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ABSTRACT 

 

An improved climatological forecast for projecting end-of-season Water Requirement 

Satisfaction Index (WRSI) 

 

By 

 

William A Turner 

 

A simple—yet powerful—indicator used to monitor weather-related food insecurity is the 

Water Requirement Satisfaction Index (WRSI). This water-balance model uses precipitation 

(PPT) and potential evapotranspiration (PET) data to estimate the water supply and demand a 

crop experiences over the course of a growing season. If the season is still in progress, 

climatological forecast data can be adjoined with to-date conditions to provide insight into 

potential end-of-season crop performance. However, if used incorrectly, these same 

indicators can become a detriment to early warning, resulting in a lack of, or misallocation 

of, precious humanitarian aid. While several prominent agencies and data centers use 

arithmetic average climatological data as proxies for “average conditions,” little published 

research has evaluated the effectiveness of this forecast method when used in crop-water 

balance models (i.e., WRSI). We use the WRSI hindcasts of three African regions’ primary 

growing seasons, from 1981-2019, to assess the adequacy of the arithmetic mean 

climatological forecast. We find that this method of forecasting end-of-season (EOS) WRSI 
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 results in crop-water condition predictions that are positively biased, i.e., they overestimate 

WRSI. This bias ranges from 2-23% positive bias throughout portions of east, west, and 

southern Africa. The proposed alternative is a scenario-based approach, which adjoins the 

to-date conditions with data from previous seasons to produce a series of historically realistic 

conclusions to the current season (one potential scenario generated from each year in the data 

record; 1981-2019). The mean of these scenarios is then used as the projected end-of-season 

WRSI, hereby referred to as the WRSI Outlook. We find this approach has a near-zero bias 

score, and correspondingly, it has an improved (lower) Root Mean Squared Error (RMSE) in 

comparison to the traditional arithmetic average climatological method. While an increase in 

accuracy is a welcome by-product, the slight decrease (or increase, as seen during wet years) 

in RMSE has less to do with forecast skill, and more to do with  the reduction of bias 

provided by the mean-scenario method. In total, the findings from this paper highlight the 

inadequacies of the existing arithmetic mean climatological forecast method when used to 

project EOS WRSI and present a less-biased, and more accurate, mean scenario-based 

approach. 
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1 Introduction 

As the five-year mark of the UN General Assembly 2030 Agenda for Sustainable 

Development looms on the horizon, hunger is on the rise globally (FAO et al., 2019). A 

recent Global Report on Food Crises by the World Food Programme (WFP) estimates that 

135 million people across 55 countries are, or will be, in need of urgent humanitarian food 

and nutrition assistance this year; of those, more than half are in Africa (WFP, 2020). Global 

food security can be categorized as a disruption to one or more of the following pillars: 

adequate food availability, food access, food utilization, stable prices, and incomes (Brown et 

al., 2015). The destabilization of these pillars frequently stems from either conflict and 

insecurity, or weather and climate (FAO et al., 2017). While conflict and insecurity has been 

the predominant driver of food insecurity, weather extremes are increasingly significant 

(WFP, 2020). Furthermore, when separated by key drivers, Africa had the largest numbers of 

acutely food-insecure people in need of assistance in countries predominantly affected by 

adverse weather events, particularly in east and southern Africa (FAO, 2019). Fortunately, 

international aid agencies, national disaster risk management systems, and nongovernmental 

organizations can often provide effective humanitarian relief by identifying and targeting the 

most food-insecure populations for assistance (Funk et. al., 2019). In particular, the Famine 

Early Warning System Network (FEWS NET)  assists by providing timely and localized 1

1 FEWS NET partners and implementers include the U.S. Agency for International Development’s Bureau for 
Humanitarian Assistance (USAID BHA), United States Geological Survey Earth Resource Observation and 
Science Center (USGS/EROS Center), National Aeronautics and Space Administration (NASA), National 
Oceanic and Atmospheric Administration (NOAA), Chemonics International, and the Climate Hazards Center 
(CHC). 

1 



 

agroclimatic information necessary for identifying those areas and populations most at risk of 

drought- or flood-induced food insecurity (Funk et. al., 2019). With early warning, 

appropriate interventions can be made (example: UNDP, 2018; DuBois et. al., 2018). 

However, if used incorrectly, these same indicators can become a detriment to early warning. 

Here, we document the tendency of one commonly used indicator for seasonal crop-water 

monitoring, the Extended Water Requirement Satisfaction Index (Extended WRSI), to 

systematically overestimate end-of-season (EOS) crop conditions when using arithmetic 

average climatology inputs (precipitation [PPT] and reference evapotranspiration [RefET]). 

In its place, we propose an alternative, mean scenario-based approach, which corrects for 

these biases and provides an improved means of projecting EOS crop conditions. 

The timely and spatially focused monitoring products, seasonal outlooks, and 

agroclimatic alerts provided by FEWS NET and its partners guide humanitarian assistance, 

helping to save lives and secure livelihoods among some of the world’s most food-insecure 

populations. Given the increasing attribution of climate and weather-induced food insecurity 

(​SADC, 2016; Archer et. al., 2017; Funk et al., 2018, 2019; Shukla et al., 2020)​, there is an 

increased effort to expand upon and improve the ability to monitor agroclimatic conditions. 

Some existing methods use remote sensing and in situ data, including precipitation (Funk et 

al., 2015b) and evapotranspiration (Hobbins et al., 2020; Hobbins et al., 2019) products, and 

derived crop-water balance models. ​The WRSI, originally calculated with station rainfall and 

average dekadal reference evapotranspiration, has been shown to be directly related to crop 

yield data in Senegal, Algeria, Ethiopia, and Togo using linear yield-reduction functions 

(FAO, 1977; FAO, 1979; FAO, 1986; Lhomme et al., 1991). In addition to its use as a proxy 
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crop yield index, satellite rainfall-based WRSI simulations have been used to determine loss 

exceedance probability (LEP) curves for maize in Kenya, Malawi, and Mozambique, and for 

millet in Niger. Drought frequency maps indicating the drought return interval at the district 

level were used to indicate the agricultural drought risk characteristics for the selected crops 

(Jayanthi et al., 2014). However, to our knowledge, no research has been undertaken to 

investigate the implications of using arithmetic mean climatological inputs, neither in regards 

to the original formulation of using average evapotranspiration with time-specific 

precipitation, nor in the case of the Extended WRSI, which uses average PPT and RefET to 

project EOS WRSI.  

The following three chapters are laid out as follows. Chapter 2, Materials and 

Methods, (1) first details the data used in the calculation of the WRSI in this thesis. (2) Next, 

we provide an in-depth documentation of the WRSI, describe the existing WRSI forecast 

methodology (Extended WRSI) and its shortcomings, and propose an alternative approach to 

a climatological forecast (the WRSI Outlook). Lastly, we detail the methods/metrics for 

testing the skill of both forecasts. Chapters 3 and 4 detail the bias and accuracy scores of each 

forecast method, and provide a discussion of the causes and implications of these results. 

Finally, Chapter 5 provides brief concluding remarks, including a summary of our findings, 

and a suggested way forward for WRSI forecasting. 
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2 Materials and Methods 

2.1 Data 

Climate Hazards InfraRed Precipitation with Stations 

The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) data 

set is a 30+ year, quasi-global rainfall data set, available at the monthly, dekad, pentad, and 

daily time steps. CHIRPS spatial coverage spans from 50°S-50°N (over all longitudes), with 

the data record extending from 1981 to near present. CHIRPS blends a high-resolution 

climatology (Funk et al. 2015a) with station data and inter-calibrated (Knapp et al. 2011) 

thermal infrared precipitation estimates to create a 0.05-degree native spatial resolution 

gridded rainfall time series appropriate for trend analysis and seasonal drought monitoring in 

data-sparse regions with complex terrain. 

The CHIRPS product requires two steps for its operational production: (i) Pentadal 

rainfall estimates (five-day rainfall) are created from Cold Cloud Duration-based satellite 

data, which are obtained from regression models, and calibrated using TMPA 3B42. The 

pentadal estimates are converted to fractions of the long-term mean precipitation estimates, 

and are then multiplied by the Climate Hazards Center’s Precipitation Climatology version 1 

(CHPClim) (Funk et al. 2015a) data to remove the systematic bias. This outcome is named 

CHIRP. (ii) In situ observations from stations are blended with the CHIRP data using a 
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modified inverse distance weighting algorithm in order to produce CHIRPS (Funk et al., 

2015b).  

The creation of CHIRPS has supported drought monitoring efforts by the USAID 

Famine Early Warning Systems Network (FEWS NET), and has proven  to be one of the 

most accurate rainfall products for characterizing wet seasonal cycles (Dunning et al., 2016; 

Salerno et al., 2019), climate variability (Dinku et al., 2007, 2018) and agricultural drought in 

Africa (Agutu et al., 2017; Ayehu et al., 2017; ​Ndayisaba et al., 2017; Zhan et al., 2016​).  

For use in the WRSI, CHIRPS is aggregated from daily to dekadal timesteps, and 

resampled to 0.1-degree resolution by the Climate Hazards Center. The climatology CHIRPS 

used in this study is calculated as the mean dekadal CHIRPS value from 1981 to 2019.  

Global Reference ET for the FEWS NET Science Community 

The Global Reference Evapotranspiration for the FEWS NET Science Community 

(RefET) is produced by the National Oceanic and Atmospheric Administration’s Physical 

Sciences Division (NOAA-PSD) (Hobbins et al., 2018, 2019a, 2019b, 2020). It is generated 

using atmospheric reanalysis data to calculate RefET using the American Society of Civil 

Engineers (ASCE’s) Penman–Monteith formulation on a daily basis (Allen et al., 2005), 

which is used in many studies (e.g., McEnvoy et al., 2016a, b). RefET is driven by five 

MERRA-2 variables: 2-m air temperature (T2M), 2-m specific humidity (QV2M), surface 

downward shortwave radiation (SWGDN), 2-m wind speed at 2 m height (U2M and V2M), 

and surface atmospheric pressure (PS). The RefET is calculated for two different crop types: 

(i) long-crop, or a 0.5-m alfalfa reference crop; (ii) short-crop, or a 0.12-m short grass 
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reference crop. Daily RefET surfaces are spatially downscaled to 0.125° x 0.125° using 

climatological monthly potential evaporation (PET) estimates from the International Water 

Management Institute (IWMI). The manuscript detailing this data set is currently in progress. 

For more information, please visit the Global Reference ET for the FEWS NET Science 

Community ​website​. 

For use in the WRSI, the short-crop RefET is aggregated from daily to dekadal 

timesteps, and resampled to 0.1-degree resolution by the Climate Hazards Center. The 

climatology RefET used in this study is calculated as the mean dekadal RefET value from 

1981 to 2019.  

2.2 Methodology 

2.2A Water Requirement Satisfaction Index 

Background 

Our analysis revolves around the water requirement satisfaction index (WRSI). Frère 

and Popov originally proposed this simplified crop-weather analysis model in 1979 to the 

United Nations Food and Agriculture Organization (FAO) as a proxy for crop performance, 

and an indicator of the satisfaction of the crop water requirements in areas of the world where 

water represents the main constraint for crops (FAO, 1979; FAO, 1986). The components of 

this crop water balance model are depicted via a schematic diagram in Figure 1, and then 

described in detail in the text that follows.  
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Figure 1: A schematic diagram showing the components of a crop water balance model. 
Terms and variables involved will be described in more detail in the following text. Source: 
Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model 
(Senay and Verdin, 2003).  

The WRSI is determined by the water supply and water demand a crop experiences 

during the growing season. The standard time step of analysis is the dekad, which splits the 

months into three parts; the first two dekads of a given month are 10 days long, and the third 

dekad completes the month (8-11 days) (WMO, 1992). Seasonal total water satisfaction is 

calculated by summing the corresponding dekadal values of the growing period. For a given 

monitoring interval (i.e., season) of ​n​ timesteps (i.e., dekads), WRSI is calculated as the ratio 

of actual crop evapotranspiration (AETc) to the crop water requirement, represented as the 

crop-specific potential evapotranspiration (PETc).  

RSI  00W =  
ET c∑

n

i=1
A

ET c∑
n

i=1
P

× 1 (1) 

It is important to note here the relationship between ET, PET, RefET (also referred to 

in academic literature at ET​0​), and AET. The distinction between these terms is described in 
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detail by the United Nation’s Food and Agriculture Organization guidelines for calculating 

crop evapotranspiration (FAO, 1998) and, more recently, in chapters seven and eight of 

Twenty-First Century Drought Early Warning, Theory and Practice (DEWS) (Funk and 

Shukla, 2020), but it can be summarized as follows. Evapotranspiration is traditionally 

defined as the combined upward moisture fluxes of evaporation and transpiration. To put this 

moisture flux in the context of atmospheric demand, the American geographer and 

climatologist Charles Warren Thornthwaite (1899-1963) introduced the concept of “potential 

evapotranspiration” (PET) as the amount of water which would evaporate and transpire from 

a surface ​if unconstrained by water supply​ (Thornthwaite, 1948). While PET is the term most 

frequently used in literature, the newer and more precise term is reference crop ET (RefET), 

where ​Ref​ is referring to a 0.12-meter high, green-grass reference crop with defined 

characteristics (FAO, 1998). The WRSI further adjusts the RefET using crop-specific 

coefficients that vary based on the phenology of different cereals and grains.  

 Kc  RefETP ET ci =  i ×  i (2) 

The Kc values define the water use pattern of a crop based on the growth stage at that 

point in the growing season. Published values (FAO, 1998) are available for critical points in 

a crop phenology, and intervening values are linearly interpolated for each time step (dekad) 

based on the length of the growing period (LGP) for that crop. The four crop growing phases 

are emerging, vegetative, flowering (i.e., reproductive), and ripening (i.e., maturation). Our 

analyses use millet as the crop type for west Africa, and maize for east and southern Africa. 

For both crop types, the Kc value for the emerging stage, which spans from the start of 

season (SOS) to the beginning of the vegetative phase, is 0.3. The timing of the succeeding 
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growth stages and corresponding Kc values for millet are as follows. The vegetative stage 

begins 14% into the LGP and ends at 38% of the LGP, with Kc values linearly interpolated 

from 0.3 to 1.0. The Kc during the flowering stage (38-76% of the LGP) is 1.0. The 

maturation stage spans the remainder of the season (76% to 100% of the LGP) with Kc 

values linearly interpolated from 1.0 to 0.3. Similarly, the timing of the growth stages and 

corresponding Kc values for maize are as follows. The vegetative stage begins 16% into the 

LGP and ends at 44% of the LGP, with Kc values linearly interpolated from 0.3 to 1.2. The 

Kc during the flowering stage (38-76% of the LGP) is 1.2. The maturation stage spans the 

remainder of the season (76% to 100% of the LGP) with Kc values linearly interpolated from 

1.2 to 0.3. For context, Kc values greater than one indicate periods of the phenological cycle 

in which the crop has a greater upper limit to its atmospheric demand of moisture than the 

reference​ green-grass crop used in the calculation of the RefET data.  

AETc, seen in the numerator of Equation 1, represents the actual (as opposed to the 

potential) amount of water withdrawn from the soil water reservoir, or Plant Available Water 

(PAW). Here, we must recognize that the hydrologic balance between upward (ET) and 

downward (i.e., PPT) fluxes at any given location and time will either be energy-limited or 

water-limited (Bouchet, 1963). In those locations and times where precipitation is in excess 

of evaporative demand, the balance will be energy limited, and thus, the actual amount of 

water vapor that evaporates and transpires from the soil and vegetation (actual ET or AET) 

will be capped by the RefET forcings (e.g., radiation, wind speeds, and vapor pressure deficit 

[VPD]) (Hobbins et al., 2012). In contrast, those times and places that are water limited will 

result in a water balance that is less than the net radiation balance, and thus, AET will be less 
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than RefET. This source-to-sink moisture imbalance results in a nuanced “complementary 

relationship” between RefET and AET, which was introduced by Bouchet (1963), and 

supported with observational evidence by Ramirez et al. (2005) and Hobbins et al. (2016). In 

general, neglecting heat storage, the energy balance at a given location on land is a function 

of the latent heat of vaporization, the amount of water vapor evaporated and transpired 

(AET), and the vertical advection of heat energy by atmospheric mixing in the planetary 

boundary layer (sensible heat flux). When there is ample soil moisture, evaporation occurs 

(water phase changes from liquid to vapor) and, correspondingly, latent heat increases. 

However, when a location is water limited and no new water inputs occur, latent heat will 

decrease due to the decrease in AET. More specifically, increased air temperature leads to an 

increase in saturation vapor pressure (SVP), while the lack of available moisture will lower 

the vapor pressure (VP). As such, the vapor pressure deficit will increase (​VPD = SVP - VP​). 

Given the VPD’s place in the numerator of the equation for RefET, this increase in VPD 

results in an increase in RefET (Hobbins et al., 2016). In the context of the WRSI, which 

measures plant-water satisfaction as the ratio of AET:RefET, this relationship implies that 

when an area is experiencing water stress due to limited precipitation, AET will decrease due 

to lack of available soil moisture for evaporation, while RefET will increase due to 

increasing air temperature. As such, dry conditions, as measured by precipitation, can be 

exacerbated by increased atmospheric demand (RefET). 

To identify whether a location is energy or water limited at a given time, and thereby 

account for the complementary relationship between potential and actual evapotranspiration, 

the WRSI model establishes an antecedent soil water balance (SW). Beginning six dekads 
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before a gridcell’s start of season dekad (SOS), the SW is calculated via a simple difference 

equation 

  P P T  P ET cSW i = SW i−1 +  i −  i (3) 

in which the PETc is calculated using a low crop coefficient, 0.15, appropriate for bare soil. 

The SW​i​ is then carried to the next preseason dekad.  

W   S P reseason = ∑
SOS−1

i = SOS−6
SW i (4) 

The value of SW (either a single dekadal instance, or the accumulated amount) ranges from a 

minimum of 0 (mm) to a maximum equal to the Water Holding Capacity (WHC) of the soil. 

If the SW​i​ is negative, it is set to 0 before being passed to the next dekad; any SW​i​ or 

SW​Preseason​ greater than the WHC is assumed to be surplus (runoff or infiltration beyond the 

root zone), and, correspondingly, is set equal to the WHC. This baseline soil moisture is then 

passed into the first dekad of the growing season to initialize the Plant Available Water 

(PAW). 

AW  SW  P P TP =  P reseason +   (5) 

Before AET can be calculated, the Critical Soil Water (SWC) must be established. 

Where the soil is sufficiently wet, the soil supplies water fast enough to meet the atmospheric 

demand of the crop, and water uptake equals PETc. But, as the soil water content decreases, 

water becomes more strongly bound to the soil matrix and is more difficult to extract. When 

the soil water content drops below a threshold value, the SWC, soil water can no longer be 
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transported quickly enough towards the roots to respond to the transpiration demand, and the 

crop begins to experience stress (AETc will be less than PETc). The SWC is a function of 

local parameters for effective rooting depth fraction (RDF), water holding capacity (WHC), 

and soil water fraction (SWF).  

 RDf HC W fSW C i =  i × W × S (6) 

RDF ranges from 0 to 1 during the growing season. It increases linearly from emergence 

until the middle of the growing season when it attains effective depth (RDF = 1). The use of 

the root depth fraction is meant to simulate where in the soil profile a crop’s roots are 

concentrated, given its growth stage (Senay and Verdin, 2003). The relevant soil information 

(e.g., WHC and SWF) is from the FAO-UNESCO soil map of the world (1988), and 

topographical parameters are derived from the GTOPO30 digital elevation model (DEM) 

(Gesch et al., 1999). SWF is the fraction of WHC that defines transpiration stress (FAO, 

1998). This can be thought of as a resistance term, with higher resistance to water extraction 

resulting in increased susceptibility to water stress. For context, the SWF for millet and 

maize is 0.4 and 0.45, respectively, indicating that maize is less drought tolerant than millet. 

For additional details, see Senay and Verdin (2003), Verdin and Klaver (2002), and Crop 

Evapotranspiration: Guidelines for Computing Crop Water Requirements (FAO, 1998).  

With the antecedent soil moisture set, the AET can be calculated. The following 

procedure was pieced together from personal communication with Tamuka Magadzire—one 

of the developers of the GeoWRSI software, and a regional scientist with the Climate 

Hazards Center. However, to our knowledge, this is the first known formal documentation of 

the two-step estimation of AET used in the WRSI. The total crop evaporative demand 
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(AETc) is calculated in two steps, or “burns.” The first burn, AET1, is the amount of 

evapotranspiration from the initial soil-water balance (PAW1). This is presumed to be the 

most readily available soil moisture, and therefore, has a high extraction coefficient (Crop​C1​; 

standard value of 0.75). The second burn, AET2, is the amount of soil water the plant 

extracts if/when there is soil moisture remaining after the first burn (PAW2). As this is a 

smaller, less accessible amount of available water to pull from, the coefficient is lower 

(Crop​C2​; standard value of 0.25). We show this process using a decision tree diagram in 

Figure 2.  
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Figure 2: A decision tree diagram showing the two-burn calculation of actual 
evapotranspiration (AET) for a given time interval (i.e., dekad). Flow direction is top to 
bottom (PAW1 to AET2). Equations are enclosed in solid-bordered boxes. Connecting lines 
(branches) with arrows are decision nodes, with dotted boxes containing the conditional 
statement associated with the previous equation. End nodes are indicated with solid, filled 
black squares. The variables involved are described in more detail in the preceding text.  

Each burn (AET1 and AET2) is multiplied by its corresponding extraction coefficient 

(Crop​C1​ and Crop​C2​, respectively), and summed to attain the total AETc for that dekad. 

 (Crop ET 1) (Crop ET 2)AET ci =  C1 × A +  C2 × A (7) 
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AETc and PETc are calculated for each dekad of the growing season, beginning at the onset 

of rains (SOS). The end of season (EOS) WRSI is reported as the seasonal total crop-water 

demand divided by the seasonal total potential evaporative demand:  

RSI  00W =  
∑

EOS

i=SOS
P ET ci

∑
EOS

i = SOS
AET ci

× 1  (8) 

The SOS is determined using a threshold amount and distribution of rainfall received 

in three consecutive dekads, as defined by the Centre Regional de Formation et d'Application 

en Agrométéorologie et Hydrologie Opérationnelle (AGRHYMET, 1996). SOS is 

established when there is at least 25 mm of rainfall in an initial dekad, followed by a total of 

at least 20 mm of precipitation in the following two consecutive dekads. Once these rainfall 

metrics are met, the SOS is defined as the first dekad in that 3-dekad series. The EOS is then 

defined by adding the gridcell LGP to the SOS dekad and subtracting one. 

The WRSI, originally calculated with station rainfall and average dekadal reference 

evapotranspiration, was shown to be directly related to crop yield data in Senegal, Algeria, 

Ethiopia, and Togo using linear yield-reduction functions (FAO, 1977; FAO, 1979; Lhomme 

et al., 1991). In theory, a situation of “no deficit” (i.e., EOS WRSI = 100) corresponds to 

normal crop yields, while a value less than 100 is associated with reduced crop yields. In 

actuality, the range of WRSI values and correlation to above/below-average yields varies 

depending on the region. As such, the most common form of the WRSI used as a monitoring 

tool is the percent of average (POA), which normalizes the end-of-season WRSI by dividing 

by the historical median end-of-season WRSI. Quasi-global gridded data sets, such as 
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CHIRPS and the reference evapotranspiration data set used in this thesis, allowed this 

process to be adapted and extended from a single station location to a gridcell-based 

geospatial application (GeoWRSI) (Verdin and Klaver, 2002), in which each gridcell is 

treated like a station from the classic FAO (1977) method. Although there are many more 

robust and data-intensive, physically based crop models available, FEWS NET adapted the 

FAO WRSI model for implementation in 2002 because of its limited data requirements, 

simplicity in operational use, and ability to capture spatially varying crop-water satisfaction 

in data-sparse areas around the world (Senay and Verdin, 2003). Most recently, the Climate 

Hazards Center implemented the GeoWRSI model in Interactive Data Language (IDL) to 

facilitate simulations using varying precipitation and evapotranspiration inputs, including 

forecast data for use in current season monitoring. To ensure consistency, this IDL 

implementation of the WRSI model is used for all WRSI runs and comparisons in this study. 

USGS/EROS Extended WRSI 

The Extended WRSI is provided by the USGS FEWS NET Project, which is part of 

the Early Warning Focus Area at the USGS Earth Resources Observation and Science 

(EROS). The Extended WRSI is a forecast estimate of what the WRSI would be at the end of 

the growing season, assuming the dekadal precipitation and evapotranspiration for the 

remainder of the season matches the historical average (also known as an arithmetic mean 

climatological forecast). At a given point in a monitored growing season, long-term average 

climatological data are used to fill in the missing data between the current dekad and the end 

of the season. Once that is done, the calculation principles are the same as the standard WRSI 
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(ratio of the season total crop evapotranspiration to the crop water requirement). As the 

season progresses, and actual PPT and RefET data become available, the climatology data 

previously used for those dekads are replaced so that at the end of the growing season, only 

current-year PPT and RefET are used as inputs. It is important to note here that this 

methodology is not meant to be a forecast that is responsive to existing/prevailing climate 

conditions, but rather, a baseline estimate of what the EOS WRSI would be if the remainder 

of the season resembled the average of years past.​ ​The problem arises when the methodology 

systematically misrepresents “average” conditions. 

The motivation for this thesis stems from an observed tendency of this Extended 

WRSI method to be overly optimistic (i.e., produce above-average projected anomalies), 

particularly early in the monitoring season. The source of this erroneous reporting is due to 

two significant shortcomings. First, several studies have shown that precipitation and 

evapotranspiration covary. More specifically, there tends to be a non-linear inverse 

relationship; evapotranspiration tends to be lower (higher) during rainy (dry) days, primarily 

as a result of decreased (increased) solar radiation and increased (decreased) relative 

humidity (Bruno Collischonn and Walter Collischonn, 2016). Furthermore, as described in 

the previous section, there exists a complementary relationship between actual 

evapotranspiration and reference evapotranspiration, which can exacerbate dry conditions. 

This is especially important and apparent when monitoring drought years, as below-average 

rainfall conditions are exacerbated by above-average evapotranspiration, resulting in 

two-fold water stresses. Long-term averages of precipitation and evapotranspiration fail to 

capture these finer time scale interplays between PPT, AET, and RefET, and as such, the 
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historical WRSI calculated with average dekadal evapotranspiration has considerably lower 

variability than does WRSI calculated with time-specific data (Figure 3). The second, and 

perhaps more profound shortcoming of using climatology inputs to predict EOS WRSI, is 

that using average precipitation results in heavily biased EOS WRSI projections, especially 

when used early in the season. This is primarily due to consistently wet days (> 0 mm), 

which are inherent in any historical average calculation. On the other side of the coin, 

marginal cropping zones with short rainy seasons rely on above-average rainfall events to 

recharge soil moisture and satisfy crop-water demands, and thus, “average” inputs result in 

consistently below-average projected WRSI (dry bias). Regardless of the directionality of the 

bias, any reduction in variability resulting from a failure to use time-specific data (as opposed 

to averaged data) limits our ability to place current events in context with historical 

precedents—a practice that is integral to index-based insurance and consequent resource 

allocation (food and humanitarian assistance). This study aims to reduce the biases associated 

with using climatology inputs by introducing more historically relevant hydroclimatic data, 

thereby improving EOS projections, and subsequent monitoring efforts to timely and 

adequately allocate food and humanitarian assistance.  
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Figure 3: Change in the standard deviation of historical (1981-2019) end-of-season WRSI 
when using time-specific evapotranspiration, instead of average (climatology) values, in 
west, east, and southern Africa growing seasons. Blue (red) hues indicate areas where the 
variability of EOS WRSI increases (decreases) with the addition of time-specific RefET in 
place of climatology RefET. 

WRSI Outlook 

The proposed alternative, the WRSI Outlook, is a mean scenario-based approach, 

which uses all available precipitation and evapotranspiration seasons from 1981-2019 to 

produce historically relevant end-of-season WRSI scenarios. Whereas the Extended WRSI 
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method uses average PPT and RefET to fill in the gap from the current dekad and the end of 

the season, the WRSI Outlook fills in the missing series of dekads with historical (e.g., 1981, 

1982, 1983) PPT and RefET data for the same period, with each set of year-specific data 

resulting in one potential EOS scenario; what would the EOS WRSI be if the remainder of 

the forecasted year looked exactly like that period in 1981? 1982? 1983? And so on. The 

average (mean) of these potential scenarios is calculated to produce the WRSI Outlook. 

Figure 4 shows this process at the gridcell level, and can be described in more detail as 

follows. For a given monitoring season, the first opportunity for a WRSI Outlook is the first 

dekad after an SOS is identified (the start of the fourth dekad of a gridcell’s growing period). 

Each potential scenario uses these first three dekads of to-date PPT and RefET, adjoined with 

PPT and RefET data from each year in the historical record (1981-2019). Assuming the 

monitoring year is 2020, and the SOS for a given gridcell is dekad 10 (April 1st, 2020), PPT 

and RefET data are coupled with 1981 data from dekad 13 (May 1st) to dekad 33 (November 

30th). This composite scenario is used to calculate one potential EOS WRSI for the 2020 

monitoring season for that gridcell. The same process is performed for each of the remaining 

years in the historical record, for each gridcell in the region that has recorded an SOS in 

2020. For the west and east (southern) Africa growing season, this equates to a maximum of 

39 (38) potential scenarios per gridcell. In testing, we found that historical scenarios that did 

not actually record enough PPT to meet the SOS metrics (25 mm in one dekad, followed by 

two consecutive dekads summing to 20 mm) in their own year resulted in a significant 

underestimation of the projected EOS WRSI (dry bias). As such, these no-start scenarios are 

removed from the mean-scenario calculation; e.g., when projecting the 2020 season for a 
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specific gridcell, if that gridcell did not actually record an SOS in 1981, then 1981 data 

would not be used in the collection of potential 2020 scenarios. The arithmetic mean of the 

remaining potential scenarios is used as the WRSI Outlook.  

 

Figure 4: The scenario WRSI process for a single gridcell in southern Africa (Zimbabwe), 
shown for three separate hindcast opportunities of the 2006-07 growing season in southern 
Africa (Zimbabwe). This particular gridcell has an LGP of 12 dekads. The top row of plots 
(4a, 4b, and 4c) show how to-date (2006) PPT (solid, thick blue line) and RefET (solid, thick 
red line) is adjoined with historical data (1981-2019, sans 2006) to create a series of 
scenarios. The adjoined historical PPT is indicated by thin, light blue lines; adjoined 
historical RefET is indicated by thin, light red lines. The dotted blue and red lines represent 
the long-term PPT and RefET climatologies (1981-2019 dekadal averages), respectively. The 
bottom row of plots (4d, 4e, and 4f) show each of the associated potential WRSI scenarios, 
calculated using the PPT and RefET scenarios from 4a, 4b, and 4c. The thin green lines are 
potential WRSI scenarios calculated using the adjoined historical PPT and RefET scenarios 
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(light blue and red lines from 4a, 4b, and 4c). The dotted green line indicates the mean of 
these historical scenarios, with the solid green triangle indicating the end-of-season WRSI 
Outlook. The dotted blue line indicates the calculated WRSI using climatology inputs (the 
dotted blue and red lines from the 4a, 4b, and 4c), with the solid blue triangle indicating the 
end-of-season Extended WRSI. The dotted black line indicates the actual WRSI for the 
2006-07 season, with the solid black triangle indicating the true end-of-season WRSI for this 
gridcell season. 

This process is performed for each gridcell, at each hindcast opportunity of the 

growing period, for every year (1981-2019) to compare the bias and accuracy of both the 

Extended WRSI and WRSI Outlook; the hindcast error testing procedure will be described in 

more detail in the following section. In Chapter 3, we show the results of this testing, but a 

few observations can be made from Figure 4. (1) The observed covariability between PPT 

and RefET is lost when simply using long-term averages (climatologies). (2) Average 

dekadal PPT, when calculated for a known wet season, results in dekadal precipitation values 

that are consistently well-above zero, a phenomena which is unlike the natural intraseasonal 

variability of precipitation (well-above average dekads interspersed with near-zero dekads). 

In contrast, the WRSI Outlook uses historical, coupled precipitation and evapotranspiration 

data to create scenarios which are inherently more realistic potential conditions for the 

remainder of the season. This results in an estimate much closer to the initial intention of the 

Extended WRSI: ​what would the EOS WRSI of the forecasted season be if the remainder of 

the season resembled the average of years past? 

2.2B Hindcast Error Testing 

To compare the two WRSI forecast methods, we performed hindcasts, using both 

methods, at every time step in the historical record (1981-2019). For west and east Africa, 
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whose growing seasons are contained within the calendar year (April to November for west 

Africa, and February to November for east Africa), the maximum number of hindcast 

seasons is 39; the southern Africa growing season (September to May) crosses the calendar 

year, and as such, the maximum is 38 (1981/82 – 2018/19). There can be no hindcast for a 

season that does not have an SOS, and so, a given gridcell may have fewer hindcast seasons 

depending on its no-start frequency. Within a single hindcast season, a given gridcell, with, 

say, a length of growing period (LGP) of 12 dekads, has eight forecasting opportunities per 

season; one at the point the SOS has been identified (dekad four of the season), and once per 

dekad of the season up until one dekad before the end of the season (i.e., dekad 11). At each 

point, the performance of the hindcast was measured by comparing each method’s projected 

WRSI to the actual EOS WRSI for that historical season. The two forecast performance 

metrics used in this study are Multiplicative Bias (hereby, simply referred to as ​bias​) and 

Root Mean Square Error (RMSE). The bias of the forecast method for a given gridcell is 

calculated as: 

ias 00 100B =  
1
N ∑

N

i=1
Oi

1
N ∑

N

i=1
F i

× 1 −  (9) 

where N is the total number of predicted WRSI seasons (described above), F is the predicted 

EOS WRSI (either the Extended WRSI or the WRSI Outlook), and O is the observed (true) 

EOS WRSI for that season. Traditionally, the potential bias values range from -∞ to +∞, with 

a score of 1, implying the forecast method as no multiplicative bias. The formula shown here 

multiplies the traditional bias formula by 100 to convert the bias to a percentage of the mean 

historical WRSI, and then subtracts by 100 for ease of dry/wet bias interpretation. As such, 
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the multiplicative bias values shown here range from -∞ to +∞, with a value of 0% indicating 

the forecast method has no bias. 

The accuracy of the forecast method for a given gridcell is calculated using the 

RMSE as follows: 

MSE  R =  √ 1
N ∑

N

i=1
(F  )i − Oi  

2  (10) 

Simply put, the RMSE measures "average" error, weighted according to the square of the 

error. The RMSE does not indicate the direction of the deviations, but does put greater 

influence on larger errors than smaller errors. The range of values are from 0 to 100, with 0 

constituting a perfect score (i.e., the forecast method’s average prediction is equal to the true 

event).  

The results discussed below focus on the forecast bias and accuracy at the first 

forecast opportunity (dekad four of the season), as this is when the disparity between the two 

methods is most apparent. As the season progresses, there is less remaining season to 

forecast, and so the two methods’ projections converge on the actual EOS result. The RMSE 

is reported for all hindcast years (as described above), as well as for three subsets of the 

hindcast years. The subsets are divided based on the true end-of-season percent-of-average 

WRSI for each of the historical years, with cutoffs at below 90% of average, and above 

110% of average. These designations are based on the standard color bars used in 

percent-of-average WRSI graphics popular for in-season monitoring (i.e., ​the USGS/USAID 

WRSI Anomaly map​); <90% is the first color indicating below-average conditions, and 

conversely, >110% is the first color cutoff indicating above-average conditions. The purpose 
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of these subsets is to identify if one of the forecast methods performs better or worse during 

dry, average, or wet years. For a given gridcell, the ​dry season​ RMSE is calculated using 

only the hindcasts of seasons in which the true outcome was less than 90% of the historical 

average WRSI. The ​average​ ​season​ RMSE is calculated using only the hindcasts of seasons 

in which the true outcome was between 90% and 110% of the historical average WRSI. And, 

finally, the ​wet season ​RMSE is calculated using only the hindcasts of seasons in which the 

true outcome was greater than 110% of the historical average WRSI. For example, the ​dry 

season​ RMSE indicates the expected forecast error when forecasting an event with a known 

outcome of less than 90% of average. As the WRSI variability ranges considerably spatially, 

the number (N) of ​dry​/​average​/​wet seasons​ will vary for each gridcell.  

25 



 

2.3 Regions of Interest 

 

Figure 5: The three regions of interest are west Africa (green), east Africa (purple), and 
southern Africa (orange). The countries which reside in these WRSI-defined growing areas 
are labeled numerically, and listed as follows: ​west Africa​: (1) Mauritania, (2) Senegal, (3) 
The Gambia, (4) Guinea-Bissau, (5) Guinea, (6) Sierra Leone, (7) Liberia, (8) Mali, (9) Côte 
d’Ivoire, (10) Burkina Faso, (11) Ghana, (12) Togo, (13) Benin, (14) Niger, (15) Nigeria, 
(16) Cameroon, (17) Chad, and (18) Central African Republic; ​east Africa​: (19) Sudan, (20) 
South Sudan, (21) Eritrea, (22) Ethiopia, (23) Somalia, (24) Kenya, (25) Uganda, (26) 
Rwanda, and (27) Burundi; ​southern Africa​: (28) Tanzania, (29) Democratic Republic of the 
Congo, (30) Republic of the Congo, (31) Gabon, (32) Angola, (33) Zambia, (34) Malawi, 
(35) Mozambique, (36) Zimbabwe, (37) Botswana, (38) Namibia, (39) South Africa, (40) 
Lesotho, (41) Eswatini, and (42) Madagascar.  
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This study focuses on the primary growing season for three sub-Saharan regions of 

interest in west Africa (WA), east Africa (EA), and southern Africa (SA). Approximately 

52% of the global number of individuals predicted to be acutely food insecure in 2020 reside 

in these three regions (WFP, 2020; FAO 2019). Weather extremes are anticipated to be the 

predominant driver of 13%, 48%, and 37% of those affected in WA, EA, and SA, 

respectively (WFP, 2020).  

The monitoring period for WA begins on the 10​th​ dekad of the year (April 1st) and 

concludes on the 33​rd​ dekad of the year (November 30th). While east Africa has a bimodal 

rainfall pattern, and correspondingly has two distinct growing seasons, this study focuses on 

the primary, or ​long rains​, growing season. The monitoring period for the ​long rains​ growing 

season begins on the 4​th​ dekad of the year (February 1​st​) and concludes on the 33​rd​ dekad of 

the year (November 30​th​). In southern Africa, the monitoring period begins on the 25th dekad 

of the year (September 1​st​) and concludes on the 15th dekad of the following calendar year 

(May 31​st​).  

These monitoring windows are designed to confine the time frame during which an 

SOS can occur to best correspond with likely planting dates. Once the SOS for a given 

season has been identified, the WRSI is only calculated based on the PPT and RefET during 

the designated LGP for that gridcell. All three regions have default land masks, produced by 

the FAO, incorporated in the GeoWRSI to focus monitoring on rainfed agricultural zones. 

We further refined the regions of interest by masking out areas that failed to start more than 

33% of the historical record (one-in-three event, since 1981). The reasoning for this is that 

these areas are more likely to either (1) not be cropped areas or (2) practice rangeland 
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subsistence farming, which uses adaptive cropping strategies that differ from the standard 

parameters built into the WRSI model (greater crop row spacing, irrigation, etc.)(FAO, 

1998). As such, the standard WRSI model is not ideal for monitoring cropping conditions in 

those areas.  

3 Results 

The results presented here first address the significant biases associated with the 

standard climatology method (i.e., USGS Extended WRSI), relative to the proposed mean 

scenario method (i.e., WRSI Outlook). Next, we investigate the accuracy of the two methods, 

as measured by the RMSE for all hindcasts, as well as for dry, average, and wet seasonal 

subsets. For both metrics, the results below are for the first forecast opportunity (dekad four 

of the season), as this is when the disparity between the two methods is most apparent. As the 

season progresses, forecast data is replaced with prevailing conditions for the season in 

question, there is less remaining season to forecast, and so the two methods’ projections 

converge on the actual EOS result. Our results find that the CHC Outlook WRSI mean 

scenario method considerably reduces the magnitude of the biases of the Extended WRSI 

climatology method in areas of all three regions (e.g., west, east, and southern Africa). 

Correspondingly, the conservative (unbiased) nature of the CHC Outlook WRSI lends itself 

to having higher (or equivalent) overall accuracy in all three regions. In particular, the 

absence of a wet bias in the WRSI Outlook results in markedly reduced error in projecting 

below-average WRSI. Overall, the results of the CHC Outlook using mean scenarios are 
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highly encouraging, and are a marked improvement to the existing method of using 

climatology inputs (i.e., Extended WRSI), particularly in regards to the reduction in bias.  

3.1 Bias 

 

Figure 6: Multiplicative bias, represented as the percent deviation from the mean historical 
WRSI, of the two end-of-season (EOS) WRSI forecast methods, taken at the first opportunity 
of a forecast (i.e., dekad four of the season) for west, east, and southern Africa growing 
seasons (1981-2019). Brown (blue) hues indicate areas where the forecast method has a dry 
(wet) bias, meaning the average forecast is less than (greater than) the true event outcome. 
White indicates areas where the forecast method is relatively unbiased (i.e., the average 
forecast is within +/- 2% of the true outcome). (a) Multiplicative bias of the Extended WRSI 
method, which uses climatology (average) inputs to predict end-of-season WRSI. (b) 
Multiplicative bias of the WRSI Outlook, which predicts the end-of-season WRSI by 
calculating the mean of a series of scenarios based on year-specific historical data. 

The primary initiative for this study is to detail the presumed bias associated with the 

Extended WRSI, which uses climatology (average) precipitation and evapotranspiration 

inputs. Systematic biases in EOS projections, whether they are underestimating or 

overestimating, can have serious implications in regards to monitoring and subsequent 
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humanitarian aid efforts. Overly optimistic outlooks may result in certain areas 

systematically being excluded from more fine-detail monitoring reports, thereby inhibiting 

timely responses. Systematic underestimations (pessimistic outlooks) can also result in 

attention being directed to  the wrong areas. In either case, precious attention and resources 

are being allocated in the wrong locations, and thus, inhibiting timely and necessary aid.  

In taking the average Extended WRSI at the first opportunity of a forecast (dekad 4) 

in the forecast season and comparing it to the actual average historical EOS WRSI, we find 

that the climatology method has a substantial ​wet bias​ (average forecasted WRSI is greater 

than the average true WRSI) in all three regions (Figure 6a). In west Africa, the average 

extended WRSI has a 2-10% wet bias throughout the northern half of the region (e.g., 

Senegal, southern Mali, northern Burkina Faso, southern Niger, northern Nigeria, and 

southern Chad). In east Africa, the average Extended WRSI has at least a 2-5% wet bias 

throughout much of the region, and has a 5-10% wet bias in eastern Sudan, southeastern 

South Sudan, central Ethiopia, eastern Uganda, southwestern Kenya, Rwanda, and northern 

Tanzania. The Extended WRSI also has a 2-10% dry bias in central Sudan, southern Somalia, 

and central Kenya. The biases associated with the Extended WRSI are most severe in 

southern Africa, where the wet bias is greater than 5% throughout the central and eastern half 

of the region, and ranges from 10-23% in southeastern Angola, southern Zambia, Zimbabwe, 

Mozambique, eastern Malawi, eastern South Africa, and southern Madagascar. Additionally, 

the Extended WRSI has a considerable dry bias (2-10%) in northern Namibia and central 

South Africa, and exceeds 15% in central Botswana. In contrast, the WRSI Outlook has a 

near-zero bias throughout the three regions, with biases only exceeding +/- 5% in parts of 
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northcentral Ethiopia, southern Somalia, northern Namibia, southern Botswana, and southern 

Zimbabwe (Figure 6b). With the exception of the five locations just listed, the magnitude of 

the WRSI Outlook bias is smaller than that of the Extended WRSI bias in all areas. There are 

no areas in which the WRSI Outlook bias exceeds 10%.  

3.2 Accuracy 

 
Figure 7: Difference of average Root Mean Squared Error (RMSE) between the two 
end-of-season (EOS) WRSI forecast methods, taken at the first opportunity of a forecast (i.e., 
dekad four of the season) for west, east, and southern Africa growing seasons (1981-2019). 
Pink (green) hues indicate areas where the Extended WRSI using climatology inputs has a 
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smaller (greater) RMSE than does the WRSI Outlook using the mean scenario method. White 
indicates areas where the average RMSE of the two forecast methods is within 2 WRSI units 
of each other (i.e., the two methods have equivalent accuracy). The four panels show the 
average difference in RMSE between the two methods for: (a) years in which the true EOS 
WRSI is <90% of average (dry years); (b) years in which the true EOS WRSI is 90-110% of 
average (average years); (c) years in which the true EOS WRSI is >110% of average (wet 
years); (d) all years. 

While assessing the bias of the two forecast methods is the primary focus, there is an 

implicit interest in the accuracies of the two. The desired expectation is that the results will 

provide sufficient empirical evidence of (1) the shortcomings and inaccuracies of the existing 

Extended WRSI and (2) the improved methodology provided by the WRSI Outlook for 

unbiased and accurate prediction of end-of-season crop water requirements. 

Figure 7 shows the difference in RMSE between the two methods in dry (Figure 7a), 

average (Figure 7b), wet (Figure 7c), and all (Figure 7d) seasons. The results correspond well 

with the expectations outlined previously. In areas where the biases of the two products are 

nearly equal, their RMSE values are also near equal. ​Dry Seasons (Figure 7a)​: In areas 

where the Extended WRSI has a considerable wet bias, the WRSI Outlook has a smaller 

RMSE. In east Africa, the WRSI Outlook has an RMSE that is 2-10 WRSI less than that of 

the Extended WRSI in south Sudan, central Ethiopia, Uganda, southern Kenya, and northern 

Tanzania. In southern Africa, the WRSI Outlook has an RMSE that is 2-10 WRSI less than 

that of the Extended WRSI in Tanzania, Malia, southern Angola, Zambia, South Africa, and 

Madagascar, and 10-15 WRSI units less than the Extended WRSI RMSE in central 

Zimbabwe and central and southern Mozambique. In northern Namibia, Botswana, and 

western South Africa, where the Extended WRSI has a considerable dry bias, the CHC WRSI 

RMSE is 2-5 WRSI units larger than the Extended WRSI’s RMSE. ​Average Seasons 
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(Figure 7b)​: The RMSE of the two methods are fairly comparable in west and east Africa. In 

southern Africa, where the Extended WRSI bias exceeds 10%, the RMSE of the WRSI 

Outlook is 2-14 WRSI units smaller than that of the Extended WRSI in southern Angola, 

central Zimbabwe, and southern Mozambique. In southern Zambia and northern Zimbabwe, 

where the Extended WRSI has a 5-10% wet bias and the WRSI Outlook bias is near-zero, the 

Extended WRSI RMSE is 2-7 WRSI units less than that of the WRSI Outlook. This implies 

that the natural distribution of the historical (true) WRSI has a long tail of low values which 

pulls down the mean WRSI more than the median WRSI (left skew), which would lend itself 

to a method with a wet bias having a lower RMSE than one with no bias. ​Wet Seasons 

(Figure 7c)​: As previously stated, the systematic wet bias of the Extended WRSI lends itself 

to having a lower RMSE during above-average (wet) seasons. In west Africa, the RMSE of 

the Extended WRSI is 2-5 WRSI units lower than that of the WRSI Outlook in the northern 

most parts of the region, including northern Senegal, central Mali, northern Burkina Faso, 

southern Niger, and central Chad. In east Africa, the RMSE of the Extended WRSI is 2-10 

WRSI units lower than that of the WRSI Outlook in southern Sudan, southeastern South 

Sudan, central Ethiopia, southern Uganda, southwestern Ethiopia, and northern Tanzania. 

The differences in RMSE are more substantial in southern Africa, where the Extended WRSI 

has the largest wet bias (exceeding 10%), and correspondingly, has a RMSE that is more than 

5 WRSI units less than the WRSI Outlook in southern Angola, central Zimbabwe, central and 

southern Mozambique, and southern Madagascar. ​All Seasons (Figure 7d)​: Overall, the 

RMSE, when averaged over all years, is fairly comparable between the two methods. The 

increase in accuracy when using the WRSI Outlook in dry seasons (Figure 1a) is largely 
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offset by the decrease in accuracy in wet seasons (Figure 1c). The RMSE of the WRSI 

Outlook is 2-5 WRSI smaller than that of the Extended WRSI in Tanzania, Malawi, southern 

Namibia, southern Zambia, northern Zimbabwe, central and southern Mozambique, and 

southern Madagascar. These areas indicate where the variability of the historical WRSI is the 

greatest, and correspondingly, the conservative estimate provided by the WRSI Outlook has 

fewer large errors than does the heavily biased Extended WRSI (the calculation of the RMSE 

naturally ​punishes​ larger errors more so than smaller errors, and thus tends to ​favor​ more 

conservative estimates). This is particularly evident early in the season, when the disparities 

between the two forecast methods are largest. 

While the accuracy results detailed here are predominantly artifacts of the systematic 

biases of the Extended WRSI method, they illustrate how these biases could result in a failure 

to identify drought conditions (or worse, falsely project above-average conditions).  

4 Discussion 

There are two fundamental reasons for the expected bias in the Extended WRSI, 

which are described in more detail in Section 2.2A. Firstly, using average precipitation 

inherently results in a roughly bell-shaped curve, with consistently wet (i.e., non-zero) 

dekads. In reality, a given rainy season will have intraseasonal variability, in which wet 

dekads may be interspersed with abatement or absence of rain. The greater the intraseasonal 

variability in a given season (e.g., more frequent dry dekads, or longer rainy seasons), the 

larger the expected impact using average inputs would have on the water satisfaction 

calculation. Secondly, there exists a tendency for precipitation and evapotranspiration to be 
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inversely correlated; evapotranspiration tends to be relatively higher (lower) when 

precipitation is lower (higher), primarily as a result of higher (lower) solar radiation and 

lower (higher) relative humidity. A complementary relationship between AET and RefET 

provides a further nuanced relationship in the ratio of water supply and atmospheric demand, 

which is particularly important in characterizing drought conditions, as the elevated potential 

evapotranspiration exacerbates the water stress experienced in times of lower-than-average 

precipitation. Due to the fact that using a long-term average inherently results in a loss of 

these finer-time-scale relationships, the expectation was that the current practice of using 

climatology inputs is inadequate for accurately predicting end-of-season crop-water 

satisfaction. More specifically, we anticipated the Extended WRSI would overestimate water 

satisfaction when monitoring dry and average years, be closer to the ​true​ water satisfaction in 

wet years, and, overall, have an average predicted WRSI that was consistently larger than the 

true historical average (wet bias). 

The removal of the systematic biases associated with the existing WRSI projection 

methodology is critical for the effectiveness of the WRSI as a monitoring tool for early and 

accurate aid allocation. The Extended WRSI method does indeed have a tendency to 

significantly overestimate crop-water satisfaction in large portions of all three regions (west, 

east, and southern Africa), as well as significantly underestimate the average crop-water 

satisfaction in southwestern Africa. In contrast, it is shown that the WRSI Outlook 

methodology of taking the mean of a series of historically based scenarios provides a 

relatively unbiased alternative to the Extended WRSI. As such, the WRSI Outlook is much 
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closer to the initial intention of the Extended WRSI: ​what would the EOS WRSI of the 

forecasted season be if the remainder of the season resembled that of years past? 

While increased accuracy is a welcome byproduct, it should be noted once again that 

the primary initiative of this thesis is to provide an alternative, unbiased methodology for 

projecting end-of-season WRSI. Furthermore, due to the significant biases of the Extended 

WRSI documented in Section 3.1, and the fact that both forecasts are based solely upon the 

climatological statistics for a region rather than the dynamical implications of the current 

conditions, it should be noted that any changes in the ​accuracy ​of the two methodologies are 

more due to the change in mean value of the projections, and less due to their actual 

prediction capabilities. For example, the significant wet bias of the Extended WRSI naturally 

results in projections that resemble above-average (wet) seasons, and thus, the RMSE during 

those years is low. Furthermore, the Extended WRSI RMSE is doubly high during 

below-average (dry) seasons. In contrast, the WRSI Outlook is a conservative estimate, and 

therefore, it slightly overestimates dry seasons, slightly underestimates wet seasons, and is 

fairly ​accurate​ during average seasons. As mentioned previously, these traits are most 

noticeable early in the season, when forecast data makes up a majority of the climatological 

inputs of the WRSI projection. As the season progresses, and forecast data is replaced with 

prevailing conditions for the season in question, the two methods’ projections converge on 

the actual EOS result.  

There were several attempts to identify methods of selecting analog years (as opposed 

to using all historical scenarios). One such method involves to-date precipitation ranking to 

group historical seasons into more-likely relevant analog years. While this is an interesting 
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avenue for further research, the results were inconsistent, and where improved accuracy was 

seen, the improvements were not substantial enough (< 5 WRSI accuracy improvement) to 

warrant the significant increase in computations required. With that said, the results of the 

CHC Outlook using mean scenarios are highly encouraging, and are a marked improvement 

to the existing method of using climatology inputs (i.e., Extended WRSI), particularly in 

regards to the reduction in bias. 

5 Concluding Remarks 

Agroclimatic monitoring, and, in particular, drought early warning and forecasting, is 

a rapidly advancing science. Dozens of organizations, including FEWS NET, USGS/EROS, 

NASA, and the CHC, are working tirelessly to expand the tools available for predicting and 

identifying hydroclimatic conditions that contribute to food insecurity. This information 

helps to guide world leaders and humanitarian organizations to partition vital aid to countries 

around the world in a timely and precise manner.  

While the WRSI is a relatively simple model, it is used widely due to its proven 

accuracy as a proxy for crop yield, and for its relatively little input requirements. However, 

the common method of using arithmetic mean climatology inputs to forecast EOS conditions 

(i.e., Extended WRSI) was observed to frequently produce overly optimistic outlooks. Given 

this, we sought to investigate the adequacy of this method for forecasting EOS WRSI. In 

general, the results presented here confirm a significant wet bias in the projected EOS WRSI 

when using arithmetic mean climatological inputs, which, among other shortcomings, 

significantly hinders the model’s ability to capture drought events. As an alternative, we 
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implemented a mean scenario-based approach, which uses historical precipitation and 

evapotranspiration data to run out a series of historically realistic WRSI scenarios, of which 

the mean of these scenarios is selected as the WRSI Outlook. This method is shown to be 

relatively unbiased, and correspondingly, it has a considerably lower RMSE in both dry 

(below-average) and average seasons, relative to the commonly used method. When 

comparing the average accuracy of these models, the differences may seem trivial. However, 

the reduction in wet bias and improved accuracy during drought years is a significant step 

towards a more accurate and useful model. This tool is one of many in a suite of indices that 

are used to identify environmental stresses that may lead to increased food insecurity in 

rainfed agricultural areas around the world. Systematic biases, such as the wet bias seen early 

in the season when using the Extended WRSI, are particularly detrimental to the 

effectiveness of in-season monitoring, as one indicator’s overly optimistic end-of-season 

outlook for a given area may result in that area not getting the monitoring attention it 

deserves later in the season, thereby shortening the delicate timeline for timely humanitarian 

assistance. It is our hope that this mean scenario-based approach will replace the existing 

arithmetic mean Extended WRSI methodology currently used by FEWS NET partners, so as 

to provide a more accurate approach for predicting crop water requirements, and more 

generally, to continue to improve the suite of tools used to identify climate and 

weather-related shocks to food-insecure regions.  

Future research could utilize forecasts tuned to existing climate conditions to either 

create selection criteria for relevant analog years (as opposed to running out with all years of 

historical data), or, if skilled downscaled forecasts are available, replace the scenarios 
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entirely. In either case, this improved mean-scenario climatological forecast is essential, as it 

serves as an unbiased baseline to be improved upon.  
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