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Abstract

Groups Acting on Products of Trees

by

Nicolas Ryan Brody

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Ian Agol, Chair

In this thesis, we explore many aspects of groups acting on trees and on products of trees.
These ideas are central to the field of geometric group theory, the study of infinite groups by
their large-scale behavior. Many of our techniques are algebraic and arithmetic in nature.
Most of this work is motivated by the following question:

Question 1. If G is the fundamental group of a closed surface, can G act freely on a locally
compact product of trees?

In fact, the more general question of whether a hyperbolic group which is not virtually free
can act properly on a locally compact Euclidean building is open. Of course such an action
gives a cubulation of the group in perhaps the simplest combinatorial type of cube complex,
so this is a necessary condition on the group. For instance, which right-angled Coxeter or
Artin groups admit proper actions on products of trees?

In a landmark paper of 1987, Gromov defines the class of hyperbolic groups, and nearly
every branch of modern geometric group theory is represented in Gromov’s original paper.
However, Dehn’s work in 1910 and 1911 may be viewed as the earliest work in geometric
group theory. For several decades, Dehn’s work was viewed with a more combinatorial lens,
until Gromov emphasized the intimate connection with hyperbolic geometry.

Thurston’s work in 3-dimensional topology together with Gromov’s hyperbolic groups aligned
topology and group theory. One might ask to what extent is a 3-manifold determined by its
fundamental group? The Poincaré conjecture is a precise version of this question, famously
resolved by Perelman. In a sense, the fundamental group of a 3-manifold is an excellent
replacement for the manifold itself, and in the finite-volume hyperbolic case, the fundamental
group miraculously contains all of the metric information!

For closed hyperbolic surfaces, the fundamental group knows only the genus, and there is
a high-dimensional space of representations a given surface can support. For a 4-manifold,



the fundamental group says relatively little about the topology or the geometry. Every
countable group can occur as the fundamental group of a 4-manifold, and there is a vast
land of simply connected four-manifolds. However, it is interesting to note that, at least
up to finite index, closed hyperbolic 3-manifold fundamental groups are determined by the
data of an automorphism of a surface group. Upon replacing “hyperbolic 3-manifolds” with
“discrete subgroups of PSL2(C)”, it is tempting to consider “subgroups of PSL2(C)”. This is
the approach we take in this thesis. We observe that PSL2(Q) acts properly discontinuously
and cocompactly on a “restricted” product of infinitely many hyperbolic planes, 3-spaces,
and finite valence trees. By allowing transcendental entries, we get a similar statement, but
not all of the trees will have finite-valence. But in fact, subgroups of PSL2(C) with cofinite
volume are actually already conjugate into PSL2(Q) anyway. That is to say, every hyperbolic
3-manifold of finite volume comes equipped with a canonical action on a product of infinitely
many finite-valence trees.

One can ask which properties of discrete subgroups of PSL2(C) might carry over to these
more general subgroups of PSL2(C). Some celebrated properties of Kleinian groups include
coherence, tameness, LERFness. It is unknown to what extent each of these properties might
hold in this more general setting.
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Chapter 1

Background

1.1 Introduction

In this thesis, we explore many aspects of groups acting on trees and on products of trees.
These ideas are central to the field of geometric group theory, the study of infinite groups by
their large-scale behavior. Many of our techniques are algebraic and arithmetic in nature.
Most of this work is motivated by the following question:

Question 2. If G is the fundamental group of a closed surface, can G act freely on a locally
compact product of trees?

In fact, the more general question of whether a hyperbolic group which is not virtually
free can act properly on a locally compact Euclidean building is open. Of course such an
action gives a cubulation of the group in perhaps the simplest combinatorial type of cube
complex, so this is a necessary condition on the group. For instance, which right-angled
Coxeter or Artin groups admit proper actions on products of trees?

In a landmark paper of 1987, Gromov defines the class of hyperbolic groups, and nearly
every branch of modern geometric group theory is represented in Gromov’s original paper.
However, Dehn’s work in 1910 and 1911 may be viewed as the earliest work in geometric
group theory. For several decades, Dehn’s work was viewed with a more combinatorial lens,
until Gromov emphasized the intimate connection with hyperbolic geometry.

Thurston’s work in 3-dimensional topology together with Gromov’s hyperbolic groups
aligned topology and group theory. One might ask to what extent is a 3-manifold determined
by its fundamental group? The Poincaré conjecture is a precise version of this question,
famously resolved by Perelman. In a sense, the fundamental group of a 3-manifold is an
excellent replacement for the manifold itself, and in the finite-volume hyperbolic case, the
fundamental group miraculously contains all of the metric information!

For closed hyperbolic surfaces, the fundamental group knows only the genus, and there
is a high-dimensional space of representations a given surface can support. For a 4-manifold,
the fundamental group says relatively little about the topology or the geometry. Every
countable group can occur as the fundamental group of a 4-manifold, and there is a vast
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land of simply connected four-manifolds. However, it is interesting to note that, at least
up to finite index, closed hyperbolic 3-manifold fundamental groups are determined by the
data of an automorphism of a surface group. Upon replacing “hyperbolic 3-manifolds” with
“discrete subgroups of PSL2(C)”, it is tempting to consider “subgroups of PSL2(C)”. This is
the approach we take in this thesis. We observe that PSL2(Q) acts properly discontinuously
and cocompactly on a “restricted” product of infinitely many hyperbolic planes, 3-spaces,
and finite valence trees. By allowing transcendental entries, we get a similar statement, but
not all of the trees will have finite-valence. But in fact, subgroups of PSL2(C) with cofinite
volume are actually already conjugate into PSL2(Q) anyway. That is to say, every hyperbolic
3-manifold of finite volume comes equipped with a canonical action on a product of infinitely
many finite-valence trees.

One can ask which properties of discrete subgroups of PSL2(C) might carry over to these
more general subgroups of PSL2(C). Some celebrated properties of Kleinian groups include
coherence, tameness, LERFness. It is unknown to what extent each of these properties might
hold in this more general setting.

1.2 Hyperbolic Groups

Suppose G is a group, and S is a subset. We can construct a graph whose vertex set is G,
and the edge set corresponds to G×S: for each element s ∈ S, we have an edge (g, gs). This
graph is called the Cayley graph Cay(G,S) of G with respect to S. If S is a generating set for
G, then every element of G is a (finite) product of elements of S and their inverses. Upon
writing g = s1 . . . sn, we observe that there is a corresponding path in the Cayley graph
from the identity of G to g along the partial products s1 . . . sk. Consequently, Cay(G,S)
is connected exactly when S generates G. A generating set determines a metric dS on G,
which measures the length of a minimal path in the Cayley graph between two elements of G.
When S is a finite generating set, this metric space is proper (metric balls are compact) and
geodesic (every pair of points is connected by a path whose length is the distance between
the two points).

Suppose X is a geodesic metric space, and let x, y, z ∈ X. A triangle in X is the union
of three geodesics connecting these three points. A triangle is δ-thin (δ ≥ 0) if every point
in the interior of one of the geodesics is contained in the δ-neighborhood of the other two
sides. A metric space is called δ-hyperbolic if every triangle is δ-thin, and called hyperbolic
if it is δ-hyperbolic for some δ ≥ 0. Finally, a finitely generated group is called hyperbolic if
it admits a finite generating set S for which Cay(G,S) is hyperbolic.

A space is 0-hyperbolic exactly when every triangle has one side contained in the union
of the other two sides. Such a space is called an R-tree. The Cayley graph of a free group
with respect to a free generating set S is a 2|S|-regular tree.

Proposition 1. If a group G acts freely on a tree, G is free.

Proof. A free action on a tree is properly discontinuous, because the 1/2-neighborhood of a
vertex cannot intersect a translate of itself. The quotient of the tree by G is a graph, and
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the fundamental group of a graph is free.

Definition 1. A surface group is the fundamental group of a closed orientable surface of
genus at least two.

Upon defining hyperbolic groups, Gromov asks whether every hyperbolic group which is
not virtually free might contain a surface group. This question has motivated many major
works in topology and geometric group theory. It is especially natural in light of the following
fact:

Proposition 2. If a group G acts properly discontinuously and cocompactly on the hyperbolic
plane by orientation-preserving isometries, G is a surface group

A still stronger result due to Tukia is the fact that a finitely generated group is quasi-
isometric to the hyperbolic plane if and only if it has a finite index subgroup which is a
surface group.

Many cases of the “surface subgroup conjecture” have been resolved, perhaps most no-
tably in the work of Kahn and Markovic [40], who find quasiconvex surface groups in fun-
damental groups of hyperbolic 3-manifolds of finite volume. This work was a key ingredient
in Agol’s resolution of the virtual Haken and virtual fibering questions of Thurston.

1.3 Bass-Serre Theory

The fundamental theorem of covering space theory in algebraic topology asserts that there is
a Galois correspondence between the collection of connected covering spaces of a topological
space X and its fundamental group π1(X). Under relatively mild assumptions, the universal

cover !X of X exists, and π1(X) acts on it freely by deck transformations. In this case, we

have X = !X/π1(X). In other words, the process of constructing the universal cover of X is
reversed by taking the quotient by the deck group.

Suppose we want to study this problem in the other direction. If a group G acts on a
space X, when do we have π1(X/G) = G? This holds under the assumptions that G acts
freely and properly discontinuously on a connected and simply connected space.

It is very easy to construct a great number of examples of group actions that violate
these assumptions, in different sorts of ways.

• If Sn acts on {1, . . . , n} by permutations, the quotient space is a point, which is simply
connected. In this action, the stabilizer of a point is a copy of Sn−1. The space is not
connected, and the action is not free.

• If R acts on R by translations, the quotient space is a point, which is contractible.
This action fails to be properly discontinuous.

• If Z/nZ acts on S1 by rotation, the quotient space is a circle. The space is not simply
connected.
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• If Z/nZ acts on R2 by rotation, the quotient space is topologically R2. The action is
not free.

• If S3 acts on the edges of the tree which looks like the letter “Y” by permuting the
three edges, the quotient is an edge.

Studying the failure of “π1(X/G) = G′′ in each of these cases actually instructs us to
various approaches to resolving the issue. Bass-Serre theory provides a solution to this
problem by (i) restricting the type of space X is allowed to be, (ii) changing what we mean
by X/G, and (iii) changing what we mean by “π1”. As a remark, each of the above actions
can be “fixed” by a suitable adjustment.

Theorem 1. Suppose G acts on a tree T . Then the fundamental group of the graph of
groups T/G is G.

Theorem 2. Let A ⊆ X be connected topological spaces with inclusion map ι and a ∈ A,
and let p : (Y, b) → (X, a) be a connected covering space. Let B = p−1(A). Then we have

(i) π0(B, b) = π1(Y, b) \ π1(X, a)/ι∗π1(A, a)
(ii) π1(B, b) = (ιA)

−1
∗ (p∗(π1(Y, b))).

(B, b) (Y, b)

(A, a) (X, a)

ιB

p p

ιA

Proof. First, we note that the set of preimages of the basepoint p−1(a) is naturally identified
with the coset space π1(Y, b) \ π1(X, a). A (homotopy class of a) path from b to another
preimage c of a maps to a loop in X based at a, and precomposing such a path with a loop
at b in Y corresponds to left-multiplying with an element of π1(Y, b). If we postcompose a
path from b to c with a path from c to c′, where the path is contained in a component of
the preimage B of A, this path projects to a loop in the subset A of X, or in other words,
an element of ι∗π1(A, a), hence determines the same component of π0(B, b). This proves the
first statement.

Note that B may be disconnected, so its fundamental group may depend somewhat
dramatically on the choice of basepoint b. The inclusion ιA : A → X determines a homomor-
phism (ιA)∗ : π1(A, a) → π1(X, a), which need not be injective (or surjective), although the
homomorphism induced by the covering map p is injective. The claim is that the subgroup
of π1(A, a) which the based covering space (B, b) corresponds to is (ιA)

−1
∗ p∗(π1(Y, b)).

To see this, we suppose α is a loop in A based at a, and lift this to a path in B. Since
A ⊆ X, α may be regarded as a loop in X, and lifts to a path based at b in Y . The path it
lifts to is a loop in Y if and only if it lives in the p∗-image of π1(Y, b). But if it does lift to a
loop based at b in Y , it lifts to something contained in the preimage B of A, since the path
is contained in A. If it does not lift to a loop in Y , it is not an element of π1(B, b).
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Definition 2. For the particular formulation of Bass-Serre theory we carry out here, we will
consider a graph as a small category Γ satisfying some additional properties. So Γ consists
of the data of a collection of a set of objects, and for every pair of objects, a collection of
morphisms between them. The objects of Γ consist of the disjoint union of a vertex set V
and an edge set E, together with maps ∂−, ∂+ : E → V and an inversion map ι : E → E,
satisfying ∂−ι = ∂+, and ι2 = 1. We denote ι(e) = e, and we will often just describe the
edge set of a graph by one of its oriented edges, with the understanding that the opposite
orientation is also present. This can be summarized with the diagram below.

E E

V

1E

∂+

ι

ι

∂−

1E

Now a graph of groups over Γ is a functor G : Γ → Grp, where Grp is the category of
groups with injective homomorphisms. We think of labeling the vertices of Γ with groups,
and the edges with common subgroups of the initial and terminal vertex groups.

Let Pathn be the (finite) category in which the vertex objects consist of {v0, v1, . . . , vn}
and the edge objects are {e1, . . . , en}, where ∂−(ei) = vi−1 and ∂+(ei) = vi. A path of length
n in Γ is a functor γ : Pathn → Γ. We say that γ starts at γ(v0) and ends at γ(vn). It is a
loop if these are equal. If γ1 ends at v and γ2 starts at v, we obtain a path γ1 ◦ γ2 in Γ, of
length ℓ(γ1) + ℓ(γ2).

We also define the augmented path category !Pathn to be the category that is obtained
by adding “type 2 morphisms,” ai from vi to itself, and bi from ei to itself. The augmented
group category, "Grp, is the category of groups with type 1 morphisms, which correspond to
injections between groups, and type 2 morphisms, which can only go from one object of Grp
to itself, and these morphisms are in bijection with the elements of that group. If fg and fh
are type 2 morphisms in a group G, we have fh ◦ fg = fgh.

If γ : Pathn → Γ is a path, a group path above γ is a commutative diagram

!Pathn "Grp

Pathn Γ

!γ

γ

G

which thereby labels each vertex and each edge of the path γ with an element of the
corresponding group G(v) or G(e).
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We are at last in a position to define the path groupoid Π1(GΓ). The objects of the path
groupoid are the collection of all G-group paths above all paths in Γ, up to homotopy, which
is the equivalence relation generated by the following three types of relations.

A relation of type 0 declares that if γ1 and γ2 are paths of length 0 based at the same
vertex, we have γ1 ◦ γ2(a0) = γ1(a0)γ2(a0).

A type 1 relation declares that γ0 ∼ γe ∼ γ1, where γ0 is the group path γ0(v0) = ∂−(ge),
γ0(e1) = 1 and γ0(v1) = 1, γe is the group path γ0(v0) = 1, γe(e1) = ge, and γ1(v1) = 1,
and γ1 is the group path γ0(v0) = 1, γe(e1) = 1, and γ1(v1) = ∂+(ge). This relation declares
that a group element on an edge can be pushed onto an adjacent vertex, and that if a group
element on a vertex is in the image of an edge map, it can be pulled all the way across to
the other vertex.

A type 2 relation declares that ee = 1∂−e. If there is a path of length two which begins
at a vertex v, travels along an edge e to an adjacent vertex w, and then backtracks along e
back to v, this is homotopic to the constant map at v when each vertex and edge is labeled
with the identity of the corresponding group. Note that by using relations of type 0 and
type 1, we can sometimes remove backtracking when some group elements are nontrivial
(specifically, if the group element at the vertex w is in the image of the map from e).

There is a (partial) multiplication on the path groupoid, which is the composition of two
group paths when the first one ends where the second begins.

Finally, if v0 ∈ Γ, the fundamental group of the graph of groups π1(GΓ, v0) is the collec-
tion of group paths lying above loops based at v0, considered up to homotopy, where the
multiplication is concatenation.

The Bass-Serre tree for GΓ is the tree whose vertices consist of ∼-classes of paths based
at v0, with an edge from a reduced path of length n to a reduced path of length n+ 1 when
the first one is a prefix of the second.

Example 1. Consider the graph of groups on the graph Γ with vertices {v0, v1} and edges
{e1, e2, e3}, with ∂0(ei) = v0 and ∂1(ei) = v1. Then the data of a functor G : Γ → Grp
requires us to select three edge groups with six injections into the two vertex groups. We
will take G(v1) = 〈l1, l2, l3 | l1l2l3〉 and G(v2) = 〈r1, r2, r3 | r1r2r3〉, and three edge groups
G(ei) = Z.

v0 v1

e1
e2
e3

Z

F2 Z F2

Z

r1

l1

l2

r2

l3

r3

Note that F2 happens to be the fundamental group of the topological realization of the
underlying graph in this example, which we will refer to as a θ-graph. We will now construct
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a space whose fundamental group is the same as the fundamental group of this graph of
groups.

Begin with a θ-graph situated at each vertex of this graph, and replace the midpoints
of the edges with circles. We now have topological spaces whose fundamental group is the
corresponding vertex or edge group. Then, for the edge injections, we glue on mapping
cylinders corresponding to the homomorphisms. The resulting space is homeomorphic to a
genus two surface, which coincides with the fundamental group of this graph of groups.

Example 2. When each vertex and each edge group is trivial, the fundamental group of
the graph of groups is simply the usual fundamental group of the underlying graph, hence a
free group whose rank is one minus the Euler characteristic of the graph. As a special case,
when the graph consists of a single vertex and a loop at that vertex, labeled by the trivial
group, the fundamental group is Z.

If the graph consists of a single edge labeled by the trivial group, the fundamental group
is the free product of the vertex groups. If the two vertex groups are cyclic groups of order 2
and 3, the Bass-Serre tree is a (2, 3)-regular tree (or the first subdivision of a 3-regular tree).
Note that the modular surface deformation retracts to the geodesic segment between its two
singular points, and the preimage of this is a 3-regular tree embedded in the hyperbolic
plane.

If the graph is a loop with the vertex and edge groups Z, and the edge group embeds
along ∂− as x +→ mx and along ∂+ as x +→ nx, the fundamental group of the graph of groups
is the Baumslag-Solitar group BS(m,n).

If ϕ is a homotopy equivalence X → X, there is a graph of groups on a loop with vertex
and edge groups π1(X), and the edge group embeds in the vertex group along ∂− as the
identity, and it embeds in the vertex group along ∂+ as ϕ∗. The fundamental group of this
graph of groups is the fundamental group of the mapping torus.

As a special case, if ϕ is a pseudo-Anosov map from a closed hyperbolic surface Σ to
itself, the fundamental group of this graph of groups is the fundamental group of the closed
hyperbolic manifold which fibers over Σ with monodromy ϕ.

We remark that a topological realization of the graph of groups is always possible by
replacing each vertex group with a K(Gv, 1), and edge groups with K(Ge, 1)× [−1, 1], where
the two ends are glued to the adjacent vertex groups by continuous maps realizing the π1-
injections. Then the fundamental group of the graph of groups is just the usual fundamental
group of this topological space.

Suppose a group G acts on a tree T without inverting an edge (although by subdividing
such edges, this assumption is merely cosmetic). Then the quotient graph of groups is T//G,
where the underlying graph is the usual quotient graph, and the vertices and edges are
labeled by their stabilizers. This depends on a choice of lift to the tree, but any two vertices
in the same orbit have conjugate stabilizers. Since the group acts without inversions, if g
fixes an edge, it necessarily fixes the two vertices adjacent to it, and so G(e) naturally injects
into both G(v) and G(w).
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Property (FA)

A group is said to have “Property (FA)” if any action on a tree has a global fixed point (a
point in the tree that is fixed by every element of the group). This implies that the group
has no nontrivial graph of groups decomposition. Serre proves that a cocompact triangle
group Gp,q,r = 〈a, b, c | ap, bq, cr, abc〉 has property FA. A torsion element must act on any
CAT(0) space with a global fixed point, and so each of a, b, c must fix a vertex. One can
show that the fixed point of c must lie on the path between the fixed points of a and b, and
since this is symmetric in a, b, c, all three elements must fix the same point.

If we are interested in groups which act on locally finite trees, or even regular trees,
there is another type of restriction. Since a torsion element has a global fixed point, it must
permute the adjacent vertices, and permute the sphere of radius two in a “blocked” way.
This can be formalized in understanding the automorphism group of a rooted tree in terms
of an iterated wreath product. If the tree is k-regular and p is a prime larger than k, there
is no nontrivial action of Z/pZ on the tree whatsoever.

Say a group has Property (FnA) if any action on a product of n trees has a global fixed
point. Let H1, H2 be two cocompact triangle groups. By Selberg’s lemma, they have surface
subgroups of finite index, and since all surface groups are commensurable, there is a subgroup
G0 of finite index in each. Then the group G = H1 ∗G0 H2 acts on its locally finite Bass-Serre
tree, but the vertex stabilizers have Property (FA). Any action of G on a tree restricts to an
action of H1 on a tree, which must have a global fixed point. So G has property (F2A) but
not property (FA).

1.4 Number Theory

Many of our techniques use arithmetic notions, which are defined here. We aim to be fairly
self-contained.

Number fields

Any field k of characteristic zero contains the rational numbers as a subfield, and the field
axioms provide k with the structure of a vector space over Q. The field k is called a number
field when the dimension of this vector space is finite. Its degree is the dimension of k/Q.

An element x ∈ k is said to be integral if it satisfies a monic polynomial with integer
coefficients, or equivalently, if Z[x] is a finitely generated Z-module. The collection of integral
elements comprise a subring of k, called the ring of integers, typically denoted Ok. We have
Ok⊗ZQ ∼= k, and so the rank of Ok as a Z-module is the dimension of k as a Q-vector space.

If k is a number field of degree n over Q, k is a simple extension of Q, and so there is some
α ∈ k which generates k as a Q-algebra. The minimal polynomial of α over Q has degree
n, and the roots correspond to n possible embeddings {σi}ni=1 of k in C. If an embedding
σi(k) is contained in the real numbers, σi is called a real place, and is called a complex place
otherwise. The embeddings which are not contained in the real numbers come in complex
conjugate pairs, and so there are r real embeddings and s pairs of complex embeddings,
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Figure 1.1: Some points from the embedding Z[
√
2] → R2

where r + 2s = n. We make the convention that the first r embeddings σi are real, and
σj+s = σj for j ∈ {r + 1, . . . , r + s}.

Proposition 3. The image of the map Ok → Rr×Cs defined by x +→ (σi(x))
r+s
i=1 is a discrete

and cocompact subgroup.

However, for every proper subset of the complex embeddings, the embedding into Rr0 ×
Cs0 is dense. This can be seen by the fact that the projection of the lattice onto a subproduct
is injective, and if a free abelian subgroup Zm ≤ Rn is discrete, we must have m ≤ n. This
is a special case of the strong approximation theorem we will see later, and is also related to
the Oppenheim conjecture (a theorem of Margulis).

Valuations and Completions

A (real) valuation on a field k is a function v : k → R ∪ {∞} so that v(x) = ∞ iff x = 0,
v(xy) = v(x) + v(y), and v(x + y) ≥ min{v(x), v(y)}. The valuation is called discrete if it
has discrete image in R.

The valuation determines a metric on k, where we define dv(x, y) = C−v(x−y), for an
appropriately chosen constant C. Given a valuation, a v-completion of k is a normed field kv
which is complete with respect to v, together with an embedding k ↩→ kv with dense image.

Theorem 3 (Ostrowski’s Theorem). Every completion F of Q is isomorphic to R or Qp for
some p.
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Sketch of proof. We can’t have |x| = 1 for all 0 ∕= x ∈ Z, or else the metric is trivial. If some
|x| > 1, then we can show that the metric is |x|α∞ with α ∈ (0, 1].

Otherwise, Z is bounded, and there must be some |x| < 1. Letting S be the set primes
dividing x, not all of these can have norm less than 1. But if |p| < 1 and |q| < 1, we can
write 1 = apm + bqn by Bezout’s theorem, where |apm| < 1/2 and |bqn| < 1/2, contradicting
the triangle inequality.

Qp

As a set, the p-adic numbers Qp consist of the formal expressions

x =
∞#

i=k

xip
i

where k ∈ Z and xi ∈ {0, 1, . . . , p− 1}. To add two p-adic numbers, we add coordinate-
wise with carrying, so that (x+ y)i = xi + yi + εi, where εi = 0 if xi−1 + yi−1 < p and εi = 1
otherwise, and multiplication respects the grading and distributes over addition.

The valuation of x is inf{k ∈ Z | xk ∕= 0}, which is ∞ if and only if xk = 0 for all k,
that is, x = 0. Observe that if x ∕= 0, we may write xp−k = xk +

$∞
i=1 xi+kp

i, which is
an invertible p-adic integer, since we can find the coefficients of the multiplicative inverse
recursively.

Zp

Let p be a prime number. There is a map πm,n : Z/pmZ → Z/pnZ whenever m ≥ n, simply
because pmZ ⊆ pnZ. Thus we obtain an inverse system of rings, and we define the p-adic
integers to be the inverse limit

Zp = lim←−Z/pnZ = {(an)n∈N ∈
%

n∈N

Z/pnZ | πm,n(am) = an for m ≥ n}.

By enlarging the inverse system to include all Z/nZ, we obtain the profinite integers &Z.
This is equivalent to the product

'
p∈P Zp.

Suppose a ∈ Z is coprime to p. Then there is a square root of a in Zp if and only if a
(mod p) is a square. If x2 ≡ a (mod p), then of course (−x)2 ≡ a (mod p), and so we see
that there is a unique square root lying in the classes {1, . . . , p−1

2
} mod p. So we can use

the convention that a square in Zp has a “positive” and a “negative” square root, according
to whether the integer with minimal absolute value in a+ pZ is positive or negative. Note,
however, the positive elements are not closed under addition.

Hensel’s lemma

Proposition 4. Suppose f is a polynomial in Zp[x] and f ∈ Fp[x] has a simple root a ∈ Fp.
Then there is a unique α ∈ Zp with α ≡ a (mod p) with f(α) = 0.
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Sketch of proof. The assumption that a is a simple root means that f ′(a) ∕= 0. So we seek
a1 ∈ {0, . . . , p− 1} so that f(a+ pa1) ≡ 0 (mod p2).

Note we can write f(x) =
$n

i=0
f (i)(a)

i!
(x−a)i by Taylor’s theorem, and observe that f(a+

pa1) =
$n

i=0
f (i)(a)

i!
(pa1)

i, and hence f(a + pa1)− f(a) = f ′(a)pa1 + p2
$n

i=2
f (i)(a)

i!
(pa1)

ip−2.
Since f ′(a) ∕= 0, we can solve this equation modulo p2. Repeating this argument, we obtain
a solution modulo pk for all k, hence a solution in Zp.

Ideals

We give a cursory idea of some of the basic behavior that occurs in the interaction between
ideals, completions, and extensions. The first observation is that when pZ is a prime ideal
in the integers, and k is a number field (say of degree n), the ideal pOk ≤ Ok in the ring of
integers of k may or not be prime. If the ideal remains prime, we say p is inert. Otherwise,
the ideal may be a product of other ideals in various ways.

If k = Q(i), the ring of integers Ok is Z[i]. The prime 5 factors as 5 = (1 + 2i)(1− 2i) in
Z[i], and 7 remains prime. Note more generally that any prime which is 3 modulo 4 cannot
be written as a sum of squares as 0 and 1 are the only squares mod 4, and the norm of a
Gaussian integer a + bi is (a + bi)(a − bi) = a2 + b2, a sum of squares. That every prime
which is 1 mod 4 factors in Z[i] is attributed to Fermat, but was not proved until much later.
The first proof is due to Euler, and uses an infinite descent argument. The ideal (2) ≤ Z[i]
is actually the square of the ideal (1 + i), and for this reason 2 is said to ramify in Z[i].

It is important to note that Z[i]/(p) is a ring with p2 elements in each case. When p
splits, this is a product F2

p, and if p is inert the quotient is a field Fp2 . If p is ramified, the
quotient ring is neither a product ring nor a field.

The operations of extensions and completions interact according to the splitting behavior
of primes. For example, the polynomial x2+1 is irreducible over Q, with splitting field Q(i).
However, since x2 + 1 = 0 has a solution modulo 5 (or any prime which is 1 mod 4), Z5

already contains a solution to this. So the splitting field for x2 + 1 over Q5 is Q5. However,
Q7 does not contain a square root of −1, and so Q7(i) is a degree two extension of Q7.

Adeles

Recall that Z ⊆ R has the particularly nice interaction between topology and group theory,
in which the action of Z on R is discrete and cocompact. The adeles can be profitably
considered as a space which is built to mimic this situation for the rational numbers replacing
the integers. That is, the additive group of rational numbers Q is discrete in the ring of
adeles, and the quotient by the action A/Q is compact.

The adeles are the restricted direct product of all of the completions of Q. The p-adic
numbers Qp have a maximal compact subring Zp, which consists of those p-adic numbers
with vp ≥ 0.
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Suppose {(Gi, Ai)}i∈I is a family of pairs where Ai is a compact open subgroup of a
topological group Xi. We define the restricted direct product

X = Π′
i∈I(Xi, Ai) =

(
(xi)i∈I ∈

%

i∈I

Xi | xi ∈ Ai for almost every i

)

Proposition 5. X is locally compact.

Proof. By Tychonoff’s theorem, U =
'

i∈I Ai is a compact open subgroup of X. Note also
that any g ∈ X is contained in the compact open neighborhood gU.

The finite adeles Afin are the restricted direct product with respect to the family indexed
by the prime numbers (Qp,Zp)p prime, and the adeles are the product Afin×R. The rational
numbers can be embedded in A because they naturally embed in each factor, and a given
rational number lies in Zp for almost every p. Note that &Z =

'
p prime Zp is a compact open

subgroup of Afin. If S is a subset of the collection of all valuations, we let AS denote the
restricted direct product over this possibly smaller set.

As an aside, if k is a number field, we can define the k-adeles in an analogous way. The
archimedean places (of which there are d = [k : Q]) give d embeddings into the complex
numbers (some of which will lie in the real numbers). The behavior of the minimal polynomial
for k considered modulo p determines the splitting behavior of the ideal pOk ≤ Ok, which in
turn describes the totality of completions of k.

Proposition 6. Q is discrete in A

Proof. Suppose {qn} is a sequence of rational numbers converging to 0. If the denominators
of qn remain bounded, then the sequence must be eventually zero. Thus the denominators
go to infinity. But then it is impossible that the sequence eventually lies in any fixed open
set around 0. This is because either (i) infinitely many primes appear as denominators,
but open sets in the adeles consist of p-integral elements for all but finitely many p, or (ii)
arbitrarily large powers of some prime occur, but open neighborhoods of 0 have a bound on
the power of a prime which can occur in a denominator.

Note that if x =
$∞

i=k xip
i is a p-adic number, there is an additive homomorphism to

Z[1/p]/Z obtained by {x}p =
$−1

i=k xip
i + Z = n

pk
+ Z

Lemma 1. The kernel of φp : Qp → Z[1/p]/Z is Zp.

Proof. This is just the observation that the set of p-adic numbers with valuation ≥ 0 is just
Zp.

Definition 3. Suppose x ∈ Afin is a finite adele. Then there is a finite set S of primes so
that x is p-integral for every p ∕∈ S. For the primes in S, x =

$∞
i=k xip

i differs from a p-adic
integer by an element of Z[1/p]. However, this element of Z[1/p] is only defined up to Z.

Proposition 7. We have Afin/&Z ∼= Q/Z
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Proof. This is a matter of pasting together all of the φp maps defined above. Since x ∈ Afin

is a product (xp)p ∈
'

p Qp satisfying xp ∈ Zp for almost all p, the sum {x} =
$

p φp(xp) is
a finite sum of elements of Z[1/p] (as before, only defined up to Z). Hence the result is an
element of Q/Z. Since Zp is the kernel of each φp, the kernel of the product is the profinite

integers
'

p Zp = &Z.

Proposition 8. The quotient group A/Q fibers over the circle with fiber &Z.

Proof. Consider A = R×Afin, where Afin denotes the finite adeles. Given (x, y) ∈ R×Afin,
we consider π(x, y) = x − {y} ∈ R/Z. This is clearly surjective, and the kernel is the set
of (x, y) ∈ R× Afin with x ≡ {y} (mod Z). Note that when Q is diagonally embedded, we
have π(q, q) = q − {q} = 0 ∈ R/Z, hence Q is in the kernel of π and π descends to a map
A/Q → R/Z. Note that for π(x, y) = 0, x must be rational to begin with. But then (x, y) is
equivalent to (0, y− x) up to the action of Q, and the kernel of Afin → Q/Z is the profinite

integers &Z as remarked above.

Since &Z is compact, the extension A/Q is compact. The set U = [0, 1)×&Z is a fundamental
domain for the action of Q on A. In fact, A/Q is naturally identified with the mapping torus

of the map x +→ x + 1 on &Z. We have shown that Q is a discrete and cocompact subgroup
of A, thus we have:

Corollary 1. Q is a lattice in A.

More generally, any subring R ⊆ Q is in fact of the form Z[1/S] for some set of primes
S, and we can consider the R-adeles AR, which is the subset of the product R×

'
p∈S Qp ×'

p ∕∈S Zp with only finitely many non-integral coordinates. In all such cases, R is a lattice
in AR. We remark that this resembles a phenomenon of convex cocompactness of the group
action.

Quaternion algebras

Definition 4. Let R be a ring. Then the (standard) quaternion algebra over R, denoted
R{i, j}, is the quotient of the free algebra over R by the relations i2 = j2 = −1 and ij = −ji.
More general quaternion algebras are obtained by scaling the generators by square roots of
elements of R. That is, R{

√
αi,

√
βj} satisfies (

√
αi)2 = −α and (

√
βj)2 = −β, with the

generators anti-commuting as before. We often denote ij = k, and observe that {1, i, j, k}
span R{i, j} as an R-module.

The quaternion algebra R{i, j} possesses an anti-involution, which sends a+bi+cj+dk +→
a− bi− cj − dk, which we denote by q +→ q. If q is a quaternion, its (reduced) norm is the
quantity N(q) = qq = a2 + b2 + c2 + d2 ∈ R.

Suppose A is a quaternion algebra over a number field k. We say that A is ramified at
a place v if A⊗ kv is a divison algebra. We note that Q{i, j} is ramified at {2,∞} because
N(q) = a2+b2+c2+d2 = 0 has a nonzero solution in a completion of Q (and hence a nonzero
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quaternion of norm zero) if and only if it is Qp for an odd prime p. Hilbert’s reciprocity law
insists that the ramification set always has even finite cardinality.

The quaternion algebra we will take the most interest in is Q{i, j}, which we call the
rational quaternions. For the moment, we will use H to denote the Hurwitz integers, which
consist of those rational quaternions whose coordinates are either all integers or all half-
integers. That is, H = {a+ bi+ cj + dk | a, b, c, d ∈ Z or a, b, c, d ∈ (Z+ 1

2
)}. Note the norm

of every Hurwitz integer q is a nonnegative integer, and is zero if and only if q = 0. There
are 24 units in H.

Lemma 2. The Euclidean distance from x ∈ R4 to Z4 is at most 1, with equality achieved
if and only if x ∈ (Z+ 1

2
)4.

Proof. Each real number is within 1/2 of an integer, with equality if and only if it is in Z+ 1
2
.

Thus, d(x,Z4) ≤ (1/2)2 + (1/2)2 + (1/2)2 + (1/2)2 = 1, with equality achieved if and only if
equality is achieved in each coordinate.

Proposition 9. H is a Euclidean domain. In particular, H is a principal ideal domain.

Proof. We wish to show that if a, b ∈ H with b ∕= 0, there exist q, r ∈ H with a = bq + r,
and N(r) < N(b).

The rational quaternion ab/N(b) can be viewed as an element of R4, hence the preceding
lemma implies that either there is an integer quaternion q ∈ Z{i, j} ⊆ H with N(ab/N(b)−
q) < 1, or ab/N(b) = q ∈ (Z + 1

2
)4. In the first case, for r = a − qb, we have a = qb + r,

where

N(r) = N(a− qb) = N((ab/N(b)− q)b) = N(ab/N(b)− q) ·N(b) < N(b),

or in the second case we have a = qb+ 0, with q ∈ H.

Definition 5 (Residue Quaternion Algebra). If I ≤ R is an ideal, we obtain a residue
quaternion algebra (R/I){i, j}.

Proposition 10. Fp{i, j} is not a division ring.

Note this follows easily from Wedderburn’s theorem:

Theorem 4 (Wedderburn). A finite division ring is a field.

Since A = Fp{i, j} is not commutative when p is odd, it must have zero divisors. For a
nonzero zero divisor z, the left multiplication map A → Az is not injective, since y ∕= 0 is in
the kernel for yz = 0. Since Az · Az = (AzA)z ⊆ Az is closed under multiplication, Az is a
proper subalgebra, and it contains z ∕= 0, so it is nontrivial. In fact, Az is 2-dimensional over
Fp, and the map A → End(Az) determines an isomorphism Fp{i, j} ∼= M2(Fp). Of course
since Fp

∼= Z/pZ, we have a projection map Z{i, j} → Fp{i, j}, whose kernel is the index p4

ideal pZ{i, j}.
Let z = a+bi+cj+dk be a zero divisor in Fp{i, j}, which exists by Wedderburn’s theorem.

Then since zz is in the center, it is either 0 or a unit. Thus a2 + b2 + c2 + d2 = 0 ∈ Fp.
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The number of units in Fp{i, j} is the size of GL2(Fp), which is (p2−1)(p2−p), and there
is one zero element. So the number of zero divisors must be (p2 − 1)(p + 1), or (p + 1)2 up
to multiplication by a unit.

Up to the action of the units of Fp{i, j}, the left ideals correspond to a copy of Fp as*
0 x
0 1

+
or a point at infinity

*
1 0
0 0

+
, or in other words, P1Fp. Since there is a correspon-

dence between the left ideals of Fp{i, j} and the norm p elements up to multiplication by a
unit, we have obtained:

Lemma 3. If p is an odd prime, there is a correspondence between the primes of norm p in
Z{i, j} up to associates and the two-dimensional ideals in Fp{i, j} ∼= M2(Fp).

Proof. If N(x) = p, then [x]Fp{i, j} is a nontrivial proper ideal, since the norm of every
element in the ideal must be 0, and since p2 does not divide the norm of x, x cannot be
0 in Fp{i, j}. If x and y determine the same ideal, then they differ by multiplication by a
unit.

Theorem 5 (Jacobi). The number of ways to write an odd prime p as a sum of 4 squares
is 8(p+ 1).

Proof. The quaternions of norm p up to the action of the 8 units {±1,±i,±j,±k} correspond
to the projective line P1Fp, which has p+ 1 elements.

Using modular forms, or studying ideals in Z/pmZ{i, j}, one can obtain the more general:

Theorem 6 (Jacobi [48]). Let p be an odd prime, and n a natural number. The number of
ways to write pn as a sum of four squares is 8(p+ 1)pn−1.

Definition 6. Let p be an odd prime. Then there are p + 1 quaternions of norm p which
are equivalent to 1 (mod 2) if p ≡ 1 (mod 4) or equivalent to 1 + i + j (mod 2) if p ≡ 3
(mod 4). Let Ap denote the set of integral quaternions of norm p.

Corollary 2. For p an odd prime, we have a bijection Ap ↔ P1Fp.

We can describe the zero divisors a bit more precisely. There are (p2 − 1)(p + 1) total,
hence (p + 1)2 projective classes. Thus a zero divisor is determined by the pair of a right
ideal and a left ideal that it generates, and we have a correspondence between projective zero
divisors and (P1Fp)

2. Since the quaternion algebra comes equipped with the anti-involution
of conjugation, it sends left ideals to right ideals, and hence gives an involution on (P1Fp)

2

exchanging the two factors.
We summarize this discussion in the following table:
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Quaternion algebra Matrix algebra Cardinality
Fp{i, j} M2(Fp) p4

Real quaternions Scalar matrices p
Pure quaternions Traceless matrices p3

PFp{i, j} PM2(Fp) (p2 + 1)(p+ 1)
Fp{i, j}∗ GL2(Fp) (p2 − 1)(p2 − p)

Ap P1Fp p+ 1
rank 1 (p− 1)(p+ 1)2

(P1Fp)
2 projective rank 1 (p+ 1)2

idempotents idempotents p(p+ 1)
nilpotents nilpotents p+ 1

Quaternion conjugate q → q

*
a b
c d

+
+→

*
d −b
−c a

+

Conjugation q(−)q−1 Adjoint representation
N(q) = qq det
Re(q) 1

2
tr

1.5 Arithmetic Groups

A (linear) algebraic group G defined over k is a subgroup of GLn(k) which is also a k-
algebraic variety in GLn(k). The group G inherits the subspace topology from its realization
as a subset of kn2

.

Proposition 11. If R is a discrete subring of k, then G(R) ≤ G(k) is discrete.

Proof. It suffices to observe that if {gn} is a sequence converging to 1 in G(R), then in
particular the matrix entries of gn converge to those of the identity. But since R is discrete,
this means each of the finitely many matrix entries is eventually constant, hence the sequence
is eventually the identity.

For a subring R of a number field k, let AR denote the R-adeles, consisting of an open
subring of Ak in which R is discrete and cocompact. For example, AZ[1/m] = R×

'
p|m Qp ×'

q∤m Zq.

Theorem 7 (Borel–Harish-Chandra). Suppose G is a connected semisimple k-algebraic
group, and R ≤ k a subring. Then G(R) is a lattice in G(AR).

It is perhaps worth noting that for a ring R, (i) matrix multiplication in Mn(R) is given
by polynomial maps in terms of the entries, and (ii) if A ∈ Mn(R) is invertible, the entries of
the inverse of A are given by a polynomial in terms of the entries, divided by the determinant,
which if A is invertible to begin with, means that det(A) ∈ R×. Thus if A is merely a subset
of GLn(k), the group generated by A is contained in GLn(R), where R is the ring generated
by all of the matrix entries of elements of A.
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For example, if A ≤ GLn(Q) is a finitely generated subgroup, there is a finite set
{a1, . . . , ak} of matrices with kn2 rational numbers, in which only finitely many primes
can appear as denominators. Thus A ≤ GLn(Z[1/m]), for some m. This means that there
are infinitely many prime ideals (p) ≤ Z[1/m] available for us to consider reduction maps
A → GLn(Fp).

Theorem 8 (Matthews-Vaserstein-Weisfeiler [56]). Suppose G is a connected, simply con-
nected, and absolutely almost simple algebraic group defined over Q, and suppose Γ ≤ G(Q)
is a finitely generated Zariski dense subgroup. Then Γ surjects G(Fp) for almost every p.

In the following special case, (see [49]), we have an even stronger conclusion.

Theorem 9. For any pair of odd primes p, q, the map 〈Ap〉 → PGL2(Fq) has image PSL2(Fq)
if p is a square modulo q, and is surjective otherwise.

An Arithmetic Fuchsian Group

In this section we carry out an explicit and detailed computation of a cocompact arithmetic
Fuchsian group.

Let k = Q(
√
2), and G = SL2. Thus Ok = Z[

√
2] and G(Ok) acts on the hyperbolic plane.

However, SL2(Z[
√
2]) acts indiscretely on the hyperbolic plane. By taking a sequence {pn

qn
}

of rational numbers satisfying |
√
2− pn

qn
| < 1

nqn
, (e.g., the continued fraction convergents) we

note that tn =
√
2qn − pn converges to zero, and hence the sequence

*
1 tn
0 1

+
converges to

the identity.
On the other hand, the ring Z[

√
2] embeds in R×R as a discrete subring under the map

a + b
√
2 +→ (a + b

√
2, a − b

√
2). We perhaps consider Z[

√
2] as a subring of R under the

convention that
√
2 is positive, and then the embedding is the identity in the first factor, and

in the second factor the embedding is precomposed with the nontrivial Galois automorphism
τ ∈ k/Q. It is now apparent that the image is a discrete subring because the image consists
of pairs in R2 whose product is a2− 2b2. This is visibly an integer when a, b ∈ Z, and can be
zero only when a = b = 0, or else a

b
is a rational square root of 2. Now if we have (x, y) ∈ R2

with |xy| ≥ 1, x and y cannot both be small at once.
For any ring A, there is an involution R on the algebra M2(A) obtained by conjugating

by

*
0 1
−1 0

+
, inducing

*
a b
c d

+
+→

*
d −c
−b a

+
.

There is an embedding M2(Z[
√
2]) → M2(R) × M2(R) defined by X +→ (X, τ(R(X)))

with discrete image, and the restriction to the subvariety SL2(Z[
√
2]) has image contained

in SL2(R)× SL2(R).
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Now the natural componentwise action of SL2(R) × SL2(R) on a product of hyperbolic
planes restricts to a proper action of SL2(Z[

√
2]), and the quotient is a 4-orbifold with model

geometry H2 ×H2.
Any point in H2 × H2 has many 2-dimensional totally geodesic planes passing through

it. Some of these planes are Euclidean, obtained by taking the product of a geodesic line in
each hyperbolic plane, but many have negatively curved metrics.

For any isometry A ∈ PGL2(R), there is a corresponding quasi-isometrically embedded
plane PA obtained as the image of the map H2 → H2 ×H2 which is defined by x +→ (x,Ax).
For such a subplane, we might ask which elements g ∈ SL2(Z[

√
2]) preserve PA. This will

happen precisely when g · (x,Ax) = (gx, τ(R(g))Ax) = (y, Ay) for some y, or in other words,
when τ(R(g))A = Ag, or τ(R(g)) = AgA−1.

The isometry A, being a matrix in PGL2(R), also acts on PSL2(R) by conjugation, and
we can compare the group Γ = PSL2(Z[

√
2]) with its conjugate AΓA−1. If A has entries

in Q(
√
2), then Γ ∩ AΓA−1 has finite index in Γ (and we say that A commensurates Γ). If

A =

*
3 0
0 −1

+
, this is of course satisfied. Then the condition that g ∈ PSL2(Z[

√
2]) preserves

the plane defined by A in H2 ×H2 amounts to

*
3(d0 − d1

√
2) (c0 − c1

√
2)

−3(b0 − b1
√
2) −(a0 − a1

√
2)

+
=

*
3(a0 + a1

√
2) 3(b0 + b1

√
2)

−c0 − c1
√
2 −d0 − d1

√
2

+

and comparing coefficients we see that the matrix should take the form

*
a0 + a1

√
2 b0 + b1

√
2

−3b0 + 3b1
√
2 a0 − a1

√
2

+
=

*
a b

−3τ(b) τ(a)

+

The condition that the determinant is 1 is now asking that N(a0, a1, b0, b1) = a20 − 2a21 +
3b20 − 6b21 = 1. We observe that N(1, 0, 1, 0) = 4 and N(−1, 1,−1, 0) = 2, and so

a =
1

2

*
1 1
−3 1

+
and b =

1√
2

*
−1 +

√
2 −1

3 −1−
√
2

+

constitute two basic solutions in SL2(Q(
√
2)) (and as it turns out, every solution can be

generated from these). We compute that a fixes x =
√
3i/3 and b fixes y = (

√
2 + i)/3

in their action on the hyperbolic plane. Since a3 = b4 = −I, these are rotations of order
3 and 4 respectively, and we can check that they are both counter-clockwise. Moreover,

their product ab = 1
2

*
1 +

√
2 −(1 +

√
2)

3(−1 +
√
2) −1 +

√
2

+
is an order 4 rotation about z = 1+

√
2i

3(
√
2−1)

.

Indeed, the traces of a, b, and ab, are 1, −
√
2 and

√
2 respectively.

If we reduce the coefficients modulo 3 and consider the image in PSL2(F3(
√
2)) ∼=

PSL2(F9), we have a +→
*
1 1
0 1

+
, b +→

*
1 + x x
0 2 + x

+
, and ab +→

*
1 + x 2 + 2x
0 2 + x

+
, where x

denotes
√
2 ∈ F9. These matrices generate a group of order 36 in PSL2(F9), as it surjects the

upper triangular subgroup. Since every torsion element of the triangle group is conjugate to
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a power of a, b, or ab, every torsion element has nontrivial image in PSL2(F9), and thus the
kernel of this reduction map is a torsionfree subgroup, hence a surface group in PSL2(Z[

√
2]).

Alternatively, the group generated by a, b is the points in a maximal order in a quater-
nion algebra, and upon intersecting with an integral order we obtain a surface group in
PSL2(Z[

√
2]).

Surface groups in PSL2(Z[
√
n])

Now let n > 2 be squarefree. Then there is some odd prime p which divides n, and we
observe first:

Lemma 4. There is a positive integer r so that x2 + ry2 does not represent 0 (mod p)
nontrivially.
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Proof. Choose r so that −r is not a square modulo p. Observe that if x2 + ry2 = 0, then
(λx)2 + r(λy)2 = 0 for any λ, and also that it is impossible to have a nonzero solution in
which either x or y is zero. Thus, there is solution in which y = 1, and we have x2 ≡ −r
(mod p), contradicting our choice of r.

Note when p ≡ 3 (mod 4), we can choose r = 1. Now as before, consider the group of
matrices of the form *

a+ b
√
n c+ d

√
n

r(−c+ d
√
n) a− b

√
n

+

in which a2−nb2+ rc2−nrd2 = 1. Since this quadratic form has no solutions over Fp, it has
none in Qp, hence no rational solutions. This implies that the group is a cocompact lattice
in H2, and thus contains a surface group of finite index. Note that the diagonal matrices
correspond to solutions of Pell’s equation a2 − nb2 = 1.
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PSL2(Q)

Proposition 12. The space PSL2(A)/
,
SO2(R)× PSL2(&Z)

-
is a restricted direct product of

H2 with a (p+ 1)-regular tree for each prime p, and PSL2(Q) is a lattice in this space. The
quotient is an adelic modular curve.

Note that if Γ ≤ PSL2(Q) has a global fixed point in its action on H2, it is conjugate
into SO2(Q), which is abelian. So the stabilizer of a point is not a lattice in the remaining
factors, and is not even Zariski dense. On the other hand, if v is a vertex in one of the trees
and we consider the subgroup of PSL2(Q) which fixes v, this is a lattice in the remaining
factors.

However, we do not immediately obtain a particularly interesting proper action on a
product of trees via PSL2(Q) or its subgroups.

By fixing a single prime p, it is not hard to construct subgroups of PSL2(Q) which act
properly, and are even lattices in Tp+1. This can be done by finding “ping pong” sets for the
action. For example, if g1 and g2 are translations in a tree, so that their translation lengths
are greater than the overlap of their axes, they will generate a discrete group. It is perhaps
interesting to consider the space Lp of lattices in the p-adic tree. For each isomorphism type
of a (p+ 1)-regular graph, there is a space of p-adic structures on this graph, similar to the
Teichmüller space of a surface. For example, the space of 2-adic structures on a θ-graph is
a 1-dimensional Q2-manifold.

SU2(Q(i))

In analogy with the case of PSL2(Q), the group PSL2(Q(i)) is a lattice in a product H3 × TP

where P ranges over the collection of non-dyadic prime ideals in Z[i] (the group SU2(Z[i, 1/2])
is finite). Recall that if p is 1 mod 4, p splits in Z[i], and is inert otherwise. So we get pairs
of p+ 1-regular trees when p is 1 mod 4, and we get trees of valence p2 + 1 when p is 3 mod
4.

Proposition 13. Suppose Γ ≤ G is a discrete subgroup of a topological group, and G → H
is a continuous homomorphism to a locally compact group with compact kernel. Then the
image of Γ is discrete.

Proof. Let U be a compact neighborhood of 1 in H, and observe its preimage in G is again
compact. Thus it intersects Γ in a finite set, and hence only finitely many points of Γ map
to U . That this is true for all compact neighborhoods in H implies that the image of Γ is
discrete.

Now we observe that although R admits a discrete cocompact subring Z, Qp has none.
In fact, the only discrete subring of Qp is the trivial subring! Indeed, if 0 ∕= x ∈ R ≤ Qp,
pnx ∈ R for every n, and this sequence converges to 0. Often G(Z) ≤ G(R) provides a
lattice, but there is not an obvious way in general to obtain a lattice or even a discrete
subgroup in G(Qp).
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However, Z[1/p] is a lattice in R×Qp, and so if the group of real points of an algebraic
group G(R) is compact, the group G(Z[1/p]) is a discrete subgroup of G(R) × G(Qp), and
the preceding proposition implies that G(Z[1/p]) is a discrete subgroup of G(Qp). The group
SU2(Q(i)) is closely related to the group of rational quaternions, which are a primary focus
of this thesis. We will see that these quaternions act properly on a restricted direct product
of trees of degree p+ 1 over all odd primes p.

1.6 Integer Quaternions

Let P denote the set of prime numbers. The fundamental theorem of arithmetic is an
elementary observation about how the integers behave with respect to multiplication. This
motivates the definition and study of unique factorization domains in general, which are
essentially rings that satisfy the “fundamental theorem of arithmetic” property.

However, we can actually interpret the fundamental theorem of arithmetic through the
lens of geometric group theory. In most measures of complexity, the integers form the most
basic infinite group. They can be approximated very well by a geodesic metric space: R.
The action of Z on R has quotient S1, whose fundamental group is Z. This circle of ideas
in which one can understand and study algebraic properties of groups via their actions on
geodesic metric spaces, is the very foundation of geometric group theory.

Theorem 10 (The fundamental theorem of arithmetic). Every positive integer can be ex-
pressed uniquely as a product of primes.

Equivalently, the map Q∗
>0 →

.
p∈P Z via q +→ (vp(q))p∈P is an isomorphism.

Corollary 3. The group Q>0 acts properly and cocompactly on a restricted product of 2-
regular trees.

Theorem 11 (The fundamental theorem of quaternion arithmetic). If q is a primitive
integer quaternion and p divides the norm of q, there is a unique left-divisor x of q with
norm p.

Proof. We recall that the Hurwitz integers H form a principal ideal domain by Proposition 9.
So the right ideal pH+ qH is a principal ideal, say xH for some x ∈ H. Since x | p, we have
N(x) | p2. We claim that the norm of every element of xH is divisible by p, hence that xH is
a proper ideal and N(x) ∕= 1. To see this, note that N(py+qz) = N(py)+2(py ·qz)+N(qz) =
p2N(y) + 2p(y · qz) +N(q)N(z), which is divisible by p. If N(x) = p2, then since x | p and
they have the same norm, xu = p for some unit u. But this would imply that pH+qH = pH,
hence p | q. But this contradicts the primitive assumption on q. Thus, N(x) = p, and x | q.
The choice of x is unique up to right-multiplication by a unit in H, and if x does not have
integer coordinates, it has an associate with integer coordinates.

Corollary 4. The group HQ acts properly and cocompactly on a restricted product of (p+1)-
regular trees, one for each odd prime p.
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Let P denote the set of primitive integral quaternions.

Proposition 14. A word q1 . . . qn in P is a geodesic if and only if the coefficients of the
product quaternion are relatively prime.

Proof. If the product is divisible by a prime p, then dividing through by p we obtain an
equivalent quaternion which is a product of n − 2 primes, and hence the path was not a
geodesic. If the coefficients are relatively prime, then the fundamental theorem of quaternion
arithmetic implies that any reduced expression for the product must have length n.

Definition 7. Let R be a commutative ring, and α, β ∈ R. Then U(R{
√
αi,

√
βj) is the

group of units in the quaternion algebra, up to the scaling action of the units of R, that is
U(R{

√
αi,

√
βj})/U(R). In the case R = Z[1/n] with n odd, HZ[1/n] is the group of units

whose primitive integral representative is equivalent to 1 or to 1 + i + j modulo 2. For
example, U(Z{i, j}) = {±1,±i,±j,±k}/{±1}.

Theorem 12. If p is an odd prime, the set Ap is a free symmetric generating set of the free
group HZ[1/p] ≤ HQ.

Proof. By Theorem 6, the number of primitive integral quaternions of norm pn is 8(p+1)pn−1.
Up to ±1, there is exactly one choice of associate which is equivalent to 1 or 1 + i + j
modulo 2, leaving (p+1)pn−1 primitive integral quaternions in HZ[1/p]. Repeatedly applying
Theorem 11, we obtain a unique factorization of a quaternion of norm pn as a product of
quaternions of norm p in the set Ap, furnishing a bijection between the set of words in Ap

which do not contain xx subwords, and the elements of HZ[1/p].

Example 3. Consider the integer quaternion q = 46+8i+50j of norm 4680. Upon factoring
4680 = 23 · 32 · 5 · 13, we consider the reductions of q modulo these primes to find its prime
factors. Each coefficient is even, so the reduction modulo 2 is zero. Hence q is not primitive,
and we can replace q = 2q1, where q1 = 23 + 4i + 25j, whose reduction modulo 2 is 1 + j.
The fact that 2 is ramified implies that 1 + j is both a left and right factor of q1, and we
obtain q1 = (1− j)q2 where q2 = −1 + 2i+ 24j − 2k.

Note reducing modulo 8 at once gives q ≡ 6 + 2j (mod 8), so (1 + j)q ≡ 4 (mod 8),
yielding q = 2(1− j)q2, where q2 ≡ 1 (mod 2).

All of this information can be summarized in the following diagram:
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For example, reading along the bottom path in this cube complex we see that

(1− i+ j)(1− i+ j)(1 + 2i)(1− 2i+ 2j + 2k) = −1 + 2i+ 24j − 2k

and reading along the top path we see

(1− 2i+ 2j + 2k)(1− 2k)(1 + i− j)(1− i− j) = −1 + 2i+ 24j − 2k.

Focusing on a single square in the complex, the path traversing four sides demonstrates
the equality (1− 2i+2j+2k)(1− 2k) = (1+2k)(1− 2i+2j− 2k). The cubes are assembled
from six of these relation squares, and have eight vertices corresponding to the eight divisors
of the quaternion of largest norm. The central square with orange and red sides in this
diagram reflects the fact that the quaternions 1+ 2j and 3+ 2j commute, hence this square
projects to a torus in the quotient complex, in the shape of a zero.

A way to understand the relations in this complex is by studying the action of a quater-
nion of norm p on the projective line for Fq. Choosing the positive imaginary i ≡ 2 (mod 5),
we have the correspondence

1 + 2i +→
*
1 + 2i 0

0 1− 2i

+
≡

*
5 0
0 1

+
= 0
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1− 2i +→
*
1− 2i 0

0 1 + 2i

+
≡

*
−3 0
0 5

+
= ∞

1 + 2j +→
*

1 2
−2 1

+
≡

*
5 2
0 1

+
= 2

1− 2j +→
*
1 −2
2 1

+
≡

*
5 3
0 1

+
= 3

1 + 2k +→
*
1 2i
2i 1

+
≡

*
1 4
4 1

+
≡

*
5 4
0 1

+
= 4

1− 2k +→
*

1 −2i
−2i 1

+
≡

*
5 1
0 1

+
= 1

Consider the quaternion 1 − 2i + 2j + 2k +→
*

1− 2i 2 + 2i
−2 + 2i 1 + 2i

+
. Upon choosing i ≡ 2

(mod 5), we obtain

*
−3 1
2 0

+
∈ PGL2(F5). The action on the projective line gives the

permutation (0, 1, 4, 3, 2,∞), which under the above correspondence is the permutation (1+
2i, 1− 2k, 1 + 2k, 1− 2j, 1 + 2j, 1− 2i).

This permutation is a convenient way to organize the information that the left 5-divisor
of (1− 2i+ 2j + 2k)(1 + 2i) is (1− 2i), which means that

(1− 2i+ 2j + 2k)(1 + 2i) = (1− 2i)q

for some q with norm 5. To quickly find this q, we can left-multiply both sides by 1− 2i and
see that 5+10i+10j+10k = 5q, or in other words, obtain the relation (1−2i+2j+2k)(1+2i) =
(1− 2i)(1 + 2i+ 2j + 2k).
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Chapter 2

Actions on Trees

2.1 Models of p-adic trees

The upper half plane model

The group PGL2(Qp) carries the structure of a topological group, via the quotient of the
subspace topology obtained from GL2(Qp) ⊆ M2(Qp). Following Klein’s Erlangen program,
topological groups present a natural setting to study geometry. By considering K a maximal
compact subgroup of a topological group G, the coset space G/K admits a left G-action. For
the group PGL2(Qp), the integral subgroup PGL2(Zp) is in fact a maximal compact subgroup
(indeed this is a maximal proper subgroup as well, an observation of Tits [66]).

There are in fact two maximal compact subgroups of PGL2(Qp) up to conjugacy, but they
are commensurable. Upon constructing the tree, one conjugacy class of maximal compact
subgroup is the stabilizer of a vertex, and the other corresponds to the stabilizer of the
midpoint of an edge. Much of this section will be dedicated to understanding the structure
of the coset space Tp+1 = PGL2(Qp)/PGL2(Zp), and we shall give coordinates to this space
(i.e., coset representatives).

The disk model

Here we develop coordinates for a disk model of the p-adic tree, for p odd, and contend that
the quaternions give perhaps the most natural coset representatives for SO3(Qp)/SO3(Zp).
Let Q : Q3

p → Qp denote the quadratic form Q(x, y, z) = x2+y2+z2 (although any equivalent
quadratic form can be used here). Let SO3(Qp) = {g ∈ SL3(Qp) | Q(gv) = Q(v) ∀v}. Then
the subgroup SO3(Zp) is a maximal compact subgroup.

Recall that for an odd prime p, Ap denotes the p+ 1 projective integer quaternions with
reduced norm p which are equivalent to 1 or 1 + i+ j modulo 2. The adjoint representation
identifies Ap with a subset of SO3(Qp), and 〈Ap〉 has index 4 in SO3(Z[1/p]).

Proposition 15. The coset space SO3(Qp)/SO3(Zp) carries a natural structure of a (p+1)-
regular tree, and the elements of 〈Ap〉 form a natural coordinate system for the tree.
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Proof. The group GL2(Qp) acts on the space M2(Qp) by conjugation. Since trace is a conju-
gation invariant, this action preserves the 3-dimensional Qp-vector space g of traceless 2-by-2
matrices over Qp. For X, Y ∈ g, we can consider the Lie bracket [X, Y ] = XY − Y X, and
obtain a map ad : g → End(g) which sends X to the linear map [X,−]. The Killing form on
g is defined by B(X, Y ) = tr(ad(X) ◦ ad(Y )). Note that ad(X) and ad(Y ) are traceless, but
their composition is not necessarily traceless.

The GL2(Qp) action preserves the Killing form, which is equivalent to the formQ(x, y, z) =
x2 + y2 + z2 over Qp. The center acts trivially, and we obtain an injective homomorphism
ρ : PGL2(Qp) → SO3(Qp), under which PGL2(Zp) maps to SO3(Zp). So the coset space is the
same tree.

Since 〈Ap〉 acts simply transitively on the vertices of the tree, it provides a coordinate
system. Thus ρ(g), where g ranges over 〈Ap〉, forms a system of coset representatives for
SO3(Qp)/SO3(Zp).

A key takeaway of this discussion is that, with respect to the basis {H =

*
1 0
0 −1

+
, X =

*
0 1
0 0

+
, Y =

*
0 0
1 0

+
}, the map

*
a b
c d

+
+→

/

0
ad+ bc −ac bd
−2ad a2 −b2

2bc −c2 d2

1

2

is an isomorphism to a p-adic orthogonal group for an odd prime p.

Boundary bundles for trees

If T is a tree and v ∈ T , a geodesic ray at v is a sequence r = (v = r0, r1, r2, . . . ) in the tree,
where ri is connected to ri+1 and ri ∕= ri+2. This is equivalent to an isometric embedding
N → T . The space of geodesic rays at v carries a topology, where the basic open sets
consist of rays that begin with the same finite sequence of vertices. In this way, v determines
a boundary for T , denoted ∂vT . However, if w is another vertex in T , there is a unique
geodesic path from w to v, and there is a natural homeomorphism ∂vT → ∂wT , obtained by
precomposing with this path and then canceling backtracking.

If T is k-regular for k ≥ 3, its boundary is a Cantor set. More generally, the boundary
may be a closed subset of a Cantor set, but if T admits a lattice, the boundary is empty,
two points, or a Cantor set. An oriented geodesic in T is a isometric embedding Z → T ,
considered up to a change of parametrization.

We can define the boundary bundle T ∂ of T to be a directed graph, whose vertices consist
of pairs (v, r) where v ∈ T and r ∈ ∂vT , and (v, r) ∼ (w, s) if s = (r1, r2, r3, . . . ). That is,
the ray s is obtained from the ray r by forgetting the first coordinate. Note if T is k-regular,
so is T ∂ . Each vertex has a unique outgoing edge and k − 1 incoming edges.

The boundary bundle admits a geodesic flow, which is the map ϕ : T ∂ → T ∂ which sends
a vertex (v, r) to the unique vertex to which it has a directed edge. The flow is a (k−1)-to-1
surjective map.
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Note also that T ∂ comes equipped with a topology and a continuous map T ∂ → T with
compact fibers. Moreover, if T is a regular tree, the automorphism group of T is naturally
identified with that of T ∂ .

We remark that T ∂ also has a map to the (unbasepointed) boundary of the tree deter-
mined by (v, r) → r, where the fibers of the map are copies of the tree T .

Boundary bundle for p-adic trees

Since PGL2(Qp) acts on the p-adic tree by isometries, it acts on the boundary QpP1. The

point ∞ is stabilized by the Borel subgroup B =

*
∗ ∗
0 ∗

+
. Consider the geodesic ray r0 =

⌊0⌋0 → ⌊0⌋−1 → ⌊0⌋−2 → . . . . We observe that it is stabilized by BZp = B ∩ PGL2(Zp), and
so the boundary bundle may be identified with the coset space PGL2(Qp)/BZp .

If Γ is a lattice in PGL2(Qp), it determines a finite orbi-graph quotient, but it acts freely
and cocompactly on the boundary bundle. Another benefit of the boundary bundle space is
that it provides a natural space in which to study geodesic laminations in graphs, because
infinite paths in a finite graph can embed in this space.

2.2 PGL2(Qp)

Before understanding the role that p-adics play in the theory of algebraic groups, it may
appear to be a surprising coincidence or perhaps even a pathology that free groups can
be found in the group of rotations of the sphere. Since SO3(R) is a compact group, the
only finitely generated subgroups which have some obvious geometric meaning are the finite,
discrete groups.

However, restricting one’s focus to the rational points SO3(Q) illuminates a much broader
landscape to consider geometrically defined groups. At this point, we can consider SO3(Q)
as a discrete subgroup of the adelic points SO3(A), and obtain a perspective in which the fact
that free groups appear in SO3(Q) entirely natural, and indeed almost tautological rather
than pathological.

In this section, we define the tree for PGL2(Qp), and classify its isometries.

Proposition 16. PGL2(Zp) is a compact subgroup of PGL2(Qp).

Proof. Note that PGL2(Zp) contains PSL2(Zp) as an index two subgroup, so it is compact if
and only if PSL2(Zp) is. But SL2(Zp) is a closed subset of the compact set M2(Zp), hence
compact. The center of SL2(Zp) is finite, and so PSL2(Zp) is compact.

Once we construct the tree, it will be clear that it is in fact a maximal compact subgroup,
because we will be able to prove that it is indeed a maximal subgroup.

Proposition 17. The collection Vp =

3*
pn q
0 1

+
| n ∈ Z, q ∈ Z[1/p]/pnZ

4
forms a system

of representatives for the coset space PGL2(Qp)/PGL2(Zp).
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Figure 2.1: The local structure of a tree. The vertices are labeled by n ∈ Z and q ∈
Z[1/p]/(pn), and its neighbors are as described.

Proof. First, we describe an algorithm that converts a given p-adic matrix

*
a b
c d

+
with

nonzero determinant to an element of Vp. We have a right action by PGL2(Zp), so we may
apply Zp-linear column operations to the matrix and scale arbitrarily (since the matrix is
only determined up to scalars).

Step 1: Possibly exchanging the columns, we assume that vp(c) ≥ vp(d), so that c
d
∈ Zp.

Step 2: This allows us to subtract c
d
times the second column from the first column, to

obtain

*
a− c

d
b b

0 d

+
.

Step 3: By scaling the entire matrix, this is equivalent to

*
ad−bc
d2

b
d

0 1

+
.

Step 4: We can multiply the first column by an element of Z×
p to obtain

*
pn b

d

0 1

+
, where

n = vp(ad− bc)− 2vp(d).
Step 5: We can reduce ⌊ b

d
⌋n and obtain an element of Z[1

p
]/pnZ.

We introduce the notation ⌊q⌋n =

*
pn q
0 1

+
. We call n the level of ⌊q⌋n. We consider q

as an element of Z[1/p]/pnZ ↔ Qp/p
nZp.
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Figure 2.2: The p-adic tree

Proposition 18.

*
a b
c d

+
⌊q⌋n =

(
⌊aq+b
cq+d

⌋n−2vp(cq+d)+vp(ad−bc) if vp(cq + d)− vp(c) ≤ n

⌊a
c
⌋−n−2vp(c)+vp(ad−bc) if vp(cq + d)− vp(c) > n

Proof. We apply the algorithm above to the matrix

*
a b
c d

+*
pn q
0 1

+
=

*
apn aq + b
cpn cq + d

+
.

Step 1 tells us to first compare vp(cp
n) and vp(cq + d).

Case 1: vp(cp
n) ≥ vp(cq + d). Then we have

*
apn aq + b
cpn cq + d

+
∼

*
pm aq+b

cq+d

0 1

+
, where

m = vp(ap
n(cq + d)− cpn(aq + d))− 2vp(cq + d) = vp(p

n(ad− bc))− 2vp(cq + d).

Case 2: vp(cp
n) < vp(cq + d). Then we have

*
aq + b apn

cq + d cpn

+
∼

*
pm a

c

0 1

+
, where m =

vp((aq + b)cpn − (cq + d)apn)− 2vp(cp
n) = vp(−(ad− bc)pn)− 2vp(cp

n).
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We make some observations about this formula for computing the action of PGL2(Qp) on
the (p+ 1)-regular tree Tp.

First, if the matrix g has determinant 1, vp(ad − bc) = 0, which slightly simplifies the
formula. But we can also observe that the difference between the height of a vertex and
its image under g is even, which implies that the distance between v and gv is even. This
reflects the fact that PSL2(Qp) preserves the bipartite structure of the tree. More generally,
g ∈ PGL2(Qp) preserves the bipartition if and only if vp(det(g)) is even for some (hence any)
representative matrix.

The formula also simplifies considerably when c = 0, in which case

*
a b
0 d

+
⌊q⌋n =

⌊aq+b
d

⌋n−2vp(d)+vp(ad). Since upper triangular matrices fix ∞ ∈ QpP1, the level of g.v should
be independent of v, which is clear from the formula.

We can classify the elements of PGL2(Qp) by their action on Tp. More general automor-
phisms of trees are most broadly classified by whether they fix a point in the tree or not.
However, for these projective transformations we get a more detailed description of what
can occur.

Theorem 13. There are four types of infinite order elements in PSL2(Qp) for p an odd
prime.

(i) Hyperbolic elements: vp(tr(g)) < 0
(ii) Loxodrom-ish elliptics: tr(g)2 − 4 is a nonzero square in Z×

p

(iii) Strongly elliptics: tr(g)2 − 4 is not a square in Z×
p

(iv) Parabolike elliptics: tr(g)2 = 4

Proof. It is clear that these four cases exhaust the possibilities for the trace of g and are
thus pairwise nonconjugate.

Proposition 19 (Hyperbolic elements). In case (i), g has both an attracting and a repelling
fixed point in the boundary of the tree, and there is a unique axis which is invariant. The
axis is translated by a length of 2vp(tr(g)), and in general if w ∈ T , the distance between w
and gw is twice the distance from w to the axis plus the translation length.

Proof. The characteristic polynomial of g has roots λ± =
tr(g)±

√
tr(g)2−4

2
. Since tr(g)2 is

visibly a square in Qp and it has negative valuation, its first nonzero coefficient is a square
in Fp, which is not changed when adding the integer −4. Thus tr(g)2 − 4 is also a square in
Qp, and so the two roots lie in Qp.

Proposition 20 (Loxodrom-ish elliptics). In case (ii), the fixed set of g is a neighborhood of
a geodesic in the tree. If the fixed set is not precisely an axis, it permutes the points distance
r from the fixed set in a pr-cycle.

Proof. The matrix g is conjugate to a matrix of the form

*
λ 0
0 λ−1

+
, for some λ ∈ Z×

p . If

λ ≡ 1 (mod p), then so is λ−1, and g fixes the vp(λ − 1)-neighborhood of the axis while
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permuting the p neighbors of each leaf of the fixed subtree in a cycle. Then the pth power of
g fixes one additional layer and acts on the next level as a p-cycle.

Proposition 21 (Strongly elliptics). In case (iii), the fixed set of g is a compact set in the
tree. By adjoining a square root of tr(g)2 − 4 to Qp, g has roots in this quadratic extension,
and hence fixes these points in the boundary of the tree associated to the quadratic extension.

Proof. Since the characteristic polynomial of g has no roots in Qp, it acts on the boundary
without fixed points. But this implies that the fixed set is compact. However, the quadratic
extension of Qp obtained by adjoining the square root of the discriminant will have two fixed
points in the boundary, hence a fixed axis.

Proposition 22 (Parabolike elliptics). In case (iv), the fixed set of g is a horocycle in the

tree. The matrix is conjugate to one of the form

*
1 x
0 1

+
for x ∕= 0.

Proof. The assumption on the trace immediately implies the conjugacy statement. Directly
from the formula for the action, it is clear that such a matrix fixes vertices ⌊q⌋n, for n ≤ vp(x),
and that gm fixes vertices at level vp(x) + 1 if and only if p | m.

The Cross-ratio

Definition 8. Let w, x, y, z ∈ QpP1. The cross-ratio [w, x; y, z] is defined by the formula
(w−y)(x−z)
(x−y)(w−z)

, where we extend arithmetic to ∞ in the obvious way. The cross-ratio encodes
much of the geometric information in the p-adic tree.

Proposition 23. A bijection g : QpP1 → QpP1 preserves the cross-ratio of every quadruple
if and only if g ∈ PGL2(Qp).

Proof. Supposing g ∈ PGL2(Qp), it is a straightforward computation that g[w, x; y, z] =
[gw, gx; gy, gz] = [w, x; y, z] for any quadruple. Conversely, if g preserves the cross-ratio, its
matrix can be constructed by considering the action on four points, which determines the
image of any other point.

In particular, the preceding proposition characterizes the group PGL2(Qp) as a subgroup
of Aut(T ), once the boundary of the tree has an identification with QpP1, because any
homeomorphism of the boundary which extends over the tree has a unique such extension.

The unit tangent bundle of the tree

When we describe the points of a geometry in terms of a coset space G/K, there is typically
a geometric interpretation of G/H for closed subgroups H of K. In the case of the tree
Tp = PGL2(Qp)/PGL2(Zp), each closed subgroup H ≤ PGL2(Zp) admits an interpretation
as a geometric configuration. Analogously, H2 = PSL2(R)/SO2 is the hyperbolic plane, and
PSL2(R)/1 is the unit tangent bundle.
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G = PGL2(Qp) acts simply transitively on the space of labeled ideal triangles in Tp. An
ideal triangle in the tree is a metric triangle whose vertices lie on the boundary. A triangle
in a tree always has a unique center, which is the common intersection of the three sides.
From this perspective, an ideal triangle is the same as a vertex in the tree, together with
three geodesics emanating from it in different directions.

We can identify a labeled ideal triangle with an ordered triple of distinct points in QpP1.
A basepoint for this is the triple {0, 1,∞}, and the center of this triangle is the basepoint
of the tree.

Note that 〈
*
0 1
1 0

+
,

*
−1 1
0 1

+
〉 ∼= S3 acts on the base triangle by permuting its vertices

(since the first matrix fixes 1 and exchanges 0,∞, and the second matrix fixes ∞ and
exchanges 0, 1), and so G/S3 is the space of ideal triangles in Tp.

2.3 PGL2(Q)

Local models

Recall that an n-manifold M is a topological space which is locally modeled on Rn, in the
sense that each point in M has a neighborhood which is homeomorphic to an open set in
Rn. If ∆ is a topological space, a ∆-complex is a topological space which is locally modeled
on ∆.

Consider the space Sn = ([0, 1]× {1, . . . , n})/((0, i) ∼ (0, j)) with the quotient topology,
which we call the n-star. An Sn-complex is a topological space which is locally modeled on
Sn. Note an Sn complex is the same as an open subset of an n-regular graph.

Just as an orbifold is a space which is locally modeled on Rn modulo a finite group,
a ∆-orbicomplex is a space which is locally modeled on ∆ modulo a finite group. In this
section, we construct an object which is best viewed as an R2 × S3 × S4-orbicomplex.

Using the theory we have built up so far, we can obtain an explicit description of Γn =
PGL2(Z[1/n]) as a finite complex of groups. For each prime p dividing n, there is an action
of Γn on the p-adic tree without a global fixed point. The action is in fact transitive on
the vertices and has a single orbit of edges. Thus we obtain a splitting of Γn as an HNN
extension with vertex group Γn/p and edge group a subgroup of index p + 1. We carry this
process out explicitly in the case Γ6 = PGL2(Z[1/6]). This can also be viewed as a complex
of groups. Here the complex is CAT(0) and hence developable.

According to the Borel–Harish-Chandra theorem, Γ6 is a lattice in H2 × T2+1 × T3+1.
In the present case, we can compute this lattice explicitly. If we consider the action on
T2+1 × T3+1, the stabilizer of the base vertex is

PGL2(Z[1/6]) ∩ (PGL2(Z2) ∩ PGL2(Z3)) = PGL2(Z).

We set

R =

*
−1 0
0 1

+
, S =

*
0 1
−1 0

+
, T =

*
1 1
0 1

+
, tp =

*
p 0
0 1

+
.
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Figure 2.3: Congruence subgroups of the modular group

It is well-known that {R, S, T} are generators of Λ = PGL2(Z). For N ∈ Z, let Λ0(N) =

{
*
a Nb
c d

+
∈ PGL2(Z) | ad−Nbc = ±1}.

We observe that tp

*
a b
c d

+
t−1
p =

*
a pb
c/p d

+
. Thus it is clear that Λ ∩ tpΛt

−1
p = Λ0(p).

We denote Λtp = tpΛt
−1
p .

Observe that in Figure 2.3, the polygon shaded in gray is a triangle with one ideal vertex,
and two vertices with angles of π/2 and π/3. The reflections in the sides are labeled with
the red matrices, and these reflections generate Λ = PGL2(Z). The polygon P2 bound by the
green lines and the left vertical axis is a triangle with two ideal vertices and a right angle,
and the group generated by reflections in the sides of P2 is Λ0(2), an index 3 subgroup of
Λ. The polygon P3 bound by the blue lines and the left vertical axis is a triangle with two
ideal vertices and a vertex with a π/3 angle, and the group generated by reflections in the
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sides of P3 is Λ0(3), an index 4 subgroup of Λ. The polygon P6 is an ideal square bound by
the purple lines, and reflections in the sides of this square generate Λ0(6), which is an index
12 subgroup of Λ. Note Λ0(6) also covers Λ0(2) and Λ0(3).

Figure 2.4 displays the complex of groups decomposition of PGL2(Z[1/6]), which also
provides a decomposition of the space H2 × T3 × T4/PGL2(Z[1/6]).
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Figure 2.4: The complex of groups and spaces associated to PGL2(Z[1/6])
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Chapter 3

Surface Group Actions on Products of
Trees

3.1 Surface Groups acting on Products of Trees

Recall our motivating question: Suppose X is a locally compact jungle, and G is the funda-
mental group of a closed surface of genus 2. Can G act freely on X?

Locally Infinite Trees

We first describe explicitly how this can be done without the restriction that X be locally
compact.

Let Σ be a genus two surface, and let R = {r1, r2, r3} denote the red multicurve and
G = {g1, g2, g3} the green multicurve in Figure 3.1. Note that these are the fixed sets of the
two reflectional symmetries of the surface as it is embedded in R3, and for each of R and G,
the complement Σ \R and Σ \G is a union of two pairs of pants.

Since Σ \ (R ∪G) is a union of disks (in fact, four hexagons), a closed curve based at x
is fully determined by the sequence of curves it crosses.

We can analyze this picture a bit more. The lift of R to the universal cover is a collection
of nonintersecting lines that cut H2 into half-planes. The action of π1(Σ) preserves these
lines, and hence permutes the complementary regions. Each region has infinitely many
neighbors. If we define a graph whose vertices consist of the complementary regions, and
two vertices are connected by an edge if they share a border, we obtain a locally infinite tree.

This tree is in fact precisely the Bass-Serre tree described in Example 1 of the Bass-Serre
theory section. The edges adjacent to the base vertex correspond to the cosets of the three
〈ri〉 in P , where P = π1(Σ \R, x) is the pants group.

Theorem 14. The action of π1(Σ) on T∞ × T∞ is free and determines a quasi-isometric
embedding H2 → T∞ × T∞.

In [20], the authors construct a map T∞ → T to a locally finite tree so that the composi-
tion H2 → T∞×T∞ → T ×T is quasi-isometric, thereby producing a copy of the hyperbolic
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Figure 3.1: Filling multicurves

plane embedded in a product of locally finite trees. However, there is not a clear way to
make the resulting plane “periodic”. The space of quasi-isometric embeddings of a hyper-
bolic plane into a product of trees should be open in the space of combinatorial maps, and
it is nonempty by this theorem. Perhaps finding a way to “approximate” arbitrarily large
portions of a quasi-isometrically embedded hyperbolic plane by a surface group action would
allow one to prove the existence of a surface group action on a product of locally finite trees.
In the following section, we will construct an alternate quasi-isometric embedding of H2 in
a locally finite product of trees.

Introduction

In section 3.1, G will denote a fixed group, namely G = 〈a, b | [a, b]2〉. Note that G is the
fundamental group of an orbifold which is a torus with a cone point of order 2.

Proposition 24 (Long-Reid). The representation a +→
*
3 0
0 1/3

+
and b +→

*
1/8 3/8
6/8 82/8

+

determines a faithful action of G on T3 × T4.

Proposition 25. The image of the representation of G determined by a +→
*

2 3
−3 2

+
and

b +→
*

1 + 2i 2 + 3i
−2 + 3i 1− 2i

+
acts properly on T4 × T14.
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Figure 3.2: How to obtain the filling multicurves from a square complex structure on a
surface

The difficulty is that in Proposition 24, there may be an element of G of infinite order
which fixes a point in the product of trees, and the representation in Proposition 25 may
not be faithful.

Proposition 26. Unbounded and indiscrete subgroups of PSL2(Qp) are dense or solvable.

Proof. Suppose G ≤ PSL2(Qp) is unbounded and indiscrete, and let g denote the Lie algebra
of the closure of G. Then g is a subalgebra of sl2, and every proper subalgebra is solvable. If
it is a proper subalgebra, then G is solvable, otherwise G is open in PSL2(Qp). Theorem (T)
in [66] asserts that if G is semi-simple and almost k-simple, then any proper open subgroup
of G(k)+ is bounded. But since G is an unbounded open subgroup of the simple group
PSL2(Qp), we conclude that G is dense in PSL2(Qp).
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Proposition 27. Suppose G ≤ PSL2(Q) is a surface group. Then there is a nonempty finite
set of primes S so that G ≤ PSL2(Qp) is dense for p ∈ S. For every other prime, G is dense
in a finite index subgroup of a conjugate of PSL2(Zp), and this index is 1 and conjugate is
trivial for all but finitely many primes.

Proof. First, if the trace of every element of G is an integer, then G has a finite index
subgroup which is contained in PSL2(Z), hence G would be virtually free. Thus there must
be g ∈ G with tr(g) not an integer, and there is some nonempty set S of primes which occur
as denominators of traces. This set must also be finite, since G is finitely generated and the
trace ring of G is therefore finitely generated.

Note that for any prime p ∈ S, G is unbounded in PSL2(Qp), since tr(g) ∕∈ Zp implies
that g is a translation in the p-adic tree. If G were unbounded and discrete in PSL2(Qp),
then G would act properly on a tree and hence be virtually free. Surface groups are not
virtually free, so G is indiscrete in PSL2(Qp). But G does contain a free subgroup, hence G
is not solvable. Hence, by Proposition 26, G is dense in PSL2(Qp).

For the primes q ∕∈ S, G is bounded in PSL2(Qq), hence G acts on the q-adic tree with
a global fixed point. Then some finite index subgroup of G fixes the base vertex, or in
other words, some finite index subgroup of G is contained in PSL2(Zq). It may be that not
all elements of G are q-integral, although they all have q-integral traces. However, there
can only be finitely many primes occurring as denominators of entries of G, again since G is
finitely generated. In these finitely many additional primes, it may be necessary to conjugate
G into PSL2(Zq), but for the remaining primes, G ≤ PSL2(Zq) and Theorem 8 implies that
G is dense for almost every prime, and almost dense for every prime q ∕∈ S.

The Long-Reid group

The orbifold T(2) is a convenient choice of a hyperbolic orbifold because its fundamental
group has a very simple presentation with two generators and one relation. Assume that*
a b
c d

+2

=

*
a2 + bc b(a+ d)
c(a+ d) d2 + bc

+
is the identity in PSL2(R). Either b = c = 0, and we must

have a2 = d2 = ±1, and we conclude that a, d ∈ {±1}. But this has determinant 1 only if
a = d, but these are both the identity in PSL2(R). So if an element has order 2, it must have
b or c nonzero, but this implies that the trace a+d = 0. Conversely, any matrix g with trace
zero and determinant 1 has characteristic polynomial x2 + 1 = 0, so must satisfy g2 = −I.

If we assume that the generator ρ(a) = A is diagonal (which, as we are interested pri-
marily in rational representations, is a nontrivial restriction - A may be diagonalizable over
R but not over Q!), it is easy to compute which matrices B will satisfy the defining relation.

5*
t 0
0 1/t

+
,

*
a b
c d

+6
=

*
ad− bct2 ab(t2 − 1)
cd(t−2 − 1) ad− bct−2

+

So the trace of the commutator is 2ad−bc(t2+t−2). The commutator will have order 2 in
PSL2(R) exactly when its trace is zero, so we must solve 2ad = bc(t2 + t−2) and ad− bc = 1.
Substituting ad = bc+ 1 in the first equation gives 2 = bc(t2 − 2 + t−2) = bc(t− t−1)2. Thus
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bc = 2
(t−t−1)2

, and we see that c = 2t2

b(t2−1)2
parametrizes solutions in b. We are really just

interested in representations up to conjugacy, and conjugating by a diagonal matrix allows
us to replace b with λ2b and c with λ−2. Since not all rational numbers are squares, we lose
a bit of generality by fixing a particular solution b = 1

t−t−1 and c = 2
t−t−1 , but we obtain the

explicit solutions in two parameters:

5*
t 0
0 1/t

+
,

*
s t
2t (t4 + 1)/s

+
/(t2 − 1)

6
=

*
1− t4 st(t2 − 1)

−2(t4+1)(t2−1)
st

t4 − 1

+
/(t2 − 1)4

By setting t = 3 and s = 1, we recover the representation of Long and Reid. However,
we have also obtained the following:

Proposition 28. For any t ∈ Z, PSL2(Z[1/(t3 − t)]) contains a surface subgroup.

Note that when |t| > 3 is an integer, the set of primes dividing t3 − t = (t− 1)t(t+ 1) is
strictly larger than 2, and so this is the only parameter which gives an action on a product
of two trees!

One may ask more generally: for which rings A does PSL2(A) contain a surface subgroup?
For quadratic irrationals α, there is an arithmetic Fuchsian group in PSL2(Z[α]). But it is
not clear whether PSL2(Z[1/p]) or PSL2(Z[β]) (β3 − 3β − 1 = 0), for example, contains a
surface group.

3.2 The Markoff Equation

If A ∈ SL2(C), its characteristic polynomial takes the form λ2 − tr(A)λ + 1 = 0, and the
Cayley-Hamilton theorem implies that A2 − tr(A)A+ I = 0, hence tr(A2)− tr(A)2 + 2 = 0,
or tr(A2) = tr(A)2 − 2. Now for any other matrix B, we have BA−1(A2 − tr(A)A + I) =
BA−10 = BA−tr(A)B+BA−1, and taking traces yields tr(BA)−tr(A)tr(B)+tr(BA−1) = 0,
or tr(A)tr(B) = tr(BA) + tr(BA−1). We also have the identities tr(AB) = tr(BA) and
tr(A) = tr(A−1), which are perhaps observed most simply by looking at the formulas for
multiplication and inversion.

It follows that

tr([A,B]) = tr(AB(BA)−1) = tr(AB)tr(BA)− tr(ABBA)

Now tr(A(BBA)) = tr(A)tr(BBA)− tr(B2) = tr(A) (tr(B)tr(BA)− tr(A))− tr(B2) =
tr(A)tr(B)tr(AB) − tr(A)2 − tr(B2). Since tr(B2) = tr(B)2 − 2, we have obtained the
Markoff equation

tr([A,B]) = tr(A)2 + tr(B)2 + tr(AB)2 − tr(A)tr(B)tr(AB)− 2

Suppose ρ : 〈a, b | [a, b]2〉 → PSL2(Q) is a faithful representation. Note the trace is well-
defined up to a choice of sign in PSL2, and tr(ρ([a, b])) must be equal to 0. Set x = tr(ρ(a)),
y = tr(ρ(b)), and z = tr(ρ(ab)). Then the trace identity is equivalent to the Markoff equation

x2 + y2 + z2 = xyz + 2.
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We set δ = tr(ρ(a2)), and from the relation tr(A2) = tr(A)2−2, we observe that δ = x2−2.
Upon setting s = y− x

2
z, we thus obtain an equivalent form of the Markoff equation, namely

s2 +
1

2
z2 = δ((

z

2
)2 − 1).

We obtain a handful of integer solutions to this equation by setting (x, y, z) = (±1,±1, 0),
(x, y, z) = (1, 1, 1), and (x, y, z) = (1,−1,−1) together with permutations of these solutions.
Note that all of these correspond to unfaithful representations, because the generators (which
have infinite order in the orbifold group) are mapped to rotations of order 2 or 3.

We now homogenize the Markoff equation, setting x = X
W
, y = Y

W
, and z = Z

W
, and scale

by a factor of 4W 4 to obtain the form:

(2WY −XZ)2 + 2W 2Z2 = (X2 − 2W 2)(Z2 − 4W 2) (3.1)

We consider whether there is a faithful representation of this torus orbifold group in
which one of the generators is integral. Without loss of generality, suppose x is an integer.
If the representation is faithful, we must have |x| ≥ 2. The condition that x is an integer
is equivalent to the condition that W | X in the homogeneous form. In this case, the value
δ = X2−2W 2

W 2 is an integer, which is 7 mod 8 if x is odd and 2 mod 4 if x is even, since {0, 1, 4}
are the squares mod 8.

Supposing x = X
W

is an integer and canceling factors of W 2, we obtain the integral
equation

(2Y − xZ)2 + 2Z2 = (x2 − 2)(Z2 − 4W 2). (3.2)

Theorem 15. If (x, y, z) is a rational solution to x2+y2+ z2 = xyz+2 and x is an integer,
then |x| ≥ 6, v2(x) = 1 and v2(y) = v2(z) = −1.

Proof. Supposing there were such a solution, we obtain an integral solution to Equation 3.2
by writing (x, y, z) = (x, Y/W,Z/W ), with W minimal.

Case 1: x is odd. Then δ = x2−2 ≡ 7 (mod 8). Since also δ ≥ 2, there must be a prime
p ≡ 3 (mod 4) dividing δ to an odd power, and this prime cannot divide x, or else it divides
x2−δ = 2. Reducing Equation 3.2 mod p, we obtain (2Y −xZ)2+2Z2 ≡ 0 (mod p). Noting
that x2 ≡ 2 (mod δ), and hence x2 ≡ 2 (mod p), this is equivalent to (2Y −xZ)2 ≡ −(xZ)2

(mod p), which can only have a solution if p divides both (2Y − xZ) and xZ, since −1 is
not a square mod p when p ≡ 3 (mod 4). Since p does not divide x, it must divide Z. But
since p divides 2Y −xZ and xZ, it must also divide 2Y and hence Y . So p must divide both
Y and Z, and therefore cannot divide W since W is minimal. But this implies that p does
not divide Z2− 4W 2, since it is equal to −4W 2 (mod p), which is nonzero because W is not
divisible by p.

Now let ki = vp(ai), for a1 = 2Y −xZ and a2 = xZ. We claim that vp((2Y −xZ)2+2Z2) =
2k, where k = min{k1, k2}. To this end, we observe that A = (a1/p

k)2+(a2/p
k)2 is a sum of

integer squares, not both of which are divisible by p. But since there is no nonzero solution
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to x2+y2 = 0 (mod p) in Fp, A must not be divisible by p. Thus, vp((2Y −xZ)2+2Z2) = 2k,
as claimed.

Thus the left hand side is divisible by an even power of p, and the right hand side is
divisible by an odd power of p. This is a contradiction.

Case 2: 4 | x. This implies δ = x2 − 2 = 2δ′, with δ′ ≡ 7 (mod 8). Hence δ′ is divisible
by some prime p ≡ 3 (mod 4) to an odd power, and we can argue as before. Explicitly,
this implies that p does not divide x, but considering Equation 3.2 modulo p can be written
(2Y − xZ)2 + (xZ)2 ≡ 0 (mod p), and we deduce as before that p divides Z and Y . Then
the left hand side has even p-adic valuation, and since the right hand side has odd p-adic
valuation, we obtain a contradiction.

Thus the only possibility is that x ≡ 2 (mod 4), or equivalently, v2(x) = 1. Note that if
x = ±2, the equation becomes 4 + y2 + z2 = ±2yz + 2, or (y ∓ z)2 = −2, which clearly has
no rational solutions. So |x| ≥ 6.

Thus, we have shown that if (x, y, z) is a rational solution with x an integer, then x ≡ 2
(mod 4) and v2(y) = v2(z) = −1.

Setting t22 =

*
2 0
0 1/2

+
, L =

*
1 0
1 1

+
, and U =

*
1 1
0 1

+
, we have t22U

−1 =

*
2 −2
0 1/2

+
and

UL2U =

*
3 4
2 3

+
.

Theorem 16. The representation ρ2(a) =

*
2 −2
0 1/2

+
, ρ2(b) =

*
3 4
2 3

+
is a faithful rep-

resentation of the compact orbifold group G into PSL2(Z[1/2]), corresponding to the triple
(5/2, 6, 7/2).

Proof. Note that the commutator ρ2([a
−1, b−1]) =

*
−1 1
−2 1

+
= UL−2 has trace zero, hence

is a rotation of order 2, about p = 1+i
2
. The four points p, ap = −2 + 2i, bp = (47 + i)/34,

and abp = bap = 2
17
(13 + i) form the vertices of a quadrilateral with geodesic sides, and

the sum of the interior angles is π. Since the isometries a and b induce side-pairings of this
quadrilateral, they generate a Fuchsian group in PSL2(R).

Proposition 29. The group ρ−1
2 (ρ2(G) ∩ PSL2(Z)) is a maximal subgroup of G, and H =

ρ2(G) ∩ PSL2(Z) is a thin subgroup of PSL2(R) with infinite index in its commensurator,
which is a discrete subgroup of PSL2(R).

Proof. For the first statement, we observe that ρ2(G) is dense in PSL2(Q2) by Proposition 27,
and that since ρ2(G) ≤ PSL2(Z[1/2]), and Z2 ∩Z[1/2] = Z, we have that ρ2(G)∩PSL2(Z) =
ρ2(G) ∩ PSL2(Z2). If there were an intermediate subgroup between H and G, its closure
would be an intermediate subgroup between PSL2(Z2) ≤ PSL2(Q2), which is impossible.

Since ρ2(G) is a nonarithmetic lattice in PSL2(R), it has finite index in its commensurator
by Margulis’s theorem, which says that a lattice in a simple Lie group is arithmetic if and
only if it has indiscrete commensurator [54]. Since the commensurator of ρ2(G) is therefore
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discrete, and ρ2(G) is a lattice, its commensurator must contain it with finite index. Since
H is a subgroup of the discrete group G, it is discrete, and since it is not virtually abelian,
it must be Zariski dense in PSL2(R).

Theorem 17. There is no faithful representation G = 〈a, b | [a, b]2〉 → PSL2(Z2), hence G
is not a subgroup of PSL2(Z[1/n]) for n odd.

Proof. Note that the only elements which are commutators in S3
∼= PSL2(F2) are the 3-cycles

and the identity. So any representation must have ρ([a, b]) ≡ I (mod 2). But this implies
that tr(ρ([a, b])) ≡ 2 (mod 4), but a faithful representation must have tr(ρ([a, b])) = 0.

Putting together the previous two theorems, we obtain the following corollary.

Corollary 5. G = 〈a, b | [a, b]2〉 is a subgroup of PSL2(Z[1/n]) if and only if n is even.

Right-Angled Pentagon Groups

We consider an analogous representation of the Coxeter group generated by the reflections
in the sides of a right-angled pentagon. For λ, µ > 0 satisfying tanh(λ)2 + tanh(µ)2 > 1,
there is a unique right-angled pentagon up to isometry with two adjacent sides of length
λ, µ. We can take the intermediate vertex at i, with a side of length λ going up to eλi. The

reflection in the imaginary axis is given by a =

*
−1 0
0 1

+
in PGL2(R). The side of length µ

can be chosen to move to the right along the unit circle to the point (sinh(µ) + i)/ cosh(µ)

on the unit circle. The inversion in the unit circle is given by b =

*
0 1
1 0

+
.

The edge coming from eλi to the right is a scaling of the unit circle, and reflection in this

side is given by c =

*
0 eλ

e−λ 0

+
. The reflection in the edge orthogonal to the unit circle and

passing through (sinh(µ) + i)/ cosh(µ) is given by d =

*
− cosh(µ) sinh(µ)
− sinh(µ) cosh(µ)

+
.

The reflection in the final side must commute with these last two reflections. The con-

dition that e =

*
w x
y z

+
satisfies ce = −ec implies that z = −w, y = x/e2λ. Using this

information, the condition that de = −ed implies that e =

*
− tanh(µ) tanh(λ) + 1
tanh(λ)− 1 tanh(µ)

+
.

The assumption we made that tanh(λ)2 + tanh(µ)2 > 1 is equivalent to the condition that
the determinant of e is negative, and since the trace is 0 this is a reflection in PGL2(R). Set
δ2 = tanh(λ)2 − tanh(µ)2 − 1, so that e/δ has determinant −1.

Thus the group

〈
*
−1 0
0 1

+
,

*
0 1
1 0

+
,

*
0 eλ

e−λ 0

+
,

*
− cosh(µ) sinh(µ)
− sinh(µ) cosh(µ)

+
,

*
− tanh(µ) tanh(λ) + 1
tanh(λ)− 1 tanh(µ)

+
/δ〉
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determines a Fuchsian representation of the right-angled pentagon reflection group into
PGL2(R). Note that each edge in the pentagon has two orthogonal reflections, and if we
multiply them in either order, the translation length is twice the length of the side. This
allows us to easily compute the lengths of the sides of the pentagon to be a = cosh(λ),
b = cosh(µ), c = sinh(λ) sinh(µ), d = tanh(λ)/δ, and e = tanh(µ)/δ.

Here a and b are the lengths of adjacent sides, and c is the length of the side opposing
them. We have the relation (a2 − 1)(b2 − 1) = sinh(λ)2 sinh(µ)2, or equivalently,

a2 + b2 + c2 = a2b2 + 1.

This formula somewhat resembles the Markoff equation, although since this equation
has degree four it has somewhat different behavior. We also remark that a solution with
a, b, c rational does not guarantee that the other two sides are rational, since the quantity
δ2 = 1−a−2−b−2 may not be a rational square. The side lengths d and e satisfy the relations
a2d2(c2−1) = b2−1 and b2e2(c2−1) = a2−1. Thus any real numbers (a, b, c, d, e) satisfying
the relations r1 : a

2+b2+c2 = a2b2+1, r2 : a
2d2(c2−1) = b2−1 and r3 : b

2e2(c2−1) = a2−1
determines a hyperbolic right-angled pentagon.

We consider whether there are choices of λ and µ so that the image of the representation
is contained in PGL2(Q). We remark that although this computation essentially determines
the PGL2(R)-character variety, the assumption we made that there is a vertex at i with a
vertical side is a nontrivial assumption when only considering representations up to conjugacy
in PGL2(Q).

The curve (cosh(x), sinh(x)) admits a rational parametrization equivalent to that of the
circle, since any pair of coprime integers (m,n) determines a primitive Pythagorean triple
(m2−n2, 2mn,m2+n2), and thusly a rational point (m

2+n2

2mn
, m

2−n2

2mn
). The supposition ex = m

n

determines cosh(x) = m2+n2

2mn
, sinh(x) = m2−n2

2mn
, and tanh(x) = m2−n2

m2+n2 .

The substitution eλ = r+s
r−s

and eµ = u
v
yields a = r2+s2

r2−s2
, b = u2+v2

2uv
, c = rs(u−v)(u+v)

uv(r−s)(r+s)
,

d = rs(u2+v2)
η

, and e = (r2+s2)(u2−v2)
2η

, where η =
7

(su− rv)(su+ rv)(ru− sv)(ru+ sv).
So if we can choose integers r, s, u, v so that η is an integer ≥ 2, this provides a rational
right-angled pentagon group.

A particular solution with entries in Z[
√
5, 1/2, 1/3] is obtained by choosing eλ = eµ =

3+
√
5

2
:

〈
*
−1 0
0 1

+
,

*
0 1
1 0

+
,

8
0 3+

√
5

2
3−

√
5

2
0

9
,

*
−3

√
5

−
√
5 3

+
/2,

*
−
√
5 3 +

√
5

−3 +
√
5

√
5

+
/3〉.

We remark that a regular right-angled pentagon is obtained by choosing eλ = eµ =:
3+

√
5

2
, and a right-angled hexagon has all edges satisfying eλ =

√
2, and note that a

right-angled hexagon is built from six copies of the (3, 4, 4) triangle.
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Figure 3.3: The Long-Reid group

Long-Reid representation

We return to the orbifold which is a torus with a single cone point of order 2. We computed

some points on the character variety ρ(a) =

*
t 0
0 1/t

+
, ρ(b) =

*
s t
2t (t4 + 1)/s

+
/(t2−1), and

we now fix t = 3, s = 1. Set p = (−5 + 4i)/3, so that ap = −15 + 12i, bp = (5 + 4i)/(3 · 82),
and abp = bap = (15+12i)/82. Then the quadrilateral with these four vertices and geodesic
sides is a fundamental domain for the action of G on H2. More generally, the point p can be

taken to be −(t2+1)+(t2−1)i
2st

to obtain a fundamental domain. The sum of the interior angles
of this quadrilateral can be calculated to be π.

Note that if s and t are both chosen to be rational, we obtain a representation G →
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PSL2(Q), which is Fuchsian when considered as a representation into PSL2(R). This implies
that the representation is faithful, and we consequently get a faithful action of a surface
group on a tree by considering the composition with PSL2(Q) → PSL2(Qp) for any prime p.

The representation into PSL2(Q) is actually contained in PSL2(Z[1/(2st(t2 − 1))]) when
s, t ∈ Z. Let S denote the prime divisors of 2st(t2−1) (in the case of t = 3, s = 1, S = {2, 3}:
note that t2 − 1 = (t − 1)(t + 1), is a power of a single prime only when t = 3). If p does
not divide st(t2 − 1), the p-adic representation lies in PSL2(Zp), and acts on the tree with a
global fixed point. Thus G ≤ PSL2(Afin) is discrete if and only if G ≤ PSL2(Q2)×PSL2(Q3)
is discrete.

The element a is a translation of length 2 in the 3-adic tree, with the endpoints of its
axis being 0,∞. In the 2-adic tree, it fixes the 1-neighborhood of the axis from 0 to ∞. The
element b is a translation of length 6 in the 2-adic tree, with the endpoints of its axis being
−27±

√
737

4
. Since 737 ≡ 1 (mod 8), it has a square root in Q2 by Hensel’s lemma. However,

737 ≡ 2 (mod 3), so it does not have a square root in Q3, and thus b has a compact fixed
set in its action on the 3-adic tree.

Fixing the base vertex v0 = ⌊0⌋0 in the 2-adic tree, let H = {g ∈ G | gv0 = v0} =
G ∩ PSL2(Z2). We remark that in terms of the generators given in Section 2.3, we have
a = t23 and b = ST−6St−6

2 T 3. There is in fact a corresponding continuous π1-injective map
from T(2) into the orbicomplex (H2 × T3 × T4) /PGL2(Z[1/6]) sending one generator to t23 and
the other to ST−6St−6

2 T 3. This lifts to a map of universal covers f : H2 → H2×T3×T4, and
the projection from the product space to the first factor is quasi-isometric on the image of
f .

The main question in this case would be answered positively if, for the projection p : H2×
T3 × T4 → T3 × T4, the composition p ◦ f is quasi-isometric.

Cutting the group

Observe that the group π1(T(2)) splits as an HNN extension G0∗ab=ca, where c = [b, a] =*
5/4 −3/8
41/6 −5/4

+
and G0 = 〈a, c〉. Geometrically, this corresponds to cutting the torus along

a simple closed curve to obtain an annulus with a cone point of order 2. This has a virtually
free fundamental group G0, and the two boundary components correspond to the two infinite
cyclic groups 〈a〉 and 〈bab−1〉.

Under our representation, 〈a, c〉 acts properly on the 3-adic tree. One can see this by
calculating the action of c. We have that c fixes the vertex ⌊0⌋1, and permutes its neighbors
⌊0⌋0 ↔ ⌊6⌋2 and ⌊0⌋2 ↔ ⌊3⌋2. This means that the axis for cac passes through · · · → ⌊6⌋2 →
⌊0⌋1 → ⌊3⌋2 → . . . , and in particular, intersects the axis · · · → ⌊0⌋0 → ⌊0⌋1 → ⌊0⌋2 → . . .
for a in a single point. Since the index two subgroup 〈a, bab−1〉 acts properly on T4, so does
G0.

The action of c on the 2-adic tree fixes the edge e0 = {⌊3
2
⌋1, ⌊3

2
⌋2}, and permutes the

two neighbors of each vertex. In particular, we see that the fixed set of c on the product is
e0 × ⌊0⌋1. The element a also fixes the edge e0. Let v0 = ⌊3

2
⌋2, and H = StabG(v0). Note

G0 is contained in H.
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Proposition 30. If H acts properly on T4, the Long-Reid group acts properly on a product
of trees.

Proof. Recall that G acts on T3 × T4, and let (v0, w0) be the basepoint in the product. If H
acts properly on T4, there can only be finitely many elements of H which fix w0 ∈ T4. But
this means that only finitely many elements of G fix (v0, w0) ∈ T3 × T4, hence the action of
G on T3 × T4 is proper.

Since G splits as an extension G0∗ab=ca, there is a Bass-Serre tree T associated to this
splitting that every subgroup of G acts on. In particular, H acts on this (infinite valence)
tree without a global fixed point, and we obtain a splitting of H. Since G0 is the stabilizer
of the base vertex in T and G0 is contained in H, the quotient graph of groups T//H has G0

as the stabilizer of a base vertex. It appears that this quotient graph of groups has infinitely
generated fundamental group, which makes the problem of understanding H recursively
quite challenging.

A Free Group

Consider the group

F = 〈
*
3 0
0 1/3

+
,

*
13/5 12/5
12/5 13/5

+
〉.

Since the products ab and ab−1 of the generators a, b, have trace 26/3, this is a discrete
free subgroup of PSL2(R), and it is contained in PSL2(Z[1/15]), which is a lattice in a product
H2 × T4 × T6.

The generator a lies in PSL2(Z5), and any conjugate of it has a power in PSL2(Z5). It
turns out that bkalb−k is in PSL2(Z5) only when 2 · 52k−1 divides l. Determining whether the
action on T4 × T6 is proper is closely related to the other questions we consider. Since the
group is perhaps simpler than the orbifold group, this might be easier to analyze.

3.3 Totally Unitary Groups

Definition 9. Let k be a number field. A subgroup Γ of PSL2(k) is called totally unitary if
it lies in a compact subgroup at every infinite place.

Our reason for introducing and studying this class of groups is the following proposition.

Theorem 18. A finitely generated totally unitary group acts properly on a locally compact
product of trees.

Proof. Since Γ is finitely generated, it is contained in PSL2(R) for some finitely generated
subring R ⊆ k. It is discrete in a product PSL2(R)r×PSL2(C)s×

'
v∈VS

PSL2(kv) for a finite
set S of nonarchimedean valuations.

But since it is contained in a compact subgroup of each real and complex place, the
projection to the subproduct

'
v∈S PSL2(kv) remains discrete, and this latter group acts

properly on a locally compact product of trees.



CHAPTER 3. SURFACE GROUP ACTIONS ON PRODUCTS OF TREES 49

If k is an imaginary quadratic extension of Q, then unitarity is preserved under the Galois
automorphism of k, and thus any subgroup of PSU2(k) is totally unitary.

For any field, one can choose a subgroup which only uses rational entries to obtain a
totally unitary subgroup of PSL2(k). For this reason, we are more interested in groups which
are Zariski dense in PSU2(k).

Theorem 19. For any totally imaginary number field k, there is a Zariski dense totally
unitary group Γ ≤ PSU2(k).

Proof. Since there are only finitely many primes which are ramified in Ok, we can choose an
unramified prime p. Then PSU2(O[1/p]) is a Zariski dense totally unitary group.

Example 4. Consider the group G = 〈1 + 2i, 1 + 2k, (1 + 2j)2, (1 + j +
√
3k)1+2j, (1 + j −√

3k)1+2j〉. Each g ∈ G has left and right 5-factor in the set {1±2i, 1±2j, 1±2k}. However,
the conjugate group G1−2j has left and right 5-factors in the set {1± 2j, 1± j ±

√
3k}.

G is a Zariski dense totally unitary group in PSU2(Q(
√
3, i)).

A Totally Unitary Group

We construct surface group representations into HQ. We suppose the first quaternion g =
x + yj and the second is h = a + bi + cj + dk. Then ghg−1h−1 has real part (a2 + c2)(x2 +

y2) + (b2 + d2)(x2 − y2). This is zero precisely when a2+b2+c2+d2

b2+d2
x2+y2

y2
= 2.

We can find several solutions to this by inspection. For example, if a2+b2+c2+d2 = 2y2

and b2 + d2 = x2 + y2, we find the solution g = 2 + 3j, h = 1 + 2i+ 2j + 3k.
If instead a2+b2+c2+d2 = 4y2 and b2+d2 = 2(x2+y2), these imply a2+c2 = 2(−x2+y2),

and we find solutions g = 4+5j, h = 3+i+3j+9k, and g = 36+77j, h = 55+71i+79j+97k.
For the moment, let us focus on the representation 〈a, b | [a, b]2〉 → PGL2(Q3)×PGL2(Q13)

which sends a +→ j(3 − 2j) and b +→ −(1 − k)(1 + i − j)(1 − i − j). There is a map to D8

which sends a to a reflection and b to a rotation of order 4, the kernel of which is an index
8 subgroup which is the fundamental group of a genus 3 surface. This is the 2-congruence
subgroup of this representation.

The commutator c = [a, b] = −2i+ 2j − k is a purely imaginary quaternion, hence is an
involution. It fixes the base vertex of the 13-adic tree and reflects in the midpoint of an edge
of the 3-adic tree.

The group generated by b and c is isomorphic to Z ∗ Z/2Z, because it acts properly on
the 3-adic tree. Note that cbc = 3(1− k)(1 + i− j)(1 + i+ j)3, and so c conjugates b to this
element. If the representation remains faithful on the HNN extension, we have constructed
a proper action of a surface group on a product of trees.

3.4 Quaternion Lattices

In this section, before embarking on a general exploration of quaternion lattices, we will
study the group HQ and its subgroups.
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Recall that HQ is the projective group of invertible rational quaternions. Note that if q is
nonzero, its conjugate q satisfies N(q) = qq ∈ Q∗, which is the identity up to scaling. Every
nonzero rational quaternion has a unique rational scaling which is an integer quaternion with
relatively prime coefficients.

The rational quaternions are ramified at precisely {2,∞}, which is reflected in the fact
that the group of Z[1/2]-points is finite. In fact, this group is the binary octahedral group,
consisting of the 48 quaternions {±1,±i,±j,±k, 1

2
(±1± i± j± k)} and the 1+i√

2
coset of this

set. Let us denote ε = 1+i√
2
and ω = −1+i+j+k

2
, so that ε2 = i and ω3 = 1. We compute that

conjugation by ω sends i → k → j → i, and conjugation by ε sends j → k → −j → −k → j.
Thus the group generated by ε and ω acts on the set {±i,±j,±k} by linear permutations,
and thus we have an action on the vertices of an octahedron (or dually, a cube). These two
rotations generate the orientation preserving symmetry group, and the kernel of the action
is {±1}. Thus we have a central extension 1 → Z/2Z → 〈ε,ω〉 → Isom+(Oct) → 1.

Residue quaternion algebras

The embedding M2(Zp) → M2(Qp) actually induces an isomorphism PM2(Zp) → PM2(Qp),
and so the inverse provides a reduction map ⌊−⌋res : PM2(Qp) → PM2(Fp). Specifically,
given 0 ∕= g ∈ M2(Qp), there exists λ ∈ Q×

p so that λg ∈ M2(Zp) \ pM2(Zp), and this λ is
defined up to Z×

p .
Note that ⌊g⌋res lies in PGL2(Fp) exactly when g ∈ PGL2(Zp), and otherwise it de-

termines the initial and terminal directions of the geodesic between v0 and gv0, where
v0 = PGL2(Qp)/PGL2(Zp) is the base vertex in the tree. The terminal direction is the
initial direction of the inverse g−1.

Subgroups of HQ

First, we recall some notation. HQ is the group of projective rational quaternions. Given
a nonzero rational quaternion q, a primitive integral representative is a Q∗ multiple of q
whose coefficients are integers which are relatively prime. A nonzero rational quaternion
has exactly two primitive integral representatives, which differ by ±1. Thus we may speak
unambiguously about the norm of an element of HQ as the norm of a primitive integral
representative.

There is a finite-index (congruence) subgroup of HQ consisting of those rational quater-
nions whose primitive integral representatives are equivalent to 1 or 1+ i+ j modulo 2, and
we will typically try to understand this group rather than the slightly larger HQ.

For an odd prime p, Ap is the set of p+1 norm p elements of HQ whose primitive integral
representatives are equivalent to 1 or 1+ i+ j (mod 2). Upon choosing a solution x2

p+ y2p =

−1 in Qp, we have an isomorphism Mx,y : Qp{i, j} → M2(Qp) in which i +→
*
xp yp
yp −xp

+
,

j +→
*

0 1
−1 0

+
, and the collection of such isomorphisms Qp{i, j} → M2(Qp) up to conjugacy
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in M2(Qp) are in one-to-one correspondence with the solutions to x2
p + y2p = −1. Note when

p ≡ 1 (mod 4), we can choose xp = i, yp = 0. In general, for p odd, the collection of nonzero
solutions to x2

p + y2p + z2p = 0 in Qp up to scaling is in bijection with P1Qp.

Proposition 31. Under the isomorphism Mx,y, we obtain a bijection π : Ap → P1Fp.

Proof. The elements q ∈ Ap map to matrices of determinant p in M2(Zp). This implies that
the column space of Mx,y(q) is a 1-dimensional subspace of F2

p, which is naturally identified
with P1Fp.

Note that GL2(Zp) acts on P1Fp, and thus the elements of M2(Qp) which lie in GL2(Zp)
act on this set. Under the correspondence Mx,y, we obtain an action α of the quaternions
coprime to p on the quaternions of norm p, defined by αg(x) = π−1(Mx,y(g)π(x)). Thus
the “metacommutation problem” formulated by Conway-Smith is governed by the action of
PGL2(Fp) on P1Fp. There are really two such actions, coming from the left and right actions
of the matrices, and the conjugation anti-involution on the quaternions swaps the left and
right actions.

Given an integer quaternion q, we write x |L q if x is a left-divisor of q.

Lemma 5. Suppose q, g, and x are primitive integer quaternions, with N(x) = p and
p ∤ N(g). If x |L q, then αg(x) |L gq.

Proof. Since p ∤ N(g) and q is primitive, the quaternion gq is not divisible by p. However,
since p | N(q), p divides the determinant of Mx,y(gq) ∈ M2(Zp), and hence Mx,y(gq) reduces
to a rank one matrix in M2(Fp). The column space of Mx,y(gq) coincides with that of
Mx,y(g)Mx,y(x), and hence the point π(αg(x)). Since the column spaces of Mx,y(gq) and

π(αg(x)) agree, they are both annihilated by Mx,yαg(x), hence αg(x) left-divides gq.

Proposition 32. Suppose x is a primitive integer quaternion of norm q ∕= p in Aq. Then
〈Ap, x〉 = 〈Ap, Aq〉 = HZ[1/pq].

Proof. Let y be any element of Aq. By Theorem 9, Ap generates a subgroup whose closure
contains PSL2(Zq), so 〈Ap〉 (mod q) acts transitively on FqP1. So we can find g ∈ 〈Ap〉
with Mx,y(g)π(x) = π(y), i.e., αg(x) = y. Thus since x |L x and N(g) = pk is coprime to
N(x) = q, by Lemma 5 we have αg(x) = y |L gx. So gx = yh for some integer quaternion
h. Since gx has norm pkq and y has norm q, we must have N(h) = pk. But this implies
that h is a product of k quaternions of norm p, hence h ∈ 〈Ap〉. Since g, h ∈ 〈Ap〉, we have
gxh−1 ∈ 〈Ap, x〉, but this means y ∈ 〈Ap, x〉.

This shows that Aq ⊆ 〈Ap, x〉, hence we must have 〈Ap, x〉 = 〈Ap, Aq〉, which is precisely
HZ[1/pq].

Proposition 33. Suppose x ∕= 1 is a primitive integer quaternion of norm qk. Then
〈Ap, x〉 = HZ[1/pq] if k is odd, and is an index two subgroup when k is even.
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Proof. Write x = x1 . . . xk. The element x acts on the q-adic tree by moving the origin to a
vertex at distance k. The left action of PSL2(Zq) is transitive on the vertices at distance k,
and so for any other word y1 . . . yk of length k in Aq, there is an element g ∈ PSL2(Zq) with
gyPSL2(Zq) = xPSL2(Zq). Since 〈Ap〉 is dense in PSL2(Zq), we can choose g from this group.

So in particular, there exists some g ∈ 〈Ap〉 so that gx1 . . . xk = x1 . . . xn−1x
′
kg

′ for some
x′
k ∕= xk ∈ Aq and g′ ∈ 〈Ap〉. Then x−1gx(g′)−1 = x−1

k x′
k. We have shown that 〈Ap, x〉

contains an element of q-length 2, and indeed all elements of length 2. If k is odd, this group
contains (xk−2xk−1)

−2 . . . (x1x2)
−1x = xk+1, an element of norm q. Hence by Proposition 32,

〈Ap, x〉 = HZ[1/pq] when k is odd.

Theorem 20. If G ≤ HQ is finitely generated and contains Ap for any p, G has finite index
in HZ[1/p,S−1] for some finite set of primes S. In fact, G is a normal subgroup with quotient
Z/2Z|T |, for some T ⊆ S.

Proof. Let x ∈ G, and abusing notation, identify x with a primitive integral representative.
We will show that for any prime q dividing the norm of x, there is a quaternion of norm qk in
G. Then the proof of Proposition 33 implies there is a quaternion of norm q or q2 in G, and
hence that G contains an index 2 subgroup of HZ[1/pq]. Since G possesses a finite generating
set, there is a finite set S of primes which occur as divisors of elements in a generating set.

Write x = x1 . . . xn, where x1, . . . , xk have norm p, and the remaining do not have norm
p. By left-multiplying by elements of Ap, (x1 . . . xk)x ∈ G and scaling by p−k, we obtain the
primitive integral representative of this element, xk+1 . . . xn ∈ G. So we can assume that p
does not divide the norm of x.

Write x = yz, where the norm of y is a power of q and z is coprime to both p and q. By
strong approximation (Theorem 9), there is some g ∈ 〈Ap〉 so that gyz = yz′g′ with z ∕= z′,
N(z) = N(z′) and g′ ∈ 〈Ap〉. Consequently, x−1gxg′−1 = z−1z′ ∈ G, and z−1z′ has strictly
fewer primes dividing its norm. So by repeating this argument, we may assume that the
norm of x is the power of a single prime.

In particular, if we let S denote the finite set of primes which divide the norms of primitive
integral representatives for generators of G, we have shown that G contains an element of
norm qk for each q ∈ S. Then Proposition 33 implies that G contains an element of norm q
or q2, for each q ∈ S. Setting T to be the set of primes for which G only contains elements
of norm q2, we have shown that G has index 2|T | in HZ[1/p,S−1].

Thus, 〈1 + i+ j, 1 + i− j, 6749 + 4573i+ 5569j + 742k〉 = HZ[1/3·5·7·11·13·17·23·29], a lattice
in a product of 8 trees.

Remark. In fact, even if G is infinitely generated, it will contain the kernel of det : HZ[1/S] →
Z[1/S]∗/Z[1/S]2 ∼= ((Z/2Z)S. However, if S is infinite it is possible that this kernel is infinite
index in HZ[1/S].

We remark that these results are similar to a result of Venkataramana. In [51], it is
assumed that the R-rank of G is nonzero, whereas in the present case G(R) is compact.

The preceding proposition implies that the poset of subgroups H ≤ HQ which contain
HZ[1/p] is essentially the poset of sets of primes containing p.
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By assuming merely that G contains a finite index subgroup of HZ[1/p] one can still
prove that it must have finite index in one of the lattice groups. In light of the following
proposition, we speculate that an arbitrary group contains a lattice in one factor might be
satisfied very easily.

Definition 10. Suppose a group G acts on a tree T containing a translation, and let x ∈ T .
The limit set Λ(G) is the closure of the orbit Gx in T = T ∪ ∂T , intersected with ∂T .

Proposition 34. If |Λ(G)| ≥ 3, the limit set is the smallest nonempty G-invariant closed
subset of ∂T .

Proof. Let B denote the smallest nonempty G-invariant closed subset of ∂T . Since G con-
tains a translation g, the set {gnx | n ∈ Z} is an infinite discrete subset of T . But since
T is compact, it must have a limit point which is necessarily in the boundary. So Λ(G) is
nonempty. It is closed since it is an intersection of closed sets, and it is G-invariant because
the orbit Gx is G-invariant. Thus, B ⊆ Λ(G).

Suppose g ∈ G acts on T as a translation. Since every point in ∂T which is not the
repelling fixed point of g is eventually mapped arbitrarily close to the attracting fixed point
∂+g of g, ∂+g lies in any nonempty G-invariant closed subset of the boundary. Since |Λ(G)| ≥
3, there is a point y which is not ∂−g, and hence gny → ∂+g. This implies that every point
in Λ(G) must lie in any nonempty G-invariant closed subset of ∂T .

Lemma 6. If H ≤ G, the limit set of H is contained in the limit set of G. They coincide if
[G : H] < ∞.

Proof. Since the limit set of G is closed H-invariant set, the smallest H-invariant closed
subset must be contained in Λ(G).

If H has finite index in G, there is a bounded set K in T so that the H orbit of K
contains any G orbit. This implies that the accumulation set of H in the boundary agrees
with the accumulation set of G, and hence Λ(H) = Λ(H).

The following proposition generalizes a well-known result about limit sets of normal
subgroups.

Proposition 35. If H is an infinite subgroup of G which is commensurated by G, Λ(H) =
Λ(G).

Proof. Note that Λ(H) is G-invariant, since gΛ(H) = Λ(gHg−1). Since gHg−1 ∩ H has
finite index in each of gHg−1 and H, we obtain that Λ(gHg−1) = Λ(H), and so Λ(H) is
G-invariant. Thus Λ(G) ⊆ Λ(H), but the other containment is clear.

Proposition 36. Suppose Γ ≤ HQ is nonabelian and nonprimary. Let p be a prime for
which Γ(p) = Γ ∩HZ[1/p] is infinite. Then the limit set Λ(Γ(p)) is the entire boundary ∂Tp.
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Proof. Since Γ is nonabelian and nonprimary, Γ embeds in PSL2(Qp) as a dense subgroup.
Since Γ(p) is infinite, it has a nonempty limit set in Tp. The limit set of Γ is ∂Tp because it
is dense. But by Proposition 35, the limit set of Γ(p) is ∂Tp.

By strong approximation, Γ embeds in PSL2(Qp) as a dense subgroup. The group Γ(p)

is noncompact and thus contains a translation g and a nontrivial limit set. But since Γ
commensurates Γ(p), there is an element γ ∈ Γ which moves an endpoint of g arbitrarily close
to any desired point y in the boundary. But then γgγ−1 has a boundary point arbitrarily
close to y. Thus the limit set is dense in ∂Tp.

Remark. So it is possible that there are exotic (that is, non-arithmetic, but higher rank and
Zariski dense) subgroups of SO3(Q), but such groups must have Γ(p) an infinite covolume
subgroup which still manages to move toward every end. In particular, the action on the
product of trees admits no proper convex invariant subset.

Theorem 21. If Γ is as above, Γ is convex cocompact if and only if Γ is S-arithmetic.

Proof. The only thing to observe is that the limit set of Γ is the full boundary, and thus
the convex hull of an orbit of Γ is the full space. So Γ can only act on its convex hull
cocompactly if it acts on the entire space cocompactly, or in other words, is commensurable
with a lattice.

When p, q are two odd primes, the group HZ[1/pq] acts on a product of a (p + 1) and a
(q + 1)-regular tree, and the quotient is a 1-vertex square complex. This complex has two
connected hyperplanes, a vertical and a horizontal one. Under an identification of an oriented
edge with a point in P1Fq, the vertical hyperplane is a (p + 1)-regular graph whose vertex
set corresponds to P1Fq. Each element of Ap is invertible modulo q, and hence determines
an element of PGL2(Fq). But since this gives a permutation of P1Fq, we can draw the cycle
graph of the permutation for each of the p + 1 generators (which come in conjugate pairs).
The symmetric argument in p, q determines the horizontal hyperplane. The graph Y p,q is
the quotient of the p + 1-regular tree by the index q + 1 subgroup of 〈Ap〉 which is upper
triangular mod q.

This is precisely the graph Y p,q of Theorem 4.4 in [49], in which it is proved that this graph
is connected and Ramanujan. Since Y p,q is (q+1)-regular, it has q+1 as an eigenvalue (and
−(q + 1) if Y p,q is bipartite). Denoting λ(Y p,q) as its second largest eigenvalue in absolute
value, Y p,q is called Ramanaujan if λ(Y p,q) ≤ 2

√
q.

That these are Ramanujan implies that they can be “navigated efficiently.” If p is large
compared to q, it must have fairly large diameter, because there are at most (q + 1)qk−1

vertices in a ball of radius k. But the Ramanujan property implies that the diameter is not
too large, and is in fact at most 2 logp(q) + 3.

The subgroup conjecture

We thank Richard Schwartz for suggesting the following terminology and Andrei Rapinchuk
for helpful comments on the conjecture.
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Definition 11. Say Γ ≤ SO3(Q) is primary if Γ is discrete in SO3(Qp) for some p. Call a
subgroup Γ ≤ SO3(Q) full if it is not primary or abelian. A subgroup is full if and only if
its Zariski closure is

'
p∈S PGL2(Qp) for some set S of at least two odd primes.

Note that 〈1 + 2i, 1 + 2j, 1 + 2k〉 is primary, and so is any subgroup of it. However, one
can check that 〈(3 + 2i)(1 + 2i), 1 + 2j, 1 + 2k〉 also has ping-pong sets in its action on the
5-adic tree, hence is a 5-primary subgroup not contained in SO3(Z[1/5]). Note also that
〈1 + 8i, 1 + 8j, 1 + 8k〉 is both 5-primary and 13-primary (and is in fact a thin subgroup of
PGL2(Q5)× PGL2(Q13)). Other examples of this sort may be obtained by taking the group
generated by 〈a+ bi, a+ bj〉, where a2 + b2 is composite.

Note that by choosing a nonzero rational axis α, the group of rotations about α gives an
abelian subgroup of SO3(Q), conjugate in SO3(R) to SO2(Q).

Conjecture 1. Suppose Γ ≤ SO3(Q) is a finitely generated subgroup. Then either
(i) Γ is abelian
(ii) Γ is primary
(iii) Γ is conjugate to a finite index subgroup of SO3(A), for A a subring of Q.

Stated another way, there are no higher rank thin groups in SO3(Q).
Note that in each case, Γ is a lattice in a product of trees. In the first case, the trees are

2-regular, and in the second Γ is virtually free and a lattice in a single tree. In particular, the
finitely generated subgroups are finitely presented, which is to say that SO3(Q) is coherent.
We also remark that the finite generation assumption is somewhat superficial, and one might
expect arbitrary full subgroups of SO3(Q) to be compact index rather than finite index.

Proposition 37. A full subgroup Γ ≤ SO3(Q) is almost dense in SO3(Qp) ∼= PGL2(Qp) for
some p.

Proof. It suffices to show that there is some p so that Γ is not solvable, and is unbounded
and indiscrete in PSL2(Qp). Then Proposition 26 implies that the closure of Γ contains
PSL2(Qp).

Let p be any prime in which Γ ≤ PGL2(Qp) is unbounded (if none exists, Γ is finite hence
primary for every p). Since Γ is not primary, it is not discrete in PGL2(Qp). Finally, the only
solvable subgroups of SO3(Q) are abelian, and since Γ is full, it is not abelian.

Recall that a property of groups is called geometric if it is preserved under quasi-
isometries.

Proposition 38. The subgroup conjecture implies that SO3(Q) is coherent, which implies
that coherence is not a geometric property.

Proof. Note that for a finite set S of at least two odd primes, SO3(Z[1/S]) is a lattice in a
product of trees, and the subgroup conjecture implies that any finitely generated subgroup
of it is finitely presented.
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Since SO3(Z[1/S]) is quasi-isometric to a product of free groups, and direct products
of free groups are not coherent, this implies that coherence is not preserved under quasi-
isometry.

We also remark that the subgroup conjecture holds if SO3(Q) has the finitely generated
intersection or Howson property, that the intersection of finitely generated subgroups is again
finitely generated. This is because, if Γ is a finitely generated full subgroup of SO3(Z[1/n]),
then Γp = Γ ∩ SO3(Z[1/p]) is an intersection of finitely generated subgroups which has full
limit set. The Howson property would imply that Γp is finitely generated, which would
necessarily be a lattice because it has full limit set. But then Proposition 49 implies that Γ
has finite index in SO3(Z[1/n]), which would establish the subgroup conjecture.

Conjecture 2 (Serre [60] p. 734). SO3(Z[1/n]) has the congruence subgroup property if n
is divisible by at least two odd primes.

If both of these conjectures hold, we not only would classify subgroups of SO3(Q) up to
commensurability, but we would obtain very strong restrictions on the possible finite index
subgroups of SO3(A).

Geometric Rigidity

Fix a set S of at least two odd primes, and let G =
'

p∈S PGL2(Qp). For an element g ∈ G,
let ℓ(g) = (ℓp(gp))p∈S, where ℓp(gp) is the translation length of gp in the p-adic tree. Here ℓ
is the relevant Cartan projection, which takes values in a Weyl chamber N(S).

Suppose Γ ≤ SO3(Q) is a full subgroup of G =
'

p∈S PGL2(Qp). We say that Γ is
geometrically rigid if any representation ρ : Γ → G with ℓ(ρ(γ)) = ℓ(γ) for every γ ∈ Γ is
conjugate to the identity. We ask whether full subgroups of SO3(Q) may be geometrically
rigid.

Definition 12. An action of a group G on a tree T is minimal if T admits no proper
G-invariant subtree. If x ∈ T , we define the translation distance function (based at x) as
τx : G → N, with τx(g) = d(x, gx). The translation length function of the action ℓ : G → N
is defined by ℓ(g) = infx∈T (0) τx(g).

If G ≤ Aut(T ), a geometric representation of G is ρ : G → Aut(T ) so that ℓ(g) = ℓ(ρ(g))
for all g ∈ G. An action of a group G on a product of trees X is minimal if X admits no
proper G-invariant convex subcomplex, and a geometric representation of G on a product of
trees is an action with the same length function for each tree.

Proposition 39. Suppose ℓ : G → N is a translation distance function on a group.

Theorem 22. Suppose G ≤ Aut(T ) is a minimal action on a tree T , and suppose ρ : G →
Aut(T ) is a geometric representation. Then there is a unique α ∈ Aut(T ) so that ρ is induced
by conjugation by α.
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Proof. Chiswell (Theorem 1, [23]) proves that if ; · ; : G → N is a translation distance
function, there exists a tree X and an action of G on X whose translation distance function
is ; · ;. Moreover, if ; · ; came from an action on a tree T , there exists a G-equivariant
map X → T . Parry (Main Theorem, [63]) proves the same statement for a translation
length function ℓ : G → N. Thus, given a translation length function on a group, one can
construct an action on a tree T with the given translation lengths, but it is easy to obtain
the translation distance function with respect to any vertex in that tree T . This implies that
translation length and translation distance functions are equivalent.

Because the map is G-equivariant, the image of X in T must be a nonempty invariant
subtree of T . But since the G-action on T is minimal, the map is surjective, hence an
isomorphism. Thus we have shown that any two minimal actions with the same length
function are isomorphic, and hence if the actions are on the same tree, they are conjugate
in Aut(T ).

That α is unique follows from the fact that Aut(T ) has trivial center and the action is
minimal, for any other α′ must commute with the action of G.

Proposition 40. Suppose G ≤ Aut(X) is a minimal action on a product of non-isomorphic
trees X, and ρ : G → Aut(X) is a geometric representation. Then ρ is induced by conjugation
by a unique element α ∈ Aut(X).

Proof. For each factor tree T of X, the projection to T determines an action G on T and
a geometric representation of G to T . Hence by the preceding theorem, the two actions are
conjugate for each factor.

The assumption that the trees involved are non-isomorphic is only necessary to conclude
that α is unique, or else it is possible that exchanging factors gives additional conjugators.

Note that since PGL2(Qp) acts on the (p + 1)-regular tree Tp+1, it embeds in Aut(Tp+1)
in a natural way.

Lemma 7. The outer automorphism group of PGL2(Qp) is trivial.

Proof. Loo-Keng Hua proves (Theorems 1 and 3 in an appendix to Dieudonné’s paper [29])
that for a skew field k, every outer automorphism of PGL2(k) is induced by an automorphism
of k, and so it suffices to show there are no nontrivial automorphisms of Qp.

Since a field automorphism must send 1 to 1, the automorphism must be the identity on
the dense subfieldQ. Say that x ∈ Qp is infinitely divisible if there are infinitely many natural
numbers n so that yn = x has a solution in Qp. It follows directly from Hensel’s lemma (see
Lemma 6.8 in [70]) that xp−1 is infinitely divisible if and only if x is a p-adic unit. Since an
automorphism of Qp must preserve infinite divisibility, we note that an automorphism of Qp

must map Z×
p precisely to Z×

p . Now writing any y ∈ Qp as pnx for x ∈ Zp, we observe that
σ(pnx) = σ(pn)σ(x) = pnσ(x), and so σ preserves the p-adic valuation. It follows that σ is
continuous, and since it is the identity on a dense subset, σ is the identity.

Thus it follows that PGL2(Qp) has trivial outer automorphism group.

Proposition 41. The normalizer of PGL2(Qp) in Aut(Tp+1) is PGL2(Qp).
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Proof. Note that if h ∈ Aut(Tp+1) normalizes PGL2(Qp), h induces an automorphism of
PGL2(Qp). By Lemma 7, this automorphism must be inner, and replacing h with hg for
some g ∈ PGL2(Qp), we can assume h commutes with PGL2(Qp). But since PGL2(Qp) acts
minimally on the tree, it has trivial centralizer.

Suppose Γ ≤ SO3(Q) is full in SO3(Z[1/n]). Let G =
'

p|n PGL2(Qp), and X the product
of the p-adic trees, for p dividing n.

Theorem 23. If ρ : Γ → G is a geometric representation of a full group, then ρ is conjugate
to the identity in G.

Proof. By Proposition 40, there is a unique α ∈ Aut(X) with ρ = cα|Γ, where cα denotes
conjugation by α. Since the factors of X are pairwise non-isometric, α preserves the factors
and decomposes as (αp)p|n. Let πp : G → PGL2(Qp) be the projection, and ρp = πp◦ρ. Under
the inclusion, Γ is dense in PGL2(Qp) by Proposition 37, and ρp is another dense embedding
of Γ in PGL2(Qp), which is conjugate by αp. Since cαp is continuous, we have

cαp(PGL2(Qp)) = cαp(Γ) = cαp(Γ) = ρp(Γ) = PGL2(Qp).

Thus αp normalizes PGL2(Qp), hence by Proposition 41, αp ∈ PGL2(Qp). Since this holds
for each αp, we conclude that α ∈ G.

Thus, we have shown that full subgroups of SO3(Q) are geometrically rigid. As a brief
comparison, not even lattices in PGL2(Qp) satisfy this form of rigidity. There is typically a
high-dimensional space of p-adic structures on a given (p+ 1)-regular graph, while any two
such structures are conjugate in Aut(T ).

Quaternions over a number field

The quaternion algebra over a field can be thought of as a non-abelian analog of a field
extension. As such, we can consider its Galois theory. The primary distinction in this
context is that a polynomial may have many more roots over a noncommutative field.

For example, if H is the algebra of real quaternions, the solution set to x2+1 is an entire
2-sphere! Note that many automorphisms of H can be produced by conjugating by a nonzero
quaternion q. Note that the plane spanned by {1, q} commutes with q, and so conjugation by
q will fix this plane, and rotate an orthogonal plane. For example, conjugating a+bi+cj+dk
by j yields

j(a+ bi+ cj + dk)(−j) = a− bi+ cj − dk

effectively negating i and fixing j.
If A is an algebra over a field k, every unit a ∈ A induces an inner automorphism ca : A →

A defined by ca(b) = aba−1. The center Z(A) will be fixed by each inner automorphism.
The outer automorphism group of A/k (namely, Aut(A/k)/Inn(A/k)) serves as a reasonable
notion of a Galois group for the algebra A. Note that the Galois group of Z(A)/k will
embed in Out(A/k), because a Galois automorphism of the field Z(A) cannot be induced
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by conjugation. Galois cohomology allows one to compute this in general. In the case of a
quaternion algebra, the outer automorphism group will also contain the kernel of the adjoint
representation.

Suppose Q ⊆ k ⊆ Qp is a number field equipped with a p-adic embedding, and suppose
α ∈ k is p-nonintegral but all of its Galois conjugates are p-integral. For example, fixing the
embedding Q(

√
3) → Q13 where

√
3 ≡ 4 (mod 13), the number α = 5−2

√
3

13
is not integral,

but its Galois conjugate is. These are roots of the polynomial 13λ2 − 10λ+ 1.

Commensurability for lattices in trees

We emphasize a connection to the non-archimedean case. Arithmetic Fuchsian groups are
commensurable in PSL2(R) if and only if they have the same invariant quaternion algebra,
but they are commensurable as abstract groups if and only if they are both uniform or both
nonuniform. However, arithmetic Kleinian groups are determined up to commensurability
by their invariant quaternion algebra.

In the p-adic case, commensurability for arithmetic lattices in PSL2(Qp) is equivalent to
having isomorphic invariant quaternion algebras [53], but any two lattices in any two locally
finite trees with at least 3 ends are commensurable as abstract groups! The finer question
of whether they are commensurable in the automorphism group of their universal cover is
then determined if and only if they have isomorphic universal covers, according to Leighton’s
theorem:

Theorem 24. [45] Suppose G and G′ are finite graphs. Then G and G′ have a common
finite cover if and only if they have the same universal cover.

We might say that Γ1,Γ2 ≤ PSL2(Qp) are algebraically commensurable if they are com-
mensurable in PSL2(Qp), geometrically commensurable if they are commensurable inAut(Tp+1),
and abstractly commensurable if they have finite index subgroups which are isomorphic. In
the case of lattices in PSL2(Qp) × PSL2(Qq), we are interested in when it is possible for
lattices to be algebraically, geometrically, and abstractly commensurable.

3.5 Homology of Quaternion Lattices

The quaternion algebra Q{i, j} is ramified at {2,∞}; this means that Q{i, j} ⊗ Q2 and
Q{i, j}⊗R are division algebras, because there are no nonzero solutions to a2+b2+c2+d2 = 0
in these fields.

Transfinite nilpotence

We show that pro-p groups are transfinitely nilpotent (hence transfinitely solvable).

Definition 13. Let G be a group. Let G0 = G, and inductively define Gi+1 = [G,Gi] for
successor ordinals and Gλ = ∩α<λGα for limit ordinals. G is α-transfinitely nilpotent if
Gα = 1 for some α.
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We show that principal congruence subgroups of linear groups are transfinitely nilpotent.

Proposition 42. Let k be a number field, and suppose Γ ≤ GLn(k) is finitely generated.
Let R be the ring generated by its matrix entries, and P ⊴ R a proper ideal. Suppose the
reduction Γ → GLn(R/P ) has trivial image. Then Γ is transfinitely nilpotent.

Proof. By assumption, Γ ≤ I + PMn(R). We will show that Γi ≤ I + P i+1Mn(R) by
induction. Note that if x = I +P iX +O(P i+1), then x−1 = I −P iX +O(P i+1). So we have

[x, y] = (I + PX +O(P 2))(I + P iY +O(P i+1))(I − PX +O(P 2))(I − P iY +O(P i+1)

and hence [x, y] ∈ I + P i+1Mn(R).
Now since ∩n≥0P

n = 0, we must have ∩n≥0Γn = 1, and Γ is transfinitely nilpotent.

Corollary 6. A finitely generated linear group is virtually transfinitely nilpotent.

Proof. Let Γ ≤ GLn(k) be a finitely generated subgroup, and let R be the ring generated by
the entries of elements of entries of Γ. Since this ring is finitely generated, it has a nontrivial
proper ideal I ⊴ R.

A prime with good reduction must exist as before, and we can take the finite index
subgroup which is the kernel of reduction mod p to obtain a finite index subgroup in which
we can apply the preceding proposition.

Corollary 7. If Γ is a finitely generated linear group which admits a solvable congruence
quotient, Γ is transfinitely solvable.

Proof. Since Γ has a solvable congruence quotient, the derived series is contained in a princi-
ple congruence subgroup at some finite stage. Then this subgroup is transfinitely nilpotent,
hence transfinitely solvable. Since a (finite) term in the derived series is transfinitely solvable,
the full group must be.

Homology of SO3(Q)

The fact that SO3(R) is compact means this group is ramified at the infinite place, and
Hilbert reciprocity implies that there is an odd number of finite places for which SO3(Qp)
ramifies. It turns out that SO3(Q2) is the unique ramified place. In particular, there is a
reduction map SO3(Q) → SO3(Z2/2

nZ2).

Let S be the preimage of {I3,

/

0
1 2 2
2 1 2
2 2 3

1

2} under the mod 4 reduction map. This corre-

sponds to the image of the projective odd primitive quaternions which are 1+ i+ j (mod 2).

Proposition 43. SO3(R) is perfect.

Proof. If α is a nontrivial rotation of the two-sphere, there is a rotation a that goes through
half of the angle. Let b be the π-rotation that exchanges the fixed points of a. Then b
conjugates a to its inverse, and so [a, b] = a(ba−1b−1) = aa = α, and so every element of
SO3(R) is a commutator.
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In fact, SO3(R) is even simple, but we would like to highlight the fact that SO3(Q) is not
even perfect, since we do not always have square roots in SO3(Q).

Proposition 44. There is a surjection HQ →
.

p odd prime Z/2Z ⊆ Q∗/(Q∗)2.

Proof. Let O denote the set of odd primes, and consider the function σ : N → Z/2Z(O) defined
by σ(n)p = vp(n) (mod 2). Then σ◦N : HQ → Z/2Z(O) is the desired homomorphism, where
N is the norm on HQ.

Abelian subgroups of quaternion lattices

Lemma 8. Two non-identity rotations of the 2-sphere commute if and only if they share an
axis, or are π rotations between orthogonal axes.

Proof. It is clear that the rotations described commute, so we suppose that α and β are
commuting rotations. Since α is a rotation, it has exactly two fixed points on the sphere,
and if α = βαβ−1, β must preserve the fixed point set of α. So either β has the same axis,
or it interchanges the two fixed points, which implies that β is a π-rotation orthogonal to
α.

Corollary 8. Every abelian subgroup of SO3(R) has a fixed point in RP2.

Definition 14. A pure imaginary axis in H is a 1-dimensional subspace orthogonal to R.

Proposition 45. Maximal commutative subalgebras of H are in 1-to-1 correspondence with
pure imaginary axes.

Proof. If A is a 1-dimensional commutative subalgebra, span{A, 1} is still commutative, and
is 2-dimensional unless A = R. Otherwise, C = span{1, i} properly contains A. If S is a
maximal commutative subalgebra of dimension at least 3, it contains two pure imaginary
quaternions α, β which are linearly independent. But then αβ−βα ∈ S is a pure imaginary
quaternion orthogonal to both α and β, so S = H.

Definition 15. If α = [a : b : c] ∈ QP2 is an axis, the height h(α) of α is the norm of a
primitive integral representative. For example, h(3/5, 4/5, 0) = 25, h(1/6,−1/3, 1/3) = 9,
and h(1, 1, 2) = 6. The height determines the covolume of Fix(α) on the cube complex it
acts on.

In more general arithmetic groups, the number of maximal abelian groups up to com-
mensurability will depend on class field theory invariants.

Bounded Generation and the Congruence Subgroup Property

We turn to the question of the congruence subgroup property.
If k is a field and OS the ring of S-integers, any ideal I in OS determines a homomorphism

OS → OS/I. For G an algebraic group defined over k, we obtain a map G(OS) → G(OS/I),
a finite group when I has finite index. So the kernel of this map is a finite index subgroup
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of G(OS), denoted G(OS)[I]. A congruence subgroup is one that contains the kernel of some
congruence quotient map.

There are thus two natural profinite groups that contain G(OS), and a map between

them: !G(OS) → G(;OS). The first is the profinite completion of G(OS) (with respect to all
of its finite index subgroupsx), and the second is called the congruence completion, which is
the completion with respect to its congruence subgroups. The kernel of this map is called
the congruence kernel.

G(OS) is said to have the congruence subgroup property if the kernel of this map is finite.
PSL2(Z) fails to have the congruence subgroup property. In fact, every alternating group
An, n ≥ 5 is generated by an element of order two and an element of order 3, thus there is a
surjective map Z/2Z∗Z/3Z → An. Simple congruence quotients are all PSL2(Fp), which are
not isomorphic to alternating groups for p ≥ 7. However, SL2(Z[S−1]) has the congruence
subgroup property [73, Theoreme 1]. It is unknown if HS has the congruence subgroup
property for |S| > 1.

Example 5. Let a = 1 + i + j and b = 1 + i − j, and x = 1 + 2i, y = 1 + 2j, z = 1 + 2k.
We have

H3,5 = 〈a, b, x, y, z | ax = zb−1, ay = z−1b, az = x−1b−1, bx−1 = y−1b−1, bz = ya, a−1x = y−1a〉

Let hn denote the number of conjugacy classes of subgroups of H3,5 of index n. According
to GAP (using ”LowIndexSubgroupsFpGroup”), we have

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
hn 1 7 0 19 0 0 0 40 0 0 2 1 0 2 0

For a prime not equal to 2, 3, or 5, H3,5 acts transitively on FpP1, and the stabilizer of a
point is an index p + 1 subgroup. The subgroups of index 11 are perhaps a bit mysterious,
as 10 is not prime. However, there is an exceptional transitive action of PSL2(F11) on a set
of 11 objects, which was observed by Galois in his letter to A. Chavallier [34], considered his
final mathematical work. Typically, PSL2(Fp) only admits transitive actions on sets of size
p + 1, but there happens to be an embedding A5 ≤ PSL2(F11), which has index 11, since
|PSL2(F11)|/|A5| = 11. The preimage of A5 under the surjection of H3,5 → PSL2(F11) is
then an index 11 subgroup. These actions are not conjugate, but are related by an outer
automorphism of PSL2(F11). The remaining subgroups in this table are indeed congruence
subgroups.

Bounded Generation

A group G is said to be boundedly generated if there is a finite set {g1, . . . , gn} so that
every element of G is of the form gk11 . . . gknn for ki ∈ Z. In [25, Theorem 1.1], Cooke and
Weinberger prove bounded generation for certain groups assuming the generalized Riemann
Hypothesis. In [58, Theorem 1.1], the authors show that SL2(O) has bounded generation
when the group of units of O is infinite (including all algebraic subrings of C except for Z or
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Z[
√
−d] for positive d). In [26, Theorem 1.3], the authors show that higher rank S-arithmetic

subgroups of anisotropic algebraic groups are not boundedly generated, including the groups
SO3(Z[1/n]).

Following [25], we speculate whether GRH might be useful in obtaining other quantitative
or finiteness statements regarding SO3(Q). For example, assuming Γ ≤ SO3(Z[1/n]) is
Zariski dense, for n composite, is Γ a lattice? We have shown that for each prime divisor of
n, Γ∩SO3(Z[1/p]) has full limit set in the p-adic tree. If in fact this is because it is a lattice,
then we have also shown that Γ has finite index in SO3(Z[1/n]).

Reflection extensions of quaternion lattices

Recall the embedding Q{i, j} → M2(Q(i)) determined by i +→
*
i 0
0 −i

+
and j +→

*
0 1
−1 0

+
.

Note that the matrix r =

*
1 0
0 −1

+
has order 2. One can also check that conjugation by

r fixes i (in other words, r and i commute) and sends j to −j. Thus conjugation by the
“reflection” r induces the automorphism of M2(Q(i)) which is the Galois automorphism of
Q(i).

Question 3. Does Scott’s argument for right-angled reflection groups have an analog in
products of trees? Are geometrically finite subgroups of rational quaternions separable?

Note that products of free groups are incoherent, and thus have finitely generated sub-
groups which are not convex cocompact. However, irreducible lattices in products of trees
may have the property that finitely generated subgroups are convex cocompact, hence finitely
presented. This would imply that SO3(Q) is coherent.

3.6 Lattices in Products of Trees

Definition 16. A tree is a connected and simply connected graph. A forest is a union of
trees, and a jungle is a product of trees.

We have the following important lemma, which we call the stabilizer principle:

Lemma 9. Suppose G acts on a locally finite tree T , and let v, w ∈ T . Then StabG(v) and
StabG(w) are commensurable.

Proof. The stabilizer StabG(v) acts on the finite set of vertices at distance d(v, w) from v,
and so the subgroup which fixes w has finite index in StabG(v). But this is precisely the
group StabG(v) ∩ StabG(w).

This greatly contrasts with the analogous statement for, say, H3. If x, y are distinct
points in H3, Stab(x) and Stab(y) are both copies of SU2, but their intersection is SO2,
which is a 1-dimensional subgroup of a 3-dimensional group.
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In a much more general context, we can prove a weaker statement. If G acts on a metric
space X, the ε-almost stabilizer of x is Uε(x) = {g ∈ G | d(gx, x) < ε}.

Lemma 10. Suppose a topological group G acts properly on a proper metric space X by
isometries, and let x, y be distinct points in X. Then for any ε > 0, Uε(x) is covered by
finitely many translates of Uε(x) ∩ Uε(y)

Proof. Since X is proper, the d(x, y)-sphere about x is compact, so Stab(x) is a compact
subgroup of G. The intersection Ux

ε (y) = Stab(x) ∩ Uε(y) is an open subset of Stab(x), and
so ∪k∈Stab(x)kU

x
ε (y) is an open cover of Stab(x), which must have a finite subcover.

The stabilizer principle follows from this more general fact because for ε < 1, a vertex
in a tree is ε-stabilized if and only if it is a genuine fixed point. The stabilizer principle has
the following corollary, which can also be deduced from the fact that PGL2(Zp) is a compact
open subgroup, and any two compact open subgroups are commensurable.

Corollary 9. PGL2(Qp) commensurates PGL2(Zp).
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Chapter 4

Quaternions and Lattices in Products
of Trees

4.1 The Margulis-Zimmer Conjecture

The Margulis-Zimmer conjecture was first stated in [75] as follows. Let G be a simply
connected and absolutely simple algebraic group defined over a number field k. Fix a set of
places S containing all of the Galois embeddings, and suppose that Γ = G(OS) has rank at
least 2.

Conjecture 3 (Margulis-Zimmer). If Λ is a subgroup of Γ which is commensurated by Γ,
Λ is S ′-arithmetic for some set of places S ′ containing all of the Galois embeddings.

Theorem 25 (van Dantzig). Every totally disconnected locally compact group G has a com-
pact open subgroup K.

Lemma 11. If K is a compact open subgroup of a totally disconnected locally compact group
G, K is commensurated.

Proof. First, note that for any g ∈ G, Kg is also a compact open subgroup, since conjugation
is a homeomorphism. Then also K ∩Kg is a compact open subgroup. Of course K is the
disjoint union of the cosets C = K/(K ∩Kg). Since each c(K ∩Kg) is open, this forms an
open cover of K. But the cosets are disjoint, so no proper subcover can still cover K. Thus
the set C must be finite to begin with. So K and Kg are commensurable.

Recall that a symmetric subset A ⊆ G is called a k-approximate subgroup if A ·A ⊆ K ·A
for some set |K| = k < ∞.

Proposition 46. If H ≤ G is commensurated, then for every g ∈ G, the set Ag = gH ∪
Hg−1 ∪ {1} is an approximate subgroup.

Proof. Since H is commensurated, we know that HgH ⊆ KlgH and HgH ⊆ HgKr, for
some finite sets Kl and Kr depending on g. Of course 1Ag = Ag1 ⊆ Ag. We check that
pairwise products of the other four types can be finitely covered.
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Now

(gH)(gH) = g(HgH) ⊆ g(KlgH) = (gKl)gH

(Hg−1)(Hg−1) = (Hg−1H)g−1 ⊆ (K−1
r g−1H)g−1 = (K−1

r g−1)(Hg−1)

(Hg−1)(gH) = H = g−1(gH)

(gH)(Hg−1) = g(Hg−1)

In total, we have that Ag · Ag ⊆ K · Ag, where K = {1, g, g−1} ∪ gKl ∪ (gKr)
−1.

4.2 Hybrid lattices in Jungles

We compute explicitly two lattices in products of trees. For the quaternion algebras Q{i, j}
and Q{

√
3i, j}, we consider the projective classes of units of their Z[1/5, 1/13]-points. Let

HZ[1/65] denote the torsionfree subgroup of the projective units of Z[1/65]{i, j}, and H′
Z[1/65]

those of Z[1/65]{
√
3i, j}. We will exhibit explicit generating sets for particular congruence

subgroups, chosen so that the groups act simply transitively on the vertices of the product
of trees. It is not always possible to do so (try finding norm 3 elements in Z{i,

√
101j}!),

but we will exhibit such sets for these groups.
For HZ[1/65], we have that A5 = {1 ± 2i, 1 ± 2j, 1 ± 2k} generates HZ[1/5] and A13 =

{3± 2i, 3± 2j, 3± 2k, 1± 2i± 2j ± 2k} generates HZ[1/13].

For H′
Z[1/65], A

′
5 = {1 ± 2j, 1 ± j ±

√
3k} generates H′

Z[1/5] and A′
13 = {3 ± 2j, 3 ± j ±√

3k, 1± 2
√
3i, 1± 2

√
3k, 1± 3j ±

√
3k} generates H′

Z[1/13].
Figures 4.1 and 4.2 exhibit presentations for these groups, obtained with the help of

Mathematica, by the following process. For each m,n, range over k and calculate ambna
±
k /5.

For whichever k this result is integral, it will be a prime element bl of HZ[1/13], and thus
ambna

±
k b

−1
l is a relator.

The 21 squares in Figure 4.3 are glued together according to the color and orientation
of the arrows on their edges. The gluing respects the vertical or horizontal orientation of
the edges. There are 3 horizontal edges and 7 vertical edges. Identifying each of the 21
squares with a unit square [0, 1]× [0, 1], the vertical hyperplane of the complex is the union
of {1/2} × [0, 1], ranging over all 21 squares, and the horizontal hyperplane is the union of
the [0, 1] × {1/2}. The vertical hyperplane is drawn below and to the left of the complex
itself, and the horizontal hyperplane to the right. The vertical hyperplane has three vertices,
each of which is (13+1)-valent, and the horizontal hyperplane is (5+1)-valent.

The complex drawn in Figure 4.2 is described similarly, with its hyperplanes beneath.
Note that the vertical hyperplanes of the two complexes are the same. The hyperplanes are
bicollared ; for ε < 1/2, the strip [1/2− ε, 1/2 + ε]× [0, 1] embeds in the complex. Since the
orientations on edges are not all consistent, it is a nontrivial bundle. Thus, upon cutting
the complex along the vertical hyperplane, we obtain a connected complex whose boundary
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Figure 4.1: A presentation for HZ[1/5,1/13].

is a double cover of the hyperplane. We remark that the graphs obtained as the boundaries
(double covering the hyperplanes) are isomorphic to the graphs Y 5,13 and Y 13,5 described in
Lubotzky-Phillips-Sarnak [49, Theorem 4.4], which are explicit Ramanujan graphs.

Since these two “cut” complexes have isomorphic graphs as their boundaries, choosing
any isomorphism between their boundaries allows us to glue the two complexes together to
get a new square complex, hence a new lattice in a product of trees which is built out of
arithmetic pieces.

Note that both of these groups embed in the group HZ[
√
3,1/65], which is a lattice in a

product T26 × T14 × T14. To understand the unit group of Z[
√
3, 1

5
]{i, j}, a maximal order

is given by Z[
√
3]{1, ζ, j, ζj}, where ζ =

√
3+i
2

is a primitive 12th root of unity. We obtain a
free group of rank 13 (since the projective line of F25 corresponds to the generators and their
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Figure 4.2: A presentation for H′
Z[1/5,1/13].

inverses). An explicit symmetric generating set is given by the set A25 = {1± 2i, 1± 2ζmj},
where m ∈ [12] = {0, . . . , 11}. Since 13 = (5 + 2

√
3)(5 − 2

√
3) factors, and 5 + 2

√
3 =

12 + (1 +
√
3), we can find generators for Z[

√
3, 1/5± 2

√
3]{i, j}

The automorphism σ1 (which is the Galois automorphism on Q(
√
3) and fixes i, j) fixes

{1± 2i, 1± 2ζ3mj} = A5, and σ2 (which also negates i) fixes {1± 2ζ2nj} = A′
5.

4.3 Superrigidity in higher-rank p-adic groups

Definition 17. We say that an algebraic group G satisfies superrigidity if for any irreducible
lattice Γ ≤ G and any homomorphism f : Γ → H to an algebraic group with Zariski dense
image, there is a unique continuous homomorphism F : G → H extending f .

Many modern treatments of Margulis’ superrigidity theorem appear to make the assump-
tion that R-rank of G is at least two, leading us to suspect that this may be a necessary
assumption. However, Margulis’s book ([54], VII.7.1) proves the following:
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Figure 4.3: The hyperplanes after cutting.
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Theorem 26. Suppose that {k1, . . . , kn} is a finite set of local fields, and for each i, Gi is a
connected semisimple adjoint algebraic group which is defined, isotropic, and simple over ki.
If

$n
i=1 rank(Gi(ki)) ≥ 2, then G =

'
i∈I Gi(ki) satisfies superrigidity.

Corollary 10.
'

p∈S PSL2(Qp) satisfies superrigidity if |S| ≥ 2 is a finite set of primes.

Proposition 47. Suppose G satisfies superrigidity, and Out(G) = 1. Then for any lattice
Γ ≤ G, any Zariski dense representation f : Γ → G is conjugate to the identity.

Proof. Suppose F : G → G extends f . Then F is an automorphism of G, which must be
induced by conjugation since Out(G) = 1. Thus f = F |Γ is conjugation.

Proposition 48. Suppose G satisfies superrigidity, Out(G) = 1, and Γ1, Γ2 are two lattices
in G. Then Γ1 and Γ2 are abstractly commmensurable if and only if they are commensurable
in G.

Proof. It is clear that if Γ1 and Γ2 are commensurable in G, they are abstractly commensu-
rable.

Now supposing Γ1 and Γ2 are abstractly commensurable, then we may replace each with
a finite index subgroup Λi ≤ Γi with f : Λ1 → Λ2 an isomorphism of abstract groups. Since
Γi has finite covolume, V ol(G/Λi) = [Γi : Λi]V ol(G/Γi) is also finite, and so Λi is a lattice.
Now since Λ2 ≤ G, it is natural to consider f : Λ1 → Λ2 ≤ G as a representation to G. Since
G satisfies superrigidity, f extends to a representation F : G → G, which must be surjective
by the Borel density theorem. The previous proposition implies that f is conjugate to the
identity, which in the present case means that Λ1 and Λ2 are conjugate. But this is precisely
what it means for Γ1 and Γ2 to be commensurable in G.

Definition 18. We say that a rational quadratic form f is ramified at a prime p if f does
not represent zero nontrivially over Qp

Corollary 11. Suppose n is composite, and f and g are positive definite ternary quadratic
forms which are not ramified with respect to any prime factors of n. Then SOf (Z[1/n]) is
abstractly commensurable to SOg(Z[1/n]) if and only if f and g are equivalent over Q.

Proof. The assumption on ramification implies that SOf (Qp) ∼= SOg(Qp) ∼= PGL2(Qp) for
each p | n, and the Borel–Harish-Chandra theorem implies that SOf (Z[1/n]) and SOg(Z[1/n])
are lattices in the group G =

'
p|n PGL2(Qp). Since n is composite, G has rank at least two,

satisfies superrigidity, and Out(G) = 1 by Lemma 7. If f and g are equivalent over Q,
then an equivalence induces a commensuration of the lattices. Otherwise, f and g are not
equivalent, and so their orthogonal groups are not commensurable in G. Thus these groups
are not abstractly commensurable.

Example 6. Let f = x2+y2+z2 and g = 19x2+y2+19z2, and consider Γ1 = SOf (Z[1/15])
and Γ2 = SOg(Z[1/15]). Each of Γi is an irreducible lattice in G = PGL2(Q3) × PGL2(Q5).
These are abstractly commensurable if and only if they are commensurable in G, but since
f and g are not equivalent forms, no finite index subgroup of Γ1 is isomorphic to a finite
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index subgroup of Γ2. Note that 19 is a square mod 3 and a square mod 5, and so f ∼ g
over Q3 and f ∼ g over Q5.

We recall the presentation for SO3(Z[1/15]). The set A3 = {1 + i + j, 1 + i − j, 1 − i +
j, 1− i− j} is a symmetric generating set for the lattice in T4, and A5 = {1 + 2i, 1 + 2j, 1 +
2k, 1−2i, 1−2j, 1−2k} for the lattice in T6. These each have covolume 1, as they act simply
transitively on the vertices of the trees.

For SOg(Z[1/15]), we find generating sets for SOg(Z[1/3]) and SOg(Z[1/5]) as the elements

of small norm in Z[x, j], where x = −1+
√
19i

2
, and x satisfies x2+x+5 = 0, or x(x+1) = −5,

so that x and 1 + x are conjugates. Note that 1 + x + 2j and 1 + x − 2j have norm 9
and trace 1, so they act on the 3-adic tree as a translation of length two. The elements
1
2
(2 + x) + j +

√
19k and 1

2
(2 + x) + j −

√
19k have norm 27 and trace 3, and so they act on

the 3-adic tree as a translation of length 1, about an axis distance 1 from the origin. These
four elements generate a discrete group which acts on the tree cocompactly, and we obtain
the following quotient:
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For norm 5k elements, we find that 1+2j and 1+x have norm 5, thus are translations of
length 1 with an axis passing through the origin of the tree. The elements 6 + 2x + 9j and
6 + 2x− 9j each have norm 125 and trace 10, and so act on the 5-adic tree as a translation
of length 1 about an axis distance 1 from the origin. The elements 8+ x− 8j and 8+ x+8j
have norm 125 and trace 15, and act similarly to the previous two generators. Finally,
7 + 2

√
19k = 7+ j + 2xj has norm 125 and trace 14, hence acts as a translation of length 3

through the origin. By calculating the axes for each of these generators, we find the following
quotient:

Thus we have found generators for a torsionfree subgroup of finite index in SOg(Z[1/15]),
which is a lattice in T4 × T6.

Theorem 27. The groups SOf (Z[1/15]) and SOg(Z[1/15]) are lattices in PGL2(Q3)×PGL2(Q5)
which are not abstractly commensurable. Hence for any prime p > 19, the hyperplanes in
SOf (Z[1/(15p)]) and SOg(Z[1/(15p)]) dual to the p-adic tree are not isomorphic for any finite
index subgroup.

Proof. The first statement follows from Corollary 11. The hyperplanes dual to the p-adic tree
will be finite index congruence subgroups of SOf (Z[1/15]) and SOg(Z[1/15]). If these had
finite index subgroups which were isomorphic, then these groups would be commensurable,
a contradiction.

Question 4. Suppose Γ ≤ SO3(Z[1/n]) is full, and G =
'

p|n SO3(Qp). Are there represen-

tations Γ → G which do not extend to SO3(Z[1/n])?

If the answer is no, then Γ satisfies a strong enough form of superrigidity to make several
deductions. For example, this would imply that Γ cannot be free, because free groups have
many more representations to G. We know that any geometric representation must extend.
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4.4 The Greenberg-Shalom Question

It is perhaps quite surprising how many simple-to-state open questions one can raise that
are concerned with two-by-two matrices with rational entries (or entries in a number field).
It seems that many of these questions are intimately connected. For example, many of
them are direct consequences of an affirmative answer to following question, which should
be compared with [31, Question 7.3], [35, p. 231-232], [75, Question 1.2]. The particular
statement we will use is slightly less general than what has appeared in the literature, but is
a convenient way to state the question for our purposes and use. When we say Question 5
implies, we mean of course that the stated consequence would follow from an affirmative
answer to the question.

Question 5 (Greenberg-Shalom, Question 1.2 of [33]). Let k be a number field, and G(k) a
semisimple k-algebraic group. Suppose Γ ≤ G(k) is Zariski dense and discrete in G(AS

k ) for
a collection of places S containing the infinite places, and its commensurator is indiscrete in
this latter group. Then Γ is commensurable with G(OS).

It is an observation due to D. Fisher, T. Koberda, M. Mj, and W. van Limbeek that
Question 5 implies that the Long-Reid group (Section 3.1) is not discrete in PSL2(Q2) ×
PSL2(Q3). In this section, we observe other consequences of this conjecture. We thank these
authors for helpful conversations.

Applications

It will be useful to cite a generalization of Theorem 20, which we learned after proving
our version. However, the lemma makes the assumption that G(O) is infinite, which is not
the case in R-rank 0 groups we consider here, so we prove a more general version, closely
following the proof of Lemma 2.8 in [51].

Proposition 49 (cf. Theorem 6.9 [75]). Suppose G is an absolutely simple and simply
connected k-algebraic group, and S is a finite set of places containing the archimedean places,
and such that G(OS) is infinite. Suppose Γ ≤ G(k) is finitely generated and [G(OS) : ∆] < ∞
for ∆ = Γ ∩ G(OS). Then there is a finite set of places S ′ ⊇ S so that G(OS′) and Γ are
directly commensurable.

Proof. Since Γ is finitely generated, its ring of definition is finitely generated over O, and so
there is a finite set of places T ⊇ S so that Γ ≤ G(OT ). Denote by S ′ the set of places v ∈ T
for which Γ ≤ G(kv) is dense. Since ∆ has finite index in G(OS), we have that S ′ ⊇ S,
since Γ must be unbounded in all of the places v for which G(O{v}) is unbounded. By strong
approximation [64, Theorem 7.12], the closure of G(OS) in G(kv) is open for any v ∕∈ S, and
since G is simply connected, any proper open subgroup of G(kv) is compact [66, Theorem
(T)].

So we see that for each v ∕∈ S ′, since the closure of Γ in G(kv) is a proper subgroup, it
is contained in a compact subgroup. But two compact open subgroups of G(kv) are directly
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commensurable, and so Γ ∩ G(Okv) has finite index in Γ. Since S ′ is finite, the intersection
Γ ∩G(OS′) has finite index in Γ, and we shall assume henceforth that Γ ≤ G(OS′).

Now let (−) denote the closure in
'

v∈S′\S G(kv). By strong approximation, ∆ is dense

in K =
'

v∈S′\S G(Ov), and Γ contains the compact open subgroup K. But since Γ is

unbounded in each G(kv), its closure must contain G(kv) for each v ∈ S ′ \ S, hence by [75,
Lemma 6.8] Γ is dense in G(kS′\S).

Since [G(OS) : ∆] is finite, there is a finite set F ⊆ G(OS) of coset representatives for ∆
which also serves as a collection of coset representatives for ∆ ⊆ G(OS). We will show that
F also serves as a collection of coset representatives for Γ in G(OS′), hence G(OS′) = ΓF .

The closure G(OS) is open in
'

v∈S′\S G(kv) and Γ is dense, we know that for every g ∈
G(OS′), there is some γ ∈ Γ∩gG(OS). But also (g−1γ)−1 ∈ G(OS′)∩G(OS) = G(OS) = ∆F .
But this means that g ∈ γ∆F ⊆ ΓF , and hence G(OS′) ⊆ ΓF , as desired. Hence, Γ has
finite index in G(OS′).

In the course of the proof, we may have replaced Γ with a finite index subgroup, but
note that if Γ had been contained in G(OS′), we have shown that the index of Γ in G(OS′)
is at most the index of ∆ in G(OS). However, the other bound on the index is automatic,
because if there were f1, f2 ∈ F so that f1Γ = f2Γ, we would have that f−1

1 f2 ∈ Γ. But we
chose fi ∈ G(OS), and so f−1

1 f2 ∈ Γ ∩ G(OS) = ∆, contradicting that these give distinct ∆
cosets.

Proposition 50. If G acts on a locally finite complex, then G commensurates K = Stab(v)
for any vertex v.

Proof. For any g ∈ G, gKg−1 is the stabilizer of the vertex gv. Since K fixes v, it permutes
the finitely many vertices at distance d(v, gv), and so the subgroup of K which fixes gv has
finite index in K. But this is precisely the intersection K ∩ gKg−1. Thus K and gKg−1

intersect with finite index in each, so G commensurates K.

Coherence and the Subgroup Conjecture

In ([60], p. 734), Serre asks most broadly whether GLn(Q) is coherent, and remarks after-
wards that Baumslag points out that the image of BS(p, q) = 〈a, t | tapt−1 = aq〉 under the

representation a +→
*
1 1
0 1

+
, t +→

*
p/q 0
0 q/p

+
is not a finitely presented group, so not even

SL2(Z[1/pq]) is coherent. Also, since SL2(Z)× SL2(Z) ≤ SL4(Z) has a finite index subgroup
which is a direct product of free groups (hence proved to be incoherent by Stallings [76,
Example 1]), SL4(Z) is not coherent.

However, it seems quite possible that SO3(Q) is coherent. Recall the subgroup conjecture
(Conjecture 1), that subgroups of SO3(Q) are abelian, primary, or commensurable with
SO3(A) for A a subring of Q.

Proposition 51. An affirmative answer to Question 5 implies the subgroup conjecture.
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Proof. Suppose a finitely generated group Γ ≤ SO3(Q) is not abelian or primary. Let S
denote the (finite) set of primes p for which Γ acts without a global fixed point on the p-
adic tree, so that Γ ≤

'
p∈S PGL2(Qp) is discrete. Since Γ is not primary, Proposition 37

implies that there is some p for which Γ is almost dense in PGL2(Qp). But then the subgroup
Γ ∩ PGL2(Zp) is discrete in PGL2(QS\{p}), and is commensurated by Γ which is indiscrete in
PGL2(QS\{p}). Thus Question 5 implies that the group Γ∩PGL2(Zp) is an S \{p}-arithmetic
lattice, and then Proposition 49 implies that Γ is S-arithmetic.

Remark. The infinitely generated version of Question 5 implies the analogous version of the
subgroup conjecture.

Corollary 12. Question 5 implies that SO3(Q) is coherent, and that coherence is not a
geometric property.

Proof. We showed that the subgroup conjecture implies these two properties in Proposi-
tion 38, and that Question 5 implies the subgroup conjecture in Proposition 51.

The Strong Tits Alternative

The Tits alternative asserts that any linear group in characteristic zero is either virtually
solvable or contains a free group. Tits accomplishes this by ensuring that a group which is
not virtually solvable has a pair of independent rank one elements with disjoint attracting
and repelling fixed points on some projective spaces, and proves that high enough powers of
these elements play “ping-pong”.

This dynamical observation has an important application in the theory of hyperbolic
groups. Any two elements of infinite order in a hyperbolic group must either lie in a common
cyclic subgroup, or else they have powers that play ping-pong.

This property fails for an obvious reason in CAT(0) groups, since torsionfree abelian
groups need not be cyclic. For example, Z2 is a CAT(0) group. However, one might ask
if this is the only way that ping-pong can fail. Motivated by this, Wise ([9, Question 2.7])
asks:

Question 6 (Wise). Suppose G is a CAT(0) group and a, b ∈ G. Is there some n so that
〈an, bn〉 is abelian or free?

One can view this as a strong version of the Tits alternative, asserting that if a, b do
not virtually commute, they behave like independent rank one elements. We show that an
affirmative answer to Question 5 would produce a counterexample to this question.

Proposition 52. Let a = 1 + 2i and b = 3 + 2j be (projective) integer quaternions. Then
the group Hn = 〈an, bn〉 is never abelian, and assuming Question 5, Hn is never free.

Proof. For the unconditional statement, it suffices to note that a and b both act on the
sphere as rotation by an irrational multiple of π, hence have infinite order. Thus, no power
can have order 2, and as they have distinct axes, no nonzero power of a commutes with a
nonzero power of b.
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Question 5 implies the subgroup conjecture by Proposition 51, and the subgroup con-
jecture implies that the image of Hn in SO3(Q) has finite index in SO3(Z[1/65]), a lattice
in T6 × T14. Thus Hn is a lattice in a product of two trees, and therefore cannot be a free
group.

Lyndon-Ullman

For q a rational number, let Pq = 〈
*
1 q
0 1

+
,

*
1 0
q 1

+
〉 = 〈a, b〉. If q ≥ 2, these matrices have

ping-pong sets in the hyperbolic plane, and thus generate a discrete and free group. When
|q| = 2, the group is an arithmetic lattice, as it is a finite index subgroup of PSL2(Z).

Conjecture 4. (Lyndon-Ullman, see [52],[44]) If |q| < 2 is rational, Pq is not free.

Note that the element ab−1 has trace 2 − q2, which lies in (−2, 2) when |q| < 2. Hence
ab−1 is elliptic. Recall that if r is an elliptic of finite order n, its trace is ±2 cos(π/n), which
is rational only when it is ±2,±1, and 0. This corresponds to q = 0 or q = ±1, and in any
other case for |q| < 2 this element is an infinite order elliptic.

So for q ∕= ±1 rational with |q| < 2, Pq is indiscrete (and in fact dense) in PSL2(R).
However, if S is the (nonempty!) collection of primes dividing the denominator of q, Pq acts
nontrivially on the p-adic tree for each p in S.

Proposition 53. Question 5 implies that Pq has finite index in PSL2(Z[q]), hence that
Conjecture 4 holds.

Proof. Let H = Pq ∩ PSL2(Z). Since suitable powers of the generators are integral, H is
Zariski dense in PSL2(R), and is discrete since it is contained in PSL2(Z). However, Pq is
indiscrete, since ab−1 is an infinite order elliptic. Let S denote the finite set of primes dividing
the denominator of q; then Pq acts on X =

'
p∈S Tp+1 without a global fixed point, with H

the stabilizer of the base vertex. In particular, the R-elliptic element ab−1 is a translation in
each tree, so H is unbounded in every PSL2(Qp), for p dividing the denominator of q.

By Proposition 50, Pq commensurates H, and Pq is indiscrete in PSL2(R) since ab−1 is
an infinite order elliptic. So Question 5 implies that H is a lattice in PSL2(R), and since
H ⊆ PSL2(Z), it must have finite index in PSL2(Z).

Now since Pq contains the arithmetic latticeH, Proposition 49 implies that Pq is commen-
surable with PSL2(A), for some subring A ≤ Q. Since Pq ≤ PSL2(Z[q]), and Pq is unbounded
in the archimedean place and the p-adic places for each p dividing the denominator of q, we
must have that Pq is a finite index subgroup of PSL2(Z[q]), which is not virtually free. Hence
Pq cannot be free.
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