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Spherical nano-inhomogeneity with the Steigmann—-Ogden
interface model under general uniform far-field stress

loading

Junbo Wang!, Peng Yan'*, Leiting Dong!" , Satya N. Atluri 2
!School of Aeronautic Science and Engineering, Beihang University, Beijing, CHINA

2 Department of Mechanical Engineering, Texas Tech University, USA

Abstract: An explicit solution, considering the interface bending resistance as
described by the Steigmann—Ogden interface model, is derived for the problem of
a spherical nano-inhomogeneity (nanoscale void/inclusion) embedded in an
infinite linear-elastic matrix under a general uniform far-field-stress (including
tensile and shear stresses). The Papkovich-Neuber (P-N) general solutions, which
are expressed in terms of spherical harmonics, are used to derive the analytical
solution. A superposition technique is used to overcome the mathematical
complexity brought on by the assumed interfacial residual stress in the Steigmann-

Ogden interface model. Numerical examples show that the stress field, considering
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the interface bending resistance as with the Steigmann—Ogden interface model,
differs significantly from that considering only the interface stretching resistance
as with the Gurtin—-Murdoch interface model. In addition to the size-dependency,
another interesting phenomenon is observed: some stress components are invariant
to interface bending stiffness parameters along a certain circle in the
inclusion/matrix. Moreover, a characteristic line for the interface bending stiffness
parameters is presented, near which the stress concentration becomes quite severe.
Finally, the derived analytical solution with the Steigmann—Ogden interface model
is provided in the supplemental MATLAB code, which can be easily executed, and
used as a benchmark for semi-analytical solutions and numerical solutions in future
studies.
Keywords: Steigmann—Ogden interface model; nano-inhomogeneity; interface
bending resistance; Papkovich-Neuber solution; spherical harmonics
1. Introduction
The “interface-stress” theory has attracted much attention due to its applicability to
nanocomposites and nanostructured materials. The concept of interface stress was first
introduced by Gibbs (1906) and has been extensively investigated since Gurtin and
Murdoch (1975, 1978) incorporated it into continuum mechanics. In the Gurtin-
Murdoch model, the interface is considered as a negligibly thin layer adhering to bulk
materials without slipping, which only has stretching resistance but no bending
resistance. Gurtin et al. (1998) generalized the original model by allowing all the

components of the displacement vector to undergo a jump across the interface. The
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Gurtin—-Murdoch model has been used to study nanosized rod (Altenbach et al., 2013;
Grekov and Kostyrko, 2016), beams (Miller and Shenoy, 2000a; Eltaher et al., 2013;
Ansari et al., 2015; Youcef et al., 2018), plates (Eremeyev et al., 2009; Ansari and
Sahmani, 2011; Altenbach et al., 2012; Ansari and Norouzzadeh, 2016), shells
(Altenbach et al., 2010; Altenbach and Eremeyev, 2011; Rouhi et al., 2016; Sahmani et
al., 2016), films (Lu et al., 2011; Zhao and Rajapakse, 2013), wires (Diao et al., 2003;
He and Lilley, 2008; Yvonnet et al., 2011), and inhomogeneities (Sharma et al., 2003;
Duan et al., 2005a, b; Duan et al., 2005¢; He and Li, 2006; Lim et al., 2006; Kushch et
al., 2011; Kushch et al., 2013; Mi and Kouris, 2014; Nazarenko et al., 2016; Chen et
al., 2018; Wang et al., 2018a), and much progress has been made in both analytical
methods (Duan et al., 2009; Altenbach et al., 2013; Kushch et al., 2013; Dong et al.,
2018) and numerical methods (Tian and Rajapakse, 2007; Feng et al., 2010; Dong and
Pan, 2011).

In the Gurtin-Murdoch model, the surface/interface energy only depends on the
surface/interface strains and the residual surface stress; thus the material interfaces are
assumed to have only stretching resistance but no bending resistance. This makes the
Gurtin—-Murdoch model to be unable to account for the experimental observations and
computational results on the size-dependence of the surface stresses for nanowires
(McDowell et al., 2008; Yun and Park, 2009), nanoplates (Miller and Shenoy, 2000b)
and nanoparticles (Medasani et al., 2007), since the elastic energy of the surface caused
by curvature is neglected in this model. Steigmann and Ogden pointed out that the

membrane in the Gurtin—-Murdoch model cannot support compressive stress states
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(Ogden et al., 1997; Steigmann and Ogden, 1999); and thus cannot simulate surface
features characterized by compressive surface stresses of any magnitude such as surface
winkling and roughening. In order to overcome such deficiencies, Steigmann and
Ogden (1999) generalized the Gurtin—Murdoch model to take into account both
stretching and bending resistance of the membrane. The variational framework for the
derivations of the basic equations for the model can be found in (Eremeyev and Lebedev,
2016; Zemlyanova and Mogilevskaya, 2018a).

In contrast to the large number of available studies for the Gurtin-Murdoch model,
most of the literature on the Steigmann—Ogden model is focused on simple geometries,
such as nanobeams (Chhapadia et al., 2011; Manav et al., 2018), nanowires (Zhao et al.,
2015), rigid stamps (Zemlyanova, 2018a; Zemlyanova, 2018b), thin films (Ogden et al.,
1997; Dryburgh and Ogden, 1999) and half-space materials (Li and Mi, 2018; Mi, 2018).
The literature on nano-porous materials and nano-particle reinforced composites
considering the Steigmann—Ogden surface elasticity model are rather limited (Gharahi
and Schiavone, 2018; Han et al., 2018; Zemlyanova and Mogilevskaya, 2018a;
Zemlyanova and Mogilevskaya, 2018b), and most of these studies are focused on 2D
nano-inhomogeneity problems. Nevertheless, these studies on nano-inhomogeneities
have shown that the interface bending resistance can significantly change the local
stress distributions as well as the overall properties of nano-composites, and thus it
should not be neglected. However, due to the mathematical complexity, studies for 3D
nano-inhomogeneities based on the Steigmann-Ogden interface model under general

uniform remote loading, have not been reported to the best of our knowledge. Especially,
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an analytical solution for a spherical nano-inhomogeneity, which can serve as the
benchmark for numerical and semi-analytical solutions, is desirable.

In this study, an analytical solution considering the interface bending resistance based
on the Steigmann-Ogden (S-O) interface model is derived for the first time, for a
spherical nano-inhomogeneity (nanoscale void/inclusion) embedded in an infinite
matrix under general uniform far-field loading. The Papkovich-Neuber (P-N) general
solutions are used, together with spherical harmonics to derive the solution of a
spherical nano-inhomogeneity with S-O interface, embedded in an infinite matrix,
under general uniform far-field loading. This approach was previously used to develop
a series of novel numerical tools named as “computational grains” (Dong and Atluri,
2012a, b; Wang et al., 2018c), for direct numerical simulation of microstructures with
a large number of heterogeneities, considering different shapes, distributions,
constitutive relations, physics, and interfaces. For example, it was used in (Dong and
Atluri, 2012a, b), in which computational grains (mathematical or virtual finite-sized
domains of polyhedral geometries, each with embedded spherical or ellipsoidal
inclusions/voids) were developed for highly efficient direct numerical simulation of the
micromechanics of composites. It was also used to deal with composites with coated
spherical inclusions or fiber reinforcements (Wang et al., 2018b; Wang et al., 2018c).
One may also follow the procedures presented in this paper to solve other problems
of inhomogeneities  with different interface models and different shapes, e.g.
cylindrical nano-inhomogeneities and ellipsoidal nano-inhomogeneities, by expressing

the Papkovich-Neuber potentials in different types of harmonics (cylindrical,
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ellipsoidal, etc.). More complex loads may also be considered, such as far-field bending.

The rest of this paper is organized as follows: In Section 2, the governing equations
for the 3D nano-inhomogeneity with Steigmann-Ogden interface are briefly stated. In
Section 3, the Papkovich-Neuber solutions and spherical harmonics are detailed. Then
using the Steigmann-Ogden interface description and the far-field conditions, the
explicit analytical solution to the considered nano-inhomogeneity problem is given in
Section 4. In Section 5, we discuss the influences of the interface bending on stress
distributions within and around the nano-inhomogeneity(nano-void/inclusion), when
the far-field tensile/shear loads are applied. In Section 6, we complete this paper with

some concluding remarks.

2. The governing linear elasticity equations

The problem of a nano-inhomogeneity embedded in an infinite elastic matrix
subjected to general uniform far-field stress loading is considered, as shown in Fig. 1.
Solutions of 3D linear elasticity for the matrix and the inhomogeneity should satisfy
the equations of stress equilibrium, strain displacement-gradient compatibility, as well

as the constitutive relations in each domain Q’:

V.o +1/ =0 (1)
s":%(Vuj +(Vu)") ()
o/ =Atr(e)), +2u'¢’ 3)

where the superscript j=m denotes the matrix,and ;=i denotes the inhomogeneity.

¢’/ ,&¢/,u/ are stresses, strains, and displacements in matrix/inhomogeneity. f’ is the
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body force which can be neglected here. (V-) and V are the divergence and gradient

J J
operators, respectively. A’ =L and u’ =E—_ are Lamé constants,
A-2v")1+v') 2(1+v7)

where E’ and v’/ are the Youngs modulus and Poissons ratio , respectively. I, is the
3D unit tensor and I,=e, Qe, +e,Qe, +e, ®e, in spherical coordinates, where e,,
e,, e, are base vectors. tr(¢’) denotes the trace of the strain tensor.

A general uniform far-field stress loading, with arbitrary combinations of shears and

tensions, and can be written as:

¢” =¢" atinfinity (4)
0 0 0
()-XX Xy Xz
¢'=| oy, o, o, | ,which includes 6 independent components of normal stresses
0 0 0
o

R LT e ~
! | < Qm | |
" inhomogéneity | matrix :
I | | Gb
| | I |
\ | 7
‘ I “p | I
I | T I 1
| | I |
interface
e -7
Lo - b -
W _ 4 - - _ -

Fig. 1. A spherical inhomogeneity embedded in an infinite matrix under far-field
loading

The governing equations for the S—O interface model can be obtained by taking the
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first variation of the following functional IT:

Mu™,u')=> jﬂj WfdQ+IrUSdS—IS tumds- > jg/ff wdQ (5)
Jj=m,i t J=m,i
where
W/ =%c" e/ (6)

U :(us —cs)ss g +%(XS +cs)tr(ss ) 'K K +%Cstr(lcs )?

1 ™
+0° (1 + tr(ss)) +EGS (V_,,us ) : (Vsus )

sS:%[Vsus T+ (V)] 8)

K’ =—%[v53-15 +1,-(V,9)" ] 9)

19=Vs(n-us)+B-uS (10)

B=-V.n (11)

where uw’,¢' and «x'are interface displacement, strain and curvature, respectively. A°
and g are the interface Lamé constants characterizing the interface stretching. »°
and ¢° are stiffness parameters characterizing the interface bending. o° is the
residual surface stress. I, is the unit tangent tensor defined on the interface and
I, =e,®e,+e,®e, in spherical coordinates. V = (I, —nn)-V is the gradient operator
defined on the interface where n is the unit outer-normal vector of the interface T.
t is the prescribed boundary tractions at the traction boundary S, .

It should be pointed out that functional IT is the total potential energy of nano-
composites, which is the sum of the elastic strain energy of bulk materials, the interface
energy and the potential energy associated to the applied forces. In Eq.(5),
u’/(j =m ori)satisfies the compatibility and constitutive equations a-priori, and

u" =u'atl’ (12)
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u”"=uatS, (13)
where u is the prescribed boundary displacements at the displacement boundary S, .
The Euler-Lagrange equations of Eq.(5) are the equilibrium equation(Eq.(1)), the
traction boundary conditions (¢” -n=t atS, ) and the stress jump across the interface:
n-Ac=V, -[r“r (Vyy -m“')n}—(Vs ‘n)n- (VS -m“)n atl* (14)

where t' and m'are interface stress and bending moment, respectively:
T =0l + 2(/15 -0’ )85 + (/15 +0o’ )tr(ss )Is +o'Va' (15)
m' =2y’ +¢ ()1, (16)
Eq.(14) was first presented in Eremeyev and Lebedev (2016), and was generalized by

Zemlyanova and Mogilevskaya (2018a) to further take the interface residual tension

into consideration. With these two papers, one can find the detailed derivation.

3. Papkovich-Neuber solutions with spherical harmonics
3.1. Papkovich-Neuber solutions

In order to solve the governing equations Egs. (1-3), Navier’s equation
(A + @)WV (Vu' )+ @/ Vol +17 =0 (17)
is derived (Lurie, 2005). The solutions of Navier’s equation can be represented in the
form of harmonic functions (Papkovich, 1932; Neuber, 1934; Lurie, 2005) when the
body force is neglected:
w =[4(1-v)B’ —V(R-B’ + B] )]/ 24/ (18)

where B and B’ :[B{ B! B ]T are scalar and vector harmonic functions. R is
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the position vector.
According to Slobodyansky (1954), by dropping B, the following solution:

w =[4(1-v)B' ~VR-B’]/ 24’ (19)
is complete for an infinite domain external to a closed surface, thus will be applied in
the matrix. However, for a simply-connected domain, Eq.(19) is incomplete when
v/ =0.25. Therefore, another general solution,

u’ =[4(1-v))B’ +R-VB' RV -B’) |/ 24 (20)
is obtained by expressing B; in Eq.(18) as a specific function of B’. This general
solution is complete for any Poisson ratio v/ in a simply connected domain, thus will

be applied in the inclusion.
3.2. Spherical harmonics

The displacement field in the inclusion can be derived by substituting the non-

singular harmonics:

B, =Y R {aSYCS(H,coHZ”:[aiYCi (6.9) +bLYS] (e,@]} @1)
=1

n=0
into Eq.(20):
u'=u) =[4(1-v)B, +R-VB, RV -B}) |/ 21/ (22)
where al , b’ are the unknown coefficients to be determined. YC!(6,p) and

YS! (6, ) are spherical harmonics:
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YC)(6,9) = N ZZ; ! EZ ; 2:1’”’ (cos(0))cos(kp)

2n+1(n-=-10)! .
pr— +l)!P" (cos(8))sin(ke) (23)

!
l_xz 2 dn+l .
Pnl (x) = ( 2nn!) dxn+l x2 - 1)

YS! (6,0) =

The displacement field in the matrix is the summation of u (the non-singular part)

and u; (the singular part, with the singularity located at the centre of the inclusion).

m

u’ can be derived by substituting

B =R {CSYCS (0.9)+ 3 [€L¥CL(0.0) +d.YS.(0, (p)}} (24)
n=0 1=1
into Eq.(20), and u;' can be derived by substituting

B! =Y R {sgycg(e, )+ 2| s,YC,(0.0)+t,YS, (0, (p)]} (25)
=1

n=0

into Eq. (19):
u” =u’ +uy
uy =[4(1-v")B] +R-VB] -RV-B})]/24" (26)
u’ =[4(1-v")B! ~VR-B!']/ 24"

where s/ ,t/, ¢ ,d! are the unknown coefficients.

4. Solution to the problem by a superposition technique

By employing Papkovitch—Neuber solutions, the elastic field resulting from the
general uniform far-field stress loading is obtained explicitly. First, we consider the case
that the remote loading has only one non-zero stress component o . Because
u/(j=morc) satisfies Navier’s equation a priori, the unknown coefficients are

determined by enforcing the far-field boundary condition (Eq.(4)) and interface
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conditions (Eq.(12) and Eq.(14)). After solving the unknown coefficients, the
displacement field w/_ (here we use u/ to denote the displacement field when the
remote loading has only one non-zero component o ) can be obtained:

m M XX 1 2 5_4vm M.XX
u =M1xxr+r—22'—§{2M3xxr+¥M4xx —3r—i (1+

rxx r
3cos[26] - 6cos[24]sin[6]")
U, = 3[M r +MM4M +M—54“} cos[@]cos[gﬁ]2 sin[6];
r

Uy = —3{M3nr +2(1_—22‘))M4xx + Mo, Jcos[¢]sin[¢9]sin[¢]; (27)

4
r r

ul =Cmr—%(12v"er3+2C r)(l+3cos[20]—6cos[2¢]sin[0]2);

rxx 3xx
uy, = 3((7 - 4\/")C2m_r3 + C3xxl’)COS[9]COS[¢]2 sin[&];
t,, ==3((7-4)Cor” + Cy ) cos[ ¢]sin[ 0]sin[ 4]
By using the same procedure, the displacement field u’;y with the remote tensile

stress o, can be written as:

M 2(5-4v" M.
ul =M, r+ Zyy—%{zMMH—( . )M4W—3 ri”}(u

2
r r

3cos[20]+ 6cos[2¢]sin[¢9]2);
2(1-2v")

M
uy, =3 {er + r—zMW + rf{y Jcos [6]sin[0]sin [¢]2 ;

2(1=-2v" M
Uiy =3[M3yyr A2 Jcos[(ﬁ]sin[e]sinw]; (28)

r

u,, =Cr— é(12v’C2Wr3 + 2C3Wr)(1 +3cos[20]+ 6cos[24]sin[0] );

u;yy = 3((7 -4y ) Czyyr3 + C3yyr)cos[@]sin[@]sin[¢]2 ;
u, = 3((7 -4 ) Czyyr3 + C3yyr)cos[¢]sin [Q]Sin [¢]

by

The displacement field u’ with the remote tensile stress ¢’ can be written as:
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” M, 1 2(5-4" M.,
u,, :Mlzzr+r_;+ZL2M3zzr+¥M4zz —3r—iJ(l+3COS[20]),
2(1-2v"
Uy, = _3[M3J +%MW + Aii ]cos[&]sin[@];
u,.. =0; (29)
i 1 i
u_ =C_r+ Z(12V C,..r* +2C,_r)(1+3cos[20]);
uézz = _3((7 - 4vi )C222r3 + C3zzr)cos[9] Sln[e]’
u;ﬂ =0
The displacement field u’jy with the remote shear stress o, can be written as:
Mva 3 2(5 B 4vm ) MSxf : . .
un, =—5—+—| 2M; r + ———=M, —-3—7 sm[H]sm[B]sm[Zgﬁ];
r 2 v 7
2(1-2v" M
Upy, =%{M3x},r +%M4Xy +%Jsin[20]5in[2¢];
2(1-2v") M, ).
ug, =3 M3xyr+r—2M4xy +r_4} sin[@]cos[24]; (30)
u,, =C,r +%(12\/"C2Xyr3 + 2C3xyr)sin[0]sin[l9]sin[2¢];
u'gn =%((7 —4v")C2Xyr3 + C3xyr)sin[20]sin[2¢];
t,, =3((7-4")C,py + €y )sin[ 0] cos [ 29]
The displacement field u; with the remote shear stress o), can be written as:
. My 3 2(5-4v") My | olsinl gl
U, :r_2+5 2M3yz”+r—2M4yz -3 ~ sin[20]sin[¢];
2(1-2v" M
Up,. = 3{M3yzr +¥MW +—= Jcos[2¢9]sin[¢];
r : r
2(1-2v") M, 31
up, =3\ My r+—————M, +—>- cos[@]cos[gb]; (€29)
r r

e 2yzr3 + 2C3yzr)sin [29]sin [¢],

u_ =C,.r +3(12fo
: 2

. =3((7-4)C

2yz

P+ C3yzr)cos[2o9]sin[¢];
Uy, = 3((7 —4y )Czyzr3 + C3yzr)cos[6’]cos[¢]

The displacement field u’ with the remote shear stress ¢’ can be written as:
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2(5-4y"
u" =h+%[2M3J+¥MW —3%}sin[29]005[¢];

rzx 2
7

r
2(1=2v"
up = 3[M3zxr +¥M4zx +M—3“Jcos[20]cos[¢];
r r
2(1=2v"
Uy, = _3(M32x’”+ ( > ! )M4ZX + Mi” ]cos[@]sinw]; (32)
r r

r o+ 2C32xr)sin[2¢9]cos[¢];

lzx 2zx

u_ =C r+§(12viC
2

u22x=3((7—4vf)C r+C r)cos[20]005[¢];

2zx 3zx

uj. =-3((7-4)C

2zx

r o+ C3zxr)cos[0]sin[¢]

where M, (p=1,..,5ands,t=x,y,z) and C

(=123 ands,t=x,y,z) are constants

given in Appendix A.
For the case that the remote loading is zero, the displacement field uf can be written

as:

Wy =R (1-2)o" / (P (-2 +4)A" = R(u' +V' ' +24" = 4v' ™)
+H=14+20)2u" +0)));

uy, =0;

Uz =0;

. . . o A (33)
wy =r(=1+20")o* /(2 —4)A" + R +V' i + 20" =4 ") +2

w+o' =2VQ2u’ +0o));
uéo =0;
u;o =0;

Now we have obtained the basic solutions for a spherical inhomogeneity under
different remote loading cases. However, the analytical solution under general remote
loading ¢° is not simply an additive combination of the above Egs.(27-32), due to the
existence of oI, in Eq.(15). If we simply add Eqs.(27-32) together, the interface
stress will be:

T =601 + 2(,us -0’ )as + (is +o’ )tr(ss )Is +o'Va' (34)
Obviously, the extra 5 terms of o°I, should be eliminated, thus the analytical solution
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under general remote loading ¢° should be written as:
w =ul +ul +ul +ul +ul +ul -5u) j=m,i (35)

It can be easily proved that the displacement solution (Eq.(35)) given by the
superposition satisfies the governing equations by substituting Eq.(35) into Egs.(1-16).
The solution Eq.(35) reveals that the interface effect is size dependent and different
interface properties will influence the stress concentration. If the interface stress effect
is neglected( 1 =0, x'=0, o*=0,and ¢* =0 ), Eq.(35) will reduce to the classical
Eshelby solution. If the surface bending resistance is neglected ( y* =0and ¢* =0 ),
Eq.(35) can be degenerated into the solution considering the Gurtin-Murdoch interface
model y* =0 (Duan et al., 2009; Mi and Kouris, 2014). This is also demonstrated in
the numerical example shown in Fig.2.

Using strain displacement-gradient compatibility and the constitutive relations, the
stress field can be obtained easily.
S. Results and discussion

In this section, we present some numerical examples to illustrate the contribution of
interface elasticity with bending resistance. Due to the lack of experimental data, here
hypothetical parameters are used to demonstrate the difference between the classical

results and those for the Steigmann—Ogden model.
5.1.A nano-void embedded in an infinite matrix
The first case investigated is an infinite matrix containing a spherical void. The

material properties for the matrix are: E” = 71 GPa and v" = 0.35. The interface
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elastic constants are: A°=3.4939 N/m, u'=-5.4251 N/m and o* =0.5689 N/m (Tian,

2006). The radius of the nano-void is R, =1nm.

void

In order to verify the analytical solution presented in this study, we compare the
results given by Eq.(35) with those considering the G-M model (Duan et al., 2009; Mi
and Kouris, 2014). In this example, we set y* =¢° =0 . Fig. 2. gives the comparison
between the solutions given in (Duan et al., 2009; Mi and Kouris, 2014) and that in our
study. The results show that Eq.(35) can be degenerated into the solutions considering
the Gurtin-Murdoch interface model (Duan et al., 2009; Mi and Kouris, 2014) when the

surface bending resistance is neglected. Eq.(35) can be further degenerated into the

classical Eshelby solutions when the interface stress vanishes.

3.5
solutions by Eshelby

3., )_\);:%*()N/HLIU,H:1(,)1\'/111,0"“:().51\1/111 — - —solutions by Duan et al.

________ S _
'*'""-%.\ _____ solutions by Mi et al.
~.
25 | Sk,  solutions in the present study |
\*\\
2 L *’\ B
A*=0N/m,p*=0N/m,o*=0N/m “x_
= N .
w 1.5 ’, - _ - ) ) X B
! A*=10N/m,u*=10N/m,0°*=0N/m
K
S r _
05 | _
0L _
-05 | _
-1 | |
0 0.25 T 0.5 T
0

Fig. 2. The comparison between the analytical solution in (Duan et al., 2009; Mi and
Kouris, 2014) and that in this study.

A series of parametric studies on interface properties are conducted to investigate the
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influence of surface bending resistance on stress distributions. Fig. 3. shows variation
of stress components along the meridian line of the void with different interface bending
stiffness parameters and different remote loading. From Fig. 3., we can see that the
stress distributions are strongly affected by the interface bending stiffness parameters.
Moreover, an interesting phenomenon is observed from Fig.3(a): o_ with different
bending stiffness parameters have the same value along the circle =6, , (the value of

0,

void

can be found in Appendix A) on the surface of the void, when A°, x'and o’ keep
unchanged.

In addition, the influence of bending stiffness parameters on o_ at the point
(0,0,R,,,) i1s further studied, as shown in Fig.4. It is observed that as (y",{") gets
close to the characteristic line:

57 +3¢ +¢,,, =0 (36)

the stress concentration becomes quite severe. The constant ¢, is also given in

void

Appendix A.
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I}
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Q -20 —— Wwithout interface effect
§ —+—the G-M model
%X:=0nN-nm, CS:-4nN-nm
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% 3nN-nm, COnNnm
—x—X:=-5nN-nm, §=5nN-nm
60 H}X =5nN-nm, <=-12nN-nm
[¢
-80 | |
0 0.25 0.5
0
(a)
50
—x—Wwithout interface effect
—+—the G-M model
S S
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Fig. 3. (a) Variation of o_ along the meridian line of the void for different interface
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Fig. 4. The influence of y' and ¢° on o_ at the point (0,0,R ) when

00 O
¢’=[0 0 0 |MPaisapplied. The stress from the Steigmann—Ogden interface model
0 0 100

o> is normalized by that from the Gurtin-Murdoch interface model o™.

Fig. 5. shows o_/o. atpoint (0,0,R,) with different interface bending stiffness
parameters and with different void radiuses. The results reveal that the stress
concentration is size dependent, and such a size-dependency is influenced by the

interface bending stiffness parameters. The smaller the void is, the more significant

interface effects are.
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Fig. 5. Variation of o_/o.. atpoint (0,0,R ) with the void radiuses for different

interface properties.

5.2.A nano-inclusion embedded in an infinite matrix

The second case investigated is an infinite matrix containing a spherical nano-
inclusion under general uniform far-field loading. The material properties for the
inclusion are: E'= 410 GPa and V' = 0.14, while the material properties for the
matrix are: E" = 71GPa and v" = 0.35 . The interface elastic constants are:
A"=3.4939 N/m, u* =-5.4251 N/m and o’ =0.5689 N/m (Tian, 2006). The radius of the

inclusion is R, =1lnm.

nclusion

A series of parametric studies on interface properties are conducted to investigate the

influence of surface bending resistance on stress distributions in vicinity of the
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inclusion. Fig. 6 shows variations of stress components along the positive y —axis with

different interface properties and different far-field loading. As seen from the results,

stress distributions in the inclusion with the Gurtin-Murdoch model differ a lot from the

results with the Steigmann—Ogden model. Moreover, the stress component with

different interface bending stiffness parameters have the same value along the circle
7

R=R,,0= 3 (the value of R, is not presented in this paper because the expression for

R, 1is too length) in the inclusion, which is similar to the case of a nano-void.

st

We also study the influence of interface stiffness parameters on the stress components

at the point (0,0,0) in the inclusion, as shown in Fig.7. It is easily observed that as
(r',¢°) gets close to the characteristic line:

50 430 +c, =0 (37)

inclusion

the value of o, will become extremely large. The constant c,

inclusion IS glVen ln
Appendix A. This reveals that the interface bending stiffness parameters can

significantly change the stress distributions in the inclusion when (y*,{") gets close

to the characteristic line.
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Fig. 7. The influence of y' and ¢° on o at the point (0,0,0) when

00 O
¢’=[0 0 0 |MPaisapplied. The stress from the Steigmann—Ogden interface model
0 0 100

o> is normalized by that from the Gurtin-Murdoch interface model oo™

zz

Fig. 8. shows computed o /o’ at point (0,R,,....0) with different interface
stiffness parameters and with different inclusion radiuses. The results reveal that the
interface effect caused by interface bending stiffness parameters is size dependent. The

smaller the inclusion is, the more significant interface effects are.
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radiuses

6. Conclusions

In this study, an explicit solution considering the interface bending resistance based
on the Steigmann—Ogden interface model is derived for the first time, for a spherical
nano-inhomogeneity (nanoscale void/inclusion) embedded in an infinite matrix under
general uniform far-field-stress (including both tensions and shears). Numerical
examples show that the stress fields considering the interface bending resistance with
the Steigmann—Ogden interface model, differ significantly from those considering only
the interface stretching resistance with the Gurtin—-Murdoch interface model.

Two interesting phenomena are observed in this study. First, we observe that some

stress components are invariant to interface bending stiffness parameters along a certain
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circle in the inclusion/matrix when interface stretch stiffness parameters are fixed.
Secondly, we presented a characteristic line for interface bending stiffness parameters
in this paper. If the interface bending stiffness parameters get close to the characteristic
line, the stress concentration phenomenon will become quite severe, which should be
carefully considered when designing nanocomposites and porous materials.

The explicit analytical solution derived in this paper can be used as a benchmark for
validating numerical methods for modelling composites and porous materials, such as
FEM as well as the method of computational grains (Dong and Atluri, 2012a, b; Wang
et al., 2018c) which is currently being developed by the authors. The derived analytical
solution with the Steigmann—Ogden interface model is provided in the supplemental

MATLAB code for the convenience of users.
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Appendix A
For the case that the remote loading has only one non-zero stress component being
oy (k=x,y,z) , The dimensionless constants M w(p=1..,5andk=x,y,z) and

C,.(¢=1,2,3and k=x,y,z) are defined by:
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(—1 +2v" )O',?k

e -

M, =R (~1+2V")(2+ ) = RA+V) ' + (=1+20") 2" +
o’ )oy — (=1+2V)A+v")u" (66° — Roy, ) / (6(1+v") " (=2 + 4V (A.2)
YA =R +V ' +2u" — 0 ")+ (—1+20)2u’ + 7))

M3kk i (A-3)

My =~(SR Gl (R (1 — " )(T + 5V )t +4(7=10v))u™) =3¢ (8
(=7 +10VHA + R(=49u' +61v' 1’ + 28" —40v' ™) + 2(=7 +10v")(
1048 =6 )+ R(B5—4TV)A' 1 + 4(=T+10V) A 1" —49(=1+v) i/
1+ (B5=53v)\u'c’ +6(=7+10v) 1" c*) = 2R* (=7 + 10V’ (' +
WY+ (A +5u° )0 =) =SR(—49+ 61 ) ' + 47 -10v) ™) y* —
10(=7 + 10V )(42° +104° =) 7)) / (121" (—R*((7 + 5V ) i’ + 4(7 —
10V ") 2(=4 + 5V )i’ + (=T + 59" ") + 6 (8(=T + 10V ) (=4 + 5v™)
A+ R(—49+ 61V )(—4+5v" ) i’ +4R(=T + 10V ) (=8 + Tv™" ) u" +2(-7
+10V (=4 +5v") (104" — 7))+ 4R (=T + 10V )(—4 + 5v" Y2’ (A° + u*
Y+ (A +5u°)0" =)+ 2R (35 + 4TV ) (=4 + 5V A 1’ +4(=7+10v
N=5+4" VA 1" + (—4 + 5V )i (A9(=1+v )i’ +(=35+ 53V )" ) +3(=7
+10V) 1" (14(=1+ V")’ + (=5 +3v")0*)) + 1OR((—49 + 61V ) (=4 + 5"
V' +4(=T+10V)(=8+Tv™" ) u" ) y* +20(=7 + lOvi)(—4 + 5v" )(4/1S +10

(A.4)

H=0)x")

My, = (R0l (R* (1 — 1")(T+ 5V )t +4(7 10 ™) =3¢ (§&(
~T7+10V)A° + R(—49 + 61 )1 + 4R(=7 +10v ) (=3 + 20" ) " + 2(~7
+10V)(104" —6*)) = 2R* (=T + 10V (A* + 1)+ (A' +5u° Yo —
)+ R (A((B5—4TV) ' +4(=T +10v' W" 1™ ) + i (—-49(~1+ V) i’
+350° =53V ) + 2(=T + 10V " (4(=1+V")ii* +56° —=2v" 5 ))—5R
(—49+ 61 ) it +4(=T +10v (=3 + 2v" ) ") 1 —10(=7 +10v' )(42°
+10° =) )/ Qu" (R (7 + 5V ' +4(7 =10V ) " )(2(—4 + 5v"
V' + (=T +5V") ")+ 687 (8(=T7 +10v ) (=4 + 5v")A° + R(—49 + 6 1v')(
—44 50"V + AR(=T + 10V ) (=8 + Tv" ) " + 2(=7 +10v ) (=4 + 5v" )(10
1 =0 )+ AR (=T +10V ) (=4 +5v")2u' (A° + p*) + (A’ +5u° o’ —
)+ 2R (35 + 4TV ) (=4 +5V")A 1 +4(=T +10v' (=5 + 4" )A° "
(=4 +5V") 1 (A9(=1+ V) ' +(=35+53V")c’ ) +3(=7 + 10V ) " (14(
—1+V" )i’ +(=5+3v")5")) +10R((=49 + 61V ) (=4 + 5v" )i’ +4(=T7 +
10V ) (=8 + Tv" ) ™) 1" +20(=T +10v ) (=4 + 5" )4 A" +104" — ") 7))

(A.5)

26 of 37 pages



Cy =—((-1+20)Q21A+v")o* + R(=1+v")op ) / A +v") (-2 +

, S . , (A.6)
ANVAT —R(p' +Vv' i +2u" =4 ")+ (-1+ 202’ + %))

Cp =(5(=1+V")op (6 + R* (=2’ =24° +&°)+10x°)) / (R(R*((7

5V + AT =10V ) ") 2(=4 + Sv™ ) ' + (=T +5v™ ) ™) — 6 (8(=7

+10V' ) (=4 +5v")A° + R(—49 + 61V ) (=4 + 5v" ) i’ + 4R(=7 +10v')(-8

FTVYV " +2(=T +10V)) (=4 +5v") 10" — ) —4R* (=7 + 10V )(—4

+SVQRU (A + 1)+ (A +51°)0" =) = 2R (35 + 47V )(—4+5 (A.7)
VIOA U+ AT 10V ) (=5 + 4" 1" + (=4 + 50" ) i (A9(=1+V ) ut’
+(=35+53V)0" )+ 3(=T+10v) " A4(=1+V" )i’ +(=5+3v")c")) -

10R((—49 + 61 ) (=4 + 5v™") ' +4(=T + 10V ) (=8 + Tv" )" ) y* — 20(

~T+10V' ) (=4 +5V") 4L +101° — ') 1))

Cy =—((SR(=1+v")op (12(=7 +16V)* = R* (7 + 5V ) ' +4(7 —10
VOu™) + R*(6(=7 +8v) A +56(=1+V) ' +4(=7+13v)c") +20(-7
+16v) )/ QR (T + 5Vt +4(T =10V 1" )2(—4 + 5v" )i + (=7
5" ") = 6L (8(=T +10v' ) (=4 + 5v")A" + R(—49 + 6 1v' )(—4 + 5v")
1A AR(=T +10V ) =8+ TV " + 2(=7 +10v ) (=4 + 5v")(104" —*)
Y= 4R (=T +10V ) (4 +5v")u’ (A’ + 1) +(A° +5u )" — %) - 2R’
(B5+ 4TV )4+ 5V 1 +4(=T +10V ) (=5+ ") 1" + (4 + 50"
V' (A9(=1+ V) +(=35+53v)a" )+ 3(=T +10v) ) " (14(=1+ V") " +
(=5+3v")0")) —10R((—49 + 6 1V ) (=4 + 5v" ) i’ +4(=T +10v )(-8 + Tv"
V") yt —20(=7+10V ) (4 +5v")4A° +10u° —c’) x*)))

(A.8)

For the case that the remote loading has only one non-zero stress component being
ol (s,t=x,,z,s #t), The dimensionless constants M, (p=2,.,5ands,t=x,y,z) and
C,.(¢=12,3ands,t=x,y,z) are defined by:

M,, =R (-1+20)c’) /(2 =4V + R(u' +v' i + 24" =4 ™)

. (A.9)
Ry +0" -2v'Qu’ +0))

M, =2, (A.10)
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M, = (SRS (R (i’ — 1" X(T+ 5 )i +4(7~10v) ") =3¢ (§&(
~T+10V)A° + R(—49u' + 61 1’ + 281" —40v' ™)+ 2(=7 +10v)(10
1 =0 )+ R((B5—4TVHA 1 +4(=T +10v)A° " —49(=1+ v )i’ 1t*
+(35-53v) o’ +6(=T+10v)u"c*) = 2R* (=7 + 10V (A° + 1)
+HA* +515)0" =) =5R(—49+ 61V )i +4(T—-10v)) ") y° —10(—
T+10V)4A +104° =) x*)) / 2" (=R (7 + 5V ' + 4(7 —10v")
W4 +5V") ' + (=T +5V") ")+ 65 (8(=7 +10v ) (=4 +5v")A° +
R(—49+ 61V (=4 +5v" )i’ + 4R(=T +10v' )(=8+ Tv" ) " + 2(=7 +10v'
Y4+ 510" =) +4R* (=T +10V ) (=4 + 5v™)2u' (A° + 1’ ) +(
A +515)0" =)+ 2R (35 + 4TV ) (4 +5v")A 1’ +4(=7 +10v")
(S5+4"VA " + (=4 +5") 1 (A9(=1+V ) ' +(=35+53v")c’ ) +3(
~T+10V) " (14(=1+ V")’ +(=5+3v")c")) + 10R((—49 + 6 1v' )(—4
5V '+ A(=T+10V) (=8 + TV ) ") x° +20(=7 +10v' (=4 + 5v" )(4
A +10u" —07) 1))

(A.11)

My, =~(R0’ (R* (' — " X(T+5v)ad' +4(7 ~10v) ") =3¢ (8(-
7+10V)A° + R(—49 + 61 ) it + 4R(=T +10v ) (=3 + 20" )" +2(~7
+10V)(104" —6*)) = 2R* (=T + 10V (A° + 1*) + (A' +5u° Yo —
o)+ R (A ((B5—4TV) ' +4(=T +10v' W" 1™ ) + i (—49(~1+ V") i’
+350° =53V )+ 2(=T + 10V " (4(=1+V" ) ' +56° —2v"5°)) -5
R((~49+ 610 )i’ +4(=T +10v ) (=3+ 20" ") x* —10(=7 +10v/ )44’
+104° =) )/ Qu" (R (7 + 5V ' +4(7T =10V ) " )(2(—4 + 5v"
V' 4+ (=T +5V") ")+ 687 (8(=T7 +10v ) (=4 + 5v")A° + R(—49 + 6 1v')(
—44 50"V + AR(=T + 10V ) (=8 + Tv" )" + 2(=7 +10v ) (=4 + 5v" )(10
1 =0 )+ AR (=T +10V ) (=4 +5v")2u' (A* + p1*) + (A’ +5u° )0’ —
)+ 2R (35 + 4TV )4+ 5V 1 +4(=T +10v' (=5 + 4" )A° "
H(=4+5V") 1 (A9(-1+ V) ' +(=35+53V")c’ ) +3(=7 + 10V ) " (14(
—1+v")u’ +(=5+3v")5")) +10R((=49 + 61V ) (=4 + 5v" )i’ +4(=T7 +
10V ) (=8 + Tv" ) i) 1" +20(=T +10v ) (=4 + 51" )(4A" +104" — ") 7))

(A.12)

C. :(o” —2v"o”)/((—2+4v")}f —R(u' +V ' +2u" -4 1" )+ (-1

202’ +0°))

(A.13)
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C,, =(5(=1+v")o2 (64" + R*(=A° =24° +5°)+101°)) / (R(R* (7 +
SV AT =10V ™Y 2(=4 + 5v™" ) ' + (=T +5v™) ™) — 6L (8(=T +
10V))(=4+5v")A" + R(—49 + 61V ) (=4 + 5v" ) it + 4R(=7 +10v')(-8 +
TV " +2(=T +10V ) (=4 +5v")(104" — o)) —4R* (=7 +10v )(—4 +
SV (A + 1)+ (A +5u° )0’ —0'7) = 2R (=35 +4TV))(—4 + 50"
YA '+ 4(=T+10V) (=5 + ") 1" + (4 + 5" ) i (49(~1+Vv)) '’ +
(=35+53V)0" )+ 3(=7 + 1OV ) u" (14(=1+ V") ' +(=5+3v")5")) -
10R((—49 + 61V ) (=4 + 5v" ) ' +4(=7 + 10V ) (=8 + Tv" )" ) y* =20
(=7 +10V) (4 +5V")4A" +10u° —c*) 1))

C,, =—((SR(=1+v")o’ (12(=7+16V ) = R* (7 +5V) ' +4(7-10
VU™ )+ R (6(=7 +8V)A* +56(=1+v )’ +4(=7+13v)o") +20(-7
+16v) )/ R (7 + 5V ' +4(T =10V ) " ) 2(—4 + 5v™" )i’ + (=7
50"V ") = 67 (8(=T + 10V ) (=4 + 5v™) A" + R(—49 + 61V )(—4 + 5v™)
1+ AR(=T +10V) (=8 + TV )" +2(=7 +10v) ) (4 + 5" )10 — &
) —4R* (=7 +10V ) (=4 + 5v")Qu' (A° + 1)+ (A* +5u )0’ — %) =2
R((Z35+47v)(=4+5v")A 1 +4(=T +10V) ) (=5 + 4" A" 1" + (—4
5"V i (A9(=1+ V) ' +(=35+53v))0" ) +3(=T +10v) ) " (14(=1 +
VIO (=5+3V")0")) = LOR((—49 + 6 1v' )(—4 + 5v" ) i’ +4(=7 +10v'
Y-8+ TV ")y’ —20(=7 +10v' (=4 +5v")4A° +104° —5°) 1*)))

(A.14)

(A.15)

For void problem, we can get M, by setting v, = 4, = 0in Egs. (A.1- A.5 and A.9-

A.12).

Other constants in this paper is given here:

Coog = (RZQR* (T +5V™") " + Ru" (A4(=5+ 4" )As + 42(=1+V" ) us
+3(=5+3V")* )+ 2(—4+ 5" 2t (As + 1’ ) + (As + 57 Yo — %))
/(B(—4+5v")As +4R(-8+ Tv™")u" + 2(-4 + 5v™)(10u" — o))

Contusion = (RZ(=R*((T+ 5V ' + 4(T =10V ) " )(2(—4 + 5v" )i + (=7
5V ")+ AT 10V (=4 + 5v")2u’ (A + 1’ +(A° +5u° Yo’ — o
)+ 2R((=35+ 4TV (=4 +5V")A° 1 +4(=T +10V' )(=5 + 4" )A° " +(
4+ 5" ' (A9(=1+ V)’ +(=35+ 53V )0°) +3(=7 +10v" ) " (14(-1
"V +(=5+3V")"))) [ (2(8(=T + 10V )(—4 +5v")A° + R(—49 + 61
VY4 +5V") ' +AR(=T +10V) (=8 + Tv™" )" +2(=7 +10v' ) (=4 + 5v"
)10 —07)))
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~11660°% +2597v" 5% —1421v"° 6" + 21° (—6R(18 +v" (=301 +233v")
" +2(68+ (2209 =2827v" W)t +3(212+v" (=659 +497v")) o) —
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Viu" =340 +92v" 1t +290° =28Vt )(2(-2+TV™")AT + 2R(—8+7
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N/ QR2+TVIAT+2R(-8+Tv™)u" =341 +56v" 1i* +130° —14v"
M/ (N(Q2=Tv"A + REB=TV") " +171° —130° | 2+ Tv" (4" +
N/ (—((-3247 +22v" A7 = 26Ru" +16RV" " — 68" +58v" 1i* +20° —
"o +N(5(6(2+3V")A* —20R ™ + 22Rv" " — 34" +92v" 1t +295°
=28V ) 2(-2+TVv")AT +2R(=8+ TV )u" =344 +56v" i’ +130° —
14" )+ ((—32+22v")A° + 2R(—13+ 8" )" — 68" +58v™" 1i° +25°
~TV"* V) (2(=2+TV")A* +2R(=8+Tv™" )" =344’ +56V" 1i* +130°
—14v"c”)))]
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Appendix B

In Appendix B, a brief introduction to the derivation process is given.

Firstly, we give a brief introduction to the Papkovich-Neuber potentials used in this
paper. Substitute Eq.(24) into Eq.(20), and we can obtain the positive n—th (n>0)
order Papkovich-Neuber solutions. For example, the 0™ order Papkovich-Neuber

solutions can be written as:

@, 0 1-v 0 (B.1)

e
And the 1* order Papkovich-Neuber solutions can be written as:

\/T r(—5+4vj)cos[9] 0 r(—5+4vj)sin[¢9]sin[(/)]
N2z

a = S0 0 r(—5+4vj)cos[9] r(5—4vj)cos[go]sin[6?]
r(5—4vj)cos[(/)]sin[0] r(5—4vj)sin[6?]sin[(/)] 0

—22r cos[p]sin[0] 2rcos[p]sin[6)] 0

—2\/5rsin[6?]sin[(o] 8r(—1+v-’)sin[9]sin[¢)] r<—5+4vj)cos[9]
—8\/§r(—1+vj)cos[0] 2rc0s[6’] r(—5+4vj)sin[49]sin[¢)]
8r(—1+vj)cos[(o]sin[49] r(—5+4vj)sin[0]sin[go] r(—5+4vj)cos[6?]

2rsin[@]sin[¢] r(—S + 4vj)cos[(p]sin[0] 0
2rcos[6)] 0 r(—S +4v/ )cos[(p]sin[ﬁ]
(B.2)

It should be pointed out that n-th order Papkovich-Neuber solutions is written as a
3x(6n+3) matrix, while the 3 rows represent the 3 displacement solutions, and the
6n+3 columns represent independent modes produced by different harmonics.
Substitute Eq.(25) into Eq.(19), and we can obtain the negative n—th order
Papkovich-Neuber solutions. For example, the -1st order Papkovich-Neuber potentials

can be written as:
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4- 4y — cos[t9]2 cos [(p]2 - sin[go]2

1 1. 2 .
o, =m Esm[@] sm[2(p]
cos[@]cos[¢]sin[6]
L oop s . (B.3)
Esm[@] s1n[2¢)] cos[ﬁ]cos[go]sm[@]

4 a4yl — cos[(p]z - cos[H]2 sin[(p]2 cos[#]sin[H]sin[¢]

005[9] sin[@]sin[(p] %(7 —8v/ + cos[29])
The displacement field in the matrix/inclusion can then be expressed as a linear

combination of the obtained Papkovich-Neuber solutions:

)n_ DY
u —[afp o, a,, aq}x

i

“:[ao o -0 az]y

(B.4)

where x and y are the to be determined coefficient vector. For the current problem,
only @ ,,a,,a,,a are needed for the matrix, and a,, a, are needed for the
inhomogeneity. Using the strain displacement-gradient compatibility and the

constitutive relations, the stress fields can be obtained easily. The stress field correspond

to a,,0,,0, is zero at infinity, and the stress field correspond to , is a constant

matrix:
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000 ﬁ(—1+2vf) 1-2v/
0 0 0 ﬁ(—1+2v-f) 2(—2+v-f)
6 =L |20 0 0 22(2+v) 1-2v
- 2V2r 00 0 0 0
0 0 0 0 0
0 0 0 0 0
0 2(-2+v/) 0 0 (B.5)
0 1-2v/ 0
0 1-2v/ 0
0 0 —§+2v’ 0
23 oy 0 0 0
2
0 0 0 —§+2v/

From Eq.(B.5), we can clearly see that the 1% order P-N solutions correspond to the 6
independent constant-stress modes, in addition to 3 rigid-body modes. Thus, we can
easily determine the coefficients for @, by satisfying the far-field boundary condition
given in Eq.(4).

The other coefficients in Eq.(B.4) can be determined by enforcing the interface
condition described by Eq.(12) and Eq.(14). This procedure can be easily completed
employing the symbolic computation tool Mathematica, and it only takes a few minutes.
After the coefficients are determined, we substitute them back into Eq.(B.4) to obtain

the expression in Eqgs.(27-32).
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