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ABSTRACT OF THE DISSERTATION

Multi-feature ensemble learning on cell-free DNA

for accurately detecting and locating cancer

by

Mary Louisa Stackpole

Doctor of Philosophy in Bioinformatics

University of California, Los Angeles, 2020

Professor Xianghong Jasmine Zhou, Chair

Early cancer detection and localization using cell-free DNA (cfDNA) faces multiple chal-

lenges, including the low fraction of tumor DNA in cfDNA and the molecular heterogeneity

of cancer. Many features have been used to detect cancer in cfDNA, such as fragment length

profiles, copy number changes, and microbial composition, but methylation in particular

has been found to detect cancer early. Additionally, the tissue specificity of methylation

has aided noninvasive cancer typing efforts. Typically, cfDNA methylation profiling is done

through whole genome bisulfite sequencing (WGBS) or targeted approaches, but these pro-

tocols are plagued by high cost or require prior knowledge of informative regions. Another

procedure, reduced representation bisulfite sequencing (RRBS), strikes a balance between

these two extremes, but is only applicable to intact genomic DNA, not naturally fragmented

cfDNA. Herein, we develop an integrated cancer detection and typing system, CancerRadar,

that addresses these challenges. First, we present a novel protocol, cell-free Methylation

Sequencing (cfMethylSeq), which adapts the RRBS protocol to be applicable to cfDNA. We

show cfMethylSeq yields more than 12-fold enrichment over WGBS in CpG islands while

reliably and reproducibly quantifying methylation and capturing broad, genome-wide sig-

nals. Next, we develop a computational platform to extract information from cfMethylSeq

data and diagnose the patient. The platform derives cfDNA methylation, cfDNA fragment

sizes, copy number changes, and microbial composition from the raw cfMethylSeq data, and

performs multi-feature ensemble learning.
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We demonstrate the power of CancerRadar in detecting and locating cancer in a cohort

of 275 colon, liver, lung, and stomach cancer patients and 204 non-cancer individuals. For

cancer detection, we achieved a sensitivity of 89.1% at 97% specificity in the independent

validation set. For cancer typing, we achieved an accuracy of 91.5% in the independent

validation set. We further show that integrating multiple features significantly increases the

detection power, especially for early-stage cancer. Our novel protocol and computational

procedure have the potential to revolutionize cancer detection and methylation analyses in

cfDNA, and the data generated will be hugely beneficial to the cfDNA research community.
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CHAPTER 1

Introduction

Cell-free DNA (cfDNA) is DNA found in the bloodstream that is not associated with cells.

Since its presence was first described in 1948 [68], researchers have described numerous inter-

esting characteristics, such as elevated levels in patients with cancer or other disorders [57]

and the presence of fetal cfDNA in the plasma of pregnant women [67]. Curiously, cfDNA

is fragmented in nature, exhibiting a characteristic length distribution with a peak around

160 bp. This has led to the theory that cfDNA is derived from nucleosome-bound fragments

[42]. Although the biological mechanisms of cfDNA’s release into the bloodstream remain

unclear, mapping locations of naturally fragmented cfDNA have been used to infer gene

expression [104], study nucleosome positioning [90], understand DNA damage [45, 106], and

even reconstruct 3D genome organization [66]. Additionally, many researchers have taken

advantage of the presence of cfDNA for use in different clinical scenarios, including prenatal

diagnosis, cancer diagnosis, and organ transplantation monitoring [56]. For example, dra-

matic genome-wide hypomethylation, a trademark of cancer, can be detected in cfDNA and

used to detect malignancies [12]. These liquid biopsies offer a noninvasive alternative to

traditional biopsies [12].

Early detection of cancer before it metastasizes holds our greatest hope for increasing

cancer survival. Understandably, cfDNA has drawn attention for solving this task due to

its potential to noninvasively detect, pinpoint, and monitor cancer in blood [59, 56, 12, 25].

However, this effort is hindered by major challenges. First, the amount of tumor DNA

present in the blood is low, especially in early stages of cancer [59]. Second, due to the

diversity of cancer types, subtypes, and additional covariates such as age, environment, or

comorbidities, genetic and epigenetic aberrations associated with cancer can vary wildly.
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Third, due to the heterogeneity of cancer, any study that undertakes cfDNA-based cancer

detection must employ a large sample size of both cancer and normal samples.

Due to the low amount of tumor DNA present in the blood, a successful cancer detection

method should capture as many tumor-derived fragments as possible. Some current studies

aim to do this through small, panel-based approaches that deeply sequence areas likely to

contain tumor cfDNA fragments [64, 14, 117]. These studies require targets to be identified

beforehand. Alternatively, genome-wide approaches have also been used, aiming to capture

broad signals to make up for the lack of individual tumor-derived signals [99, 59, 46, 15].

However, whole-genome sequencing is cost prohibitive for clinical use.

The heterogeneous nature of cancer hints that a noninvasive test that can capture di-

verse attributes of cancer has the best change of success. Indeed, several cfDNA features have

been shown to have diagnostic power, including cfDNA methylation [64, 59, 46, 25, 117, 89],

fragment length [15, 42, 90], copy number variation (CNV) [12, 15], and microbiome com-

position [82]. However, these disparate features have never been comprehensively integrated

into one model before. This is because library preparation methods that can profile methy-

lation deeply, such as targeted panels, lack genome-wide information about fragment length

or CNV. Similarly, genome-wide sequencing techniques often lack the depth needed to use

methylation features effectively, if methylation is profiled at all. Whole genome bisulfite

sequencing (WGBS), currently the only commercially available method for genome-wide

methylation profiling in cfDNA, can obtain all these features, but it is prohibitively ex-

pensive for large scale studies. An alternative genome-wide methylation profiling technique

available for genomic DNA is reduced representation bisulfite sequencing (RRBS), a method

that employs restriction enzymes to cut intact DNA into small fragments in regions with

a high CpG content, and subsequently size-selects these small fragments to enrich for CpG

sites. However, due to the fragmented nature of cfDNA, this RRBS approach cannot be

used.

To address all these challenges, this dissertation presents an integrated experimental and

computational system, CancerRadar, for the accurate and affordable detection of cancer.

This system includes (1) a cost-effective experimental approach to comprehensively profile
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diverse cfDNA features, and (2) an integrative computational learning framework for cancer

detection which is scalable to many types of features and a high number of markers.

Our experimental approach, named cell-free DNA Methylation Sequencing

(cfMethylSeq), adapts the RRBS technology to work on cfDNA. By successfully do-

ing so, we dramatically lower the cost of genome-wide methylation profiling in cfDNA. At

the same time, we are able to profile genome-wide features such as CNV, fragment length,

and microbial composition for no additional costs.

We sequenced hundreds of cfDNA samples with our cfMethylSeq approach. Our compu-

tational system integrates the methylation and other features obtained from the cfMethylSeq

data into a multi-modal predictive model that accurately and sensitively detects cancer in

cfDNA. Our results demonstrated the strong complementary effect of the heterogeneous

feature types, and our method is adaptable and scalable to increased feature and sample

sizes.

In chapter 2, we describe the development of the cfMethylSeq method by adapting the

RRBS technology to be applicable to cfDNA. RRBS involves a restriction enzyme diges-

tion step followed by a size selection. The restriction enzyme step cuts at CCGG sites in

the genome; places where these sites are close together produce smaller fragments than re-

gions with low CCGG content. The subsequent size selection step then enriches for these

CCGG-dense regions, resulting in a final library that preferentially covers CpG islands, gene

promoters, and other methylation-informative regions [24]. cfDNA is naturally fragmented,

with most fragments around 165 bp, so the size selection step key to enrichment in RRBS

cannot be used. In brief, to adapt the RRBS procedure to apply to fragmented DNA, all

original cfDNA fragments are blocked from ligating to adapters, and only those fragments

that are cut twice by a restriction enzyme are able to ligate to adapters and get sequenced.

We performed extensive benchmarking of our procedure, and showed that it (1) produced

enrichment in genomic regions comparable to RRBS, and (2) reliably and reproducibly called

methylation. Our procedure yields a 12.8 fold cost reduction compared to WGBS.

In chapter 3, we use solid tissue RRBS data and the hundreds of cfDNA samples se-

3



quenced with our novel cfMethylSeq protocol to develop and test our computational method

to detect and type cancer. We employ the highly successful stacked classifier framework

[1] and achieve 85.6% sensitivity at 99% specificity in leave-one-out cross validation, and

89.1% sensitivity at 97% specificity in the independent validation cohort. Existing methods

for cancer detection and typing in cfDNA rely on targeted gene panels [14], WGBS data

[59, 46, 12], targeted sequencing [65], or other experimental approaches [89, 25]. Our ap-

proach not only outperforms all these other methods, but does so inexpensively and without

having to find targets a priori. The stacked classifier framework is an ensemble machine

learning approach using many different features and classifier types. We used broad, genome

wide features such as counts of fragments in genomic bins, enrichment in genomic areas, and

overall methylation levels, in addition to small (<350 bp in length), learned methylation

features.

In summary, we developed CancerRadar, an integrated computational and experimen-

tal framework for affordable, noninvasive cancer detection. Our experimental approach,

cfMethylSeq, dramatically lowers the cost of methylome profiling in cfDNA, and does not

require a priori selection of targets. Our computational framework makes use of not only the

methylation information gleaned from the cfMethylSeq data, but also genome-wide attributes

such as copy number changes. Importantly, the cfMethylSeq data we generated constitutes

a wealth of information that can still be learned from as more samples are collected. Be-

cause we did not target a few specific genes [117] or use a biased methylation approach [89],

our data can be used for countless other purposes. Additionally, our computational cancer

detection framework can adapt and improve as more training samples are acquired.

4



CHAPTER 2

cfMethylSeq: a novel protocol for profiling methylation

in cfDNA

2.1 Introduction

Cytosine DNA methylation is a stably inherited DNA modification that has the potential to

alter chromatin structure and transcription of genes [63]. It has been implicated in various

biological mechanisms such as cellular differentiation, gene regulation, suppression of trans-

posable elements, and development [61, 84, 93, 79]. These epigenetic alterations have been

increasingly observed as playing a role in cancer in the past few decades [35]. Methylation at

CpG dinucleotides in particular has been observed to change in both a genome-wide manner

and at the individual gene level in cancer [35]. Noninvasive liquid biopsies using cfDNA

have garnered much attention in the recent past due to their potential to transform cancer

diagnosis, screening, and treatment [2]. Methylation-based cfDNA cancer detection meth-

ods may be more promising than approaches based on mutations [77, 78] because pervasive

methylation changes are one of the first hallmarks of cancer [12]. Furthermore, methylation

has been shown to be tissue-specific, lending its use to cancer typing [96, 46, 73]. There-

fore an experimental method that can accurately measure methylation in cfDNA is of great

importance.

Measurement of cytosine methylation typically relies on bisulfite conversion. The chemi-

cal sodium bisulfite deaminates unmethylated cytosines to uracil, while methylated cytosines

are left unchanged [31, 22, 71]. After bisulfite conversion and subsequent PCR amplification,

this uracil is converted to a thymine basepair. Ultimately, methylated cytosines will remain

as cytosines, while unmethylated cytosines will be read as thymine. The use of sodium
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bisulfite has been applied to several sequencing and probe-based techniques for measuring

methylation in DNA. In techniques that yield basepair resolution, these bisulfite-converted

sequenced reads can then be mapped to an in silico bisulfite converted genome using pro-

grams such as Bismark [51]. Any T mapped to a C in the reference genome is considered

unmethylated, whereas any C that remained as a C is considered methylated. Other ex-

perimental techniques use the differences in sequences generated from bisulfite conversion

of methylated and unmethylated DNA to design capture probes, where certain probes can

only bind to the unmethylated form of a bisulfite-converted DNA sequence while others bind

to the methylated form. There are over 28 million CpG sites in the human genome; most

approaches profile the methylation of a small fraction of these sites [92]. Below we outline

various methods for profiling methylation:

1. Whole genome bisulfite sequencing (WGBS)

Whole genome bisulfite sequencing (WGBS) profiles methylation at nearly every CpG

site in the genome at basepair resolution using bisulfite conversion [40]. It is considered

the gold standard for methylation analyses [75]. Since there is no targeting of specific

genomic regions, the whole genome is sequenced without bias. Consequently, this

method is cost prohibitive for most studies that require deep sequencing of specific loci

of interest. Since the first genome-wide WGBS study in humans [63], WGBS has been

widely used but rarely on large scales [122]. Since large swaths of the genome contain

no CpG sites, many reads sequenced with WGBS are wasted data for methylation

analyses. WGBS in cfDNA also requires large amounts of input material, further

limiting its use [122]. Nevertheless, WGBS on cfDNA has been used in numerous

small scale studies [12, 42, 59, 46, 41].

2. Reduced representation bisulfite sequencing (RRBS)

An alternative to WGBS is reduced representation bisulfite sequencing (RRBS) [71, 24].

RRBS typically involves a restriction enzyme digest step that cuts the genome at

CCGG sites. A size selection step then selects fragments that are within a short size

range (<350 bp), enriching for regions where CCGG sites are close together. Since these
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regions are mostly in CpG islands (CGIs) and gene promoters, RRBS is able to sequence

the majority of methylation-informative genomic regions for relatively low cost, while

only in theory covering around 4% of the genome. Traditional RRBS also provides

representative, but lower, coverage of other genomic regions, such as CGI shores [24].

When applicable, traditional RRBS is useful for studying changes in methylation that

occur as a result of diseases or normal biological processes, as these changes often occur

in CGIs and gene promoters. Because the amount of the genome covered is small, this

method can inexpensively sequence to a high depth [24]. Since this method requires

a size-selection step for enrichment, it is inapplicable to fragmented DNA, like cfDNA

[62]. Nevertheless, one study did apply a single cell RRBS protocol directly to cfDNA

[25], with limited enrichment for the regions of interest.

3. Microarray

The Infinium HumanMethylation 27 (Infinium 27K), Infinium HumanMethylation450

(Infinium 450k), and Infinium EPIC arrays are microarray-based technologies [85] cov-

ering around 27,000, 450,000, and 850,000 CpG sites in the human genome, respec-

tively. Microarray technologies hybridize bisulfite-converted DNA to a chip containing

beads. There are two beads for each profiled CpG site, one for the methylated version

and one for the unmethylated version. After hybridization, single-base extension oc-

curs with differentially labeled nucleotides for the methylated and unmethylated cases.

After staining to differentiate the two types of incorporated nucleotides, the chip is

scanned to determine the ratio of intensities between the unmethylated and methy-

lated versions at each probe, yielding a methylation ratio at each profiled CpG site,

also known as a β value [6]. These platforms have been widely used, due to their low

cost and simplicity. A large number of 450k datasets are publicly available on the Gene

Expression Omnibus (GEO) [5] as well as The Cancer Genome Atlas (TCGA) [114].

However, due to their limited number of profiled CpG sites, they are unable to be

used for an exhaustive search of epigenetically modified loci across the genome [101].

Because these methods measure the average methylation at an individual CpG site

across all reads covering the site of interest, they lack the read level information used
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in more recent cancer detection algorithms [59, 25]. Furthermore, 500 ng-1 µg input

DNA is required [98], rendering microarrays inapplicable to cfDNA, although one study

used microarrays on cfDNA by pooling samples [23]. Instead, studies involving cfDNA

often use the large amount of publicly available 450k data to learn biomarkers, and

then these biomarkers are used to detect cancer in cfDNA [59, 46] or develop targets

for panel-based approaches [117].

4. Methylation capture sequencing (MC Seq)

Methylation capture sequencing (MC Seq) uses target-specific bait sequences. This

allows for specific survey of genomic loci of interest. This also has lower cost and

processing time than WGBS, and overcomes the limitation of lower genomic coverage

in the microarray-based methods. However, the baits targeting the regions of interest

and the regions themselves must be identified [122].

MC Seq uses DNA (or RNA) baits that contain complementary sequences of targeted

regions to select these regions for sequencing. Since baits are specifically designed for

regions of interest, bias due to CpG density is eliminated. Despite its benefits over

WGBS, microarray, and other affinity-enrichment platforms, MC Seq has been used

little in the field [36].

MC Seq can be approached in two ways: convert-then-capture, or capture-then-convert.

In convert-then-capture, the DNA is converted using bisulfite and then captured. In

capture-then-convert, the DNA is first captured and then treated with bisulfite, so

common methylation patterns do not have to be considered in the bait design step.

However, the capture-then-convert approach requires large amounts of native, unam-

plified DNA as input [37]. Bisulfite conversion can also lead to substantial DNA loss,

further hampering its use in the small amounts of material available post-capture, and

leading to substantial PCR duplication [58]. Although targeted bisulfite sequencing

has numerous advantages over WGBS, RRBS, and microarrays, such as less wasted

data and the ability to tailor data to regions of interest, it has been underrepresented

in the literature [54]. This is likely because of the up front initial investment required
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to identify and generate the capture probes.

5. Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq)

Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) uses methylation-

specific antibodies to extract DNA fragments containing methylated cytosines [40, 112].

These fragments are then sequenced, with or without bisulfite conversion. MeDIP-seq

allows for broader coverage than RRBS, but does not allow for base-pair resolution

if bisulfite conversion has not been applied. Only fragments that contain methylated

cytosines are sequenced, so unbiased methylation ratios cannot be obtained. Further-

more, enrichment of regions can vary due to CpG density [36]. A cfDNA version,

cfMeDIP-seq, was developed to adapt the MeDIP-seq procedure to low input amounts

[89].

Of the available methods for profiling DNA methylation, RRBS [71, 24] has distinct ad-

vantages. Compared to WGBS, RRBS is able to sequence the majority of promoters and

other methylation-informative genomic regions for relatively low cost. In WGBS, around 35%

of sequenced fragments contain no CpG sites and are therefore wasted data for methylation

analyses. RRBS, in contrast, guarantees that every sequenced fragment contains a CpG site,

dramatically lowering the cost associated with deep methylation profiling. RRBS also holds

advantages over targeted sequencing techniques, such as methylation capture sequencing.

While these methods can deeply sequence genomic regions of interest, they require informa-

tive targets to be selected beforehand, limiting their use for exploratory studies. However,

because cfDNA is naturally fragmented, exhibiting a characteristic length around 165 bp

[96], size selection does not yield enrichment when RRBS is applied to cfDNA [62].

Specifically, the traditional RRBS protocol enriches for CpG-rich genomic regions in

intact genomic DNA by cutting the genome with a restriction enzyme (typically MspI, cut

site 5’-C↓CGG-3’), and then selecting short fragments. Ultimately, the final library consists

of genomic regions where CCGG sites are close together. These regions are mostly CGIs and

gene promoters [24]. Most cfDNA fragments are around 165 bp [96, 90, 15]. This is thought

to be related to nucleosome wrapping, and has been exploited to noninvasively infer gene
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expression or tissue composition [104, 90]. In regards to RRBS, however, this small fragment

size of 165 bp falls within the size selection range that is key to enriching CpG-rich regions

of the genome. This size selection step yields little enrichment when applied to fragmented

DNA.

In this chapter, we describe the development and validation of the cfMethylSeq proto-

col, an adaptation of RRBS for cfDNA. First, initial simulations are described to assess the

feasibility of performing RRBS on fragmented DNA. Once proven useful, an initial proto-

col is developed and troubleshooted. The finalized protocol first blocks all original cfDNA

fragments from ligating to adapters, then the restriction enzyme digest is performed. Only

those fragments that are cut twice by a restriction enzyme are able to ligate to adapters and

get sequenced. Hundreds of cfDNA samples are then sequenced with the finalized protocol.

These samples are analyzed in aggregate to confirm enrichment in the regions of interest,

verify methylation calls are correct, and to ensure reproducibility. Our cfMethylSeq proce-

dure yields greater enrichment, basepair resolution, and less sample loss compared to other

cfDNA-based methylome approaches. This enables the methylomes of cfDNA samples to

be inexpensively analyzed at basepair resolution, a much-needed resource in the noninvasive

cancer detection field. Furthermore, because there is no need to identify targets beforehand,

the data generated using the cfMethylSeq procedure can be used to not only discover new

biomarkers in cancer and other diseases but also to study basic biological processes such as

aging.

2.2 Results

2.2.1 Feasibility simulations

In silico studies were performed to determine if RRBS would be useful on cfDNA, i.e., if

the characteristic enrichment found in methylation-informative regions in RRBS on genomic

DNA still held in cfDNA. There are two reasons why this might not be the case. First,

because cfDNA fragments are on average 165 bp in length, they will lead to naturally shorter
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RRBS libraries compared to RRBS libraries on intact genomic DNA—regions in the genome

where CCGG sites are over 165 bp apart will rarely be captured in cfDNA, but easily found

in intact genomic DNA. Second, the genomic regions covered by cfDNA are not totally

random [78], so enrichment in methylation informative regions could be less or more than

anticipated. To test if the procedure would be useful, we performed in silico MspI digestion

on high coverage whole-genome sequencing (WGS) cfDNA data from [90]. Typical RRBS

applied to genomic DNA has around 40% of fragments in CGIs and 22% of fragments in

gene promoters. In silico MspI digestion of high coverage WGS cfDNA data found 39.5% of

final fragments in CGIs and 18.8% of final fragments in gene promoters, after mapping and

without deduplication. For comparison, the original WGS libraries had about 3% of their

fragments in CGIs and 1.4% in promoters. These analyses allowed us to conclude that, if

the size selection step could be bypassed, RRBS would still provide similar enrichment in

CGIs and promoter regions when applied to cfDNA.

2.2.2 The cfMethylSeq procedure

Once the application of RRBS to cfDNA was shown to have potential, we developed the cell-

free DNA Methylation Sequencing (cfMethylSeq) technique. The procedure is outlined in

figure 2.1a. In brief, we first block both ends of all cfDNA fragments by dephosphorylating

their 5’-ends and adding ddNTP to their 3’-ends. These fragments cannot be ligated to

adapters and will not be sequenced. After MspI digestion (cut site 5’-C↓CGG-3’), only

digested cfDNA fragments with two or more CCGG sites will be able to ligate to adapters

containing duplex unique molecular identifiers (UMIs) and get sequenced, resulting in a final

library enriched in CpG sites. As shown in figures 2.1b and 2.1c, the cfMethylSeq libraries on

cfDNA show characteristic insert fragment lengths at 68 bp, 135 bp, and 203 bp, similar to

patterns seen in conventional RRBS libraries prepared from solid tissue. These peaks are a

result of MspI digestion of Alu repeat elements. In contrast, the conventional RRBS libraries

prepared from cfDNA show a strong peak/band with 160 bp insert—the characteristic size

of full-length cfDNA fragments without MspI digestion. This indicates that, as expected, a

large proportion of the undigested 165 bp cfDNA fragments were captured during traditional

11



RRBS, and little enrichment in the regions of interest will be observed.

2.2.3 Computational validation of final procedure

Hundreds of samples were sequenced with our cfMethylSeq procedure. Below we analyze

their statistics in aggregate and compare to RRBS on solid tissue samples and WGBS on

cfDNA.

2.2.3.1 Reads from cfMethylSeq libraries map to expected locations

Because RRBS involves digestion with the restriction enzyme MspI, all resulting sequenced

fragments start and end at known locations in the genome where CCGG sites (MspI cut

sites) are within a certain distance from each other. We can measure our on-target rate by

calculating how many fragments in our library map exactly to such fragments. On average

about 85% of all cfMethylSeq reads fell in expected RRBS locations, compared to about 92%

for typical RRBS libraries on solid tissue. More broadly, we can also measure whether the

fragments start and end at CCGG sites. The vast majority of our cfMethylSeq fragments

had CCGG cut sites on both ends, with the next most common scenario being a CCGG site

on only one end. Specifically, on average 85.7% of reads in 479 cfMethylSeq libraries have

MspI sites on both ends, compared to 91.8% of reads in 251 conventional RRBS libraries

on solid tissues and 0.006% of reads in 37 cfDNA WGBS libraries. Our slight reduction

compared to RRBS is due to incomplete ddNTP labeling or no dephosphorylation during

our procedure, allowing some fragment ends to ligate to adapters even though they were not

the result of MspI cleavage. For comparison, in WGBS almost none of the fragments fall in

these locations (figure 2.2a).

WGBS covers far more CpG sites than either RRBS or cfMethylSeq, but cfMethylSeq

covers the vast majority (97.5%) of CpG sites that are also covered by RRBS (figure 2.2b).

About 30% of the CpG sites covered by cfMethylSeq were not covered by RRBS; this is

due to incomplete labeling. However, these CpG sites are not covered to the same depths

as CpG sites shared between cfMethylSeq and RRBS. Figure 2.2c shows the coverage of
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Figure 2.1: The cfMethylSeq procedure. (A) Diagram of the cfMethylSeq protocol (B)

Typical TBE-UREA PAGE image of cfMethylSeq libraries made from cfDNA, compared

with conventional RRBS with cfDNA or intact genomic DNA as input material. The non-

specific ligation product from undigested cfDNA fragments with the conventional RRBS

protocol is indicated by an arrow. (C) The fragment length profiles of libraries sequenced

with the cfMethylSeq protocol on cfDNA (red), compared to WGBS on cfDNA (green) and

conventional RRBS on cfDNA (blue).
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Figure 2.2: cfMethylSeq reads fall in expected locations. (A) The percentage of reads with

MspI sites on both ends, on only one end, and on neither end from our cfMethylSeq protocol

on cfDNA (green), RRBS on solid tissue (blue), and WGBS on cfDNA (red). (B) Venn

diagram of CpG sites covered by RRBS on solid tissue, cfMethylSeq on cfDNA, and WGBS

on cfDNA. A CpG site is considered covered if it sequenced at least once in over 90% of the

samples profiled for each protocol. (C) Read coverage in 10000 randomly chosen CpG sites

covered by both RRBS and cfMethylSeq samples. Each point in the scatter plot stands for

one CpG sites, the x-coordinate is the normalized coverage in RRBS on solid tissue, and the

y-coordinate is the normalized coverage in cfMethylSeq.
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10000 random CpG sites covered by both cfMethylSeq and RRBS samples. The x-axis is the

coverage in RRBS and the y-axis is the coverage in cfMethylSeq, after normalization. The

coverage is highly consistent between RRBS and cfMethylSeq (Pearson correlation 0.84),

meaning cfMethylSeq is producing libraries with profiles similar to RRBS.

2.2.3.2 Genomic enrichment

As a result of our high on target rates, CpG-dense regions are enriched. 34.11%, 12.38%, and

13.14% of cfMethylSeq reads fall into CGI, shore, and shelf regions, compared to 33.65%,

13.35%, and 14.04% for conventional RRBS libraries on solid tissue. In WGBS cfDNA

libraries, only 2.66% of reads fall in CGIs while most (88.32%) fall in uninformative opensea

regions (figure 2.3a). That is, cfMethylSeq offers 12.8 fold enrichment over WGBS in CGIs.

Similarly, in gene regions, 15.44% of cfMethylSeq reads fall in gene promoter regions and

23.33% fall in exonic regions, compared to 17.12% and 23.12% in conventional RRBS libraries

on solid tissue, while only 1.1% and 5.4% of WGBS reads fall in promoters and exons,

respectively (figure 2.3b).

Due to the limited number of CpGs profiled in comparison to WGBS, cfMethylSeq reaches

a much higher depth for a much lower number of mapped reads, similar to RRBS (figure

2.3c). In WGBS, hundreds of millions of mapped read pairs must be sequenced to reach even

moderate depth, compared to around 50 million for RRBS and cfMethylSeq. This highlights

the cost-effective nature of the cfMethylSeq and RRBS protocols.

2.2.3.3 Validity and reproducibility of cfMethylSeq

To ensure our cfMethylSeq procedure could accurately profile methylation levels, a solid

tissue sample was sequenced with RRBS, and sonicated and sequenced with cfMethylSeq.

Comparisons between traditional RRBS libraries on solid tissue and cfMethylSeq libraries

on the same tissue’s sheared gDNA show that cfMethylSeq can obtain similar methylation

levels with correlation increasing as coverage increases (figure 2.4).

For CpG sites with more than 10x coverage in both approaches, the correlation between
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Figure 2.3: cfMethylSeq offers genomic enrichment and reduced cost. (A) The percentage

of mapped fragments that fall in CGIs, CGI shores, CGI shelves, and opensea regions is

shown for cfMethylSeq libraries, RRBS libraries and WGBS libraries on cfDNA. (B) The

percentage of mapped fragments that fall in gene promoters, exons, introns, and intergenic

regions is shown for cfMethylSeq libraries, RRBS libraries, and WGBS libraries on cfDNA.

Regions are defined by UCSC table browser. (C) The number of mapped read pairs (x axis)

required to obtain a certain depth of coverage (y axis) over CpG sites covered at least once

in each procedure in cfMethylSeq (green), WGBS (red), and RRBS (blue).
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Figure 2.4: Methylation concordance between a solid tissue sample sequenced with RRBS,

and sheared and sequenced with cfMethylSeq, increases with depth of coverage. The tradi-

tional RRBS sample and sheared cfMethylSeq sample are subsetted to the CpG sites that

are covered by both samples at minimum depth of coverage specified on the x-axis. Then,

the Pearson correlation (y-axis) of the methylation rate (β value) is taken in these CpG sites.
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sheared cfMethylSeq

vs intact RRBS

technical cfMethylSeq

replicates

Coverage correlation 0.8962661 0.9832131

Methylation correlation 0.9852304 0.9904725

Table 2.1: Concordance of coverage and methylation calls between (column 1) a gDNA

sample sequenced with traditional RRBS and sheared and sequenced with cfMethylSeq and

(column 2) replicate cfDNA samples both sequenced with cfMethylSeq. Pearson correlation

measurements are calculated among CpG sites covered > 10x in both samples.

methylation levels in cfMethylSeq on sheared gDNA and RRBS on intact gDNA is 0.9852

for the same sample (first column of table 2.1). Additionally, to test the reproducibility of

cfMethylSeq, one cfDNA sample was sequenced twice using the procedure (second column

of table 2.1). The coverage and methylation are highly consistent between the replicates.

Overall these experiments showed that cfMethylSeq can accurately profile methylation

levels, is similar to RRBS in terms of genomic coverage, and can be performed multiple times

and get consistent results.

2.2.4 Comparison to other methods

2.2.4.1 Traditional RRBS on cfDNA

Three cfDNA samples were sequenced with both cfMethylSeq and traditional RRBS. Table

2.2 shows the on target rate in these libraries. Typically for traditional RRBS on solid tissue,

this number is over 90%. For cfMethylSeq, the value is typically around 85%. Traditional

RRBS on cfDNA yielded on target rates of 28-35%; while this is much lower than the 85%

observed in cfMethylSeq, it is still higher than expected. Initially we anticipated there would

be almost no enrichment.

Fragment length profiles for these libraries are shown in figure 2.5. As expected, the

RRBS libraries have a peak around 160 bp for the undigested cfDNA that was able to pass
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sample protocol on target rate % genome covered

1 RRBS 27.30740 45.191152

2 RRBS 35.83175 28.096360

3 RRBS 28.26273 43.354064

1 cfMethylSeq 87.72469 7.361843

2 cfMethylSeq 89.99379 6.459448

3 cfMethylSeq 86.02260 8.315694

Table 2.2: Comparison between cfMethylSeq and traditional RRBS on three cfDNA samples.

The on target rate measures the percentage of mapped fragments that fell in characteristic

RRBS locations. % genome covered measures the percent of basepairs in the genome that

were covered by at least one mapped fragment

the size selection step. However, these libraries still have an RRBS peak at 68 bp; there is

still some enrichment for RRBS regions.

Overall these libraries show that RRBS is not directly applicable to cfDNA, but there is

more enrichment than theoretically anticipated. There is still a peak at 68 bp, only about

50% of the genome is covered rather than > 90%, and the on target rate is close to 30%, not

near 0 as originally predicted from simulations on WGS data.

It is likely that the enrichment is due to the fill-in step in the library protocol. As observed

in [45], cfDNA fragments often have jagged (5’ or 3’ protruding) ends, with estimates of

around 87% of all cfDNA fragments having jagged ends. In order to be sequenced in a

double-stranded library protocol, such as cfMethylSeq, these ends need to be filled in before

adapters can ligate. During RRBS, MspI digestion will produce jagged fragment ends that

need to be filled in containing only C and G. Consequently, during the end repair step, only C,

G, and A (for A-tailing the fragment after end repair) are added. Therefore any fragment that

needs to be filled in with a T nucleotide cannot be end repaired and cannot ligate to adapters.

It is likely that these jagged ends often contain A, and cannot be end-repaired nor ligate to

adapters. This could lead to a lot of original, undigested cfDNA fragments being unable to be
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Figure 2.5: Length profiles in cfMethylSeq on three cfDNA samples (blue) and traditional

RRBS on the same three cfDNA samples (blue). The black line represents the length profile

from in silico RRBS on hg19.

sequenced, leading to the observed enrichment of MspI digested fragments not predicted by

the initial simulations. Furthermore, the high damage observed in cfDNA [90] could lead to a

natural dephosphorylation in cfDNA fragments, even though no dephosphorylation step was

performed. This would prevent adapter ligation in these damaged fragments. Nevertheless,

although some enrichment is observed, it is nowhere near the levels of cfMethylSeq and will

not offer the cost reduction of our method.

2.2.4.2 cf-RRBS

While this dissertation was being prepared, van Paemel et al. [105] simultaneously developed

a method very similar to our cfMethylSeq method for applying RRBS to cfDNA, named cf-

RRBS. In our cfMethylSeq procedure, cfDNA fragments without the desired digestion sites

are blocked from ligating to adapters on both ends. In cf-RRBS, fragments without the

desired digestion sites can still ligate to adapters, but in this scenario a nick is formed

between the adapter and the fragment. These fragments are subsequently removed with
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sample protocol % adapter dimers on target rate

1 cf-RRBS 65.93863 84.80486

2 cf-RRBS 54.66597 83.38934

3 cf-RRBS 45.30468 91.91102

1 cfMethylSeq 21.38745 89.38593

2 cfMethylSeq 7.52928 88.99743

3 cfMethylSeq 3.33045 94.12502

Table 2.3: Mapping statistics from 3 cfDNA samples sequenced with our cfMethylSeq method

and cf-RRBS [105]

an exonuclease digestion step that removes nicked DNA [17]. This cf-RRBS technique has

two drawbacks, leading to the under-utilization of the precious cfDNA. First, in addition

to removing cfDNA fragments without the desired digestion sites, exonuclease digestion will

also remove any DNA that contains nicks, a scenario that has been estimated to occur in 30%

of cfDNA fragments [11]. In contrast, our cfMethylSeq procedure can still build the intact

cfDNA strand into the library if only one strand contains the nick. Second, adapters ligate

to all cfDNA fragments, including those without the desired digestion sites, leading to lower

ligation efficiency in the fragments of interest and therefore lowering library yield. Indeed,

their reported data showed a low library yield with high duplication rates (63% ± 13.89%)

[105].

To compare our cfMethylSeq method to their cf-RRBS method, we sequenced 3 cfDNA

samples with both methods. Results are shown in table 2.3. With the cf-RRBS procedure,

45 to 65% of the sequenced reads were adapter dimers and therefore wasted data. Adapter

dimers are exacerbated with the cf-RRBS procedure because of the high input adapter

amount needed to ligate to all fragments, even those without digestion sites. All of the

samples sequenced with our method had higher on target rates compared to the same sample

sequenced with the method from [105], illustrating the efficiency of our adapter ligation

strategy for preserving the regions of interest.
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2.2.4.3 cfMeDIP-seq

The cfMeDIP-seq procedure [89] captures all reads with at least one methylated C. This

C does not necessarily have to be in a CpG context, however in mammalian DNA non-

CpG context methylation is rare [55]. Initially, we hypothesized the cfMeDIP-seq procedure

would miss a lot of informative tumor reads in cancer cfDNA because hypomethylated repeat

regions are a hallmark of cancer [12]; if so this method would only be able to capture these

reads if there was at least one methylated C in them. In our analyses on WGBS data on

cfDNA, a methylated C occurs on roughly 55% of all reads, yielding only 2-fold enrichment

over traditional WGBS (figure 2.6). However, over 75% of fragments that contain a CpG

site contain a methylated site, meaning cfMeDIP-seq will be able to capture a large portion

of the fragments with CpG sites.

While cfMeDIP-seq is able to sequence most fragments with a CpG site, the advantage

of our cfMethylSeq procedure lies in the enrichment of CpG islands and gene promoters.

Furthermore, cfMeDIP-seq does not contain a bisulfite conversion step. After sequencing,

all that is known is that at least one CpG site on the read was methylated, but not which

CpGs or how many. Unbiased methylation ratios cannot be obtained, and recent read-based

algorithms cannot be used on this data [59, 25, 64]. In contrast, cfMethylSeq is able to

capture all methylation states without bias at basepair resolution in CpG-dense regions.

2.2.5 UMIs are necessary in cfMethylSeq

PCR amplification is an essential library preparation step in both cfMethylSeq and RRBS.

However, if multiple copies (PCR duplicates) of the same read end up getting sequenced, they

must be removed, otherwise they will result in biased methylation and coverage measure-

ments [80]. However, PCR deduplication is not recommended for RRBS because standard

deduplication algorithms do not work (see Methods) [51]. While not ideal, this problem is

typically ignorable in RRBS because high amounts of input DNA (e.g., from solid tissue)

lead to lower PCR duplication rates. However, in cfMethylSeq, which uses low amounts of

cfDNA as input, the duplication rate could possibly be very high. The addition of UMIs into
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Figure 2.6: Enrichment of cfMeDIP-seq. cfDNA WGBS samples were analyzed to find the

percentage of mapped fragments that contain a CpG site (A) and that contain a methy-

lated CpG site (B). Of fragments that contain a CpG site, the percentage that contained a

methylated CpG site is shown in (C).

our data enables us to truly measure duplication rates in RRBS and UMIs. As expected,

we observe higher PCR duplication rates in cfMethylSeq (average 27%) compared to RRBS

libraries on solid tissue (average 8%) (figure 2.7). Without the UMI, there would be no way

to identify or remove these PCR duplicates in our cfMethylSeq data, which could have a

large effect on methylation measurements and hinder downstream analyses.

2.3 Methods

2.3.1 Addition of UMIs

2.3.1.1 Calculations for UMI length

In standard library preparation protocols, each DNA fragment is copied several times during

PCR. Sometimes multiple clones of the same molecule may end up getting sequenced, even

though they represent only one initial molecule. Following bisulfite conversion, unmethylated

DNA is T rich while methylated DNA is C rich. Due to differences in melting temperatures,

unmethylated DNA amplifies easier than methylated DNA, leading to biases in the final

library that could affect methylation measurements [110]. To get rid of this experimental

artifact, PCR deduplication is performed after mapping the reads to the genome. Typical
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Figure 2.7: PCR duplication rates across cfMethylSeq (red) and solid tissue RRBS (black)

samples. Rates were calculated using the UMIs present in our custom adapters.

programs use only the mapping position (chr, start, end, and strand) to identify PCR dupli-

cates, and keep the highest quality fragment at each position [51]. This strategy is effective

for moderately low-depth, untargeted library preparation strategies, such as WGBS, since it

is unlikely that the same exact mapping location will correspond to more than one distinct

molecule. For RRBS, this procedure is no longer practical, since the DNA molecules are

physically cut with a restriction enzyme. For example, let the CCGG sites in the following

fragments map to the same genomic location:

ACTCCGGNN...NNCCGGTCG

TACACTCCGGNN..NNCCGGT

After MspI digestion, both fragments become:

CGGNN..NNC

CGGNN..NNC

In the final RRBS library, there will be several distinct molecules that map to the same

location and strand. A solution to this is the addition of unique molecular identifiers (UMIs),

DNA sequences added during library preparation that uniquely tag individual molecules
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before they go through PCR [109]. In the final sequenced library, PCR duplicates will have

the same mapping location and the same UMI, whereas distinct fragments may have the

same mapping location but different UMIs.

The length of the UMI is an important parameter: longer UMIs can pose experimental

challenges, but short UMIs lead to collisions; when distinct fragments map to the exact same

location and share the same UMI. In general, the longer the UMI, the lower the chance of

barcode collision as there will be more possible distinct UMIs.

Newman et al. [78] analyzed barcode collisions to determine if the 4 bp index barcodes

used in their CAPP-seq method with error suppression (iDEs) were sufficient. A barcode

collision happens when distinct fragments (i.e., not pcr duplicates) map to the exact same

location (chr, start, end, strand) and share the same barcode. If this happens, one of these

molecules will get marked as a PCR duplicate of the other, even though in reality it was a

distinct molecule. With 4 bp barcodes, there were 256 (44) unique possible barcodes; the

probability that any two molecules share the same barcode is 1
256

= .0039. They looked at

cfDNA sequencing data and determined what fraction of distinct molecules in the overall

data had redundant start/end coordinates. Less than 50% of the cfDNA data (and less than

10% of sheared genomic DNA) had redundant positions; so the majority of fragments were

expected to be unaffected by barcode collisions. Nevertheless, they calculated what fraction

of the data would be lost because of barcode collisions using the formula for determining the

number of expected collisions in a hash table (n=number of molecules with the redundant

positions, k=256; number of unique barcodes):

E(barcode collisions) = n− k + k(
k − 1

k
)n

For example, if there are 3 (n = 3) molecules with redundant positions, and we have 256

possible barcodes, we expect 3 − 256 + 256(255
256

)3 = 0.01170349 collisions; in other words,

0.01170349
3

= .0039 = .39% of these fragments will have to be discarded because they match to

the same position and have the same barcode; so we cannot tell if they are PCR duplicates

or distinct fragments.
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Even though Newman et al. [78] used the targeted CAPP-Seq method [77], the likelihood

of collisions due to distinct molecules getting the same barcode is the same as for WGS. This

is not true for RRBS.

In CAPP-seq, probes pull down fragments that map to certain locations (like a microar-

ray). However, the actual fragment that gets sequenced is the original fragment, not just

the part that attached to the probe. For example, let the CAPP-Seq probe attach to the

sequence CAT in the following fragments:

ACGCATACG

ATTACGCATACGGGT

Even though these two fragments attached to the same CAPP-seq probe, one of them

is longer than the other, so they will map to different locations. There is no chance of a

barcode collision.

In RRBS, the situation is different since we are physically cutting the fragment. For

example, let the CCGG sites in the following fragments map to the same genomic location:

ACTCCGGNN...NNCCGGTCG

TACACTCCGGNN..NNCCGGT

After MSPI, both fragments become:

CGGNN..NNC

CGGNN..NNC

These fragments now can have a barcode collision, even though they were originally

distinct fragments that mapped to different locations.

In [78], the number of distinct molecules mapping to each distinct genomic location had

to be determined to calculate the expected number of barcode collisions. For RRBS, the

situation is simpler. Because MspI will cut the genome at predefined locations, we just need

to know how many total genomes are in the starting material. Every genome will be cut

at the same places, so we will end up with n fragments at each site if there are n genomes

present. For example, if there are 1000 genomes in the starting material, we will end up
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with 1000 fragments mapped to the exact location that are truly distinct. We need to have

enough distinct barcodes (i.e., barcodes that are long enough) so that the probability that

any two of these fragments being assigned the same barcode is very low.

The human genome is 3.59x10−12g. Therefore, in 500 ng (=10−9 g) of DNA input, we

have:

500x10−9g

3.59x10−12g
= 139, 275

copies of the genome. In 20 ng input, we have 5571 copies of the genome.

The percent lost can then be calculated as follows:

Say we have 139,275 genomes. Then, at any one location, we have 139,275 distinct

molecules that are indistinguishable (theoretically). If we have barcodes of length t, then we

have k = 4t possible barcodes (e.g., t = 4 leads to k = 44 = 256 distinct barcodes).

The expected number of these 139,275 (n) fragments that will be assigned the same

barcode, given the number of distinct barcodes (k = 256), is:

E(barcode collisions) = n− k + k(
k − 1

k
)n

= 139275− 256 + 256(
255

256
)139275

= 139019

This means we will lose 139019
139275

= 99.8% of the fragments at this location (we will count

as PCR duplicates even though they are distinct).

Using this formula, the percent lost for 500 ng human (139,275 genomic equivalents), 20

ng human (5571 genomic equivalents), and 500 ng mouse (170,241 genomic equivalents) for

different barcode lengths is shown in figure 2.8. In order to avoid too much loss, UMIs longer

than 12 bp would be ideal.
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Figure 2.8: Data loss due to barcode collisions. Three different scenarios are shown for input

material: 500ng mouse DNA (red), 500 ng human DNA (blue), and 20 ng human DNA

(black). 500 ng input human DNA is the scenario expected for solid tissue RRBS, while 20

ng input human DNA is the scenario expected for cfMethylSeq. These input sources and

amounts determine the number of genomic equivalents available. From this number, we can

predict barcode collision rates: we calculate the percentage of distinct molecules (y-axis)

that would be assigned the same barcode of length (x-axis) and incorrectly labeled as a PCR

duplicate and removed.
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Figure 2.9: Format of a sequencing read. All components not shown in black are necessary

for PCR amplification and/or sequencing on Illumina machines. The DNA insert of interest

is shown in black.

2.3.1.2 Overview of adding UMIs to sequencing adapters

The overall structure of the read at the end of library preparation is shown in figure 2.9.

No matter how the DNA is modified to add molecular barcodes, it still needs the overall

structure to be similar to figure 2.9. Otherwise it cannot be sequenced using an Illumina

machine.

Most commercial UMI adapters have the UMI in the index position, and increase the

length of the index to include both the traditional index and the inserted UMI. This is not

ideal, as most sequencing companies will charge prohibitive fees for sequencing longer index

lengths. Instead, if the UMI is between the DNA insert and the R1 or R2 primers, no special

sequencing parameters need to be used.

2.3.1.3 Final UMI addition procedure

The final barcoding strategy, based off of [48], is illustrated in figure 2.10. Two oligos (pur-

ple and green in figure 2.10) were purchased from IDT and ligated to each other. One oligo

contains a random sequence of 8 nucleotides followed by a fixed sequence. After ligation, the

other oligo is filled in (dNTP, ddH2O, and Klenow exo-). In this way, the 8bp random se-

quence is copied to the other strand. The fixed sequence following the 8bp random sequence

contains a restriction enzyme cut site (HpyCH4III, cut site 5’-ACN↓GT-3’). Following re-
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striction enzyme digestion, this adapter now has a T-overhang with a phosphodiester bond

and can ligate to DNA that has an A overhang. The reaction to ligate the adapters to the

DNA involves T4 ligase buffer, T4 DNA ligase, HC, ATP, and DTT.

2.3.2 Development of final processing and analysis pipeline

The DNA libraries of both cfMethylSeq (for cfDNA) and RRBS (for tissue genomic DNA)

were sequenced with 150 bp paired-end reads using HiSeqX (Illumina) by Genewiz, Inc.

(South Plainfield, NJ, USA). The detailed processing pipeline is as follows:

2.3.2.1 Sequencing data UMI reformatting

Our custom adapters contain UMIs and fixed sequences in the beginnings of both R1 and

R2. These sequences need to be removed before mapping. A custom script was used to

remove UMIs from the beginnings of R1 and R2 and write them into the read name for

deduplication later on. After library preparation with our custom adapters, the format of

both R1 and R2 should be:

[8 bp UMI][TGACT][start of read]

However, due to sequencing errors or errors in adapter generation, a small percentage

(<4%) of reads do not follow this format. These reads can have a UMI longer or shorter

than 8bp, or be missing the fixed sequence (TGACT) entirely. Additionally, about 4%

of reads in the expected format have a sequencing or other error in the fixed sequence.

The initial processing script therefore first checks for the presence of TGACT in bases 9-

13 of a sequenced read. If there is an exact match in both R1 and R2, the first 8 bp

and fixed sequence of both R1 and R2 are written into the read names of both R1 and

R2 in the format [original read name]:R1:[UMI for R1]:R2:[UMI for R2]:F1:[fixed

sequence for R1]:F2:[fixed sequence for R2], and bases 1-13 are removed from each

read. For example, if original R1 and R2 for a read pair were as follows:
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A	 NNNNNNNN ACTGACATCTTCT 
||||||||||||||||||| 

B	
NNNNNNNN TGACTGTAGAAGA 
NNNNNNNN ACTGACATCTTCT 

||||||||||||||||||| 

C	
NNNNNNNN TGACT 
NNNNNNNN ACTG 

||||||||||||||||||| 

Figure 2.10: Depiction of incorporating UMIs into our sequencing adapters. (A) Two oligos

are ligated to each other. These contain the standard P5 and P7 sequencing primers needed

for sequencing on Illumina machines. The green oligo contains an 8 bp random sequence

followed by a fixed sequence. (B) The top oligo (purple) is filled in by copying the lower

strand. This incorporates the 8bp random sequence into both strands. The fixed sequence

after the random barcode is then digested with a restriction enzyme. (C) After digestion,

the final adapter is left with a T overhang and is ready to ligate to A-tailed library inserts.
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@A00454:77:HH7VMDSXX:1:1101:25265:1407 1:N:0:CTTGTA+TCTTTC

ACTCCACGTGACTCGGTTTATTTTATTGGAATTGGTTAGATAGTGGGTATAGTTTATAGAGGGTGAGTTGAAGTAGGGT

@A00454:77:HH7VMDSXX:1:1101:25265:1407 2:N:0:CTTGTA+TCTTTC

AGCTATGTTGACTCAATAAAACACCAACCCACCCTACTTCAACTCACCCTCTATAAACTATACCCACTATCTAACCAAT

After UMI reformatting the reads would be represented as:

@A00454:77:HH7VMDSXX:1:1101:25265:1407 1:N:0:CTTGTA+TCTTTC:R1:ACTCCACG:R2:AGCTATGT:F1:TGACT:F2:TGACT

CGGTTTATTTTATTGGAATTGGTTAGATAGTGGGTATAGTTTATAGAGGGTGAGTTGAAGTAGGGT

@A00454:77:HH7VMDSXX:1:1101:25265:1407 2:N:0:CTTGTA+TCTTTC:R1:ACTCCACG:R2:AGCTATGT:F1:TGACT:F2:TGACT

CAATAAAACACCAACCCACCCTACTTCAACTCACCCTCTATAAACTATACCCACTATCTAACCAAT

If there is no exact match for the fixed sequence at bases 9-13, a close match is tolerated

if the Levenshtein distance between bases 9-13 and TGACT is 1. If this condition is satisfied,

the first 8 bp and fixed sequenced are written into the read name and bases 1-13 are removed,

as above. If still no conditions are satisfied, UMIs of different lengths allowing for Levenshtein

distance of 1 in the shifted fixed sequence are allowed. UMI lengths are checked in the

following order: 7 bp, 9 bp, 1-6 bp, then 10-12 bp. These would have TGACT (or 1

mismatch) in bases 8-12, 10-14, etc. If the final UMI is shorter than 8 bp, Ns are padded to

the beginning of the UMI to make the final UMI 8 bp. For example, if the read pair were as

follows:

@A00454:77:HH7VMDSXX:1:1101:25265:1407 1:N:0:CTTGTA+TCTTTC

CCACGTGACTCGGTTTATTTTATTGGAATTGGTTAGATAGTGGGTATAGTTTATAGAGGGTGAGTTGAAGTAGGGT

@A00454:77:HH7VMDSXX:1:1101:25265:1407 2:N:0:CTTGTA+TCTTTC

TATGTTGACTCAATAAAACACCAACCCACCCTACTTCAACTCACCCTCTATAAACTATACCCACTATCTAACCAAT

After UMI reformatting the reads would be represented as:

@A00454:77:HH7VMDSXX:1:1101:25265:1407 1:N:0:CTTGTA+TCTTTC:R1:NNNCCACG:R2:NNNTATGT:F1:TGACT:F2:TGACT

CGGTTTATTTTATTGGAATTGGTTAGATAGTGGGTATAGTTTATAGAGGGTGAGTTGAAGTAGGGT

@A00454:77:HH7VMDSXX:1:1101:25265:1407 2:N:0:CTTGTA+TCTTTC:R1:NNNCCACG:R2:NNNTATGT:F1:TGACT:F2:TGACT

CAATAAAACACCAACCCACCCTACTTCAACTCACCCTCTATAAACTATACCCACTATCTAACCAAT
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If the final UMI is longer than 8 bp, the 8 bp closest to the fixed sequence are used as

the UMI. For example, if the read pair were as follows:

@A00454:77:HH7VMDSXX:1:1101:25265:1407 1:N:0:CTTGTA+TCTTTC

ACTACTCCACGTGACTCGGTTTATTTTATTGGAATTGGTTAGATAGTGGGTATAGTTTATAGAGGGTGAGTTGAAGTAGGGT

@A00454:77:HH7VMDSXX:1:1101:25265:1407 2:N:0:CTTGTA+TCTTTC

GATAGCTATGTTGACTCAATAAAACACCAACCCACCCTACTTCAACTCACCCTCTATAAACTATACCCACTATCTAACCAAT

After UMI reformatting the reads would be represented as:

@A00454:77:HH7VMDSXX:1:1101:25265:1407 1:N:0:CTTGTA+TCTTTC:R1:ACTCCACG:R2:AGCTATGT:F1:TGACT:F2:TGACT

CGGTTTATTTTATTGGAATTGGTTAGATAGTGGGTATAGTTTATAGAGGGTGAGTTGAAGTAGGGT

@A00454:77:HH7VMDSXX:1:1101:25265:1407 2:N:0:CTTGTA+TCTTTC:R1:ACTCCACG:R2:AGCTATGT:F1:TGACT:F2:TGACT

CAATAAAACACCAACCCACCCTACTTCAACTCACCCTCTATAAACTATACCCACTATCTAACCAAT

If still no conditions are satisfied, bases 1-8 are written into the read name and bases

9-13 are removed. R1 and R2 are processed separately, i.e., R1 can have a 9 bp UMI and

R2 could be missing the fixed sequence, but the string added to the read name of both R1

and R2 will be the same. On average ≥96% of reads have a UMI of 8 bp with an exact fixed

sequence (92%) or with 1 mismatch in the fixed sequence (4%).

2.3.2.2 Sequencing data trimming

Trim galore v0.4.4 [8] was used to trim the default Illumina adapters from the sequencing

reads after UMI reformatting. If a read was adapter trimmed, an additional 13 bp were

removed from its 3’ end to remove the 8 bp UMI and 5 bp fixed sequence from the 3’

adapter. During library preparation, MspI digestion is performed followed by end repair

using unmethylated cytosines. These two bp need to be removed from the beginning of R2

and potentially from the ends of R1 before methylation calling [7]. Therefore an additional

2 bp were trimmed off the 3’ ends of R1 and 2 bp were trimmed off of the 5’ ends of R2 to

remove this spurious methylation call. The trim galore command used was:

--three prime clip R1 15 --three prime clip R2 13 --clip R2 2 --length 15 --phred33
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2.3.2.3 Alignment, deduplication, and methylation calling

UMI-reformatted, trimmed sequences were aligned to the hg19 reference genome (GRCh37

Genome Reference Consortium Human Reference 37 (GCA 000001405.1) [13]) using Bismark

v0.18.2 [51] with default parameters. Umi-Grinder v0.0.1 [50] was used to remove PCR

duplicates based on the UMIs written into the read names during the UMI reformatting step

and the mapping location. The original Umi-Grinder program was modified to count N’s as

matches rather than the default mismatches. Due to the length of the UMI and the rate of

sequencing errors observed in the fixed sequence, 4 bp were allowed to mismatch in the 16

bp UMI (8 bp from R1 + 8 bp from R2) in order for a duplicate to be counted. For the

mitochondrial chromosome, this requirement was lowered to 0 mismatches due to memory

constraints. In our experience, the number of mismatches allowed made little difference;

around 0.5% more mapped reads were counted as duplicates when the mismatch threshold

was increased from 0 to 4 mismatches.

Methylation calls from the deduplicated bam files were extracted using bismark methy-

lation extractor using the -p option. Bed files were created for the deduplicated bam files

using bamtobed from the bedtools suite v2.26.0 [83]. In the bed file produced by bamtobed,

each mapped, deduplicated fragment is represented by two lines: one for R1 and one for

R2. These two lines were combined to create a fragment level bed file. To combine R1 and

R2 into one fragment, the mapping locations and strands of R1 and R2 are compared. The

mapping location of the final fragment is the lowest of the start positions for R1 and R2 and

the highest of the end positions for R1 and R2. The final fragment maps to the same strand

as R1.

For example, if there were two lines for fragment

GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT

in the original bed file:

chr1 14889 15010 GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT/2 32 +

chr1 14968 15090 GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT/1 32 -
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These would be represented as the following one line in the collapsed bed file:

chr1 14889 15090 GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT 32 -

Similarly, methylation calls were gathered at the fragment level from Bismark’s output

files. Bismark provides two output files for CpG methylation calls, one for fragments mapping

to the positive strand and another for fragments mapping to the negative strand. There

is a line for every CpG site called on each read. For example, the fragment above had 8

methylation calls. It is represented in Bismark’s CpG file for the negative strand (CpT OB*)

as:

GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT + 14948 Z

GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT + 14955 Z

GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT + 14976 Z

GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT + 15005 Z

GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT - 15046 z

GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT + 15029 Z

GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT + 15090 Z

GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT + 15086 Z

The second and fourth columns are + and Z, respectively, if the CpG was methylated

and -, z if the CpG was unmethylated. These lines are collapsed into one line with three

columns; the read name, the CpG locations (sorted), and the methylation string (in the same

order as the CpG locations), with 1 representing a methylated CpG and 0 an unmethylated

CpG:

GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT 14948,14955,14976,15005,15029,15046,15086,15090 11111011

The fragment level bed and collapsed CpG file are then combined using unix join on the

read name to create an annotated, fragment level bed file which contains the methylation

calls on an individual sequenced fragment. For example, the output line for this example

read would be:

chr1 14889 15090 GWNJ-0850:R1:ACCATGAG:R2:ACAGAATC:F1:TGACT:F2:TGACT 201 - 8 14948,14955,14976,15005,15029,15046,15086,15090 11111011
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The columns of the annotated bed file are chromosome, fragment start, fragment end,

fragment name, fragment length, strand, number of CpGs on the fragment, mapping loca-

tions of the CpGs, and the methylation string. Note that standard bed files are 0-based

and the last bp is not included (“0 start, half-open”), e.g. chr1:4-5=T [103]. These custom

bed files are 0-based but the last bp is included (“0 start, fully-closed”) (e.g. chr1:4-5=TC).

To change to a standard bed format, 1 bp needs to be added to the third column. The

coordinates of the CpG sites in the eighth column are with respect to the mapped strand,

i.e. in a negative mapped fragment they will need to be shifted down 1 bp to match the

coordinates of a positive mapped fragment mapping to a similar location. This annotated,

fragment level bed file was used for all downstream analyses.

2.3.3 cfMethylSeq enrichment analysis

2.3.3.1 Feasibility simulations

WGS cfDNA samples from [90] were in silico digested with MspI to evaluate the feasibility

of performing RRBS on cfDNA. Specifically, paired end WGS cfDNA reads were merged

into one fragment as described above so that the overall fragment length could be obtained.

These reads were stored in a bed file, with one fragment per line. Then, any cfDNA fragment

that covered two or more CCGG sites was retained. Only the portion of the original fragment

between CCGG sites was kept. Any resulting fragment that was over 350 bp in length was

removed. For these simulations, promoter and CGI regions were taken from [24] and lifted

over to the hg19 genome [49]. MspI digestion sites were defined from CCGG matches in the

human reference genome hg19 (GRCh37 Genome Reference Consortium Human Reference

37 (GCA 000001405.1))

2.3.3.2 Definition of genomic regions

CGI regions were downloaded directly from UCSC table browser [47], without masking. CGI

shores were defined as 2000 bp flanking regions of CGIs, CGI shelves as the 2000 bp flanking

regions beyond CGI shores, and CGI seas as every other region of the genome that was not
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a CGI, shore, or shelf. Gene promoters were defined from Gencode release v19 [29] and

expanded to 1000 bp upstream and downstream, following procedures in [24]. Exons were

extracted from the Gencode release. Repeat regions were downloaded from UCSC table

browser [47].

2.3.3.3 Coverage calculation in genomic regions

A fragment was considered as covering a genomic region if any portion of the fragment over-

lapped with that genomic region. Specifically, a bed file representing the mapped fragments

of a sample (after collapsing R1 and R2 into one fragment) was intersected with a bed file

representing the region of interest using bedtools [83] using the -u option and the genomic

region bed file as file B. Any fragments surviving this intersection were considered mapped

to the genomic region of interest.

2.3.3.4 Methylation and coverage correlation calculations

Coverage and methylation comparisons between pairs of samples were performed at CpG sites

only. To compare coverage and methylation at a certain depth of coverage, both samples

were first subsetted to only CpG sites covered by both samples at the specified depth. For

example, to compare methylation between a solid tissue sample’s sheared genomic DNA’s

cfMethylSeq data and traditional RRBS data at 10x coverage, CpG sites that were covered 10

or more times in both samples were used. The methylation values and coverage (read depth)

at these CpG sites were used to compute the correlation. For methylation, two vectors,

one from each sample, were used to compute the correlation. Each vector’s length was the

number of CpG sites covered by both samples, and the entries were methylation ratios. For

coverage correlation, the entries in the vector were read depths. Pearson correlation was

used in all cases.
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2.4 Discussion

Here, we outlined a novel experimental method, cfMethylSeq, to profile methylation in

cfDNA at dramatically reduced cost. Our cfMethylSeq procedure yields 12.8 fold enrich-

ment over WGBS in terms of CGI coverage, reliably profiles methylation measurements, and

is reproducible. This protocol, as well as the dataset we have built using it, has the potential

to greatly expand methylation analysis and biomarker discovery in cfDNA.

Our novel cfMethylSeq procedure, specifically designed to capture cfDNA fragments with

two MspI cut sites, is broadly generalizable to capturing restriction enzyme digests on frag-

mented DNA. This could be beneficial for selecting cut fragments without having to go

through a size selection step, which can be inefficient [39]. Currently, reliable methylation

profiling in cfDNA is only commercially available through WGBS or targeted methylation

sequencing. Our procedure strikes a balance between these two extremes: much less data

is wasted compared to WGBS, and sequencing can be done at much higher coverage, in-

expensively. In addition, cfMethylSeq still covers a large portion of the genome, allowing

for de novo target identification, as well as further use of the data for other analyses. Our

cfMethylSeq procedure also includes the development of an in-line UMI for methylation

sequencing, something that is not commercially available [95].

Because our cfMethylSeq procedure does not require selection of targets a priori, our

procedure can be used for biomarker discovery. This is not possible if a targeted panel [117,

64] is used. Methylation has been increasingly implicated in biological processes and diseases.

Our procedure potentially allows for noninvasive monitoring and biomarker discovery in a

cost-effective, large-scale manner. cfMethylSeq also allows for genome-wide attributes, such

as copy number changes, to be measured for no additional costs.

Recently, two other approaches attempted to reduce methylome profiling costs in cfDNA:

cf-RRBS and cfMeDIP-seq. The cf-RRBS method follows a similar procedure as our

cfMethylSeq protocol, but their single-end blocking approach does not reach as high of an

enrichment rate as our dual-end blocking approach. The cfMeDIP-seq method uses immuno-

precipitation to pull down cfDNA fragments with at least one methylated CpG site, but this
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scenario occurs on ∼50% of all cfDNA fragments, therefore cfMeDIP-seq does not effectively

enrich CpG-rich fragments. In addition, cfMeDIP-seq does not yield methylation measure-

ments at basepair resolution, prohibiting highly sensitive read-based approaches [59, 25].

For approaches using targeted methylation [64, 117], panels need to be established a pri-

ori, and data cannot be used for marker discovery. None of these existing approaches have

incorporated UMIs to facilitate single-molecular counting.
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CHAPTER 3

Application of cfMethylSeq for cancer detection and

typing

3.1 Introduction

Detecting malignancies before their metastasis is key to the fight against cancer. Recently,

cfDNA has drawn much attention for accomplishing this task. Because cfDNA can be ac-

cessed through a blood draw, cancer status could potentially be monitored noninvasively

through so-called liquid biopsies [16]. Despite its promise, major challenges of cfDNA-based

cancer detection include: (1) the fraction of tumor DNA in the blood of early-stage cancer

patients can be very low, (2) the molecular heterogeneity of cancer (e.g. diverse subtypes,

stages, and etiologies), and (3) sample sizes that are too small to reflect the heterogeneous

patient population (e.g. age, gender, and ethnicity).

Due to the low amount of tumor DNA present in the blood, a successful cancer detection

method should capture as many tumor-derived fragments as possible. Some current studies

aim to do this through small, panel-based approaches that deeply sequence areas likely to

contain tumor cfDNA fragments [64, 14, 117]. These studies often result in false negatives

because only a small proportion of tumor-derived fragments are observed. Alternatively,

genome-wide approaches have also been used, aiming to capture broad signals to make up

for the lack of individual tumor-derived signals [99, 59, 46, 15]. However, whole-genome

sequencing is cost prohibitive for clinical use.

The heterogeneous nature of cancer hints that a noninvasive test able to capture diverse

attributes of cancer has the best chance of success. Indeed, several cfDNA features have

40



been shown to have diagnostic power, including cfDNA methylation [64, 59, 46, 25, 117,

89], fragment length [15, 42, 90], copy number variation (CNV) [12, 15], and microbiome

composition [82]. Below we outline the use of these features:

1. Fragment length and copy number

Broad copy number changes are commonly observed in several types of cancer [43].

These changes can be detected in cfDNA with very shallow sequencing [12, 33, 15]. In

noninvasive prenatal testing, already a clinical reality, a similar technique is used to

detect chromosomal abnormalities in the fetus, such as down syndrome. The situation

is more complicated in cancer, however, because copy number changes can occur on

variable chromosomes and can be much smaller than the whole chromosome [43].

Fragment size has increasingly been recognized as a unique feature in cfDNA [44].

cfDNA fragments display characteristic fragment lengths around 165 bp, with multi-

ples of 165 bp also being observed. This length corresponds to the length of DNA that

would wrap around a nucleosome (147 bp) plus the linker DNA, leading to the theory

that cfDNA fragments reflect apoptotic fragmentation [10]. Because nucleosome posi-

tioning is related to gene regulation and is cell-type specific, cfDNA fragment length

profiles have been used to infer gene expression and tissue of origin [104, 90] and even

reconstruct Hi-C maps [66]. Overall, the presence of shorter or longer cfDNA fragments

has been used to successfully detect cancer [42, 15, 97], and fragment length analysis

has yielded important insights into cfDNA’s release into the bloodstream [44].

2. Microbial profiles

Unique microbial signatures have been found in tissue and blood for most major types

of cancer [76]. Although the presence of these signatures is poorly understood, possibly

coming from live microorganisms, host cells, or lysed bacteria in the tumor microen-

vironment, Poore et al. [82] demonstrated the applicability of microbiome profiles for

cancer detection in cfDNA. To use these methods, the sample of interest is sequenced,

and reads that do not map to the human genome are then attempted to map to various

microbial genomes. Consequently, sample contamination is a concern. However, an
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advantage is that this type of analysis can be performed retrospectively on current

cfDNA sequencing data originally generated for other purposes.

3. Methylation

Targeted tumor suppressor gene hypermethylation and broad, genome wide hy-

pomethylation have been observed in cancer [43]. cfDNA methylation profiling in a

genome-wide manner has been able to detect large scale methylation changes [12], and

has been used to infer tissue of origin [42]. Because methylation changes occur early

in tumorigenesis, methylation based liquid biopsies hold great promise [59]. Recent

methylation-based cfDNA detection methods typically use either targeted methylation

panels, where desired targets are found in solid tissue data and then sequenced deeply

in the cfDNA [117, 64], or WGBS with sophisticated algorithms to compensate for

low coverage [46, 59, 25]. Read level methylation analyses, such as α value [59] and

methylation haplotype [25], have enhanced the power of these methods.

Although these methods all show promise for detecting cancer in cfDNA, to our knowledge

they have not all been integrated into one model. Ensemble machine learning is a technique

that boosts accuracy by combining multiple learning algorithms. These methods have gained

popularity in bioinformatics because of their ability to deal with high dimensional features

and small sample size [118]. An ensemble model reduces the chance of overfitting by combin-

ing multiple classifiers trained on the same data, using the training data in a more efficient

way.

Ensemble methods improve classification by combining a group of layer 1 (base) classifiers

in some way. This is because different layer 1 features may capture different aspects of the

training data; when diverse and accurate layer 1 features are combined, the overall accuracy

often increases over any layer 1 feature used individually. A straightforward example would

be a facial recognition algorithm, where layer 1 classifiers detect different components such

as ears, eyes, etc. As individual classifiers they will not perform well at detecting a face, but

together they will have high accuracy. A drawback of these methods, however, is decreased

interpretability.
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These integrative methods will offer the highest gains when the layer 1 features are

diverse. In this way, if one classifier makes a misclassification on a test sample, another

classifier using complementary information about the same sample could be able to classify

it correctly. When combined, these features compensate for each other.

Simple ensemble learning methods combine layer 1 classifiers through rudimentary met-

rics, such as voting or averaging. For example, each base classifier could vote cancer or

noncancer for a test sample, and the majority vote wins. In more sophisticated stacked

classifiers, the layer 1 model outputs are used to train a second meta-classifier [116]. The

output of this layer 2 classifier is then the final prediction.

Some cfDNA-based cancer detection methods have combined multiple feature types to

come to a cancer/noncancer classification. DELFI [15] uses both copy number and fragmen-

tation profiles in their stochastic gradient boosting model. Chan et al. [12] used hypomethy-

lation and copy number to classify a sample as cancer or noncancer. In the former case,

all features were input into one model. In the latter case, individual classifiers were trained

for each feature, and both “AND” and “OR” algorithms were tried, where the the sample

was classified as cancer if it was classified as cancer by both models, or by either model,

respectively.

However, different requirements of library preparation and sequencing depth have so far

prevented the comprehensive integration of diverse cfDNA features. While CNV, fragment

length, and microbiome composition can be obtained from shallow whole-genome sequenc-

ing, DNA methylation requires its own sequencing modality, e.g. WGBS, which is expensive,

despite the fact that methylation-informative cytosines are primarily found in CGIs, occu-

pying less than 5% of genome. The RRBS method employs restriction enzymes to cut intact

DNA into small fragments in regions with a high CpG content, and subsequently size-selects

these small fragments to enrich for CpG sites, therefore presenting a cost-effective approach

for genome-wide methylation profiling. However, as described in chapter 2, the conventional

RRBS approach is not applicable to naturally fragmented cfDNA.

In order to address the necessarily large sample size, a successful cancer detection test
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should be able to continually adapt as sample size increases. This is not possible with

fixed panel-based approaches, where additional testing samples are only measured on the

predefined sets of markers. These new samples cannot be used to discover or validate new

markers in later research. Ideally, these precious patient samples would be profiled in a

non-targeted manner, such that novel information can be gained for later test refinement.

To address all these challenges, this chapter presents an integrated experimental and

computational system, named CancerRadar, for the accurate and affordable detection of

cancer. CancerRadar includes (1) using our cost-effective experimental approach presented

in chapter 2, cfMethylSeq, to comprehensively profile diverse cfDNA features, and (2) an

integrative computational learning framework for cancer detection, which is scalable to many

types of features and high numbers of markers.

We applied CancerRadar to the cfMethylSeq profiles of 479 individuals, comprised of

275 patients with colorectal, liver, lung, or stomach cancer and 204 non-cancer individuals

(including patients with various diseases besides cancer), where > 55% of patients are from

early stages (stages I and II), and for liver cancer 74% of patients are from stage I. Exploit-

ing the vast amount of public data (TCGA, GEO, Epigenome Roadmap) and our newly

generated data on solid tumors, we demonstrate the performance of CancerRadar in two

tasks: (1) Detecting cancer: CancerRadar achieved a sensitivity of 89.1% at the specificity

of 97% (i.e., one false positive), ranging from 75.1% to 96.2% sensitivity among the four

cancer types, with an overall AUC of 0.986 (with standard deviation 0.011) in the indepen-

dent validation set. (2) Locating cancer: the prediction of the tumor tissue of origin (TOO)

yielded an accuracy of 91.5% (with standard deviation 4.7%) in the independent validation

set. Our results demonstrated the strong complementary effect of the multiple feature types.

Encouragingly, our data show that as training sample sizes increase, the detection power of

CancerRadar continues to increase. Furthermore, we show that more markers are required to

achieve the highest power as sample sizes grow, testifying to the importance of an expand-

able test. Since cfMethylSeq profiles cfDNA methylation in a non-targeted, genome-wide

manner, current and additional samples can be used to expand and refine our test.

44



Tumor-specific methylation 
markers & signatures

Liver 
cancer

Lung 
cancer

Colon 
cancer

Normal tissue-specific 
methylation markers & 

signatures for >10 tissue types

…

Collect public data 
& generate own 

data
(tumor/tissue/
plasma data)

Identify markers 
and signatures

Infer cfDNA
abundance profile

(read deconvolution )

Multimodal integrative prediction model

…

read abundance in markersread abundance in markers

Diagnostic decision

1. Healthy or cancer?
2. Tumor location?

cfDNA tissue-of-origincfDNA cancer-of-origin

Stomach 
cancer

Type 1 markers Type 3 markersType 2 markers

1 MB bins

cfDNA
digestion size

cfDNA microbial 
composition

...
Cohort

cfMethylSeq

Type 1 markers Type 2 markers

CNVType-4 
methylation

1 MB bins
Type 3 markers

Figure 3.1: Flowchart of using multi-feature data for cancer detection and TOO prediction

3.2 Results

3.2.1 Multi-feature profiling using cfMethylSeq

479 plasma samples were sequenced with the cfMethylSeq protocol described in chapter 2

(see figure 2.1a). From the cfMethylSeq data we extract four types of cfDNA features for

cancer detection: DNA methylation, copy number variation, digestion size, and microbiome

signatures (figure 3.1), as detailed below:

3.2.1.1 DNA Methylation

Using cfMethylSeq data from a set of non-cancer individuals, our own RRBS data on solid

tumors and normal tissues, and publicly available solid tumor and normal tissue sequencing

and 450k data from the Cancer Genome Atlas (TCGA) [114], epigenome roadmap [52],

and the Gene Expression Omnibus (GEO) [5], we identified four types of DNA methylation

markers:
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1. β-value-based tumor markers (Type 1): These are regions where the average

methylation rate (i.e. β-value, β=#methylated CpGs over all mapped reads in region
#CpGs over all mapped reads in region

) signifi-

cantly differs between solid tumors and their adjacent normal tissues, as well as be-

tween solid tumors and the cfDNA of people without cancer. These regions are found

separately for each cancer type, then the union is taken. Using our RRBS data of 101

solid tumor and adjacent normal pairs and cfMethylSeq data of 41 non-cancer cfDNA

samples, we identified 41,494 Type 1 markers in total, including 22,416 hypomethy-

lated and 19,077 hypermethylated markers in five cancer types (colon adenocarcinoma

(COAD), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung

squamous cell carcinoma (LUSC), and stomach adenocarcinoma (STAD)). In the same

way, using 450K array data from TCGA of 298 solid tissues [114] and our cfMethylSeq

data of 41 non-cancer cfDNA samples, we also obtained 20,179 Type 1 markers in total,

including 6,668 hypomethylated and 13,511 hypermethylated in tumor.

2. α-value-based tumor markers (Type 2): In contrast to Type 1 tumor markers

that compare population-based average methylation rates (β-values) in a region, Type

2 markers compare the methylation rates of individual sequencing reads, so called α-

values [59] (i.e, α=#methylated CpGs in a mapped read
#CpGs in a mapped read

). Specifically, these are regions in

which the majority of non-cancer cfDNA samples show consistent α-values (i.e. nearly

all reads are hyper or hypomethylated), while the majority of reads of at least one

tumor tissue sample show clear opposite α-values. Using our RRBS data of solid

tissues and cfMethylSeq data of cfDNA samples, we identified 41,493 Type 2 markers,

including 33,871 hypomethylated and 8,220 hypermethylated markers in tumor. Since

this process uses the methylation information of individual sequencing reads, Type 2

markers cannot be identified with array-based methylation data.

3. β-value-based tissue markers (Type 3): Since organs containing tumors undergo

increased cell death and therefore yield an elevated quantity of cfDNA [119, 4, 28],

tissue-specific cfDNA deconvolution can aid our inference in both detecting cancer

and predicting its tissue-of-origin. The Type 3 markers are genomic regions where
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the average β-value differentiates not only between one tissue type and all other tissue

types (i.e., one-vs-rest for tissue-type-specific markers), but also between pairs of tissue

types (i.e., one-vs-one for tissue-type-pair comparison markers). Using RRBS data of

17 tissue types from our own data and public sources [5], we identified 17,672 tissue

markers. Separately, using TCGA Illumina 450K array data [114], we identified 9,818

array-based tissue markers for 11 tissue types.

4. β-value-based 1 MB bins (Type 4): Equal-sized 1MB bins are used as markers.

In these markers, we aim to capture the hypomethylation of repeated DNA sequences,

a hallmark of cancer [12, 87]. The β-value averaged across all repeat regions in a 1 MB

bin is used as the feature value.

Deconvoluting tumor methylation signals: Given the cfMethylSeq data from a cfDNA

sample, we either employed a probabilistic mixture model (for Type 1 and 3 markers) or

directly compared the read-level α-value (for Type 2 markers) to deconvolute the tumor-

derived or tissue-specific reads falling onto each marker region. For Type 1 and 3, reads

falling in each marker region were assigned probabilities of coming from the tumor (Type 1)

or tissue (Type 3) backgrounds. This read-based deconvolution exploits the pervasiveness

of DNA methylation for signal enhancement. Here, we improved our previous read-level

deconvolution algorithm [59] by (1) expanding 2-class to k-class (k ≥ 2) for deconvoluting

reads specific to k types of tissues; and (2) adding a new unknown class to collect reads

that do not fit into any known classes (details in Methods). For Type 1 and 3 markers,

we construct a profile vector where the length of the vector is the number of markers and

the value in each entry is the normalized count of tumor-derived (tissue-derived) reads. In

contrast, the Type 2 markers are designed such that the α value is overwhelmingly consistent

in normal cfDNA samples; any observed read with the opposite α value signal is considered

a tumor read.
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3.2.1.2 cfDNA digestion sizes

cfDNA fragment size is recognized as a sensitive marker for cancer detection [15, 74, 42, 32].

Although our cfDNA fragments are digested by MspI during the cfMethylSeq procedure, the

lengths of original cfDNA fragments impact the lengths of digested fragments, and hence we

observed a high correlation between these two length entities. Here, we calculate the average

length of all cfDNA fragments that fall in a 1MB bin, with subsequent normalization using

non-cancer reference samples. A profile vector is constructed covering 2,734 bins (after

removing chrX, chrY, chrM and bins with no mapped reads) across the genome.

3.2.1.3 Copy number variation (CNV)

The fraction of reads falling in each 1MB region was used as a feature, leading to a feature

profile of length 2,734 (after removing chrX, chrY, chrM, and bins with no mapped reads).

3.2.1.4 Microbial composition (Microbial)

The profile of microbial abundances is of length 1,620 (including genomes from 1,017 bacteria,

1 archaea, 453 fungi, and 149 viruses). cfMethylSeq reads that were not able to map to the

human genome were used to do this analysis. The abundance of a microbe is calculated as

the count of these reads that uniquely map to its microbial genome, divided by the total

number of the sequencing reads in the sample and the size of the microbial genome.

3.2.2 Multimodal predictive model integrating heterogeneous and multiscale

signal types

To maximize the diagnostic power of these heterogeneous features, we developed a multi-

view stacked model with two-layer learning. In Layer 1, a predictive model is learned using

each individual feature type. In Layer 2, the predictions of Layer 1 models are “stacked”

into an ensemble model (figure 3.2). Ensembles of multiple Layer 1 models ward off against

overfitting and add a form of regularization. Even if some Layer 1 models have weak pre-
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Support Vector Machine(SVM)

Random Forest (RF)

Meta 
classifier Prediction
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Multimodal data
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Tissue markers 
(Type-3 )

Broad-region 
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Methylation

RRBS-derived 
markers

Array-derived 
markers

Hypermethylation 
markers

Hypomethylation 
markers

RRBS-derived 
markers

Array-derived 
markers

Layer 2

Layer 1

This integrative learning framework can be applied to two tasks: ü Cancer detection
ü TOO prediction

Figure 3.2: Flowchart of the integrative learning framework for two tasks: (1) cancer detec-

tion, and (2) TOO prediction. Task (1) used binary classifiers, and Task (2) used multiclass

classifiers.

diction power, they may still contribute to improving accuracy by providing complementary

information. We developed two stacked models, one for cancer detection and another for

cancer typing. The architecture of the stacked classifier is designed to fully utilize the train-

ing samples and also avoid overfitting (see figure 3.21 in the Methods section for an in depth

flowchart).

3.2.2.1 Model performance in cancer detection

The total 479 cfDNA samples sequenced with the cfMethylSeq procedure (from 42, 126, 67,

40 patients of liver, lung, colon, and stomach cancer, respectively, as well as from 204 non-

cancer individuals) were split into four sets (figure 3.3): 41 non-cancer samples for marker

discovery, 30 non-cancer samples for data standardization and age adjustment, 75% and 25%

of the remaining 408 samples for leave-one-out cross validation (LOOCV) and independent

validation (IV), respectively (Methods). For a robust performance evaluation, we repeated
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All plasma samples (479)

41 normal samples for 
marker discovery

30 normal samples for 
age adjustment and 

standardization
307 samples for LOOCV

101 samples for 
independent validation

ü Repeat this sample split 10 times (or runs)
ü Prediction performance is averaged over 10 runs

Figure 3.3: Overview of how the plasma samples in the cohort are used. All plasma samples

are randomly split into four sets: marker discovery, age adjustment and standardization,

LOOCV, and independent validation. This sample split is repeated 10 times (i.e., runs) and

the prediction performance is averaged over 10 runs. The LOOCV set uses 1 sample in the

LOOCV set as the test sample and the rest of the samples in this set as training samples.

The independent validation set uses all samples in the LOOCV set as the training samples

and all samples in the independent validation set as the test samples.
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Figure 3.4: Cancer detection performance. (A) ROC curves of our method in both LOOCV

and independent validation. (B) Sensitivity breakdown in each cancer stage and cancer type.

Sensitivity is shown at a false positive rate of 1 (99% specificity in LOOCV, 97% specificity

in independent validation). Results are not shown for stage IV liver cancer due to the small

number of samples.

this split scheme 10 times and reported their average prediction performance. Our integra-

tive prediction model achieved the average AUROC 0.989 (with standard deviation 0.003),

yielding an average sensitivity of 85.6% (with standard deviation 6.7%) at the specificity of

99%, across 10 LOOCV runs (figure 3.4). This result is comparable with that of the inde-

pendent validation cohort, i.e., the average AUROC 0.986 (with standard deviation 0.011)

with the average sensitivity 89.1% (with standard deviation 11.3%) at specificity 97% (one

falsely classified sample), over 10 runs (figure 3.4a). For non-metastatic (stages I-III) sam-

ples, our model achieved average AUROC 0.988 (with standard deviation 0.003), with the

average sensitivity of 83.7% (with standard deviation 7.9%) at specificity 99%. In the inde-

pendent validation cohort, non-metastatic samples achieved an average AUROC 0.984 (with

standard deviation 0.013) with average sensitivity 87.4% (with standard deviation 12.7%)

at specificity 97% over 10 runs. The stage-specific performance for individual cancer types

is shown in figure 3.4b.
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Stage LOOCV Independent cancerSEEK

I 25.0 8.0 5

II 3.0 1.0 19

III 4.6 1.4 20

IV 3.0 1.0 0

overall 35.6 11.4 44

Table 3.1: Number of liver cancer samples by stage breakdown in our samples vs can-

cerSEEK’s. Numbers are averaged over 10 runs for our LOOCV and independent sets.

Comparison to cancerSEEK cancerSEEK [14] is a published cfDNA cancer detection

algorithm which uses proteins and targeted mutations to screen for eight common cancer

types and identify tissue of origin. The multianalyte test uses a targeted panel to profile mu-

tations in common cancer genes and measure levels of eight proteins. Their cohort consisted

of 1005 cancer samples (stages I-III) and 812 healthy samples. They achieved a sensitivity

of 62% at >99% specificity (805 out of 812 healthy correct; 99.138% specificity).

While we achieved average AUROCs of 0.989 in the LOOCV set, and 0.986 in the in-

dependent set, cancerSEEK achieved an average AUROC of 0.91 (figure 3.5a). To compare

our results at the same specificity (99%) it is only possible to use our LOOCV set due to

the limited number of normal samples in our independent set. Our LOOCV set achieved

higher sensitivity at 99% specificity for stages I, II, III, and overall (cancerSEEK did not

use any stage IV samples) (figure 3.5b). In terms of individual cancer types, our LOOCV

set achieved superior sensitivities for all cancer types we profiled, except for liver cancer

(figure 3.5c). However, the majority of our liver cancer samples are stage I, whereas very few

liver cancer samples profiled in cancerSEEK were stage I (table 3.1). cancerSEEK achieved

such a high sensitivity for liver cancer because only one stage III liver cancer sample was

misclassified.

Comparison to GRAIL GRAIL developed a targeted methylation panel for their pan-

cancer classifier [64]. Targets were identified using cfDNA WGBS, 450k, and solid tissue
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Figure 3.5: Comparison to cancerSEEK. (A) ROC curves comparing our independent (gray)

and LOOCV (black) performance to that of cancerSEEK (red) (B) comparison of sensitivities

for each cancer stage in our LOOCV set (blue) and cancerSEEK (red) (C) comparison of

sensitivities for each cancer type in our LOOCV set (blue) and cancerSEEK (red); (B) and

(C) are shown at 99% specificity for our LOOCV results
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Figure 3.6: Comparison to GRAIL. (A) stages I-III (B) all stages. Results are shown on our

LOOCV set at 99% specificity.

WGBS data. Their final panel covers 103,456 distinct regions (17.7 MB) including 1.1 mil-

lion CpG sites, and probes only targeted fully methylated or fully unmethylated markers.

Comparatively, our cfMethylSeq procedure theoretically covers 1.1 million regions (about

130 MB) and 5.7 million CpG sites.

cfDNA samples were profiled using their targeted panel. For each cfDNA sample, all reads

falling into regions of interest were assigned probabilities of coming from different tissues,

based on methylation patterns. Then, a logistic regression model was used to determine

cancer/noncancer status.

Our results compared to Grail’s results are shown in figure 3.6 . In non-metastatic stages

(I-III), we achieve higher sensitivity for all cancer types profiled by our method (COAD,

LIHC, LUNG (LUAD and LUSC combined), and STAD) (figure 3.6a) . For overall stages

(figure 3.6b), we outperform Grail for all cancer types except for LIHC. Similar to the

comparison for cancerSEEK [15], this is due to the overwhelming number of stage I LIHC

samples in our sample set.
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3.2.2.2 Model performance in cancer TOO prediction

We used the same strategy as pancancer detection to evaluate the performance of TOO

prediction on 275 cfDNA cancer samples. Only cancer cfDNA samples correctly identified

as having cancer during pancancer detection are used. Among 10 runs, for the 4 organ sites

(Colon, Liver, Lung, Stomach) we achieved an average accuracy of 90.4% (standard deviation

0.5%) for LOOCV and 91.5% (standard deviation 5.0%) for independent validation (figure

3.7a). For early-stage (stage I and II) cancer patients alone, we achieved an accuracy of 86.5%

(standard deviation 2.0%) in LOOCV and 89.1% (standard deviation 7.3%) in independent

validation (figure 3.7b). Specifically, the prediction accuracies of colon/liver/lung/stomach

identification are 81.8%/97.1%/96.7%/78.9% for all-stage and 70.1%/96.8%/96.2%/79.4%

for early-stage cancer patients, respectively (figures 3.7a,b).

3.2.2.3 Enhanced predictive power by integrating multi-type features

We further evaluate how different features contribute to cancer detection performance. As

shown in figure 3.8a, we observed the (1) reinforcing effect: 60.5% of all samples can be

correctly predicted by all feature types, and the (2) complementary effect: methylation,

CNV, cfDNA digestion size, and microbial abundances have uniquely correctly predicted

1.2%, 0.3%, 1.3%, and 1.5% of all samples in 10 runs, respectively. The ranking of features in

terms of their Layer 1 AUROCs is methylation, digestion size, CNV, and microbial signatures

with AUROCs of 0.972, 0.965, 0.946, and 0.928 (figure 3.8c). At the specificity of 99%, the

ranking of sensitivity of 75.2%, 73.3%, 55.7%, and 14% was achieved for digestion size,

methylation, CNV, and microbial compositions. If we leave out individual feature types, the

average sensitivity will decrease by 14.4%, 4.4%, 5.1%, respectively for methylation, cfDNA

digestion size, and microbial features. Among methylation markers, Type 1 achieved the

highest AUROC of 0.959. The difference in sensitivity for cancer detection, between using

all features and the best single feature is largest for stage 1 at 17.3%, indicating the necessity

of integrating multiple features for early cancer detection.

For cancer TOO prediction, as shown in figure 3.7c, methylation features are the domi-
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Figure 3.7: Cancer typing performance. Confusion matrices for all-stage and early-stage (i.e.,

stage I/II) cancer samples in (a) LOOCV and (b) independent validation. (c) Accuracy when

using all feature types, each individual feature type, and all-but-one feature type.
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nant contributor. Specifically, using the methylation features can achieve the same accuracy

as integrating all feature types. That is, if we leave out the individual feature types (figure

3.7c), the average accuracy decreases by 8.8% for the methylation features, but does not de-

crease for cfDNA digestion size, CNV, and microbial features. Among the four methylation

marker types, we observed (1) the reinforcing effect: 41.9% of all samples can be correctly

predicted by all methylation marker types, and (2) the complementary effect: Type 1/2/3/4

methylation marker types have uniquely correctly predicted the locations of 1.4%, 5.0%,

3.0%, and 1.7% of all samples in 10 runs, respectively (figure 3.11a), and achieved accuracies

of 84.0%, 78.4%, 83.6%, and 77.9%, respectively (figure 3.7c).

Complementarity of Type 1 and 2 methylation markers Interestingly, 94.9% and

96.5% of the Type 1 and 2 markers are non-overlapping, respectively (figure 3.8b). While

Type 1 markers were selected based on the average methylation rates in individual regions,

Type 2 markers require strong read-level signals in only a (possibly very small) subset of

tumor samples, to capture tumor heterogeneity.

Specifically, Type 1 methylation markers are hyper and hypomethylated regions selected

with the R package limma [86]. These markers on average show (e.g) hypomethylation in

normal samples and hypermethylation in tumor samples. In contrast, the Type 2 methy-

lation markers are based on α values. These markers must show (e.g) strongly consistent

hypomethylation in normal samples and have elevated hypermethylation in some tumor sam-

ples. For Type 2 markers, no sophisticated deconvolution methods are needed to identify

tumor markers. Since the normal reads show consistent methylation, any (e.g) hyperme-

thylated read can be marked as a tumor read. For Type 1 markers, the difference between

tumor and normal is not as strong, but the signal is more consistent.

Examples of Type 1 markers in normal cfMethylSeq and solid tissue samples can be

seen in figure 3.9 as a heatmap of methylation (β) values in Type 1 markers. Although

in general the trend is (e.g) hypomethylation in normal samples and hypermethylation in

tumor samples, neither is at the extreme. In contrast, Type 2 markers show strong signal in

the normal samples only, and strong opposite signal in only a small subset of tumor samples.
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Figure 3.8: Synergistic analysis of multimodal cancer signals for cancer detection. (A)

Visualization of intersecting sets of plasma samples in the LOOCV set that can be correctly

predicted by each feature type at a false positive rate of 5 (B) Overlap between different

methylation markers that are used for cancer detection. (C) Performance of individual

feature types.
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Figure 3.9: Heatmap illustrating marker discovery in Type 1 methylation markers. Color

represents β value: red indicates high methylation, blue indicates low methylation. White

indicates a missing value. Markers first must show opposite average methylation between

solid tumor tissues and their matched normal tissues (right, middle panels). Then, opposite

signals must be shown between solid tumor tissues and a set of normal cfMethylSeq samples

(left panel).

The heatmap in figure 3.10 shows the count of hypermethylated reads (darker colors are

higher numbers of hypermethylated reads) in regions that were selected as Type 2 markers

(hypermethylated in tumor case).

Since the strategies used to define these markers select very different types of markers,

there is little overlap between the regions selected (figure 3.8b). An example of a region that

would be selected in both types of features would be a marker that is totally hypomethylated

in all normal cfMethylSeq samples and totally hypermethylated in all tumor samples. In

contrast, a region that is about 30% methylated in all normal samples and about 60%

methylated in all tumor samples would be selected as a Type 1 marker but not as a Type

2 marker. A region that is 0% methylated in all normal samples but 50% methylated in

only two tumor samples would be selected as a Type 2 marker but not as a Type 1 marker.
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Figure 3.10: Heatmap illustrating marker discovery in Type 2 methylation markers, shown

for the hypermethylated in tumor case. Color indicates the count of reads with α values

equal to 1 (100% methylated), with darker colors indicating higher counts. Markers must

have over 50% of reads with α values equal to 1 in at least one solid tumor sample and less

than 25% of reads with α values equal to 1 in its matched normal sample (right, middle

panels). Then, a set of normal cfMethylSeq samples (left panel) must show almost all reads

with α < 0.5.
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Figure 3.11: Synergistic analysis of multimodal cancer signals for cancer typing. (A) Visual-

ization of intersecting sets of plasma samples in the independent validation set that can be

correctly predicted by each methylation marker type. (B) Performance in the independent

validation set increases as training sample size (fraction of LOOCV samples used) increases.
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As illustrated from the TOO results (figure 3.11), the complementary signals these markers

capture increase accuracy when an ensemble learner is used.

3.2.2.4 Impact of training sample size on performance

In their training of neural networks to automatically de-identify electronic health records,

Dernoncourt et al. [19] showed that as training size increased, performance increased. We

sought to reproduce this in our own results. To see the effect of using, for example, only

10% of the training set, 10% of the LOOCV samples were used to train a model, and this

model was applied to all samples in the independent set. This was done 10 times over the

10 splits, at intervals of 10%.

As was found in [19], the performance of our cancer detection and typing models also

increase with training size. As shown in figures 3.12a and 3.11b, as the training sample size

increases (i.e., from 10%, 20%, . . . , 100% of the original size), the average performance of

both cancer detection and TOO models on the same independent validation cohort increases,

and the performance variance over 10 runs decreases. This result holds for the overall model

as well as individual feature types, indicating our models do not over-fit the data and would

have more power with larger numbers of training samples.

3.2.2.5 The optimal number of markers increases with training sample size

Among all the feature types used, the numbers of Type 1, 2, and 3 methylation markers

are unconventionally high, e.g. over 40,000 markers for Type 1 markers. We show that the

independent validation performances of both cancer detection and typing increase with the

number of input markers, and performance plateaus when higher numbers of markers are

used. We further showed that with more training samples used, more markers are needed

to reach the best independent validation performances (figures 3.12b, 3.13a), testifying to

the advantage of using the entire methylome rather than a small-panel-based approach. In

addition, we found that Type 3 methylation markers (tissue markers) can achieve higher

independent validation performance as the number of tissue types used to train the markers
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Figure 3.12: Cancer detection performance with relation to training sample size. (A) In-

dependent validation performance using all feature types (leftmost panel) and individual

feature types (methylation, CNV, cfDNA digestion size, and microbial composition, 4 right-

most panels), with increasing training sample size. Different proportions of all LOOCV

samples are used to train the model, from 10% to 100%. (B) Increased training sample size

not only improves the independent validation performance, but also achieves higher per-

formance when marker number increases. Performance (y-axis) increases as the number of

Type 1 markers (x-axis) increases, until reaching a plateau. The plateau is reached at higher

numbers of markers as training size (indicated by color) increases.
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Figure 3.13: Cancer typing performance with relation to training sample size and number

of markers. (A) Increased numbers of Type 1 markers (x-axis) achieve higher performance

(y-axis) until reaching a plateau (circled). As more training samples are used (indicated by

color), the optimal number of markers needed to reach the plateau increases. (B) Increas-

ing the number of tissue types used to derive Type 3 markers yields higher cancer typing

accuracy.

increases (figure 3.13b).

3.3 Methods

3.3.1 Sample collection and exclusion

Plasma samples from subjects with cancer were collected from patients at UCLA’s hospitals

and purchased from BioPartners, Inc. (Woodland Hills, CA). Plasma samples from sub-

jects with cirrhosis were collected from patients at UCLA’s hospitals. Plasma samples from

healthy individuals were collected from UCLA’s Institute for Precision Health and purchased

from BioPartners, Inc. and BioChain Institute, Inc. (Newark, CA). Solid normal and tumor

tissue samples were collected from UCLA’s Translational Pathology Core Laboratory and

purchased from BioPartners, Inc., Biochain Institute, Inc., Origene, Inc. (Rockville, MD),

and Gundersen Health System (La Crosse, WI).

Healthy samples purchased from BioPartners met the following criteria: no cancer, drug

addiction, or auto-immune diseases in medical history, no signs of acute disease, and no HIV,
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HCV, HBV, or syphilis. Healthy samples from UCLA’s Institute for Precision health met the

following criteria: no cancer, organ transplant, hepatitis, pancreatitis, cirrhosis, pancreatitis,

sepsis, pregnancy, diabetes, or NASH in medical history. Healthy plasma samples purchased

from BioChain had no diseases in their medical history. cfDNA was extracted from plasma

samples with the QIAGEN QIAamp circulating nucleic acid kit (Catalog # 55114, German-

town, MD) following their instructions. The amount of starting material was 5-10ml plasma

for non-cancer controls and 1-5ml plasma for cancer samples. The solid tissue gDNA samples

were extracted with QIAGEN blood and tissue kit (Catalog # 69506). 10-100 ng tissue was

used to extract gDNA from each sample.

cfMethylSeq samples from plasma samples obtained before 2017 and from problematic

labs were excluded. Solid tissue samples that came from the same individual as cfMethylSeq

samples were excluded. Some solid tissue samples were excluded based on copy number

analysis.

Specifically, a bed file was made representing hg19 in 1 MB windows using bedtools

makewindows [83]:

bedtools makewindows -g hg19.genome -w 1000000 > hg19 1MB.bed

This bed file was intersected with each sample’s annotated bed file to get counts of

mapped, deduplicated fragments in each 1MB window:

bedtools intersect -a hg19 1MB.bed -b sample annotated bed -c -F .5 >sample 1MB counts.bed

To normalize, these 1 MB read counts were divided by the average 1 MB read counts of

normal solid tissue samples sequenced in the same batch using the same library preparation

methods. The normalized 1 MB profiles were visually examined and compared to the Broad

Institute’s Firehose Database of Gistic2 profiles for TCGA samples [72]. Solid tumor samples

were excluded if they did not match the profiles in the Firehose database, and normal tissue

samples were excluded if they were not flat.
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3.3.2 Library construction, sequencing, and data processing

The DNA libraries of both cfMethylSeq (for cfDNA) and RRBS (for tissue genomic DNA)

were sequenced with 150 bp paired-end reads using HiSeqX (Illumina) by Genewiz, Inc.

(South Plainfield, NJ). cfMethylSeq libraries were prepared as described in chapter 2. The

raw reads were preprocessed as depicted in detail in chapter 2; briefly we performed three

steps to preprocess the cfMethylSeq and RRBS data. (Step 1) Removal of custom adapters

with UMIs followed by read trimming. (Step 2) Sequence alignment, deduplication and

methylation calling. We used Bismark [51] to align the trimmed reads to the reference genome

hg19 (GRCh37 Genome Reference Consortium Human Reference 37 (GCA 000001405.1)).

Then Umi-Grinder [50] was used to remove PCR duplicates based on the UMI labels (in

the read names, allowing 4 mismatches in the total 16 bp UMI). Bismark [51] methylation

extractor was then used to call methylation in the mapped, deduplicated reads. (Step 3) The

chromosome-wise sequence alignment statistics and whole-methylome methylation statistics

of CpG islands, CpG shores, gene promoters and repetitive regions were summarized from

the individual read information obtained in Step 2. (Step 4) The mapping locations of R1

and R2 were merged to form one fragment.

3.3.3 Identification of methylation markers

3.3.3.1 Subsetting data to theoretical RRBS regions

Other groups have compared methylation between samples using average methylation levels

(β values) in genomic bins [12, 46, 59]. This compensates for low sequencing coverage:

smaller bins (e.g. individual CpG sites) require higher depth to reliably call methylation,

whereas broad genomic bins can contain sufficient numbers of mapped fragments at low

sequencing depths. However, average methylation levels in genomic bins cannot detect small

deviations, e.g. 1 fully unmethylated read falling in a region with 99 other reads that were

fully methylated would yield an average methylation of 99%. CancerDetector’s α value [59],

illustrated in figure 3.14, and Guo et al.’s methylation haplotype load [25] alleviated this issue

by using methylation calls at the fragment level. An advantage of RRBS and cfMethylSeq, in
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Figure 3.14: Illustration of α values vs. β values. β values measure methylation vertically,

averaging methylation across all CpG sites covering a locus. α values, in contrast, measure

methylation horizontally, at the read level.

addition to increased coverage for reduced cost, is that MspI digestion creates known mapping

locations that the majority of fragments will map to. These MspI-produced fragments create

natural genomic bins for methylation analysis; fragments will span the entire bin and be

directly comparable across samples. Unlike broad genomic bins, a cfMethylSeq fragment

can never fall in more than one theoretical RRBS region and will not have CpG sites outside

of the bin boundaries.

Theoretical RRBS regions on the positive strand were defined by in silico digesting the

hg19 reference genome with MspI. All occurrences of the MspI cut site “CCGG” were found in

the hg19 reference genome fasta file. The string “CCGG” was replaced with “C—CGG” and

the genome was split on the character “—”. These fragments and their genomic locations

were written to a file, which was then size selected for fragments between 0 and 350 bp

in length. The reference genome represents the positive strand of the genome. Fragment
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locations were shifted forward by 2 bp at both the start and end locations to get mapping

coordinates on the negative strand. Positive and negative mapping locations were counted

as separate fragments. In total there are 2,178,790 theoretical RRBS regions in hg19. Each

theoretical RRBS region was assigned an index.

Mapped, deduplicated fragments that intersected exactly with these theoretical RRBS

regions were extracted from the annotated bed files using bedtools (-f 1 -F 1 -s options)

[83]. On average 85% of mapped, deduplicated fragments met this criteria. After subsetting

to exact RRBS fragments, a python script was used to extract the average methylation of

each fragment, referred to as the α value. For example, a fragment with 10 sequenced CpG

sites, 4 of which are methylated, would have α = 0.4. Because most cfMethylSeq and RRBS

fragments have α values of either 0 or 1 (see figure 3.17 in section 3.3.3.3), fragments were

stratified into 5 groups: α = 1, α > 0.5, α = 0.5, α < 0.5, and α = 0.

An R script was used to aggregate this information by the theoretical RRBS region index.

Ultimately a file was produced for each sample with a line for each of the possible 2,178,290

theoretical RRBS regions covered. Each line contains a count of how many sequenced frag-

ments had α = 1, α = 0, α < 0.5, α > 0.5, and α = 0.5 for that sample.

Table 3.2 shows the first 10 lines of one such file. Line two indicates that, in this sample,

theoretical RRBS region 3 (chr1 10496 10588 +) had 17 fully methylated fragments, 0 frag-

ments with no methylation, 1 fragment with less than half CpGs methylated, 40 fragments

with more than half the CpGs methylated, and 0 fragments with exactly half the CpGs

methylated. A missing index indicates there were no fragments at all in this sample—in this

sample there were no fragments falling in marker indices 1 or 2, for example.

3.3.3.2 Merging theoretical RRBS regions by strand

MspI cuts DNA at CCGG sites, leaving CG overhangs on either end. This means that in

the final library, there is a difference in the strand coverage for CpG sites falling in MspI

digestion sites. This is illustrated in figure 3.15. The original DNA fragment, before MspI

digestion, contains 4 CpG sites: A, B, C, and D. After MspI digestion, the fragment that
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theoretical RRBS region index α = 1 α = 0 α < 0.5 α > 0.5 α = 0.5

3 17 0 1 40 0

4 30 0 2 38 1

54 1 0 0 1 0

122 5 1 0 6 0

126 1 0 0 0 0

129 3 1 1 1 0

130 2 0 0 1 0

131 0 0 1 0 0

143 102 1 0 0 3

Table 3.2: Example file format for α value stratification in theoretical RRBS regions for a

cfMethylSeq sample. Each line contains a count of how many sequenced fragments had the

column-specified α value in each theoretical RRBS region (row)

maps to the positive strand will yield methylation calls for CpG sites A, B, and C, whereas

the fragment that maps to the negative strand will yield methylation calls for CpG sites B,

C, and D.

Because the mapping locations are shifted by two bp between the top and bottom strand,

the subsetting of the annotated bed file into theoretical RRBS regions takes the strand

information into account (i.e., these are counted as two separate regions). However, in

our analyses, the methylation calls between the two strands are highly correlated. For

downstream analyses, we merged theoretical fragments 1 and 2 into one region.

Table 3.3 shows an example output file after merging. Original markers 3 and 4 were

merged into one marker, now indexed as 2. The sum of reads counts from markers 3 and 4

is now in marker 2. Some markers, such as original marker 54, only had read counts from

marker 54, not marker 53. New marker 27 includes counts from original markers 53 and 54,

but since 53 had no reads the counts are the same for new marker 27 as original marker 54.

These processed files are used for Type 2 methylation marker identification, as described
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Figure 3.15: Overview of theoretical RRBS regions with respect to the original DNA fragment

prior to MspI digestion. After MspI digestion, CpG sites falling in MspI digestion sites

(CCGG; A and D in the diagram) will only be covered by fragments mapping to the positive

(CpG A) or negative (CpG D) stands. These are counted as separate theoretical RRBS

regions.
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merged theoretical RRBS region index α = 1 α = 0 α < 0.5 α > 0.5 α = 0.5

2 47 0 3 78 1

27 1 0 0 1 0

61 5 1 0 6 0

63 1 0 0 0 0

65 5 1 1 2 0

66 0 0 1 0 0

72 102 1 0 0 3

Table 3.3: Example file format for α value stratification in merged theoretical RRBS regions

for a cfMethylSeq sample. Each line contains a count of how many sequenced fragments had

the column-specified α value in each merged theoretical RRBS region (row), where merged

theoretical RRBS regions combine the paired theoretical RRBS region indices mapping to

the respective top and bottom strands (see figure 3.15)

below.

3.3.3.3 Using processed data to identify markers

To identify the methylation markers, we generated RRBS data from 251 samples of solid

tumors and adjacent normal tissues for liver, lung, colon, and stomach cancer. We also used

cfMethylSeq data from cfDNA of 41 non-cancer individuals. In addition, we used array-

based methylome profiles (Illumina 450K) from TCGA [114], and RRBS-based methylomes

of normal tissues from GEO [5] (figure 3.16). We extract four types of methylation markers

for cancer detection and typing, following different marker discovery principles. For the first

three marker types, the unit regions are (merged) theoretical RRBS regions or groups of

theoretical RRBS regions as described above. The unit regions of the Type 4 markers are

1 MB equal-sized regions in the hg19 genome (referred to as bins). All theoretical RRBS

regions and 1 MB regions falling in chromosomes X, Y and M or without mapped reads

across all samples are excluded from marker discovery. Specifically,
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Figure 3.16: Overview of samples and data sources for identifying methylation markers

• β-value-based tumor markers (Type 1): These are regions that show differential methy-

lation between tumors and normal samples. Specifically, the limma method [86] (R

package limma version 3.42.0) was used to select genomic regions, in which the methy-

lation rate (i.e. β-value, β=# methylated CpGs in all mapped reads within the region

# CpGs in all mapped reads within the region
) differenti-

ates not only between solid tumors and adjacent normal samples, but also between

solid tumors and the set-aside set of 41 non-cancer cfDNA samples. These regions are

selected separately for each cancer type. The empirical Bayes moderated t-test relative

to a log2-fold-change threshold 1.0 was used in limma. To adjust for age differences in

methylation, markers are first found between solid matched normal and tumor tissue.

Specifically, the top 150,000 hypermethylated and hypomethylated markers are identi-

fied for colon adenocarcinoma (COAD) and their matched normal samples, liver hepa-

tocellular carcinoma (LIHC) and their matched normal samples, lung adenocarcinoma

(LUAD) and their matched normal samples, lung squamous cell carcinoma (LUSC) and

their matched normal samples, and the top 225,000 hypermethylated and hypomethy-

lated markers only for stomach adenocarcinoma (STAD) and their matched normal
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samples. Then the final marker set is the union of the top 6,000 hypermethylated

and top 6,000 hypomethylated markers identified for COAD, LIHC, LUAD, LUSC,

and the top 9,000 hypermethylated and hypomethylated markers only for STAD, se-

lected from the initial pools of 150,000 hyper and hypomethylated markers for COAD,

LIHC, LUAD, LUSC, and 225,000 for STAD. Because STAD markers generally have

lower differential power (i.e., lower fold change) and fewer training samples than other

tumor types, we identified more markers only for STAD. We generated and used the

RRBS data of 101 tumor samples (19 COAD tumors, 23 LIHC tumors, 21 LUAD

tumors, 23 LUSC tumors, 15 STAD tumors) and their adjacent normal tissues, and

the cfMethylSeq data of 41 non-cancer cfDNA samples, to identify 41,493 RRBS-based

tumor markers on average (over 10 random selections of 41 non-cancer cfDNA sam-

ples). Since this method uses the β-values, it can be applied to the Illumina-450K

array data of TCGA. That is, we employed the same method to array data of 149

tumor samples (38 COAD tumors, 49 LIHC tumors, 29 LUAD tumors, 40 LUSC tu-

mors, 2 STAD tumors) and their normal adjacent tissue, and the cfMethylSeq data of

41 non-cancer subject’s cfDNA samples to identify 18,190 array-based tumor markers

on average (over 10 random selections of 41 non-cancer cfDNA samples). Note that

(1) only those unit regions with at least 10 cfMethylSeq reads in 70% of 41 non-cancer

subject’s cfDNA samples are used as the marker candidates, (2) Illumina-450K ar-

ray data cover a smaller number of unit regions than the RRBS data, and therefore

we selected a smaller number of tumor markers, i.e., the top 5,000 hypermethylated

and hypomethylated markers for COAD, LIHC, LUAD and LUSC, and the top 7,500

hypermethylated and hypomethylated markers only for STAD, and (3) the missing val-

ues of solid tissue samples were imputed using the nearest neighbor averaging method

in the R package “impute”. The overview of data sources is depicted in figure 3.16.

Note that all Type 1 markers were derived by strictly comparing the tumors and their

adjacent normal tissues, in order to minimize the age influence [64].

• α-value-based tumor markers (Type 2):

In contrast to Type-1 tumor markers that compare the population-averaged methy-
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lation measurement of a region (i.e., β-values which are the averaged methylation

state over all reads in a region), this marker type compares a different methylation

measurement, the methylation rate of a single sequencing read, so called α-value [59]

(α=# methylated CpGs in a mapped read

# CpGs in a mapped read
). This is a sequencing-read-level measure, a higher

resolution than the region-population-level measure (β-value). α values harness the

power of multiple CpG sites on a read to increase detection of differential methylation.

While a single hypomethylated read in a background of mostly methylated reads would

not lead to a differential β value, it can be easily detected using α values (see figure

3.14).

Rationale Several methods in the literature employ PCR-based approaches to detect

cancer in cfDNA, where the signal may be very low in tumor samples, but consistently

not observed in normal samples [81, 88, 120, 60, 111, 3]. These strategies often target

a small number of gene promoters or transcription start sites that are unmethylated

in normal samples and highly methylated in cancer samples. After treating the DNA

sample with bisulfite conversion, PCR primers are used that will only selectively am-

plify the methylated version of the target. If a methylation-specific PCR product is

observed over a certain limit, then the methylated target was considered present [30].

These tests are simple to perform and do not require sequencing, but do require prior

knowledge of the targets of interest [34]. These tests are highly specific but have low

sensitivity; i.e. rarely will a methylated product be found in a non-cancerous case, but

many cancer samples will lack the methylation product.

In our cfMethylSeq data, which covers over 75% of all gene promoters and CpG islands

in the genome, we reasoned we could apply this highly specific strategy at a much

larger scale. Briefly, markers were selected that were consistently highly methylated

or unmethylated in a set of cfMethylSeq normal samples, and showed the opposite

signal in a (possibly very small) subset of solid tumor samples. We used the concept

of α value [59], to amplify signals at the read level. These markers might not display

noticeable methylation differences between tumor and normal samples at a population
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level. This type of marker cannot be found with 450k data and is further strengthened

by our theoretical RRBS regions which are comparable across samples and are often

entirely unmethylated or methylated.

Distribution of α values in cfMethylSeq and RRBS samples To mimic the

results seen in PCR-based cancer detection assays, Type 2 markers should be totally

methylated in cancer and totally unmethylated in normal samples, or vice versa. Most

α values are either 0 or 1 (figure 3.17). A cutoff of α being greater than 0.5 or less

than 0.5 should be sufficient for determining if a fragment is mostly methylated or

unmethylated, because in most cases α > 0.5 implies the fragment is totally methy-

lated, and α < 0.5 implies the fragment is totally unmethylated. This cutoff is used in

the marker discovery pipelines below. Figure 3.18 illustrates the strategy of read-level

tumor marker discovery.

Markers that are hypermethylated in tumor The 41 non-cancer cfDNA samples

were used in the initial marker selection. All solid tumor and normal RRBS matched

pair samples passing the exclusion step were used in the initial marker selection. In

the initial pass, markers were selected that displayed consistent hypomethylation in the

normal cfMethylSeq reference samples but the opposite signal in a subpopulation of

solid tumor tumor RRBS samples. Specifically, two types of theoretical RRBS regions

were selected as initial markers. Final markers are the intersection of regions satisfying

a and b:

(a) regions where there were no fragments with α ≥ 0.5 in ≥ 90% of normal

cfMethylSeq samples

(b) regions where at least 1 solid tumor sample had >50% of its fragments (in that

region) totally methylated (α = 1) and its matched normal sample had < 25% of

its fragments (in that region) totally methylated (α = 1))

The 90% thresholds were out of all samples that had at least 10x coverage, for example,
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Figure 3.17: α values in RRBS and cfMethylSeq data. (A) normal solid tissue, (B) tumor

solid tissue, and (C) cfMethylSeq data
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Figure 3.18: Conceptual illustration of (A) Type 2 marker discovery strategy, shown for

the hypermethylated in tumor case, and (B) read deconvolution in Type 2 hyper markers.

In (A), the region shown is selected as a Type 2 hyper marker because it is unmethylated

in most of the normal cfMethylSeq samples and there is at least one solid tumor/normal

adjacent pair where the solid tumor has > 50% of its reads with α = 1 and the adjacent

normal sample has less than 25% of its reads with α = 1. In (B), hypermethylated reads

(α > .5, shown in red) in this region are considered tumor reads
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of the cfMethylSeq normal samples, if only 21 had coverage in a theoretical RRBS

region, 19 must have α ≥ 0.5 to be a potential Type 2 marker. If 3 had α < 0.5, this

would indicate only 18/21=88% of normal samples had α ≥ 0.5, and requirement (a)

would not be satisfied. One of the 20 non-covered cfMethylSeq samples may have had,

say, 5 fragments falling in this region, but it would be counted as no coverage because

it did not meet the minimum coverage requirement of 10 fragments. Markers for LIHC,

LUAD, LUSC, COAD, and STAD were found separately and then aggregated to form

one set of initial pancancer markers; any marker that was a cancer marker in at least

1 tumor type was used.

Using our RRBS data of 101 tumor samples and their adjacent normal tissues, we

identified 9,374 α-value-based hypermethylation markers on average (over 10 random

selections of the 41 non-cancer cfDNA samples).

Markers that are hypomethylated in tumor Type 2 markers that are hy-

pomethylated in cancer are defined using bigger regions than the Type 2 hyperme-

thylated in cancer markers. The rationale is that hypomethylated markers are more

broad in the genome and not as specifically located as hypermethylated markers [12].

Superbins are defined that group theoretical RRBS regions together that are within

a certain distance apart until the accumulated size of the region exceeds a threshold.

Specifically, theoretical RRBS regions are grouped together that are less than 200 bp

apart until the final region exceeds 1000 bp. Superbins can overlap. Superbins that

were less than 100 bp were removed.

The 41 non-cancer cfDNA samples were used in the initial marker selection. All solid

tumor and normal RRBS matched pair samples passing the exclusion step were used

in the initial marker selection. In the initial pass, markers were selected that dis-

played consistent hypermethylation in the normal cfMethylSeq reference samples but

the opposite signal in a subpopulation of solid tumor tumor RRBS samples.

Specifically, two types of superbins were selected as initial markers, final markers are

the intersection of superbins satisfying a and b:
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(a) regions where there were no fragments with α ≤ 0.5 in ≥ 70% of normal

cfMethylSeq samples

(b) regions where at least 1 solid tumor sample had > 25% of its fragments (in that

region) somewhat unmethylated (α ≤ 0.5) and its matched normal sample had

< 10% of its fragments (in that region) somewhat unmethylated (α ≤ 0.5)

The 70% thresholds were out of all samples that had at least 10x coverage, as in the

hypermethylated markers. Markers for LIHC, LUAD, LUSC, COAD, and STAD were

selected separately and then aggregated to form one set of initial pancancer markers;

any marker that was a cancer marker in at least 1 tumor type was used.

Using our RRBS data and their adjacent normal tissues, we identified 32,501 α-value-

based hypomethylation markers on average (over 10 random selections of the 41 non-

cancer cfDNA samples).

• β-value-based tissue markers (Type 3): These are regions that have differential methy-

lation between tissue types. Specifically, the limma method [86] (R package limma

version 3.42.0) was used to select genomic regions in which the β-value differenti-

ates not only between one tissue type and all other tissue types (i.e., one-vs-rest for

tissue-type-specific markers), but also between pairs of tissue types (i.e., one-vs-one for

tissue-type-pair comparison markers). The empirical Bayes moderated t-test relative

to a log2-fold-change threshold 1.0 was used in limma. Then the final marker set is

the union of the top 200 one-vs-rest markers identified for each tissue type and top

30 one-vs-one markers identified for each tissue type pair. Note that because stomach

markers have lower differential power (i.e., lower fold change) than other tumor types,

we identified the top 400 one-vs-one markers and the top 200 one-vs-rest markers only

for stomach tissue type. Since this method uses the β values, it can be applied to both

methylation sequencing data and Illumina-450K array data from TCGA [114]. Using

the RRBS data of 17 tissue types with 217 samples (1 adipose, 3 b-cell, 9 brain, 38

colon, 3 esophagus, 4 granulocyte, 2 heart, 4 kidney, 25 liver, 68 lung, 4 monocyte, 13

neutrophil, 7 pancreas, 1 small intestine, 1 spleen, 26 stomach, 8 t-cell) collected from
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GEO [5], we identified 17,672 RRBS-based tumor markers. Using the TCGA Illumina-

450K array data of 7 tissue types with 391 normal tissues (38 colon, 205 kidney, 50

liver, 74 lung, 13 neutrophil, 9 pancreas, 2 stomach) and RRBS data on 19 samples

from 4 blood cell types (3 b-cell, 8 t-cell, 4 granulocyte, 4 monocyte) collected from

GEO [5], we identified 9,818 array-based tumor markers.

• β-value-based 1 MB bins (Type 4): In contrast to Type 1, 2, and 3 markers that use

theoretical RRBS regions or groups of theoretical RRBS regions as unit marker regions,

Type 4 markers use equal-sized 1MB bins in the hg19 genome as markers. With these

markers, we aim to capture the broad hypomethylation observed in cancer [12, 20].

The methylation rate (i.e., β value) of all reads falling in repeat regions in a bin is

calculated as the value of this bin in the profile. Repeat regions are defined by UCSC

table browser [103].

3.3.4 Marker profile generation

3.3.4.1 Computing Type 1 and 3 methylation marker profiles

We developed an algorithm to deconvolute cfDNA reads in two contexts: (1) deconvolute

reads into tumor-derived reads or background reads; and (2) deconvolute reads into reads

from different tissues. This algorithm extends our previous tissue-deconvolution algorithm

[18] by adding an unknown class to absorb reads that are not likely to belong to any known

classes. Given the methylation signatures of T classes in a methylation marker, without

loss of generalization, we assume that a cfDNA read falling in this region can be assigned a

probability of coming from each of these T classes. Those cfDNA reads that have multiple

classes with high probabilities are considered to have ambiguous class memberships, and we

assume they may come from an unknown class. This algorithm includes three steps:

1. Calculate class-specific likelihoods. To assess how well the joint methylation status

of multiple CpG sites on a read fits the methylation signature of a class t, we calculated

the class-specific likelihood that a cfDNA read came from a class t, P (read|class t),
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by the method used in our CancerDetector paper [59]. T likelihoods are calculated for

each cfDNA read, each corresponding to one of the T classes. If the fold change between

the highest likelihood and the second highest likelihood is less than a threshold 2, this

cfDNA read is considered an ambiguous read, otherwise it is considered unambiguous.

2. Estimate the overall class composition. Given NT unambiguous reads of a

cfDNA sample, we denote the cfDNA composition of T known classes as a vector

Θ = (θ1, θ2, · · · , θT ), which satisfies
∑T

t=1 θt = 1. We want to estimate Θ by maxi-

mizing the log-likelihood logP (all reads|Θ,T classes). This is a maximum likelihood

estimation problem, which can be solved by the EM algorithm. Assuming the inde-

pendence of each read, P (all reads|Θ,T classes) =
∏NT

i=1 P (read(i)|Θ,T classes). For

calculating P (read(i)|Θ,T classes), we introduce a latent random variable z(i) for each

read read(i) to indicate which class it comes from; i.e., z(i) = t where (1 ≤ t ≤ T ).

We can then expand the likelihood P (read(i)|Θ,T classes) of read(i) as follows:

P
(
read(i)

∣∣∣Θ,T classes
)

=
T∑
t=1

P
(
read(i)

∣∣∣ z(i) = t, class t
)
P (z(i) = t|Θ) (3.1)

=
T∑
t=1

θtP
(
read(i)

∣∣∣class t) (3.2)

Here P (z(i) = t|Θ) is the prior probability that each read read(i) belongs to class t, so

we have P
(
z(i) = t

∣∣Θ) = θt. Let qi (t) = P (z(i) = t|read(i)) be the posterior probability.

According to the EM algorithm, we have the following iterative steps for optimization.

In the E-step, qi (t) is estimated by the posterior probability of z(i) given read read(i),

the methylation marker, and the composition Θ calculated from the last iteration. In

the M-step, given the estimated qi (t), we estimate the cfDNA composition Θ using the

maximum likelihood.

E-step: qi (k)← P
(
z(i) = k

∣∣∣Θ, read(i),T classes
)

=
θtP

(
read(i)

∣∣∣ t)∑T
t=1 θtP

(
read(i)

∣∣∣ t)
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M-step:θt ←
∑N

i=1 qi (t)∑T
t=1

∑N
i=1 qi (t)

, where 1 ≤ t ≤ T

Intuitively, the E-step updates “soft labels” of each read and the M-step updates the

overall composition by summing “soft labels” over all reads. A random Θ is used to

initialize this procedure, and iteration continues until Θ converges to the estimated

solution Θ̂. Since the EM algorithm converges to a local optimum, we repeat the

EM procedure with several random initializations, and take the best solution as final.

After obtaining the composition of T known classes for the unambiguous reads, we can

calculate the overall composition of both the T known origin-types for all cfDNA reads

and the ambiguous reads. They are calculated as below:

For unknown class u : θu =
Nu

N

For known class t : θt ← (1− θu) θt , where 1 ≤ t ≤ T

where N and Nu are the number of total and ambiguous reads, respectively, that belong

to the marker regions.

3. Calculate normalized class-specific read counts in each marker. We count the

number of class-specific reads in each marker as the sum of the class-specific posterior

probability of all cfDNA reads within the marker, i.e.,

countt(marker) =
∑

unambiguous reads in marker

θtP (read|t)

for the class t and countu(marker) = ambiguous read count within marker
total read count within marker

for the unknown

class. We then normalize a read count by the sample’s sequencing depth and used

its logarithm transformation as the final input value, i.e., ̂countt or u (marker) =

log 109 countt or u(marker)
raw read count of genome

, because the value after logarithm transformation was

empirically shown to follow the normal distribution and thus proved to have better

prediction performance than the value before logarithm transformation.
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4. Generate the read-count profile for a cfDNA sample. The normalized read

counts of all markers are concatenated into a vector profile, and this is used as the

input profile for the cfDNA sample.

As aforementioned, this method was applied in two contexts: Type 1 methylation mark-

ers use tumor-read deconvolution, and Type 3 methylation markers use tissue-read decon-

volution. Specifically, for the tumor-read deconvolution, we assume that a cfDNA read

comes from a tumor type, normal plasma, or the unknown class. Therefore, we per-

formed five different tumor-read deconvolution processes, each corresponding to one of

five tumor types (COAD, LIHC, LUAD, LUSC, and STAD). Only the tumor read counts,̂counttumor (marker), are used in the input profile. For tissue deconvolution, we assume a

cfDNA read comes from one of the normal tissue types or the unknown class. All tissue

read counts, ̂counttissue (marker), are used in the input profile. In this study, the Type 3

markers generated from RRBS data use 17 normal tissue types (adipose, b-cell, brain, colon,

esophagus, granulocyte, heart, kidney, liver, lung, monocyte, neutrophils, pancreas, small

intestine, spleen, stomach, and t-cell), while the Type 3 markers generated from 450k array

data use 11 normal tissue types (b-cell, colon, granulocyte, kidney, liver, lung, monocyte,

neutrophils, pancreas, stomach, and t-cell).

3.3.4.2 Computing Type 2 methylation marker profiles

In each marker, we count the number of reads whose α values are opposite from the normal

cfDNA background (figure 3.18b). For example, in Type 2 markers that are hypermethy-

lated in tumors, any hypermethylated read (α > 50%) is counted as a tumor read. This

read count is denoted as ̂count (marker). We then normalize this read count by the sam-

ple’s sequencing depth and use its logarithm transformation as the final input value, i.e.,̂count (marker) = log 109 count(marker)
Number of all mapped reads in whole genome

, because the value after log-

arithm transformation was empirically shown to follow the normal distribution and thus

proved to have better prediction performance than the value before logarithm transforma-

tion.
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3.3.4.3 Computing Type 4 methylation marker profiles

These markers are 1MB bins. We used the average methylation level of all repeat regions

in each bin to form a vector as the input profile. We then normalized the value in each

bin by standardizing it with the 30 reference non-cancer individuals’ cfDNA samples, i.e.,

βsample−µreference

σreference
, where βsample is the average methylation level of a bin in the cfDNA sample,

and µreference and σreference are the mean and standard deviation of the average methylation

level in the same bin among the 30 non-cancer reference cfDNA samples.

Age adjustment Methylation profiles are known to vary with age [38, 26, 113]. To offset

any age bias between our normal and cancer samples, Type 4 features that were found to be

associated with age were removed before classification. Specifically, the R package Weighted

Correlation Network Analysis (WGCNA) was used to identify features that were positively

and negatively associated with age [53]. The metaAnalysis function in WGCNA calculates

two p-values: pValueHighScale and pValueLowScale to find markers that are consistently

positively age related (as age increases, methylation increases) and negatively age related

(as age increases, methylation decreases). Any markers with p-value less than 0.05 in either

direction were removed.

After removal of the age associated features, Type 4 markers are z-score adjusted, i.e.,

Lsample−µreference

σreference
, where Lsample is the average methylation of repeat regions falling in a bin in

the cfDNA sample, and µreference and σreference are the mean and standard deviation of the

average methylation of repeat regions falling in the same bin among the 30 reference non-

cancer cfDNA samples. Type 1 and 2 markers involve matched tumor and normal tissues

in the marker discovery steps. Since markers must be identified in tissues that are the same

age, markers cannot be related to age. Therefore, no age adjustment is needed for these

features even though they are methylation features. From the original 2,734 1 MB bins in

the genome, age adjustment removed on average 267 bins. This resulted in 2,467 markers

on average, over 10 random selections of the 41 reference non-cancer samples.
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Figure 3.19: Overview of fragment length in cfMethylSeq. (A) cfDNA samples before diges-

tion with MspI, oriented along the genome. CCGG sites are indicated with dotted lines. (B)

after MspI digestion in the cfMethylSeq procedure, only two fragments remain. The other

two fragments lack the ability to ligate with adapters and will not be sequenced.

3.3.4.4 Computing the cfDNA digestion size profiles

Figure 3.19 illustrates the effect of MspI digestion on fragment length. In our cfMethylSeq

procedure, we only see the observed fragments (figure 3.19b) if the initial cfDNA fragment

was long enough to cover both CCGG sites. In other papers that use these types of features

[74, 66, 42], the fragment lengths would be coming from the initial set of fragments (figure

3.19a). We no longer have the original fragment length information. However, by performing

in silico MspI digestion on cfDNA whole-genome sequencing data from Jiang et al. [42], we

found that the digested fragment lengths still correlated highly with the original fragment

lengths across all samples (mean correlation=0.925, p-value < 2.2e−16). This implies that

the distance between CCGG sites has an effect on fragment length. In fact, nucleosome

positioning, which is thought to determine cfDNA fragment lengths, has been found to be

strongly affected by DNA sequence [94].

For our digestion size features, we calculated the average length of all sequencing reads

that fell into each 1 MB bin along the hg19 genome. We then normalized the average length
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in each bin by first dividing by the sample’s median fragment length over all 1 MB bins,

and then applying a z-score, i.e.,
Lsample−µreference

σreference
, where Lsample is the average read length

of a bin in the cfDNA sample divided by the sample median, and µreference and σreference

are the mean and standard deviation of the average read length in the same bin among

the 30 reference non-cancer people’s cfDNA samples (also adjusted by their medians). Any

bins that had no reads across all samples or fell in mitochondrial or sex chromosomes were

removed, before normalization.

3.3.4.5 Computing the copy number variation profiles

Using 1 MB bins across the genome, we calculate the normalized read count per bin (number

of all reads in a bin divided by the sample’s total read count). We then standardize the count

by the 30 reference non-cancer cfDNA samples, i.e.,
Csample−µreference

σreference
, where Csample is the

normalized read count per bin in the cfDNA sample, and µreference and σreference are the

mean and standard deviation of the normalized read count in the same bin among the 30

reference non-cancer cfDNA samples. Bins that had no reads across any samples or fell in

mitochondrial or sex chromosomes were removed, before normalization.

3.3.4.6 Computing the microbial profiles

Sequencing reads that did not align to the hg19 reference genome were remapped against

1,620 human-host microbial genomes, including 1,017 bacterial genomes, 1 archaea genome,

453 eukaryota genomes, and 149 viral genomes using Bismark [51] with default parameters.

UMI-Grinder [50] was used to remove PCR duplicates based on mapping location and UMIs.

After alignment, uniquely mapped reads were counted for each microbial genome. The

abundance of a microbe in a cfDNA sample was calculated as the number of reads that

uniquely mapped to its genome, divided by the total number of sequencing reads in the

sample and the size of the microbial genome. The abundance was then scaled by a large

integer (109) to avoid small floats. We then normalized each abundance by standardizing it

with the 30 reference non-cancer cfDNA samples, i.e.,
τsample−µreference

σreference
, where τsample is the
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abundance of a bacterial or viral genome in the cfDNA sample, and µreference and σreference

are the mean and standard deviation of the abundance in the same bacterial or viral genome

among the 30 reference non-cancer cfDNA samples.

3.3.5 Sample split

The 479 cfDNA samples, from 204 non-cancer individuals and 42, 126, 67, 40 liver, lung,

colon, and stomach cancer patients, respectively, were split into four sets: marker definition,

reference distribution definition, leave-one-out cross validation (LOOCV) training/testing

set, and an independent set (figure 3.20). The marker definition set is 41 non-cancer samples

used for Type 1 and 2 methylation marker definition. The reference distribution set is 30

non-cancer samples used to normalize observed values using z-scores or to find and remove

age bias in Type 4 methylation markers. 75% of the remaining 408 samples were put in the

training/testing LOOCV set and the remaining 25% were put into the independent validation

set. No samples are shared between sets. For robust performance evaluation, we repeated

this split scheme 10 times and reported results averaged over the 10 runs.

3.3.6 Multimodal predictive model integrating heterogeneous and multiscale

signal types

The conceptual illustration of the multi-view stacked learning model for cancer detection

and TOO prediction is shown as a two-layer structure in figure 3.2 (in the Results section).

The predictions from a set of Layer 1 base-models, each separately learned from an indi-

vidual signal type, are used as input for training a Layer 2 meta-model. However, learning

such a two-layer multimodal predictive model may run the risk of overfitting if we simply

train the base-models on the full set of training samples, make predictions on the full set

of test samples, and then use these predictions to train the meta-model. Therefore, we em-

ployed a complicated two-layer learning process, as illustrated in figure 3.21, to overcome

the overfitting risk present in the simple learning process [100]. That is, we generate the

training data for the Layer 2 meta-model by using only training samples in the base-models
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All plasma samples (479)

41 normal samples for 
marker discovery

30 normal samples for 
age adjustment and 

standardization
307 samples for LOOCV

101 samples for 
independent validation

1 sample in LOOCV 
samples

All LOOCV samples, but 1 
(309)

Training samples Testing samples

All plasma samples (479)

41 normal samples for 
marker discovery

30 normal samples for 
age adjustment and 

standardization
307 samples for LOOCV

101 samples for 
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All plasma samples (479)

41 normal samples for 
marker discovery
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101 samples for 
independent validation
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ü Repeat this sample split 10 times (or runs)
ü Prediction performance is averaged over 10 runs

Figure 3.20: Overview of how plasma samples in the cohort are used for training and evaluat-

ing the predictive model. (A) Depiction of sample splitting into the 4 sets: marker discovery,

age adjustment/standardization, LOOCV, and independent validation, (B) samples used for

training and testing during LOOCV, and (C) samples used for training and testing during

independent validation.
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of Layer 1, avoiding the risk of seeing the test samples in Layer 1. This is implemented by

splitting all training samples into 10 non-overlapping folds (i.e. partitions), and training the

base model for each signal type on the samples in 9 folds and making predictions on the

samples in the remaining 1 fold. This training and prediction process is repeated 10 times,

each time using a different left out fold. These predictions, obtained by iterating 9-folds

and 1-fold of the training samples, are called “out-of-fold predictions” (OOFPs), indicating

a special way of using training samples to generate the prediction scores by themselves. The

OOFPs are concatenated to form the new features for all training samples so they can be

used as the training data for the Layer 2 meta-model, all without seeing the test samples.

To generate the testing data of Layer 2, we train each Layer 1 base-model for each signal

type using all training samples (i.e., all 10 folds), and make predictions on all test samples.

These predictions then serve as the testing data for the Layer 2 meta-model.

During LOOCV, there is only one testing sample: every sample in the LOOCV set

has its own full multimodal predictive model trained for it using all other samples in the

LOOCV set. In independent validation, all samples in the independent validation set serve

as the testing data, and all samples in the LOOCV set serve as the training data; only one

full multimodal predictive model is built. No samples overlap between the LOOCV and

independent validation sets.

We implemented two multimodal predictive models, each for a different prediction task:

1. Model 1: Cancer detection model. In Layer 1, a base classifier is trained for each of the

feature profiles generated from (1) tumor-read counts of RRBS-derived Type 1 markers,

(2) tumor-read counts of array-derived Type 1 methylation markers, (3) tumor-read

counts of Type 2 hypermethylation markers, (4) tumor-read counts of Type 2 hy-

pomethylation markers, (5) tissue-read counts of RRBS-derived Type 3 methylation

markers, (6) tissue-read counts of array-derived Type 3 methylation markers, (7) aver-

age methylation rates (β-values) of Type 4 methylation markers, (8) CNV, (9) cfDNA

digestion size, and (10) microbial abundances. For the microbial abundance profile,

Topçuoğlu et al. [102] has demonstrated that random forest achieves superior predic-
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Figure 3.21: Illustrative flowchart of the learning and prediction process using the two-layer

stacked model. In the base layer (Layer 1), given the training samples and data types (due

to limited space, only two data types are shown here), we split the training samples into

10 equal-size folds to make the “out-of-fold predictions (OOFPs)” that are used as Layer 2

training data. These OOFPs are Layer 1 prediction scores for the left out fold. This OOFP

process is repeated 10 times, by choosing each of the 10 folds as the training data and the

remaining 9 folds as the OOFPs, until all training samples have OOFPs. The OOFPs for

all training samples form the training data for the Layer 2 meta-classifier. Simultaneously,

all training samples (i.e., all 10 folds) are used to train base models for use on the testing

samples. The testing sample prediction scores from these base-models form the testing data

for the Layer 2 meta-classifier.
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tion performance. Therefore, in Layer 1 we use a random forest binary classifier with

2000 trees and mtry = 5
√

#features (i.e., the number of features randomly sampled

as candidates at each node split) for microbial abundances profile, while all other fea-

ture profiles in Layer 1 use Linear Support Vector Machine (LSVM) classifiers with the

L2 penalty function and the C parameter set to C = 0.5. In Layer 2, a random forest

model with 2000 trees and mtry =
√

#features is used as the binary classifier to

combine the predictions scores from all Layer 1 models and make the final prediction.

The output prediction score of Layer 2 is the probability of getting cancer; specifically

it is the fraction of the 2000 trees that voted “cancer” in the random forest model. For

learning and evaluating this model, the plasma cfDNA samples from non-cancer sub-

jects are regarded as the negative class, while those from cancer patients are regarded

as the positive class. The higher the prediction score, the more likely the subject has

cancer.

2. Model 2: Cancer typing model: The same ten feature profiles used in cancer detection

are used for TOO prediction. However, instead of using binary classifiers, the one-

vs-rest multiclass configuration of the same classifier is used. In Layer 1, a binary

classifier is first learned for each class versus all the other classes. Then, all binary

classifier predictions are compared, and the class with the highest prediction score is

the most likely predicted class. Specifically, all feature profiles in Layer 1 use the

LSVM-based multi-class classifier with the L2 penalty function and the C parameter

C = 0.5, except for the microbial composition profile which uses a random forest multi-

class classifier with 2000 trees and mtry=5
√

#features. In Layer 2, a random forest

multi-class classifier with 2000 trees and mtry=
√

#features is used to combine the

predictions scores from all Layer 1 multiclass classifiers to make the final prediction.

The output prediction score of Layer 2 is the cancer-type-membership probability for

each cancer type; the cancer type with the highest membership probability is the

predicted cancer type. For learning and evaluating this model, the plasma cfDNA

samples of cancer patients of all five cancer types (COAD, LIHC, LUAD, LUSC, and

STAD) are predicted to be from one of four classes: colon cancer (COAD), liver cancer
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(LIHC), lung cancer (LUAD or LUSC), and stomach cancer (STAD).

These two models were performed sequentially, each corresponding to a prediction task:

1. We applied the cancer detection model (Model 1) to predict if a subject has cancer

or not. When the prediction score is less than a threshold, the subject is predicted as

non-cancer, otherwise as cancer. We selected the threshold to be one false positive non-

cancer sample; this translates to 99% specificity in the LOOCV set and 97% specificity

in the independent validation set.

2. We performed cancer typing only for the cancer samples that were predicted to have

cancer in step 1. In this step, the cancer typing model (Model 2) predicts four cancer-

type-membership probabilities, each corresponding to a cancer type (colon, liver, lung

and stomach cancer). The cancer type with the largest membership probability is

the cancer type predicted by the model. However, in some cases two or more cancer

types receive similar large membership probabilities, indicating the predictive model

cannot effectively determine the tissue of origin. To alleviate this, we used the fold

change between the highest membership probability and the second highest member-

ship probability as a metric to measure cancer type prediction confidence. The higher

this confidence is, the more certain we are in the cancer type prediction. No cancer

type prediction was assigned for those patients whose cancer typing confidence was less

than a threshold of 2. For samples with high cancer typing confidence, the predicted

TOO is the cancer type with the highest cancer-type-membership probability.

3.3.7 Performance evaluation of multimodal predictive models

The cancer detection and typing models are evaluated using either LOOCV or independent

validation. For cancer detection (Step 1), the AUROC (Area Under the Receiver Operating

Characteristic curve) and the sensitivity at a certain specificity are the two most popular

performance metrics to assess binary classification [21]. For cancer typing (Step 2), the

overall accuracy, i.e., accuracy=#correctly predicted samples
total # samples

is the most widely used measure [91].
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We use a confusion matrix to further break down the overall accuracy into specific cancer

types for the correctly and incorrectly predicted samples. Using the confusion matrix, we

can also calculate the precision for each cancer type, defined as precision(cancer type) =

#samples correctly predicted as this cancer type
total # samples predicted as this cancer type

. Due to the limited sample size in the independent

validation set, here we generated the confusion matrix by accumulating scores over all 10

sets.

3.3.7.1 Reduced training size and marker number evaluation

For evaluation on the independent set, one model is trained on all samples that make up the

LOOCV set as described above. This one model is applied to every sample in the independent

set. To see if the training size affected the prediction performance, subsets of the LOOCV

set were used to train the models. All models were still applied to the full independent set.

For example, the LOOCV set is 307 samples; full independent results (100% training size)

have one model trained on all 307 samples. To measure performance at 20% training size,

61 of the 307 LOOCV set samples are randomly selected to train a full model. The model is

still trained in the same way, just using the reduced number of training samples. This one

final model is applied to all samples in the independent set. This reduction in training size

was performed 10 times, once for each random split, for proportions 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, and 90%.

3.3.8 Complementarity analysis

To see if different features types were complementary to each other, we wondered whether

there were some samples that could only be classified by one feature type but not others.

Since there are four types of methylation features, a stacked classifier was used that combined

all methylation features. Specifically, the same framework for cancer detection (Model 1)

as described above is used, but instead of using all 10 feature types, the CNV, microbial,

and digestion size features are removed. The output of this stacked classifier (using random

forest) was used to compare to Layer 1 results from CNV (SVM L2), digestion size (SVM
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L2), and microbial features (random forest).

For cancer detection, a sample was considered classified correctly by a base level classifier

if it was correctly predicted at a false positive rate of 5. Each sample in each of the 10 random

splits was evaluated for correct predictions using each base level classifier. The graph in

figure 3.8a shows, for each sample in each split, how many were classified correctly by each

feature combination. There are 10 splits, with about 307 LOOCV samples in each split.

Each split/sample is treated independently even though the samples could overlap between

splits (i.e., the numbers add up to around 3070 even though there are not this many unique

samples).

3.4 Discussion

Due to the heterogeneous nature of cancer and the wide range of features that have been

used to perform cancer detection and typing in cfDNA, it is evident that a highly successful

method should aim to combine as many disparate features as possible. In this chapter, we

develop the first integrative cancer detection and typing model incorporating these diverse

aspects of cancer. This is only possible because of the experimental protocol developed in

chapter 2. The methylation features used herein use both small and large scale genomic

regions. Currently the only commercially available technology to obtain such measurements

in cfDNA is WGBS, which would have been cost-prohibitive for a study of this size. Alterna-

tively, if a targeted panel were used to capture the small, highly specific methylation features,

we would sacrifice all broad information contained in the digestion size, copy number, mi-

crobial, and Type 4 methylation markers which provide key complementary information for

our model.

Inspired by the highly sensitive PCR-based cancer detection methods in the literature,

we designed the Type 2 methylation markers: a novel kind of methylation feature that

mimics this effective PCR approach. These PCR-based methods often target gene promoters.

Since our cfMethylSeq procedure covers roughly 75% of gene promoters and CpG islands at

moderate depth, we reasoned we could apply this principle at a much larger scale. Using our
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previously published α value [59] in conjunction with this idea allowed us to identify markers

that would be undiscoverable using population-level average methylation measurements such

as 450k. By using other broad measurements, as well as capturing broad signals from

large genomic regions, our method can capture pervasive changes observed in cancer [12].

Combining all these features together using an ensemble learning approach, the stacked

classifier offsets any bias in any individual markers. Ultimately, we were able to achieve

85.6 ± 6.7% sensitivity at 99% specificity for cancer detection. This is considerably higher

than results from other groups such as cancerSEEK [14] (55.1% sensitivity) or Grail [65]

(62% sensitivity).

In total, our integrated experimental and computational system, CancerRadar, overcomes

major challenges in cfDNA-based early cancer detection including the low fraction of tumor

DNA in cfDNA and the molecular heterogeneity of cancer. Our cfMethylSeq assay not only

cost-effectively captures the cfDNA methylome, but also provides genome-wide profiles of

tumor CNV and cfDNA fragment lengths, as well as microbial abundances in blood. Since

our patient cohort is dominated by non-metastatic cancer patients, our data demonstrates

the feasibility of using CancerRadar in a screening setting. Note that our control samples are

not restricted to healthy individuals, but also include patients of various non-cancer diseases

(e.g. cirrhosis, pancreatitis, hepatitis, diabetes, etc.), reflecting practical scenarios.

Although methylation, CNV, cfDNA fragment size, and microbial abundances have each

been used to detect cancer in the literature [64, 15, 46, 117, 27, 121, 82, 76] this study is

the first to systematically compare their prediction power using cfDNA samples from the

same cancer cohort. Among all the features used, as expected, methylation contributed the

most information for detecting and locating cancer. To exploit the power of methylation for

cancer detection and typing, we integrated our own data with a large amount of public data to

identify four types of methylation markers with different characteristics; and we expanded our

previous read-level deconvolution algorithm [59] to further enhance its power in accurately

identifying trace tumor signals and also to identify elevated tissue cfDNA signals. Next

to methylation, the second most powerful feature for cancer detection is cfDNA digestion

size, which reflects cfDNA fragment length. CNV and microbiome signatures also helped to
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increase the prediction power, especially in late stage patients.

Our data showed that as training sample sizes increase, the detection power of Can-

cerRadar increases, and so do the numbers of required markers. The CancerRadar system

assesses a comprehensive set of biomarkers, encompassing the large epigenetic and genetic

landscape of diverse cancer etiologies, allowing continued refinement and expansion as train-

ing cohorts grow. In fact, the comprehensive information provided by cfMethylSeq can

potentially serve multiple purposes in diagnosis and prognosis, such as predicting disease

progression, stage, etiology, or use in therapy optimization.
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CHAPTER 4

Conclusions

Early detection of cancer holds our greatest hope for increasing cancer survival. Liquid

biopsies based on the presence of tumor-derived cfDNA in the blood are an attractive means

to achieve this goal. While cfDNA is already clinically used for noninvasive prenatal testing

[44], its clinical use for cancer screening has faced major challenges. Namely, the amount

of tumor-derived cfDNA in the blood is very small, requiring sophisticated experimental

and/or computational techniques to increase or identify tumor signal. In addition, cancer

is a heterogeneous disease encompassing broad and specific genomic changes. Experimental

techniques often suffer a tradeoff between profiling a small panel of regions in depth or

shallowly surveying the genome. cfDNA has displayed a number of unique biological features,

such as its fragmented nature being related to nucleosome positioning [90], gene expression

[104], and 3D genome organization [66], but at the same time the poorly understood origins

and properties of cfDNA have hindered library preparation techniques and sometimes led

to unexpected results [107]. In this work, we present an integrated computational and

experimental system that addresses these challenges.

In chapter 2, we develop cfMethylSeq, a novel protocol for profiling methylation in cfDNA.

cfMethylSeq, an adaptation of RRBS for cfDNA, profiles CpG-dense regions of the genome,

yielding more than 12 fold enrichment over WGBS in CGIs. While RRBS has been used

to profile methylation cost-effectively in solid tissues, its use in cfDNA is limited because

of cfDNA’s fragmented nature. Our protocol adapts the RRBS technique to work on frag-

mented DNA. We showed that cfMethylSeq profiled the regions of interest, reliably called

methylation, and was reproducible. Our cfMethylSeq procedure enables cfDNA methylomes

to be profiled inexpensively.
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In chapter 3, we make use of this cfMethylSeq data to detect and type cancer in cfDNA.

A major advantage of our cfMethylSeq method is its ability to profile both highly specific

methylation features as well as broad genomic features. We integrated these features together

using an ensemble machine learning algorithm, and achieved 89.1% sensitivity in cancer

detection at 97% specificity, with an overall AUC of 0.986 in the independent validation set,

and an accuracy of 91.5% in locating the cancer’s tissue of origin. Our results outperform

existing methods [15, 65], and our method easily scales to larger sample sizes and training

sets.

Although our results are promising, there is still room for improvement in many areas.

While the cfMethylSeq procedure presented in chapter 2 offers much-needed cost effective

methylation profiling in cfDNA, the input amounts required to build the library (10ng)

are still relatively large. Improvements could be made by further optimizing the protocol

to prevent sample loss, such as using enzymatic alternatives to bisulfite conversion [115].

Additionally, the current adapter synthesis strategy produces fragments that all have the

sequence “TGACT” in bases 9-13. Non-random distribution of bases in the beginning of

reads is known to cause issues with cluster localization on Illumina machines [9]. Using

PhiX to increase diversity could mitigate this, but this will raise sequencing costs. Others

have used dark cycles to overcome this issue, where these non-random bases are essentially

skipped during sequencing [9]. However, in our cfMethylSeq procedure and in traditional

RRBS, the sequence “CGG” or “TGG” appears at the beginning of each read (after the

UMI for cfMethylSeq). Since this low-diversity sequence contains an informative CpG site,

it cannot be skipped using a dark cycle. Alternatively, we could use multiple adapters that

have different UMI lengths, e.g. some 7 bp or some 6 bp. Mixing these adapters together

would shift the fixed sequence in some of the reads, and avoid the Illumina machine reading

the same sequence in cycles 9-13. Bioinformatically, the length of the original UMI can be

deduced by finding the location of the fixed sequence “TGACT” in the read.

Coverage of desired genomic regions in cfMethylSeq or traditional RRBS can be manipu-

lated by using restriction enzymes other than or in addition to MspI [24]. For example, while

MspI yields the highest CpG:fragment ratio of any single enzyme, HaeIII (GG↓CC) comes in
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second, and profiles about twice as many CpGs. Note that since HaeIII does not contain a

CpG site in its cut site, every fragment is no longer guaranteed to contain a CpG site, thereby

increasing sequencing cost and leading to wasted data [69]. Alternatively, a double enzyme

digest can be used. It has been found that digestion with MspI and ApekI (C↓CWGC)

can yield increased coverage in CpG islands, CGI shores, and introns. Drawbacks of the

double-enzyme approach are the increased sequencing cost and greater fragmentation of the

MspI digested fragments [108]. In principle, the different enzymes or combination of enzymes

could be tailored to the needs of the experiment.

While the results of our computational cancer detection and typing framework presented

in chapter 3 outperform existing methods, we caution that our sample sizes could be in-

creased. Our LOOCV set contains on average 100 non-cancer samples and 207 cancer

samples, while our independent validation sets contain on average 34 non-cancer samples

and 67 cancer samples. The small number of non-cancer samples in the independent set

especially hinders our ability to evaluate our results at high specificities. Additional samples

at high risk for certain cancer types, such as those with HBV for liver cancer [12] or those

with benign lung nodules for lung cancer [70] could be included in the non-cancer samples

in greater numbers to better reflect real-world screening scenarios. All of our cfMethylSeq

and RRBS libraries were prepared by two individuals and sequenced on HiSeqX Illumina

machines. In the future, to reflect more practical settings of a widespread clinical test, it

would be better to use combinations of different sequencing machines, e.g. NovaSeq 6000

to ensure the method is robust to any differences caused by technical specifications of the

sequencers (e.g. dye chemistries) and their resulting biases (e.g. read quality scores, depth of

coverage) [122]. Different individuals at different labs preparing the cfMethylSeq and RRBS

libraries could also serve a similar purpose.

The stacked classifier framework could be improved by adding additional machine learn-

ing methods in the Layer 1 classifiers. Currently all features use SVM classifiers, with the

exception of microbial features which use random forest. Classifiers such as logistic regres-

sion, XGBoost, K nearest neighbors, and/or Naive Bayes with different parameter settings

could be used in addition to SVM and random forest in Layer 1. Then, rather than using the
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output of a random forest model in Layer 2 as the final prediction score, multiple classifiers

could be used in Layer 2 and then integrated together in a third layer for the final prediction

score. In this way, in addition to the different features providing complementary information

for each sample, the different machine learning methods offer multiple view points of the

same feature, further boosting accuracy. Covariates such as gender and age could be added

to models to further reduce their bias. When collecting future samples, it would be advan-

tageous to collect as much clinical information as possible, allowing for additional covariates

such as BMI or smoking history to be incorporated into the models as well.

Although cfDNA cancer detection faces many difficulties, much progress has been made in

its entrance into the clinical space. Herein, we presented an experimental and computational

method that will bring us closer to making clinical cfDNA cancer screening a reality.
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