
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Bridging DFT and DNNs: A neural dynamic process model of scene representation, guided 
visual search and scene grammar in natural scenes

Permalink
https://escholarship.org/uc/item/8k85s8nc

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Grieben, Raul
Schöner, Gregor

Publication Date
2022
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8k85s8nc
https://escholarship.org
http://www.cdlib.org/


Bridging DFT and DNNs: A neural dynamic process model of scene
representation, guided visual search and scene grammar in natural scenes

Raul Grieben (raul.grieben@ini.rub.de)
Ruhr-Universität Bochum, Institut für Neuroinformatik

Universitätsstraße 150, 44801 Bochum, Germany
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Abstract

We extend our previous neural dynamic models of visual
search and scene memory (Grieben et al. (2020); Grieben and
Schöner (2021)) to move beyond classical “laboratory” stim-
uli. The new model can autonomously explore a natural scene
and build a scene memory of recognized objects and their loca-
tions. It is also capable of guided visual search for object cat-
egories in the scene. This is achieved by learning object tem-
plates for object recognition, and feature guidance templates
for visual search and associating them to categorical concepts.
We address how preattentive shape can be extracted from the
visual input and how scene guidance, specifically, scene gra-
mar (Võ, 2021), emerge. For the first time, we embed fea-
ture extraction by a headless deep convolutional neural net-
work (CNN) in a neural dynamic (DFT) architecture by learn-
ing a mapping from the distributed feature representation of the
CNN to the localist representation of a dynamic neural field.

Keywords: neural dynamic process model; dynamic field the-
ory; visual search; natural scenes; scene guidance; scene gram-
mar; supervised one shot continual online learning; convolu-
tional neural network; deep neural networks;

Introduction
A farmer looking for a pig will probably not find it if it is
flying around. Because pigs don’t fly (which is why “when
pigs fly” expresses impossibility). The world we live in
is highly structured, and that structure induces expectations
that strongly influence how we search and ultimately inter-
act with objects in our environment (Võ (2021); Võ and
Wolfe (2015); Hollingworth (2012)). Yet the vast majority
of studies in visual perception use artificial visual scenes and
simplified stimuli. These greatly advanced our understand-
ing of the basic principles underlying visual search (Wolfe
& Horowitz, 2017), but provided limited understanding of
how humans search for real-world objects (Vickery, King,
and Jiang (2005); Cunningham and Wolfe (2014)) in nat-
ural scenes (Hollingworth, 2012). The classical version of
the perhaps most influential theory of visual search, “guided
search 2.0” (GS) (Wolfe, 1994) did not directly transfer to
natural scenes (Wolfe, Võ, Evans, & Greene, 2011). To ad-
dress that, Wolfe, Võ, et al. (2011) proposed the concept
of scene guidance and incorporated it in his updated the-
ory “GS 6.0” (Wolfe, 2021). Wolfe (2021) distinguished be-
tween two categories of scene guidance: syntactic guidance
(e.g.,“pigs don’t fly”) and semantic guidance (e.g.,“whales do
not live in a closet”). A special case of such scene guidance
has been formalized through the notion of scene grammar

(Võ, 2021) based on experimental findings that anchor ob-
jects and their reproducible spatial relation to other objects
(Boettcher, Draschkow, Dienhart, & Võ, 2018) enable hu-
mans to strongly reduce the area scanned in visual search
(Võ, 2021). Alongside the increased interest in theories
and models of scene guidance in the psychological domain
(Castelhano & Krzyś, 2020), attention has also become an
important topic in deep learning (see Niu, Zhong, and Yu
(2021) for a review), although there is a considerable gap
between the understanding of attention in these two fields.
There have been attempts to incorporate top-down modulated
guidance into deep feed-forward neural networks for visual
search (Zhang et al. (2018); Gupta, Zhang, Wu, Wolfe, and
Kreiman (2021)). In the brain, visual search and voluntary
attention are both part of a top-down recurrent feedback loop
(Knudsen, 2007). Unfolding this loop into a feed-forward
network needs critical examination. We would argue that a
model for visual search and attention always needs a recur-
rent feedback loop and stable memory representations to be
able to interact with the environment in a goal-oriented way.
Zelinsky et al. (2021) presented an inverse-reinforcement
imitation-learning model that inferred reward functions and
policies from target-specific behavioral fixation data. Their
model generated reward maps that showed patterns which
suggested not only feature guidance, but also guidance by
scene context. We presented a neural process model for
guided visual search and scene memory that did not only
account for classical findings like feature vs. conjunction
search, but also proposed answers to long-standing questions
in the field of visual search: The influence of scene mem-
ory in the preview paradigm (Grieben et al., 2020) and the
relationship between attention and feature binding (Grieben
& Schöner, 2021) in the context of the unexpectedly efficient
triple conjunction search (Nordfang & Wolfe, 2014). This
model was limited to classical laboratory stimuli, however.
Here we present a neural process model that substantially ex-
tends our previous models (Grieben et al. (2020); Grieben and
Schöner (2021)) to natural scenes in a neurally plausible way.
At the same time we incorporate a new neural process account
for scene grammar. Enabling the model to interact with natu-
ral scenes required a major innovation, interfacing for the first
time, a neural architecture based on Dynamic Field Theory
(Schöner, Spencer, & DFT Research Group, 2016) with a pre-
trained headless deep convolutional neural network (CNN;
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VGG16: Simonyan and Zisserman (2014)) that provides fea-
ture extraction. The interface is based on neurally plausible
learning and makes it possible to combine the strength of the
two frameworks. DFT delivers autonomous process organi-
zation, sequence generation, and working memory. CNNs
are undoubtedly able to extract the complex features needed
for object recognition, similar to what the ventral stream
of human vision does. Neural populations in inferior tem-
poral cortex (IT) represent object identity over space in a
manner sufficient for object recognition (DiCarlo, Zoccolan,
& Rust, 2012). Lim et al. (2015) inferred that the rule of
synaptic plasticity rule observed for IT neurons is akin to the
Bienenstock-Cooper-Munro (BCM) (Bienenstock, Cooper, &
Munro, 1982) learning rule. We propose, therefore, to use
the biologically plausible BCM rule to map the distributed
representation of the CNN feature maps to the localist repre-
sentation of a 3D neural field defined over space and object
identity as found for IT neural populations. This enables the
model to learn new object concepts from single exposures in
a supervised one-shot continual online learning fashion (Mai
et al., 2022). To guide visual search in natural scenes we also
had to solve the problem of learning the association between
categorical (label) concepts and their corresponding preatten-
tive shape guidance features (Wolfe, 2021). Our solution is to
extract these guidance features from an intermediate layer of
the CNN model, as proposed by Wolfe (2021).

Methods
The neural process model is based on Dynamic Field Theory
(DFT; Schöner et al. (2016)) a mathematical framework that
characterizes graded activation patterns of neural populations
that evolve continuously in time. The model also embeds a
headless CNN as a feature extraction network.

Neural Dynamic Fields
Neural populations tuned to a metric dimension xxx, e.g., a fea-
ture or movement parameter, are modeled as neural activation
fields. The continuous evolution, on the time scale τ, of field
activation emerges from the neural dynamics

τu̇(xxx, t) =−u(xxx, t)+h+ s(xxx, t)+ξ(xxx, t)

+
∫

ω(xxx− xxx′) σ(u(xxx′, t)) dxxx′
(1)

in which the negative resting level, h, and external input,
s(xxx, t), define the attractor state of the system, if the over-
all activation level remains below the threshold of the sig-
moidal nonlinearity, σ(u) = 1/(1+ exp[−βu]). In the case
of sufficiently strong localized input, the system transitions
to a supra-threshold peak of activation, which is described as
the detection instability. Supra-threshold activation engages
in neural interaction defined by the kernel, ω(xxx − xxx′), that
is excitatory over small, and inhibitory over large distances,
xxx− xxx′, within the field. Additive neural noise ξ(xxx, t) allows
for stochastic switches between stable states near instabil-
ities. Stable supra-threshold activation peaks are the units

of representation in DFT. Depending on the kernel parame-
ters, fields may operate in different dynamic regimes. In the
self-stabilized regime, peaks are stabilized against decay and
changes in input. In the selective regime, only a single peak is
stable at any point int time. In the regime of sustained activa-
tion, peaks may persist after the localized input that induced
them is removed.

Networks of fields
Cognitive processes and motor behavior are realized through
networks of fields in which sequences of processing emerge
from the underlying dynamic instabilities. Networks are de-
fined by directional coupling among different fields and even-
tually to sensory-motor systems. Directional coupling or pro-
jection means that supra-threshold activation of one field pro-
vides either excitatory or inhibitory input to another field.
Projections from lower-dimensional to higher-dimensional
fields perform dimensionality expansion by providing ridge
or slice input. The reverse projections perform dimensional-
ity contraction through marginalizing by integration.

The neural dynamic process model
The neural dynamic process model shown in Fig. 1 is able to
autonomously explore the visual scene and build a scene rep-
resentation, the scene memory, of recognized objects, their
features and their position in space. In the presence of one or
more search cues (P) it is able to perform neurally plausible
guided visual search for real-world object categories in nat-
ural scenes. It can also use known semantic structure of the
scene, the scene grammar, to reduce the search space by in-
ducing a relational bias centered on a detected anchor object
(Võ, 2021). Regardless of its figurative depiction the model
is a system of coupled neural integro-differential equations.
Neural activation evolves continuously in time and discrete
events emerge from instabilities in the dynamics. Outside of
the feature extraction no further algorithms are used in the
model. All different cognitive modes of the model emerge
naturally from the neural dynamics. Its real-time numerical
simulation is achieved by implementing it in cedar (Lomp,
Richter, Zibner, & Schöner, 2016). In the following the dif-
ferent sub-networks of the model are explained while follow-
ing along Figure 1 with sub-networks being referenced via
uppercase letters.

Feed-forward feature and salience maps
The bottom-up pathway of the model is constituted by a par-
allel preattentive process that extracts low-resolution retinal
(C) and high-resolution foveal (J) features in parallel from the
input image(D). This is a simplified account for the two (ven-
tral and dorsal) vision pathways in the human brain (Goodale
& Milner, 1992).

Retinal Feature Extraction Preattentive color and preat-
tentive shape are extracted from a scaled down version of
the input image (retinal image) (D). Preattentive color is ex-
tracted from hue-space (C2). Preattentive shape is extracted
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Figure 1: An overview of the neural dynamic process model.

from the intermediate conv 4-3 convolutional layer of the
VGG16 network (C4). Each feature filter generates the input
to the corresponding scene space/feature map field (B). The
feature conspicuity maps (H3) are the result of marginaliza-
tion along the feature dimension of their corresponding scene
space/feature map field (B), by using a center-surround fil-
ter (H1) as the projection kernel (see Grieben and Schöner
(2021) for an explanation). These serve as the input to the
scene spatial salience field (H2) that represents the non-linear
spatial salience map (Itti & Koch, 2000) of the model.

Foveal Feature Extraction The foveal image (E) is ex-
tracted from the original input image at the currently attended
location specified through the scene spatial selection field
(L). From this attended color (J6) and label (J7) are ex-
tracted. Color is extracted from hue-space (J1) and serves
as input to the foveal space/color map field (J4) that is de-
fined over the two dimensions of foveal space and over one
color feature dimension. Label is the result of a learned map-
ping from the last convolutional layer (conv 5-3) of the head-
less VGG16 network (J2) to the foveal space/label map field
(J5). The marginalized activation over the color/label dimen-
sion of these foveal map fields (J4, J5) serves as the input
to the attended color/label fields (J6, J7). These selective
fields represent the dominant color/label at the attended loca-
tion through a single peak along their feature dimension.

Attentional selection
Biased attentional selection is the basis for flexible, goal-
driven, human behavior. Therefore, all visual cognitive pro-
cesses in the model emerge from attentional selection. This
is achieved by the scene spatial selection field (L) that selects
a salient region in the visual scene through biased competi-
tion (Desimone & Duncan, 1995). It receives an excitatory

bottom-up bias from the scene spatial salience field (H2) and
three excitatory top-down guidance biases from the feature
guidance1 (F3), the coordinate transformed scene guidance
(K2), and memory guidance (N3) spatial map fields. The in-
hibition of return (IOR) memory trace (G) steers the selection
away from previously attended locations, enabling sequences
of attentional selection.

Exploration and scene memory
One important key to understand human visual cognition is
the incidental scene memory of attended objects, the scene
representation, that humans continuously build (Draschkow,
Wolfe, and Võ (2014); Hollingworth (2006)). For this rea-
son, autonomous visual exploration of the scene is the default
behavior of the model. Since working memory (WM) does
not contain any cues, attentional selection is only biased by
the bottom-up salience of the visual input. The model se-
quentially attends salient regions in the scene and commits
the label, if a known object is recognized, and color at the
currently attended location to the scene memory fields (M).
These fields operate in the regime of sustained activation (see
Grieben et al. (2020) for an explanation of capacity limits in
these memory fields). The neural timer CoD (R2) inhibits the
scene spatial selection (M) field, so that a new cycle of atten-
tional selection arises.

Visual search
Most real-world interactions with objects entail a preceding
visual search for it. This requires the neural activation of
a guidance template (Wolfe, 2021) for the object in work-

1We corrected the misnomer scene guidance in the Grieben et al.
(2020) model to feature guidance to prevent a name clash with the
new correct scene guidance sub-network.

209



ing memory, which biases selection through top-down recur-
rent feedback loops. Therefore, in the model visual search
emerges naturally from the dynamics by top-down biasing
the selection decision in the scene spatial selection field (L)
through peaks in the working memory fields. Visual search
terminates when there is a peak in the target position (WM)
field (O2), or if there are no more salient locations left for
selection.

Neural activation of working memory The model’s vi-
sual search cue is evoked through an external task cue in the
form of simulated language interaction, e.g., “Look for a red
pepper in the kitchen”. Cues are realized through the activa-
tion of concept nodes (S) that provide input to the label cue
(WM) (S3), color cue (WM) (S6), scene type (WM) (S9) fields.
Scene type information is part of the provided language cue,
since recognition through scene gist is out of the scope of our
model. We focus on how different active concepts interact
with visual search and not how these get activated by lan-
guage or gist. The selective label/scene/anchor) field (P8) is
a simplified (hand-crafted) account for the long time mem-
ory (LTM) representation of known label/scene/anchor com-
binations obtained through experience. If an anchor object
is known for the current scene and label it causes a peak to
emerge in the anchor label (WM) field (P5), which then bi-
ases attentional selection towards the anchor. Inhibitory cou-
plings between fields in the search cue sub-network (P) allow
for the autonomous transition from the highly efficient scene
guidance search to the efficient feature guidance search, when
the anchor object was not found in the current scene. The se-
lective label/anchor/relation) field (P6) is also a simplified
(hand-crafted) account for the LTM representation of known
label/anchor/relation combinations obtained through experi-
ence. It gives input to the anchor relation (WM) field (P2) and
a peak in this field emerges, when there is a known relation
for the current label and anchor.

Feature matching In DFT matches between expected (P3,
P4) and attended (J6, J7) features are detected through the
detection instability. Specifically, a match detection field (R4)
receives localized input from these fields such that only if
these inputs overlap sufficiently is goes through a detection
instability. These matches are detected in parallel along each
feature dimension. If all expected features match their at-
tended counterpart the condition of satisfaction node (R5)
(Sandamirskaya & Schöner, 2010) gets activated. It signals
that a matching object was found, and the current attended lo-
cation is committed to the matching object memory (O). De-
pending on the activation in the anchor label (WM) (P5) field
the current position is stored in the anchor position (O3) or in
the target position (O2) (WM) field. A supra-threshold peak
in either of the matching object memory (O) position fields
inhibits the intention node (R3) of the feature matching sub-
network (R). This allows for further cognitive operations on
the currently attended location, by effectively preventing the
attentional selection of a new location. The content of the

selective expected color (P3) and expected label (P4) fields
are modulated by top-down task inference that is the result of
their coupling to other fields in the search cue sub-network
(P).

Memory guidance Visual search is additionally influenced
by already present scene memory (Hollingworth (2006);
Hollingworth (2012); Draschkow et al. (2014); Grieben et al.
(2020)). In the model this bias is implemented through the
memory guidance spatial map (N3), which gives previously
attended locations with matching features a selective advan-
tage (see Grieben et al. (2020) for experimental results and an
in-depth analysis of this bias from memory).

Feature guidance Feature guidance is the core working
memory bias in visual search (Wolfe and Horowitz (2017)).
In the model this bias comes from the feature guidance spa-
tial map (F3), which gives locations with matching features
a non-linear selective advantage. The non-linear bias that
emerges naturally from the underling dynamics has been ex-
perimentally verified (for conjunction visual search and its
interaction with scene memory see (Grieben et al., 2020) and
against triple conjunction (Nordfang & Wolfe, 2014) visual
search see (Grieben & Schöner, 2021)). In the current model
we specifically addressed the question how guidance tem-
plates for object categories in natural scenes could be learned
from the visual input. Therefore, the feature guidance tem-
plate (Q) comes from an adaptive LTM representation that
is updated through experience. The guiding features used in
this model are restricted to preattentive shape and color since
these are known guiding features for objects in natural scenes
(Wolfe, 2021). The learned color guidance feature can be re-
placed by other top-down inference processes to enable flex-
ible adaptation to specific search tasks.

Scene guidance/grammar In this model we now include a
new neural process that utilizes anchor objects and their spe-
cific spatial relation regarding other objects in visual search.
To this end the architecture utilizes a coordinate transforma-
tion of activation patterns that represent operators in rela-
tional spatial language Richter, Lins, and Schöner (2021) to
provide an attentional bias relative to a found anchor object.
The appropriate spatial pattern emerges in the relation/space
field (K3) through an incoming overlap between the current
anchor relation (WM) (P2) and the preshaped possible rela-
tion patterns. Due to the peak representation in the anchor
position (WM) field (O3) it is possible to perform a coor-
dinate transformation (K2; Schneegans and Schöner (2012))
that shifts the spatial pattern peak in the scene guidance spa-
tial map field (K4) accordingly and provides it as bias input
for attentional selection to the scene spatial selection field
(L). A supra-threshold peak in the scene guidance spatial
map field (K4) additionally inhibits the anchor label (WM)
(P5) and the anchor position (WM) (O3) fields and thus stops
the model from searching for the anchor.
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Learning object and guidance templates
As long as the model is attending a location, a supervisor
can provide an appropriate label (S3) (by activating a concept
node), which is then associated with the features observed at
the currently attended location. Learning is induced through
the activation of a learn boost (A1) that gives rise to a transient
activation pattern (A2,A3) (Kazerounian, Luciw, Richter, &
Sandamirskaya, 2013). In the model two dynamic learn pro-
cesses depend on the transient activation pattern. First, learn-
ing the association between the complex foveal shape fea-
ture at the attended location and the given object label (class)
(object template). Second, learning the association between
the given label and the retinal preattentive features (guidance
template). A single transient activation is sufficient to learn
a new object class. While learning takes place the intention
node (R3) of the feature matching sub-network (R) is inhib-
ited, effectively preventing the selection of a new location in
the scene spatial selection field (L) during learning.

Learning of an object template A headless VGG16 net-
work (J2) provides the complex feature maps m f ( f is the
feature index), that are needed for object recognition, from
the foveal image (E). The object template consists of con-
nection weights, wmf,ufsml , that perform the transformation
from the distributed representation in the feature maps m f to
the localist representation in the foveal space/label map field
(ufsml, J5). These connections weights are updated according
to a dynamic version of the BCM (Law and Cooper (1994);
Udeigwe, Munro, and Ermentrout (2017)) rule:

τwẇmf,ufsml(xxx, t) = η σ(ulearn) y (y−Θ)
mf(x1,x2, t)

Θ

y = σ(ufsml(xxx, t))

τΘΘ̇ = (y2 −Θ),

(2)

with η being the learning rate and ulearn the activation of
the transient learn node (A2). Before learning the label cue
(WM) field (S3) provides slice input to the foveal space/label
map field (J5) and the learn node (A2) down-regulates the
resting level of the field by supplying a homogeneous in-
hibitory input to it. After learning the input sufsml to the foveal
space/label map field is:

sufsml(xxx, t) =
F−1

∑
f=0

mf(x1,x2, t) wmf,ufsml(xxx, t). (3)

Learning of the guidance templates The synaptic weight
pattern wlcgm for the label/color guidance map field (ulcgm,
Q6) is updated according to a dynamic version of the Heb-
bian learning rule (Tekülve, Fois, Sandamirskaya, & Schöner,
2019):

τẇlcgm(xxx, t)=−η σ(ulearn) (σ(ulcgm(xxx, t))−wlcgm(xxx, t)) (4)

with η being the learning rate and ulearn the activation of the
transient learn node (A2). The weight pattern wlcgm for the
label/shape guidance map field (ulsgm, Q3) is updated using

an analog rule. Activation of the transient learn node (A2)
enables the formation of peaks in the guidance map (Q2, Q5)
representing the currently attended preattentive (retinal) fea-
tures (I3, I4), which are required for association. After learn-
ing the synaptic weight pattern wlcgm and wlsgm serve as pre-
shape input to their corresponding guidance map fields.

Results
The neural architecture inherits all the properties of our pre-
vious models (Grieben et al. (2020); Grieben and Schöner
(2021)) retaining the ability to fit and explain the relevant ex-
perimental findings. We used six class images to train our
model and three scenes to test it shown in Fig. 2.

Figure 2: One-shot training images for six different classes
(bottom) and the three test scenes (top). Bathroom image
adapted from Võ (2021) (Fig. 5).

Exploration and scene memory

Figure 3: Demonstration of the exploration behavior of the
model.

In Fig. 3 we see how the model autonomously selects
salient locations in the visual scene and stores the labels (and
colors) at the attended location in the scene memory fields.

Visual search
In Fig. 4 we see the two possible cases of guided visual search
that emerge from the model: 1) for a label (top) and 2) for
a label-color combination (bottom). In the first case, where
only a label pepper is supplied, the guidance features of the
learned representation emerge in working memory. Since the
model was trained on a yellow pepper, the color guidance
feature field contains a peak at yellow. But since this feature
is only used for guiding, the model will stop at the first pepper
it attentionally selects, since the expected color field contains
no peak. In the second case, where the color cue red was
supplied with the label pepper both the expected color and
the color guidance feature fields contain a peak representing
red. In the summed input to the scene spatial selection field
one can see that this small change in working memory has
a noticeable effect. Activation in the shape guidance feature
field unfolds the same in both search cases.
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Figure 4: Demonstration of the model performing two visual
search tasks, with (bottom) or without (top) an extra color
cue.

Scene guidance/grammar

Figure 5: Demonstration of the model performing a scene
guidance/grammar task (looking for the invisible mirror).
Task image adapted from Võ (2021) (Fig. 5).

In Fig. 5 we see the model performing a task presented in
Võ (2021) to test the ability of the scene guidance/grammar.
It receives the label mirror and the scene type bathroom. We
see that at first, in timesteps T2-T3, the expected label is mir-
ror. Then in timesteps T4-T5 a strong input for the label sink,
that originates from the anchor label field (not depicted), cre-
ates a peak in the same field and the peak for mirror decays
due to the field’s global inhibition. This small change in fea-
ture guidance is reflected in the summed input to the scene
spatial selection field. The sink in the scene has now the high-
est salience (T5-T6) and is therefore selected in the next cycle
of attentional selection (T7). The label match detection de-
tects (T8), that it is attending the expected label, and the cur-
rent position is stored through gating into the position (WM)
of the scene guidance sub-network (T9). This destabilizes the
working memory representation of the anchor label (WM),
and a peak at the mirror label forms again (T11-T12). Start-

ing at timestep T10 we see the relational bias above, evolve
over time, centered on the attended location of the sink. The
strength of this relational bias alone is enough to force a se-
lection decision for this specific region. This is consistent
with the looking heatmap shown in Võ (2021) (Fig. 5).

Discussion

We have extended our neural process models of visual search
and scene memory (Grieben et al. (2020); Grieben and
Schöner (2021)) to enable autonomously building a scene
representation and performing guided visual search on nat-
ural scenes. Along the way, we found solutions for three
important open problems. First, little is known on how hu-
mans guide visual search for objects in natural scenes. The
established guiding features (Wolfe & Horowitz, 2017) found
through controlled experimental setups and oversimplified
stimuli undoubtedly can guide visual search, but at the same
time visual search for natural objects seems to be essentially
unguided (Vickery et al., 2005), when presented outside of a
meaningful scene. There is evidence, that color (Wolfe, Al-
varez, Rosenholtz, Kuzmova, & Sherman, 2011) and preat-
tentive shape (Wolfe, 2021) are some of the few features that
also guide visual search for natural objects. But what this
preattentive shape really is remains an unsolved question. In
the paper we presented a solution on how the association be-
tween a object concept and preattentive shape can be learned
from the intermediate layer of a CNN (as proposed by Wolfe
(2021)). Second, humans can use the structure of the scene,
scene grammar, to guide search for objects in natural scenes
highly efficiently (Boettcher et al. (2018); Võ (2021)). Here
we presented a new neural process on how scene grammar
can emerge from the underlying dynamics of the model. To
our knowledge this is the first model to account for it. Third,
searching for objects implies learning object templates for ob-
ject recognition. For this we embedded a headless CNN as a
feature extracting network into our DFT model, for the first
time. And presented a biologically inspired mapping from
the distributed representation of the CNN feature maps to the
localist representation of neural fields. The biggest strength
of our model compared to an end-to-end learned CNN is be-
sides the obvious neural plausibility, that the model oper-
ates in a closed behavioral loop. Stable memory represen-
tations allow for goal-oriented actions and the adaptive recur-
rent top-down feedback allows top-down inference processes
to flexible switch between modes, without the need for spe-
cific algorithms. Given the nature of the DFT framework in
which models are built from conceptually constrained build-
ing blocks, the present model may serve as the perceptual
front-end for any DFT model that processes visual input. Our
model could thus be combined with any previous DFT models
that worked on simplified stimuli, extending these to natural
images. Ultimately, this brings us a step closer to the concep-
tion of an autonomous agent that achieves higher cognition in
natural environments. Future work must validate the model
against human behavioral data.
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