé; tﬁe structure is assumed to be fcc.

a. Calculated band structures. The band structures of cesium at

V/V0 = 0.5, 0.4 and 0.3 are shown in Fig. 1. They were calculated wifh

é matrix size determined by the cutoff energies19 El = 19.1, E, = 40.1;

2

the non-local d-well was not  included in the Ldwdin perturbation
scheme.19 The values for the d components of the wavefunctions are
indicated along the symmetry directions. - In all three cases the bottom’

band is mostly s-like near I' and is moétly d-like near X and K in the

i
: |

' : A
1
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Brillouin zone. There is approximately equal mixing of s- and d4-
character near the point L. vThe second band is almost completely

d-like; it has a small amount of p-mixing near L_,, which becomes

2°
completely p~like at the L point.

Our calculated band structures for contracted volumes are in
qualitative agreement with those obtained by Yamashita an‘dvAsano.13
The volume dependence of the band structure behaves in a reasonable
way in both calculations; i.e., the ‘energies in the region near X for
the first two bands drop with decreasing volume with respect to Fl.
27k

gap increases as the volume decreases. The second band doubled its

The X3 state drops below the Fermi level at V/Vo ~ 0.45. The L

width when the volume changes from 0.5 Vo to 0.3 VO.

b. Calculated densities of states. The densities of states and

the separate s, p4ahd d compbnents (as defined in section 1.b) are
shown in Figs. 2-4. The origin of the energy scale is taken to be at
E(Fl) = 0 for all three volumes V/V0 = 0.5, 0.4 and 0.3.

As seén from Fig: 2, even at V/Vo = 0.5, there is a large d
component in the density of states bglow the Fermi level. The
contribution of the d-waves to the-deﬁsity of states

increases with decreasing volume for states below the Fermi level.

This is consistent with the s-d transition arguments originally

. 10 - e : ]
proposed by Sternheimer. However, the transition appears to be
continuous rather than abrupt. To make this quantitative, we have
calculated the total number of states or the fractional amount of

charge distributed among the s, p and d states in the inscribed sphere
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by integrating the partial densities of states, i.e.
.

E? )

Q= [ Ny(E)E . | (14)
The reéults are presented in Table II. The d componenf,of the tétal
charge, Qd, changes from 0.21 té 0.31 then to 0.54 as the volume changes
from V/Vo = 0.5 to 0.4 to 0.3. Here our resultévdiffer quantitatively
from thbse.of Ref. 13 where a higher d-mixings was found at tnhe above
volumes; These authors find that the mixing ratio of the d~ccmponent
changes from 0.47 to 0.70 as the volume decreases from V/Vo = 0.5 to
0.4. The differénces may arise beéause of the different band structure
methpds involved.

At the Fermi energy, both ﬁhe density of states and the contribu-
tion from the d-waves, N(EF) and Nd(EF)’ increase with decreasing
volumes. N(EF) increaées from 1.64 to 1.91 and Nd(EF) increases from
0.56 to 0.86 as the volume changes from V/V_ =0.5 to 0.3. | (The
density of states is in units of states/eV-atom.) This increasé in the
density of states at the Fermi energy may be related to the fact that

Cs becomes superconducting at high pressures (and low temperatures).

c. ‘Electronic charge densities.in the (100) plane. The charge
densities of the conductionlelectrons in cesium are shbwn for the (100)
plane in Figs. 5-7. The separdte charge. densities for the two lowest
bands and the total chuarge density are gchn.

At voluﬁe V/Vo = 0.5, the Fermi level is below the second band.
Hence the charge density of the bottom band is the total conduction

electron charge density. The charge density is shown in a contour plot
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in Fig. 5 in units of e/Q where Q = a3/4 is the volume’of the priﬁitive
cell. Near the atomic site the charge density is spherically symmetric
about the cesium atom. It,has a maximum of 1.81 at the atomic site and
decreases to a minimum 6f 0.65 half way along the lines connecting the
atom to tbe second nearest neighbors. This arises from the fact that
the occupied states are at the lower energies of band 1 and they are
therefore mostly s—like.

At volume V/Vo'= 0.4, a portion of the second band around X, is

3
below the Fermi level. Therefore the total charge density has
contribufions from both bandvl and band 2. They are shown separa;ely
iﬁ Fig. 6. As seen from Fig. 6(a), the charge density of the first
band is no longer‘spherically symmetric about the Cs atoms. The
distortion arises from the increase in d-mixing in band 1 near X which
comes from the lowering of band 2 in this region. The X1 wavefunctions

are mainly d322—r2 and the charge density is moved out from the atomic

sites consistent with the signature of the d 2 symmetry which can

322~
be seen from the shapes of the contours. The charge density of the
second band has the interesting feature tﬁat charges are concentrated
élong tﬁe nearest neighbor airection with local maxima occurring

about halfway between the atdms. This is not too surprising since the
charge density of band 2 arises from states in the region around X3
where the wavcfﬁthions are principally dxy' At V/Vo = 0.4, the

contribution of band 2 to the total chérge is very small (~2%) and the

total charge distribution is mainly that of the first band.
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More charge is moved away from the atomic sites as the volume
decreases. .At V/Vo = 0.3, (sée Fig. '7), the total charge deﬁsity has
a uﬁiform baékground density.of ~0.7.with local makima aloné the lines
cbnnecting the nearest neighbor atoms. In thev(100) plane the charge
denéity of bénd 1 is uniform except for the féur lobes from the
d322_£2 states. Because of the further lowering 6f'X3, the secpnd'band
now contributes 15% to the total ch&rge. As seed‘from.Fig. 7(b), the
‘charge'density of band 2»is almost cqmﬁletely dny This gives the
total,charge density of cééium at V/Vo = 0.3 a strikingly covalent-

bonding-1like character. -

d. Fermi surfaces. We have examined the Fermi sﬁrface of cesium
at'V/Vo = 0.5, 0.4 and 0.3. The resulting Fermi surfaceé are less
dis;orted than those given in Ref. 13, but the qualitative‘behaviof as
a funcfion of volume is approximately the same. fhey are shown in
Figs. 8-10. o |

- As séen from Fig. 8, the Fermi surface at V/Vo = 0.5 differs
considerably from the characteristicvSpherical behavior usually seen
in the alkali metals. Sizable necks have formed around the points L
and X. Since a large portion of the UXW plane is below the Fermi .level,
this plane‘contains the fegion in the Brillouin zone where most of.
the occupied d-like states are concentrated. As the vo]umé decreases
to V/Vo = 0.4, the occupied conduétién electron stétes_shift.towards
the zéne edge, i.e. towards states with larger k-values. Figure 9-
shows that at V/V0 = 0.4 a larger portion of tﬁe UXW plane is below

the Fermi level and contributions from the second band appears around X.
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However, we do not find the contribution near W and K which is found

in Ref. 13. A new sheet arises from the fact that X drops below the

3
Fermi level; it is almost completely d-like. As the‘volume decreases

to 0.3 V0 (the Fermi surface is shown in Fig. 10), E(Xl), E(X3) and

E(Ll) are all 1ower.than‘E(Pl); thus most of the occupied stgtes are

now concentrated around X and L insteaa of I'. " A small pocket is

formed around K.

3. ﬁiscussion

In summary, our calculation is generally consistent with previous
calculations. The conduction electrons become more d-like as the
volume deqreaseé (see Table 1I). From our band structure calculation,
X3‘drops below the Fermi level at a volume V ~ 0.45 VO. This may be
related to the first order isostructural transition of Cs at V/VO = 0.45.
According to Lifshitz,zo as each baﬁd drops beléw EF there is a
discontinuity in the slope of the density of states as a function of
volume. This could lead to a first order isostructural transition; but
the quantitati&easpects of this approach have not been determined.

At a volume V = 0.5 Vo’ we get a chargé density resembling that
expected of an alkali metal; i.e. the conduction electrons are s-like.
ﬂowever, at volumes smaller than 0.4 Vo the ﬁicture is quite different.
Cesium becomes a transition metal. Covaleﬁf bonding chafge begins to
build up along the line joining the nearest neighbor atoms and we would
expect a stiffening of.the lattice. This change is consistent with thc

anomaloué behavior in the bulk modulus. MCWhan7 noted that almost all

of the pretransition elements and many of the d- and f-transition
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eiements near the beginning of each series have this tyﬁe éf abrupt
inc_réase in the bulk moduli. This behavior is associated with the
transfer of electrons from bands of mainly s and p character to bands
pf mainly d character.

: It is interesting to.compére our charge.density of cesium at
V/Vo = 0.3 to those of NbC and NbN. The charge densities of band 5
in NbC anvabN21 have the same type of covalent bonding character
along the Nb-Nb direction as .in the charge Aénsity_of»cesium;at'very
higb_pressufe. Both NbC and NbN have high supercénduction transition
temperatufes; TC, which are associated with the occurrence of anomalies

2,23 These

in the phonon dispersion curves of these comp_ounds,2
anomalies have been attributed to intéractions involving charge dehsity
with d%y symmetry,zav Thus it is conceivable that'the mechanism which.
caused high transition temperature in NbN and NbC is responsible for
Cs bécdming superconducting uﬁder high pfeSsure; The covalent nature
of the bonding appears to be intimately connected25 with.the occurrence
of superconductivity. |

We‘haVe also explored the pressure dependence of the Knight shift
in cesium. McWhan and Gossard26 have measured the Csl33'nuc1ear
resonance frequency shifts Av/v at 4.2°K at pressurésrup to 50 kbar.
They found.that thedincrease in Av/v with pressure obserﬁed ih previous
expe;iﬁent527 extends to higher.pressuré. with Av/v (30 kbar) 2 2Av/v
(1 kbar). At 50 kbar, however, Av/v drops by 257 relative to the

30 kbar value. The Hamiltonianzs_for the interaction of the jth

nuclear spin in a solid with the conduction electrons is
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where Eij = Li;gj and I, is the position of the ith.electron, Bj is the
position of.the'jth nucleus, and Ye and Yn are the gyromagnetic ratios
~of the electron and nucleus, resﬁectively. One usually considers only
the hyperfine contact interaction and néglects core-polarization effects,

then the isotropic Knight shift is given by

K = %?-= A 5 lwk(O)Izd(gk-EF) , . , (16)
where A is a constant in whicﬁ'ﬁhe many body effects‘have been absorbed.
To make a rough estimate of the Knight shift as a function of

pressure in cesium, we calculated Elwk(o)lzé(Ek—EF) at various cell
volumes. Relative to its value at ;ne bar, Elwk(o)|2§(gk—EF)
increases to a maximum-= 2 at V/Vo = 0.4 (~40~£bar) and then.decreases
slowly as the volume contracts further. This_resuit shpws.the sane
‘qualitative trend as observed in Ref. 26. The discrepancy in the rate
which K drops at high pressures may result from the. d core-polarization
effect since the d-electron-paramagnetism produces negative ffeduency
shift terms through corc polarization mechanism.

Further, followingva suggestion by Heine,29 we have explored the
~effects of screening on the crystal potential. Aé the volume decreases
the screéning by the s and p electrons becomes less efficient. And,

as the potential gets stronger, the d-character of the conduction

electrons becomes more dominant. In turn since the d-electrons are less
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efficient in screening, the d;wellvdeepens further. A "run-away"
situation can then occur resuiting in a phasé tfansition. In order
to examine this possibility we have calculated the electron-electron
interaction in the Hértree-Fock—Slater sense using the pseudocharge
dehsity in the manner of Appelbaum and Hamann.30 We find at each.
volume that the exchange term dominates. At high pressure, the
Hartreé—FoCk potential ié positive andva maximum at the atomic site;
and is negative and a minimum at the "bonding" region. This lends
éﬁpport to Heine's specuiation which may be a possible scheme for

understanding the phase transition in the 42 kbar region.

B. Local Fields in Semiconductors

Recently much effort has been made to understand the role of
microscopié electric fieids on various physical properties of
erystalline solids.3l—43. In this section we shall exaﬁine some of the
effects of locél4fie1d corrections’in.semicoﬁductors. In particular
we will discuss the optical spectrum of Si and the role of umklapp

‘ N

processes in the proposed excitonic mechanisﬁ of superconductivity.

~Within the linear response theory, a small perturbing electric
field of frequency w and wavévector-3;+g in a crystal will establish
responses with frequency w and wavevectors g+ 67, where G and ¢’ 5rc
brcciprécal Jattice vectors. The microscopic ficlds of wavevectors ﬂi-ﬁ'
are.generated from thé apbliéd perturbing field through umklapp
processes. In the case of cubic.crystals, the dielectfic.responses of
the solid for longitudinal fields may be described by a matrix in G and

G',

~
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pere(@+C.0) | an

yhere E is the total field in the crystal and Epert is‘the applied
perturbing field. Microscopic—field effects (or local-field effects)

are traditionally ignored by assuming the off-diagonal elements of the
dielectric response matrix to be zero. However the off-diagonal elements
can be important when considering local-field corrections to optical

31-33 34,35

spectra, plasmon dispersion in metals, valence-electron

dénsity,36 and lattice dyhamics -4l in semiconductors and insula;ors.
An expression for the.dielectric resﬁonse matfix, EQ,Q'(Q’w)’

has been derived, within the RPA, by Adler and Wiser.aa In section 1

below we present an alternate derivation of the dielectric matrix

using the diagramatic approach. The optical properties of Si and the

excitonic mechanism of superconductivity are discussed in sections 2

and 5 respectively.

1. The Dielectric Response Matrix

The unperturbed one-particle Green function for an electron in a

crystal is defined by

‘G0(1,2) = -1 0TV ()} o) o (18)

where T is the time order operator, £ is the crystal volume and Y(i)

the field operator at space-time (zi,ti) is given by

V) = 30 0y g (rCy (e0

n,k
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with ¢n k and Cn x are Bloch states and. their corresponding destruction
s ’ ) - .

"operators. Hence

. o, |
= -1 | +
- 6,(1,2) i n}:k ¢n,}£(rl)¢n,’}s.(zz)(O,T{Cn.létl)cn’}s(tz)IO{)Q.
n"'l\(" ‘

~

And since for Fermions

. ‘ -+ _
-i <o|T{cn’k(cl)cn,,K.(:z)}}o>__
—ie . (t.-t.) :
. nk*1 "2 .
s _1(1-fnk)e ~ _-Gnh’n,k. for ty > t,
i€ .(t -t,)
) if nk' L T2 for t, <t
nk :

where fnk is the Fermi-Dirac distribution function, we have, in energy

~

space,

" ic§

¢_n}5_('§1)¢n5(£2) £E-€

G '.’ »E) = Q z .
0(51 .3} ) nk nk*-lnn

~

k

where § -+ 40 and nnk >0 (K0) if €k > Eq (< EF)' Also since ¢n§ are

~

Bloch states, periodic translation symmetry implies that Go is a

. o . . ‘ Cor s .
matrix GG C'(q‘E) in momentum (Fourier) spdce with indexes G,G' being
: L.t~

reciprocal lattice vectors and g restricted in the first Brillouin

zone, i.e.

' \ _ 0O
60(34-g, g+g', €) = Gg’g,(g,e)
1 x i(gtQ) xry -i(g*E') r, oi€d
=Z = b ()b (x)e e dr.dr., X —————— .(19)
nk Q f nk £ nh ~2 . ~1°~2 e-;nhi-lﬂnk
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Similarly each interaction line in a periodic medium is a matrix in G
and G'. The Dyson equation for the interaction between two electrons

now becomes

<
ja~1]
<M

“+

<l
fl
<R

(20)

where V is the screened interaction with VGC'(ﬂ’w) = V(g+G, qg+G', w),

~

v is the bare Coulomb interaction with vGG,(g,w) = v(q+§)GGG, and P 1is

~ ~—~—

the irreducible polarizability.

From Eq. (20), the dielectric matrix is given by

= >
Eggl (S’w) 5%1 o V,Q,Q"PQ"Q'

~

= G,G' - v(g4—§} PGG'(S’w) . (21)
Hence we only need to evaluate ng, to obtain the dielectric matrix.
The diagram for the irreducible polarization in the RPA is given in
Fig. 11. The physical interpretation of the diagram is the following:
At space-time 1, the electron gains q+G from the interaction. Between
1 and 2, the electron can loose or gain any G-vectors due to the lattice
background. Finally, at 2, the electron looses g+G' to the
interaction.
. 45
We may now evaluate PQQ' using the Feynman rules
dpo
ng.(q.w) = Zip{;L TS Go(’Z*E’E*L’fg',po)Go.(R‘S*’L’E‘ﬂ*E‘E’PO"“) (22)
where the factor of 2 is for the spin of the electron and K and L are
reciprocal lattice vectors. Let us first consider the p+K, p+L sum

Defining Ry = p+K, By, = p+L then
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A= 3 G (Ryapy*Eep )0 (Ry=g, Ry=3C, P W)

P1R
— * i(gfg)-zl 3 x
- E% Jogne e Onx (T14 r1f¢’n5(’52
n'k_' . .

ipoé i(po—w)G
(PyEni T 1My ) (P -w=€ vy v +dn

k'

-i(9+g‘)'£2 3
¢n'}5' (Lz)d r2 .

Again, using periodic translation symmetry;'we have k' equal to k+gq+K

where K is a reciprocal lattice vector which brings k+ g back to the

first Brillouin zone. Hence we have

i(g+G) -z

_A‘= 2: (n'k + sle Ink)'(nkle

an'

k

ip 8 i(p -w)8
% e e '

-1(g+G") 'z | :
n'k + g0

Performing the integral over p_, we have

= dp_ ip06 .i(pn—w)G

(Po" Enk+ innk) (Po- @— eﬂ'}&+,g+nn'}$+.9

X . e e o
i f - - e
o 2T (Po enhq-lnnk)(po w En'kfg
(=
- n kG nk
- £ - w+ idé

cn'kfg " Cok

and therefore

Yn'geral e T 0 Gk e

-i(g+C") -x
= |n'ktq)

(f ] -f
- n'k+q "~ nk
PQG.{g,w) 2 §£:

nn

En'k+q - €

- + i
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Substituting PGG' into Eq. (31), we obtain the following expressiqnaa

. for the dielectric matrix

c -8 | 4‘ne2 5 Z a fn'}gf’ﬂ - fn}&
'G' . G' g 2 \ s _ — e A
€8 glaegl? &, Faterg T g T @0
i(g+Q) 'z -i(g+Q) 'k
x(n'k+gle ~|nk) (nkle ln'k+g) . (23)

(NOTE: we have set h=1 in this section.)

2. Llocal-field Effects in the Optical Spectrum of Si
31,32

Two recent Physical Review Letters have been publishéd on local-
field cprréctions to the optical spectrum of diamond; however, the two
calculations give quite different results. By inverting the dielectric
response matrix, Van Vech;en and Martin,31 using the pseudopotential
method, and Hanke and Sham.32 using a 1inear combination of atomic
orbital (LCAO) method, ﬁave calculated the macroscopic dielectric
function for diamond in the random phase approximation (RPA).

Van Vechten and Marfin find that local-field effects shift the st?ength
of the imaginary part of the dielectric function, Ez(w), to the energy
region just above the main optical peak. This behavior increases the
discrepancy between the calculated Ez(w) and experiment. In an attempt
to improve agreement with experiment, Van Vechten and Martin included
the effects of dynamical correlation in their calcuiation of Ez(m) via
a one-parameter model. Hanke and Sham. on the_pther hand, find that
local-field effects weaken the strength of ez(w) in the energy region

from the main peak (™~ 12 eV) to 20 eV and that the positions of the
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prominent peaks in522(@) are shifted in the opposite direction needéd
to achieve gbod accord with experiment by approximately O.S.eV. Hanke
'and Sham then inclﬁde exchange'effects (beyond_the.RPA) into their
calculation of the macfbscopic dielectric fﬁnctionvand are able to
achieve better agreement with experiment.

To gain soﬁe new iﬁsigh;s in;o the effect of local-field corrections
tovoptical spectra of covalent solids, we present here a calculation
éf the dielectric functiop of silicén with local—field effects included.
Using an extremely accurate band strﬁcture froﬁ the empirical pseudo-
potential method, we have calculated the RPA dielectric response matrix,
.€£’Q,(ﬂéo,w), for silicoq and inverted it.to obtain the mécroscopic
frequency dependent dielectric function. We find that (1) local—fiela
correctiqns'do not shift the prominent peak positions of-ez(w) and
that (2) local-field corrections do improve the calculated dielectric
function as compared to experiments a£ energies higher than the main
optical ﬁeak. In particular, agreement with measured energy-loss
_Spec:ré is significantly better when 1oca1-fi§1d effects are included.

In analyzing the optical Spegtrum, the incident light of frequéncy
w may be viéwed as a perturbing field of vanishingly small wavevector.
The macroscbpié dielectric function is given by

e(w) = Him ! . (24)

q+0 -1,
~ [Q. (ﬂ)w) ].Q,’.Q

where e-l is the inverse of the matrix € We use here a symmetric

£.6"

form of the dielectric response matrix
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e (q,0) 5 L » lm'ez : Z fo'[En.(k-*-S)]—fo[En(k)]
g.¢ @ 6.6" ~ Qlgrellare' ] &= E_ Getq)-E_(K)+huriha
i(gt0) -x - -i(g+G") x

k,n) (k,nle lktg.n") , (25)

where Q is the crystal volume, fO is the Fermi-Dirac distribution
function, and |k,n) and En(k) are eigenstates and eigenvalues

of the unperturted Hamiltoénian. (q,w) is just the

EQ,Q
usual Cohen-Ehrenreich diélectric'function (no local-field effects).46

Equation (25) differs from Eq. (23) and from the definition of €ag! in
Refé. 43 and 44 by a factor of |S+g|/|3fg'|. The difference arises from
whether the electric field or the potential is used in Eq. (17). Both
épproaches lead to the éame macroscopic dielectric function.

To evaluate the required matrix elements and eigenvalues in Eq. (25),
we hlave calculated a band structuré for silicon using the empirical
pseudopotential metho_d.1 The resulting band structure[‘7 is in excellent
agreement with the optical‘gaps and photoemission experiments. Each
;g’g,(q=0,w) was evaluated in energy inte:vals of b.125 eV up to 100 eV.
The summation over wavevector was performed by evaluating the wave-
functions and eigenvalues on a grid of 308 k—points‘in the irreducible
zone. The matrix size of the dielectric respomse matrix involved in the
inversion for Eq. (24) was chosén to.be 59 x 59, containing G-vectors
througﬁ_the set (222). Symmetry can be invoked to reduce the number

of CQ G' elements which need be calculated to 72."Convergencc of the

macroscopic dielectric function was confirmed by inversion of ¢

G.G'
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including sets of G-vectors through (111), (200), (220), (311), and (222)
respectively.>

In order to establish the accuracy of the calculated € ,,'we

G.G

have tested our results using the sum rules as derived by Johnson,48

oo

, c . =7 2 [ p(c-G") a a TN
é w Im,EQ’g,(S,w)dw =3 wp [ 0 (0) e(gﬁg).e(sfg ), (26)

where wp2 = 4ﬂne2/m is the plasma frequency, p(g) are the Fou;ier
transforms of the valence—electron density, and €(g+G) is a unit vector
in the g+G direqtion. In Table III we list our calculaﬁed results for
the specific cases Q =(G' and G =0, &' # 0. The integral appearing in
Eq. (206) was eyaluated over a 100 eV ;éngg in{intérvals 5% 0;125.eV.
Our results.demonsﬁréte good igterﬁal consistency except for the
diagonal elements for the higher Q-véctors. This arises from the

fact that Im € (g=0,w) becomes more extended in frequency as Gl

o

5,6

increases and that the integrand in Eq. (26) is linearly weighted with
frequency. Better results can be obtained if we extend our integrations

beyond the 100 eV range. As far as the optical properties are concerned,

g6

this bigh energy behavior is unimportant, and our values for €
in the region considered should be very accurate.

The calculated imagiﬁary part of the‘macrosrbpi¢ diclectric
function-with (Adler—Wiscr) and witﬁout local-field (Cohén—Ehrcnreich)

corrections, Cz(m) and Im ¢ (w) respectively, is given in Fig. 12

Q2.0

: S ’ : 49
together with the experimental measurement of Philipp and Ehrenreich.

From Fig. 12 we see¢ that local—fie]d corrections do not alter the

B
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prominent peak positions, although they do alter the strength of the

dielectric function. Compared with the usual Im € (w), Ez(w) has

Q.0

less strength at energies below the main optical peak, thus increasing

the discrepancy with experiment. At energies higher than the main

optical peak, the strength of cz(w) is reduced from that of Im € (w)

Q.0
until approximatély 7 eV, Beyond_this point Ez(w) is larger than |
Im EQ,Q(w): an event which mué; transpire if the weil kngwp sum rules
are to be satisfied. This behavior results in an errall improvement
in Cz(u) at higher energies as compared wi;h experiment. Excitonic
effects, particularly on the lower energy'side of the‘main optical peak,
which are not included in our calculation, should further improve the
agreement between our tz(w) result and exberiment in the low energy
region. The effect of these electron-hole interactions tends to
increase.the oscillator strength,rhence the stfength of_ez(w){ at the
lower energies.32’50
Another improvement of €(w) arisingvfrom ;ocal-field effects at
higher energies is feflected in the calculated energy-loss spectrun of
silicon as indicated in Fig. 13. We note a drastic decrease in the
magnitude of the peak of Im (E%By) through the inclgsion oftlpcal-
- field effects, and a shifting of the peak by approximately 1.2 eV to
lo&er energies;51i Both these effects’ result in significantly better

49,52

agreement with experiments. However, effects other than local-

field‘c_orrections,53 might also be responsible‘for at least some of the

0,04

discrepancy between experiment and the calculated Im(1l/€
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In conclusion we rémarkithét there ére now three calculations on
the effect of local-field corrections to.the opticalepectra‘of covalent
éoiids‘uSing the RPA formalism. Ail three calculations give different
results indicating that work remains to be done to establish firmly the
‘influences of local-field effects.

3. Some Comments on the Excitonic Mechanism of Superconductivity

Allender, Bray and Bardeen54 (ABB) have explored the possibility
of using elec£ronic polarizability to induce Cooper pair formation and
supérconductivity in a system consiéting of a thin metal layer on a
semiconductor surface, i.e. a Séhottk§ barrier. The process considered
involves the tunneling of metal electrons at the fermi surface into the
sémiconductor gép where they interact By exchanging,"ﬁirtual excitons"_.55

-Shortly after ABB introducéd their model, Inkson and Anderson56
(14) used a dielectric function approach to estimate the pairing
iﬁteraction, and reported that the attractive interaction between
electron pairs was stronger in the metal side of the Schottky barrier
than in thevsemiconduﬁCOr side. 1In reply ABB57 questioned the detailed
structure of. the IA semiconductor dielectric function and ité
' appropriateness with respect to the ABB model.

- In this séction weAdeal mainly with the IA objection to ABB'and
discusses.thc pairing interaction in general. 1t is‘shown that the
IA mbdel for the metallic dielectric function does yield a more
attractive pairing interaction than their model semiconductbr

dielectric function; however, the pairing interactions differ

from those calculated here. It is also demonstrated that a
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semiconductor dielectric function based on a pseudopotential band
calculation does not yield an attractive interaction.v It is proposed
that if an attréctive interéction is possible via the exchange of
excitons, umklapp processes or iocal'fields are necessary.

a.v Calculation. Following ABB, the N(0)V parameter of BCS can be
written as

N(O) V = Aex - u ' 27

where Aex is the attractive electron-electron coupling constant arising
from exciton exchange and u is the repulsive Coulomb-parameter.
' . 25 S o
In analogy with the phonon induced effective interaction ABB

arrive at the following expression

sz
SN(O)V = pfl - —B— | =y -2

. (28)
- 2 k4
E(q)u)g

where wp is the electron plasma frequency in the semiconductor, wg is
the average semiconductor gap;»c(z) is a wavevector dependent dielectric
conétant for a metal of equal electron density and B is a numerical
factor which accounté for the decay of the metallic electron wave
_functions into the semiconductor and the fraction of time the metal
electrpns spend in the semiconductor. _ABB introduge a screening factor,

a, and the exciton coupling constant becomes
A= abtuw 2/w 2 (29)
ex P g

In favorable cases, ABB estimate Aex ~ 0.2-0.5. These values would

give substantial increases in the superconducting transition temperatures
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of metal films.

IA approach the pairing interaction from a different point of view.
They argue that the total interaCtion; attractiQe’excitén and reﬁﬁlsive
coulomb, cén be treated using the wavevector and frequenéy dependent
dielectric function, E;(z,w),_appropriate to the semiconductor. They

express the total interaction as

]

s _ “4Tme” :
Vt(q,w) = 33 o - . (30)
q €_(q,w)
The IA form for €_ is ’ . S ' -
1A _ A o
e, = 1+ 1+ AB | (31)
A 2 'wz
where A = 80 -1, B= SE-—_5~E , Eo is the static electronic dielectric

constant,  and k_l and wp are the screening length and plasmon energy
of an equivalent electron density metal.
If eo + o, then it is expected that SIAS g EIAm =1+ Bnl, a

dielectric function appropriate for a metallic system. Therefo:e'

using the above expressions,

1 | » -
+_

. | (32)

o

s m

for Eb >> 1. Equations (30) and (32) show that the total interaction
in the semiconductor is equal to the total interaction in a metal plus
an added repulsive term. IA therefore conclude that the semiconductor

. is less favorable than the metal for superconductivity.
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To obtain the N(O)V parameter or the frequency—dependent'kefnel of
. 8 .. . | L
the BCS equatlon,-K(G),s- it is necessary to do a Fermi surface average

of the wavevector dependent interaction, Vt’
K(8) ~ q V. (q,6) dq (33)

> - :
where ¢ = hw/EF, and k and k' are the initial and scattered electron

. C, > > . . .
wavevector, i.e., k' = k + q. It is K(§8) which must have attractive
regions for the pairing interaction to be positive. It is not sufficient
to have negative regions of the wavevector dependent interactions, Vt'

' 59 . .

To calculate K(§8), we ‘assume a metal-semiconductor interface
with electron densities appropriate to A% and Si, i.e. T, ~ 2 and
e, 10. We first evaluate K(8) for the IA model dielectric functions

1A IA , .

€ s and € o In Fig. 14(a) the kernels appropriate to es and Em are
displayed. The IA metal kernal is more favorable for superconductivity
since it is less repulsive at low frequencies and the attractive region
is larger than the attractive region obtained using the IA semiconductor
dielectric function. This is in accord with the TA calculations.

However, a more relevent question is how good are the IA

o o 1A | ' .
approximations to begin with. The € m 18 constructed to approximate
the frequency and wavevector dependent dielectric function for a metal.
1A c coy . 60 . . . -
€ n coincides with the RPA or Lindhard dielectric function for ¢ = 0
>

and for w = 0, ¢ K kF. A better approximation for the metal kernel
would be to use the Lindhard dielectric function in Vt" The results

(Fig. 14(b)) show that K(8) is repulsive for all &. Thus the
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c . . IA | ' .

attractive region found using € o 1S 2@ result of their model and is
not found in the more ‘realistic Lindhard model.

It is also possible to do a more reélistiq calculation of K(§)

. C e > . . 61 _
using thé numerical values for the e(q,w) of Ge. The calculation- for
- ' .

the Ge €(q,w) was based on a pseudopotential calculation of the energy
band structure and wavefunctions, and is therefore expected to be more

A IA . L e S
realistic than € s The results which appear in Fig. 14(c) indicate

that K(§) is repulsive for all frequencies.

b. Discussion and Conclusions

So we have-expldred'the'IA objection to the ABB model based on

1A 1A X I o

£ s and € n and we have shown that the kernel of the BCS equation,

K(é); (and therefore the BCS parameter N(O)V), is repulsive for all

frequencies if the total interaction used is based on a realistic

semiconductor dielectric function. What does this imply about ABB?

In their reply to IA, ABB emphasized that the reason that IA did

’ . : ' - IA . '

not obtain a favorable result was that the pole of € s did not have
TN v

the proper q dependence. -However, as we have shown, the problems are
. : . ' . IA | ' o

more serious than this and in fact € g is more favorable for super-

conductivity than the more realistic Ge calculation.

" The essential point is that the peak in the dielectric function
will give a zero in K(8). A qualitative reason for this is that the
pceak in-the dielectric function signals a transverse excitation (c¢lcctron-—
hole or excitonic resonance) and in this approximation the electrons are
not coupling to this mode. The strongest coupling comes near the zero

of the dielectric function i.e. plasmon exchange. A similar effect
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'qccurs in the electrqn—phonon_interaction. Electrons interact onlvaith
longitudinal modes‘unless umklapp processes are invokea. In the exciton
case the coupling could arise via local-field effects.

One method of including local-field effects in the dieleétric
function is through the use of a dielectric.tensor [%JE*" IA addressed
themselves to this problem and calculate the frequency dependence of
some off-diagonal terms in the dielectric tensor. They conclude that
the dielectric tensor still has a pole at wg and‘that'the coupling to
the excitons is still zero, i.e. the kernel will be zero at w_. Two
broblems ariée: (1) The formalism for using the dielectrig tensor to
evaluate:the'kernel and pairing interacﬁion is not adequately discussed.

For the phonon case, a generalized susceptibility will have a pole at
the transverse phonqn~fréquenciés, yet it'is known that electrons couple
to transverse phonon modes (via uﬁklapps). (2) It is not clear that
the appréximate calculations for the IA diglectric tensor are sufficiently
acéurate to rule out attractiﬁe pairing interactions.

..The.ABB apprbach circumveﬁts (1) by computing Aex using Eq. (28).
We presume that ABB have assumed that 1ocalvfigldsvare included in this
expression. Thié couéling éonstant is large for small_qgf but small
wg usually impiies'small local fields in cdvalent systems{ ‘ABB suggest
PbTe whi('vi) is partially i(mi(: to overcome this problem.

It would be usefu] in estimating tﬁe coupling to use a local-field-
semiconductor'dielectric function which was computed fér avrealistic
semiconductof for w aﬁd q. To our knowledée the only semiéoﬁductor

. : . 62 ., . . .
local field dielectric function in the literature is given as a
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function of w, but for Z = 0, Io show Why thisiappfoach or some other
is deéireable to obtain reliable values for xex we can make estimates
assuming the ABB form to be correct for.the intefacﬁion including local
fields. |

If we take the Phillips - Van Vechten63‘model for the dielectric
functién and identify‘wg with.the_Phiilips average gap; then

w 2
e, = 1+—5 - (34)

2
W : :

g

and assuming Eq. (29) to be valid, we obtain

Aex = abu(eo - 1) . (35)

W

5 3 2

t‘hen')\ex ~ .05 to 1.0. Leaving out phonons this would give estimates

ABB estimate a ™~ l—to '; b~0.2, u~ l-to l-and using 'eo ~ 5 to 30,

of the transition temperature from zero (repulsive total N(O)V) to ex-
traordinarily large valués. Estimates for b by ABB are consistent.
with recent self—consistent Schottky barrier calculations64 for the
penetration of métallic electrons. The parameters a and U can be
evaluated more carefully, but it wduld étillvbe more réassuring to use
a total local-field dielectric function and/or some other method to
estimate N(O)V for the exciton interaction.

In conclusion, our'calculation of the total semiconductor kernel
yields a repulsive interacﬁion. This togethervwith the IA argumenté
would suggest that the ABB results shouid be reconsidered; however, we
feél.that the umklapp contribution should be included explicitly bgfore

a firm conclusion is reached.
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C. Electronic Structufe of Bulk Nb

" We present in this section a self-consistent calculation of the
electronic structure of bulk niobium using the pseudopotential method.
Early non-self-consistent band structure calculations have been done for

Nb using the modified orthogonalized plane wave method (MOPW),65 the

augmented plane wave method (APW),66

' 7
method.6 ‘All these calculations are in good agreement with each other

and the empirical bseudopotential

and with Fermi surface experiménts.68 Using a Slater-Koster paramétriza—
tion of the APW band structure,_66 Pickett and Allen69 have recently
calculated a jbintvdénsity of states for Nb which'agreeé‘reasbnably well
with the iﬁaginary part of the_dielectric'functiOn'ez(w) obtained from
experimental reflectivity data.70' A self-consistent APW calculaﬁion dohe
by Anderson et al.,7l however, gives results'differing-sigpificantly
from the other calculation particularly at the point H.

In the following we will first discuss our method of calculation
and then present ouriresuits on the band structure and density of
states.of bulk Nb. The obtained results are éonsiétent with experi-

. 68,70,72
ments

and with previous non-self-consistent calculations. In
addition, we will present charge distributions for the total valence

electrons and also for states in particular energy ranges.

1. Methods of Calculation
The e]ectronic‘structure of Nb was calculated from a pseudopotential

Hamiltonian

2

=2 +v +v +v (36)
2m ps H X
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where Vps is a weak pséudopotential taken to be a superposition ovab+5

ionic pseudopotentials

yon (r - R
ps ~ ™~

(r) =

\ = ) . . (37)
ps R

~n
And for the. ionic potentials we have uéed a f-dependent non-local
pseudopotential of the form

= X

V, ()P | (38)
ps g=0 272 ‘ ?

where PQ are projection operators for the various angular momentum

‘ : . : +5 _ ] :
components. The non-local nature of the Nb pseudopotential accounts
" for the differences in the repulsive potentials that each angular
momentum component of the electron wavefunction sees as a result of
core orthogonalization.

- The potentials Vs, Vp and Vd were obtained by fitting the experi-

. : +4 . )

mental spectroscopic term values of the Nb ion (i.e. the Nb ~ plus

. 73 o . : . ion
one electron system). In addition, we demanded that when Vps was -
used to calculate the Nb neutral atom self-consistently, it would
reproduce the eigenvalues and the positions of the wavefunction

. . . . 74 .
maxima. calculated by Herman and Skillman. A comparison of our
results with those from experiment and Herman and Skillman is given

in Table IV. Figure 15 is a plot of our Vq,,Vp and V., ionic pseudo-

d

potentials. It can be seen that the d-electrons feel a much weaker

core orthogonalization repulsion than the s and p electrons.
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In our self-consistent scheme, the ionic pseudopotential is
~screened with a Hartree-like screening potential VH and a local
exchange potential of the Slater type Vx obtained from the pseudocharge

density p(r) by

vV, () = -bmelp(r) (39)
and .

1/3
2
3 p1/3

Vx(r) = - 3ae (8n) (x) | (40)

where a, the exchange parameter,.is chosen to be 0.79. The iteration

procéss is started with approximating the Vps + Vv +VX term in the

H N

Hamiltonian (Eq. 36) by a potential constructed from a superposition of
the:self~consistently screened atomic pseudopotentials. With this
s;arting Hamiltonian, the valence charge density is calculated and the
screening potentials VH and Vx are derived. The new VH and Vx are

then put back into the Hamiltqnian. The process is repeated until self-
éonsistency in the screening potentials is reached.

In the present calculation, plane waves with a maxinum reciprocal-
lattice vector corresponding to an énergy of 10.2 Ry were used in the
basis set. This corresponds to about 80 plane waves in the expansion
,Of the eigenfunctions; another 60-80 plane waves were included'by‘socond—
order perturbation theory. In the iteration towards self-consistency,
eigenvalues and eigenvectors were calculated for a grid of 8 special
poiﬁts in the irreducible part (1/48) of tﬁe bee Brillouin zbne}32 The

Fermi level EF was then determined by



-40-

2 = W - G(EF - En(ki)) =z . (41)

z
Ki n i

where 'z is the number of electrons per primitive cell, w, is the

K.

. : i
appropriate weight for each special point and 6 is the Heaviside step

function. Finally the valence charge.density was determined from the
‘wavefunctions of the occupied states:

After self-consistency has been obtained, we fufther caléulatea
the energies and wavefunctions of 285 k-points in the irriducible zone.
With'thgse results, we obtained the detailed band structure,vdensity
of states, and valence charge density for bulk Nb. Thé charge distri-
butions for states under the various peaks in the density éf states
curve were ‘also examined.. \

2. Results

The éalculated band struéture En(k) for Nb plétted along the
symmetry airections of the Bcc Brillouin zone is éhown in Fig. 16.

This tésult is in good agreement with previous band.calcﬁlations.65—67
Table V compares some of the principal energy levels of the presént

band structure with those‘of previous caicuiations. The main differences
are: the lowest Tl level for the present calculation is ~0.8 eV lower

than the previous results and the le - T gap is ~0.8 eV wider.

Figure 17 shows the calculated density of states (DOS) together

. — . 66 ' .
with the DOS from Matheciss' APW calculation. The two curves arc in
quite good agreement and are consistent with the photoemission data of

Eastman.72 Table VI gives the positions of the peaks in the DOS of

the present calculation in comparison with previous results and
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experiment. Also our éalculated value for N(EF) is 1;1 states/eV-atom
which is a very gqod agfeement withvthe empiricallvéiue of 0.91 stétes/
eV-atom obtained by MgMillan.75 |

The valence charge.denéity in the (110) and (100) pianeé are shown
in Fig. 18. The positions of the Nb atoms are indicated by the dots.
The charge density is zero at the atomic nuclei because of the highly
répulsive core. It then rises up sharpiy to form lobes around the
atoms showing a distinét_d-like‘charaétef. The distance of tle peaks
~of the charge density from the atoms in the crystal agrees well with
the position of the peaks of the d-electrons in the isolated Nb atom.
In addition to the lobes, there is a uﬁiform charge background distri-
butéd in.the.space between the étoms.

Plotting the chérge distributions for states under the Qarious
peaks in the DOS reveal that they have quite different characters.
The charge d&stribution for states under the lowest peak A with energies
.from -6.5 to -2.0 eV is shown in Fig. 19(a). The charge distribution

is mainly s-like with a small admixture of d 2 9 character. The
' 3z7-r

charge distributions for peak B (-2.0 to -0.75 eV) and peak C (-0.75 to
0.60 eV), shown in Fig. 19(b) and 19(c) respectively, are very similar
with the charge concentrated mainly in the bonding d-like lobes aldng
the line joining two neighboring atoms. The charge for the highest and
unoccupiced peak D (0.6 to 5.85 eV) has a distinct d 9 9 and d 5y

3z -r X -y
character around the atomic sites.

We have also determined the Fermi surface of Nb from the calculated

band structure. The calculated Fermi surface is in satisfactory



-42-

égreement with previous calculationé.and with experimentfexcept-fo; one
point. The Fermi surface in the present calculation does not cut across
the ¥ symmetry line (I' = N) in contrast to Mattheiss' resulﬁ66 and to
de Haas vaﬁ Alphen experiments.68 it can be seeﬁ from our band
structure in Fig.’16 that;_along the ¥ direction, the third band just
miss cutting the Fermi level by ~0.1 eV. This discrepancy can be easily
resolved by a very sligﬁt change in the potential.
3. Conclusions |

In conclusion we have present a calculation of the band structure
of Nb using a self-éonsistent pséudopoteﬁtial méthod and.obtain results
whiéh arevin good agreement with Matheiss' APW éalculation and are

. . . 68,70,72
consistent with experimentsl results. ~° 7’

This demonstrates the
applicability of the self-consistent pseudopotential method in calculating

the electronic structure of transition metals. We shall use this same

+ .
Nb > ionic pseudopotential later to study the surface properties of Nb.

D. Theory of the Superconducting Transition Temperature

There has been recent interest and controversy concerning the

75-79

theoretical formulation for calculating the superconducting

transition temperature, Tc’ especially for strong electron-phonon

- , 75
coupling. The most widely used approach was developed by McMillan

who, using the interaction spectrum o F(w) for Nb as a model, numerically

o 0,81
solved the linearized gap equation in the strong-coupling formulation

-

of the BCS theoryaz and obtained an interpolation formula for TCL

However, Allen and Dynes79‘have shown recently from their detailed
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numerical studies bf the Eliashberg equations that the McMillan TC
equation is not valid for large elect;on—phonon interaction parameter,
i.e. A > 2. More recently Leavenés3 has questioned the large A
asymptotic form of Fhe Allen-DySes result and has stated that these
results are incorrect.

In this section the Eliashberg equation580 expfessed in the

Matsubara representation. are solved amalytically using a self-
coﬁsistent, variational procedure. An expression for Tc'is thus derived
from these equations and the results are compared with exact numerical
solutions. It is shown that our TC equacionvis valid for éll ranges

of electron-phonon coupling strength and for different shapes of aZF(w).
Both ou; analytical and humerical results concur with the observation

made by Allen and Dynes79 on the asymptotic limit of TC for very strong

coupling i.e. T~ /A(wz), where A and (w") are defined by

2 .
A = 2[ EL%EQEZ dw (42)
and

(™ ='% [ o* P dw . o (43)

As will be described later, our results indicate that the discrepancies
pointed out by Leavens were resulted from an imprecise definition of

the condition for the asymptotic limit by Allen and Dynes.

1. The Eliasberg Equations

In the Matsubara representation the gap equation is given in the

forn’®* 7"



bl

& _-o(ms )E =0, (44)

3
¥b4

where

Kin = Amen * Appngy = 2H © 8 [2mrlkA +2 221 Aol s | (45)

and

o 2
A = 2 f dwo” F(w)w

n 2

5 (46)
0 w +(2mnT)

AO is just the electron-ﬁhonon parameter defined in Eq. 42, u is the

. *
Coulomb parameter which is related to the better known U by

* 2
o=/l + Qn(we/VQw DRI (47)

and Zﬂ is a modified gép parameter evaluated at the imaginary frequency
iw = i(2n+i)ﬂT. Zn becomes An/!wnl at T = T, yhere An has the meaning
of the usual gap parameter. In this formqlation TC is that v#lﬁe of
T for which the maximum eigenvalue of Eq. 44 is zero, i.e. pmax(Tc) = 0.
Allen and Dynes79 have calculated Tc using an iterative procedure
in which Tc’ u and the shape of azF(w) is held fixed and A is solved
so that pmax(Tc) = 0. Alternately, an equivalent but perhaps more
~ appealing method is to fix aZF(w) (i.e. Aﬁ) and Y and study omaX(T).
This is illustrated in Fig. 20 for the casc of Ph.
We now show that, in addition to the numerical results, a general
and relatively simple analytical expression for TC cén be obtained from

the Eliashberg equations.
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2. A General Tc Equation

All the detailed information about the superconductivity mechanisms
is contained in ln and Y. On the other hand, we need'only a few

moments of azF(w} to get an accurate approximation for kn. Specifically,

they are A, (o) and'_wlog which is defined by79
lim , n/m 2 o dw 2
wlog = 50 {(w) = expcx,gm-z; 0" F(w) fLnw) . (48)

A gives the strength of the electron-phonoh interaction and V(wz)

together with w provide information about the shape of azF(w). We

log

find that An can be approximated very accurately for the commonly studied

azF(w) spectra (Pb, Hg, etc) by the expression
| | 2
"o
A=A - (49)
n 2 2
n +1.6Bnn+n :
o o .

where B = (/(—w—z—)—/wlog)A— 1 and 'no = /<w2>/ 21T is the phonon cutoff
in units of 2nT. For the Einstein spectrum B is zero and Eq. (49) 1is
exact. B is 0.161 for Pb and 0.690 for Hg.

To obtain an expression for'Tc, we construct the following trial

gap function

) 1 1
a(—-—-—-b)—-——-—-— n <N
n-ng (2n+1) 7T :
A 1+2 _ c (50)

n > N

where N = nowe//(wz) and w, is the Coulomb cutoff, e.g. w, ~ band
width or electronic plasma frequency. The parameters n and b (hence

Tc) are to be determined by the two linear equations
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N
! KB =0 a | (51)
n=0
~and
N
nZO anAn =0 . | ‘ ’ | - (52)

The trial gap function An is a Fermi-like function which changes most
rapidly near the phonon cutoff and reduces to the two-square well model

in the limit of small Tc’ i.e. n >> 1.

Since in general W, >/ w?) » Eq. (52) yields

N-1 , . o
1 . 1 1 '
b1+ 2u ) =20 ) (—=—— )( ) (53)
" peo 271 n=0 142"
and, for large N, we get
oo . :
1 1
2u 2 ( n-n ) (2n+l‘)
n=0 142 o c
b(n ) = (54)
(o] . W .
1+ 4 (a (g —E—) 4 1.9635)
V(wd)

Using Egqs. (45), (49),.(51) and (54), we finally obtain the following

re]aﬁion for n,
1 (1 +b") = f(n g, ) -(55)
A ] o ? L]

where F is a simple series
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A
o 2 2
. . _no no
‘F(HO,B,U)=-1+ Z { 2 2 + 2 ] - 2}
n=0 no-f ;._6Bnon+n no+ 1.6Bno(n+1) + (n+l)
o . |
1 1 1
X (———=b) (—=—— -b) (56)
142 o 142" Do 2n+l
. and
1 -1 :
b' = b(no) (—“-:;— - b) . (57)
1+2 © . ’

Equation (55) gives n and hence is our new TC equation since

n = A w?) / ZHTC. F(no,B,u) is a very rapid conyergenf series for
parameters of interest and canlbe evaluated ﬁsing a hand calculator.
Therefore, for_given B, u aﬁd A, one can'readily solve for n and hence
TC from Eq. (55).

The transition temperatures obtained from Eq. (55) are in excellent
agreement with' the exact numerical solutions of Eq. (44). In Fig. 21
ﬁhe c;lculatéd Tc using the new TC equation for B=0.0, 0.161 and 0.690
(corresponding to the Einsteih, Pb and Hg spectra) and u* = 0.1 are
shown. In this figure tﬂe exact results obtained by diagonalizing‘
tatrices of the size of ~64x6h are indistinéuishabig from tﬁe fés;its

«

obtained from Eq. (55). Also shown in Fig. 21 is the Tc from the
McMillan equation and the two experimental data points for Pb and Hg.sa
As seen in Fig. 21, the McMillan equation has the spurious effect of
- saturating At large A. Ip Fig. 22, the experimental %c for six

elemental superconductors with considerable different A and different

shapes of azF(w) are compared with the calculated values using Eq. (55)
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and the appropriate ﬁeasured yalues éf A, u* and 6;84' The agreemeﬁt
is rather remarkable considering the simple éssuﬁétions invour deri?ation
of the TC equation. The pafameters used and the.calculated results are
presepted in mqie details in Table VII. We have also computed TC for
the 23 alloys and Amorphous metals given in Table I of reference 79;
the agreement between the calculated and measured'Qalues is comparable
to the résults in Fig.FZé.

We next examine the'asymptptic limits Of,TC using  our model.
For-simplicity we shall onlf consider the case of u ='0v(i.e. b = O)f

F(no,B, p=0) is a mohotonically increasing function of n_ with

1.3140 no2 for o =+ 0 .
F(n_,6,u=0) ~ - ' (58)

. Rnno + 0.9635 + c(B) for n >

where c¢(B) is a constant for a fixed B. In the limit of weak and strong

coupling, we obtain: a) %->> 1 implies that F(no,ﬁ,u=0) is very large

1

and using Eq. (58) we have

1 |
T = L3 AP e P E®) - (59)

where f(B) is a factor of order unity (for B = 0, f = 1/V2).
b) 1/% << 1 implies that F(nO,B) is very small and again using Eq. (58),

we obtain

T_ = 1.824 Vi (wdy . | (60)
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Our exp;essionﬂfor‘TC therefore reduces to the famiiigr McMillan
" exponential fbrm for small A and goes to an asymptotic fdrm identical
to thaﬁ obtéined numg;ically by Allen and Dyneé for very large X.

Returning to the question;'raised by Leavens,83-we concur with the
conclusion that large A alone does not‘imply that the asymptotic regime
has been reached. We agfee that the condition XA > 10 given in Eq. (24)
of Allen and Dynes79 is not sufficient, however the main conclusions
of Allen and Dynes are ggg incorrect. The crucial poinf is that the
n dependence of An is essential in determining the asyhptotic region.
This depends on the shape of azF(w) and hénce our B parameter. For
example, in‘the'case cited in Ref. 83, an interac;ion spectrum with
o?F(w) = (1 - 0.2) + 106(w - 10) will have A = 12 and B = 9.64. In
our model, thgse values give alTC ~ 0.16’¢{;E; which does not voilate
the inéquality Tc <‘O;116X {w) discussed in Ref. 83 and is not in the
asymptotic limit.

In cbnélusion we héve‘derived an Tc equation which has been
demonstrated to be valid for all ranges of coupling strength and for
different shapes éf GZF(w). In our model, TC depends on (wz), A, u*
and B. Information about these qﬁantities'can be obtained from azF(w)
through tunneling measurements, the ﬁhonon spectrum F(w)‘for (wz) and
B, bheat capacity measurements for A and isotope effect measurements
for u*. Conversely the ﬁeasured TC can be used to obtain information
on.l and ﬁ* via Eq. (55). For example, Eq. (55) will be useful for
étudying the depender‘ice'of’TC on the shape of azF(w) (i.e. B) which

depends on phenomena such as phonon softening.
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ITI. SURFACE

A. Self-consistent Pseudopotential Method for
' Non-periodic Systems ’

In view of their technological significance, non-periodic systems
such as solid surfaces, solid-solid interfaces and vacancies in solids
have been subjects of intensive investigations both experimentally and

85-87 . .
However, the properties o

theoretically in the past few years.
these systems are still far from being well understood.

In this section we introduce a powerful yet simple method for
calculating the electronic structure of non-periodic systems. The
method is an extension of the self-consistent pseudopotential procedure
discussed in Sec. IIC to localized configurations. This approach
is applicable to problems such as atomic and molecular states, solid
surfaces, localized impurity and vacancy states, finite chains or
layers, adsorbates, and interfaces between solids. The scheme has many
of the édvantages of the standard pseudopo;ential calculations in that
it uses a simple plane wave expansion and the starting potential can be
obtained from bulk experimental data. We shall discuss the method in
general in this section and specific applications to surfacés, inter-
fgces, and vacaﬁcies will be discussed in'subseQUenL sections.

The method discussed here is straightforward ahd initially involves
putting the local éonfiguration of intefest into the structure-facpor.
In the pseudopdtential formulation, the crystalline pseudoporentia} form
factqrs,.V(Q), ére written in terms of atomic potential form factors,

va(g) through the structure factor S(G).

e
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V(§) = T S(@V_(©
.
S(g) = ¢ 1a o (61)

where ( is a reciprocal lattice vector and Ié are the basis vectors to
the varibus atoms in a primitive cell. The basic scheme is to include
in S(G) the essential features of the local poﬁfiguration. In the case
of a molecule, the structure factor‘can be construéted to create a
cell with a molecule and sufficient empty space around the molecule to
provide iéolgtion from the next molecule when the.cell is repeated.
For 4 surface, usual periodicity can be retained in two dimensions and
a slab of space can be inserted ﬁo provide a surface in'the third
dimension.r The impurity or vacancy ﬁroblem requires a ciuster of host
atoms surrounding the site of interest. Ultimately the cell chosen is
repeated indefinitely to allow the use of the pseudopotential method.
A similar approach specifically desigﬁed for surfaces has becn used by
Kleinmun et 31,88 Fo cal;ulate some properties of Al and Li surfaces.

> is essential in obtaining realistic solutions

Seif—consistency3o
since the calculations will start with pqtentialé derived for bulk
.calculations. It is necessary to allow tﬂe valence electrons to react
to the boundary conditiohs imposed by the local configuration and the
fesulting readjustment and screening is é fundamental part of the
problem. Also, the self-consistent screening potential has to be
completely general and is not necessarily a_superﬁqsition of atomic

potentials. Self-consistency is restricted to the valence electrons

since a fixed ion core pseudopotential is used. Changes in the core
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electrons due to feedbéck from vaiencevelectrpns are neglected since
they are localized in a limited region around the ion coreé and not
significant for determining the valence-electron and bonding properties
- of the system. |

In the scheme described above, the configuration of atoms‘and
spaces can Se as complex as desireé. The ultimate limitation on the
number of atoms is the amount of computer time neéessary tovgenerate
the eigenvalugs and eigenfunctions througﬁ solution of the secular
equation. The basis set is formed by Bloch waves expanded in terms
of free electron eigenfunctions. | |

The stértiﬁg pOtential can be an ionic model potential fit to
atomic termvvalues and screened aﬁpropriafely or a potential obtained
from measurements on bulk solid state properties. In both cases the
results are the same once self—consisfency is reached. The problems
with the méthéd come mainly via the artificial long-ranged éymmetry
impbsed, buf most of the consequences can be dealt with. Some exanples
are: the interacfion betweeﬁ coﬁfigurations; establishing a.zéré of
énergY; the fact ;bat the potential which éhould depend continﬁbusly on
wavevector, ¢, is approximated by fqrm factors at S's equal to the G's
of the chosen lattice s;ructurc; and the symmetry of the configuratioon
to some extent. suggests the choice of lattices. Most of the_abo?c
potential problems are e]iminated or réduced by taking large enoupt
cells and cells of tﬁe appropriate structure or'symmetry.

The steps in oﬁr self-consistent procedure are shown in Fig. 23.

The self-consistent loop is iniriated with a starting potential which
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is usually taken to be an empirical pseudopotential from a crystalline
calculation. From the resulting total valence charge density p(r), a

Hartree-like screening potential is derived via the Poisson equation,

4me’p(g)

vy (©) =
H
a_lcl?

> (62)

and an exchange potential of the Slater type90

1/3

VW0 = e Gy et

(63)

is calculated. The sum:of VH'and Vx is thén the tofal screening
' potential fof the valence electrons. This screenihg potential is
added'tq an ionic pseudopotential Vion generated by the ionic cores of
the atoms to fo;m a new total pseudopotential for the next iteration. .
New screening potentials are derived ana the proéess is repeated until
self-éonéistency is reached. The use of a statistical exchange of the
Above form for atoms, molecules and solids has been diécussed widely
in the literature90 and been proven to yield satisfactory feéults.

We note that there are gg_adjustabie parameters related tQ the
properties of the localized configurationé’in the calculétioné. The
‘only parameters went into the calcuiationé are-(i) the structure. i.e.
the‘position of the atoms; and (2) the ionié poteﬁtiohals, Vion' Vjon
can be determined from atomic spectfa as discussed in Sec. TIC.

As for the_structure, dné has to go ﬁo experimenfs fof guidance. More

details on the method will be presented when we discuss the individual

applications in the following sections.
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B. Semiconductor Surfaces

1. Si(111) Surfaces: Unreconstructured (1X1) and Reconstructed (2x1)
Model Structures: :

In this section we preéent self—consistent pseudopotential cal-
culations on Si(111) 5u;faces, Three different surface‘mﬁdels have been
studied and thg resulting calculated density of states curves.and
eleétronic charge density distributions have been examiﬁed to extract
the essentiél physical features of ﬁhe vérious models. In each case
the calculatibns were carried to self—consisténcy fbllowing the procedure
presented in the preceding section. The feéuirement of self-consistency
proves to be absqlutely necessaryito account for the modified screening
in the surface region.

The three different models for the Si (111) surface Studied are:

a) An unrelaxed, unreconstructedlsurface, in which all surfgce
.atoms rémain ét their exact "bulk" positions,

b) A relaied surface, in which the ocutermost afomic layér is
rigidly relaxed inwards by an amount of A = 0.33 A, These two models
have been studied by Appelbauﬁ and Hamann91 in the oniy.previously 
existing self-consistent approach to the problem, and their results are
basically confirmed b; our calculations. In addition we_find new types
of surface states and are able to present.aensiry ol states curves.

The third model we studied is |

c) A (2x1) reconstrué;ed surface, in which atoms of the outermost
atomic layer are alternatively moved inward- and outward to form a (2x1)
planar unit cell. Tﬁis model has been refined in a second step as

first proposed by Haneman92 by mdving atoms of the second atomic léyer
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slightly laﬁerally; the effect of which was smail-comp#red to the
effect of the "buckling" at the first step. The predominant result of
this (2X1) reconstruction is the spliﬁting of thé "dangling-bond"
surface state in tﬁe gap‘into EQQ separate peaks corresponding to two
separate surfaée'bands one of which is occupied. This esﬁéntial

e s . 9 ' s
feature is in good agreement with experiments 3’and is not obtained in

‘the other two models.

The method used to obtain the electrdnic surfaée structure in a
sélf-consistént fashion hasbbeen discusSed in Sec. IIIA and will be
presented in some more detail in Sec. IVA when we discuss the metal-
semiconductor interfaces, therefore we only review the esséntiai
features heré.94 The. local configuration in the present case is a
12-layer sladb of Si, simulating two non-interacting surfaces. The slab
is placed in a periodic lattice spacgd ~4 layers apart to prevépt
intefaction between tﬁe different slébs (or surfaces). .This artifact
ﬁas the enorﬁous advantage.that the system can now in principle.be

treated as any periodic crystal and that the pseudopotential method

in its standard form can be applied. A self-consistent treatment,

however, is necessary to achieve the correct screening of the atoms

in the neighborhood (~3 to 4 atomic layers) of the surfaces.

One problém which arises when simulating surfaces by fipite slabs
of atoms periodiéally repeated, is é#urious structufe in the density
of states due to the "unreal" periodicity of slabs perpendicular to the
surfaces. Spurious two-dimensional singularifies occur. Their number

increases with the numbher of atomic layers per slab. For the "true'
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surface case these singularities becomé "dense'" and disappear. ‘For
finite slab calculations all structurés in the density of states have
to be investigated in this spirit. Similar problems are encountered
when simulating an amorphous matgrial by large unit cells periodically
_repeated.95 |

As discussed in Sec. ITIA the calculations are initiated with an
empirical pseudopotential carriéd over from crystalline calculations.
From the resulting total charge density, screeniné and exchange
potentials are derived and added to an atomic Si+4 ion-potential.94’96
New‘screening and exchange potentials‘are de:ived and the proceés is
repeated until self-consistency (stability of the.eigenvalues or stability
of the input versus output potentials within 0.1 eV) is reached. For
the ideal and relaxed structures, a density of states curQe has been
compgted from 336 k-points in the two-dimensional Brillouin zone at
each iteration to guarantee a precise location of the Fermi level.
The total charge density could then be derived from all states with
energies below the Fermi level.‘ Plane waves with a maximum reciprocal-
lattice ve;tor corresponding an energy of 2.7 Ry were used in the basis
set.b This corresponds to about 180 plane waves fof the twelve-layér
(1x1) structure. Another 340 plane waves up to an enefgy cutoff of 6 Ry
were included by second;order perturbation theory. From the sglf—
consistent calculation an ionization potential of about ¢ = 4.0 eV was
obtained for the relaxed surface. We shall discuss the calculations

for the (2x1) structure in detail later.



In Fig. 24 the crystal struéﬁure of Si is vie&ed in pérspgctive
along the [110] direction. The [111] direction is vertical. A
horizontal (111) surface is obtained by cutting all vertical bonds in
a plane. An excellent overall impressibn of the_behavior of the
electronic states at the Si (111) surface can be obtained by considering
the total, self-consistent valence charge distribution, as presented in
Fig. 25 for the unrelaxed surface model. The figure shows charge
density contours in av(lIO) plane cutting the (111) éurface at right
~ angles (sée Fig. 24). The plotting area starts midway between two

films and extends about 4 1/2 atomic layers into the bulk. The atomic
(unrelaxed) positiohs‘are indicated by dots. -Mqung deeper in;o the
cfystal, the charge distribution closely reSeﬁbles_the_Si bulk charge
dehsities; near ﬁhe surface, it decays rapidly into the "vacuumf.b This
rapid decay assures the required '"vacuum" and hence the decoupling of
the filmsf No surface states can be recognized on this plot,‘since
oply a small number of them exists in a coﬁtinuum of &ecaying bulk-like
states.

Figure 26 displays the two—dimensionalvband_structure»of a twélve
layer Si (111) film based on thé self-consistént pqtential fér the
relaxed surface model. The band structure is presgnted for surface
k—vectofs k" between‘F(0,0). M(1/2,0)., K(1/3,1/3) aqd T(0,0) in the
hexagonal Brilloﬁin zone. The 24 valence bands can be roughly divided
into 3 bulk gréups, representing the 6 low-lying s-like bands, 6 bands
of ﬁiked s- and‘p&characﬁer, 11 p-1like bands and one separate p-like

dapgling-bond band in the fundamental gap.  The three groups of bands.
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would with increasing film thickness approach contihua separated:by
severai gaps in which most of the surface sﬁates appear.

Let us first discuss the dahgling bond bands in the fundamental gap.
Suppose a Si bulk crystel is cut every 12 layers parallel to the (111)
plane and the pieces arevgraddally separated from each other. With
increasing distance one state each would split away from Both the‘
valence~bands and the conduction bands to meet aboet at half-gap to
form the two fold degenerate dangling bond surface band corresponding
to the broken bonds on either side of the Si films. 1In Fig. 26 the
/two bands are not exactly degenerate corresponding to some weak
interaction (~0.2 eV) still present between opposite surfaces of the-
‘12 laver films. '1f the surfaces are unrelaxed and unreconstructed
the two dangling bond bands show almost no dispersion parallel to the
surface, i.e. they would appear extremely flat in' the baﬁd structure
. plot. If‘the outermost- atomic layer is relaxed inward, the dangling
bond band shows an increasea dispersion parallei to the surface
together Qith'a slight'ovefall shift ofvthe bands (see Fig. 27).

In contrast to the dangling bond.surface band which exists through-
out the two-dimensional Brillouin'zone'independent of relaxation, other
. surface states show up on]y.in parts of the two-dimensional Brillouin
, zene and eome depend on relaxation. They are indicated at the high
symmetry pointsrf, K and M by aots in Fig. 26. A region of particular
interest is around the point'K. Strongly localized surface states
exis; in the gap between -7 eV and -9 eV independent of surface

relaxation. These states merge into the continuum at M and become
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-strong surface resonances. A similét behavior is found around K between
-2 eV and‘-é eV. .ﬁven thoggh the existence of these surface sfateé.
does notvaepend upon relaxation, théif exacf eﬁergy position is a
fUhction:of'relaxatidn. Other surface states appéarvonly'after
relaxation like the splitting away of the lowest valence band pﬁir
v ‘bgtween ~9.5 eV and -12.5 eV throdghout the zone. All fhese findings
have qualitatively also been obtéinéd in a recent analytical model |
calculation by ¥ndurain and Falicov?7
DenSitf-of states cUrves'for the self—consiétenf résults for the
'ﬁnrélaxed and relaxed surface models,are,presented in Fig. 27. Since
tﬁése curves represent the to;al densiﬁy of states for a 12 1aye% élab,
their overali features strongly resemble those of the Si bulk density of
states. The results for the (2x1) reconstructed surface (insert) are
obtained for a 6 layer slab. They shall be discussed later together with
12 lgyer (2%x1) reconstructed surface calculations. To locate structures
. associated with surface states (no distinction is made in the presen£
case between bona fide surface states and strong surface ?esonahces),
- . S we investigated the charge density distributions for small energy
intervals'scanping the entire width of the valence bands. As already
_mentioned, because of the gxisténce 6f artificial two;dimgﬁsional
singularities not all sharp structures in the density of states cor-
respond to Surface étates. The locations of surface stQtes and strodg
surface resonancés (for thé relaxed case) are indicated by arrows in
Fig. 27. Their labelling éorresbonds‘to the regionsléroﬁnd ﬁigh

symmetry k-points in the two-dimensional Brillouin zone,‘from which
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they originate (éée dots and labelling in fig. 26). The surface state
energies are given in Table VIII.and compared to experimental déta
obtained from UPS measurements on (2X%1) and (7x7) reconstrucﬁed
surfaces. Also indicated in Table VIII are the resuits of the self-
consistent pseudopotential calculation of Appelbaum an& Hamann (AH)91
and of thg empirical tight-binding caiculatioh of Pandey and Phillips
(PP)98 on unreconstructed relaxed Si(111) surfaces.
We now examine some of the.individual éurface states. In particular
‘we investigate the points'f(center) and K(corner) of thé two—dimensiqnal
hexagonalvBrillouin zone. Model calculations97 indicate that K rather
thgn M (edge midpoint).is a point of special interest to study surface .
states.
" We first discuss the results at f. Below the energy zero which

was chosen to coincide with the bulk valeﬁce band edge Ev we find {in
agreement with Appelbaum and Haménn91 and PandeyAand Phillipsgsj ghree
surface states. Two of them are'degenerate and close to EV representipg
‘the.trénsverse back bonds with cha;ge localized Befween the first and
second atomic layer. The third state is localized at the bottom of
" the Qalence bands and is predominantly s-like afouﬁd the outermost

atoms. With the '"dangling bond" state above E., which we shall discuss

\Y

" later, there are four surface states at T which agrees with the
C v s I 98 . . . es
classical tight binding concept. The situation, however is different

at K. We find only one "pure" transverse back bond'Ktb, the remaining

states KQ and Kﬁb' having more longitudinal or s-like character.

b

The interesting feature is that some states Kop? (at =2.0 eV and -9.7 eV)
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have most of their charge localized between the second and third layer
in contrast to the state bi (at -8.5 eV) which is a mixture of s-like
“and p-like states at the outermost a:oms giving rise to a charge

distribution between the first and second layer. In Fig. 28 we show

a‘contour“map of the'chafge of the state bi‘ at -2.0 eV. We would
like to stress the fact that surface states apparenfly can "penétréte"
into the second longifudinal_bond which puts a limitation on the
positioﬁ of ab"métching plane"91 separatihg the surface region from the
bulk. The appearance of surface states ét K in theyéecond'longitudinal
- bond inérgases the numbér of surface states ffom four to fiye which

hés been predicted by model calculationsg7 Bﬁt which is invcontfast

to the findings of Pandey‘and Phillips,98 At the point M the situation
is similar but less-pronounCed with some of the surface states merging
~into the bulk cohtinuum.97

Let us now examine the surface states in tﬁe energy gap above Ev.
As shown in Fig. 27 we find for the ﬁnrelaXed, unreconstructed surféée
.one very flét surface band about mid'gap.  This almost dispersionless
band is half occupied, placing the Fermi level rigﬁt at the peak.

The charge disgribution of these (either occupied or empty) mid gap
surface states .is very much "déngling bond"—like'exhibiting a pronounced
p—like.@harge centered at the outermost étbms. When the last-atohic
layer is relaxed inward; the back bonds get stronger resulting in a
mixing of the '"dangling bond" states with lower lying back bond states.

' This increases the interaction between the individual "déngling bonds"

via the second atomic layer and the dispersion of the surface band
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incréases. In fact, the resulting density of states‘exhibits the
asyﬁmetric shape of critical points expected for a plaﬁar triangular
‘net§ork of s- or m-1like orbitals. The.critical points are labelled
Kd and Td in Fig. 27.indicating their origiﬁ in k-space. A chafge

density plot for the states K. is shown in Fig. 29. It exhibits the

d..
véry p;onounced "dangling bond" character. The unoccupied states Td
show a stronger mixing with back bonds. As for the.unrelaxed'case

there is only one surface band which is half occupied. This changes
qualitatively when we consider the (2x1) reconstructed surface.

We have used the Haneman model92 invcalculating the electronic
sffucture of the metastable (2x1) phase of the Si (111) surféce. The
stfuctural parameters entering our (2x1) reconstrucfed surface modeél
are the folioWing: ‘alternating rows of atoms have béen réised by 0.18 A
and lowered by 0.11 A, and second layer atoms have been shifted
laterally as indicated by the érrowé in Fig. 30 such as fo approximately
preserve the length of the back bonds. This choice'of'parameters may
not represent an optimum choice. 1In particular, since theSevparameters‘
represent an overall_Qutwardvrelaxation of the outermost atomic layer,
some surface states which depénd én inward relaxation like the stétes
le at the bottom of the valence bands will become delocalized. Our
main interest in this sgudy however is the behavior of the electronic
states in the vicinity of the gap and their dependence on the character
of the reconstruction (buckling with préserving thé length of back

bonds). The planar unit cell now contains 4 atoms. TFirst preliminary

calculations have been done on six-layer slabs separated by 3 bond
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lengths of gmp;y spacé. The correspénding density of states in the
vicinity of the valence band edge, obtained from 72 k-ﬁoints in the
tﬁo-dimensidnai Brillouin zone is shown as an insert in Fig. 27.  A$

' expected; qualitative changes éompared to the uﬁreconStfucted (1x1)

caSé occur., Doubling the real space unit cell in.one dimension
corresponds to folding back the Brillduin zone in certain directions.
Thus'sgg surface bands appear separated by a gap resultiﬁg from the
potential_pefturbation of the feconstruction. This Behaviot isbfeflec;ed
by the density.of states iﬁ Fig. 27 showing two peaks which.now cor-
respond to two differeﬁtvbands. In Fig. 27 the densiﬁy of states doés
.not vanish betﬁeen the two peaké,.thUS‘leaving the surface semi-metallic.
In fact‘tﬁe:gap:between the two surface Bands is comparable or smaller
than theirvdispersion. We believe that this beﬁavior is ‘an artifact

of only including 6 layers per slaB. 'The surface statés on oppositg
su:faces of.the slab shéw too much interaction, cbnsequently causing

the semimetallic behavior.

To obtain more quantitative;teSUIts (2x1) calculations wiﬁh 12
layers per slab have been perfdfmed. Because of the large matrix size
(about 320 plane waves were inciuded to‘obtain the same convergence as
for the unreconstructed céses); the self-consistent calculations were
bésed on a two-point scheme ((C,O)F and (1/2,1/2)K')7 For the final
éelf-cpnsistent poténtial sevefal kﬂ;poiﬁts along high symmetry
directions have also Been included. .Aﬂbénd structure showing the
bands in the vicinity of the fundamental gap is presented in Fig. 31.

. The two dangling bond surface bands are split by'a gap of = 0.27 eV
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throughout'the zone. They show some dispersion of only about 0.2 eV.
Tﬁe Fe;mi—lével falls between the two bands, thus creating é semi-
condﬁcting surface. To obtain a deﬁsity of states curve for tﬁesé
:banﬁs a four term Fourier expansion for the_band eﬁergy E(&l) has been.
fitted to the calculated Band structure at the four &l-pointé F} M', g
and'k','and subseqpently evaluated ovér a fine grid of gi—points of the
two~dimensional Brilloﬁin zone. The results areléhown in Fig. 32
(bottom). Two structures are found separated by about 0.4 eV
corresponding to the two surface bands. The lower surface band which
.overlaps with1stateS arising from bulk and other surface bands is
centered at about E = Ev = 0. Experimental photoemission data93 show
structuré at‘somewhat‘lowér energy (E = -0.5 eV). Further lowering

of the calculate surfécé'band and better agreement wiﬁﬁ'experiment

can probably be 6btained by using a different choice of atomic
displacement parame;ers. Ouf results, however; shpw'thévdefinite trend
of splitting the danéliﬂg bond surface bands combined with an overall
lowering because of the Buckling structure.

Also indicated in Fig; 32 (top) ié a joint density of states (JDS)
forvoptical transitions bétween the lower and thé”upper surfacé bénds.
Matfix-elemenc effects have not been consideféd in this'plot. The JDS.
curve can be qualitatively compared to infrared absorptiOn measurements
(broken_line). A quantigatiQe comparison is not reasénable because of‘
the ad:hoc choice of étomic displacement parameters and because of

probable strong excitonic effects. It is also instructive to calculate

the charge density distributions for states inside the two peaks in
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~ the density of states of Fig. 32 (bottom). The corresponding charge

(or hypothetica} charge for the unoccupied upper band) is displayed

in Fig. 33 in a (210) plane intersecting the surface‘ap right‘angle.
This plane corresponds to the (110) plane of the unreconstructed surface.
The bﬁckling raises :hé surface atom on the left hand side and lowers
the surface atom on the right hand side. Due to lateral shifts the
second layer atoms are slightly moved out_of the (210) plane. 'Thé
- states show veryvinteresting real space behavior. Electro@s in states

originating from the lower peak labelled dou are located predominantly

t
on those atoms which have been faised and avoid those atoms which héve
been lowered. Conversely thé_wavefunctions for:unoccupied states of the
peak labelled din are concentrated around‘thqsg atoms vhich have been
lowered. The surface thus exhibits a (2x1) pattern of nearly two-fold
. occupied dangling bond states centered at every second row of .atoms.
;Rohghly speéking the unpaired dangling electron of evéry second surface
étom (in) is transferred to its neighboring atom (out) where it pairs
up with another eléctron, thus creating an ionic sémi—conducting surface.
This result thus proﬁides an explanation to ;he abSence of elg¢tron
spin resonancevsigﬁal from a ciean Si (111) surfage.loo

In sumhary, we have applied the self-consistent pseudopotential,
method for local "non—pcriodic" cgnfiguration§ discuésed»in Sec. I111A
.to several Si (111) surface models. Three differént surface models
have been studied inc]uding unreconstructed, relaxed and,unrelaked

(1x1) surfaces which also have been investigated by Appelbaum and

91
Hamann ip‘the only previously existing self-consistent calculation.



Their results are basically coﬁsiétent'with our calculations. In.addition
new types of surface states correspdnding,to the longitudinél back bénds'
between the second and third atomic layer are found and complete density
of étatés curves are presented. A buckled (2x1) surface model such as
pfoposed by Haﬁeman (with preserved back bond lengths) has been used
to'studyrthe (2x1) reconstructed surface. The saliént experimental
results on (2x1) Si (lil) surfaces can be understood on the basis of
this model. Upon reconstruction the dangiing bond»band is.éplit and
lowered considerably in energy. The surface is found to be semiconduc--
,tiﬁg thus producing an infrared absorption peak at low_gnergiés and
eliminatingAthe electron spin resonance signals from the surface.

2. Relaxation Effects on the (110) Surface of GaAs

We continue our study of semiconductor surfaces in this section
» . , ’ ) .- 101-105
with the (110) surface of GaAs. Numerous theoretical calculations
have been performed for the ideal (110) surface of GaAs. Employing a
variety of techniques these calculations provide a consistent picture
of the intrinsic surface states occurring near the Fermi level.
Occupied anion derived states are found to exist near the valence.
band maximum and empty cation derived states exist in the semiconductor

93(a),105-108 seemed to

band gap. Although early experimental work
lend support for this interpretation more recent work has yielded
~contrary evidence.
. - 106
With respect to the empty cation states, Eastman and Freeouf

have made partial yield photoemission measurements on a series of

zincblende (110) surfaces. They observed a correlation between the
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position of the empty cation_stateg, measured tb'iie within the band gap,
and Schottky bérriers. Based upon suggestions first.put.forch by:
.Bardeén,lo9 they asserted thét the empty cation states play a prominent
role in the detérmination of the Schottky Barrigr height. However,
recent theoretical studiesllo have shown that semiconductor surface .
states are not present ét the metal-semiconductor interface in the
energy rénge of the band gap, and it is the metal induced gap states

(MIGS) that are related to the properties of Schottky barriers.

111 112

In addition, recent studies on GaSb 1 nd Gaas have suggested

that there exist no empty surface states within the band gap. Evidence

for a higher placement of empty cation states comeé from a model for

(110) surface relaxation as proposed by Rowe and'coworkers.113 In

order to account for the insensitivity of the cation surface states to

106,113 105,114

metal ovérlayers and oxygen adsorbates, they proposed

that the surface cations must relax inward. This type of relaxation

is expected to move the cation states to higher energy relative to the

bulk valence band maximum.106

93(a) '

Early experimentél evidence for filled anion states occurring '

105,115,116

near the valence band maximum has also been questioned.
theoretical calculations indicate a strong and narrow surface band
near the valence band maximum; however, recent photoemission is in

- . . ‘ 116 . _
poor agreement with this result.” The photoemission work suggests

that only a rather broad surface feature, possibly obscured by bulk

valence band statés. is cohpatible'with the experimental data.
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Thus, to aSsessvthe‘effeétg of.relaiétion on the GaAs (110) surface
we have considered a model similar to the one proposed by Rowe, et 51.113
iﬁ this.mgdél Qe allow the cations to relax inﬁard'to formsan.sp2
coﬁfiguration and the anions to relax outward such that the bond lengths
are preserved. A very similar model.has been used in_the previous
section to account for the reconstruction occurring. for the (111) Si

92,117 s .
@77 . We find that the empty cation states are moved to

surface.
higher energies; however, the leading edge of these states still lies

within the band gap. In addition, the character of the cation states

is dramatically chénged. The charge densiﬁy is not locélized outward
aiong the cation dangliﬁg bonds as for the ideal Surfaﬁe, but inward -
between the first and secoﬁd surface léyers. This could account for
the insensitivity of these states to-metal overlayers and gas ads;rbates.
With respect to the filled states the unrelaxed As dangling bond states
move to lowef energies and beqome obscured by bulk states in agreement
with.the recent photoemission wofk.116

To calculate the electronié.structure for the broposed modei;'we
consider an eleven.layer slab of GaAs with the (110) surface eiposed
to.vacuum on both sides. The sléb is repeated in a sdpér—lattiée and
the electronic structuré is calculated following the'self—conéisten§
procedure described in Sec. IIIA. 'The'ionic pseudopotentials (deter-
mined by model calculations and buik considerations) used are the same
as those given in Ref. 104,

In Fig. 34 a local density of stétes (LDOS) ;s presented for fhe

relaxed surface. The histogram density of states was prepared by
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weighting éach eigenvalue contribution tova given energy interval by -
the corresponding charge density localized Qithin the specified

64,104 )
layer.

The first.layet corresponds to the surface layer; the
fifth layer deep within the buli.' fhe'resuit.for the firstblayer for
an ideal surface is also diSplayed»in Fié. 34. The localbdensiiy of
states for a given layer has the physical éignificance of giving fhe
'pfobgbility of finding an electron of a gi&en energy E in that specified
layer. Ptomineﬁt peaks arisevfrbm s;rface étatesﬁon the GaAs,(llb)
surface are shown in Fig. 34 as shaded areaszin’;he LDOS.

In contrast to Si surface calculations;?l’94’97’98

the lower surface
states on GaAs are not significantly altered by relaxation. However,
this is not the case for the anion and cation dangiing bond surface
states occurring near the band gap. These states are significantly'
altered in both in energy pdsition'and charge localization. The filled
~ anion states are lowered in energy by nearly 1 eV as compared to the
~ ideal case. Since strong bulk contributions. occur within the same
region, this result could account for the absence of filled surface
— X ' ' 116 '

state contributions in the recent photoemission work. The lowered
energy position for the filled states is a natural outcome of the bond
angle deviations occurring at the surface anion site. Within our model .
relaxation, the sp3 anion bonding configuration is made more s-like,
bence, lowering the ehergy of the states. This behavior is analogous

' : ' . - 92,117
to the buckled Si reconstruction as suggested by Haneman.

‘As-expected the empty cation states show the opposite trend; they

move to higher»eﬁergies with the sz coﬁfiguration.n3 A detailed.
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density of states for thé cétion derived empty‘surface states for both
the ideal and relaxed surface is given in Fig. 35. This density of
states was constructed by é Fourier interpolation séhemé between 20
k-points in the surface Brillouin zone. The band gap in GaAs is

1.4 ev; thus the center of mass of the empty surfaceﬂband‘density qf
states has ﬁovéd above the conduction band minimuﬁ; ‘However, the
threshold of the calculated surface band remains in the band gap. The
minimum of this bénd occurs along the (001) buik direction and is a
result of sigﬁificant mixing between anién and cation states along this_
direc;ioh.'_0ur results aré only compatible with the Eastman and
Freéouf106 data provided either the center of mass is.exciton shifted
dowvnward in enérgy or the threshold of the surface band is'exciton
enhanced.

Iﬁ is possible that a relaxation model could be constructed in
'whicﬁ the threshold is raiSed; but‘it'appears within the limits-of our
calculation that this would require an unphysical stretching of the
anion-cation bonds along the surface layer.. Thié conjecture is basea
upon the result that the threshold appears to be insensitive to changes
in the bond lengths as calculatedvby relaxing the cation but not
altering the'positions of the surface anions.

finally, in Fig. 36 we display the pseudocharge density for the
cation surface states. For the ideal surfaceloa ;hese states”protrude
into the.vacuum fegion and would be expected to interact strongly with
vsurface adsorbates. 1In the relaxed case we would not expect tﬁis to

occur as the states are localized inward between- the first and second
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surface layers. These states are predominantly'p—like at the cation
site with considerable s-like admixture. >Thevstreﬁgthéning dflthe Béck
1obé of the p-like orbital by inward relaxation is to be exfected'by
analogous behavior qalculated %or rela#ed Si surfacevstétéé.gl

Ip summary we have seif-consistently defermined'the eléctronié
sfructure Qf a modél relaxed GaAs (110) surface.. We final that this
model can'accoﬁnt for the insénsitivity of thé empty cétion derivéd
surface stateé to meﬁal‘overlayers, and tﬁe laék'of evidence for.océupied
anion surface states in recent_photoemission.measurements, Also with
relaxation of the surface, the empty cation'derivéd surface band becomes
more dispersive; The center of mass lies above the conduction band
minimum: however, thg th;eshold of the surface band remains within‘thé

bulk band gap.

C. Metal Surfaces

Theoretical progress in the understanding of the electronic
proberties of metal surfaces'haS'lagged considerably behind that of
semicoﬁductor surfaces in recent years. Simple s-p metal surfaces lack
the wealth of interesting experimental data which have attracted the
theoristé to work on semiconductor surfaces. On the other hand,
glthough transition metal surfaces are of great interest because of
their possible technologicai applicationg, the complexity of the
d-electrons has made realistic calculations’on‘these surfageé
prohibitively difficult. Thus far, the‘only self;consistent calculations
on simple metal surfaces are those on the jeliihm model118 and on

119,120

monovalent metals which do not have occupied surface states
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hence preclude»thém from pérticipating in the self—cbnsis;ent'screening;
and, as of yet, there.gre no fully.self-consistént calculation fér the ;
electronic structure of trapsition.metal surfaces.

As anAattempt tbvimprove the above situation, we have performed
seif4consistent caICulations on the electronic structure of a pélyvaleﬁt
s=p mefal surface (thebAQ(lll) surface) and that of a transition metal
surface (the Nb(001) sufface). Because of thé.greaterrinterest-in
transition metal_surfaces,‘émphasis will be placed bn the Nb(OOl)v
surface in the discussions.

1. AL (111) Surface

We followed the procedure discussed in Sec. IIIA to calculate,
using self-consistent pseudopotentials, the electronic structure of
a (111) surface of aluminum. The local configuration in the present
case consisted of a twelve layer AL slab with a vacuum region of three
interlayer distances for each surface over which the wavefunctions of
the slab are allowed to decay. As in the semiconductor'surface

. +3 . . . i . .

calculations, the A% ionic pseudopotential used is a Heine-Animalu

, o J121 e . .
core potential which has been fitted to a 4-parameter curve in

Fourier space

%1 .aaqa
Vion(q) = (cos(azq) + a3)e _ ) _(6&) .
with ﬁarameters a, = ~0.7758, a, = 1.0468, a = -0.13389, and

1 2 3

a, = -0.02944. The units are such that if q is entered in atomic
units, V(q) is given in Ry. The potential has been normalizedbtb an

atomic volume of 112.36 (a.u.)3.



00 w0460

U
-
e

-73-

At‘each iteration in.the self—coﬁsistent proceés; the reduired
screeniﬁg potential and the.Ferﬁi level, EF’ were determined by cal-
culating the'eigenvalueé and eigenvectors over a grid of 294 points
in the two dimensional Brillouin zone. The final calcglated value
for Ef was 0.85 Ry above the conduction band minimum in good accord
with the bulk value of 0.86 Ry. Tﬁe obtained valué for the work
fﬁnction ¢ is 0.38 Ry, which ﬁnfortunately cannot be compared directly
fo the experimental value‘of 0.31 available for polycrystalline A£.122’123

Let us now discuss the surface statés on the AR (111) surface.

To determine the existence of surface states we have examined the

charge density for all eigenvalues below E_ at high symmetry points

F
in the two dimensional zone. Our results indicate the existence of
surface states below EF'at T and at K in agreement with the results of
previous non-self-consistent calculations by Caruthers, Kleinman and

' 124 , : “125
Alldredge, but not with that of Boudreaux. At T one surface

state occurs at 0.33 Ry below E_ and at K we find two surface states

F

at 0.15 Ry and 0.07 Ry below EF'
vAmong the three surfacé states, the most localized (in real space)

state is the upper state at K at 0.07 Ry. The charge density distribu-

tion for this state is shown in Fig. 37. The top'figure shows the

charge densiﬁy averaged parallellto the surface and p]ofted aS a function

into the bulk. _The-béttom figure is a contour plot for the charge in

the (110) plane. This state occurs in a rather large energy gap in

the projected band st-_ructure124 and its decay is more rapid than the

~ other state at K at 0.15 Ry or the surface state at I'. As seen from
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Fig. 37, the chargé density of this state is iocalizéd in a "cavify"
near the surface fofﬁéd b& the first and ;ecoﬁd atomic layers. Since
thisvstate occurs quite neéf.ﬁF and is localized strongly near the
SUrfaée, it is expected fo be éhemically active.’

The surface state at 0.15 Ry at K is not as loéaiiiedvas the upper
state discussed in the previous paragraph, and is quite sensitive to
the surface potential. As with the 0.07 Ry state at K it.has charge
localized in the cavity regioné, but peaks furtﬁer from Ehé surface.
Finally, the surface state at I, Vhich occuf in the bulk band gap at L
in the three dimensional'zpne, decays very slowly falling only by 10%
from the peak value at the surface to the mi&—poiht of the slab. -

2. Nb(001) Surface

We would like to discuss in some détail in this section the
electronic structure of a transition metal surface. A self-consistent
pseﬁdopotential calculation is presented for the (001) ideal surface
of Nb. To bﬁr'knowiedge, thié is the.firsf full? seif;conéistent
éalculation for.a'tranSition ﬁetal surface. The band gtrﬁcture and
real space.distribution of the electrons near the Surface are deter-
mined. Surface states of different angular momeﬁtum characfer are
féund to exist over a wide range of enefgies_and ovef different por;ions
of the two-dimensional.Brillouin zone. Our calculations predict stfong
surface features in the density of states in thé range of 0-2‘eV above
the Fermi energy.

85,126-129

Previous calculations on transition metal surfaces can

- . : ' " 127
be roughly divided into three groups: (1) Greens-function_calculations2
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of the density‘of states of semi-infinite crystals using a d-funcfion
tight-binding Hamiltonian (i.e; neélecting the effects of sp—d'.
h&bridization); (2) band.calculationé on semi-infinite crystéis by
matching wavefunétions across a potential ba:rier constructea to

represent the surface,128 and (3) band calculations on thin films using

multiple-scattering, tight-binding of OoPW methods.129

Although the above calculations have provided useful informétion
about band narrowing and some properties of surface étates, their
limitations have motivated us to attempt the present calculation. Some
of the limitations of these‘calculatioﬁs are: None of these calculations
are fully self-consistent; tight-binding calculations usually involve
a limited basis set and some important effects of dehybridization at
the surface are neglecfed; and Greens-function calculations provide
only informationAabout the surface density of stateé yithout giving
surface bands and their k-space distribution. PseQdopotential calcula-
tions when carried out in a self-consistent fashion (Seé. ITIA) will
~avoid most of these shortcomings.

The remainderbof this section ié organized as follows: In section
a the methods of calculation ére discuséed.v In sectipn b the results -
for the electronic structure of the Nb(OOl):surface are presented
together‘with the projeéted band structure of bﬁlk Nb on the (001)
surface. And invthe fiﬁal secfion c a summary abd some discussion

. are presented.

a. Calculations. Let us first discuss the calculation on the

projected band structure (PBS). Since bonaFfide surface states can

only occur in thebgaps of the projected bulk part of the two-dimensional
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(2D) band structuré,130 a‘kﬁowledge of the projected béﬁd.structure of
the three-dimensional (3D) bulk crystal on a crystal facé will be
extremely helpful in analyzing surface states on that surface. For
this reason we have projected the bulk band struéture of Nb on the
(001) surface using-é method similar.to that discribed in Ref. 131

by Caruthers and Kleinman.

For the (001) face of the bcc lattice, the surface lattice vectors

are g a X, b=ay, where a_ is the bcc cubic lattice constant and
c” c c

<
N

X, ¥, are tﬁe usual cubic.gnit vectors. The 2D‘Brillouin zone (BZ)
for this surface unit cell‘is then a square (Fig..38 top) with primitive
reciprocal latticé vectéfs K, = 2ﬂ/ac§ and Ey = 2ﬂ/ac§. To obtain the
PBS, we.construct the smallest 3D unit cell of the bece lattice which

is compatible with the 2D.surface unit cell and determine the 3D band
structure qf Nb according to this new unit cell. The allow energies

at a point &I = (k#, k&) in-the 2D BZ are then the energy eigenvalues

where KZ is the

at all the points (hl’ kz) such that -Kz/2 < kz < Kz/z

primitive reciprocal lattice vector along the Z-direction for the new

3D unit cell. 1In the present case, the new unit cell is just the bcc

’

cubic cell and the new BZ is a cube inscribed in the standard EZ
(Fig. 38 bottom). :Also the band structure En(k) for the new cell can
be easily obtained by foldiﬁg back the eigenvalues in the stqndard BZ
into the new zone! .For this purpose we have used fhe-band structurc
calculated in Sec. IIC. The PBS for the (001) surface of Nb werc
obtained from the eigenvalues of 285 k-points in the irreducible part

- (1/48) of the standard BZ.
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In calculatiné the surface electronic structure, we employed the
self-consistent methéd developedvin Sec. IIIA. A nine-layer slab of
Nb with the (001) surfaces exposed to both sides is used to simulaté
two noninteracting surfaces. The slab is piacéd_in a periodic super-
lattice with the slabs separated by a distance equiVaIent to 6 atomic
layers of Nb. Screenihg is achieved using a Hartree potential derived
 via Poisson's equation and a Slater-type exchange potenﬁial. The only
input to'the calculation consists of thg structure (i.g. the atomic
positions)rand a fixed ionic pseudopotential for the Nb+5 ion cores.

The Nb+5 ionic potential used here is the same potential used in

Sec. 1IC which is a f2£-dependent nonlocal pseudopotential of the form
. ) .

V=] VP | ' . (65)
2=0 -

where P2 are projection operators for the various angular components
of the electron Qayefuncﬁion. The pofentials Vs’ Vé,.Vd were ébtéined
by fitting.thebspectroscopic term values of the Nb+4'ion (i.e. the Nb+5
plus oné electron system) and they are depicted 'in Fig. 15. /When
used in self-consistent atomic and bulk band structure ﬁalculations,
this Nb+5 ionic pseudopotential has proven to yield resulfs agree well
~ with experiment and other calculations. (See Sec. IIC.)

‘ In the present calculation we have used the s;me convergence
criteria as in the bulk calculation (Sec. IIC).  The electronic wave-
functions were expanded in a basis set consisting of approximately

1000 plane waves; an additional 1000 plane waves were treated by

second-order perturbation techniques. Using symmetry, the Hamiltonian
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matrix was reduced to two ~ 500x500 matrices since the central pléne of -
the siab is a reflection plaﬁe. Because 6f the.large mafrix size,.tﬁe
self-ﬁonsistent calculations were based on a three special-point
scheme. 2 Hoﬁever; for the final self-consiSfent.potential; a total
of 15 k-points in the irreducible part.(1/8)'of the 2D square Brillouin
zone has been included.

With tﬂe results at the 15 k-points, we‘obtained'tﬁe self-
consistent valence charge density, the local density of states for thé
electrons near the surface,64 and the'chafge &ensitieslfbr the various
SUrfaée states. The surface states werefidebtified‘by examining the
chafge density for all eigenvalues belo& the vacuum level at thé.ls
k—poin;s. |

b. Results. The PBS for the Nb(001) surface is éhown in Fig. 39.
We have séanned’the entire irreducible part of the squére zone by
examining k-points along lines parallel to the Z line (T to M) in equal
intervals. Eaéﬂ small figure in Fig. 39 shows the PBS aiong one of
such lines. For example, Fig. 39(a) is the PBS along the Elline
whereas Fig. 39(i) corresponds to the one poinﬁ X. As seen from the
‘figures there are a nﬁmber of agsolute gapé in the PBS. Symmetry gaps
which we wiil discuss later are not shown in these figures. We note
that the absolute gaps tend to be located well far away from the zone
center I and tend to be the widest at off high-symmetry ﬁoints. |

From the fBS one therefore expects most of the surface states to
occur -away froﬁ the zone center and have.energies in fhe wider gaps.

Our surface results indeed show that most of the prominent surface
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states occur in the big gap, Gl, positioned just aone to Fermi levél
EF between 0 and 3 eV and in the smaller gap, G2, posifioned between -2
and -1 eV. The k-space extension of these two majorAgaps in thé‘PES

" is shown in Fig. 40.

.Let us now proceed to the surface results. Figure 41 shows the
total, self-consistent valence charge density for the Nb (001) surface.
The charge density distribution on the (110) pléne is plotted in
Fig. 41(a) and that on the (100) plane is plotted in Fig. 41(b). We
find that, after oh1§.a few layers into ghe bulk, the charge density
is wvirtual identical td the bulk charge’density'presented in Fig. 18
in Sec. IIC. Some of the noticable changes iﬁ the charge distribution
near the surface are that the atoms on the sécond 1ayér have a.élightly
higher charge density.ﬁhich can be understood in terms of the Friedel
oscillations and thét the charge‘density at the surface atoms become
less directional aﬁd more s-like.

The local density of states (LDOS) curvéslo4 are presented in
Fig. 42. The first layer corresponds to the surface 1a§er; the fifth
layer at the center of the slab. As stated in section‘(a), fifteen
-k-points iﬁ the irreducible pérf of the ZDBZ were used to calculate
the LDOS. 1In addition, to ascertain the éurface féatures;'a difference
curve obtained by subtraéting ﬁhe LDOS at the cenﬁer éf the slab from
the LDOS at the surface is present in Fig. 43. |

Away from the surface in laycf 5, the LDOS strongly resembles the
bulk Nb spectrum given iﬁ Figp 17; slight differenceé Arisé because
of the use of a smallef number of k-points and also because of some

influence of the surfaces. The observed changes at the surface layer
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afeimostly due tOZSurface’States and partly due to distortions of the
- bulk-state wayefunctions'at the surface. (In this section we shall
ﬁéke.no distinction between bona fide surface states and strong surface -
reéonépces.)_ Nafrowing of the fms width of £he LDOS is observed for
fhé surfa;e layer. The regions A, B, C and D shown in Figé. 42 and 43
_indica;e the regions where some of'the prominent 8urféce bands are
found. |
The increase in the density of statés at the sprface layer in the

energy range of 0 to 2 eV érises mainly from the contributions of

three surface bands (T1l, T2 and T3). These three surface‘bandé occur
~in the absolute energy gap Gl located just abng the Fermi'leve1 in the
two—dimensional.projec;ed band structure (PBS). As seen from Fig. 40
the Gl gap ehcompasses nearly 70% of the irreduéible'zone exténding
from M to over 2/3 of the way to F along the i direction and similarly
to nearly touching X along the Y direction. The exis;ence of these
surface bands in the above gap is not very sensitive to the potgntial
used. Their dispersion is ~ 2.5 eV for two of the bénds (T2 and T3) ' ‘ -
aﬁd ~ 0.4 for the other (T1l). The increase in the density of states

at the surface layer in the energy region D, on the other hand, arises
-from occupied surface states in the smaller gap G2.

Figure 44 shows the various calculated surface bands along the

high symmetry lines together with the PBS. Also indicated in Fig. 44
‘are some of the symmetry gaps along the'symmetry lines. (Symmetry gaps
are gabs at.high symmetry points or along symmetry lines in the PBS

in which bulk states of a given symmetry are forbidden but wﬁere states

of other symmetry may exist{) In Fig. 44 vertical crosshatching is used
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to show the gxtend of bulk states with El’ ?1’2 andbfasymmetry;
horizonﬁal crosshatching is used to show the extent of bulk states
with,szand 32 symmetry; and the dash curves-are'thé surface (bona-fide
or strong resonance) bands.

Let us first discuss the surface States.in the Gl gap. -fhere are
four surface bands in this gap. Three of them are the Ti; T2 and T3
_surface bands. As discussed earlier the Tl band is very flat ih

k-space, where as the'T2 and T3 bands are relatively dispersive.  The

extent of these states encompasses a large fraction of k-space.
The fourth band of surface states is found at ~ 3.0 éV in a small
region near M.

The T2 and T3 sﬁrface states yield similar charge distributions.

These two bands follow each other closely in k-space with a typical

energy separation of ~0.5 eV which vanishes near M. The character133

of the two bands is for the most part dzx with admixtures of dXy

b4

and dxz_yZ depending on the value of k. For example along ¥ the T2

band is of il symmetry (see Table IX). Its character is therefore

mainly of d with admixture of dxy' The T3 band along this

z (x+y)

direction is however of £, symmetry and its character is therefore

2
mostly of 4 with admixture of d_5_ 7. At the point M the two
z(x-y) xXé-y
‘bands merge to a two-fold degenerate state with mainly dzx 2y character.
b

The band T1l, on the other hand, is almost solely of d3zz;r2 character
’throughout k-space. . Finally the upper, fourth band existed only near

M is mostly of de-yZ character. 'In terms of spectral weights, the
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.T2 and T3 stétes:afe mainlY'concentrated in energy regiéns B and C
Qhergas thé T1 stétes are conﬁentrated in region A.

A natural, but perhaps oﬁer—simﬁlified interpretatibn of‘the above
_surface bands is that the T2 and T3 surface stétes are states principally
Aerivéd from the two‘bonding orbitals dZx and dzy of the sgrface atoms
which are broken by the formation df the surface. They‘split off as
two surface bénds into the above discussed.band gap from the bonding
: aﬁd anti—bonding part of the spectrum. Similarly the Tl surface states
are d3zz-r2 orbitals which sblit off from the anti—bon@ing.part of the
‘Sﬁectrum and move down'inﬁo the baﬁd gap to form One:surface band.

There are other surface states neaf the Fermi level. For example,
at T, a surfa;e.state of d322-r2 character is foupd in a fl symmetry
gap at 0.2 eV. Also found near EF is an unoccupied sufface band in a
El symmetry gép in the PBS along the A direction and, just below this
A1 gap, an occupied band of strong surface resonances. The two bands
merge and become weak surface resonances at I'. Since the state at T
énd those in the above th bandsvaré_well defined surféée'states_pnly
a;vtheir respéccive symmetry points, they do not contributé much to the
LDOS.

In Fig. 45, the charge densities of the States in regions A, B
and C are presented. .These include both bulk and surface states. We
noﬁe that the charge for all three regions are'highly localized on
the first layer indicating that these regions are essentially composed
of surface states; Since Tl states are dominant in region A, the

charge density plot for this region (Fig. 45(a)) shows a strong charge
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lbbe protruding out into the vacuum region along the z-direction
perpendicular to the (001) surface. Although it cannot be seen from.
the plot, the charge density is completely symmetric about the z-axis
giving the charge distributionra striking d322_r2 character. 1In
contrast, the charge densities for regions B and C have their maxima
protruding out into the vacuum region at a 45° angle with respect to
the normal; they are nearly symmetric with respect to the z-axis.
Therefore they are mostly of de,zy character with some admixture of
dxy and dxz—yz character. From Fig. 45, one can also see the reason
for the rather large dispersion for the.IZ and T3 states. The charge
densities fof these states overlap quite strongly between ﬁeighboring
_sufface atoms where as there are virtually no overlap of charges for
the ‘Tl states.

Other prominent surface stétes found are two occupied surface
bands in the energy region D. Similar to the Tl, T2 and T3 states, they
appear in an absolute gap, the G2 gap, in the PBS (Fig. 44). But,
unlike the former states, they are not dangling-bond-like. The k-space
extension of this lower gap (Fig. 40) consists of a strip extending
from midﬁay along the £ line to.the point X. The surface charge distri-
butions for the states in the upper band T4 are primarily dxv—like,
~whereas the states in the lower band T5 are primarily dxz_yz—]iko.
However, the charge distributions for these states do change significantly
over different parts of k-space. In somc regions charge is shifted

from the first layer to the second layer.
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To illustrate some of the characteristics of thévindividuél surface
states,.we have.plotted the charge dénsity distributions for the five
surface states at the point k = (3/8,1/4) 2ﬂ/ac.A This k-point was chosen
for the reasons that all five surface bands T1-T5 extend to this point
and that it is a general point in the 2DBZ. Figure 46 shows the charge
density diétribution for the Tl state at E = 1.6 eV.  The charge distfi-

bution on the surface atom is_d 2 like and has virtually no

3z2-
overlap with the charge from néarby surface atoms. Figure 47 shows the
charge density distribution for the T2 state at E = 0.8 eV. Comparing
the charge distribution on the (110) plane (Fig. 47(a)) with that on

the (100) plane (Fig. 47(b)), we see that the charge distribution on

the surface atom is of dz- __ character with an admixture of dx

y
character. Overlap of charges along the (010) direction is considerable
which is’éonsistent with the large dispersion of the T2 band. Figure’48
shows the charge density distribution for the T3 state at E=0.4 eV,

The charge distribution is again dzx’zy-like.‘ But unlike thg T2 sfatef
it has an admixture of dxz;yz'charge distribution. Agaiﬁ the over]ap

of charges along the (010) direction is appreciable. Figure 49 shows

the charge density distribution for the occupied T4 state at E = -1.7 eV.
The charge density for this state is not as highly localized on the
éurface afoms as the states in the Gl gap. The charge extends into

the second layer and is>most1y of dxy-chafaétef with a small admixture
of dxz,zy character. Finally, the charge density Qistrihution for

the state T5 at E = -2.0 eV is presented in Fig. 50. The charge is

localized on the second-layer atoms, but extends quite far into the slab.
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Analysis of the T5 band show that this band changes character as it move
towards to point i; At X the charge density distribution is dxz_yz—like
and localized on the outermost Nb atoms.

¢. Summary and Conclusions. In summary we have calculated the

-éléctronic structure of the (001) ideal surface of niobium using a self-
éoﬁsistent pseudopotential method. SUrface states are idgntified

and analyzed throughout.the two-dimensional Brillouin zone. When
compared to the semiconductor surface states, the surface statés on

the Nb(00l) surface are much more complex both in their extent in
k-space and in their éharge density distributions.

Our results also show that most prominent surface bands appear in
gaps of the PBS which are located well away from the zone center. Since
we do not expect the positions of the gaps in the PBS for the (001)
surface of most transition metals to change'by much, this situation
will likely to occur on other transition metal surfacés and therefore
it is not adequate to anélyze the surface properties of transition
metal; by just examining the T point.

Finally, to our knowledge there is no published experimental data

on the (001) surface of Nb; measurementsl34’135

have been done on the
(001) surfaces of Mo and W. A figid—band interpretation of our results
can be made for Mo and W provided that screening at the surface does
nét significantly alter -the energies of the sufface states. We also
note that spin-orbit interactions are not necessary for the existence

of the surface states discussed.136



~86~

IV. METAL-SEMICONDUCTOR INTERFACE

In this section we study ihe eléctronic strncfure of metal-
semicondnctor interfaces.

Experiméntélly the.behavior of ;he Schottky barrier neight ¢b forv
metél—semiconductor (m/s) interfa;es as a function of the metal
_ électronegatiyity is found to be dramatically.different depending on
whether the semiconductor ;s covalent or ionic.137 Fof covalent semi-
condugtors ¢b is approximately constant for all metals, whereas fof
idnic semiconductors, ¢b is strongly dependent on the metal contact.
' Fnrtnermore the transition frnm covalent behaviof to ionic behavior
appears to be a rather sharp transition which occurs a# a critical
ionicity.

While there have been a number of theories and speculationslog’l38—141
and various mechanisms‘have been propnsed-to explain these properties
of the barriers, a definitive explanation has yet to emerge because
of the lack of detailed information on the microscopic nature of m/s
intérfaces. A neéessary step toward understanding the properties of

Schottky barriers should therefore involve_a systematic study of the

electronic structure of a series of m/s interfaces as a function of
increasing semiconductor ionicity. Our present work is motivated by
these considérations. |

The interfaces studied in this section are interfaces of Al
(modeled by a jellium core potential with T =12.07) in contact with

the ideal (111) surface of Si and the ideal (110) surfacesvof GaAs,
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ZnSe and ZnS. We find that, within the jéllium—semiconductor-model,'
the electronic structure of fhe four interfaces under iﬁvestigation
is qhalitatively similar. Moreover we find that the experimentally
observed variation in ¢b for differént metal; in contact with semi-
conductors of different iohicity can be understood quantitatively in
terms of a simple model involving metal-induced states ih the semi~-
conductor band gap.

The remainder of the section is organized as follows: In Section A
the methods of calculation and thé electronic structure of the hetal—Si
interface are dispussed iﬁ some detail. In Section B the results for
the electronic structure of the metal-zincblende semiconductor
‘interfaces are presenged. Iﬁ Sectibn C the ionicity-dependent behavior
of the Schottky barrier height is examined. And in the final Section ﬁ—

some. discussion and conclusions are presented.

A. Al/Si Interface

In this sec;ion we presenf'self—consiéténf pseudopotential cal-
culations on.ﬁhe electronic stfucture of avmetal-Si interface. The
calculations model an Al-Si interface with a jellium potential
representing the aluminum ion potential in contact with the Si (111)
surface. This model describes an ideal or intimate interface, i.e.
théfe is no oxide layer between the two materials. A locai density
of states (LDOS) which displays the densify of states as a function of
distance away from the interface has been calculated for.this Al-Si
junction. Various states which exist néar the interfacé are identified

and discussed in terms of the LDOS and their charge densities. Our
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calculafed interface barrier heigﬁ;”is found to be in excellent agree-
ment with recént experimental results.lAZ To our kﬁowledge, this is

the first realistic self-consistent calculation for a metal-semiconductor
intérface.

Métal—semiconductor inﬁerfacés are of great importance because of
their reétifying.properties which are crucial to the operation of many
electronic devices. Much exﬁerimental efforts have beén devoted to
the sﬁudy of their'properties. With the advent of recent ultra-high
-vacuum techniques, "ideal interfaces can now be fabricated and studied

systematically,142-146 and the detailed electronic structure at the

interface can be probed using médern photoemission'teghniques.1A4—146
On the theoretiéal side, metal—semicondﬁctor interfaces'have'beeﬁ thé
subject of much discussions and speculaﬁions.log’138—141’147_149

Many models have been proposed to‘explain'the interfade‘properties.
However, regretably, past theoretical investigations_into their
electfonic structure have been mostly qualitative or semi-quantitative.
A clear picﬁure of the electronic structure at a metal-semiconductor
interface has yet to emergé.

Experimentally, the electrical barrier heiéht'¢B (Schottky barrier)
at .a metal¥semiconductor interface caﬁ be accurately determined using
many different methods (I;V, C-V, photoelectric, etc.). To avoid
confusion over n- and p-type semiconductors, we measure here the
barrier height f;om the Fermi leQel EF to the semiéonducfor conduction

band. For covalent semiconductors such as Si and Ge, the barrier

height is found to be virtually independent of the metal contact and
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of the dbping in the semiconductor.l37’142’149 Bardeeﬁlo9 attributed

~

this beha§ior of the barrier height tola high density of surface states
invthe seﬁiconductor band gap; i.e. the filling or emptying ofvthése
surface states pins the Fermi level to a nearly constant value.
Heine,138 én the other hand, pointed out thatvsémiconductor sﬁrface
states cannot exist in the semiconductor gap if this energy range is
inside the metallic band. He suggested that the pinning of the Fermi
level is due to states of a different type in the semiconductor gap.-
‘These states are composed of the sfates from the tails of the metallic
wavefunctions'decaying into the semiconductor side.

Theorieslag’ll‘1

thch do not explicitly involve extra states in
theksemiconductor gap have also been proposed to explain-the barrier
heigbt behavior. Inkson,139 using a model dielectric function
formulation, proposed that the pinning of the Fermi 1eve1 is due to the
narrowing of the semicondcutor gap at the interface. According to
Inkson, the screening of the valence and conductién bands of the
semiconductor is differenf near the interface. This causes the
valence band to bend up and the conduction band to bend down and
eventually the bands merge together at the interface fpr a covalent
semiconductor. In'addition, Phillip5141 claimed that polarizability
effects play the dominantvrole at the metal-semiconductor interface.

He suggésted that it is the elementary excitations and chemical bonding
at the interface which determiﬁe the behavior of the Schottky barrier.

The purpose of the'present work is to study the electronic

structure of a metal-covalent semiconductor interface in detail using



_90-

the Al-Si junctioﬁ as a prototypé and to gain some insights into the
na;ufe of meté]—semiconductor'Schottky barriers.‘ The model and methods
of.éalculation presént here can be applied to general metal;semiconductor
contacts.‘ The main features of this calculation which_aré absent in
previous work are (1) a realistic interface is constructed through a

- jellium-semiconductor model and (2) the calculation is self-consistent.
It is noted that, as in all previously existing self-consistent surface
calculations, self-gonsis;ency in the present context means self-
 consistency in the electronic responses to a given structuralbmodel.

In the remainder of this éection we shall first discuss in seétion 1
in some.detail the model for the interface énd the éteps in the self-
consistent calculations. In section 2 the results for the electronic
structure of the Al-Si interface are presented. And in the final
section 3 some discussion and conclusions are presented.

1. Calculations

Our model for an ideal metal-semiconductor interface consists of
jellium in contact with a semiconductor described in the pseudopotential
formalism.- Preseﬁtvexperimental and theoretical methods do not allow
a detailed determination of the geometry at the metal-semiconductor
interface; however, we believe that the important properties of the
interface are dominated by.the properties of the free electrons
residing next to the semiconductor surface. The present model is
expected to contain all of the essentialvfeatures of a metal-semiconductor

interface.
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The method we have employed to calculate‘thevelectrpnic structure
of the Al-Si interface is similar to the method which Qe have used in
Sec.'III for the surface calcqlations. The main difficulties in
éalculating fhe electrénic structure of solid interfaces are:

(1) Periodicity along the direction perpendicular to the interface
is absent. Therefore the estéblished methods for bulk calculations
which depend on the periodicity of crystalline solid cannot be used.

(2) Self-consistency is essential in obtaining realistic solutions.
It is necessary to a}low the electrons to react to the boundary»éon-
ditions imposed by the interface and the resulting readjustment and
screening is a fundamental part of ;hé problem.

The essence of our method is to retain (ar;ificial) periodicity perpendi-
cular to the interface and thusiallow the use‘of well established tools
in pseudopotential crystal calculations to calculate the interface
eléctronic Structure. In addition, the method goes beyond the usual
pseudopotential approach through the requirement of self-consistency.

Fbr the present calculation, we consider a unit cell consisting of
a slab of Si with the (111) surfaces exposed to a jeilium of Al density
on both sides. This cell is then repeated and the eleCtropic structure
of the system is calculated self-consistently. The basic idea consists
of considering periodic interfaces which are separated by large
distances, and then obtaiﬁing tﬁ¢ essential features of a single
interface by calculating the electronic structure of this periodic
system. The unit cell used consists of 12 layers of Si plus an equi-

valent distance of jellium. "It is spanned in two dimensions by the



-92-

éﬂortesﬁ lattice vectors parallel to the Si (111) Surfacé i.e. hexagonal
lattice vectors with tﬁe length of 7.26 a.u. and Sy a long c-axis of-
length ¢ = 71.1 a.u. The»volume of the cell is equal to 3241 (a.u.)3.

With the_aboVe geometry, the jellium edge is one-half of a Si-Si
bond length aﬁay from the atoms on the Si (111) surface. This is a
physiéélly reésonablé choice since the length 6f a Al-Si bond is
approximately the same as a $i-Si bond. To simulafé‘non-interacting
interfaces, the Si énd the Al slab sizes have to be chosen such that
‘(a) the bulk prdpertiés of the materials are adequétely'reproduced and
(b) the surfaces from opposite side of the same slab do not interact
appreciably. .Calculations on the Si (111) Surfacé94 and various test
caicualtions'on jellium slabs of'Al density showed that the aésumed
- slab thickness which is equivalent to 12 layers of éi satisfies the
above requirements well.

The electronic strucfuré of this "periodic" system can now be
solved in a self-consistent manner'usihg pseudopotentials. The steps
leading to a self-consistent solution are shown in Fig; 23. We expand
the electron Qavefunétioﬁs in plane waves.with reciprOCal.lattice
véctors; G:

v . mgay 1(E) X ke
Yo 0 éak (Qe : _( 6)

This leads to a matrix eigenvalue equation of the usual kind

- ' h =0 67
E. (g,gr ™ BOg,g 030 = D
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which is solved by standard methdds.1 Here, the Hamiltonian matrix

elements are of the form
2
R | KNP N (68)
C:¢' 2m G,G' ps % ' ;

where VPS(Q,Q‘) are the.pseudopotential matrix éléments, In general
the pseuaopotentials are non-local and energy d_ependent.1 However, for
bulk Si and.Si surfaces; local pseudopotentials are known toVYield
satisfactory results. Therefore local pseudopotentials.yill be used
throughoﬁt forithe present calculation.

. The self-consistent cycle is initiated by the followinyg potential -

start start

() = s(g)v (lcl) + VA © - (69)
The first term is the starting potential for the Si slab and the

second term is the starting potential for the Al slab. The Si structure

factor

_ig-l .
e 1 (70)

]

2l

S(Q)

A X

describes the positions of the Si atoms in the unit cell; V (l£l)

are Sl atomic pseudopotential form factors derlved from empirical bulk
Y _ ' .

calculations. S1ncc cmpirical form factors arc only known for

discrete G vectors and the Q vectors are different for different crystal

structures, a continuous extrapolation is performed to obtain the form

factors corresponding to the new G vectors in the interface b%ob]cm

We fitted a curve of the form
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2
, ) al(q -az) . .
V(q) = . 7 ‘ (71)
: exp[a3(.q -a4)]+1 '

to the.3 form factors for bulk Si V(111) = -0.2241 Ry,—V(ZOb) = 0.0551 Ry,
V(31ll1) = 0;0724 Ryvand renormalizéd it for the different Qnit cell
volume. The four parameters aiviﬂ Eq.n(7l)-are given iﬁ_Table X. The
potential is normalized_to an atomic volume of 270_(a’.u.)3 and the
Qnits are in Ry if q is entered in a.u.

‘A starting potential for ﬁhe Al slab is less obviéus. We assumed
~ that in 2erotﬁ order, the Al electronic charge is uniform éﬁdvéonfinéd
completely inside the Al slab. Then thé Hartree part of the electron
screening wili cancel the positive jellium-backgfound and the starting

potential for the Al slab can be taken to contain only an exchange term

) |
2,1/2 2 1/3

vl (@ = e Gr) ANON (72)

start

1/3

where a = 0.79 and pjel

(G) are the Fourier components of the jellium
density to the one-third powér.' Here we have replaced the non-local
Hartree-Fock exchange potential, Vx(r,r'), by the statistical exchange

model of Slater.go’150

The choice of a = 0.79 will be discussed later.

In,prihciple, for a sc]ffconsisténf calculation, the starting potentinls
shou]d be unimpﬁrtant. However, in practice, a good starting potential

reduces the number of iterations needed enormously,_'

From Eq. (67) we obtain the band structure En(h) and the pseudo-

wavefunctions wnk(z). To perform the next step in the self-consistent
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loop, the total valence charge density

@ =237, @V, (@ | v.73
p(x) = nkwnk_z x® | (73)

Eﬁ(h) < Eq

has to be accurately determined. This requires good convergence in the
electron wavefunctions and a precisé location of the Fermi level. To

assure good convergence, the electronic wavefunction were expanded in

~a basis set consisted of apprbximately 270. plane waves. This expansion

' ’ C 1 - 2 o .
corresponds to a kinetic energy cutoff .El = lgmaxl. 2.7 Ry. Ig

addition, another 300 plane waves were included via Lowdin's perturba-

- tiom scheme.1 The total valence charge density was evaluated at 21

k-points in the irredﬁcible part (1/12) of the two-dimensional
hexagonal Brillouin zone with the Fermi level determined by demanding
charge neutrality in the unit cell. That is, the Fermi level is
determined by filling the‘eigen levels>in the Brillouin zone until the
number of occu#ied levels cérreSpénd to tﬂe number of electrons in the
unit cell reéuired_ﬁy charge neutrality. |

We note‘thaf, for our "peribdic“ systeﬁ, Qe should in brinciple
evaluate the totalhcharge over the wholé 3;dime£$i§nal B?iliouin‘zone.
However,‘for”é large élohgated cell aé=in the pre;eﬁt case, the’energies
and wayefuﬁctions are éuite indepéndeﬁt 6fvthe h—véctbfs"éiong‘thc
c-direction. As we shéll seevlater, the fihél charge;deﬁéity awﬁy
from‘the interféce is 'in good accord with S;ikAcalcu]atioqg thus

indicating that our sampling in k-space is sufficiently fine and the
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waQefuactions are eonverged.

Once the valence charge density o(z)'ie known-in terms of its
Fourier components p(g), the Hartree—Fock type sereening potentials
VH apd Vx can be evaluated easily. 'VH, the so-called Haftree_screening
potential, is the'repulsive Coulomb potential seen by an_electron and
is generated by all the vaiehce electrons. It is related to the

valence charge density by Poisson's equation

vzvﬂ(z) = ~4me?p(g) : (74)

and can be written as a Fourier series

V(0 = ] V(@™ E (75)
_ [
with
- 2 '
VH(_G) = M . | (76)

l6]?
Physically‘overall charge neutrality in the solid requires that
VH(Q=0) = —Vion(§=0) where Vion is the ionic potential generated by
the positive Si+4 ion cores and by the positive jellium slab. Therefore,
for the present calculations, we can arbitrarily set Vﬁ(Q#O) =
Vion(g=0) = 0. Numerically, however; the divergent character of
VH(Q) aad Vion(Q) for small G-values causes some pfoblem Qith'thc
stability of the se]f—consistencyvprocess. This is discussed in
detail in Ref. 94. The Hartree-Fock exchange potential was approximated
using the Slater exchange.model, as we have done fer the Al_startiﬁg

potential. 1In G-space, the exchange potential then has the form
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V@ = - e P g (77)

1/ 1/3

where a = 0.79 and p 3(Q) are Fouriervcomponents of p

(x). The
justification for the presént’valug for o is that thisvchoi;e of o
will bring Slater's exchange in an approximate agreemént with Wigner'slSIF
interpolation_formula at the average vélence charge density of Ai andFSi.
 ‘Thus, from the tofal charge density, the electronic 5creening‘poténtia1
Voer® = ] (@ + v (@) T (78)
: G - : ,
is oBtained ét each iteration in the self-consistent loop.
After the screening potential is determined, the self-consistent
éfocess is continued by addiné VSCR té an ;onic potential Vion to form
a potential for the next iteration. The ionic potential consists of
ﬁﬁo terms

e Si .y 1
Vion(® = S@Vi, © + vi

ion 8 | (79
whére the first term is.ggnérated by the Si+4 ionic cores and the
seéond term is geﬁerated'by the Al slab. S(Q) is the Si structure
‘factor as defined in Eq. (70).

First let us discuss V?in. This is just the Coulombic potential
generated by repeated slabs of uniform pqsitiye charge. For an origin
at the center of a‘meﬁailic slab, V?iﬁ hés the form

—Bﬂezn sin Gza/2

vAl Q) = +

ion

3 6C 0 6G 0 -(80)
CGZ . X -y .



where-q is tﬁe width of the jellium slab, C is“the length of.the unit
cell along'the'direction‘(z) perpendicular to the inﬁerfacevand n+ is
the positive background density.

" For theHSi iqn core poteﬁtial; &e have used»an atdﬁic modell
pbtential which was fitted to atomic term yalues>by Abarenkov énd
Heine.96 The repulsive cores of the ionic model potenfials_as giyen
b& Abarenkov and Heine are nonlocal (i.e. R%-dependent). For the present
caiculation, a local, '"on the‘Fermi sphere"‘approximatiOn1 has'bgen
made éﬁd the Foﬁfier transform of thé resulting.local potential waé :

fitted to a 4-parameter curve

o

vl (q) = —=

ion = ;E [cos(?zq) f éBIexp(baqa) . | ‘Si)
The‘values'of.the bi's are given in Table X. The normalization and the
units fOr Eq. (81) are the same as those for Eq. (71). Using the
parameters given in Table X, this ionic core potential has proven to
yield exceilent results in bulk and surface self-consistent calcula-

94

tions.

With the above Vibn; the first two cycles of the self-consistent

loop were performed using

(1) _

VIN (o) f'vstnrt(L)

(2) _ (1) , '
VIN‘(L) - Va0 + Vo L ) (82)

However, due to the divergent character of VH and Vion mentioned

earlier, an input potential V_ _ which deviates from the truly

IN
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self-consistent pdtential wili iead to an outpuﬁ potentiél thch
"ovérshoots?band is further away_from the true potential. ThefefOre
.fufther iterations based on a straightforward extension of Eq. (82)
w0ula_not yield a converging péteﬁtial. This unstable behavior of the

screening potential especially for very small G-vectors is commonly

: 0 :
found in surface caICUlapions.94’118’12 The procedure to deal with
these_instébilities is to compute adjusted input potentials vig)(g)

for n > 2 from preceding input and output potentials. This can be
done by obtaining the input potential of the nth iteration from a
linear combination of input and output potentials of the (n-1)th

versus V N graphs separately for

ouT-

iteration or from inspecting V I

'eaéh small G. A détailed discussion of this pgoblem aﬁd.the procedures
to errcomevit are given in Ref. 94. The criterion for self-consistency
is now the stability of the adjusted input screening potential as
qOmpared to the output screening potential calculated from Eq. (78).
In the present calculation, the final self-consistent potential is
stable to within 0.01 Ry;

After self-consistency has been reached, the electroﬁic structure
of the interface can then be aﬁalyéed in terms of charge densities.
Fdr fhis purpose, charge densities have been calculated as a function
of different. energy intérvals and different k-poin;s in thevBrillouin
zone. In addition, we performed a local density'of states (LDOS)
.calculation for the Ai—Si interface. This LDOS which displays the
density of states in real space, facilitates_the identification and

illustrates the characteristics of the various kinds of states at the
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interface. ‘Analogous to the projected density of states in tight binding.

calculations, the LDOS for a given region in real space is given by

N | 2 3 .
N(E) = ] S.fz'lw |.,n(;-,)l d°r 8[E-E ()] (8D

where 5‘ is the wavevector parallel to the interfacg,’n.iS»the band
index, w§|’“ is the électronic wavefﬁnction and Qi_is the volume gf the
chosen ‘region. Physically Ni(E) can be interpreted as the probébility
that an electron with energy, E, is found in the region i.
2. Results |

In this section our results for the Al-Si interface are discussed.
We find that four different types of states can exist near the Al-Si
‘intérface. Aside from the usual states wﬁiéh are bulk-like in both
materiéls, there are states with energy below the Al conduction band
which are bulk-like in the Si side but decay rapidly in the Al side.
Also, in the two-dimensional Briiléuin zoné, we find extra ﬁetal
indqced gap states (MIGS) in the semiconductor energy gaps whenever
the range of the gap is inside the metallic band. They are somewﬁat
similar to the states suggested by Heine, i.e. they are bulk-like in
Al and decay rapidly in Si. However, at the Si surface, these MIGS

retain the characteristics of the "free-surface" Si surface states

which existed in the absence of thg metal. 1t is these states which
pin the Fermi level and dominate ;he properties of the Al—Si junction.
In addition, we find truly localized interface states which decay in
both directions away from.thg interface. Thése appear in tbe Si energyv

gaps in the energy range below the Al conduction band.
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First let us examine ;he total, self-gonsisﬁent valence charge
density. The total charge density is a good indicator of the quality
of‘the.present work. For the present calculations to adequately |
répfesent non—interac;ing interfaces, the charge densities away from the
interface should resemble the bulk densities of the two materials.
Figure 51 displays the total valence charge density in a (110) plane

along with the function P

total(z) which is thg total charge density

'avéraged parallel ;o_the interface with z being_;he direction perpendi-
cular to the interface. For the purpose of discussing the charge
densities and the local density_of states, we have also diQided the

unit cell into 12 equal regions (slice%) as shown'partially in Fig. 51(b).
The jellium edge‘is indigated by the double dashédllipe. Only the

charge within a few angstroms from.the interface is'significantly
‘pérturbed from ;he bulk values. The charge deqsities in»region.I and

iI and regions v and'VI are in godd accord with bulk densities.47'1§2
The slight differences betﬁeen the present.Si charges away.from the
interface and those calculated in Refs.'47 andv152 are due to thg

1

From Fig. 51(b) one sees the well known Fridel oscillations in the

difference in the cutoff energy E

Al charge dénsity and.there is a net transfer of charge from»aluminum
to silicon. On the Al side, regions I apd_II‘gach‘contain 7.9% of

the total charge in the unit cell where as region 111 con;ains only
7.6%. 'Qn the Si side, regions‘V and_VI each»contain 8.8% of the total
cﬁarge but region IV contains 9.1%. Thus approximately b.3% of the

total charge in the unit cell has been transferred from region 1I1
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to regioh IV. A dipole'potential_with an electric field pointing toward
the Si side is hence set up at the interface."This is.é consequénée‘
of equalizing the Fermi levels in the two maferials. As seen from
Fig. 51(3), the Al charge is spilling inté the.empty‘"cﬁannels" in the
$i charge denéity.and intq the dangling bond sites. The chargé density
at the dangling bond sites in.the presenf case is significantly higher
than a sum of the jellium electron charge density and the Si charge‘
dénsity from the free surface calculations. This indicates the
- formation of a metallic-~covalent like bond between Si and a jellium
of‘Al densityf
Figure 52 disﬁlays the self-cénsistent‘pseﬁdopotential Vsc.in a
(110) plane along with Vsc(z) which is Vsc averaged parallei to'the
interface. The. total charge density discussed earlier is the self-
consistent response to this potential. The potential on the Al side
is flat and does not show pronounced Fridel oscillations. Similar
behaviors have been found in self-consistent calculations on ;he Al
surface using the jellium model.118 In the course of self;consistency,
the Si potentials on the first two layers are made slightly deeper
than the Si potentiéls further away ffom the interface. As expecﬁed,
" the perﬁurbation to the §i potentials dﬁe to the presence of the metal
appeérs to be much less thanvthe perturﬁation due to the free surface.
Now iet us discuss the local density of states (LDOS) as defined
in Eq. (83). We have calculated the LDOS for thé six regions indicated
in Fig. 51 by using twenty—one points in the irreducible part of the

two-dimensional zone. The histograms of the LDOS for the six regions
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are shown in Fig. 53. Tb'facilitate_comparigons, the density of states
of bulk Si from Ref. 47 is superimposed on'tﬁé LDOS of regions IV to
VI and a freevélectron depsity of states (i.e. N(E) ~ VE) is super-
impoéed éq the‘LDOSvof regions 1 t§ III. ThevFérmi ievelyis indicated
by the dashed line. Most of thg interesting featureswapbear in the
.LDOS‘of region IV. To inyestigate the energy positions of ﬁhe extra
states and their brigins. we subtraéted the LDOS of regioq Vi from the
LDOS of region IV to obtain a difference local density of states (DLDOS)..
" The result is presented in Fig. 54. »The positive portion of the
histogram indicates an addition ofvstates in that pa:ticular energy
-range in fegionvIV ana the négatiﬁe portion of the histogram showsva
dépreciation of states. o

The LDOS revgals mucﬁ informatioﬁ about the electronic structure
: of the interface. From the position of the Fermi level and the position
of_the conduc;ion band edge of the‘semiconductor,‘éne can calculate
the barrier height at the interface. We obtained a .barrier height of
0.6 £ 0.1 eV for the Al-Si interface which is in excelleﬁt agfeement
with thé recent experimentaltreéult of O.61-eV.v There.ére other
experimental values for the Al-Si barrier height fanging from
~0.55 eV to ~0.70 eV. (See for example Ref; 149) However, we believe
that the value from Ref. 142 is the best for aﬁ ideal Al-Si interface
because of the Qltra—high vacuum conditions used in this particu]ar
experimgnt. |

The various types of sfétes which appear near‘the interface can

be seen from.the LDOS. States with energy below -11.1 eV (i.e. below
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the‘onéet of the Al conduction band) are bﬁlg-like in Si and do not
penetrate into the bulk of Al. Of codfsé thefe are étatés with higher
energy which can behave simiiarly. For example, at the k-poiht‘K,
states with energy up fb -6.5 eV are below thé Al conduction band.

To illu#trafe this type of states, tbe charge density‘for ail states
 with energy below -11.5 eV is presentedbin Fig. 55. On the Si side,
thé charge density contours strongly feéemble the chargé density'
contours for the bottom bahd of bulk SiA7 whgregs the charge on the
Al side is completely zero. The siightiy higher éharge density at the
firStvtwo layers'is most likely due to Friedel_éséillations.lv

From the LDOS of region iV (Fig.>53) or the bLDOS (Fig. 54), we
see thét the dips in thevbulk Si density of states which are.due to
géps.in ;he Si band structure are being filled ﬁp by either intérface
states or MIGS at the interface. The extra states centered at f—8.2 eV
afé-?arfialiy inferface statesrand pértially MICS whereas thg stafes
centered at'~f5.0'eV_and states in the opticai gap ére MIGS.

The MIGS'in.the optical gap are of particular importancevbecause
the density of tﬁeée states sensitiveiy influences the position of tﬁe
Fermi level with respecf to the semiconductor band e&ges. These étates.
have a chargé density which is metallic in tﬁe Aluglab. becomes
daﬁﬁling—bond-]ike at the Si surface, and decay rapidly to zero in
the Si slab. The charge density for these states in the theérmal gap.
i.e. étates with enéfgy between 0 and ];2 eV, is plotfod in Fig..56
along Qith p(z) which is the same charge density averaged parallel to

the interface. The dangling bond surface states which exist at these

~
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energies for the free surface case havevbeen'ma;ched to the continuum
of mefailic states. Thus; as seen from Fig.'56(a), ;hevcharge is quite
unifqrm in the Al slab bﬁt rétains.the>dangling bond chéracter at. the
S§i surface. We.note that the charge density displayed in Fig. 56 is
for’all statés with energy in the thérmaivgap. The decaying rates are
diffefent for states at differentvénergies. The charge for states
néar midgap decays most rapidiy info the Si side.

An examination of the LDOS of region IV from -1.0 to 2.0 eV
indicates that there is an apparent asymmetry in the distribution'of
- extra states about the optical gap. A_plausible'phyéicalvexplanation
is the following: fhe states in the opticai gap are derived from the
valénce band ana thé conduction band. Note the large depreciation
of states neér -1.8 éV and ﬁear +4.0 éV. (See Fig. 54) Since these
MIGS are dangling-bond—iike (i.e. pzflike) §n region IV and the top
of the.Si valence band is p~like whereas the bottom of the cénduction
band is s-like, bulk states from the top of.the vaience band will be
"robbed" to form the MIGS while only states.higher in thé conduction
Baﬁd will be strongl& affected by thé formation of the MIGS. Therefore.
the deﬁreciation of bulk state. densities will be larger at the top
.of the Si valence band than at the bottom of the conduction baﬁd. |
This results in the apparent asymmetry. |

The interface states centered at -8.5 eV, ]abe]]ed S, in Fig. 53,

K

éppear near the point K in the two-dimensional hexagonal Brillouin zone.
At first sight, localized states should not appear because there are

aluminum states in this energy range. This appearance of interface
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'states is a band stru;ture effect. Near the point K in k-space, the

Si two-dimensional band structure has a gap between -7.2 eV and -9.5 eV
which is below the Al conduction band. 1In Fig. 57 we show a schematic
diagram of the projected band structure of the bottom two bands of Si
together with the prpjectéd band structure of Al. The Fermi levels of
the two méterials have been set equal. The lowest gap at K is the gap
that we are discussing; Silicon surface sta;es‘éxisting in this gap
cannot be'ﬁatched wiﬁh_any Al states because there are nd Al states
with the same energies and k—vectérs. A contour map of the charge
density of the interface stéteS’af K at =-8.5 eV ié shown in Fig. 58.
The charge density is s-1ike and highly localized on the oﬁtermost Si
atoms. The charge is almost completely confined in region IV. Similar
states with the same.energy and character have been founa in Si surface
calculations. However the charge for states found in éurface calcula-
tions are less localized.

3. Summary and Discussions -

We have studied the electronic struéture of a metal—coﬁalent'
semiconductor interface uSiﬁg an Al-Si system as a prototype. A
jellium—semicénductor model has been constructed forzthe Al-Si
interface; The electronic stfucture of the interface was then calculated
using a method invo]ving self-consistent pseﬁdopotentials. The modél
and methods of calculation used in.the present section have widér
application than just the Al-Si system;'thése techniques can be
extended straightforwardly to calculate the electronic structure of

other metal-semiconductor interfaces.
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Four different types of states are found to exist near the
interface. The characteristics of these states have been qnalyzed'
in details in terms of their.charge densities. Our local density of
states results indicate a high density of MIGS in the Si thermal gap
néar the Al-Si interface. This impiies a pinhing of the Fermi level
by these MIGS which is consistent Qith experimental results. It is
impbrtant to'note.that, in the present calculation; we have used a
sfatistical exchange model for the exchange potential.‘ Hence both
the valence bands and conductiqn bands see the same screening poténtial.
Also, from examining thé structure of the local dénsity 6f states, there
does not seem to be a merging of the valence band with the conduétion
‘baﬂd near the interface. Thefefore;'the pinning of the Fermi level
can be explained without invoking Inkson's argument of merging of the
bands due ﬁo difference in the screening of the valence band and the
conduction band at the interface. Furthermore, it is not very meaning-
ful to talk about a band picture as a'functiop of distance away'from
the inte;face on such a microscopic scale.

The present calculation is for a high density metal, Al, in
contact with Si. For metals with a low density of s-p electrons,
interface states can coexist with MIGS in the energy range of the Si
optical gab such as in the -7.2 to ~9.5 eV gap in the present ca]cu1n—.
tion. Under suéh éonditions, one expects that an even highcr density
of extra states will appear near midgap and the Fermi level is again
piﬁned in ﬁhe thermal gap.. This may be an explanation of why surface

. Cep 4 ~ : g 145,146
states continue to exist in the GaAs gap when an overlayer of Cs
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or Pd144 is placed on GaAs. Both Cs and Pd are metals of low s-p

electron densities.

B. - Metal-Zincblende Semiconductor Interfaces

In this section we extend the analysis in Sec. IVA to the metal-
zincblende seﬁiéénductor interfaces. The interfaces studied are
interfaces of Al (modeled by a jellium core ﬁotential) in contact with
the ideal (110) surfaces of GaAs, ZnSe and ZnS.

1. Calculations

As in Sec. IVA we are considering intimate m/s interfaces and
~approximate the system by replacing the metal with a jellium model and
describiné'the semiconductor in the pseudopotentiél_formalism. Since
the methods of calculation have discussed at length in Sec. IVA, we
shall only briefly describe some of the e;sential features of the
method and will be mainly concerned with the parameters needéd in the
caiculations.

The calculations were carried out by constructing an elongéted
unit cell which, in two dimensions, is spanned by the shortest lattice
vectors parallel to the appropriate semiconductor surface and, in the
third dimension, by a long c axis-extending over M‘atomic layers of the
semiéondﬁctor and N layers of equivalent thickness of jellium metal.
(Here the thickness of one layer is theAintératomic distance between
planes of semiconductor atoms parallel to the interface; and, the
length of the ¢ axis is therefore equal to M + N interplane distances.)’
The numbers.used were M = 11 and N = 7 for m/GaAs and m/ZnSe and M = 11

and N = 9 for m/ZnS. ' _ .
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There are no adjustable parameteré in the calculations. Tﬁe only
input consists of the structure (i.e., the geometry of the interface)
aﬁd the jonic pseudopotentialg of the semiconductor ion corés-ﬁhich
are determined from atémic spectra. Sincevwe use a jellium-semiconductor
model, fhe structure is determined by the crystal structure of the semi-
conductors except for the placemen; of the edge of the positive jellium
core. This edge has been taken to be at a distance of one-ﬁalf of an
interlayer distance away from the outermost semiconductor aﬁoms. The
ion core potentials Vion used are local pseudopq;entials whose Fourier
transforms are of the form given in Eq. (81) with the parameters, bi’
fitted to a Heine-Abarenkov core potential.loa In addition to the
ionic core potentials, a starting‘potentialvis_needed to initiate the
self-consistent loop (Fig. 23). For this purpose we have used the
empirical pseudopotentials Vemp_obtained from bulk‘calculations with
Fourier transforms expressed in a 4-parameter curve given by Eq. (71).
The parameters bi‘and a,; for the various semiconductors used in the
calculations are listed in Table XI and XII respectively.

Using the same convergence criteria as in Sec IVA, a basis set
of approximately 500 planelwaveé was employed‘in expanding the wave-
fqnctions in the calculations. An additional ~1200 plane waves werc
also included via qudin's perturbatiqp"schomc.q The total valence
charge density p(xr) neecded for eagh iteration was.derermined by a five
point sampling over the irreducible part 6f the‘rectangular zone. The
points included the symmetry points I', X, X' and M and one general

153

point in the center of the irreducible zone. This set of points
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yields an accﬁrate charge density and, at the same timg, alléws the
use of symmetrized plane waves to reduce'the‘sizeé of tﬁe Hamiltonian
matrices and hence the computation time for diagonalization.
2. Results

In this section, the electronic structure of the three métal?
zinéblende semiconductor interfaces is présented{

'_ We have chosen the interfaces m/Si, m/GaAs, m/ZnSe, and m/ZnS to
study because the semiconductors composing tﬁis series are of the same
crystal structure and of increasing ionicity. Within our model,.wé
find that the calculated electroﬁic structure of the four m/s iﬁterfaceé
is qualitatively very similar. In all four caéés,‘as found in Sec. IVA,
_the intrinsic surface states which existed in the fundamental gaps
of these semiconductorsloa are removed by the presence of the metal
and new types of states occur in this energy range. These metalfv
induced gap states (MIGS) are buik—like in the metal and decay rapidly
into the semiconductor‘wi;h some of the characteristics of the
semiconductor—vacuuﬁ surface_states (which exist in theAabsence of the
metal)‘weakly retained at the semiconductor surface. In addition,
ﬁruly localized interface states which have charge densities decaying
in both directions away from the interface are found for energies near
the lower part of the semiconductor valence band.

Beforé we discuss the individual states, let us examine the self-
consistent, valence charge densities for the three metal-zincblende
semiconductor interfaces. They are shown in Figs. 59 to 61. in each

figure the total valence charge density is displayed in two different
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planes contaihing the two types of_semicoﬁductor surface atoms. The
units are normalized to one electron per unit cell. Sevéral interésfing
féatures_are seén from the figures: (1) Charge densities in the buik
configuration are essentially thé same as those found in thé third
layer into the semiconductor showing that the significantvinfluénce

of the interface is quite short range (i.e. in the order of 2 to 3 atom
- layers). (2) Owing to the stronger potential of the anions,-charge-

is increasingly localized on the anions as the ionici;y of the semi-
conductor increases. And (3), for all three interfaces, the charges

on the outermost semiconductor atoms are slightly higher than the."
charges on the atoms deeper in the slab. This probably resﬁlts froﬁ
the presence of the metal which lowers the potential of thé_éﬁfface
atoms.

In Fig. 62 the local denéity of states for the m/GaAs system is
displayed for four .regions. Each,region contains one atomic layer.
Region D is at the centervof the sémiconductor slab. Regiqn.C is ﬁhe
" layer containing the outermost semiconductor atoms. Region B is
adjacent to region C on the metéliic side. The boundary.between.c and
B defines the interface. And finally region A is at the center of the
metallic slab. The LDOS was evaluated according té Eq. (83) with
5 k~points in the irreducible zone fovcalculate the his;ograms.]

The LDOS for the m/ZnSe and m/ZnS interfaces are caléulated,in the same
manner; these are shown in Figs. 63 and 64 respectiQely. Although the
number of k—pointsvused is too small to reﬁroducé a nice vE curverfor

the free-electron-gas density of states on the metallic side, it yields
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most of the prominent features of interest. A LDOS curve of much finer
duality-for_the m/Si interface was obtained in Sec. IVA wifh tﬁe use of
‘él k-points in the irreducible zone.

The region of most physical interest is fegion C whose LDOS
essentially describes the energy Spéctrum of the electrons on the
'semiCOnauctor surface. The darkly shaded areas in Figs. 62 to 64
indicate the MIGS in the semiconductor thermal gaps.; Also indicated
(by the lighter shaded areas) are the energies of the localized inter-
faée sﬁates._ The MIGS in the thermal gaps have, as we shall show in
_the next section, a iarge.influence on the Fermi levgl EF_ana thus
- play a dominant role in determining tHe behavior of the m/s Schdttky
Barriers. - |

Figure 65 displays the charge profiles p(z)/p(0) of the penetrating
tails of the MIGS in the thermél gap for the fqur m/s interfaces
Studied as g function of distance z into the semiconductor. Here 5(2)
is the charge density for the’MICS ayeraged over the states in the
thermal gap ana averaged parallel to the interface with z = 0 at the
interface. We note that the overall‘behavior of the charge profiles
for Si and GaAs ié quite_simiiar'and that the average penetration
distances are considerably shorter than previously believed. The
: diffefonces in the short range oscillations fn the charpe profilvs
mdstly arise from the difference in the atomic arrangemént betwoep the
two types ofvsemicénductor surfaces (Si (111) and GaAs (110)).

We shall only discuss and illustrate the interface states at the

m/ZnS interface to avoid redundancy. The characteristics of the
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intérface stateé for the other two systems are qualitatively similar.
The lowest lying interface states at the m/ZnS interface (éée Fig. 64)
are localized strongly on the outermost sulfuf “atoms and have s-like
character in their charge dis;ribution. These states split'dff from
ﬁhe bottom valence band of ZnS and form a narrow interface band
extending évér the whole Brillouin zone.’ The corresponding charge
density given in Fig. 66 is extremely localized on the sulfur surface
'_atoms_with practically zero charge.on the zinc atoms. A”sprface band,
very similar to this s-like interface band, has beeﬁ found ih calcul-
ations on the (110) surface of Zincslende semiconductors.lss' The
surface states are, howevef, located at higher_energies in the anti-
symmetric gapAinstead of at the bottom of the speétrum. These s-like
interface state are therefore iﬁtrinsic t§‘the semiconductor surface
with engrgies shifted because of the presence'of‘the metal.

Two ;dditional'interface bands ére found at ~-5 eV below the Zn$
valence baﬁd makimum. Unlike the previously discussed states, these
interface states exist over a rather small region in k-space at the
‘zone edge around the point M. The chargé diétribution differé from
the s-like stéte‘since it is p-like éround the outermost sulfur atoms.
The charge density for a stateAat M.in_the lower of the two interface
bands is given in Fig. 67. Figure 67(a) shqws the charge density
contours in a (110) plaﬁe containing the surface Zn atoms. Figure 67(b)
;hows the charge density contours in-a (110) plane parallelvto the
interface containing b§tb types of semiconductof surface atoms. As

seen from the figure, the charge is highly localized on the outermost
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semicdndhttor layer with the maxima of the p—like;lobes lying'in-the

(110) plane. ihe other interface sfatg at M belonging to the higher of

the two bands has a wery different charge distribution which is displayed

in Fig. 68. The charge is again p-like around the S atom. However,

the charge lobes for_this state are pointing along the back-bond

direction between the first layer S atoms and the second layer Zn atoms.

Sufface'states‘somewhat similar to these states.are also'found in

surface calculati‘ons.ls5
Our results are consistent with recent experiments on metal

boverlayers which have provided information on the electronic étfucture

of m/s interfaces in the energy range of the semiconductor band gap.

Rowe et,al.113 have found that the intrinsic surface states on the

(111) and (100) semiéonductor surfaées are removed by metallié overlayers

and extrinsic metal-induced states are foupd within the band gap.

Their findings on the Ge (110) surface is however somewhat ambiguous.

Similar extrinsic mefal—induced_states are found but they are weaker

and the intrinsic surface states appear not to completely removed by

the thin metallic overlayers.

C. JIonicity and the Theory of Schottky Barriers

_ In this section some of the properties of m/s Schottky barriers
and their relation to the calculated electronic structure are examined.

The calculated barrier heights for the four m/s inteffaces studied

142,149

'

are presénted in Table XII1 together with the measured ¢b. The
calculated values were obtained by determining the position of the

conduction band minimum of the bulk semiconductor relative to the
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Fermi level EF via the local_denSity,of states. Considering the sizes
of the thermal gaps of the more ionic crystals, the agreement obtained
between theory and experiment is quite good.

Empirically the barrier height ¢b(m,s) obeys the relatiqnl37

Gp(ms) = S(IX_+ o) (84)

where Xm is the Pauling-Gordy electronegativity156_of the metal and S

ahd ¢O are constants depending on the sémiconductof. As an'example,
142,149

the experimental barrier heights for our four semi;dnductofs
are presented in Fig.'6§>as a function éf the Xm of various metals.
‘Moreover’ the slope or "index of interface behavior" S is found to be
a smooth function of Ax'=‘XA;XB’ thé electfonegativity difference of
the anions and cations in the semiconductor. Since AX provides a
measure §f the ionicity of the semiconductor, S is also a function of
the semiconductor iopicity. For ¢b'ekpressed in units of electron
volts, S is small ~0.1 for semiconductors with AX < O.SKbut S is ~1.0
for semiconductor with AX > 0.9. 1In addition, there is a well.defined
and rather sharp transition in the value of S at AX ~0.7 to 0.8 (see |
Fig. 70).

As we have discussed earlier, the standard explanatioh for S
relies on the Burdeén model which attributes this behavior of ¢b to
the density of surface states existing»in the semiconductor band gap.
However arguments had been presented by Heine138 whichbéhOWed that
semiconducfor surface states do not exist in the fundamental gap for most

. : - 8-14
m/s interfaces and many alternate theories have since been proposed.13 141
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Physically the barrier héight is determined by thé fequirement that
in equilibrium the Fermi levels of two materials in contact ére equél.
This-is achieved by creating an electric dipole poténtial A at the
interface. Hence, in the one;ele;tron theory, the density of the MIGS
in the semiconductor thermal gap and their penetration into.the semi-
conductor will strongly influence the behaViof of ¢g.' The extent df
their penetration can be measured by a penetration depth 6 défined
by 5(6)/5(0) = 1/e. From Fig. 65 & is equal to ~3.0.A and ~2.8 A for
Si and GaAs fespecfively. As the ionicity of thé semi;Qnductér
increases, 6 however rapidly reduces to ~1.9 A for ZnSe and to ~0.9 A
for ZnS.

~The other quantity which is relevent to the behaviof of ¢b and
._ related to the MIGS is the surface denéity of étates DS(E).‘ For

energies in the semiconductor thermal gap, we define

1 [ NE,r)dzda, 0<E<E_, o (85)

"D (E) = A
s A 0 &

‘where‘A is thé interface area, N(E,x) ié the LDOS as defined in Eq. (83)
and the integrél over z is to be evaluated from fhe interface to deep
into the bulk of the semiconductor. Thus —eDs(E).givesbthe density
of localized surface charge per unit energy on the éemiconduCtor
surface. The calculated DS(E) are depicted in Fig. 71. The ave;aged
Ds near the center of the gap for Si and GaAs which both.havc'abouf the
same S is approximately the same. Two trends which can be observed
from Fig. 14 are that DS(E) decreases for more ionic semiconductors

~ and DS(E) has a relatively flat minimum over the center region of the
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gap. The D, for m/ZnSe is essential}y identicai to that 6f m/Zn$S
except its magnitude is ~30% higher. ~Hence it is omitted from Fig. 71.
From an electrostatic po%nt of view, the fact that both § andvDs
decrease for more ionic semiconductor crystals implies that the change
in A with respect to a change in EF will be small for ionic semiconductors
andvlarger for coValent semiconductors. Therefore we eipect from the
calculated § and Ds that S will be large for ionic crystals and small
for covalent crystals.
To estimate the influence of § and DS on the barrier height, we
use ;he following simple model to calculate S(s). Cowley and Sie157
had used a somewhat similar apﬁroach to obtain the interface density
of stateé_in terms of the exberimentally determined S. In this model,‘
6 and Ds are assum;d to be quantities intrinsic to the semigonductor
(i.e. they ére independent of the metal contacts) and also DS is taken
to be approxihately constant over the central portion of‘the thermal .
gap. Calculations on metal-Si interfaces using surface Green funétion
ﬁethods have 'shown that.DS is approximately constant for a wide range
of metals.’]’ao"158 In this model, we have also ﬁade use of the
empirical relation that:the metal work function ¢m is linear in Xm,
i.e. ¢m = AXm + B with A = 2.27 and B = 0.34 for ¢m expressed in
electfon volts.lss’159

For a semiconductor of electron affinity Xs in contact with a

metal, the electric dipole potential established at the interface is

-

B=x +& -AX -B. | (86)
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The change in A for a metal of slightly different Xm in contact with

the same semiconductor is therefore
db = d¢b - Ade . . _ (87)
Using simple electrostatic arguments, another expression for dA is

_ 2
dA = =47 e DS Geff d¢b (88)

where Geff is the effective distaﬁce between the center of mass of the
negative charge transferred to the semicqnductor due to the change in
¢b and fhe.center of mass of the positive charge left behind in the
me;al. ‘This distance is the true distance divided by the appropriate
dielectric screening function €, i.e. Geff = (tm/g; + tsles). We may
approximate tg by our caléulated § and tm/em by the typical screening
length in a metal which is ~0.5 A. Equations (4), (7) and (8) then

yield the following'816o

S = 2.3 . | (89)

1+4me?D (0.5+8/¢ )
S S

The dielectric screening for potential fluctuations‘in the distance

of the order of & has been found to be =2 by Walter and Cohen161 for
.our four semiconductorg. Hence we may evaluate S using the cn]cu]étod
values of 6 and Ds and €, = 2;v They are présented in Table XI1II

together with the experimentallz\determined S. The agreement between

theory and experiment is surprisingly good for this very simple model.
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"Although our results are for intrinsic semiconductors at zero
temperature, the calculated ¢b and S will be essentially the same as
those for doped semiconductors at finite temperature. ?he argument

is as»follbws, for typical‘doping density of n'< 1017 cm-3, a smali

charge accumulation of""lO12 electrons/cm2 at. the semiconductor surface
will résult in band bending on the order of volts. Hencé,'with
D~ 1014/eV-cm2, only a slight change (~O.Ql eV) in EF‘ét the inter-
face is needed to account for the band bendings céused by impufities
or thermally excited électrqns. |

We have also examined the sensitivity of our resui;s to the only
uncertain paramefér in the calculations, i.e. the placement of the
jellium core edge. Our results appear to be quite insensitive to this
paraﬁeter; vIﬁ_the case of the m/Si interface, a change of 25% in this
parameter left ¢b and § essentially unchaﬁgéd and only‘chaﬁged Ds by
a few percent. A similar.observation has been made by Louis et al.ll‘o’160

They have performed non-self-consistent calculations on m/s interfaces

using a Green function method.
D. Discussion and Conclusions

Using a self-consistent pseudopotential method, we have studied
the electronic structure of a series of m/s interfaces of increasing
'semiconductor ionicity. Our results are consistent with recent

' 113 .
experiments on metal overlayers which indicated that the intrinsic
surface states on the semiconductor surfaces are removed by metallic
overlayers and extrinsic metal-induced states are found within the

enefgy range of the band gap. Hence, contrary to the Bardeen model
. . 14
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andbthe fecent speéulations made by Eastmén and Freeouf,lo6 intrinsic
Seﬁiconductor surface states.do not appear to pléy a dominant role in
determining.¢ba ﬁetailed experimental information on the electronic
structure of these m/s is however not available at present for comparisod.
We have also examined the qﬁestion 6f ionicity in the behavior of
Schoftky barrier heights. A simple model involving the MIGS has been
conétruc;ed to estimate S. We find that bofh ¢b and S can be satisfac-
torily determined using the self-consistent pseudopotential results for
the more covalent semiconductors and_somewhat iess accurately for the
more ionic éemiconductors. Our results suggest that the important.
properties of Schottky barriers are mqstly incorporated in the one-
electron, jellium-semiconductor type of model. Other effects not
included in the present calculations such as many-body effects and
bonding betweén ﬁetal and semiconductor atoms are mést likely necessary
befbre éomplete agreement between theory and experimenfs for ;he more

ionic semiconductors can be achieved.
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V. VACANCIES IN SEMICONDUCTORS: A Si NEUTRAL VACANCY

Despite numerous theoretical investigafions, the detailed
electronic structure of deep defect states in semiconductors remains
essentially an unsolved problem.162 The main difficulties arise from
the fact that deep levels in the semiconductor gap imply a strongly
localized defect potential often combined with structural reconstruction
in the vicinity‘of the defect. Consider the case of an isolated
neutral vac;ncy (V°) in Si. Several different methods of calculation
have been employed leading. to quite different results. Among them

defect molecule calculatiOnsl639l64

have provided only qualitative
information about the Si vacancy levels; as of yet no connection with
the band structure has been established. Results from one-electron

methods using clusters of Si atoms such as the Extended Hiickel Method

strongly depend on the size of the cluster, the basis functions used,
165,166

and the boundary conditions imposed. Finally, studies considering

the vacancy as a perturbation on the perfect Si crystal give results

ranging from having only resonant vacancy states in the Si conduction

band167 to having localized states anywhere in the forbidden gap

depending on an arbitrary scaling of the perturbing vacancy pseudo-

potentia1.168

Experimentally the energy levels for the neutral vacancy (V°) in
Si are not well determined. However, they are believed to be deep

169,170

(at least a few tenths of an eV) in the forbidden gap. Moreover,

. 169 . .
from electron paramagnetic measurements, 9 it is found that both the
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singly positive (V+) and negative (V ) charged states of the Si vacancy
undergo a structural reéonstruction. For tﬁe V+ state, a tetragonal
Jahn-Teller distortion is obser&ea; and for the V_ state, a mixed
_tetrégdnai and trigonal distortion is found. A similar type of
reconstruction is expected for the v° state.

In‘;his section the electronic structure of a neutral vacancy in
Si is studied using the'self;consistent pseudopotential method
developed iﬁ Sec. IITA: To sfudy'the effect of local reconstruction
we have considered three different structural models_fér.the Si vacancy:
the ideal undistufbed stru¢tufe and two differ;ntly reconstructed
structures. Self-consistency in the present context ﬁeans the self-
consistent electronic response to a given structural model. Among tﬁe_
above mentioned methods for calculating the electronic'ﬁroperties of
a semiconductor vacancy, only the defect molecule calculations are
self-consistent in this spirit. To our knowledge, the present work
ié the first calculation of a Si vacancy in which bulk baﬁd structure
effects are included and which at the same time is self-consistent.

In the present calculations, the lattice vacanéies are_repeated
periédically to form a superlattiée of vacancies embedded in the
infinite Si crystal and the electronic structure of this periodic
system is calculated sclf{-consistently. Hence the vacancy levels are
sprcéd into bénds with dispersion in k—space; The amount of dispcrsion’
provides a measure of the localization of the vacancy states. It is
found that localized vacancy‘states in the gap and strong resonance

states in the valence band existed for the three structural models.
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Tﬁe characteristics of tﬁese'states have been studied by'analyzing their
charge densities. In addition, a tight-binding model has been fitted
to the vacancy bands for the idFal case. From the fitted tight-binding
pérameters, the "dispersionless'" energies of vacancy levels which
co:respond to isolated vacancies can be extfacted.

The remainder of this section is organized as follows: 1In
Section A the steps in the self-consistent calculations and the tight-
binding model are discussed; In Section B the results for the
elgctronic étructure of the Si neutral vacancy for three structural
models are presented and discussed. In the final Section C some

conclusions are presented.

A. Calculations

In this section a description is given of the self-consistent
calculations, carried out for the three structural models of the
neutral Si vacancy. 1In addition a tight-binding model used to fit

the vacancy bands for the ideal vacancy is presented.

1. Self-consistent Pseudopotential Calculations

As discussed in Sec. III A, the method employed here for the
,caiculation of‘a local configurafion consists of periodically repeating
the particular local configuration to form a superlattice. Self-
éonsistent bseudopotentials are then used to compute the electronié
structure. The steps leading to a self-consistent solution to the
- vacancy problem are schematically shown in Fig. 23. The method has
been applied successfully to the calculation of a Si diatomic molecule172

and to the calculations of crystalline surfaces (Sec. III) and solid
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interfaces (Sec. IV). A detailed diécussion of the method has been:
given in Sec. IITA and Sec. IVA; it therefore will only be briefly
deScfibed below.

Two essential features of the method ére: (1) Self-consistency
in the potential is fequired to allow for the correct electrdnic
screening around thg vacancy site and (2) periodicity is retained
aftificially which permits the use of standard pseudépotential
techniqués. |

For the present case of a S5i vacancy, the infinite Si crystal is
di&ided into large fcc unit cells each containing 54 atoms. Neutral
vacancies are simulated By removing an identical atom from each ce11.
The different structural models involve different reconstructions
for the positions of the atoms surrounding the Qacancy site. Test
runs with various cell sizes indicated that at least 54-atom unit cells
are needed to quantitatively provide'the essential physics of the
syétem. Iﬁ the S54-atom unit cell neighboring vacancies are separated
by six Si-Si bonds. The self-consistent.]oop (see Fig.‘23) is initiatéd
with an empirical pseudopotential carriea over from crystalline
calculations. From the resulting total charge density, a Hartree
screening potential and an exchange potential of the Slatef type are
derived and added to an atomic Si+4 ion-pseudopotential to form a new
total pseudopotential for the next iteration. New,screéning apdv
exchange po;entia]s are derived and the process is repeated until
self-consistency (stability of input vs. output potentials within

0.005 Ry) is reached.
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The self-consistent cycle is initiated using the followng starting

potential ,
V@ = s@v e o0
start : =~ "emp'T!T

where G are reciprocal lattice vectors and the Si structure factor

-iG-x.
i

e On

i)

S(G) =

e gl
AR

describes the positions of the atoms in the large 54-atom unit cell.

V:;p(lgl) are the Si atomic pseudopotential form factors fitted to

émpirical bulk calculations.47 They are derived from a continuous

extrapolation of the form

a (qz—a )
V() = ——2 - (92)
cmp exp[aB(q'-aa)]+1

where the four parameters a; are given in Table XIV. The potential
vSl

emp(q) is normalized to an atomic volume of 137.6 (a.u.)3 with units

in Ry if q is entered in a.u. Using this starting potential, the band

structure En(k) and the wavefunctions wn (r) can then be calculated

k
using standard methods,1 i.e. expanding the electron wavefunction in
plane waves with reciprocal lattice vectors and diagonalizing the
Hamiltonian matrix to obtain electronic energy En(k) and the electronic
wavefunction wﬂk'

-To perform the next step in the self-consistent loop, the total

~ valence charge density
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P =)o @=2)) v @] (93)
kX7 ko "k |

has to be evaluated. There are 106 occupied bands in the band structure
scheme (no spin-orbit intéraction). For reaSOnable-convergence of the
wavefunctions, a matrlx size of the order of 750 by 750 is needed when
the Hamiltonian is expanded in plane waves. This corresponds to a
kinetic energy cutoff1 E1_= lgiaxl ~ 2.7 Ry. 1In addition, another

~800 plane waves were included via Lowdin's perturbation scheme1 to
further improve the accuracy of the eigen-energies. To avoid a full
Brillouin zone evalﬁation of the total charge density at each iteration

of the self-consistent process, the total charge density p(x) is

approximated by the charge density evaluated -at one point k = I'. The
.point I' was chosen because, amang the high symme;ry points, pr(z)
provides a good representation of p(r) for crystalline Si. At the bond
and atomic sites, pF(L) of bulk Si is within 10% of the charge density
given by a full zone calculation. Thé choice of high symmetry points
is necessary because the Hamiltonian matrix can then be reauced=by
using symmetrized plane waves.

Once p(r) is known, the Hartree screening potential VH and the

Hartree-Fock-Slater exchange potential Vx are evaluated using

2 .
v, (0) = 4me Q) (94)
H 2 .
and

2,1/3 2 1/3
ep

V(@ = -al) (310) (© (95)
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where a = 0.79 and p(G) and 91/3(Q) are the qurier components of p(r)
and 01/3(2) respectively. Justificafion for thé use éf the Slater |
exchange potential and the choice of o are discussed in detail in

Ref. 94. VH and Vx together form the electronic screening potential
of the system. They are then added to an ionic potential

i

V. (Q) = s(gv>
1ion

1on © | (96)

to form an ipput potential for the next iteration. For Viin, we have
used a loca1 approximation of a Abarenkov-Heine atomic model potential96
which is fitted to the following 4-parameter potential

b

(q) = ~% [cos(bzq)+b3] exp(bAqa) . (97)
q .

Si
ion

v

The values of the bi's are given in Table XIV. The normalization and
the units for Eq. (97) are the same as those for Eq. (92).
The calculation is continued by repeating the whole cycle.

However, due to the divergent character of V, and Vion for small G's,

H
self—consistency cannot be achieved straightforwardly by using the
outbut screening potential frém éne iteration as the input screening
potential for the next iteration. An alternative procedure to the one
suggésted in Ref.‘94 is used in the.presentvcalculations. The input
screening potential of the nth iteration is taken to be.a weighted
linear combination of the input and outpﬁt screening~potentials of

th . : . . . .
the n-1" iteration. The criterion for self-consistency is the

stability of the subsequent output screening potentials. 1n the present
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‘calculations, the final self-consistent potentials are stable to within
0.005 Ry.

2. Tight-binding Model

In this subsection a tight-binding modél173 for interacting p-like
~atomic ;tates in a fcc lattice iS'described. - This model will be used
later to analy;e the vacancy levels of the Si vacanéy in the ideal
crystal étructure; We cénsider a fcc array of atoms which havé_3—fold

degenerate p-like atomic levels (Px’Py’Pz)’ Then Bloch functions of

the form
ik‘R '
W -1 1
1 ik.Bn .
b, () = /—ﬁ_ rzle . Py(,g-,lsn)
ik-R .
b, 0 = —-1'/;5- Ie "™r (k) (98)
n

are COnstructéd and the band structure En(k)'is given by diagonalizing

G Rlyp-E CpyfHle) BRI
<w2|H|wl> gw2|H|¢2>-E : ,<¢2|H|w3> (99)
N R R SN Y 7 Cu,lulyy -E

“where k is the wavevector, Bn are the lattice positions and H is the
crystal Hamiltonian. Assuming only nearest neighbor interactions,
the Hamiltonian matrix can be expressed in terms of three parameters:

(1) u, the energy of the isolated atomic states, (2) o, the interaction
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energy between parallel orbitals centered at neighboring atoms which
point along the line connecting the'étoms, and (3) m, the interaction
_enefgy between parallel orbitals centered at neighboring atoms which
are pefpendicular to the line connécting the atoms. Denoting

k= (51,52,53) withbii in units of 27/a where a is the lattice constant

of the fcc superlattice, the matrix elements are given by:

<¢1|u|¢l> = u+(o+n)[cosn(£1+g2)+cosn(gl-g2)+cosn(gl-g3)
+ cosn(£1+g3)]+2n[casn(gz+g3)+cosﬁ(gz-g3)]
| <¢2|H|w2> = u+(o+n)[cosn(52+53)+;osn(52-53)+gosn(gz-gl)
| + cosﬁ(g2+gl)]+zn[cosn(g3+gl)+cosn(g3-gl)]
,§w3|u[¢3> = u+(0+ﬂ)[COSW(£3+€l)+cosﬂ(€3—£l)+co§ﬂ(£3—52)v
+ éosn(£3+£2) ]+27r[cos1r(£l+gz)+cosn(51-52)'] |
<w2|u]wl> = (1-0) [cosT(£,=E,) = cosT(E +£,)]
<w3|ulwl> = (n-o)[cosn(gl-g3) - cosﬁ(£1+§3)j4
<w3|uiw2> =‘(n;o)[cosw(£2—53) - cosm(E,+E5)] . (100)

For some high symmetry k-points, the eigenvalues can be obtained
easily without diagonalizing the 3x3 matrix, Eq. (99). At k = (0,0,0),
(y,[8]y) = u+ 4o + 87 and <wi|ﬁ|wj> =0 for i # j. Therefore, the

cnergies for the three bands are degenerate at T and have the encrpy

E(k=T) = u + 4o + 87 . - (101)
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At k = X = (1,0,0) one has <wllu|w2> = u-40, <¢21H[w2> = y-4m,
(w3]H|w3> = u-4T and (wilﬂle) = 0 for i # j. Thus two energy

eigenvalues exist at X: one is singly degenerate

E,(k=X) = u-4o ' (102)
the -other is doubly degénerate
E,(=X) = u-bn - (o)

B. Results and Discussions

1. 1deal Structure

" The first structural model used t§ study the electrdnic'structure
of a neutral Si 1afticé vacancy is the '"ideal" strﬁcture. In this
structure, the atoms surrounding‘the vacapcy site remain»ih their
cyrstalline positions after the vacancy is created. A portion of the
Si crystal structure ié shown in Fig. 72(a). Every Si atom is
tetrahedrally coordinated and the valence electrons form covaient bonds
linking the neighboring atoms. As a results of creating a vacancy,
fdur bonds are broken (see Fig. 72(b)). Tﬁe electrons which previously
partiéipated in the broken bonds will tend to localize around the
vacancy site and localized vacaricy levels are expected to appear among
the energy eigenvalues of bulk Si. In the present caiculétions, we
have found both vacancy states deep in the Si thermal gap and strong "
resonant states embedded in the bulk bands.

Before discussing the individual vacancy states, first the total,

self-consistent valence charge density as given by the approximations
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discussea.in Sec. A shall be examined. A necessary condition for the
present calculations to represent nonfinteracting Si vacancies is that
the charge density away from the v#cancy site should closely resemble
the charge density of bulk Si. Figure 73 displays the total valence
charge density in a (110) plane for the ideal structure. The vacancy
site is located at the center of the unit cell (open circle) and ﬁhe
atoms are indicated by full dots. Note that; for the center chain
of ftoms, both an atom and the associated covalent bonds are missing.
The top and bottom chains are complete. Their charge densities.ére in
good accord with densities obtained from Bulk calculations47 (thch
- illustrates the local nature of the lattice perturbation).

As mentioned earlier, vacancy levels which are.dispersionless
in k-space for an isolated vacancy will appear as bands in the present
periodic model. For the ideal structhre, three vacancy bands in the
Si thermal gap and 6ne strong resonant band in the energy range of the
valence bands are found. More weak résonaﬁt states corresponding to
perturbed back bonds may exist in the valence bands. Figure 74 shows
the energieé'of the vacancy bands at k = I'. The top figure depicts
the positions of the k=0 vacancy states with tespecf to the Si bulk
density of states.47 The three states in the gaﬁ are degenerate in
energy at T'. In the bottom figure, the enefgy levels af I' for several
runs in the self-consistent procedure are shown. The first row shows
the:energy levels of bulk Si in the 54-atom unit cell structure. The
empirical pseudopotential from Ref. 47 is used. There are 108 occupied

valence bands separated from the conduction bands by the Si thermal
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gap (shaded area in Fig. 7&); The second roﬁ shows the energy leveis
for the 53-atom unit cell (i.e;'53 Si atoms plus one vacancy) calculated
using the empirical pseudopotential.' The last row shows thé éﬁergy
Iévels for the 53-atom unit cell using the final self—coﬁsisfent
pbtential. The vacancy states é:e ihdicated by the arrowé. vNoté that
the final self—consistent vacancy leveis appear‘significantiy deeper
in the forbidden gap than those célculated froh the empirical pseudo-
potential. However,.the energy of tHe resonant state at E ~ -8.2 eV
is'pinned in energy by the minimum of the density of states and ;£anges
only slightly in the course of achieving self-consistency.

In Fig. 75(a) the charge density contour map for the vacancy
states in the gap 1is displayed. The plotting‘plane is the same as
in Fig. 73 ((110) piane) and the plotting area is enclosed by the two
horizontal dashed lines ih Fig. 73. As expected from the fa;t that
these states appear deep in the gap, their charge denéityvis fairly
localized around the atoms surrounding the vacancy site. There is
practically no charge built up on the atoms of neighboring chains,
however, some cﬁarge overlap between vacancy states within the same
chain is present. The charge distributions are dangling-bond-like,
i.e. mostlylp-like with a small mixture of s character. Figure 75(b)
_shows the charge density contour plot for the resonant state in the
valence band. Again the charge density is highly localized on the
atoms surrounding the vacancy site. However, for this state, the
charge distribution is mostly s-like arouna the atoms. Although these

plots are calculated for states at I', they are representative for the
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vacancy states, since it is found that the charge distributions of the
vacancy siates are virtually identicai for all k—poiﬁté in the fcc
Brillouin zone. ? |
Thé origin_of the vacaﬁcy states can be understood using a simple
moleculariorbital picture.l74 In this‘model, one éssumés‘that in
first order éhly the electfons in_thelbroken bondé are significantly
perturbed and that the wavefunctions of the vacancy states can be
represented‘by a combination of atomic orbitals. KSpecifically,,each
molecﬁla; orbital (a single-electron vacancy state) is expressed a;
a linear combination of the dangling bond orSi;als (a,b,c,d) of:the
fouf_gtqmé next to the vacancy‘site. Because of the s;mmetfy of a
- si vacancy_in the ideal structure, the.molecular orbitals must trang—
forﬁ under the operation of the group Td according to irreducible.

representations of that group. Suitable single-electron wavefunctions

thus are

x
t =a-b-~-c+d t

y 2 ,

tz =a-b+c~-d : . (104)

The resonant vacancy state at E ~ -8.2 eV has th¢ symmetry of ;hc
stéte a., Qﬂereas the three states in the Si gap can be associated
with the above tz stéteg.' ThiS'simple'picture whfch correctly
describes the symmetry of the vacancy states found, does not of course
account for the dehybridization of sp3 hybrids around the vacancy.

The dehybridization into s-like and p-like states is, however
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appreciable as seen from Fig. 75._‘Moréover the éimple‘model does not
incluae possible.resonaﬁt state due to perturbed baék.bonds.

The dispersions of the vacancy states in k-spécé which in é tight-
binding picture»are caused by the interactions between vacancies‘in‘
-tﬁe sqpeflatﬁice shall now bé examined. The dispersion for the
resonant vacancy'state aﬁ E~-8.2 eV is‘foun; to be Qéry smail
(~0.1 eV). This is ﬁonfirmea by Fig. 75(b) in wﬁich viftua]ly no
overlap between ofBitéls centered at néigﬂﬁqriné vacaﬁéy sites is
'found; Howgver, the dispersion of tﬁe three vacancy states in tﬁe gap
is aﬁpreciable which-ean be seeﬁ‘bf tﬁe préséneerof charge between
heigﬁboring vacancy sitéé (see Fig. 75(a)). Tﬁié result indicates
that the 54~atom unit cell chosén is nst large enaugh to comﬁletely
decouple ;he individual Qaéancies. In Fig. 76 éymﬁetrieé éﬁd dispersions
of the states in the gap élong fhé A di;ection from I' to k are shown |
schematically. 1In the ideailstructﬁre the tﬁree states are degemerate
inienérgy at T with E = 0.9 eV. Along A, they split into’one<non-
degeﬁerate band (A3) and ogevtﬁé—fdld degénerate band.(AS). At X the
energy vglues are.EZ(X) ='6.7‘eV for the_two;féld degenerate states
and El(X) = =0.3 eV for the non-degenerate state (alivenergies are
given with respect to the valence band maximum).

An estimation of the position of the energy levels fbr a single
ﬁon-interacting vacancy is obtained using the tight-binding model
aescribed in Sec. A.2. Assuming tﬁaf the‘dispersions'of the vacancy
bands in the Si gap are completely due to nearest neighbor interactions

among the "p-like" single~electron vacancy states, the energy levels .
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u for an isolated vacancy can be obtained by solving Eq. (101), (102),

and (103)>simu1taneously. This yields the following expression for u:
= [E(T) + E{(X) + 2E,(X)]/4 . (105)

. U31ng the calculated values for E(T), E (X) and E, (X), the energy for
the three-fold degenerate vacancy state in the gap for an isolated
Qacancy is u = 0.5 eV. At present no experimental data are available
which ailow comparison of this calculated vélue.

The radial depen&ence of the various one-electron potentials of
inferest for the ideal neutral Si latticevvacaﬁcy.are displayed in
Fig. 77. Noﬁ-Spherieal.contributioes‘te'the potentials are negligibly
émall in the ideal struetufe.' As deseribed in the previous section
the self-eonsistent calculations are besed on a l;ttice of Sil‘+ ionic
potentials V on with one vacant 1ateice site (solid curve). The long
range Coulomb tail of thlS m1551ng 814+ ion.is completely screened
by the Hartree-exchange potential VHx of four defect electrons (dashed
line) as calculated from the total, self-consistent valence charge
. ) (dotted line) is

sC

of short range eimilar to the empirical Si pseudopotential Vemp (dashed

distribution. The resulting vacancy :potential V

dashed dotted dotted line) as used in crystal calculations. Compared

to V. ., however, V.. shows a more repulsive core and a deeper well

emp SC
around 1A. A similar difference has been obtained in recent self-
consistent surface calculations.ga“ Also shown for comparison is the
self-consistent pseudopotential VSC

: ol v ISP S .
atom by a calculation based on the same ionic Si  potential Vsion

(atom) obtained for an isolated
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.(dashed_dotted curve)! “Even théugh'the Qacaqéyband the»étoﬁic.‘:
_pdténtials.show compérable amplitudeé for the repulsive cofe ;ndrthe
»attractive bonding region, the self-consistent atomic potential is

vof considerably longer range and extends up to about‘A'A; This
diffefente is due té the}presence of covalent bonds in the crystallinea
case or dangling'bopds in.the vacancy case which iead to an increased

electron density between 1 and 2 A and thus to a stronger screening

‘decreasing the effective range of the potential.

2. Reconstructed Structures

Résﬁlts preseﬁted in‘the pfevioﬁs subseéﬁion‘iqdicated that,'in
the ideal structure, there are three'vacanéy states iﬁ the Si thermal
gap which are degenerate in energy. For a neutral vacancy; only one
of the three states (neglecting spin) isloccupied; This situatibn
is un;;able with respebt to Jahn-Teller distortions175 which lead to -
.structﬁral changes. 'Indeed,vas discussed earlier, the charged'V+ and
V_'states for the Si vacancy are obseryed to ﬁndergé Jahn-Teller
distortions which #foduce an uniaxial asymmetry in the electronic
wavefunction along the cubic [100] direcfiqn. VAlthoUgh there exists
no experimental data on the detailed strucpufe of a neutral vacancy
at‘presen;,'it is generallyvbelieved that é similar type-of.distortion
fakés place.for thé negtralvvacancy.

To study the effects of Jahn—Teiler distortions'on_the vacancy
levels, the electronic structure of a neutral vacanc& is'calculated'
for two.differeﬁtly‘reconstfucted sfruéturai models. The first
reconstructédvstructure is obtained by’Sho;téning the distance between

T
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atoms d and g and between atoms e andAfvin Fig. 72(b) by an amount equal
to § = 0.48 d, where d; is the crystalliﬁe value of the Si-Si bond
length. This is done by symmetricall& moving the atoms toward each
other along the connecting line. This type of distortion produces an
asymﬁetry along the cubic [100] direction. The estimated value for [
is chosen to be in approximate agreement with the displacement found |
by SWalinl76 in his study of vacancy formation using Morse potentialsf
This value doesvnot presenf an optimum choice, it merely represents a
frial value. Figure 78 shows the total self-consistent charge densify
»for,ghis reconstructed structure (Rec.I). As for the ideal case the
charge density away from the vécancy is very much bulk-like.

Howeﬁer the charge density near the vacancy site differs significantly
from that obtained for the ideal structure. There appears Bond like
charge Between the two atoms which have been moved closer to each other
whereas the stretched back bonds bécoﬁe considerably weaker.

The effecfs of Rec I on the resonant vacancy level are small; its
energy remains at ~—8.0 eV; The effects of the distortion on thé
vacancy states_in the gap, on the.otﬁer hand, are significant. They
arelshown schematically in the center portion of Fig. 76. The three-
folq degeneracy at I' is lifted by the uniaxial distértion. The lower
band (labelled A3) remains in the gap, whereas thé two-fold degenerate
band (labelledvAs) mérges with the conduction band structure. The

highest fully occupied band is now A, separated by a finite gap from

39

unoccupied states indicating that no further symmetry reduction

(i.e. Jahn~Teller distortion) is needed to stabilize the system. In
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‘addition, a new (empty) Vacancy_band, labelled Al; aﬁpea;s_in‘the gap.
This state is induced by:the chosen vacancy recopstfuétion and has its'
wavefunction localized at the vacancy site. Réc I has thé.net effect
bof‘moving the*four atoms surrounding the vacancy site closer towards
the vacancy site. This distortion stretchés and weakens the baék-bonds.
Some back bonding cbarge as a consequence is' spread out and transferred
to the second nearest back bonds, which causes an increasgd vacancy-
vacancy interaction in the present model. This~effect is élso.‘
reéogﬂizable from the increased dispersion of the A3 ﬁacancy'band
between T and X (see Fig. 76;.midd1e). In anaiogy to the Si (111)
surface, Réc I corresponds to an outward relaxation and therefore seéms
unlikely to océuf.l77
- To study the effects of an opposite movement of atoms, another

reconstructed structure, Reconstruction 11 (Rec II) is considered.
The type>ana'symmetry of distortiqns for this stfuctural model is

identical as for Rec I except for 6 = -0.48 d which corresponds to

. 0 )
a contraction of back bonds and a net relaxation away from the vacancy
site. Figure 79 shows the tétél, self-consistent charge.deﬁsityvfor‘
.Rec II. As compared to Fig.'78. charge has been removed from the
imﬁediate vacaﬁcy region and has been transferred into the back bonds.

As for Rec I, the disfortioﬁ does not §ignificantly affect the

resonént vacancy level at about -8.0 eV. The behavior of the vacgncy

' bands in the gap is shown on thé righf portion of Fig.. 76. For Rec 1I,

only one vacaﬁcy band (A3) exists in the Si thermal gap. This band

is fully occupied and sepérated by a finite gap from empty states.
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Thus, the type of distortion of Rec II which lowers cubic symmetry
leads to a Jahn-Teller stable situation. The strengthening of back
bonds localizes the vacancy induced charge fluctuations which results
in a decrease of dispersion of the vacancy bands along A'(éee Fig. 76).
>In cbntrast to Rec I, no empty vacancy state is found in the gap of Si.
The AS vacancy levels becéme»resonant levels with the conduction bands.
While the exact atomic positions of the reconstructed vacancy

environment are still unknown, Rec fI—type relaxations are expected

to occur most likely. Analogies to the Si (111) surface relax’ation177

support this model. More experimental, spectroscopic information

about the neutral Si vacancy is needed to clarify the situation.

C. Conclusions

The neuﬁrél 1attice vacancy in Si has been studied embedded in a
large 54—étoé super céll using a self-consistent pseudopotential
formalism. Tﬁe method allowé us to Calculate self—conSistently the
response of valence electrons to an arbitrary arrangement of ionic
cores. Thus three differeht strﬁctural madels of the atoms surrounding
the Vécancy have been investigated. These models are: the ideal
undistorted Si structure, (Rec I) a uniaxial [100] distortion of the
four atoms closest to the vacancy with a net relaxation towards the
vacancy site and (Rec 1I) a uniaxial [100] distortion with a net
relaxation away from the vacancy site.

In each model one strong resonant, virtually dispersionless band

is found around -8.0 eV in the valence band region. 1Its character is

predominantly s-like on the four atoms surrounding the vacancy. In
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addition vacancy bands éppear in the fundamental gap, strongly infiuenced
by thé struéﬁural model used. Iﬁ the ideal undistorted Si structure

a threefold degenerate vacancy band is found with an estimated energy- ' '«_
center of 0?5 eV above the valence band edge. This level is oneféld
(ﬁéglectingvspin) océupied which causes Jahn-Telier instabilities.

 Spin—fesonant expérimenfs on charged V' and V7 vacancies indicate the

exiétedée of a- 'uniaxial [100]'Jahn-Te11ér type distortion, which can

be assumed to also exist for the neutral vacancy. Béth reconstruction

models Rec I and Rec II result in a uniaxial [100] distortion. In

both cases (inward and outward relaxation) one vacancy leyel.is-split

‘away to lowey energies resulting in a Jahn-Teller stable situation.

Analogous considerations to the Si (111) surface relaxations favor

model Rec II‘in which the four atoms surroﬁnaing'tﬂe vacancy‘arev

relaxed away from the vacancy site, feéulting in an increase in

strength of back bonds. The studies presented have aboﬁt the type

of vacancy reconstruction existing in Si do not allow conclusive

results and call for more experimental, spectroscopic information.

[
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FIGURE CAPTIONS

Calculated band structure at three volumes for fcc Cs along

several axes of high symmetry in the Brillouin zone. The

energy is'given‘in eV and the energy origin'ié.taken to be at
Pl. The‘valges for the volumes were (a) V/Vo = 0.5,

(b) V/V0 = 0.4, (c) V/Vo = 0.3. The numbers along the bands
indicate the d-character of the wavefunction.

Density of states for Cs at V/Vo = 0.5.in units of sta;eé/ev
atom. s, p, and d denote the components of the densi;y of
states from the three angular momentum states. |

0.4. See Fig. 2.

Density of states for Cs at V/Vo

0.3. See Fig. 2.

Electronic charge‘density for the occupied states of Cs at:

V/Vo = 0.5 in the (100) piane. The charge density is in units

of e/ where § is the pfimitive cell volunme.

_Electronic charge densities for the occupied states of Cs at

_ V/Vo = 0.4 in the (100) plang. (a) Band 1, (b) Band 2,

(c) Sum of band 1 and band 2.

- Electronic charge densities ‘for the occupied states of Cs at

‘V/Vo = 0.3 in the (100) plane. (a) Band 1, (b) Bénd 2,

(c) Sum of band 1 and band 2.
A section of the Fermi surface of Cs at V/V0 =.0.5. The

hatched region represents the occupied states.
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A section of the Fermi surface of Cs at V/Vo = 0.4. The
hatched region represents the occupied states. The cross
h#tched‘region represents the component of the Fermi surface
coming from band 2.

A section of.the Fermi surface of Cs at V/Vo = 0.3. See
Fig. 9.

The irreducible polérization propagator in the RPA for
periodic systems.

Calcqlated ez(w) for Si, with (dashed curve) and without
(dotted curve) lécal—field effects, compéred withvexperiment
(solid curve).from Ref. 49.

Calculated energy-loss spectra for 5i, with (dashed curve)
and without (dotted curve) local-field effects, compared
with experiment (solid curve) from Ref. 49. |

The frequency dependent kernel.K(ﬁ) (N(0)V parameter) for a
screened Coulomb interaction using the semiconductor and
metallic dielectric function model of Inkson and Anderson.
Parameters appropriate for AL and Si were used. (b) The
frequency dependent kernel K(8) (N(0)V parameter) for a
screened Céulomb interaction using fhe Lindhard dielectric
function (parameters are appropriate for AfL). (c) The
frequency dopendcﬁt kernel K(8) (N(0O)V parameter) for a
screened Coulomb interaction using a dielectric function

calculated from a pseudopotential band structure for Ge.
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4
1

;
+5 L '_
Nb ionic pseudopotentials. Vs,.Vp and Vd plotted as a
function of r.

Electronic band structure of Nb. ‘Energy scale is zeroed at EF.

'Density of states for bulk Nb. (a) Present calculation and

(b) Mattheiss' calculation from Ref. 66.

Contour plots of total valence charge‘distribution of bulk

Nb in the (a) (110) plane and (b) (100) plane. The charge

density is normalized to 1 electron per unit cell.

-Partial charge densities for states in the energy ranges

‘(a) -6.5 to -2.0 eV, (b) -2.0 to -0.75 eV (c) -0.75 to 0.60 eV

and (d) 0.60 eV to 5.85 eV. The chafge dehsity for each
energy range is normalized to 1 electron per unit cell énd is
plotted on the (110) plane.

The pair-breaking parameter pi as a func;ion of temperature

from the solutions of the gap>equation, Eq. (44).

TC/K(AZ) .pIOtted versus A. The solid curves are results
calculated using the new TC equation (Eq. 55) for various
shapes of azF. The same curves also represent therexact
solutions of the Eliashberg equations (see text) since the
two results are indistinguishable on the scale of the plot.

The dash curve is the McMillan equation using the prefactor

V(w?) /&.20 instead of 90/1.45. The experimental poinEs are
taken from tunneling data.84
Calculated Tc from Eq. (55) plotted versus experimental '1‘C for

six elemental superconductors. The experimental values are

taken from tunneling data.sa
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Fig. 24.

Fig. 25.

“Fig. 26.

Fig. 27.
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Steps in the self-consisten? procedure for the calculation
of the‘electronic structure of: localized configuratiohs.
Perspective view of tﬁe Si crystal structure projécted-on av
(110) plane. The [111] direction is vertical. The (111)
surface is obtained by cutting the vertical bonds in a
horizontél plane.

Total valence charge distribution for an unrelaxed Si (111)

surface. The charge is plotted as contours in a (110) plane

interée;ting the (111) surface at right angles. The plotting
area'starts in the vacuum and extends abou; 4-1/2 atomic
layers into the crystal. The atomic positions ana bond
directions are indicated by dots and heavy lines respectively.
The contours are normalized to electrons per Si bulk unit

a
cell volume . = —

0. 4
Two-dimensional band structure of a twelve layer Si (111)
film (relaxed surface médel). The energy is plotted qs a
function of &I in fhe two;dimensional hexagonal Brillouin
zone. The various.surface states or strong surface resonances
at high symmetry points are indicated by dots and lébelled
according to the description in the_text.
Density of states curves for the self-consistent results on
twelve layer filﬁs for the relaxed (broken liné) and
unrelaxed (solid line) surface geometry. Surface states are

indicated by arrows and labelled according to Fig. 26.

Inserted is the density of states in the vicinity of the
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fundamental gap for a six layer (2x1) reconstructed surface
model.

~Fig. 28. Charge density contours in a (110) plane cutting the relaxed

'

Fig. 29. Charge density contours of the occupied part'Kd'of the

(111) surface of the longitudinal back bond étate K

dangiing bond states for the relaxed sugface model.

Fig. 30. Schematic representation of the ideal and (2X1) reconstructed
Si (111) surface. The reconstruction is done according to
Haneman's model92 and leaves the surface buckled as indiéated
by arréws. The slight lateral shifts of second layer atoms
are also indicated by érrows.

Fig. 31. Two—dimensional band structure around the fundamental'gap
for a (2x1) reconstructed Si (111) twelve layer film. The
folded back Brillouin zonme is indicated in the insert.

Fig. 32. Calculated jpint density of states curve for low energy
transitions betﬁeen dangling bond bands of (2X1)'Si (111)
(top). Also indicated is the experimental absorption ez(w)
as obtained in Ref. 99. The bottom figure shows the regular
density fo states for the two dangling bond bands (din and
dout) of (2x1) Si (111). |

Fig. 33. Churgo density contour plots for the dangling bond states
dout(tbp) and din (bottom) of (2x1) Si (111). The charge is
piotted in a (210) plane of (2x1) Si which cbrresponds to the
(1]0) plane of (1x1) Si. The raised and lowered atoms are

marked by arrows.
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Local densi;y of states in arbitrary units for é relaxed (110)
surface of GaAs. The local density of states at the surface
layer for the ideal case is also displayed.

Density of étates (i; arbitrary units) of the empty cation
derived surface band for both.the ideal and relaxed cases.
Pseudocharge density of the cation surface states for a relaxed
surface. The charge density contour map is normalized to one
electron per unit cell, QC - 812 A3,

The top figure shows the charge density averaged parallel

to the surface and plotted as a function into the bulk for the
surface state at K at 0.07 Ry. The bottoﬁ figure shows the
charge density for this state inlthe (110) plane. The charge

density is normalized to 1 electron per unit cell.

Brillouin zone for the 2-dimensional square lattice and the

- 3~dimensional bcc lattice.

Projected bulk band structure for the (001) surface of Nb.
(see text)

Extents of the two major absolufe gaps in the projected
band structuré of the Nﬁ (001) surface. |

Total valence charge density of fhe Nb (001) §urface plotted
on (a) the (110) plane and (b) the (100) plance. The charge
density is normalized to one electron per unit cell.
Calculated local density of states curves for the Nb (001)

surface.



Fig. 43.

Fig. 44.

Fig. 45,

Fig. 46.

_Fig. 47.

Fig. 48.

Fig. 49.

Fig. 50.

bifference chrve for the local density of states at the Nb
(001) surface. (See text)

Surfaée bands (dashed curves) and fhe projécfed band structure
for the Nb (001) surface.

Charge-deﬁsity contour plots for the tﬂree energy regions
(a) region A, (b) region ﬁ, (c) region C. (see text) The
charge density for each region is normalized to 1 electron
per unit cell and is plotted for a (100) plane cutting the
Nb (001) surface.

Charge denéity.distributionvof a Tl surface state at

k = (3/8, 1/4) 2n/aC at E = 1.6 eV plotted on (a) the.(110)
plane and (b) the (100) plane. The charée density is
normalized to 1 electron per unit céll.

Charge-density contour plot of a T2 surface state at

k= (3/8,1/&)27r/ac at E = 0.8 eV. Plotting planes and

hormalization are the same as in Fig. 46.

Charge-density contour plot of a T3 surface state at

’ k = (3/8,1/6)2ﬁ/aC at E = 0.4 eV. See Fig. 46 for plotting

planes and normalization.

Charge-density contour plot of ; T4 surface state at

k = (3/8v,1/4)2'n/aC at Ev= -1.7 eV. See Fig. 46 for plotting
planes and normalization.

Charge density distribution of a T5 surface state at

k= (3/8,1/4)271/3C at E = -2.0 eV plotted on the (110)
plane. The charge density is normalized to one elec;ron'per

unit cell.
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Fig. 51. (a) Total valence charge density contours in a (110) plane.
The Si atoms are indicated by dots. (b) Total valence charge
density avéraged parallel to the interface and plotted along
the direction perpendicuiar to the interface. Thé charge
densities are normalized to one electron per unit cell.

Fig. 52. (a) Contour plot of tﬁe final self-consistent potential vsc
in a (110) plane. (b) Final self-consistent potential averaged
parallel to the interface and plotted along the direction
perpendicular Fo the interface. The potential values are in
‘rydbergs.

Fig. 53. Local density of states in arbitrary units as defined by
Eq. (83). The regions are as shown in Fig. 51(b).

Fig. 54. Difference local density of states (DLDOS) obtained by
subtracting the LDOS of region VI from that of region IV.

The units are the same as in Fig. 53.

Fig. 55. Chérge density contours for states with energy below -11.5 eV
in the same plane and nérmaiizéfion as in Fig. 51(a).

Fig. 56. (a) Charge density contours for MIGS with energy between 0 and
1.2 eV in the same plane and normalization as in Fig. 51(a).
(b) Charge density in (a) averaged parallel to the interface

- and plotted along the direction perpendicular to the
interface. |

Fig. 57. Schematic diagram of the bottom two bands of the Si band

| structure (horizontally hatched) projected to the two- |

dimensional Brillouin zone. ' Superimposed on it is the
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64.

65.
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projected Al conduction band (vertically hatched). SK

denotes the interface states discussed in the text.

Charge‘density contours for the interface states at K in the

same plane and normalization as in Fig. 51(a).

Total valence charge density for the m/GaAs interface plotted

in the (110) plane containing the (a) Ga surface atom and

(b) As surface atom. The charge density has been normalized

to one electron per unit cell.

Total valence charge density for the m/ZnSe interface plotted

in the (110) plane cqntaining the (a) Zn surface atom and
(b) Se surface atom. ‘Normalization iélas in Fig. 59.

Total valence charge density for the m/ZnS intéfface.plbtted
in the (110) plane containing.the (a) Zn surface atom and

(b) s 5urface atom. Normalization is as»iﬁ Fig. 59.

Local density of statés for the m/GaAs interface in arbitrary
units as defined by Eq. (83>.

LOCai density of.states.for the m/ZnSe interface.

Local density of states for the m/ZnS interface.

-Charge distributions of the penetrafing tails of the MIGS in

. . - » ] !
the semiconductor thermal gap. p(z) is the total charge
density for these states averaped parallel to the interface

with 2 = 0 at the edge of the jellium core.

Charge density of the s-like sulfur interface states in the

same plane as Fig. 61(b). The charge density is again

normalized to one clectron per unit cell.
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Fig. 67. 9harge density of an interface state a£ M at -5.1 eV.
(See'te#t.)

» Fig. 68. Charge denéity of an interface state at M at =4.6 eV.
(See text.) |

Fig. 69. Exﬁerimental values of the barrier ﬁeights for four semi-
‘conductors in contact with various metals. X is the
electronegativity of the metal in the Pauling-Gordy scale.
Data were taken from Ref. 142 (Si) and Ref. 149 (GaAs, ZnSe,v
ZnS).

Fig. 70;' The index of interfacévbehavior S from Ref. 137.

Fig. 71. “Surface density of'states as defined in Eq. (85).

Fig. 72. Structure of cubic Si (a) and an undistorted Si lattice
vacancy (b).

Fig. 73. Total, self-consistent valence charge density displayed in a
(110) plane for a neutral Si vacancy in an ideal, unrecon-
str;cted structure. The charge values.are normalized to one
electron per unit cell which extends over 53 atoms and one
vacancy.

Fig. 74. (top) Crystalline density of stétéS'for Si with the position
of étrong resonant‘and vaéancy leﬁelsbét T. (bbttom) Energies
at T for the perfect 54—nfom‘unit ccll crystal using an
empirical pseudopofential, for the ideal vacancy using the
saﬁe empiricél pseudopotential and for the ideal vacancy
Qsing the final sélf-consistent pseudopotential are given.

Note the lowering of the vacancy level in the funcamental gap.



Fig. 75.

Fig. 76.

Fig. 77.

Fig. 78.

Fig. 79.
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Charge density plots in a (110) plané (area enclosed by

" dashed lines iﬁ<Fig. 73) of (a) the vacancy states in the

fundamental gap and (b) the strong resonance around -8.2 eV.
Scheﬁagic energy diagram of disperéion betweén.T and X and
ordef of the Si vacancy levels ip the fundamental gap as a
function of different réconstruction'models. For Rec I and
Rec.II, X is aiong the distéfted [1001 direction.

Radial dependence of various Si atomic and vacancy potentials.
Total sélf-cbnsistént valence charge density for a heutral

Si vacancy in a reconstructed environment (Rech). The -
distanceé between the four atoms SurrOUnding the vacancy ére
pair wise,deérgased, reSulting‘in a [100] uniaxial distortion
and a net'relaxafion towards the vacancy. Units are as in
Fig. 73.

Total self-conéistent valence charge aensity for a_neutrai

Si vacancy in a reconétfucted.envirbnment (Rec I1). The
distances between the four atoms surrounding the vacancy

are pair wise increased, resﬁlting in a [100) uniaxial
distorfion‘and a net relaxation away from the vacancy.

Units are as in Fig. 73.
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ATab»le I. Parameters u'séd in the Cs calculations. Form factors (in Ry), -
~d-well depth (in Ry), d-well radlus (in A), and lattice
constants (in A).
VI V(3 V@ we)  van A, R a
0.5 -0.0276 -0.0205 0.0011 0.0001 -3.2 1. 275 6.175
0.4 -0.0314  -0.0165  0.0010 0.0000 <-3.2 1.275  5.732
Ov.3

© -0.0292  -0.0084  -0.0004  0.0000 -3.2 1.275 - 5.208
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Table II. Cs. Calculated Fermi energies (in eV), density of states
and partial.densities of states at Ep, and the amount of
charge distributed to s-, p- and d-~states as defined in text.
(The density of states is in units of states/eV-atom.) .

VIV, 0.5 0.4 0.3

Ep 1.28 1.10 0.56
N(EF)‘ 1.64 1.90 1.91
Ng(Ep) 0.90 B 0.94 0.89
NP(EF) ~ 0.18 0.19 0.16
N, (Ep) 0.56 0.77 0.86

o, 0.70 0.62  0.41

o 0.09 0.07 0.05

Q - 0.21 0.31 0.54
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Table IIi.: Sum'ruleé from Eq. (26) fo: EQ G and EQ G’ in units of (eV)2 ' 

in the limit g*0 along the X-direction.

(f%)ﬁ . GRg Jo me, idu % w?z 9£§%%§l e(g+e) -8(q+e")
(000 '(000)- 4156 433.5
Sy (u 431.6 " 4335

(200) - (200) o401 4335
(220 (2200 403.2 o 433.5

a1y 61 311.8 - 4335
2 @2 278.4 | s

(000) | (111) o -s09 =547

(000) 2000 00 . 0.0

(000) (2200  11.5 | | 103 |

00) (31D 2.6 202
ooy sy 7.2 ' 6.7

(000) (222) 15.5 4 . 15.0
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Table IV. (a) Comparison of the calculated ionic enefgy'levels with

experimental data from Spettrosc0py.73

(b) Self-consistent

Nb atom: A comparison of our results with those of Herman

and Skillman.’%

(a)va+4

Level : _ Calculated Experimental
Energy (Ry) Energy (Ry)

4d - -3.657 -3.63

"5s -2.953 -2.95.

5p ~2.448 -2.45

5d ~1.725 -1.71

bs 4 -1.635 -1.56

_(b) Self-consistent Nb atom

Ry)

Herman and Skillman

Energies (

Present Calculation
4d 0.354
5s . 0.340

Postions of Maximum of rR(r) (in a.u.)

Present calculation

4d : ’ - 1.48
5s : 3.00
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Table V. Comparison of ehergy levels between the present calculation.
~of the Nb band structure and previous calculated results.

(Energies are in eV with Ef =0.)
T Tose Ty By Tos Ny
Predoﬁinant ‘

Character S d d d d P

Present _ : )
‘Calculation -6.06 0.15 3.07  -3.22 5.83  2.32
Apu®0 ~5.30 0.41 2.80  -3.81 5.17 2.33
epd® -5.20 0.5  2.59  -3.70 5.8  2.18
Self-consisted  -5.24 0.55 = 3.25  -4:24  5.97 2.25

APW71
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Table VI. Principal peak positions in the calculated Nb density of
states are compared with peaks in photoemission
data and previous calculations.

Experimént _ , Theory 4
(Photoemission) 66 67 ~ Present
: APW .EPM: : Calculation
-2.3 ~2.4 -2.6 -2.5
-1.1 -1.4 -1.4 -1.4
-0.4 -0.2 -0.4 -0.4
- 2.5 - 2.6
- 3.0 - 3.2
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3

Table VII. Experigental parameters fqr six elemental superconductors.Sa
: T. (Calc.) is calculated using Eq. (55). ‘
-Materiéls (°K) ©x o x (°K) : (°K)
: 'wlqg~_ Awl) 8 D U u TC(Expt) TC(Calc.)'
\ _ , ‘
Pb 56 . 65  .161 1.55  0.105  7.20 7.15
In 68 8 . .309 0.805 C0.097  3.40 0 3.22
Sn 99 121 .222 0.72  0.092 3.75 - 3.88
Hg 29 49 0.690 1.62  0.098 4.19 4.07
Ti_ 52 64  0.231 0:795 0.111 2:36 2.20
Ta 132 148 0.121 0.69  0.093  4.48  4.69
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Table VIII. Calculated energies of surface states and strong surface
; resonances of the relaxed Si (111) surface at T (center),
K (corner) and M (edge midpoint) of the two-dimensional
Brillouin zone. Also indicated are experimental (UPS)
results for (2x1) and (7%X7) reconstructed surfaces. The
energy zero is taken at the bulk valence band edge EV'

scLc® - AR ppf | experimen;
(1x1) relaxed surface (2x1) (7x7)
r 1.2 Ty 0.88 1.04
S50 T, | -1.95(2%) -1.71(2%) | ~1.0¢ -1.52
-12.7 I, | -12.87 -12.9 -11.7%  -12.3%
| | \ | ~ -0.58
K | 0.5 Ky | , 0.11 - -0.45P 0.1%
-0.6¢
-2.0 Ky
4.2 L -5.65
-8.5 K, -8.35 -7.5%
-9.8 Kppo -9.6 |
M 0.5 M, 0.04 0.17
2.6 My,
-3.1 Mgb- -3.55 -3.78 - -3.6%
-8.1
I G
-10.7 M,

-

a) ref. 93(c): b) ref. 93(a); c) ref. 93(b); d)-ref. 93(d): ) ref. 91;
f) ref. 98; g) this work. :
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Table IX. Character tables and transformation of d functions in the
2- d1menq1on square Brillouin zone.

T | E M
il 1 1 322-r2, xy, 3(x+y)
22 v 1 -1 xz-yz,;i(Xfy)

o>
t
<4

X

Zl 11 | 3i2fr2, Xz—yz, zx
52 -.i -1 'xy, zy

Y E. M

?1 1 1.  322-r2, #2—y2, zy
Y 1 -1 |

L _"y’zx
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Table X. Parameters entering Eqs. (71) and (81) to defime the
empirical and ionic Si pseudopotentials.

Vo Vi
a, | 0.17459 : _bi -0.57315
a, | 2.2214 ,. bé 1 0.79065
a, | 0:8633 b, | -0.35201
a, | 1.53457 | b, | -0.01807
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Table XI. The ionic core potential parameters, b;. 'The potentials are .
. normalized to an atomic volume of 152.3 (a.u.)”. - The form
of the potential is given by Eq. (81). The units for v(q)
are Ry if q is given in a.u. (The Ga potential is valid
“only for q <3 a.u.)

Ga. . As n Se . S
b, -0.338  -0.7057 -0.3056 -2.3258  =5.4101
b, 1.3305 1.0448  1.3412 - 0.5283 ©0:3275
by 0.4466 0.1662 0.0802 . -0.5740 ©  -0.8169

b,  0.0071 -0.0151 - . =0.0086 -0.0321 © -0.0250
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Table XII. The empirical starting potential parameters, a..
Normalization and units are as in Table XI. The form of
the potential is given by Eq. (71).

Ga As Zn Se S
a) 1.2214 © 0.3474 6.7008 0.2334 0.2361
a, 2.4495 2.6203 1.4983 3.3858 3.3630
ay 0.5445  0.9335 ~ 0.6696 0.7266 0.7243
a, = -2.7148 . 1.5677 -4.7128 2.2012 2.1900
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Table XIII. Theoretical and experimental values for the Schottky
: . ~ barrier height ¢p(eV) and the index of interface behavior S.
Dg in units of 1014 states/eV-cm? is the surface density
of states used to obtain the calculated S.

a | | d .
AX ¢b(ca1) ¢bn(expt) ) DS S(cal) S(expt) ™

Al-si 0 0.6% 0.1 0.6 . 45 0.1 0.1

Al-CaAs 0.4 0.8+ 0.2 0,8° 5.0 = 0.1 0.1

Al-znse 0.8 0.2+ 0.2 - 2.0 0.4 0.5
Al-zas 0.9 0.5 % 0.2 0.8 1.4 0.7 1.0

a) Ref. 156

b) Ref. 142 -

¢) Ref. 149

~d) _Ref. 137
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Form factor parameters for the empirical Si pseudopotentié1
Vemp (Eq. 92) and for the ionic $i%* pseudopotential V,
(Eq. 97). : ‘

\Y . vV,

emp o . ion
a, = 0.34270 | b, = -1.12507
a, = 2.22144 | - b, = 0.79065
ay = 0.86334 by = -0.35201
a, = 1.53457 | b, = =0.01807
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