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Motile Cilia: Innovation and Insight
From Ciliate Model Organisms
Brian A. Bayless1* , Francesca M. Navarro1 and Mark Winey2

1 Department of Biology, Santa Clara University, Santa Clara, CA, United States, 2 Department of Molecular and Cellular
Biology, University of California, Davis, Davis, CA, United States

Ciliates are a powerful model organism for the study of basal bodies and motile cilia.
These single-celled protists contain hundreds of cilia organized in an array making them
an ideal system for both light and electron microscopy studies. Isolation and subsequent
proteomic analysis of both cilia and basal bodies have been carried out to great success
in ciliates. These studies reveal that ciliates share remarkable protein conservation with
metazoans and have identified a number of essential basal body/ciliary proteins. Ciliates
also boast a genetic and molecular toolbox that allows for facile manipulation of ciliary
genes. Reverse genetics studies in ciliates have expanded our understanding of how
cilia are positioned within an array, assembled, stabilized, and function at a molecular
level. The advantages of cilia number coupled with a robust genetic and molecular
toolbox have established ciliates as an ideal system for motile cilia and basal body
research and prove a promising system for future research.

Keywords: motile cilia, basal body, ciliate, doublet microtubules, ciliary array

INTRODUCTION

Ciliates are single-celled protozoans grouped under the phylum Ciliophora (Cavalier-Smith, 1993).
Species of ciliates are morphologically diverse but, as their name suggests, ciliates are united in that
they contain many motile cilia. Paramecium tetaurelia/caudatum and Tetrahymena thermophila
are the two ciliate species that have had the biggest impact on our understanding of both motile
cilia and their major nucleating/anchoring structure, the basal body.

Both Tetrahymena and Paramecium are genetically tractable systems. They have completely
sequenced genomes (Aury et al., 2006; Eisen et al., 2006) and their genetics, though unconventional,
lend themselves well to both forward and reverse genetic approaches, including genomic
knockouts, knock-ins, and gene fusions (Bruns and Cassidy-Hanley, 2000; Hai et al., 2000; Kung
et al., 2000; Yu and Gorovsky, 2000; Shang et al., 2002b; Beisson et al., 2010). Importantly, ciliate
cilia are structurally and molecularly conserved with higher eukaryotes (Carvalho-Santos et al.,
2011). Their cilia are arranged in an array that is comparable to human multi-ciliated cells, and
their cilia beat in a biphasic whip-like motion that is consistent with their human counterparts
(Wood et al., 2007; Funfak et al., 2015). Perhaps the most important advantage that ciliates have
for cilia and basal body research is their large quantity of cilia per cell. A typical vertebrate multi-
ciliated epithelial cell contains 200–300 cilia per cell, however, Tetrahymena and Paramecium cells
contain upward of 750 and 4000 cilia per cell, respectively (Figure 1 and Supplementary Table S1;
Pearson and Winey, 2009; Tilley et al., 2015). The large quantity of cilia has established ciliates as an
ideal system for both light and electron microscopy as well as proteomics. In the following sections
of this review we will specifically focus on the joint contributions of Tetrahymena and Paramecium
to our understanding of basal body and motile cilia composition, assembly, structure, and function.
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FIGURE 1 | Immunofluorescence images and schematic representation of ciliate cilia and accessory structures. Immunofluorescence images of Paramecium
tetaurelia (left) and Tetrahymena thermophila (middle) cells. The Paramecium tetaurelia cell (left) is stained for cilia (α-GT335, white; α-TAP952, red) and the
Tetrahymena thermophila cell (middle) is stained for basal bodies (α-centrin, green) and cilia (α-GT335, red). Scale bar = 10 µm. The red box in the Tetrahymena
image (middle) is represented schematically in the right image showing a top down view of basal body organization with associated accessory structures. CW,
cartwheel; pcMT, post ciliary microtubules; TM, transverse microtubules; KF, Kinetodesmal Fiber.

BASAL BODIES

Basal bodies nucleate and anchor motile cilia in the cell, and
as such, they are essential for the function of motile cilia. The
basal bodies of ciliates provide a number of advantages for
researchers. Ciliate basal bodies are strikingly similar to those of
other eukaryotes in both structure and molecular composition
(Carvalho-Santos et al., 2011). They are assembled in a stepwise
process that is analogous to that of centrioles; however, ciliate
basal bodies never function as centrioles (Dippell, 1968; Allen,
1969). This is experimentally advantageous because basal body
defects are never conflated with mitotic defects. Additionally,
like the multi-ciliated cells found in higher eukaryotes such as
humans and Xenopus laevis, ciliate basal bodies are positioned
and oriented into an array via a comprehensive network of
accessory structures (Figure 1 and Supplementary Table S1)
(Bayless et al., 2015; Tassin et al., 2015; Zhang and Mitchell, 2015;
Vertii et al., 2016). Methods have also been developed to isolate
and purify basal bodies, leaving researchers with pure fractions to
perform biochemical and proteomic studies (Argetsinger, 1965;
Tiedtke, 1985).

Identification of Basal Body Components
A proteome of Tetrahymena basal bodies was completed in
2007 (Kilburn et al., 2007). The Tetrahymena proteome displays
a significant amount of overlap with two other basal body
proteomes from human centrioles and Chlamydomonas basal
bodies, a finding that highlights the high molecular conservation
between phylogenetically distant species (Andersen et al., 2003;
Keller et al., 2005). Importantly, the Tetrahymena proteome
advanced the field by localizing identified proteins through GFP

tagging and immuno-EM mapping (Kilburn et al., 2007). This
localization data has served as an important first step in the
functional characterization of many components, including the
core basal body components Bld10, Poc1, and Sas6 (Culver et al.,
2009; Pearson et al., 2009; Bayless et al., 2012; Meehl et al., 2016).

Basal Body Assembly and Maintenance
Basal body assembly begins with the formation of a radially
symmetric cartwheel followed by the addition and elongation
of triplet microtubules to the ends of each cartwheel spoke.
Adjacent triplet microtubules are connected by A-C linkers then
the entire basal body is capped at its distal end in a region
called the transition zone, where the triplet microtubule of the
basal body give way to the doublet microtubules of the ciliary
axoneme (Figure 1; Carvalho-Santos et al., 2010). The first
structural and temporal dissection of early basal body assembly
was completed in ciliates in the late 1960’s (Dippell, 1968; Allen,
1969). These comprehensive cytological studies used electron
microscopy to identify the early stages of basal body assembly,
including the temporal ordering of assembly of the cartwheel and
the microtubule walls (Dippell, 1968; Allen, 1969). In addition,
these studies clearly define the major structural domains of the
basal body like the cartwheel, A-C linkers, and the transition
zone. Several of these structures are well defined in recent
electron tomography studies (Höög et al., 2012; Li et al., 2012;
Meehl et al., 2016; Greenan et al., 2018).

At the heart of basal body structure is the triplet microtubules.
Triplet microtubule assembly and stability rely on a number
of non-canonical tubulins, and ciliates have been impactful in
their study and classification. The essential role of γ-tubulin
in the earliest stages of basal body microtubule nucleation was
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first described in ciliates (Ruiz et al., 1999; Shang et al., 2002a).
δ-tubulin has been shown in Paramecium to be necessary for
the assembly of the basal body C-tubule (Garreau de Loubresse
et al., 2001). Rarer tubulin isoforms ε- and ζ-tubulin are also
found in ciliates and are necessary for basal body duplication and
stabilization (Dupuis-Williams et al., 2002; Ruiz et al., 2004; Ross
et al., 2013). Tetrahymena has also been used to study how ciliary
beating affects the distribution of proteins and tubulin post-
translational modifications at the triplet microtubules (Bayless
et al., 2016). From this work both tubulin glutamylation and
the triplet microtubule localizing protein Fop1 were shown to
associate asymmetrically to the region of the basal body that
experiences the most compressive force from ciliary beating
(Bayless et al., 2016).

In many eukaryotic systems, basal body assembly is initiated
by PLK4 (Habedanck et al., 2005). Ciliates have no clear PLK4
homolog, though they do contain many other key proteins
involved in early assembly (Carvalho-Santos et al., 2010).
Functional studies on the major constituent of the cartwheel, Sas-
6, revealed that a fully formed cartwheel is necessary for basal
body assembly (Culver et al., 2009). Attachment of the cartwheel
to the triplet microtubules is facilitated by Bld10, a protein first
identified and characterized in Chlamydomonas, though work in
ciliates has established that Bld10 is essential for assembly and
stability of basal bodies (Matsuura et al., 2004; Hiraki et al., 2007;
Jerka-Dziadosz et al., 2010; Bayless et al., 2012). It is not only
the link between cartwheels and the triplet microtubules that is
necessary for stabilizing the basal body, the A-C linker between
adjacent triplet microtubules is necessary as well. Tetrahymena
Poc1 is necessary for establishing the A-C linker between adjacent
triplet microtubules (Meehl et al., 2016). When Poc1 is lost
from Tetrahymena cells, basal bodies fall apart under conditions
where cilia-generated force is increased, highlighting the role of
structural connections in maintaining the overall stability of the
basal body (Pearson et al., 2009; Meehl et al., 2016).

Work in ciliates has established that Centrin 2 is necessary for
basal body elongation and establishment of the transition zone,
while Centrin 3 is necessary for anchoring the basal body in
place (Guerra et al., 2003; Stemm-Wolf et al., 2005; Vonderfecht
et al., 2011, 2012; Aubusson-Fleury et al., 2012; Jerka-Dziadosz
et al., 2013). Taken together, these works represent the large
impact ciliates have had on our understanding of basal body
assembly and stability.

Basal Body Placement in an Array
The complex organization of basal body arrays have been well
studied in ciliates. In both Paramecium and Tetrahymena, basal
bodies are arranged into rows, called kinety, that extend along the
anterior-posterior axis of the cell (Figure 1; Lynn, 1981; Iftode
and Fleury-Aubusson, 2003). The positioning of basal bodies
along a kinetid is complex and utilizes the coordination of at least
three accessory structures: transverse microtubules, post-ciliary
microtubules, and the striated rootlet (kinetodesmal fiber). The
two microtubule based structures appear to be specific to ciliates
with the transverse microtubules reaching across kinety and the
post-ciliary microtubules reaching behind the basal body within a
kinety (Figure 1; Lynn, 1981; Iftode and Fleury-Aubusson, 2003).

The striated rootlet forges an attachment from the basal body
to the plasma membrane and anchors it into place. Striated
rootlets are found in most systems that contain multi-ciliated
cells, thus highlighting the importance of this cortical connection
(Steinman, 1968; Anderson, 1972; Sandoz et al., 1988). More
recent work utilized automated image analysis to reveal the
three dimensional arrangement of the Tetrahymena ciliary array
(Galati et al., 2016). In a landmark study that tested the theory
of structural inheritance, Janine Beisson and Tracy Sonneborn
generated inverted kinety of basal bodies in Paramecium and
found that all accessory structures built subsequently became
inverted to match the inverted positioning of basal bodies
(Beisson and Sonneborn, 1965). This experiment demonstrated
that not all information is encoded by DNA, but some is, in
fact, epigenetic. A result that was later replicated in Tetrahymena
(Ng and Frankel, 1977). Furthermore, the kinetodesmal fiber
alters its length in response to altered cilia-generated forces,
suggesting that structural inheritance is tunable and able to adapt
to environmental cues (Galati et al., 2016).

The molecular composition of basal body accessory structures
is not well-defined but ciliates have contributed greatly to what
we do know. The Tetrahymena striated fiber is made up, at least
in part, by the DisAp protein (Galati et al., 2014). Orientation
of basal bodies is disrupted by loss of Paramecium proteins
Meckelin and Centrin 3, while ODF-1 and VFL3 are necessary
for the docking of Paramecium basal bodies to the cell cortex
(Jerka-Dziadosz et al., 2013; Picariello et al., 2014; Bengueddach
et al., 2017). These studies highlight the power of ciliate reverse
genetics approaches. Recent work has also made connections
between the tubulin post-translational modification glycylation
and attachment of Tetrahymena basal bodies at the cell cortex
(Junker et al., 2019). The assembly, maintenance, and precise
positioning of basal bodies remains an essential foundation for
the building of a functional cilium and ciliates have, and will
remain, at the forefront of basal body research.

MOTILE CILIA

Motile cilia and flagella function to move extra-cellular fluid.
Structurally, the ciliate motile cilium is conventional consisting
of nine set of doublet microtubules arranged radially around a
central pair of single microtubules. These cilia beat in a biphasic,
whip-like pattern that is consistent with the motile cilia of
human cells (Supplementary Table S1; Tuxhorn et al., 1998;
Bayless et al., 2015; Funfak et al., 2015). Experimentally, genetic
techniques such as protein tagging allow for easy visualization
of cilia and a simple calcium shock is sufficient to shear
cilia from the cell allowing for easy isolation for biochemical
assays (Rosenbaum and Carlson, 1969; Adoutte et al., 1980).
As described below, research using ciliates has done much to
illuminate the molecular composition, structure, assembly, and
function of motile cilia.

Identification of Motile Cilia Components
In many of the same ways that ciliates have been impactful for
identifying the molecular components of basal bodies, ciliates
have also been used successfully in the identification of motile
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cilia molecular components. The significant overlap between
the vertebrate and protist cilia proteome was made clear in a
mass spectrometry screen using Tetrahymena cilia dubbed the
“ciliome”(Smith et al., 2005). Isolation and purification of the
Paramecium ciliary membrane also yielded a proteome of the
ciliary membrane, the first of its kind (Yano et al., 2013). Outside
of proteomics, whole genome expression profiling has been used
to identify the genes that are upregulated during ciliogenesis,
which offers a strong starting point for novel discovery and
characterization of ciliogenesis proteins (Arnaiz et al., 2010).

Motile Cilia Structure
As with basal bodies, electron microscopy has been employed
to investigate the structural makeup of ciliate ciliary axonemes.
Detailed cytological analysis of the transition zone between basal
bodies and ciliary axonemes was carried out in both Paramecium
and Tetrahymena (Dippell, 1968; Allen, 1969; Hufnagel, 1969;
Dute and Kung, 1978). At the distal end of the axoneme, the
termination of the central pair of microtubules and the ciliary
tip were first described in detail in Tetrahymena axonemes
(Sale and Satir, 1977). Tetrahymena axonemes were also used
in fine structural work detailing the radial spoke and axonemal
dynein complexes that are necessary for ciliary movement
(Goodenough and Heuser, 1985).

Perhaps the biggest impact that ciliates have made in the area
of cilia structure has come from the use of single particle cryo-
electron microscopy (cryo-EM) and cryo-electron tomography
(cryo-ET) to investigate the structure of the ciliary doublet
microtubules. Doublet microtubules are exceptionally stable
making them an ideal substrate for cryo-EM and cryo-ET. Early
studies used sea urchin sperm flagella for cryo-EM/ET, more
recently Chlamydomonas flagella and Tetrahymena axonemes
have become the model systems of choice (Pigino et al., 2012).
Currently, single particle cryo-EM of Tetrahymena axonemes has
achieved the best resolution of doublet microtubules to date at
below a nanometer resolution (Ichikawa et al., 2017). There are
two areas where the cryo-EM and cryo-ET structural work from
Tetrahymena axonemes has been influential: our understanding
of the machinery outside of the doublet microtubules and

our understanding of the interior of the doublet microtubules.
Radial spoke proteins and dynein arms make motile cilia move.
The structure of these large complexes has been elucidated by
structural work in Chlamydomonas but also with the help of
Tetrahymena (Pigino et al., 2011). The lumen of the doublet
microtubules has also been shown to have complex networks
of proteins in them termed microtubule inner proteins or MIPs
(Figure 2; Ichikawa et al., 2017; Ichikawa and Bui, 2018; Stoddard
et al., 2018). These MIPs are thought to stabilize the doublet
microtubule to allow for the repeated bending without break. The
structural studies of doublet microtubules in ciliates have shown
us just how complex the axoneme is, highlighting the importance
of a precise assembly process.

Motile Cilia Assembly
Motile cilia assembly occurs through a concerted process called
intraflagellar transport (IFT; Nakayama and Katoh, 2018). The
advantage that ciliates have for studying ciliary assembly is two-
fold. First, ciliates have a large number of cilia. Second, cilia
assembly can be induced and followed in real time (Jiang et al.,
2015). The first step in assembly of a cilium is to establish a ciliary
cap. In Tetrahymena this is a multistep process that involves the
confluence of three diverse structures (Seixas et al., 2017). After
establishment of a ciliary cap, IFT is utilized to assemble the
axoneme. In Paramecium, IFT46 is necessary for the trafficking
of other IFT components between the cytoplasm and the ciliary
axoneme, thus making it an upstream regulator of IFT (Shi et al.,
2018). In Chlamydomonas and Paramecium axonemes, failure
of IFT to traffic axonemal dynein into the cilium results in
short cilia that are non-motile (Fassad et al., 2018). Furthermore,
IFT trains have been shown to queue up at the base of
Chlamydomonas and Tetrahymena axonemes while waiting their
turn during assembly (Wingfield et al., 2017). Interestingly, the
Tetrahymena LF4/MOK kinase family member, LF4a, regulates
ciliary length by limiting the rate of IFT (Jiang et al., 2019).
Besides IFT related mechanisms, ciliates have highlighted many
other proteins necessary for assembly of the ciliary axoneme.
Tetrahymena Dyf-1 is necessary for ciliogenesis as is PHLP2,
both of which help with the assembly of axoneme microtubules

FIGURE 2 | Structure of axoneme doublet microtubules. Cross-section of ciliary axoneme doublet microtubules. A- and B-tubules are shown. Tubulin protofilaments
are colored gray and numbered. Microtubule inner proteins (MIPs) and filamentous MIPs (fMIPs) are distinguished by color as denoted in the table to the right.
Adapted from Ichikawa and Bui (2018) and Stoddard et al. (2018).
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(Dave et al., 2009; Bregier et al., 2013). The axoneme microtubules
also display careful coordination of their length control. In
Tetrahymena axonemes, FAP256/CEP104 promotes A-tubule
elongations while CHE-12/Crescerin and ARMC9 specifically
regulate the length of the B-tubule (Louka et al., 2018). Overall,
work from ciliates has helped us understand the complexities of
ciliary assembly, in particular the nuances of IFT.

Motile Cilia Function
Ciliary beating is a complex process that requires many molecular
interactions. During beating, the ciliary axoneme must maintain
a regular waveform all while remaining in concert with its
neighboring cilia (Wan, 2018). One of the most fundamental
questions about motile cilia was answered with the help of
ciliates: How do cilia move? In the 1960’s Ian Gibbons identified
and purified axonemal dynein from Tetrahymena axonemes
(Gibbons, 1963; Gibbons and Rowe, 1965). This was the
first microtubule molecular motor identified and its discovery
represents a major milestone in cell biology. Follow-up studies
using both Paramecium and Tetrahymena cilia identified how
the sliding force between doublet microtubules is translated
into the bending force that is seen during beating and the
requirement of calcium and calcium signaling for propagation
of ciliary beating (Bancroft, 1906; Satir, 1965, 1968; Mogami and
Takahashi, 1983; Funfak et al., 2015; Yano et al., 2015). These
works represent major advances in our understanding of how
cilia beating is facilitated.

At the molecular level, the ease of reverse genetic approaches
in ciliates allows for directed investigation of ciliary proteins. The
conserved protofilament ribbon protein, Rib72, is not only a MIP,
but it is necessary for the localization of a majority of MIPs in the
A-tubule of Tetrahymena ciliary axonemes (Stoddard et al., 2018).
When A-tubule MIPs are lost from axonemes, the structural
integrity of the axoneme is compromised resulting in cilia that
bend abnormally as they move through the typically rigid power
stroke (Stoddard et al., 2018). As a result, their waveform and
coordination with neighboring cilia is disrupted suggesting that
MIPs play an important role in the structural support for the
ciliary axoneme (Figure 2). Tetrahymena have also been used to
functionally characterize ciliary components of radial spokes and
the dynein arms, and both are necessary for proper ciliary beating
(Urbanska et al., 2015, 2018).

A final and important area of research that ciliates have
contributed greatly to is the study of tubulin post-translational
modifications. Acetylation of tubulin is a common post-
translational modifications found in stable populations of
microtubules. The acetyltransferase MEC-17 is responsible for
K40 tubulin acetylation and was first identified in Tetrahymena
(Akella et al., 2010). Identification and characterization of the
TTLL family of tubulin modifying enzymes has also been carried
out in Tetrahymena (Janke et al., 2005). From these studies we
find that tubulin glutamylation and glycylation affect the stability
and waveform of ciliary beating in Tetrahymena axonemes
(Wloga et al., 2008, 2009, 2010; Suryavanshi et al., 2010; Junker
et al., 2019). Overall, ciliates have been utilized to demonstrate
how motile cilia beat and the molecular players that affect ciliary
structure and function.

PERSPECTIVES AND FUTURE OUTLOOK

The strengths of ciliate research on cilia lies in their favorable
genetics and the abundance of cilia in each cell. The simplicity
of basal bodies and cilia isolation, combined with the ease
of functional characterization of specific ciliary components,
ensures that ciliates will be a viable option for basal body and
motile cilia research. The resolution achieved by single particle
cryo-EM and cryo-ET of Tetrahymena axonemes is exciting
and provides a promising platform for future structural work.
Ciliates are also poised to play a large part in understanding
the biomechanics of ciliary beating. High speed imaging of
ciliary beating is possible in ciliates and its use, coupled
with genetic study of specific proteins, will be important for
understanding how the whip-like ciliary beat stroke is performed
and maintained (Funfak et al., 2015; Stoddard et al., 2018). Cilia
disassembly is not well understood and the ease of inducing
deciliation in ciliates could prove powerful for future research.
Further, ciliates are positioned well for the study of human
ciliary disorders. Genetic variants of Primary Ciliary Dyskinesia
(PCD) have been modeled in Paramecium offering unparalleled
insight into the pathology of this devastating disorder (Fassad
et al., 2018). Given advances that have already been made,
and blossoming avenues ripe for study, there is reason to
believe that the future of ciliate research is bright and the
best is yet to come.
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