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IN THE EARLY UNIVERSE
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ABSTRACT

We examine the damping of nonlinear subhorizon-scale entropy fluctuations in early epochs of the universe
(T ~ 100 GeV to T ~ 1 keV) by neutrino-, baryon-, and photon-induced dissipative processes. Results of
numerical evolution calculations are presented for broad ranges of initial fluctuation amplitudes and length
scales. These calculations include a detailed treatment of neutrino inflation, neutron and proton diffusion,
photon diffusive heat transport, and hydrodynamic expansion with photon-electron Thomson drag. Neutrino
inflation is treated both in the diffusive heat transport regime where neutrinos are optically thick on the
length scales of the fluctuations, and in the homogeneous heating regime where neutrinos are optically thin on
these scales. We find considerable convergence in amplitude evolution for appreciable ranges in initial fluctua-
tion length scales and amplitudes. Fluctuations produced with the right characteristics at very early times
(T 2 100 GeV) are found to survive through the nucleosynthesis epoch.

Subject headings: early universe — hydrodynamics — radiative transfer

1. INTRODUCTION

The present model for the history of the early universe
envisions significant departures from local thermal and chemi-
cal equilibrium associated with symmetry-breaking events.
These events might include, for example, the quantum chromo-
dynamics (QCD) epoch (T ~ 100 MeV), the electroweak tran-
sition (T ~ 100 GeV), and an inflationary epoch. Although the
details and conclusions remain uncertain, such departures
from thermal and chemical equilibrium at early epochs have
been proposed as production sites for entropy fluctuations. By
entropy fluctuations we mean any local deviations in the
entropy per baryon from the cosmic average value. Entropy
fluctuations could also result from processes associated with
primordial black holes, cosmic strings, and domain walls. In
this paper we wish to examine how an entropy fluctuation
produced with a given amplitude and spatial dimension at a
given epoch will subsequently evolve. We will not be concerned
here with how fluctuations are produced, but rather with how
their amplitudes and spatial scales change in time due to the
expansion of the universe and neutrino, baryon, and photon
dissipative processes.

The abundances of the elements emerging from the nucleo-
synthesis epoch can be sensitive to the existence of entropy
fluctuations (cf. Mathews et al. 1990; Kurki-Suonio et al. 1988;
Terasawa & Sato 1989a, b, ¢, 1990; Jedamzik, Fuller, &
Mathews 1994; and the review of nonstandard big bang
nucleosynthesis by Malaney & Mathews 1993). Observed
light-element abundances can be used to constrain inhomoge-
neities at the nucleosynthesis epoch. It is hoped that these
limits, in turn, may be used to constrain any processes in the
very early universe which might generate entropy fluctuations.
Successfully being able to constrain the physics of the early
universe in the manner would depend on (1) knowing how
fluctuations evolve from production at early epochs through

! Present address: University of California, Lawrence Livermore National
Laboratory, Livermore, CA 94550.

the nucleosynthesis epoch and (2) knowing what the effects of
such fluctuations on nucleosynthesis would be. This paper
addresses the first of these issues.

The production of entropy fluctuations on subhorizon scales
in the nonlinear regime (amplitude greater than unity) has been
discussed extensively in the context of the QCD epoch (cf.
Witten 1984; Applegate & Hogan 1985; Applegate, Hogan, &
Scherrer 1987; Kajantie & Kurki-Suonio 1986; Kurki-Suonio
1988; Fuller, Mathews, & Alcock 1988; Applegate 1991;
Malaney & Mathews 1993). There is no consensus on fluctua-
tion characteristics to be expected from this epoch. In fact,
recent lattice QCD results (cf. Brown et al. 1990) indicate that
the chiral symmetry transition associated with this epoch leads
to a second-order phase transition and, therefore, no phase
separation and no fluctuation production. However, these
results are not definitive, since they are dependent on lattice
size and a proper treatment of dynamical quarks (Petersson
1991). Fluctuations associated with the QCD epoch might be
generated by kaon condensate nuggets (Nelson 1990) through
a mechanism which is independent of the order of the chiral
symmetry phase transition.

The electroweak phase transition is expected to be weakly
first order (Kirzhnits & Linde 1976). It has been proposed
recently that baryogenesis may be associated with nonequilib-
rium processes proceeding on the surfaces of bubbles of the
low-temperature phase in the cosmic electroweak transition
(Shaposhnikov 1986, 1987, 1988; McLerran 1989; Cohen,
Kaplan, & Nelson 1990, 1991a, b; Turok & Zadrozny 1990,
1991; Dine et al. 1991; McLerran et al. 1991). It may be that
the entropy per baryon, and, hence, the baryon-to-photon
ratio resulting from these baryogenesis scenarios, will be left
with an inhomogeneous distribution across the horizon (Fuller
et al. 1993). The generation of these entropy fluctuations might
be related to the details of the nonequilibrium processes as well
as the stochastic nature of bubble nucleation and coalescence.

Other events or processes in the early universe have been
suggested as entropy fluctuation generators. For example,
superconducting cosmic strings and associated large currents
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and magnetic fields could generate appreciable inhomogeneity
in baryon density (Malaney & Butler 1989). It is conceivable
that an inflationary epoch could generate nonlinear small-scale
isocurvature fluctuations (Yokoyama & Suto 1991; Dolgov &
Silk 1993). For a review of entropy fluctuation-generation
mechanisms we refer the reader to Malaney & Mathews (1993).

Our goal in this paper is to describe the evolution in time of
the amplitude, size, and shape of a nonlinear subhorizon-scale
fluctuation with properties specified at some initial epoch. This
problem has been discussed in previous work (Peebles 1965;
Misner 1967; Hogan 1978; Heckler & Hogan 1993; Hogan
1993). Our calculations differ from those of previous studies in
that we extend our survey to much higher temperatures
(T ~ 100 GeV), we perform complete numerical multi-spatial-
zone calculations including all relevant dissipative and hydro-
dynamic effects, we use a more sophisticated and detailed
equation of state, and we employ the Boltzmann equation in
our calculations of neutrino heat transfer. Our results, espe-
cially as regards the survivability of fluctuations produced at
very early epochs, can differ from those of previous studies.

Fluctuations may be produced in the early universe with an
adiabatic, isothermal, or isocurvature character (cf. Kolb &
Turner 1990). It is conceivable that fluctuations could be pro-
duced which have aspects of all of these characteristics. Adia-
batic fluctuations are not fluctuations in entropy per baryon,
whereas isothermal or isocurvature fluctuations are entropy
fluctuations. Once fluctuations enter the horizon, they evolve
rapidly and nearly adiabatically to pressure equilibrium with
the background environment (Hogan 1978). We will term any
such fluctuation which has come to pressure equilibrium as an
isobaric fluctuation.

In Figure 1 we present a schematic picture for entropy fluc-
tuation classification and evolution. In this figure we show the
ratio of entropy density in the fluctuation to average entropy
density plotted against the ratio of baryon number density in
the fluctuation to average baryon number density. All fluctua-
tions evolve toward the isobaric line. Hydrodynamic evolution
tracks toward pressure equilibrium for isothermal and iso-
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F1G. 1.—Schematic representation of the ratio of entropy density in fluctua-
tions to the average entropy plotted against the ratio of the baryon number
density in fluctuations to the average baryon number density. We show adia-
batic, isothermal, isocurvature, and isobaric (heavy line) fluctuations. The
dotted lines represent the tracks for the nearly adiabatic hydrodynamic
expansion/contraction of fluctuations to pressure equilibrium.
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curvature fluctuations are shown as dotted lines. Adiabatic
fluctuations cease to exist when pressure equilibrium is
attained. Once pressure equilibrium for nonadiabatic fluctua-
tions is established, subsequent evolution proceeds largely
along the isobaric line and is induced by neutrino, photon, and
baryon dissipative processes.

In § 2 we consider the physics of neutrino, photon, and
baryon dissipative processes. Section 3 presents numerical
simulations for entropy fluctuation evolution. Conclusions are
givenin § 4.

2. DAMPING OF ISOBARIC ENTROPY FLUCTUATIONS

In this section we discuss the evolution of subhorizon-scale
entropy fluctuations. A schematic representation of the kind of
fluctuation we consider is shown in Figure 2. In this figure I is
the mean separation between the centers of fluctuations, and L
is the width of a square wave fluctuation. When fluctuations
enter the horizon, they undergo rapid hydrodynamic expan-
sion (or contraction) until they come into pressure equilibrium
with their surroundings. Fluctuations which are initially purely
adiabatic are completely erased by this process. Fluctuations
which initially have an isocurvature or isothermal component
are not erased by the expansion or contraction to pressure
equilibrium. We will call fluctuations which have attained pres-
sure equilibrium with their surroundings “isobaric fluctua-
tions.” In this paper we will consider the subsequent damping
of isobaric fluctuations by neutrino, baryon, and photon dissi-
pative processes.

We define the baryon number overdensity distribution, A(x),

by
my(x) = ny(1 + A(x)) , (1a)

where n,(x) is the proper net baryon number density at space
coordinate x, and 7, is the average proper net baryon number
density (see Fig. 2). We take the average proper number density
at an epoch with scale factor R to be

3
iy(x) = N b(x)< wo) s

where N(x) is the average proper number density at T = 100
MeV, and we take R = R;, when T = 100 MeV. In what
follows we choose R,y = 1.

The distribution of energy density in relativistic particles,
&.1(X), is defined in terms of the horizon average of this quan-

(1b)

T(x)
| LT |
i ny(x) E E —)i L :K—
e L >

F1G. 2—Three square wave fluctuations are shown. The net baryon
number density n,(x) and the plasma temperature T(x) are shown as functions
of length scale x. The size of the high-density region of a fluctuation, or
fluctuation length scale, is L, and the mean separation between centers of
fluctuations is L.
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tity, &, by
8n’.l(x) = Erel(1 + 46()()) . (2)

In this expression 44(x) is then the deviation of the energy
density from its average value at position x. We will be con-
cerned with times early enough that the cosmic energy density
is dominated by highly relativistic particles. The average
energy density in relativistic particles in the dilute high-
entropy conditions of the early universe is

Eret = geff(T)aT4 > 3

where a = n2/30, T is the cosmic average temperature, and
Gete = 26 9o + 3 2.y 9 is the number of degrees of freedom in
relativistic bosons (b) and fermions (f). In this sum we will
count only those particles with mean free path I smaller than
the spatial dimension of the fluctuation. This typical spatial
dimension, or fluctuation length, we denote as L (see Fig. 2).

In the limit where d(x) < 1 and in epochs where g can be

approximated as constant in time, we find that
T(x)— T
3(x) ~ T @
so that in this limit d(x) is just the deviation from the cosmic
average temperature at coordinate x.

We can get a rough idea of how fluctuations come into
pressure equilibrium with their surroundings if we assume that
baryons contribute perfect gas pressure P, =n, T and rela-
tivistic particles contribute pressure P,,, = ¢, In the follow-
ing sections we will check the validity of these assumptions,
and we will find significant deviation from perfect gas pressure
at high temperatures T 2 30 MeV. Nevertheless, with these
assumptions the demand for pressure equilibrium between the
interior and exterior of a fluctuation implies

38l + 40(x)) + (1 + AC)T (1 + 6(x)) & 3E + T . (5)
In the limit where § < 1 this expression reduces to

__1( aT . _1(P . AX)
&”‘_4<w®a)M”~ 4<F>M”~ ;0 ©

rel

with § the average entropy per baryon in the early universe.
Hereafter, a bar over any quantity denotes the average value of
that quantity over the whole horizon volume unless indicated
otherwise.

In the early universe the average entropy per baryon is a
large quantity,

5726 x10%Q; 1 h™2 . 0

Here Q, is the fraction of the closure density contributed by
baryons, and h is the Hubble constant in units of 100 km s~ ?
Mpc~!. The average entropy per baryon § is constant with
time in the limit where we can neglect baryon number violating
processes (T < 100 GeV), black hole production and evapo-
ration, and dissipative processes. Note that § is large enough
that fluctuations will have § < 1 for A < 10°.

Pressure equilibrium for fluctuations is obtained initially by
hydrodynamic expansion. The expansion of an entropy fluc-
tuation can be rapid enough that we can regard it as a nearly
adiabatic process. After pressure equilibrium is established, we
expect the temperature in the fluctuation to be lower than T
(see Fig. 2). Subsequent heat and entropy flow into the fluctua-
tion will tend to cause the fluctuation to expand to a new
pressure equilibrium. Entropy will flow into the fluctuation
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until the average entropy per baryon in the fluctuation
matches the background average. Heat flow, or other dissi-
pative processes, will of course generate entropy. In practice,
however, the entropy generation due to dissipative processes is
negligible for fluctuations with initial 6 < 1. The fluctuation
will evolve through a succession of pressure equilibrium states
if the heat transport time is long compared with a hydrody-
namic expansion time.

The approximate timescale to attain pressure equilibrium
between the fluctuation and the environment is the sound
travel time, 7, over the fluctuation length L. The timescale to
transform an initially isobaric fluctuation into an isothermal
fluctuation is a typical heat transport timescale 7,. The ratio of
the hydrodynamic expansion time scale (or sound crossing
time) to the typical heat transport time is
L L (8a)

T /Dy Gee L
where v, ~ ¢/,/3 is the speed of sound for a relativistic fluid.
The heat diffusion constant is roughly D, ~ ¢(g,/gee)l, where |
is a typical mean free path for heat-transporting particles, and
g, is the number of degrees of freedom which are effective in
heat transport. Equation (8a) is only valid in the diffusive limit
for heat transport, where | < L.

Particles with [ > L are free-streaming on the scale of the
fluctuation. Even in this limit particles can still transport heat
into the fluctuation. For neutrinos with / > L we find a heating
rate 1, ! ~ (g,/g.er)c/l, which yields

B0 L
Th et |

We conclude that the assumption that fluctuations evolve
through a succession of pressure equilibrium configurations is
valid in the extreme diffusive (I < L) and “homogeneous”
(I » L) heating limits. Borrowing terminology from radiation
transport studies, we can describe these limits as “optically
thick ” and “ optically thin,” respectively.

For an intermediate mean free path, [ ~ L, the heating and
pressure equilibrium timescales become comparable, and the
calculation of the damping of fluctuations by heat flow would
require a detailed solution of the Boltzmann equation.
However, in the case of neutrino heat transport in the early
universe we expect the approximation of pressure equilibrium
to hold fairly well, since neutrinos go quickly from optically
thick to optically thin on the scale of the fluctuation. Further-
more, the ratio g,/g. is a small quantity for neutrino heat
transport in the early universe, which tends to make the ratio
in equations (8a) and (8b) small.

Baryon number fluctuations which are formed on sub-
horizon scales in epochs with T > 50 MeV have negligible
self-gravity. However, self-gravity can be important for
superhorizon-scale fluctuations. A rough estimate for the ratio
of pressure forces F, to gravitational forces F, on the edge of a
square wave fluctuation gives

(8b)

F L -2
e, 1016A -1 2y-1f =100
F, 107°A1(Q, %) (m) s &)
where L,y is the fluctuation length L measured on a
“comoving ” scale at an epoch of T = 100 MeV in a manner to
be described below.

We will frequently refer proper lengths to a “comoving”
scale at T =100 MeV. The fluctuation length L and the
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separation length I¥ between adjacent fluctuations as measured
on the T =100 MeV scale are denoted by Lo, and L3y,
respectively. At an epoch where the temperature is T and the
scale factor is R(T), the relation between a proper length L and
the associated “comoving” length L, o, is

(10)

If the product RT were constant with time, then we could write
R(T)/Ryp0 = (100 MeV)/T. However, particle annihilation
epochs change the value of RT (e.g., e* annihilation; u* anni-
hilation; quark annihilation or QCD transition). Figure 3
shows R(T)T/100 MeV) for 1073 MeV < T < 100 MeV,
including a numerical treatment of all relevant annihilation
epochs. In this figure we assume that the quark-hadron tran-
sition occurs at higher temperatures, and we ignore pion
degrees of freedom.

2.1. Neutrino Inflation

The neutrino mean free path [, is a rapidly varying function
of temperature in the early universe,

GeV

where Gy is the Fermi constant and N, is the number of rela-
tivistic weakly interacting leptons at temperature T. These will
include e*, p*, t*, v,, ¥,, v, ¥,, v,, ¥, whenever their masses
satisfy m; < T. Similarly, N, is the number of relativistic quark
flavors at temperature T and may include u, d, s, ¢, b, and t. For
example, at a temperature below that for quark annihilation
N, ~ 10 (e*, p*, and six neutrino species) and N, = 0. Here we
have neglected neutrino-pion scattering. The dimensionless
quantity f depends on neutrino flavor, the types of relativistic
leptons (quarks) in equilibrium at temperature T, and the exact
lepton (quark) weak couplings. Heckler & Hogan (1993) have
considered neutrino scattering in a weakly coupled relativistic
plasma at zero chemical potential. They found that plasma
screening corrections are negligible, so that neutrinos can be
approximated as scattering incoherently off single particles.

-5
I, = BGy 2T~ 5 ~ 8 x IO_Gm(L> (N, +3Np)™*, (11)

TT T TITTT T 1 T T T LR LI B |

R(T)(T/100 MeV)

Lot 1

TN TN [T TR

100 10 1 1 01 001
(T/MeV)
F1G. 3—Product of cosmic scale factor and temperature, R(T)YT/100

MeV), plotted against temperature T in MeV. We take R=1 at T = 100
MeV.
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Neutrinos are very efficient heat transporters at any time in
the early universe between the epochs of the electroweak phase
transition (T ~ 100 GeV) and neutrino decoupling (T ~ 1
MeV). Before the electroweak phase transition, neutrino heat
transport is inefficient, since for vanishing weak-gauge boson
masses (Mz 5 = 0) the neutrino mean free path becomes small.
Since the neutrino mean free path changes considerably over
the history of the universe, where we follow entropy fluctua-
tions, we will have to treat neutrino heat transport in two
different limits: the homogeneous limit, /, > L, and the diffu-
sive limit, /, < L.

In the homogeneous limit neutrinos are free-streaming
through the fluctuation, so that neutrinos are optically thin on
the scale of the fluctuation L. This implies that the neutrino
energy density is homogeneous on these scales with ¢,(x) = &,.
In other words, the temperature for neutrinos is now slightly
larger than the temperature for other relativistic particles
inside the fluctuation. In this case neutrino scattering will tend
to transfer energy into the fluctuation. The heat deposition rate
in a fluctuation of size L is equal to the number of scattering
events per unit time multiplied by the average energy transfer
per collision. The scattering event rate is the neutrino flux
[~(g,/10)T?] times the weak cross section (~ G2 T?) times the
total number of targets within the fluctuation [ ~(7/8)(2/10)
(N; + 3N q)T3L3], assuming natural unitsc = A = 1.

The fractional difference in temperature between the neu-
trinos and the rest of the particles in the fluctuation at position
X is just &(x). The average energy transfer per collision at posi-
tion x is then roughly (x)T,, where T, is the homogeneous
neutrino distribution temperature. Note that T, = T. These
arguments yield the rate of change of energy density in the
fluctuation,

? ~ —FG:é(x)T?® ,

where F is a numerical factor. At temperature T < 50 MeV we
can approximate F =~ (g,g,/100) ~ 0.2, where g, = (3)2N,,
N, =2, and g, = (3)6. This naive estimate for the homoge-
neous neutrino heating rate turns out to be low compared with
that derived from our detailed numerical treatment.

We have computed the homogeneous neutrino heating rate
by using the Boltzmann transport equation. Specifically, we
evaluated the collision integral term in the Boltzmann equa-
tion. In this calculation we solved for the energy transfer
between a relativistic neutrino Fermi-Dirac distribution at
temperature T and a relativistic Fermi-Dirac e* distribution
at a lower temperature T(1 — ). The calculation neglects
Fermi blocking effects on scattering particles, which is a fair
approximation in the early universe, resulting in small errors
which will not alter our conclusions. Our numerical result has
the same form as equation (12) but has F = 1.869, so that the
net heating rate is nearly an order of magnitude larger than the
simple estimate. This result is not surprising, however, since the
naive estimate of equation (12) does not take account of the
contribution to heating from annihilation processes such as
e*e” <> vv. We include these processes in our numerical calcu-
lation. These processes dominate the energy deposition,
accounting for 70% of F.

In the limit where I, > L we can employ equations (2) and (3)
to rewrite equation (12) as

46) | o 9.1
dt Gest lv

(12

8(x), (13a)
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where

b ly (13b)

g, 4a
Note that F* is roughly independent of g,, N, and N,

When [, < L, the optically thick limit obtains and we can
approximate the neutrino heating as arising from neutrino dif-
fusion. In this limit we can express the time evolution of §(x) for
a spherical fluctuation as

B By L0 T,

0t R2r3e0 000

where r,,, is the radial coordinate of a spherical fluctuation
measured on our comoving scale at T = 100 MeV, and D, ~
(9,/950)l, is the heat diffusion constant. For a two-zone square
wave fluctuation in the limit where I, < L we find

@ = )% v & S
dt Gorr 7
with A* a numerical factor of order unity. In this two-zone
approximation for the density and temperature distribution of
a spherical fluctuation, 40 represents the fractional energy
density difference between the inside (zone 1) and the outside
(zone 2) of the fluctuation. Matching the heating rates in the
diffusive and homogeneous limits for [, =L, we obtain
A* = F*,

We now consider a two-zone square wave fluctuation, which
will serve to illustrate the typical damping histories for fluctua-
tions. A simple prescription for calculating the damping of
isobaric square wave baryon number fluctuations by neutrino
heat transport is as follows. If in time ¢ a fluctuation is heated
by dé, it has to expand adiabatically by dL,y,o = L;¢0dd in
order to reestablish pressure equilibrium. Thus,

L oo B (1)
Lo, dt dt
where Lo, = L/R as before. Baryon number within the fluc-
tuation is conserved during the adiabatic expansion of the fluc-
tuation, and so the quantity (1 + A)L3,, is time-independent.
In order to obtain the rate of increase in radius (or “inflation”
rate) of isobaric square wave baryon number fluctuations, we
integrate equation (16), using equation (13) in the homoge-
neous limit, and equation (15) in the diffusive limit. To accom-
plish this, we need to know the temperature difference J as a
function of the baryon number overdensity A for a fluctuation
in pressure equilibrium.
The pressure due to relativistic particles can be written

Pref = psrel > (17)

with f, = 4, except during epochs of lepton or quark annihi-
lations. Figure 4 shows f,(T) during the e*e ™~ annihilation. The
value of f, drops from f, = § to f,=028 at T ~ 0.2 MeV. At
this temperature a major fraction of the kinetic energy of the
relativistic gas is converted to rest mass energy of e*e™ pairs.
This rest mass makes zero contribution to the pressure.

We consider four temperature regimes in which there are
natural limits for the pressure contributed by baryons. At tem-
peratures below the QCD transition, baryon number is carried
by color singlet baryonic states. In the regime after the QCD
transition the kinematics of baryons can be taken to be
approximately nonrelativistic. Below T ~ 30 MeV, baryons

o 55(’100)] (14)

0100

(15)
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FI1G. 4—Proportionality constant f, (solid line) between pressure exerted by
relativistic particles and the energy density in relativistic particles plotted
against temperature T in MeV. Also shown is the temperature dependence of
the proportionality constant between deviation in relativistic energy density
and the baryon overdensity within a fluctuation (dashed line).

o
=

exert perfect gas pressure P,
P,=n,T=iu,T(l+A). (18)

The pressure contribution of the excess electrons needed for
charge neutrality is negligible compared with the baryon pres-
sure. The entropy per baryon is so high that the net number of
electrons is small compared with the number of electron-
positron pairs. Requiring pressure equilibrium as we did in
equation (6), we obtain, for T < 30 MeV,

1(nT
6z—-—< B )A.
4 fpsrel

In Figure 4 we show the proportionality constant between A
and J through the e*e™ annihilation epoch. In order to keep
the fluctuation in pressure equilibrium during the e*e~ annihi-
lation process, 6 has to increase. An increase in d enhances heat
flow into the fluctuation. During the e*e™ annihilation at
T ~ 0.5-0.05 MeV there are no particles which are efficient
heat transporters, so that the pair-annihilation effect is unim-
portant. However, during epochs of quark annihilation at high
temperatures or muon and pion annihilation at T ~ 100 MeV,
the neutrino is an efficient heat transporter, and heat transport
efficiency is slightly enhanced during the annihilation epochs.

Thermally produced baryon-antibaryon pairs are still abun-
dant enough for T 2 30 MeV to modify the pressure from the
perfect gas limit in equation (18). We find

Pb x T(n;z)air + nl%)l/z )

(19)

(20)

2)\3/? s m 15T
A~ 2 _m 1
Mpair (n) (mT) exp< T)(l + 3 m) 21)

is the total proton (neutron) plus antiproton (antineutron)
particle density of a zero chemical potential Fermi gas at tem-
perature T. The baryon mass is taken to be m. The over-
pressure exerted by the net baryon number falls below perfect
gas pressure, since increasing the baryon number of a p, =0
Fermi gas by 2 is equivalent to adding one baryon and annihi-
lating one antibaryon. For a temperature approaching the

where
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Hagedorn temperature T ~ 140 MeV (Hagedorn 1971), the
actual baryonic particle density exceeds the expression for n,,;,
in equation (21) due to the existence of thermally produced
baryonic resonances. Since baryon number can be carried by
additional degrees of freedom, the resulting overpressure due
to extra net baryon number is further decreased for T — Ty
(Alcock, Fuller, & Mathews 1987). Note that equation (20)
reduces to the perfect gas pressure limit of equation (18) when
Npair << M.

pWe can estimate a temperature difference 0 between the
inside of a fluctuation and the cosmic background environ-
ment from pressure equilibrium,

1T
4.f;;§rel

0= — {[ngsir + ﬁb(l + A)2]1/2 - (ngair + ﬁf)”z} N

22

In Figure 5 we illustrate the decrease of fluctuation tem-
perature difference & at high temperatures for three different
fluctuation overdensities A. The results shown in this figure do
not include baryonic resonances. We show the ratio 6/0,,, with
0, the temperature difference derived using perfect gas pres-
sure for baryons but with no baryon-antibaryon pairs. It is
interesting to note that at high temperatures, but after the
QCD transition, fluctuations with net baryon number (g, # 0)
can almost coexist in thermodynamic equilibrium with a van-
ishing chemical potential (u, = 0) phase.

For times earlier than the QCD transition baryon number is
carried by relativistic quarks. The QCD equation of state in
the strong QCD coupling limit (x; ~ 1) is uncertain. The strong
coupling limit obtains for T < 3-5 GeV (Mueller 1985). In the
weak QCD coupling limit (¢, < 1) we can approximate the
equation of state as that of a relativistic ideal Fermi gas with
net baryon number density n, and small baryon chemical
potential u, < T,

7 4 M

P =7 NaT* + 9N, ' 75, (23)

where N, is the number of relativistic quark flavors, and P, is
the total pressure of quark-antiquark pairs plus net baryon

rrr i rrrrrrr o rrr et T e T T

(6/65)

Lo e by by by
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Fig. 5—Plot of the ratio of the temperature (or energy density) deviations
in a fluctuation for two different baryon equations of state against tem-
perature. Here 6, is the deviation using a perfect gas Maxwell-Boltzmann
equation of state ?or neutrons and protons, while J is the deviation including
baryon-antibaryon pairs. We show this ratio for three baryon overdensities A.
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number. The overpressure due to net baryon number is the
second term in equation (23). First-order perturbative strong
interaction corrections would increase this term by a factor
(1 — 2a/m)~! (Mueller 1985). Using equation (23), we obtain
for the temperature difference between the interior and exterior
of a two-zone fluctuation

A
4f 8 T?

We are now in a position to integrate equation (16) and find
by how much a fluctuation inflates. We take F* = 0.747 and
B =2.7762, and we assume that these quantities are approx-
imately temperature-independent. The QCD transition is
taken to be at T = 100 MeV, and the electroweak phase tran-
sition is taken to occur at a temperature above T = 100 GeV.
Our estimate treats all quark and lepton annihilations as
occurring instantaneously at temperature T =m. Quark
masses are taken here to be m, = m; = 0, m;, = 100 MeV, m, =
1.35 GeV, m, = 5 GeV, and m, > 100 GeV. We take the muon
mass as m, = 105.7 MeV and the © lepton mass as m, = 1.78
GeV. We take account of the increase of scale factor times
temperature (RT) and decrease of statistical weight, g, during
the annihilation epochs. The scale factor R depends on tem-

perature as
-1/3 -1
R (% T ’
10.75 100 MeV

assuming complete pion and muon annihilation at T = 100
MeV (g, = 10.75). The time-temperature relationship is

T -2
- V7]
t = (242 s)g (Mev> ,

0=

NI; [(A+1)*-1]. (24)

(25)

(26)

for a simple radiation-dominated expansion. For the early uni-
verse we calculate an average net baryon number density,

fiy = 1.7 x 10799, Q, h2T? . @7

In equation (26) we define the total statistical weight in rela-
tivistic particles to be g =Y, gy(T,/T)* + (3) Xy gAT;/T)*,
where we recognize that decoupled particles may have tem-
peratures (T, T;) which differ from the plasma temperature (T).
The relevant statistical weight for entropy density, g,, enters
into equations (25) and (27) and is defined as g, = Y, g(T;/T)?
+ @) X 9T/ T).

We have done numerical calculations for two-zone square
wave fluctuations based on the above approximations. We
have also generalized this calculation to include many zones of
different n,(x) and have thus obtained a better approximation
to the continuum limit. We will first discuss our results for two
zones and then will present our results for the multizone calcu-
lation in § 3.

In Figure 6 we show the evolution of neutrino mean free
path [11°° = | /R and fluctuation length L,,, = L/R for three
different overdensities, assuming an initial fluctuation length

0o = 1078 m. The proper fluctuation length of very high
amplitude fluctuations increases at almost the same rate as the
neutrino mean free path until the overdensity A is reduced by
several orders of magnitude and the neutrinos become opti-
cally thin on the scale of the fluctuation. Therefore, most of the
damping of nonlinear entropy fluctuations occurs in the diffu-
sive limit (I, < L). Note that the neutrino mean free path
increase, dl,/dt, approaches the speed of light near neutrino
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F1G. 6—Proper radius in units of 10~% m multiplied by R~?, shown as a
function of temperature for three different initial fluctuation amplitudes. In
all three fluctuations an initial radius L,y, = 10™® m is assumed. The fluctua-
tions are distinguished by different initial baryon-to-entropy ratios (n,/s); =
1071, 1073, and 1075. The neutrino mean free path I!°° is also displayed
(dashed line).

—

decoupling (T =~ 1 MeV). The neutrino mean free path and the
fluctuation length appear slightly discontinuous at T = 5 GeV
because of our oversimplified treatment of bb annihilation.
However, the discontinuities are small because of the large
number of degrees of freedom at this epoch in the early uni-
verse. The results of an exact treatment of annihilation for a
single degree of freedom would not differ appreciably from our
estimates.
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Figure 7 shows the results of our two-zone calculation for
the damping of fluctuations by neutrino inflation between
T = 100 GeV and T = 100 MeV. We display the final baryon-
to-entropy ratio (n,/s), of inflated fluctuations as a function of
initial fluctuation length L', for five different initial baryon-
to-entropy ratios (n,/s);. We find considerable convergence in
(ny/s), for a broad range of initial amplitudes (n,/s);, when fluc-
tuations have small initial length scales. Fluctuations with very
small length scales L! 5, < 107 '* m will be damped to a char-
acteristic (n,/s); &~ 2 x 1078, Fluctuations with large initial
length scales show little damping from neutrino inflation. Neu-
trino inflation becomes an important damping process for fluc-
tuations with initial length scales smaller than some critical
length. This critical length decreases as the initial fluctuation
amplitude decreases. In Figure 7 the electroweak epoch
horizon scale (T = 100 GeV) is approximately at the far right-
hand end of the horizontal axis. Large overdensity fluctuations
with large initial length scales have significant damping from
neutrinos during the strong QCD coupling epoch. The uncer-
tainties in the equation of state at this epoch translate into
uncertainties in our damping estimates. We show our results as
dashed lines in this uncertain damping regime.

In Figure 8 we display our results for neutrino inflation of
fluctuations between T = 100 MeV and T =1 MeV. In this
calculation we have neglected the effects of baryonic and
mesonic resonances. Fluctuations with small initial length
scales (Lo < 0.1 m) converge to a final baryon-to-entropy
ratio (n,/s); ~ 1.1 x 10~°. This corresponds to a baryon-to-
photon ratio inside the fluctuation of n ~ 8 x 10~ ° during pri-
mordial nucleosynthesis. Fluctuations with initial length scales
larger than (L{,, = 1 m) have less damping, since neutrinos
become optically thin on the scale of the fluctuation at low
temperatures. The dotted line divides fluctuations containing
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Fic. 7.—Effects of neutrino inflation between the epochs of T = 100 GeV and T = 100 MeV on entropy fluctuations. We give the final baryon-to-entropy ratio
(ny/s) of neutrino-inflated two-zone fluctuations as a function of the initial fluctuation radius L! ,, in meters. We use five different initial (T = 100 GeV) values, (1,/s);.
Dashed lines indicate that (n,/s) . depends on uncertainties in the QCD equation of state in the strong coupling limit. The approximate horizon scale at T = 100 GeV
(denoted electroweak horizon [EWH]) is on the far right-hand side of the horizontal scale.
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dashed line divides fluctuations containing more (right) and less (left) baryonic mass than the baryon mass in the QCD horizon.

less (left) and more (right) baryonic mass than to total baryon
mass in the horizon at the QCD transition epoch (T = 100
MeV).

The effects of neutrino damping on fluctuations between
temperatures of T = 100 GeV and T = 1 MeV are shown in
Figure 9. This figure combines results from Figures 7 and 8.
Our calculation assumes no fluctuation modification from
phase transition effects during the QCD transition epoch. The
dashed lines indicate uncertainties in the damping due to
equation-of-state uncertainties associated with the strong
QCD coupling regime. Even if we were to assume no damping
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FiG. 9—Effects of neutrino inflation on entropy fluctuations over the
history of the universe between epochs of T =100 GeV and T = 1 MeV.
Notation is as in Figs. 7 and 8.

of entropy fluctuations in the strong QCD coupling regime,
Figure 9 would be essentially unchanged. Significant damping
of entropy fluctuations in the strong QCD coupling limit is
unlikely because of the small neutrino mean free path during
this epoch. It is evident that neutrino inflation results in a high
degree of convergence in the final baryon-to-entropy ratio for a
broad range of initial fluctuation amplitudes and length scales.
If neutrino inflation operated only in the homogeneous limit,
we would expect fluctuations of any initial length scale to con-
verge to the same (n,/s),. Most of the neutrino inflation for
fluctuations with length scales in the range 10! m 2 Ligo =
1073 m takes place in the homogeneous regime, so that we see
a fair degree of convergence in (n,/s), for these fluctuations in
Figures 8 and 9.

How sensitive are these results to our assumptions about the
microphysical quantities § and F*, the expansion rate of the
universe, and our simplified treatment of annihilation epochs
and phase transitions? When there is sufficient inflation [A ;S
(1/10)A; with A,, A; the final and initial baryon number
overdensities] from high initial temperatures (T 2 1 GeV), we
can obtain an approximate analytic result for the final baryon-
to-entropy ratio:

1/9 —4/9 4 1/9
n, _ g g N
-2 ~ 4.5 1 7A 2 _ A -9
<s>f 4.5 %10 (100) <5.25> (N,+3Nq>

ﬁ 1/9 F* —4/9
X <2.762> ora1) > @8

Y A\ oo \3(Q,h¥\1°
108 1071°m 0.01 )

where

(28b)
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Quantities in equations (28a) and (28b) which are temperature-
dependent (e.g., g, N,, and N)) should be taken to be their
values at the epoch where the neutrino mean free path is of the
order of the fluctuation length scale. The value of (n,/s), in
equation (28) is only very weakly dependent on the mean free
path (~ f), the total statistical weight (g), and the number of
relativistic quarks N, and leptons N, at temperature T. Fur-
thermore, the effects of neutrino inflation are clearly insensitive
to the average baryon-to-photon ratio (~, h?) and the initial
overdensity A;. There is more significant dependence of the
final ratio (n,/s), on the number of heat transporters (g,) and
the efficiency of the heat transport (~ F*). Uncertainties in the
precise QCD transition temperature will not affect the
outcome of neutrino inflation significantly unless the QCD
transition temperature is very low (T < 100 MeV). Neutrino
inflation is not very efficient after the QCD transition if there
are large numbers of thermally produced baryon-antibaryon
pairs (Fig. 5), as would be the case for a QCD transition tem-
perature T > 100 MeV. We do not expect the annihilation of
pions and muons to modify our results substantially.

2.2. Photon Inflation and Hydrodynamic Expansion

At temperatures lower than T = 30 keV baryon-to-entropy
fluctuations are efficiently damped by photon diffusion and
hydrodynamic expansion against photon Thomson drag
(Alcock et al. 1990). The number density of e* pairs in the
universe remains large compared with the number density of
ionization electrons until the temperature drops below about
T =~ 30 keV. The photon mean free path or, equivalently, the
total photon transport cross section is determined by photon-
electron and photon-positron scattering. When the pairs
finally annihilate, we expect a substantial increase in the
photon mean free path. If the photon mean free path becomes
of the order of or larger than the fluctuation size L, then the
photons go from optically thick to optically thin on this scale.
In the optically thin limit all temperature differences between
the inside and outside of the fluctuation are erased. In this case
we can no longer use radiation pressure to balance the differ-
ence in baryon pressure between the inside and the outside of
the fluctuation. The unbalanced baryon pressure leads to
hydrodynamic expansion of the fluctuation.

In the limit where Klein-Nishina corrections are small
(T < m,), the photon mean free path is

1
L.~ , (29)

O Ne+

where g1 &~ 6.7 x 10725 cm? is the Thomson cross section, and
n,: = n,- + n,. is the number density of electrons plus posi-
trons. At temperatures above the electron rest mass the
photon-electron scattering cross section is smaller than the
Thomson cross section. However, the photon mean free path is
still small in this case, since there are a large number of ther-
mally produced charged particles. Figure 10 shows the photon
mean free path I1°° = [, /R for temperatures below T = 1 MeV.
Figure 3 for R(T) can be used to convert comoving distances
into proper distances.

In Figure 10 we show the photon mean free path for three
different proton fluctuation amplitudes A,,. The proton density,
n,, which equals the net electron density from charge neutral-
ity, is just
n,=n,A,. (30)

4
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FiG. 10.—Photon mean free path [}°° = /R in meters as a function of
temperature. Results are displayed for three different proton fluctuation ampli-

tudes A,,. A fraction of the closure density in baryons, Q, = 0.013 h~2, has been
assumed.

In Figure 10 we neglect alpha particles. The photon mean free
path rises sharply during the epoch of e* e~ annihilation until
the number density of thermal e*e™ pairs drops below the net
electron density at temperatures around T =~ 30 keV. After
e*e” annihilation the photon mean free path depends only on
the net electron density and so tracks the proton density across
a fluctuation. Thus the photon mean free path can vary by
several orders of magnitude across a fluctuation. A large
photon mean free path contributes to efficient damping of
small-scale nonlinear entropy fluctuations. We consider two
limits for damping of fluctuations by this process which are the
analogs of the two limits considered for neutrino inflation.

Fluctuations expand as a result of diffusive photon heat
transport when the photon mean free path is smaller than the
fluctuation length scale I, < L. In this limit the heat diffusion
equation (14) applies, with the photon heat diffusion constant
D, approximately given by

D~ 1, (31)
Getr

where g, is the statistical weight of heat-transporting particles
(photons, g, = 2), and g, is the statistical weight of relativistic
particles still “coupled” to the material in the fluctuation
(9, e*). Using equations (14) and (16), we can obtain an
approximate damping timescale. We take this to be 7,, the time
to double the size of a square wave entropy fluctuation by
photon heat advection,

1A 1 Lioo\ ) T \'2A,+ 3Au
7 T5x10°s\ m 10 keV A, +20u. )’
(32)

where L,,, is the comoving fluctuation length as before, and
Auy, is the “He density defined in a manner analogous to A, in
equation (30). Since we here deal with temperatures well within
the nucleosynthesis epoch, we must allow for a significant “He
mass fraction. Equation (32) assumes complete annihilation of
e*e” pairs and thus applies only at low temperatures T < 20
keV. The denominator in the last factor in equation (32) arises
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from the net electron density within the fluctuation, whereas
the numerator is related to the temperature deviation ¢ in the
fluctuation.

When the photons become optically thin on the scale of the
fluctuation (I, > L), the temperature across the fluctuation
becomes uniform and the fluctuation disintegrates by hydrody-
namic expansion. The overpressure due to extra baryons and
electrons within the fluctuation will drive collective fluid
expansion out of the fluctuation. However, protons moving
through an isotropic photon gas will experience a drag force
proportional to the fluid velocity. As seen from the proton rest
frame, the photon flux against the direction of motion is slight-
ly higher than the photon flux from the opposite direction.
Electrons are dragged along by the protons through electric
forces. These electrons Compton-scatter more often in head-on
collisions transferring some net momentum to the photon gas.
This leads to the Thomson drag force on the moving fluid,
F = (4/3)0r ¢,(v/c) (Peebles 1971). Because of this drag force the
expanding fluid will reach a terminal peculiar velocity v =
drioo/dt,

3 1 dP
VR ————— — ,
401e,n, R? drygo
where dP/dr, is the radial pressure gradient, r, , is the radial
coordinate as measured on our comoving scale, ¢, is the energy
density in photons, and n, =n,- — n,. is the net electron

density. We find for the pressure exerted by baryons and elec-
trons below T =~ 30 keV

2712
P~ Tﬁb{z A+ [n;',fi, + (Z Z; A,-) ] - n;‘,i,} , (34

with the sum running over all nuclei i with nuclear charge Z;.
In this expression the e " e~ pair density divided by 7, is

11 /2)3 m 15T
* oy ——|= T)3/? — =1+ —=— 35
npmr '-lb 2(71_) (me ) exp( T>< + 8 m)’ ( )

e,

(33)

which is similar to equation (21) for baryons. The timescale to
double the size of a square wave fluctuation by hydrodynamic
expansion can be obtained from a characteristic fluid velocity
and a characteristic fluctuation length L,,,. This time scale is
roughly 1, & L, o0/v. After complete e*e ™ annihilation, we find

. 1 Lo\ T \ (24, +3Au.
T 24%x103s\ m 10 keV A, +2Ay. )’
p
(36)

with the notation as before. This hydrodynamic expansion
time-scale is similar to the inflation timescale from diffusive
photon heat transport in equation (32). It is important to note
that the damping timescales for diffusive photon heat flow and
hydrodynamic expansion are independent of fluctuation
amplitude. In Figure 11 we show damping rates for diffusive
photon inflation, 7, ! (dashed line), and hydrodynamic expan-
sion, 7, ! (dash-dot line), for a fluctuation with L,y, = 1 m. In
this figure we also show the reciprocal of the Hubble time,
! ~ (8nGe/3)'/? (solid line) between temperatures of T = 100
keV and T = 1 keV. Damping timescales are shorter than the
Hubble time at this epoch for fluctuations smaller than Ly, <
1 m and for temperatures below T =~ 30 keV. We conclude that
small inhomogeneities will disintegrate rapidly below T = 30
keV. Larger fluctuations, L oo > 1 m, will disintegrate at
somewhat lower temperatures.
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FiG. 11—Fluctuation damping rates due to diffusive photon inflation
(dashed line) and hydrodynamic expansion against Thomson drag (dash-dot
line), and the Hubble expansion rate (solid line), are given as functions of
temperature. The fluctuation length is takenas L, o, = 1 m.

In this work we ignore all nonspherical dissipative modes
(e.g., convection, dendritic instabilities, and Rayleigh-Taylor
instabilities). This approximation is valid over all the range of
conditions we consider except possibly at very late times when
rapid hydrodynamic expansion against Thomson drag occurs.
Simple estimates show that the acceleration at these times is so
small that the surface of an expanding fluctuation is Rayleigh-
Taylor-stable.

2.3. Baryon Diffusion

High-amplitude subhorizon-scale baryon-to-entropy fluc-
tuations in the early universe are modified considerably by
baryons diffusing through the primordial plasma (Applegate et
al. 1987). The baryon diffusion equation in spherical comoving
coordinates, r o, = /R, is

i D i 2 0

or 1100 100 <R2 "ioo 0ry00 Ai) 2;: JilDA;» 37)
where A, is the ratio of the number density of nucleus i to the
total baryon number density, and D; is the diffusion constant
for the ion corresponding to nucleus i. We include in equation
(37) a source term representing changes in the nuclear abun-
dances due to nuclear reactions, so that the coefficients f;; rep-
resent nuclear reaction rates. Up to a numerical factor of order
unity, the baryon diffusion constant D; for nucleus i is

1 1 1
Di~ 3 il 3 Oty
with v; the thermal baryon velocity, I/; the baryon mean free
path, g;; the cross section for the scattering of nucleus i on
particle k, and n, the number density of particle k.

In Table 1 we list the baryon diffusion constants of neutrons
and protons, as well as the heat diffusion constant for photons
in the early universe (Applegate et al. 1987; Banerjee & Chitre
1991; Gould 1993). We show baryon diffusion constants for
the scattering of baryons on individual particle species k. The
effective baryon diffusion constant of nucleus i in the primor-

(38)
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TABLE 1
DirrusioN CONSTANTS, CROSS SECTIONS, AND COSMOLOGICAL IMPORTANCE OF SCATTERING PROCESSES
Scattering Diffusion Cross Cosmological In
Process Constant® Section Importance Code Reference
n+e—-n+e D*=x(9.1 x 10> m? s ') T/MeV)"*(n/MeV3)~*, G, ~ 80 x 10735 m? T > 100 keV and Yes  Applegate et al. 1987
n—n,+n+ n<3x1078
n+p-on+p (3n1’2/4)(c/n )(l/a,,p)(T/m )12 0,, 720 x 107%7 m? T < 100 keV or Yes  Banerjee & Chitre 1991
~(2 65 x 1075 m? 5~ YR(T/MeV)'/(A, Q, h?) ! n>3x10"%all T
n+y-on+y 0,, ~34x1074°m None No  Gould 1993
" x (T/MeV)?
p+e—op+e D @Xn/2)(c/nX1/o,XT/m)'"? 0, ~ 2.6 x 1072° m? 1MeV>T>40keV  No  Banerjee & Chitre 1991
x (T/MeV)~2 log 4, and T < 0.1 keV
6= nlh
p+y-p+y x (-3-)(1t/2)”2(c/n )(l/o”)(T/m )12 ~2x 1073 m None No  Banerjee & Chitre 1991
e+y—e+7y D*~(O2m sTI(T/MeV) ™3 a —O’T~67>(10 22m? 40keV>T>0.1keV Yes
(proton diffusion)
y+e—y+e D*=x(34x1072m?s )n,/MeV3)! or T < 30 keV Yes

(heat diffusion)

* An asterisk following D means that D was estimated assuming D = vl =~ v/(on,).

dial plamsa due to all scattering is

RR = (39)

Table 1 also displays the relevant cross sections and the
relative cosmological importance of individual scattering
processes.

Neutrons diffuse relatively easily through the primordial
plasma. At temperatures above T = 100 keV, neutron diffu-
sion is limited by magnetic moment scattering on electrons and
positrons. However, at lower temperatures (T < 100 keV), or
in high-density fluctuations with a local baryon-to-photon
ratio n = 3 x 10~8, neutron diffusion is limited by nuclear
scattering on protons. Thus, the effective damping of high-
amplitude fluctuations (A > 1) by baryon diffusion is a nonlin-
ear process, since neutron diffusion is less efficient for a higher
proton density.

Before the freeze-out from weak equilibrium (T =~ 1 MeV)
there is no segregation between neutrons and protons, and
baryons only diffuse efficiently during the fraction of time they
spend as neutrons. After weak equilibrium freeze-out, protons
and neutrons diffuse independently, and, since protons and
neutrons have different diffusion constants, the result will be
spatial segregation of these species. Proton diffusion has negli-
gible effects above T =~ 30 keV, except for the very smallest
fluctuations L,,, < 1 m. However, such small fluctuations are
damped efficiently by baryon diffusion before weak freeze-out.

For temperatures above T ~ 40 keV Coulomb scattering of
protons off electrons and positrons dominates the proton diffu-
sion constant. This is because protons move through the
plasma as independent particles; in particular, protons do not
drag along electrons. The proton electric charge is shielded by
plasma electrons, since the Debye screening length is much
smaller than a typical interparticle spacing (Applegate et al.
1987). The diffusivity of heavy nuclei for temperatures above
T ~ 40 keV should also be limited by Coulomb scattering of
the nuclei off electrons and positrons. A simple estimate for the
diffusion constant of nuclei relative to that of protons can be
easily obtained from equation (38). The diffusivity of nuclei
should be suppressed relative to the diffusivity of protons
because of a larger Coulomb cross section for the scattering of
e*e” off nuclei and a smaller thermal velocity of the nuclei.
For a nucleus with nuclear charge Z; and nucleon number A4;,

the Coulomb cross section is Z? times larger than that for
protons and the thermal velocity is 1/4; times smaller than the
proton thermal velocity. This leads to a suppression factor of
the diffusivity of nuclei relative to that for protons of (1/Z?4,).

In the temperature range 40 keV 2 T = 0.1 keV, Compton
scattering of electrons off photons limits proton diffusion. In
contrast to the situation at higher temperatures, the dilute
e*e” plasma at lower temperatures is inefficient in shielding
isolated charges. Charge neutrality then requires a proton and
an electron to move together, and the effective proton diffusion
constant is the smaller of the electron diffusion constant and
the proton diffusion constant. Nuclei have to drag along a
cloud of Z; electrons. Naively, we may expect the diffusion
constant for nuclei to be suppressed by a factor of 1/Z; relative
to that of the proton-electron system. This is because there are
Z; as many electrons scattering off photons, and the probabil-
ity of a change in momentum of the nucleus-electron cloud
system is Z; times as large as that for the proton-electron
system. Below T ~ 0.1 keV proton and nucleus diffusion is
again limited by Coulomb scattering as a result of the
temperature-dependent increase of the Coulomb cross section.

It is instructive to compute the diffusion length of baryons,
d(t). This is the rms distance a baryon diffuses in time ¢. The
diffusion length d,,, = d/R in the early universe becomes
(Applegate et al. 1987)

6 12
dyoolt) = I:RZ J~D(t )dt] s

and a simple integration through the e*e™ annihilation epoch
yields the results displayed in Figure 12. In this figure we show
d7o, for neutrons as a function of the temperature of the uni-
verse for three different local baryon-to-photon ratios
(n=1x10"% n=35x10"' and n=35x 10712), This
figure also shows d%,, for protons. It is evident that baryon
diffusion is inhibited in large-amplitude fluctuations.

An approximate timescale to double the size of a square
wave fluctuation by baryon diffusion is

?
D,’

(40)

Ty R

(1)

where D, is the relevant baryon diffusion constant and L is the
fluctuation length scale. Note that the damping timescale is
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independent of the fluctuation amplitude A provided that D, is
independent of A. In Figure 13 we compare the timescales for
neutron diffusion limited by magnetic moment scattering
(short-dashed line), neutron diffusion limited by nuclear scat-
tering in a fluctuation with # = 6 x 10~° (dash-dot line), and
proton diffusion (long-dashed line) to the Hubble time (solid
line) between temperatures of T = 10 MeV and T = 10 keV.
For a fluctuation length L, = 1 m we find proton diffusion
to have negligible effects above T =~ 20 keV. Neutron diffusion
is seen to be dependent on the local proton density. A high
density fluctuation with characteristic interior baryon-to-
photon ratio # ~ 10~ * and fluctuation length L, ~ 1 m will
not be much affected by neutron diffusion whenever the tem-
perature is above T' = 50 keV.
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FiG. 13.—Inverse of fluctuation damping timescales from baryon diffusion,
displayed as functions of temperature. Shown are the neutron diffusion
damping rate limited by ne scattering (short-dashed line), neutron diffusion
damping rate limited by np scattering (dash-dot line), and proton diffusion
damping rate limited by ey scattering (long-dashed line). For comparison the
Hubble expansion rate (solid line) is given. The key in the upper left-hand
corner of the figure displays the dependence of the different timescales on
assumed fluctuation radius L,,, = 1 m, average fraction of closure density in
baryons Q, = 0.25 h~?, and proton fluctuation amplitude A, = 1.
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3. EVOLUTION OF ENTROPY FLUCTUATIONS IN THE
EARLY UNIVERSE

3.1. Numerical Simulation

We have simulated the evolution of high-amplitude baryon-
to-entropy fluctuations between temperatures of T = 100 MeV
and T = 10 keV. The numerical simulation presented here
does not include the synthesis of elements below temperatures
of T ~ 100 keV. We evolve a spherical region of the universe,
which contains an initially Gaussian-shape fluctuation at its
center. We assume that the horizon volume is filled with such
spherical regions, so that the mean separation of fluctuation
centers is approximately twice the cell radius. These assump-
tions lead to reflective boundary conditions for baryon number
flux and heat flux at the spherical cell’s edge. We represent a
fluctuation by a Lagrangian grid with 60 zones in the spherical
cell.

Baryon diffusion, neutrino inflation, and photon inflation
are treated in a simple intuitive manner. Initially, we take
each zone to be in pressure equilibrium. This pressure equi-
librium configuration is characterized by a temperature devi-
ation 6° and proton (neutron) fluctuation amplitudes AY (A9) in
each zone. Diffusive processes during a time interval dt will
change the temperature differences in each zone by §° — 61,
and the baryon densities by A9, — A} . This will perturb the
existing pressure equality, and will result in an adiabatic
expansion (contraction) of zones, until pressure equilibrium is
reestablished for new zone values of 4, A,, and A,. The simple
algorithm used here has the advantage of being easily tested
against our analytic calculations for a two-zone square wave
fluctuation.

To obtain the changes in energy density from diffusive pro-
cesses in zone i during a time interval dt, we rewrite the heat
diffusion equation (14) in integral form, which yields

dt

1 _ 50
ol =67 + 3 3
Xi — Xi-1
0 0
0ir1 — 6;

D , -t dd
x<6R2x,~ xi+1'—xi—1—3.[) x dtdx>’ 42)

where x; is the outer boundary of the ith zone. In this expres-
sion x; is measured on our comoving T = 100 MeV scale, so
that x; is shorthand notation for x},,. For homogeneous neu-
trino heat transport we find a change in the energy density in
time interval dt given by

5t = 5,9(1 —diF* v 1) :

Gesr Ly

43)

For this special case the heating is uniform across all zones i in
the fluctuation.

Changes in baryon density due to baryon diffusion are
obtained from an integral diffusion equation similar to equa-
tion (42). However, efficient neutron diffusion at low tem-
peratures necessitates the use of an implicit algorithm. We
replaced neutron densities at time ¢, on the right-hand side of
equation (42) by neutron densities at time ¢,. The resulting
matrix equation can be solved by the standard methods of
Gaussian elimination and back-substitution. In addition, we
added weak interaction conversion between neutrons and
protons. Weak reaction rates, as well as the evolution of the
scale factor R, temperature T, and statistical weight g are
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treated as in the primordial nucleosynthesis code of Wagoner,
Fowler, & Hoyle (1967) as updated by Kawano (1992).

Having computed the changes in energy and baryon content
of the fluctuation in the time interval dt, from heat transport,
baryon diffusion, and weak interactions, we then allow each
zone to expand adiabatically to a new pressure equilibrium.
For this purpose we fix the common pressure in all zones after
adiabatic expansion to equal the average pressure in the whole
spherical cell in which the simulation is performed. Thus, it is
easy to compute the fractional volume change of zone i,
(dV/V);, needed to attain pressure equilibrium

av
(—V—>i ~ 36} — 89) . (44)

We can leave out changes in the baryon density in equation
(44), since the associated changes in baryon pressure in differ-
ent zones are negligible compared with the pressure changes
from heat transport. This approximation is good, since the
baryon-to-photon ratio is everywhere small in our calculation.

Both photons and neutrinos eventually will decouple on the
scale of the fluctuation. The assumption of pressure equi-
librium breaks down when the photons decouple from the
fluctuation (I, > L). The simulation of the hydrodynamic
expansion of a fluctuation is nontrivial, since the photon mean
free path [, varies strongly over the spherical cell radius. We
encounter situations where photons are still in the optically
thick regime in high-density regions of the fluctuation but are
in the optically thin regime in lower density regions. In this
case the damping of the fluctuation proceeds by diffusive heat
transport in the core region of a fluctuation where the baryon
density is high, and by hydrodynamic expansion near the
boundary of the fluctuation. Numerical simulation of this
process requires the introduction of independent sets of
photon zones and baryon zones.

Neutrinos are easier to treat. The neutrino mean free path [,
is independent of the baryon overdensity A, and neutrinos go
quickly from the optically thick limit to the optically thin limit.
Therefore, it is a fairly accurate approximation to switch from
diffusive neutrino heat transport to homogeneous neutrino
heat transport when the neutrino mean free path becomes
larger than the width a of the Gaussian fluctuation.

In the following we will summarize the results of our numeri-
cal simulation. Figures 14-16 show the evolution of three
sample high-density spherically condensed Gaussian entropy
fluctuations for temperatures between T = 100 MeV and
T = 10 keV. The initially Gaussian fluctuations are character-
ized by four quantities: the average baryon-to-photon ratio 5
(equivalently Q, h?) within the spherical simulation volume, the
radius of the spherical simulation volume L, the ratio of the
radius L}, to the Gaussian width of the baryon density dis-
tribution a, and the ratio of the baryon density at the core of
the fluctuation, nf!, to the baryon density at the edge of the
simulation volume, nf, A = (n/nf). For each sample we show
nine evolution snapshots of the fluctuation at different tem-
peratures. We plot the logarithm of the neutron and proton
fluctuation amplitudes (log;, A, and log;, A,) as functions of
the radius r,,, = r/R. We reference all proper lengths to the
values they would have at T = 100 MeV to remove the effects
of the overall Hubble expansion. Solid lines indicate the local
proton fluctuation amplitude, A, whereas dotted lines indicate
the local neutron fluctuation amplitude, A,.

In Figure 14 the effects of neutrino inflation are evident.
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Very high amplitude fluctuations with an initial central
baryon-to-entropy ratio (1,/s); = 1.5 x 10™5 are damped to a
characteristic flat-top fluctuation with final baryon-to-entropy
ratio (m/s); & 1.5 x 1077 (corresponding to an ultimate
baryon-to-photon ratio of n, &~ 8 x 107 7). The limiting ampli-
tude is attained between temperatures of T ~ 100 MeV and
T =~ 20 MeV, depending on initial fluctuation parameters.

The modifications of fluctuations due to neutron diffusion
are evident in all three sample evolution plots. Figure 16 illus-
trates that small-scale fluctuations, L << 0.5 m, are almost com-
pletely homogenized and damped out before the onset of
primordial nucleosynthesis at T &~ 100 keV.

Photon inflation and the hydrodynamic expansion of fluc-
tuations at low temperatures are seen to be rapid and rather
violent events. This is evident in Figure 15. Between tem-
peratures of T =~ 35keV and T = 10 keV these processes lower
the core proton density of fluctuations by several orders of
magnitude. The effects of proton diffusion at low temperatures
(T =~ 20 keV) add to the violent decay of such small-scale fluc-
tuations.

4. CONCLUSIONS

In the present study we have investigated the evolution of
fluctuations in the baryon-to-photon ratio (entropy
fluctuations) between the end of a cosmic electroweak phase
transition at T ~ 100 GeV and the end of primordial nucleo-
synthesis at T =~ 5 keV. Our study focused on nonlinear
subhorizon-scale fluctuations. Entropy fluctuations may result
from an epoch of the early universe where there is a departure
from local thermodynamic equilibrium such as a first-order
electroweak phase transition or an inflationary period. We
have shown that entropy fluctuations evolve rapidly to an iso-
baric character.

Fluctuations are found to damp by five different physical
processes: neutrino inflation in the diffusive and homogeneous
limits, photon inflation and hydrodynamic expansion, and
baryon diffusion.

Neutrino inflation provides the dominant damping of
entropy fluctuations between temperatures of T =~ 100 GeV
and T ~ 1 MeV. Fluctuations are damped by neutrino heat
transport in such a way that almost any initial fluctuation
amplitude converges to a generic final fluctuation amplitude.
Fluctuations of high initial amplitude and with an initial fluc-
tuation length Lo, < 107 !* m become damped to a charac-
teristic baryon-to-entropy ratio (m,/s)~ 2 x 1078, These
fluctuations evolve to this amplitude between T =~ 100 GeV
and T =1 GeV, depending on their initial characteristics.
Fluctuations in the length scale regime 1073 m < L,y < 107!
m are damped to a characteristic baryon-to-entropy ratio
(ny/s) =~ 1.1 x 1073 (corresponding to an ultimate baryon-to-
photon ratio 1~ 8 x 107°) at an epoch between T ~ 100
MeVand T ~ 1 MeV.

The effects of photon inflation and hydrodynamic expansion
on entropy fluctuations are shown to be significant at tem-
peratures below T = 30 keV, corresponding to the approx-
imate completion of e*e™ annihilation. Fluctuations with an
initial fluctuation length L,,, < 1 m are almost completely
erased by these processes by the time the temperature has
reached T =~ 20 keV.

Our numerical calculations of fluctuation evolution include
all relevant diffusive and hydrodynamic damping processes.
We do not include any modifications due to nuclear reactions
here. Clearly our results have important implications for pri-
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mordial nucleosynthesis yields in inhomogeneous cosmologies.
We will address these issues in future work.
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