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ABSTRACT OF THE THESIS 

 

Convolutional Neural Networks based on Brain MRI for Alzheimer’s Disease Detection 

by 

Noelia Civico Dorado 

Master of Science in Computer Engineering 

University of California, Irvine, 2022 

Professor Nader Bagherzadeh, Chair 

 

In recent years, the problem of detecting Alzheimer’s disease with computer-aided 

diagnosis systems has become a relevant research field for medical diagnosis efficiency and image 

classification innovation. Alzheimer’s disease is an irreversible progressive neurogenerative 

disorder caused by damage to nerve cells, which leads to memory loss and other cognitive 

functioning skills deterioration. Detecting Alzheimer’s in its preliminary stages is crucial to 

planning treatment and therefore delaying the progression of the disease. Magnetic Resonance 

Imaging scans can capture complex changes in the brain and assess the damage caused by the 

disease. The growing popularity, accuracy, and applicability of Convolutional Neural Networks 

make them an optimal solution to perform this medical task. 

This study implements and compares several deep models and configurations, including 

both two-dimensional and three-dimensional convolutional neural networks. The results 

classifying normal cognitive subjects versus Alzheimer’s patients show a good performance, 

especially for AlexNet, ResNet18, and ResNet34 architectures. In particular, 3D models are able 

to achieve better accuracy outcomes. 
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Chapter 1: 

 
Introduction 

 
1.1. Alzheimer’s disease 

Alzheimer’s Disease (AD) is an irreversible progressive neurogenerative disorder caused by 

damage to nerve cells (neurons). AD is the most common cause of dementia among older adults. 

Most of the individuals diagnosed with AD are 65 or older. Studies indicate that people aged 65 

and older survive an average of four to eight years after a diagnosis of AD, although some live as 

long as 20 years [1]. The World Health Organization (WHO) reported that over 55 million people 

worldwide live with AD in 2021 and was the 7th leading cause of death [2][3]. Statistics show that 

this number is expected to rise drastically in the following decades. 

In AD, the deterioration of brain cells starts gradually affecting cognitive functioning -thinking, 

remembering, and reasoning- and therefore the brain parts responsible for memory, language, and 

learning. Common symptoms include memory loss, reduced ability to reason and think, difficulty 
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with problem-solving skills, forgetfulness and deep confusion regarding time, events and places, 

doubts about family members and friends, and mood or behavioral changes. AD is a progressive 

disease, which implies that it gets worse with time. As the disease spreads to further parts of the 

brain and more neurons are damaged, symptoms also get worse: difficulty completing simple daily 

tasks, walking, swallowing, speaking, reading, or writing [4]. 

AD begins with mild deterioration and gets progressively worse. The disease has three major 

stages: mild, moderate, and severe. Nevertheless, there exists a previous phase called Mild 

Cognitive Impairment (MCI). MCI is a transitional state between healthy patients and AD patients. 

Individuals with MCI due to AD present memory problems that do not prevent them to continue 

with their daily routine. At this stage, they also have a biomarker evidence of Alzheimer’s brain 

changes [1][5]. 

 

Figure 1: AD stages 

Since AD is incurable, the early diagnosis is essential to postpone the progression of brain 

irreversible damage and extend the independence of patients for a longer period. In this case, direct 
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observation of the signs is required to detect and evaluate AD through a comprehensive evaluation 

-memory, problem solving, attention, counting, and language tests- as well as brain scans [5]. 

1.2. Brain imaging in AD 

Brain changes associated with AD may begin a decade or more before symptoms appear [5]. Beta-

amyloid plaques and tau tangles appear in the brain and lead to the damage and destruction of 

neurons [1]. This damage is reflected in the hippocampus area and the cerebral cortex of the brain, 

which begin to shrink [6]. These affected regions are responsible of memory, thinking, planning 

and judgement [7]. As more neurons die, other parts of the brain continue shrinking until brain 

tissue is significantly affected. 

 

Figure 2: Healthy brain vs. Severe AD brain [8] 

Medical imaging are techniques used to visualize representations of the inner parts of the human 

body for a medical purpose. In this case, neuroimaging tools together with Artificial Intelligence 
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(AI) and preprocessing methodologies can help doctors to detect whether a patient is developing 

AD and therefore help planning the treatment. 

Common advanced brain imaging techniques in AD are Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI), Single-Photon Emission Computed Tomography (SPECT), or Position 

Emission Tomography (PET).  

In this thesis, MRI is the brain scan selected to identify and classify AD. 

1.3. Motivation 

As described before, AD is irreversible and has no cure. Nevertheless, the early diagnosis of AD 

plays a very significant role in planning a treatment and therefore delaying the progression of the 

disease. 

In order to diagnose AD, medical experts manually inspect the brain imaging tools. This process 

can be time consuming, subjective, and also requires high concentration, effort, and money. 

Extracting by eye the first unnoticeable features of a brain scan to identify the disease in the early 

stages becomes a very hard task, which makes the diagnosis prone to human errors. For these 

reasons, Computer-Aided Diagnosis (CAD) systems are an optimal solution to achieve fast, 

efficient, robust, and accurate AD diagnosis. 

Developing deep learning-based CAD systems to analyze medical images and detect and classify 

AD can help obtaining beneficial results by providing early detection and reducing medical efforts 

and errors. This gain in accuracy can lead to an improvement of efficiency and quality of the AD 

treatment. 
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1.4. Thesis scope 

The scope of this thesis is to deeply investigate the performance of different approaches that are 

based on Convolutional Neural Networks (CNN) for AD classification.  

This work aims to identify the presence of AD based on MRI scans of the brain by using the OASIS 

dataset and analyzing different image processing techniques as well as several deep learning 

strategies. 

This study implements and evaluates eight different CNN architectures by comparing several 

performance metrics, such as training and validation loss, precision, recall, or F1 score (see 

Chapter 4). The learning rate of different optimizers, the training time, and the number of epochs 

are other examined parameters that can help to investigate the behavior of CNN models. 

The evaluation of CNN models includes two-dimensional (2D) and three-dimensional (3D) 

structures. In order to use a 2D CNN on 3D MRI volumes, each MRI scan is split into 2D slices, 

neglecting the connection between 2D image slices in an MRI volume. The three 2D image views 

of the 3D MRI volume are considered: axial view, coronal view, and sagittal view (see Figure 4). 

Distinguishing between different stages of AD is not an easy task. In this case, the experiments are 

performed for binary classification between AD and Normal Cognitive (NC). 

The impact of different data preprocessing techniques on the end performance is also studied. The 

result of the different preprocessed images as well as the corresponding view in 2D slices can 

affect the model performance.  
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The project outline is featured below. 

• Chapter 2: The theoretical background of MRI, Machine Learning (ML), and especially 

CNNs is described in detail. 

• Chapter 3: This chapter defines the tools, design approaches and evaluation criteria used 

in the project. 

• Chapter 4: The results of the thesis are stated by using multiple parameters and performing 

several comparisons at different stages. 
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Chapter 2: 

 
Theoretical background 

 
2.1. Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging (MRI) is a medical diagnosis tool used in radiology to form images 

of the inside of an organ or body and its physiological processes without opening it surgically. 

Volumetric MRI uses radio frequency and a strong and uniform magnetic field projected through 

a scanner to generate a detailed brain image. The scans allow the detection of possible damage and 

other complex changes by measuring the energy released by protons within various tissue 

components [9].  
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Figure 3: MRI view of a healthy brain (left) and an Alzheimer’s brain (right) 

(Yellow - Cortex, Blue - Ventricle, Purple - Hippocampus volume reduced) [10] 

An MRI scan has three axis, which means that it has three different views: sagittal view, coronal 

view, and axial view (see Figure 4). Figure 5 shows an MRI scan obtained from the OASIS dataset, 

which is the one used to perform the experiments in this thesis.  

 

Figure 4: MRI views: sagittal, coronal and axial (left to right) 

 

Figure 5: OASIS dataset MRI example: NC subject vs. AD patient 
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2.2. Artificial intelligence and medical imaging classification 

Artificial Intelligence (AI) is the science of training machines to perform human tasks. Some 

decades ago, this term first appeared when scientists looked for a way of making computers 

capable of solving problems on their own. Intelligent machines that can emulate human behavior 

became a powerful and promising tool. The ability of independent reasoning and self-decision 

making led to the exponential growth of this new concept. 

As this new scientific term started to play an important role in the engineering field, the idea of 

learning from actual actions to improve future results came to light, bringing up the concept of 

Machine Learning (ML). ML is a specific subset of AI that trains a machine on how to learn from 

data and make predictions. Despite its initial implication with pattern recognition, ML is nowadays 

employed in a wide range of applications related to computer systems, such as image classification, 

computer vision, object detection, language processing, speech recognition, and medicine. This 

groundbreaking method consists of looking for patterns and drawing conclusions without being 

explicitly programmed, only based on previous examples (datasets). Learning algorithms and 

complex models have been developed through learning from historical relationships and trends in 

data, generating in consequence reliable decisions and high accuracy results. 

Inspired by the workings of the human brain, neural networks (also known as deep learning) are a 

computing system approach inside the ML field that tries to mimic how the human brain learns. It 

incorporates interconnected units (like neurons) that process information by responding to external 

inputs, transferring it between each unit multiple times to set optimal connections and parameters 

that can later extract conclusions from undefined data. 
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In general terms, image classification is to label an image or a part of an image with the 

corresponding classes based on its features. Artificial Neural Networks (ANN) are commonly 

applied in the analysis of visual data. They are an effective solution for image recognition and 

classification.  

2.2.1. Convolutional Neural Networks 

In Deep Learning (DL), a Convolutional Neural Network (CNN) is a type of neural network that 

consists of millions of neurons with learnable weights and biases, which are organized in several 

layers. CNNs are inspired by biological processes and its structure is equivalent to the connectivity 

pattern of neurons in the human brain. They differ from conventional neural networks because of 

performing convolution, which uses weight matrices (also known as filters or kernels) to produce 

feature maps from input data [11]. CNNs have suffered an exponential growth in terms of data 

computation and applicability during the last decade. Nowadays, they are used in a wide range of 

fields, such as image analysis, facial and speech recognition, medical diagnosis, and computer 

vision, in which object detection, classification, and segmentation have the strongest impact. 

The preprocessing stage required in a CNN is minimum in comparison to other traditional image 

classification algorithms. With optimal training, this type of network has the ability of learning the 

values of the filters and other parameters on its own through backpropagation (see Section 3.3.3). 

The architecture of a CNN is composed of an initial convolution layer, multiple hidden layers, 

several fully-connected layers, and a final fully-connected layer, which is called the classifier (see 

Figure 6). The main purpose of the first convolution layer is to extract features from the input 

image and drive them into the hidden layers, which are pooling layers and convolution layers 
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partially connected. Between hidden layers, there are normally activation functions that help to 

keep important information for the next layers. The last fully-connected layer has a loss function, 

such as softmax or SVM, that allows the classification at the end. A more detailed explanation of 

each CNN layer is given later on in this chapter. 

  

Figure 6: Structure of a CNN with MNIST dataset [12] 

 

This kind of neural network is popular for two distinct attributes: sparse interactions and parameter 

sharing [11]. Making the kernel filter size smaller than the size of the input image allows capturing 

only important features and turning them into different feature maps that are driven through the 

different layers of the CNN. With fewer pixels of the image in consideration, sparse interactions 

or connectivity, as well as a reduction in parameters, is achieved. In consequence, this results in 

the reduction of memory footprint and computational overfitting, leading to model simplicity [4]. 

By capturing spatial and temporal dependencies, the model can be trained to interpret the image 

by extracting from low-level to high-level abstractions [13]. 
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The structure of a CNN consists of different layers that are described in detail below. 

Convolution layer 

Convolutional layers are the core block of CNNs. This kind of layers apply a convolution operation 

across the width and height of the input image, generating feature maps as an output. For each 

input position, a dot product between the learnable filter and the corresponding pixels is computed. 

 

Figure 7: Neuron model of a convolutional layer [14] 

In order to perform this computation, different hyperparameters should be considered. 

• First, the number of filters or depth (F) corresponds to several sets of learnable weights, 

known as kernels, that look for different features or patterns of the input image. 

• Second, the filter size or kernel size (K) describes the width and the height of the filters that 

are used in the convolution operation. Normally, the kernel is a two-dimensional matrix of size 

K×K. However, another possible approach is considering a three-dimensional matrix, in which 

the third dimension describes the number of multiple color channels (e.g., RGB). The number 

of color channels of the kernel should match with the number of color channels of the input 

image. 
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• Third, the zero-padding (P) defines how the convolution operation is performed, based on 

which the generated output size changes. Depending on this hyperparameter, the input is padded 

or not with zeros around the border. 

• Finally, the stride (S) corresponds to the number of positions that the filter is slid each time. 

This value can also produce a variation on the output size. 

 

Figure 8: Convolution operation with F=1, K=3, P=0 and S=1 

Taking all these definitions into account, the number of trainable parameters (TP) is defined as: 

 𝑇𝑃 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 𝑏𝑖𝑎𝑠𝑒𝑠 = 𝐾2 × 𝐹 + 𝐹  (Eq. 1) 

The number of connections (NC) is given by: 

 𝑁𝐶 = 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒2 × 𝑇𝑃 (Eq. 2) 
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in which the output size corresponds to: 

 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 = 𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 − 𝐾 + 1 (Eq. 3) 

In the case of 3D images, the kernel has the same depth as the input image. When performing 3D 

convolutions, the 3D filter moves in three directions: width, height, and channels; and generates a 

volumetric output (see Figure 9). 

 

Figure 9: 3D convolution [15] 

Activation function 

In neural networks, the activation function of a node (also known as non-linearity layer) defines 

the output of that node given an input or set of inputs (see Figure 7). More precisely, it produces a 

mapping from an input real number to a real number within a specific range in order to determine 

whether or not the information within the node is useful [11]. 
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In consequence, given a combination of inputs and weights from the previous layer, the activation 

function controls how the information is processed and passed to the next layer. These 

mathematical equations are crucial when talking about the accuracy, computational efficiency, 

convergence, and convergence speed of a model. 

An ideal activation function is both nonlinear and differentiable. Nonlinear behavior of an 

activation function allows our neural network to learn nonlinear relationships in the data. 

Differentiability is important because it allows to backpropagate the error in the neural network 

model when training to optimize the weights. 

Apart from the softmax output activation function, the ReLU (rectified linear unit) is one of the 

most popular activation functions [16], especially in CNNs. Non-linear activation functions help 

the network learn complex data and provide accurate predictions. Mathematically, ReLU is 

defined as: 

 𝑦 = max (0, 𝑥) (Eq. 4) 

This function is cheap to compute, trains rapidly, converges fast and is sparsely activated. Neurons 

in a network have different roles and therefore should be activated by different signals. Being 

sparsely activated allows neurons to process meaningful aspects of the problem. Nowadays, there 

are several variants of the ReLU activation function, such as leaky ReLU that solves the issue of 

zero gradients [4]. 
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Although there are other activation functions, such as perceptron, or sigmoid, tanh and arctan, 

those functions are not widely used nowadays because of their non-differentiability or their 

backpropagation limitations respectively. 

Pooling layer 

The pooling layer or sub-sampling layer is commonly placed between convolutional layers with 

the objective of reducing the number of trainable parameters and computation in the neural 

network. In order to achieve a better power performance, this kind of layer reduces the spatial size 

of the input feature maps. By performing this size reduction, it also helps avoiding overfitting in 

the CNN. Normally, it operates with filters of size 2×2 and a stride of 2. 

 

Figure 10: Example of Max Pooling and Average Pooling [12] 

There are two possible approaches for implementing this behavior: Max Pooling and Average 

Pooling (see Figure 10). The Max Pooling returns the maximum value from the portion of the input 

map covered by the filter. On the other hand, the Average Pooling computes the average of all the 

values covered by the kernel. Max Pooling has been shown to have faster convergence and better 

classification performance [4]. 
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3D pooling operation follows the same sliding approach as 3D convolutions (see Figure 9). 

Fully-Connected layer 

Fully-Connected (FC) layers are responsible of compiling the data extracted from previous 

convolutional layers and pooling layers to generate the final output classification of the neural 

network. In this kind of layers, all the inputs from the previous layer are connected to every neuron 

of the following layer. The main purpose is to flatten the feature maps into a single vector of values 

that represents the probability of each feature belonging to an output classification label [17].  

The operation performed by a fully-connected layer consists basically of multiplying the weights 

per the input values and adding the bias terms. By executing this computation, non-linear 

combinations of the different features can be learned. 

Classifier layer 

After passing through the fully-connected layers, the final classification layer uses an output 

activation function, such as softmax or SVM, to get the probabilities of the input being one of the 

output classes or labels. 

The Softmax classifier gives the normalized probabilities of a list of potential outcomes, which 

basically means that it takes an arbitrary input vector and converts it into a vector of values between 

zero and one that sum to one. This function is commonly used in multi-class classifications 

problems using deep learning techniques. 
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The SVM (Support Vector Machines) classifier is applied for finding a hyperplane in  a N-

dimensional space (where N is equal to the number of features) that distinctly classifies the 

different data points of each class or label [18]. 

 

The most common types of CNN architectures are featured below. 

LeNet [19] [20] 

LeNet is one of the first CNNs, developed by Yann LeCun in the 1990s. In the beginning, it was 

mainly used for character recognition applications, like reading zip codes or digits. The LeNet 

architecture is considered simple and small regarding memory footprint, although it is efficient 

enough to provide good results in many fields. The latest approach is called LeNet-5, which is a 

5-layer CNN that reaches 99.2% accuracy on isolated character recognition. 

AlexNet [21] 

AlexNet is a deep CNN, designed by Alex Krizhevsky in 2012. It consists of 650,000 neurons and 

60 million parameters, which makes it deeper and wider than LeNet-5. The uniqueness of this 

architecture resides in the kernel size of 11×11 and the stride of 4 in the first convolutional layer. 

In total, this architecture consists of 8 layers: 5 convolutional layers followed by Max Pooling 

layers, and 3 FC layers. 
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GoogleNet [22] 

GoogleNet is a CNN architecture proposed by Szegedy in 2014. This network uses an inception 

module and consists of several dense components that create an optimal deep sparse structure with 

a lower number of parameters. The advantage of this method is multi-level feature extraction from 

each input at the same time. 

VGGNet [23] 

VGGNet is a CNN model developed by Karen Simonyan and Andrew Zisserman in 2014. In this 

case, the depth of the architecture plays a significant role in its performance, since it only uses 

small 3×3 kernel filters. This network achieves high performance, although it needs more memory 

and more parameters. 

ResNet [24] 

ResNet is a CNN architecture designed by Kaiming He et al. in 2015. ResNet (also known as 

residual network) consist of residual blocks, which introduce the identity shortcut connection 

concept to skip one or more layers (see Figure 11). 

 

Figure 11: Identity shortcut connection in ResNet [24] 
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Chapter 3: 

 
Design and implementation 

 
The block diagram of an AD detection system is presented in Figure 12. In this chapter, each block 

of the system is analyzed in detail. 

 

Figure 12: Block diagram of an AD detection system 

3.1. Dataset description 

The dataset used to train and validate the model is OASIS neuroimaging dataset of the brain [25]. 

The OASIS-2, which includes longitudinal MRI data in nondemented and demented older adults, 

is the release chosen to implement the deep AD classification model [26]. 

 

MRI Preprocessing Deep model Classification 
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Table 1: OASIS-2 brain dataset 

Classes 
Number of 

subjects 

Training 

dataset 
Testing dataset Total 

Nondemented 72 156 40 196 

Demented 64 111 29 140 

Total 136 267 69 336 

The OASIS-2 set consists of an MRI collection of 150 subjects (88 women) aged 60 to 96. The 

subjects are all right-handed and include both men and women. Each subject was scanned on two 

or more visits separated by at least one year, for a total of 373 imaging sessions. On the one hand, 

72 of the subjects were characterized as nondemented throughout the study. The mean age of 

nondemented subjects was 75.82, and the number of female was higher than the number of male. 

On the other hand, 64 of the included subjects were characterized as demented at the time of their 

initial visits and remained so for subsequent scans. . The mean age of demented subjects was 74.95, 

and in contrast the number of women was lower than the number of men. Another 14 subjects 

were characterized as nondemented at the time of their initial visit and were subsequently 

characterized as demented at a later visit, which are labeled as converted subjects [25] [26].  

The experiments that are carried out in this thesis perform binary classification between NC patient 

and AD patient. For this reason, the scans of the converted subjects or the MCI subjects are not 

considered at this stage of the project. 

The classification task consists of two main phases: training and testing. In the training step, the 

input image is labeled to extract the features and train the algorithm. In the testing step, the 

classifier is validated by predicting the output and comparing it to the labeled data. In consequence, 
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the dataset is split in two groups: 80% of the scans for training stage, and 20% of the scans for 

testing phase. 

3.2. Data preprocessing 

Data preprocessing is a crucial step when training an artificial neural network. In literature, there 

are several preprocessing methods depending on the type of data, the algorithm and the application 

that is performed. Preprocessing the data allows to obtain more meaningful and accurate results in 

the output of the model. An overview of the preprocessing steps is shown in Figure 13. 

 

Figure 13: Overview of the preprocessing steps 

The 3D MRI volumes are read by using a library called NiBabel, a neuroimaging tool in Python 

[27]. In the case of 2D CNN, the extraction of the 2D slices is the following step, whose approach 

is described in detail in Section 3.3.2. 

Read 3D MRI volume 

Extract 2D slices 

Reduce image noise 

Normalize the data 

Crop, resize and flip 
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The main step of the preprocessing process is normalization. This widely used technique aims to 

scale the data between a maximum and a minimum, making it to have zero mean and unit variance. 

Standardizing the data allows to speed up the training process by using a higher learning rate and 

a lower number of epochs. The learning rate is a configurable hyperparameter used in the training 

phase of a neural network to control how quickly the model is adapted to the problem [28], and an 

epoch is a pass through the entire dataset. In other words, making a similar data distribution of the 

input images leads to a faster convergence of the neural network. 

The normalization formula is defined as: 

 𝑧 =
𝑥𝑖 −  𝜇

𝜎
 (Eq. 5) 

where μ is the mean and σ is the standard deviation from the mean. 

Reducing image noise is another preprocessing step. In this case, an image filter is added to the 

original image to eliminate some of the noise and smooth the edges. Cropping, resizing, and 

flipping (vertically or horizontally) the images can also help to improve the robustness of the 

model. 

Image preprocessing is a key stage of an AD detection system. Other techniques, such as skull 

removal or data augmentation can be helpful to increase the accuracy, convergence, and robustness 

of the model. Segmentation is another possible preprocessing method, although it can make high-

level information hard to convey since the region of interest in this case is wide. Future work can 

be developed in this data preprocessing step to improve the model behavior. 
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3.3. Model definition 

Different 2D and 3D CNN architectures are implemented in this thesis. The schematics of the two 

approaches are illustrated in Figure 14. 

 

Figure 14: Schemes of the applied approaches [4] 

3.3.1. CNN architectures  

In this thesis, 4 different CNN architectures – AlexNet, VGG, GoogleNet, and ResNet - are 

implemented to train the brain image classifier. The description of these architectures is presented 

in Section 2.2.1. Several models with different depth and dimensions are tested. The list of the 

Sagittal view 

Coronal view 

Axial view 

MRI slices 2D CNN Classification 

(a) 

MRI volume 3D CNN Classification 

(b) 
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applied CNN structures is included in Table 2. The framework used to implement the models is 

Pytorch. 

Table 2: Implemented CNN architectures 

2D CNN 3D CNN 

AlexNet AlexNet 

VGG-16 ResNet18 

ResNet18 ResNet34 

VGG-19  

GoogleNet  

ResNet34  

ResNet50  

ResNet101  

 

3.3.2. 2D vs. 3D 

CNNs are a widely used approach to detect AD in deep intelligent CAD systems. Initially, CNNs 

were proposed to recognize patterns from 2D images. Nevertheless, nowadays the use of 3D CNNs 

is becoming more and more popular and effective. 

In this thesis, both 2D and 3D structures are implemented and compared in order to identify which 

is the best choice in the case of detecting AD based on MRI scans. 

2D CNNs use a small number of parameters during the training process and are great at capturing 

spatial features. In contrast, 3D CNNs need many parameters to be trained, which could lead to 
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overfitting. However, they have the potential to capture the temporal information present in MRI 

volumes. 

 

Figure 15: Example of slicing an MRI volume [29] 

When implementing 2D CNN models based on 3D MRI data, the input volumes need to be sliced 

before fitting them into the network under the assumption that certain features of interest in 3D 

MRIs are preserved. Generally, 2D CNNs capture the middle part of brain scans as the input data 

and ignore the reminder [4]. In this thesis, the applied slicing approach consist of taking the middle 

30 frames of the MRI scans as independent labeled input images. Figure 16 illustrates the 

importance of each MRI view by highlighting the regions of the brain from where relevant 

information can be extracted as AD progresses. 

 

Figure 16: Brain regions affected by AD in each MRI view [30] 
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3.3.3. Backpropagation 

Optimization is a crucial part of a neural network, where the weights and biases of the neurons are 

updated. In a neural network, backpropagation is used as a learning algorithm to compute a 

gradient descent with respect to weights and biases. The main purpose is to train the network 

efficiently by exploiting the chain rule. After each feed-forward pass through the network, the 

backpropagation algorithm does the backward-pass to adjust the model’s parameters, boost the 

prediction and therefore minimize the loss function, which calculates how inaccurate the network 

is performing. The selection of this loss function depends on the performed task. In the case of 

image classification applications such as AD detection systems, cross entropy loss is the most 

common cost function. 

Another relevant function during the backpropagation and training phase is the optimizer, which 

modifies the attributes of the network (e.g., learning rate and momentum). In image classification 

tasks, Adam is the most efficient optimizer. The optimal learning rate used to train all the models 

is 0.01. 
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Chapter 4: 

 
Results 

 
In order to evaluate the performance of the models, several metrics are considered in Table 3: 

training and testing accuracies, precision, recall and F1 score. The accuracy of a network describes 

how the model performs across all classes. The precision measures the model's accuracy in 

classifying a sample as positive. The recall measures the model's ability to detect positive samples. 

When a model has high recall but low precision, then the model classifies most of the positive 

samples correctly, but it has many false positives. When a model has high precision but low recall, 

then the model is accurate when it classifies a sample as positive, but it can only classify a few 

positive samples [31]. The F1 score is a statistical measure defined as the harmonic mean between 

precision and recall. 

In this case, since the goal is to detect all the positive samples and misclassifying a negative sample 

would not lead to a significant error, recall can be considered as a more relevant performance 
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metrics. Nevertheless, comparing the training and testing accuracies of the different CNN 

architectures is the main evaluation criteria. 

Table 3: Model evaluation 

Model 

architecture 

CNN 

dimension 

View of 

MRI 

slices 

Training 

accuracy 

[%] 

Testing 

accuracy 

[%] 

Precision Recall 
F1 

score 

AlexNet 

2D Sagittal 78.43 78.07 0.72 0.73 0.72 

2D Coronal 74.68 75.48 0.69 0.70 0.69 

2D Axial 77.68 76.55 0.69 0.71 0.69 

3D 81.54 77.21 0.71 0.78 0.74 

VGG-16 

2D Sagittal 75.30 76.19 0.65 0.66 0.66 

2D Coronal 75.19 74.81 0.65 0.66 0.65 

2D Axial 73.56 72.43 0.63 0.65 0.65 

ResNet18 

2D Sagittal 76.55 75.07 0.76 0.83 0.79 

2D Coronal 76.93 77.97 0.82 0.88 0.86 

2D Axial 78.94 78.52 0.86 0.93 0.89 

3D 80.11 75.07 0.62 0.66 0.63 

VGG-19 

2D Sagittal 76.30 76.19 0.66 0.66 0.66 

2D Coronal 75.52 75.55 0.65 0.66 0.66 

2D Axial 73.56 72.43 0.64 0.65 0.64 

GoogleNet 

2D Sagittal 74.68 72.93 0.53 0.49 0.51 

2D Coronal 73.44 72.06 0.53 0.50 0.51 

2D Axial 71.69 71.57 0.53 0.50 0.52 

ResNet34 

2D Sagittal 75.43 76.93 0.72 0.82 0.74 

2D Coronal 78.05 78.31 0.86 0.93 0.89 

2D Axial 76.68 76.38 0.74 0.83 0.79 

3D 77.50 74.21 0.55 0.61 0.58 

ResNet50 

2D Sagittal 75.69 75.57 0.57 0.53 0.55 

2D Coronal 75.30 74.81 0.57 0.53 0.55 

2D Axial 73.77 74.69 0.56 0.55 0.55 

ResNet101 

2D Sagittal 75.19 74.30 0.57 0.52 0.55 

2D Coronal 74.55 74.52 0.57 0.52 0.55 

2D Axial 73.77 74.6 0.53 0.52 0.53 
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As highlighted in Table 3, the CNN architectures that better perform when detecting AD based on 

MRI scans are AlexNet, ResNet18 and ResNet34. The plots that are shown below correspond to 

the best model behavior for each 2D view and 3D structure. 

  

  

 
The lowest accuracy result is 71.57% for 2D Axial GoogleNet, and the highest accuracy result is 

81.54% for 3D AlexNet. By comparing these numbers to similar approaches in current literature 

(e.g. [4]), the obtained results are remarkable and considered to be within the established 

performance accuracy range, although they are not able to beat the state-of-the-art by reaching 

close to 90% of accuracy. Two main reasons can justify this behavior: the amount of input data, 

Figure 17: 2D Sagittal AlexNet performance Figure 18: 2D Coronal ResNet34 performance 

Figure 19: 2D Axial ResNet18 performance Figure 20: 3D AlexNet performance 
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and the implemented MRI preprocessing techniques, which act as a bottleneck to the performance 

of the system. In Section 5.1, possible future improvements in each of these directions are 

described in detail. 

Table 4: Performance evaluation 

Model 

architecture 
CNN dimension 

View of MRI 

slices 

Average 

training time 

per epoch 

[s] 

Number of 

epochs 

AlexNet 

2D Sagittal 25.23 150 

2D Coronal 20.53 120 

2D Axial 21.36 130 

3D 160.73 45 

VGG-16 

2D Sagittal 26.04 165 

2D Coronal 25.79 160 

2D Axial 28.66 150 

ResNet18 

2D Sagittal 25.08 100 

2D Coronal 21.56 110 

2D Axial 20.91 115 

3D 231.32 50 

VGG-19 

2D Sagittal 26.33 175 

2D Coronal 25.11 165 

2D Axial 29.07 160 

GoogleNet 

2D Sagittal 25.36 170 

2D Coronal 24.06 165 

2D Axial 23.51 160 

ResNet34 

2D Sagittal 20.54 160 

2D Coronal 19.95 170 

2D Axial 21.33 165 

3D 361.80 60 

ResNet50 

2D Sagittal 26.88 150 

2D Coronal 26.33 155 

2D Axial 29.43 145 

ResNet101 

2D Sagittal 26.09 130 

2D Coronal 28.28 135 

2D Axial 30.21 125 
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To further evaluate the experimental results of each architecture, two other evaluation criteria are 

considered in Table 4: average training time per epoch, and total number of required epochs to 

reach optimal performance. By multiplying both measures, the total training time for each model 

can be obtained. 

 

 

Figure 21: Average training time per epoch for each deep model 

 

 
As illustrated in Figure 20, 3D models have a larger training time than 2D models. Nevertheless, 

they need a lower number of epochs to be optimally trained (see Figure 22). By comparing the 

total training time of 2D and 3D CNN architectures, the results show that in average 3D deep 

models take longer to train, but their performance is slightly better. Figure 21 illustrates the 

behavior of 2D CNN architectures in terms of timing. As shown, ResNet34 is the fastest model, 

followed by ResNet18 and AlexNet. This fact is expected, because normally deeper models or 
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models with more learnable parameters take longer to train. In general, deeper models need fewer 

number of epochs in the training phase, however each epoch is more time consuming. 

 

Figure 22: 2D average training time per epoch for each deep model 

 

 

 

 

Figure 23: Total number of required epochs for each deep model 
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Chapter 5: 

 
Conclusions 

 
This thesis presents the design, implementation and experiments of several MRI-based AD 

detection approaches using CNNs. As seen throughout the project’s results, building deep CNN 

models to perform binary detection of AD in early stages is possible and can achieve competitive 

outcomes, although it requires to carefully consider different design stages, preprocessing 

techniques, and network structures. In general, AlexNet, ResNet18 and ResNet34 have the best 

performance. The main weakness of these approaches is the necessity of large datasets. 

Comparing 2D and 3D architectures leads to remarkable results, showing that 3D CNN structures 

can successfully exploit the temporal as well as the spatial information present in MRI volumes. 

In this case, overfitting is not a major inconvenient, as seen in the training and testing accuracy 

results. Nevertheless, if this problem appears at some point when performing future improvements, 

solving it by increasing the number of input scans or applying data augmentation should be 

effective. When evaluating 2D MRI slices, the views that are capable of achieving the highest 
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accuracy results are sagittal and coronal. Implementing multi-view models can also help obtaining 

more robust and accurate 2D classifiers. 

5.1. Future work 

Promising future work towards the improvement of the proposed models to better detect, diagnose, 

and classify AD is possible in terms of data, preprocessing and architecture. 

In terms of the amount of available data, OASIS dataset has a third release of their brain scans, 

which consists of three times more MRI volumes than the current used package. If getting access 

to this wider amount of data, the lack of input images and the possibility of overfitting could be 

easily overcome. 

In terms of preprocessing, new and more effective techniques can be considered. For example, 

skull removal or image segmentation are two popular approaches. In the case of skull removal, 

recent software programs that can perform this task directly are used. When talking about 

segmentation, the benefits of this method in AD are unknown, because the region of interest of the 

brain is wider than in other diseases, and the fact that it does not convey high-level information 

could lead to worse accuracy results. 

In terms of CNN models, possible improvements in the structure of the network such as multi-path 

or cascade approaches in the case of 2D CNN can help to achieve more competitive performance. 

In the future, other possibilities are the implementation of multi-class classification between three 

stages (NC, AD and MCI), and the comparison of the behavior of the different architectures when 

using other types of brain images, such as PET. 
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