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On the convergence of nonlinear optimal control
using pseudospectral methods for feedback

linearizable systemsz
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1Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943, U.S.A.
2Department of Mechanical and Astronautical Engineering, Naval Postgraduate School,
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SUMMARY

We consider the optimal control of feedback linearizable dynamic systems subject to mixed state and
control constraints. In contrast to the existing results, the optimal controller addressed in this paper is
allowed to be discontinuous. This generalization requires a substantial modification to the existing
convergence analysis in terms of both the framework as well as the notion of convergence around points of
discontinuity. Although the nonlinear system is assumed to be feedback linearizable, the optimal control
does not necessarily linearize the dynamics. Such problems frequently arise in astronautical applications
where stringent performance requirements demand optimality over feedback linearizing controls. We
prove that a sequence of solutions obtained using the Legendre pseudospectral method converges to
the optimal solution of the continuous-time problem under mild conditions. Published in 2007 by John
Wiley & Sons, Ltd.
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1. INTRODUCTION

As a result of significant progress in large-scale computational algorithms and nonlinear
programming, the so-called direct computational methods have become the industry standard for
solving nonlinear optimal control problems [1, 2], particularly in aerospace applications [3, 4].
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In simple terms, in a direct method, the continuous-time problem of optimal control is
discretized, and the resulting discretized optimization problem is solved by nonlinear
programming algorithms. In mathematical terms, this approach can be categorized as
numerical functional analysis which implies that a number of issues pertaining to convergence
of the approximation and the convergence of the algorithm need to be addressed [5]. This paper
addresses the former issue, and in particular, the convergence of the approximations under
pseudospectral (PS) discretization.

In the 1990s, PS methods were introduced for solving general nonlinear optimal control
problems with constraints [6–9]; and since then, have gained considerable attention [3, 4, 10–15].
Over the last decade, the PS methods have been used to solve a broad class of industrial-strength
optimal control problems, for instance, low-thrust orbit transfers [10], impulsive orbit transfers
[14], ascent guidance [12, 13], etc. As a result of its successful applications at NASA, the latest
version of the OTIS software package [16] has the Legendre PS method as a problem solving
option. Further details on NASA’s plans are described at: http://trajectory.grc.nasa.gov/
projects/lowthrust.shtml. In addition, the commercially available software package, DIDO [17],
uses PS methods exclusively for solving optimal control problems.

The popularity of PS methods motivates us to study a number of fundamental problems such
as feasibility, convergence, and the rate of convergence. It has been proved [18] that PS methods
offer a convergence rate that is faster than any polynomial rate for the approximation of
analytic functions. This property can also be numerically demonstrated with regards to PS
methods for control [9, 19]. Furthermore, PS methods provide Eulerian-like simplicity; thus, for
a given error bound, a PS method generates a significantly smaller-scale optimization problem
when compared to the traditional discretization methods, such as Euler and Runge–Kutta. This
property is particularly attractive for control applications as it places real-time computation
within easy reach of modern computational power [20–22]. It has also been demonstrated that
PS methods also offer a ready approach to exploiting differential-geometric properties of a
control system such as convexity and differential flatness [19, 20]. Despite its versatility and
simplicity, a PS approach masks a wide range of deeply theoretical issues that lie at the
intersection of approximation theory and control theory. For example, does the discretized
problem always have a feasible solution? Does the discretized optimal solution converge to the
continuous-time optimal solution? The answers to these fundamental questions are yet to be
found because this is a relatively young area of research and many problems are still widely
open. Nonetheless, some notable results have been proved. For instance, in [23, 24] a detailed
relationship between the necessary conditions of the continuous-time optimal control problem
and the Karush–Kuhn–Tucker (KKT) condition of the discrete optimization problem is
revealed. In [25], the feasibility of the PS discretization is proved with relaxed inequality
constraints for fixed relaxation margins. In [26], the feasibility and convergence results are
proved for feedback linearizable nonlinear systems. In this paper, the relaxation margin of the
constraints approaches zero and the convergence theorem is proved in a way similar to the
theory of consistent approximations [27].

In [26], the feasibility of the PS discretization and a set of sufficient conditions for the
convergence of the approximated optimal control are proved based on a key assumption that
the optimal controller is at least continuous. Unfortunately, for many optimal control problems
this assumption is not valid, especially when the control input is constrained. In this situation,
the optimal controller is likely to be discontinuous, such as a bang-bang control. In this paper
we extend the results in [26] to a more general case that includes discontinuous optimal controls.
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Due to the lack of smoothness in the optimal control, the proof is much more involved than the
one given in [26]. It is well known that an analysis of discontinuous controllers is a very
challenging problem [28]. As far as the discretization is concerned, the existence of discontinuity
in controllers raises fundamental problems in approximation theory. In this paper, we prove
feasibility and the convergence results for the Legendre PS method when the controls are
discontinuous and the dynamics is in a feedback linearizable form. We assume the dynamic
system can be written in a normal form. It permits a modification of the standard PS method
[7, 24] in a manner that is similar to dynamic inversion. That is, we seek polynomial
approximations of the state trajectories while the controls are determined by an exact
satisfaction of dynamics. This modification of a PS method permits us to prove sufficient
conditions for the feasibility and convergence of the PS discretizations of discontinuous
controllers. Furthermore, our method allows one to easily incorporate state and control
constraints including mixed state and control constraints. Note that we do not linearize the
dynamics by feedback control; rather, we find the optimal control for a generic cost function
and this optimal control is not necessarily smooth. Such problems are particularly common in
astronautical applications where stringent performance requirements demand that the control
be optimal rather than feasible as implied by the linearizing control. We show that, under mild
conditions, the PS discretized optimization problem always has a feasible solution even for
discontinuous control input. Furthermore, sufficient conditions are derived for the numerical
solution to converge to the solution of the original continuous-time constrained optimal control
problem.

The paper is organized as follows: in Section 2, we briefly present the PS discretization
method for constrained nonlinear optimal control problems. Sections 3 and 4 contain the results
regarding feasibility and convergence of the discretized problem. In Section 5, the results are
generalized to optimal control problems with a free final time. As an example, we apply the PS
methods to a minimum time orbit transfer problem in Section 6.

2. THE PROBLEM AND ITS DISCRETIZATION

We consider the following mixed, state and control constrained nonlinear Bolza problem
(Problem B) with feedback linearizable dynamics.

Problem B
Minimize

J½xð�Þ; uð�Þ� ¼
Z 1

�1
FðxðtÞ; uðtÞÞ dtþ Eðxð�1Þ;xð1ÞÞ ð1Þ

subject to the dynamics

’x1ðtÞ ¼ x2ðtÞ

..

.

’xr�1ðtÞ ¼ xrðtÞ

’xrðtÞ ¼ f ðxðtÞÞ þ gðxðtÞÞuðtÞ

ð2Þ
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mixed path constraints

hðxðtÞ; uðtÞÞ40 ð3Þ

and endpoint conditions

eðxð�1Þ;xð1ÞÞ ¼ 0 ð4Þ

where x 2 Rr; u 2 R; and F : Rr � R! R; E : Rr � Rr ! R; f : Rr ! R; g : Rr ! R; e :
Rr � Rr ! RNe and h : Rr � Rr ! Rl are Lipschitz continuous (over the domain) with respect
to their arguments. We assume xðtÞ is absolutely continuous and uðtÞ is L1: For inversion
reasons, we assume gðxÞ=0 for all x: We also assume that an optimal solution, ðxnðtÞ; unðtÞÞ; of
Problem B exists. At several places in this paper, we use the norm jjsðtÞjj1 for a vector-valued
function sðtÞ: If sðtÞ 2 Rr; then jjsðtÞjj1 is defined to be the maximum of jjsiðtÞjj1 for i ¼ 1; 2; . . . ; r:

Remark 2.1
Pseudospectral methods are not limited to dynamical systems in normal form; in fact, they are
applicable to far more general nonlinear systems; see, for example, [24, 25, 29] and the references
therein. What the normal form facilitates is the theoretical proof of the feasibility and
convergence and the computational efficiency as illustrated in [20].

Remark 2.2
In Problem B, we assume the time interval to be fixed at ½�1; 1� in order to facilitate a simpler
bookkeeping in using the Legendre PS method whose computational domain is ½�1; 1�: If the
physical time domain of the problem is not ½�1; 1�; it can always be projected to the
computational domain ½�1; 1� by a simple linear transformation [30].

Next, we apply the PS method to discretize the continuous-time optimal control Problem
B. We focus on the Legendre PS method for the purpose of brevity; the extension to other PS
methods is straight forward. The basic idea of Legendre PS method is to approximate
ðx1ðtÞ; . . . ;xrðtÞÞ by Nth order polynomials ðxN1 ðtÞ; . . . ;x

N
r ðtÞÞ based on Lagrange interpolation of

their values at the Legendre–Gauss–Lobatto (LGL) node points. Let t0 ¼ �15t15 � � �5tN ¼ 1
be the LGL nodes defined as,

t0 ¼ �1; tN ¼ 1; and

for k ¼ 1; 2; . . . ;N � 1; tk are the roots of ’LNðtÞ

where ’LNðtÞ is the derivative of the Nth order Legendre polynomial LNðtÞ: The distribution of
the LGL nodes is illustrated in Figure 1. Note that the node distribution is not uniform. The
high density of nodes near the end points is one of the key properties of PS discretizations in
that it effectively prevents the Runge phenomenon. Computational advantages of such non-
uniformly distributed quadrature nodes can be found in [18, 30, 31].

Let the pair, ð %xNk and %uNk Þ; be an approximation of a feasible solution ðxðtÞ; uðtÞÞ evaluated at
the node tk: Then, xNðtÞ is used to approximate xðtÞ by

xðtÞ � xNðtÞ ¼
XN
k¼0

%xNk fkðtÞ ð5Þ

W. KANG ET AL.1254
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where fkðtÞ is the Lagrange interpolating polynomial given by

fkðtÞ ¼
1

NðN þ 1ÞLNðtkÞ
ðt2 � 1Þ ’LNðtÞ

t� tk
ð6Þ

From its definition (see [18]), fkðtjÞ ¼ 1; if k ¼ j and fkðtjÞ ¼ 0; if k=j: The precise nature of the
approximation indicated in (5) is the main focus of this paper. From (2), the control that
generates the approximate state is defined by

uNðtÞ ¼
’xNr ðtÞ � f ðxNðtÞÞ

gðxNðtÞÞ
ð7Þ

Note that uNðtÞ is not necessarily a polynomial and hence differs from a standard PS
approximation. It is a known result [18] that the derivative of xNi ðtÞ at the LGL node tk satisfies

’xNi ðtkÞ ¼
XN
j¼0

Dkjx
N
i ðtjÞ; i ¼ 1; 2; . . . ; r

where the ðN þ 1Þ � ðN þ 1Þ differentiation matrix D is defined by

Dik ¼

LNðtiÞ
LNðtkÞ

1

ti � tk
if i=k

�
NðN þ 1Þ

4
if i ¼ k ¼ 0

NðN þ 1Þ
4

if i ¼ k ¼ N

0 otherwise

8>>>>>>>>>><
>>>>>>>>>>:

Throughout the paper, we use the ‘bar’ notation to denote corresponding variables in the
discrete space, and the superscript N to denote the number of nodes used in discretization. Thus,
let

%xN0 ¼

%xN10

..

.

%xNr0

0
BBB@

1
CCCA; . . . ; %xNN ¼

%xN1N

..

.

%xNrN

0
BBB@

1
CCCA

Note that the subscript in %xNk 2 Rr denotes an evaluation of the approximate state, xNðtÞ 2 Rr; at
the node tk whereas xkðtÞ denotes the kth component of the exact state.

0 0.2 0.4 0.6 0.8 1

LGL points; N=16

Figure 1. Distribution of LGL nodes.
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With these preliminaries, it is apparent that the approximate solutions must satisfy the
following nonlinear algebraic equations:

D

%xNi0

..

.

%xNiN

0
BBB@

1
CCCA ¼

%xNiþ1;0

..

.

%xNiþ1;N

0
BBB@

1
CCCA; i ¼ 1; 2; . . . ; r� 1

D

%xNr0

..

.

%xNrN

0
BBB@

1
CCCA ¼

f ð %xN0 Þ þ gð %xN0 Þ%u
N
0

..

.

f ð %xNNÞ þ gð %xNNÞ%u
N
N

0
BBB@

1
CCCA

ð8Þ

for feasibility with respect to the dynamics. In a standard PS method, it is quite common
[7, 19, 20, 23] to discretize the mixed state and control constraints as

hð %xNk ; %u
N
k Þ40; k ¼ 0; 1; . . . ;N ð9Þ

Here, we propose the following relaxation:

hð %xNk ; %u
N
k Þ4ðN � rÞ�1=4 � 1; k ¼ 0; 1; . . . ;N ð10Þ

where 1 denotes ½1; . . . ; 1�T:When N tends to infinity, the difference between conditions (9) and
(10) vanishes. Similarly, we relax the endpoint condition eðxð�1Þ;xð1ÞÞ ¼ 0; to an inequality, i.e.

jjeð %xN0 ; %x
N
NÞjj14ðN � rÞ�1=4 ð11Þ

The relaxation is necessary because it is impossible to numerically implement an equality
constraint. In addition, examples can be found in which a discretization without relaxation is
infeasible.

Finally, the cost functional J½xð�Þ; uð�Þ� is approximated by the Gauss–Lobatto integration
rule,

J½xð�Þ; uð�Þ� � %JNð %X ; %UÞ ¼
XN
k¼0

Fð %xNk ; %u
N
k Þwk þ Eð %xN0 ; %x

N
NÞ

where wk are the LGL weights defined by

wk ¼
2

NðN þ 1Þ
1

½LNðtkÞ�2

and %X ¼ ½ %xN0 ; . . . ; %x
N
N �; %U ¼ ½%uN0 ; . . . ; %u

N
N �: Hence, the optimal control Problem B can be

approximated by a nonlinear programming problem with %JN as the objective function and
(8), (10) and (11) as constraints; this is summarized below.

Problem BN

Find %xNk 2 Rr and %uNk 2 R; k ¼ 0; 1; . . . ;N; that minimize

%JNð %X ; %UÞ ¼
XN
k¼0

Fð %xNk ; %u
N
k Þwk þ Eð %xN0 ; %x

N
NÞ ð12Þ

W. KANG ET AL.1256
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subject to

D

%xNi0

..

.

%xNiN

0
BBB@

1
CCCA ¼

%xNiþ1;0

..

.

%xNiþ1;N

0
BBB@

1
CCCA; i ¼ 1; 2; . . . ; r� 1

D

%xNr0

..

.

%xNrN

0
BBB@

1
CCCA ¼

f ð %xN0 Þ þ gð %xN0 Þ%u
N
0

..

.

f ð %xNNÞ þ gð %xNNÞ%u
N
N

0
BBB@

1
CCCA

ð13Þ

hð %xNk ; %u
N
k Þ4ðN � rÞ�1=4 � 1 ð14Þ

jjeð %xN0 ; %x
N
NÞjj14ðN � rÞ�1=4 ð15Þ

for all 04k4N:
The resulting nonlinear programming problem, i.e. Problem BN can then be solved by an

appropriate globally convergent algorithm [32], such as a sequential-quadratic programming
method. This approach has been successfully used in solving an impressive array of problems
(see, for example, [7, 14, 20, 23]).

If the constraints in Problem BN result in a closed and bounded region for %xNk and %uNk ;
k ¼ 0; 1; . . . ;N; then Problem BN has optimal solutions provided that feasible trajectories exist.
Even when the region is unbounded, an artificial constraint can be added to Problem BN so that
the resulting region is bounded and large enough to contain the discretization of the true
optimal solution. If the discrete optimal solutions converge to the continuous-time optimal
solution, then the artificial bound finally becomes inactive for N that is large enough.

3. EXISTENCE OF FEASIBLE SOLUTIONS

For Problem BN ; a fundamental question that needs to be answered is the following: does a
feasible solution satisfying the discretized constraints exist around a feasible solution of the
continuous-time problem? In [26], the feasibility of Problem BN is guaranteed under a critical
assumption: the controller uðtÞ is continuous. However, in many problems the optimal
controller is discontinuous as in the case of a bang-bang controller. In this section, we extend the
result in [26], and prove that Problem BN is always feasible even when the optimal control of
Problem B is discontinuous.

Definition 1
A function cðtÞ : ½�1; 1� ! Rk is called piecewise C1 if there exist finitely many points t0 ¼
�15t15 � � �5tsþ1 ¼ 1 such that, on every subinterval ðti; tiþ1Þ; i ¼ 0; . . . ; s; cðtÞ is con-
tinuously differentiable and both cðtÞ and its derivative, ’cðtÞ; are bounded.

Assumption 1
The optimal state, xn

r ðtÞ; is assumed to be continuous and piecewise C1: The optimal control,
unðtÞ; is assumed to be piecewise C1:
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Note that, according to Definition 1 and Assumption 1, unðtÞ could have finitely many
discontinuous points. In the following, a function v0ðtÞ is called the distributional derivative of a
L1 function vðtÞ if Z 1

�1
vðtÞ

dfðtÞ
dt

dt ¼ �
Z 1

�1
v0ðtÞfðtÞ dt

for all smooth functions fðtÞ with compact support in ½�1; 1� (see for instance [18]).

Assumption 2
The set fðx; uÞjhðx; uÞ40g is convex.

In the following, the results are proved for a subset of ½�1; 1�: The subset is defined as follows.
Let ðxðtÞ; uðtÞÞ be any feasible solution of Problem B, i.e. ðxðtÞ; uðtÞÞ satisfying differential
equation (2), constraint (3) and endpoint condition (4). Suppose Assumption 1 holds for
ðxðtÞ; uðtÞÞ: Let �15t15 � � �5ts51 represent the discontinuity points of uðtÞ; and define

Id ¼ ½�1; 1� s

j¼1
ðtj � d; tj þ dÞ

�
ð16Þ

where d ¼ ðN � rÞ�1=2: In other words, Id represents the closed set in ½�1; 1� by removing a d
neighbourhood around the discontinuous points of uðtÞ:

Assumption 2 and Lemma 1, to be proved in the next theorem, represent some major
differences between the PS method for discontinuous control and the case of continuous control
in [26]. For instance, the concept of convergence is different. It is impossible to prove the
uniform convergence of the discrete solutions like in [26]. In this paper, the convergence is
proved in Id; a subset of ½�1; 1�; in which an open neighbourhood around the discontinuities
must be removed. Furthermore, we carefully select the rate at which the size of this open
neighbourhood shrinks. Another difference from [26] is Assumption 2. It requires that the state-
control constraint must be convex. This convexity property is not required for the continuous
optimal control in [26]. Lemma 1 is fundamental in the proofs of the theorems. For optimal
control with discontinuities, the discrete approximate solutions cannot be compared directly to
the solutions of the original problem. The error must be estimated by comparing the discrete
solution to the dummy solution developed in Lemma 1. Then the dummy solution is compared
to the solution of the original problem. As a result, the proof of the existence of feasible
solutions is much more involved than that in [26].

Theorem 1
Given any feasible solution ðxðtÞ; uðtÞÞ of (2)–(4) in Problem B, suppose Assumptions 1 and 2
hold. Then there exists a positive integer N1 such that, for any N > N1; the constraints (13)–(15)
of Problem BN have a feasible solution ð %xNk ; %u

N
k Þ: Furthermore, the feasible solution satisfies

jjxðtkÞ � %xNk jj14ðN � rÞ�1=4; 04k4N ð17Þ

juðtkÞ � %uNk j4ðN � rÞ�1=4 8tk 2 Id ð18Þ

where Id is defined in (16).

W. KANG ET AL.1258
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Remark 3.1
The importance of Theorem 1 is self-evident. It guarantees that Problem BN is well-posed with a
non-empty set of feasible trajectories. If Problem B has infinitely many feasible trajectories
satisfying Assumptions 1–2, then Problem BN has infinitely many feasible trajectories provided
a sufficient number of nodes are chosen. Furthermore, (17) and (18) imply the existence of a
feasible discrete solution around any neighbourhood of the continuous trajectory.

Due to the discontinuity in the optimal control, the proof of this theorem calls for highly
involved algebraic derivations and inequality estimations. We prove some of the key inequalities
in the following lemma.

Lemma 1
Consider any feasible solution, ðxðtÞ; uðtÞÞ; of Problem B satisfying Assumptions 1–2. For any
N > 0; there exist continuous and piecewise C1 functions ðz1ðtÞ; . . . ; zrðtÞ; vðtÞÞ; such that
ðz1ðtÞ; . . . ; zrðtÞ; vðtÞÞ satisfy the differential equation (2) and the following conditions:

hðzðtÞ; vðtÞÞ4C1ðN � rÞ�1=2 � 1 ð19Þ

jjeðzð�1Þ; zð1ÞÞjj14C2ðN � rÞ�1=2 ð20Þ

jjzðtÞ � xðtÞjj14C3ðN � rÞ�1=2 ð21Þ

juðtÞ � vðtÞj4C4ðN � rÞ�1=2 8t 2 Id; d ¼ ðN � rÞ�1=2 ð22Þ

X2
i¼1

jjzðiÞr ðtÞjj14C5 þ C6ðN � rÞ1=2 ð23Þ

where Ci; 14i46; are positive constants independent of N and zðiÞr denotes the ith order
distribution derivative of zrðtÞ:

Proof
Define a continuous function #uðtÞ as follows:

#uðtÞ ¼

ð1� aÞuðti � dÞ þ auðti þ dÞ

if t 2 ½ti � d; ti þ d�; 14i4s

uðtÞ otherwise

8>><
>>: ð24Þ

where a ¼ ð1=2dÞðt� ti þ dÞ and d ¼ ðN � rÞ�1=2: So, #uðtÞ agrees with uðtÞ if t is not close to any
point of discontinuity. If t is in a d neighbourhood of discontinuity, #uðtÞ interpolates the points
ðti � d; uðti � dÞÞ and ðti þ d; uðti þ dÞÞ by a straight line. Let

qðtÞ ¼ f ðxðtÞÞ þ gðxðtÞÞ#uðtÞ; t 2 ½�1; 1� ð25Þ
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Then both #uðtÞ and qðtÞ are bounded, continuous, and piecewise C1: Next, define

zrðtÞ ¼
Z t

�1
qðtÞ dtþ xrð�1Þ

zr�1ðtÞ ¼
Z t

�1
zrðtÞ dtþ xr�1ð�1Þ

..

.

z1ðtÞ ¼
Z t

�1
z2ðtÞ dtþ x1ð�1Þ

ð26Þ

and

vðtÞ ¼
qðtÞ � f ðzðtÞÞ

gðzðtÞÞ
ð27Þ

Substituting the pair ðzðtÞ; vðtÞÞ into (2), Equations (25)–(27) imply that ðzðtÞ; vðtÞÞ satisfy the
differential equation (2). Next, we will show that they also satisfy conditions (19)–(22).

Denote M1 the upper bound of juðtÞj for t 2 ½�1; 1�: From the definition of #uðtÞ; we have

jjuðtÞ � #uðtÞjjL1 ¼
Xs
i¼1

Z tiþd

ti�d
jð1� aÞðuðti � dÞ � uðtÞÞ þ aðuðti þ dÞ � uðtÞÞj dt

44sM1ðN � rÞ�1=2

Therefore,

jj ’xrðtÞ � qðtÞjjL1 ¼ jjgðxðtÞÞðuðtÞ � #uðtÞÞjjL1

4 4sM1M2ðN � rÞ�1=2 ð28Þ

where M2 is an upper bound of jgðxðtÞÞj for t 2 ½�1; 1�: From (28), it is not difficult to show the
following inequality:

jxiðtÞ � ziðtÞj42r�iþ2sM1M2ðN � rÞ�1=2 8t 2 ½�1; 1� ð29Þ

where i ¼ 1; 2; . . . ; r: Hence, (21) holds with C3 ¼ 2rþ1sM1M2: Next, for any t in ½�1; 1�;

jvðtÞ � #uðtÞj ¼
qðtÞ � f ðzðtÞÞ

gðzðtÞÞ
�

qðtÞ � f ðxðtÞÞ
gðxðtÞÞ

����
����

4 rK1jjzðtÞ � xðtÞjj1

4 2rþ1srM1M2K1ðN � rÞ�1=2 ð30Þ

where K1 is determined by the upper bound of qðtÞ and the Lipschitz constants of 1=gðxÞ and
f ðxÞ=gðxÞ: By definition, uðtÞ ¼ #uðtÞ for all t 2 Id; therefore, (22) is true with C4 ¼ 2rþ1srM1M2K1:

For constraint (19), if jt� tij > d

hðxðtÞ; #uðtÞÞ ¼ hðxðtÞ; uðtÞÞ40
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If jt� ti j4d; the convexity Assumption 2 implies

hðxðtÞ; #uðtÞÞ ¼ hðð1� aÞxðti � dÞ þ axðti þ dÞ; #uðtÞÞ þ hðxðtÞ; #uðtÞÞ

� hðð1� aÞxðti � dÞ þ axðti þ dÞ; #uðtÞÞ

40þ rK2jjxðtÞ � ðð1� aÞxðti � dÞ þ axðti þ dÞÞjj1 � 1

4ðrK2ð1� aÞjjxðtÞ � xðti � dÞjj1 þ rK2ajjxðtÞ � xðti þ dÞjj1Þ � 1

4ð2K2ð1� aÞrM3dþ 2K2arM3dÞ � 1

¼ 2rK2M3ðN � rÞ�1=2 � 1 ð31Þ

In the above derivation, K2 represents a Lipschitz constant of hð�Þ; M3 is an upper bound of
j ’xiðtÞj; for i ¼ 1; . . . ; r and t 2 ½�1; 1�:

From (29)–(31),

hðzðtÞ; vðtÞÞ ¼ hðxðtÞ; #uðtÞÞ þ hðzðtÞ; vðtÞÞ � hðxðtÞ; #uðtÞÞ

4 2rK2M3ðN � rÞ�1=2 � 1þ K2ðrjjzðtÞ � xðtÞjj1 þ jjvðtÞ � #uðtÞjj1Þ � 1

4 ð2M3 þ ðK1 þ 1Þ2rþ1sM1M2ÞrK2ðN � rÞ�1=2 � 1

Hence, constraint (19) holds with C1 ¼ ð2M3 þ ðK1 þ 1Þ2rþ1sM1M2ÞrK2: Similarly,

jjeðzð�1Þ; zð1ÞÞjj14 jjeðxð�1Þ; xð1ÞÞjj1 þ jjeðzð�1Þ; zð1ÞÞ � eðxð�1Þ; xð1ÞÞjj1

4 rK3ðjjzð�1Þ � xð�1Þjj1 þ jjzð1Þ � xð1Þjj1Þ

4 2rþ2rsM1M2K3ðN � rÞ�1=2

where K3 represents a Lipschitz constant of eð�Þ: Thus, (20) is verified.
Finally, because ’zrðtÞ ¼ qðtÞ and (25), we have

zð2Þr ¼
d

dt
ðf ðxðtÞÞÞ þ

d

dt
ðgðxðtÞÞÞ#uðtÞ þ gðxðtÞÞ#uð1ÞðtÞ

From the definition of #uðtÞ;

j#uð1ÞðtÞj5
M1

d
¼M1ðN � rÞ1=2

for sufficiently large N: In addition, the derivatives of f ðxðtÞÞ and gðxðtÞÞ are bounded. Therefore,
(23) holds. &

Proof of Theorem 1
From Lemma 1, there exists a continuous and piecewise C1 function pair ðzðtÞ; vðtÞÞ satisfying the
differential equations (2) and inequalities (19)–(22). Let pðtÞ be the ðN � rÞth order best
approximation polynomial of ’zrðtÞ in the norm of L1ð�1; 1Þ: The following estimation has been
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proved in the literature of spectral methods [18]:

j’zrðtÞ � pðtÞj4C0ðN � rÞ�1
X2
i¼1

jjzðiÞr jjL1ð�1;1Þ ð32Þ

8t 2 ½�1; 1�: Substituting (23) in (32) leads to

j’zrðtÞ � pðtÞj4C0C5ðN � rÞ�1 þ C0C6ðN � rÞ�1=2 ð33Þ

Let us define

#xrðtÞ ¼
Z t

�1
pðtÞ dtþ xrð�1Þ

#xr�1ðtÞ ¼
Z t

�1
#xrðtÞ dtþ xr�1ð�1Þ

..

.

#x1ðtÞ ¼
Z t

�1
#x2ðtÞ dtþ x1ð�1Þ

#vðtÞ ¼
pðtÞ � f ð #x1ðtÞ; . . . ; #xrðtÞÞ

gð #x1ðtÞ; . . . ; #xrðtÞÞ

From (33), it is easy to show

jziðtÞ � #xiðtÞj42r�iþ1C0½C5ðN � rÞ�1 þ C6ðN � rÞ�1=2� 8t 2 ½�1; 1� ð34Þ

and

jvðtÞ � #vðtÞj ¼
’zrðtÞ � f ðzðtÞÞ

gðzðtÞÞ
�

pðtÞ � f ð #xðtÞÞ
gð #xðtÞÞ

����
����

4K1ðj’zrðtÞ � pðtÞj þ rjjzðtÞ � #xðtÞjj1Þ

4C0K1ð1þ r2rÞðC5ðN � rÞ�1 þ C6ðN � rÞ�1=2Þ ð35Þ

Define

%xNk ¼ #xðtkÞ; %uNk ¼ #vðtkÞ ð36Þ

In the following, we prove that ð %xNk ; %u
N
k Þ is a feasible solution of (13)–(15). Because pðtÞ is an

polynomial of degree less than or equal to ðN � rÞ; the functions #x1ðtÞ; . . . ; #xrðtÞ must be
polynomials of degree less than or equal to N: Moreover, ð #xðtÞ; #vðtÞÞ satisfies the differential
equation (2) and has the same initial condition as xð�1Þ: Given any polynomial of degree less
than or equal to N; it is known (see [18]) that its derivative at the nodes t0; . . . ; tN are exactly
equal to the value of the polynomial at the nodes multiplied by the differential matrix D: Thus,
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we have

D

%xNi0

..

.

%xNiN

0
BBB@

1
CCCA ¼D

#xiðt0Þ

..

.

#xiðtNÞ

0
BBB@

1
CCCA ¼

’#xiðt0Þ

..

.

’#xiðtNÞ

0
BBB@

1
CCCA

¼

#xiþ1ðt0Þ

..

.

#xiþ1ðtNÞ

0
BBB@

1
CCCA ¼

%xNiþ1;0

..

.

%xNiþ1;N

0
BBB@

1
CCCA

where i ¼ 1; 2; . . . ; r� 1 and %xNik is the ith component of %xNk : At i ¼ r; we have

D

%xNr0

..

.

%xNrN

0
BBB@

1
CCCA ¼D

#xrðt0Þ

..

.

#xrðtNÞ

0
BBB@

1
CCCA ¼

’#xrðt0Þ

..

.

’#xrðtNÞ

0
BBB@

1
CCCA

¼

f ð #xðt0ÞÞ þ gð #xðt0ÞÞ#vðt0Þ

..

.

f ð #xðtNÞÞ þ gð #xðtNÞÞ#vðtNÞ

0
BBB@

1
CCCA

Therefore, ð %xNk ; %u
N
k Þ; k ¼ 0; 1; . . . ;N; satisfy the constraint equations in (13). Next, we prove that

the mixed state-control constraint (14) is also satisfied. Because hð�Þ is Lipschitz continuous, the
following estimation holds:

jjhðzðtÞ; vðtÞÞ � hð #xðtÞ; #vðtÞÞjj14K2ðrjjzðtÞ � #xðtÞjj1 þ jvðtÞ � #vðtÞjÞ

4K2C0ðr2r þ K1 þ r2rK1Þ � ½C5ðN � rÞ�1 þ C6ðN � rÞ�1=2�

Hence, by (19),

hð #xðtÞ; #vðtÞÞ4ðL1ðN � rÞ�1 þ L2ðN � rÞ�1=2Þ � 1

where

L1 ¼K2C0C5ðr2r þ K1 þ r2rK1Þ

L2 ¼K2C0C6ðr2r þ K1 þ r2rK1Þ þ C1

Since constants L1 and L2 are independent of N; there exists a positive integer N1 such that, for
all N > N1;

L1ðN � rÞ�1 þ L2ðN � rÞ�1=24ðN � rÞ�1=4

Therefore, #x1ðtkÞ; . . . ; #xrðtkÞ; #uðtkÞ; k ¼ 0; 1; . . . ;N; satisfy the mixed state and control constraints
(14) for all N > N1: The end-point conditions (15) can be proved in the same way. Thus, ð %xNk ; %u

N
k Þ

is a feasible discrete solution to Problem BN :
As for (17)–(18), they can be easily deduced from (34)–(35) and (21)–(22) in Lemma 1. &
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Remark 3.2
In the proof of Theorem 1 and Lemma 1, we actually established a stronger result than
(17)–(18). That is

jjxðtÞ � #xðtÞjj14 ðN � rÞ�1=4 8t 2 ½�1; 1�

juðtÞ � #vðtÞj4 ðN � rÞ�1=4 8t 2 Id

These properties will be used later in the proof of the convergence of Legendre PS method.

4. CONVERGENCE RESULTS

Once the feasibility of the discrete Problem BN is established, one can apply nonlinear
programming solver to compute the discrete optimal solution. Next, we focus on the challenging
problem of proving the convergence of the discrete solutions of Problem BN as an
approximation of the original continuous-time optimal control problem. In this section, we
will provide a sufficient condition under which the convergence of the Legendre PS method for
the continuous-time optimal control problem can be guaranteed.

Let ð %xNk ; %u
N
k Þ; k ¼ 0; 1; . . . ;N; be a feasible solution to Problem BN ; and xNðtÞ 2 Rr be the Nth

order interpolating polynomials of ð %xN0 ; . . . ; %x
N
NÞ; i.e.

xNðtÞ ¼
XN
k¼0

%xNk fkðtÞ ð37Þ

where fkðtÞ is defined by (6). Also denote

uNðtÞ ¼
’xNr ðtÞ � f ðxNðtÞÞ

gðxNðtÞÞ

Because

D

%xNr0

..

.

%xNrN

0
BBB@

1
CCCA ¼ D

#xrðt0Þ

..

.

#xrðtNÞ

0
BBB@

1
CCCA ¼

’#xrðt0Þ

..

.

’#xrðtNÞ

0
BBB@

1
CCCA

The definition of uNðtÞ and (13) imply that uNðtkÞ ¼ %uNk : Now consider a sequence of discrete
feasible solution fð %xNk ; %u

N
k Þ; k ¼ 0; . . . ;Ng1N¼N1

and the corresponding interpolating polynomial
sequence fxNðtÞg1N¼N1

and the non-polynomial sequence fuNðtÞg1N¼N1
:

Assumption 3
(a) For all 14i4r; the sequence f %xNi0g

1
N¼N1

converges as N !1; (b) ’xNr ðtÞ is uniformly bounded
for N5N1 and t 2 ½�1; 1�; (c) there exists a piecewise C1 function qðtÞ such that, for any fixed
e > 0; ’xNr ðtÞ converges to qðtÞ uniformly on the interval Ie; where

Ie ¼ ½�1; 1� s

j¼1
ðtj � e; tj þ eÞ

�
ð38Þ

and �15t15 � � �5ts51 represent the discontinuity points of qðtÞ:
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In practical computations, Assumption 3 can be verified up to a large N; the number of nodes
in discretization. Through the following theorem, the verification of this assumption provides
the confidence on the optimality of the discrete solutions. Assumption 3 is made along the line
of the consistent approximation theory [27] in which the discrete solutions are assumed to be
‘epi-convergent.’ Assumption 3 is more transparent in the sense that it requires the convergence
of ’xNr ðtÞ instead of the epigraph in the multiple dimensional state space. An important question
that remains unanswered is: under what condition does an optimal control problem satisfy
Assumption 3 for the PS methods? We have proved some results on this issue. It will be reported
in a separate paper.

Theorem 2
Consider a sequence of feasible solutions ð %xNk ; %u

N
k Þ; k ¼ 0; 1; . . . ;N; of (13)–(15) in Problem BN :

Suppose Assumption 3 holds. Then there exists a feasible solution, ðx1ðtÞ; u1ðtÞÞ; of (2)–(4) in
the continuous-time optimal control Problem B such that the limit

lim
N!1

ðxNðtÞ � x1ðtÞÞ ¼ 0 ð39Þ

converges uniformly on ½�1; 1�; and the limit

lim
N!1

ðuNðtÞ � u1ðtÞÞ ¼ 0 ð40Þ

converges uniformly on any closed set Ie:

Proof
Let xi0 be the limit of f %xNi0g

1
N¼N1

: Then, define the following functions:

x1r ðtÞ ¼
R t
�1 qðtÞ dtþ xr0

x1r�1ðtÞ ¼
R t
�1 x

1
r ðtÞ dtþ xr�1;0

..

.

x11 ðtÞ ¼
R t
�1 x

1
2 ðtÞ dtþ x10

u1ðtÞ ¼
qðtÞ � f ðx11 ðtÞ; . . . ;x

1
r ðtÞÞ

gðx11 ðtÞ; . . . ;x
1
r ðtÞÞ

Obviously, ðx1ðtÞ; u1ðtÞÞ satisfies the differential equation (2). Next, we prove (39)–(40) and the
fact that ðx1ðtÞ; u1ðtÞÞ satisfies both the mixed constraints in (3) and end-point condition (4).

Let xNi ðtÞ be the interpolating polynomial of %xNi0 ; . . . ; %x
N
iN : Because ð %x

N
k ; %u

N
k Þ satisfies discrete

state equation (13), it is easy to see

’xNi ðt0Þ

..

.

’xNi ðtNÞ

0
BBB@

1
CCCA ¼ D

%xNi0

..

.

%xNiN

0
BBB@

1
CCCA ¼

%xNiþ1;0

..

.

%xNiþ1;N

0
BBB@

1
CCCA ¼

xNiþ1ðt0Þ

..

.

xNiþ1ðtNÞ

0
BBB@

1
CCCA

for i ¼ 1; 2; . . . ; r� 1: Hence, the Nth order polynomial:

’xNi ðtÞ � xNiþ1ðtÞ
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has N þ 1 different roots: t0; . . . ; tN : Therefore, ’xNi ðtÞ ¼ xNiþ1ðtÞ; i ¼ 1; . . . ; r� 1: Under
Assumption 3, ’xNr ðtÞ is a bounded sequence that converges to qðtÞ almost everywhere, thus
’xNr ðtÞ converges to qðtÞ in L1: Therefore,

lim
N!1

jxNr ðtÞ � x1r ðtÞj ¼ lim
N!1

Z t

�1
ð ’xNr ðtÞ � qðtÞÞ dt

����
����

4 lim
N!1

Z 1

�1
jð ’xNr ðtÞ � qðtÞÞj dt

¼ 0

Moreover, the limit converge uniformly in t: Hence, the following limit converges uniformly:

lim
N!1

xNr�1ðtÞ ¼ lim
N!1

Z t

�1
xNr ðtÞ dtþ xr�1;0

¼
Z t

�1
x1r ðtÞ dtþ xr�1;0 ¼ x1r�1ðtÞ

Following the same procedure, we can prove

lim
N!1

xNi ðtÞ ¼ x1i ðtÞ; i ¼ 1; 2; . . . ; r

uniformly in t: Thus, (39) is proved.
As for (40), it follows the following inequality:

juNðtÞ � u1ðtÞj ¼
’xNr ðtÞ � f ðxNðtÞÞ

gðxNðtÞÞ
�

qðtÞ
gðxNðtÞÞ

þ
qðtÞ

gðxNðtÞÞ
�

qðtÞ � f ðx1ðtÞÞ
gðx1ðtÞÞ

����
����

¼
’xNr ðtÞ � qðtÞ
gðxNðtÞÞ

þ
qðtÞ � f ðxNðtÞÞ

gðxNðtÞÞ
�

qðtÞ � f ðx1ðtÞÞ
gðx1ðtÞÞ

����
����

4K1j ’xNr ðtÞ � qðtÞj þ rK1jjxNðtÞ � x1ðtÞjj1

and the fact that both ’xNr ðtÞ � qðtÞ and xNðtÞ � x1ðtÞ converge to zero uniformly on any closed
set Ie: In this inequality, K1 is defined by (30).

The endpoint condition eðx1ð�1Þ;x1ð1ÞÞ ¼ 0 follows directly from the convergence property,
since

eðx1ð�1Þ; x1ð1ÞÞ ¼ lim
N!1

eðxNð�1Þ; xNð1ÞÞ

¼ lim
N!1

eð %xN0 ; %x
N
NÞ ¼ 0

Now, to show ðx1ðtÞ; u1ðtÞÞ is a feasible solution of Problem B; it is enough to prove the mixed
state-control constraint hðx1ðtÞ; u1ðtÞÞ40: Using contradiction argument, suppose at a time
instance t0 2 ð�1; 1Þ there exists a constraint hið�Þ; i 2 f1; 2; . . . ; lg; so that

hiðx1ðt0Þ; u1ðt0ÞÞ > 0

Since x1ðtÞ is continuous and u1ðtÞ is piecewise C1; without loss of generality, we can select t0

outside the set ft1; . . . ; tsg: By the fact that the nodes tk are getting dense as N tends to
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infinity [33], there exists a sequence fjNg such that, 04jN4N; the LGL nodes tjN 2 Ie and

lim
N!1

tjN ¼ t0

Then (39) and (40) imply

lim
N!1

hið %xNjN ; %u
N
jN Þ ¼ hiðx1ðt0Þ; u1ðt0ÞÞ > 0

It contradicts the mixed state-control constraint (14), in which the right side of the inequality
approaches zero as N approaching infinity. &

Theorem 2 implies that for any convergent discrete solution sequence, the limit point of this
sequence must be a feasible solution of the original continuous-time optimal control problem.
Next, we study a special sequence of discrete feasible solutions. These are the optimal solutions
of Problem BN : Naturally, the question we must answer is: under what condition does the
sequence converge to the optimal solution of the continuous-time problem, and the cost (12)
converges to the optimal cost function defined by (1)? In the following we will show that, under
Assumption 3, the convergence of the PS method can be guaranteed even if the optimal control
of the Problem B is discontinuous. The notations in the next theorem, such as ð %x*N

k ; %u*N

k Þ and
JN ; are defined in Section 2.

Theorem 3
Suppose Problem B satisfies Assumptions 1 and 2. Let ð %xk�N ; %uk�NÞ; k ¼ 0; 1; . . . ;N; be a sequence
of discrete optimal solutions of Problem BN : Assume the sequence satisfies Assumption 3. Then,
there exists an optimal solution ðxnðtÞ; unðtÞÞ of the continuous-time optimal control Problem B
such that the following limits converge uniformly:

lim
N!1

ð %xk�N �xnðtkÞÞ ¼ 0

lim
N!1

ð%uk�N �unðtkÞÞ ¼ 0; tk 2 Ie

lim
N!1

%JNð %Xn; %UnÞ ¼ Jðxnð�Þ; unð�ÞÞ

for all 04k4N and any fixed e > 0:

Before the proof of this convergence result, we need the following lemmas. The first two are
known results in the literature (see [33] for the proof).

Lemma 2
Let tk; k ¼ 0; 1; . . . ;N; be the LGL nodes, and wk be the LGL weights. Suppose xðtÞ is Riemann
integrable; then, Z 1

�1
xðtÞ dt ¼ lim

N!1

XN
k¼0

xðtkÞwk

Lemma 3
Given any interval ½a; b� in ½�1; 1�: Then

lim
N!1

X
k

tk2½a;b�

ok ¼ b� a ð41Þ

where tk are LGL nodes.
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Lemma 4
Suppose fxNðtÞgN51 is a sequence consisting of continuous functions. Suppose fuNðtÞgN51 is a
sequence of uniformly bounded piecewise C1 functions. Moreover, assume there exists xðtÞ so
that

lim
N!1

xNðtÞ ¼ xðtÞ ð42Þ

converges uniformly on ½�1; 1�: Assume there exists a piecewise C1 function uðtÞ such that

lim
N!1

uNðtÞ ¼ uðtÞ ð43Þ

converges uniformly on any Ie; a closed set defined by e and the discontinuous points of uðtÞ (see
(38) for the definition of Ie). Then we have

lim
N!1

XN
k¼0

FðxNðtkÞ; uNðtkÞÞok þ EðxNð�1Þ;xNð1ÞÞ

( )

¼
Z 1

�1
FðxðtÞ; uðtÞÞ dtþ Eðxð�1Þ;xð1ÞÞ

Proof
Let �15t15 � � �5ts51 be the points of discontinuity of uðtÞ: From Lemma 3, given any e > 0;
there exists N1 > 0 so that X

k
tk2
Ss

j¼1
½tj�e;tjþe�

ok53se ð44Þ

for all N5N1: Furthermore, from (42) and (43), we can select N1 large enough so that

juðtkÞ � uNðtkÞj5e 8tk 2 Ie

jjxðtkÞ � xNðtkÞjj15e; 04k4N
for all N5N1: Thus

XN
k¼0

½FðxðtkÞ; uðtkÞÞ � FðxNðtkÞ; uNðtkÞÞ�ok

�����
�����

4
XN
tk2Ie

½FðxðtkÞ; uðtkÞÞ � FðxNðtkÞ; uNðtkÞÞ�ok

�����
�����

þ
XN
tk =2 Ie

½FðxðtkÞ; uðtkÞÞ � FðxNðtkÞ; uNðtkÞÞ�ok

������
������

4KeþMe ð45Þ
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where K is determined by the Lipschitz constant of Fðx; uÞ and the fact

XN
k¼0

ok ¼ 2 ð46Þ

M is determined by the upper bound of FðxðtÞ; uðtÞÞ; FðxNðtÞ; uNðtÞÞ and inequality (44).
Inequality (45) implies

lim
N!1

XN
k¼0

½FðxNðtkÞ; uNðtkÞÞ � FðxðtkÞ; uðtkÞÞ�ok ¼ 0 ð47Þ

Therefore,

Z 1

�1
FðxðtÞ; uðtÞÞ dt ¼ lim

N!1

XN
k¼0

FðxðtkÞ; uðtkÞÞok

¼ lim
N!1

XN
k¼0

FðxNðtkÞ; uNðtkÞÞok ð48Þ

Due to the convergence of xNðtÞ; it is obvious that

lim
N!1

EðxNð�1Þ;xNð1ÞÞ ¼ Eðxð�1Þ;xð1ÞÞ ð49Þ

Then, Lemma 4 follows from (48) and (49). &

Proof of Theorem 3
According to Theorem 2, the discrete optimal solutions uniformly converge to a feasible
trajectory of the continuous-time problem. More specifically, there exists a feasible solution,
ðx1ðtÞ; u1ðtÞÞ; of (2)–(4) in Problem B such that

lim
N!1

ð %xn

k � x1ðtkÞÞ ¼ 0

lim
N!1

ð%u n

k � u1ðtkÞÞ ¼ 0; tk 2 Ie

uniformly for 04k4N and any fixed e > 0: In the next, we prove that ðx1ðtÞ; u1ðtÞÞ is indeed
an optimal solution of the continuous-time optimal control problem. To this end, denote
%JNð %Xn; %UnÞ and Jðxnð�Þ; unð�ÞÞ the optimal cost of Problem BN and Problem B, respectively, i.e.

%JNð %Xn; %UnÞ ¼Eð %xn

0 ; %x
n

NÞ þ
XN
k¼0

Fð %x n

k ; %u
n

k Þwk

Jðxnð�Þ; unð�ÞÞ ¼Eðxnð�1Þ; xnð1ÞÞ þ
Z 1

�1
FðxnðtÞ; unðtÞÞ dt

where ðxnðtÞ; unðtÞÞ denotes any optimal solution of Problem B (the optimal solution may not
be unique). According to Theorem 1, there exists a sequence of feasible solutions, ð *xNk ; *u

N
k Þ; of

(13)–(15) that converges to ðxnðtÞ; unðtÞÞ in the way defined by (17)–(18). Now, from Lemma 4
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and the optimality of ðxnðtÞ; unðtÞÞ and ð %xk�N ; %uk�NÞ; we have

Jðxnð�Þ; unð�ÞÞ4 Jðx1ð�Þ; u1ð�ÞÞ

¼ lim
N!1

%JNð %Xn; %UnÞ

4 lim
N!1

%JNð *X ; *UÞ

¼ Jðxnð�Þ; unð�ÞÞ

The last equation is deduced from Lemma 4 and Remark 3.2. Therefore, we proved
Jðxnð�Þ; unð�ÞÞ ¼ Jðx1ð�Þ; u1ð�ÞÞ: It is equivalent to say that ðx1ðtÞ; u1ðtÞÞ is a feasible solution
that achieves optimal cost. Hence, ðx1ðtÞ; u1ðtÞÞ is an optimal solution to the continuous-time
optimal control Problem B. &

5. OPTIMAL CONTROL WITH FREE FINAL TIME

The time interval in Problem B is ½�1; 1�: If the original problem has a fixed time interval ½t0; tf �;
then it can be transformed into the interval of ½�1; 1� as follows:

x ¼
2

tf � t0
t�

tf þ t0

tf � t0
ð50Þ

However, if the final time tf is not fixed, then this transformation has a free parameter tf : The
resulting optimal control problem is different from the one defined by Problem B. Fortunately,
we found that all the results proved in the previous sections can be extended to the case of free
final time with some minor modifications. Consider the optimal control problem with free tf

min
xð�Þ;uð�Þ;tf

J½xð�Þ; uð�Þ; tf �

J½xð�Þ; uð�Þ; tf � ¼
Z tf

t0

FðxðtÞ; uðtÞÞ dtþ Eðxðt0Þ;xðtf ÞÞ

s.t.

’x1ðtÞ ¼ x2ðtÞ

..

.

’xr�1ðtÞ ¼ xrðtÞ

’xrðtÞ ¼ f ðxðtÞÞ þ gðxðtÞÞuðtÞ

tf > t0

hðxðtÞ; uðtÞÞ4 0

eðxðt0Þ;xðtf ÞÞ ¼ 0

ð51Þ

We use (50) to transform the problem into the interval of ½�1; 1�: Then

dt

dx
¼

tf � t0

2
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For any differentiable function hðxÞ; the derivative dh=dx is denoted by h0ðxÞ: Under the new
variable x; (51) is equivalent to the following optimal control problem:

min
xð�Þ;uð�Þ;tf

J½xð�Þ; uð�Þ; tf �

J½xð�Þ; uð�Þ; tf � ¼
Z 1

�1
FðxðxÞ; uðxÞÞ

tf � t0

2
dxþ Eðxð�1Þ;xð1ÞÞ

s.t.

x01ðxÞ ¼
tf � t0

2
x2ðxÞ

..

.

x0r�1ðxÞ ¼
tf � t0

2
xrðxÞ

x0rðxÞ ¼
tf � t0

2
ðf ðxðtÞÞ þ gðxðtÞuðtÞÞÞ

tf > t0

hðxðxÞ; uðxÞÞ4 0

eðxð�1Þ; xð1ÞÞ ¼ 0

ð52Þ

Except for the free parameter tf and the factor ðtf � t0Þ=2; this problem is similar to Problem B.
After Legendre PS discretization at LGL nodes, the resulting discrete optimization problem is
similar to Problem BN except for the variable tf and the term ðtf � t0Þ=2 on the right-hand side
of the dynamics (13) and the cost function (12). Following the same idea in Section 3, we can
prove that Theorem 1 holds true for the problem defined by (52). In other words, given any
feasible solution of (52), there exists a feasible solution of the discretized problem such that the
discrete-time solution satisfies (17)–(18) provided the number of nodes is large enough. The
proof of the theorem is a copy of the proof in Section 3, except that a factor ðtf � t0Þ=2 must be
added to the integration terms in (26)–(27) and the definitions of qðtÞ in (25).

Following the ideas in Section 4, results similar to Theorems 2 and 3 can be proved for the
optimal control problem defined by (52). The discretization of (52) consists of unknown
variables ð %xNk ; %u

N
k ; t

N
f Þ: Suppose a sequence ð %xNk ; %u

N
k Þ satisfies Assumption 3. In addition, assume

that the sequence tNf converges as N approaches infinity. Then, it can be proved that there
exists a feasible solution ðx1ðtÞ; u1ðtÞ; tf Þ satisfying the constraints in (52) so that the sequence
fð %xNk ; %u

N
k Þg

1
N¼1 approaches ðx

1ðtÞ; u1ðtÞÞ in the way defined by (39)–(40) and tNf approaches tf : If
the sequence ð %xNk ; %u

N
k Þ is the optimal discrete-time solution, then it converges to an optimal

solution of the continuous-time optimal control problem defined in (52).

6. EXAMPLES

In this section we present an example to illustrate the main points of the PS method. The
problem was programmed in MATLAB on a Pentium 4, 2.4GHz PC with 256MB of RAM.
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The PS method was applied to this problem using the software package, DIDO [17]. Problems
of continuous-thrust trajectory optimization have been serving as motivating problems for
optimal control theory since its inception [34–36]. The classic problem posed by Moyer and
Pinkham [36] is widely discussed in text books [34, 35] and research articles [8, 37]. When the
continuity of thrust is removed from the problem formulation, the optimal control can be
dramatically different and hence, the discontinuous thrusting problem remains an active
research area of research in astronautical engineering, especially for low-thrust optimal
trajectory design [38–40].

Consider the minimum time orbit transfer problem

min J½�� ¼ tf

s:t: ’r ¼ vr

’y ¼
vt

r

’vr ¼
v2t
r
�

1

r2
þ ur

’vt ¼ �
vrvt

r
þ ut

jurj40:05; jutj40:05

ðrð0Þ; vrð0Þ; vtð0ÞÞ ¼ ð1; 0; 1Þ

ðrðtf Þ; vrðtf Þ; vtðtf ÞÞ ¼ ð4; 0; 0:5Þ

where r is the radial distance, y is the true anomaly, vr is the radial velocity, vt is the transverse
velocity, ur is the radial thrust and ut is transverse thrust. The problem has free final time.
The system has multiple inputs. However, the dynamics are in the multi-input feedback
linearizable normal form. It is equivalent to two subsystems in which each one has a single
input.

Figure 2 shows the numerical optimal solution with N ¼ 100: The optimal final time is 13.085.
The first plot in Figure 2 shows the curves of the optimal thrusts ur and ut; which appear to be
bang-bang. In the second plot of Figure 2, we show the transfer trajectory as well as the
direction of the thrust. It is interesting to note that, during the beginning of the transition, the
thrust is pointing inwards because ur is negative. This phenomenon is counter-intuitive, and
raises suspicion with regards to the optimality of the solution.

Based on the convergence results presented in previous sections, we verify the optimality of
the solution by increasing the number of nodes and check the convergence property of the
discrete solution series. The simulation results are demonstrated in Figure 3. It can be observed
from Figure 3 that the derivative of the interpolating polynomial sequences ’vNr ðtÞ and ’vNt ðtÞ
converge very well except on small neighbourhoods around the discontinuous points. This is in
concurrence with the theoretical results of this paper, and hence provides confidence on the
optimality of the discrete solutions.

Next, we independently check the extremality of the discrete solution by verifying the
necessary conditions. To this end, we construct the control Hamiltonian, H; and the Lagrangian
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of the Hamiltonian, %H; as

Hðx; u; lÞ ¼ lrvr þ ly
vt

r
þ lvr

v2t
r
�

1

r2
þ ur

� �
þ lvt �

vrvt

r
þ ut

� �
%Hðx; u; l;mÞ ¼Hðx; u; lÞ þ miur þ m2ut

where lðtÞ is the costate and mðtÞ is the instantaneous KKT multiplier associated with the
Hamiltonian minimization condition. Based on the minimum principle, it is straightforward to
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Figure 2. A benchmark minimum time low-thrust orbit transfer.
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Figure 3. Convergence of discrete optimal solutions.
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draw the following conclusions:

ly � 0; H � �1

m150 if ur ¼ �0:05

m1 > 0 if ur ¼ 0:05

m250 if ut ¼ �0:05

m2 > 0 if ut ¼ 0:05

ð53Þ

In Figure 4 we verify the aforementioned conditions. All the covectors are automatically
computed within DIDO by an application of the covector mapping theorem [5, 24]. It can be
seen from Figure 4 that the Hamiltonian,H; ly and the covectors m1; m2 satisfy all the conditions
in (53).

This paper is largely concerned about the convergence property of the PS methods but not
the arguably more important problem of convergence rate. Like other optimal control
algorithms, the convergence rate of ‘standard’ PS methods applied for discontinuous optimal
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Figure 4. Verification of the necessary conditions.
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control is not as impressive as the rate of solving problems with smooth solutions. Nevertheless,
the convergence of the discrete solutions is extremely helpful because it provides key
information about the point of discontinuity. A significant amount of work is ongoing to
address the application and convergence rate of PS methods to both discontinuous solutions
and discontinuous problems. All the ideas rely on the notion of PS knots [41, 42]. Based on the
estimated location of the discontinuity, various mesh refinement techniques can be applied
jointly with PS knotting methods to recover the fast convergence rate of smooth PS methods so
that the accuracy of the approximate solution can be improved. In Figure 5 we plot out the
control input obtained by using a PS knotting technique (with N ¼ 90) together with a standard
mesh refinement technique obtained by simply choosing a large number of nodes ðN ¼ 200Þ: In
the PS knotting technique, the smooth PS method is applied to each subinterval. The plot shows
that the accuracy is improved by using PS knots with a much smaller number of nodes. How to
analyse the rate of convergence of smooth and non-smooth PS methods for discontinuous
control is an important issue that deserves further investigation, but is outside the scope of this
paper.

The PS method is a robust approach for many optimal control problems. Interested readers
are referred to [26] where it is shown by an example that the PS method converges for the
problem while many other numerical optimal control methods fail to converge. The robustness
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Figure 5. Optimal controls with and without the application of PS knots. Dashed lines are optimal
solutions obtained by a ‘brute force’ mesh refinement technique.
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of the PS approach continues to be independently verified numerically by many other studies
[3, 4, 12] thus suggesting that a significant amount of theoretical analysis remains wide open for
further study.
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