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Abstract 

 
 
 

MyShake – Building a global smartphone seismic network 

by 

Qingkai Kong 

 Doctor of Philosophy in Earth and Planetary Science 

University of California, Berkeley 

Professor Richard Allen, Chair 
 

Earthquakes are global hazards that account for many deaths and economic losses 
each year. With the development of seismology and technology, we have denser and 
denser sensors to monitor the earthquakes and provide valuable dataset to understand the 
processes of the plate tectonics, earthquake rupture processes, etc. Many useful 
applications built on top of these sensors including earthquake early warning systems that 
have the great potential to reduce the earthquake hazards for human civilizations. From 
the seismological point of view, the seismologists have been trying different ways to 
increase the density of the sensor network to monitor the earthquakes. From high-quality 
broadband seismic stations, to low-cost microcontroller devices, the instruments used in 
seismology are crossing the whole spectrum. In this dissertation, I report our progress on 
building a global seismic network using the consumer smartphones. The goal is to use the 
power of crowdsourcing devices to setup a scalable seismic network to compliment the 
existing high-quality seismic network, especially provide useful data at places where they 
cannot afford the high-quality instruments.    

This thesis starts with the design of the methodology and experiments we did 
before the building of this global network, including the noise floor tests, shake table 
tests, and the design of the artificial neural network to distinguish the earthquake signals 
recorded on the phone from the daily human activities. With the earthquake early 
warning application in mind, these form the basis and the blue prints to build the 
network. In Feb 12th 2016, MyShake application and the whole system released to the 
public. Within very short time MyShake users cover 6 continent and starting to provide 
the shaking data related to the earthquakes. The initial observations from this network 
validate the initial design and concepts, at the same time it shows great potential to use 
the recorded data to do routine seismological applications. The two types of data from 
MyShake, i.e. real-time trigger messages and the 5-min long 3-component waveforms 
have different applications. The real-time trigger messages enable MyShake network to 
be used as a stand-alone earthquake early warning system, including estimate the initial 
location, magnitude and origin time of the earthquake. On the other hand, with the 
waveforms we recorded from the smartphones, we could refine these earthquake 
parameters at better accuracy. The comparison of the estimated locations, origin times 
and magnitudes from the MyShake recordings with those from the catalog shows the data 
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from these consumer devices are useful to quantify the earthquakes. This will be really 
useful by providing extra data at places where no or few seismic stations near the 
earthquake but with a large population. This thesis also talks about the potential 
application of using MyShake to conduct structural health monitoring of buildings in the 
future. The shaker test we did proves the sensors in the phones could be used to extract 
the fundamental frequencies from the shaking of the buildings.  

The success of building this global smartphone seismic network and the initial 
analysis we conducted using the data recorded on it provide the community an exciting 
way to monitor earthquakes, though there are still many challenges and limitations need 
to be addressed. The last part of this thesis talks about the pathway forward from our 
experience with this network. Besides, MyShake project is an example of the 
combination of data science and earth science, I will end the thesis with a discussion of 
my thinking of how to take the full advantage of both sides.  

 
!



!
!

i!

Contents 

Chapter 1! Introduction!......................................................................................................................!1!

Chapter 2! MyShake methodology!...................................................................................................!4!
2.1! Abstract!......................................................................................................................................................!4!
2.2! Introduction!..............................................................................................................................................!4!
2.3! Results!........................................................................................................................................................!6!
2.4! Materials and Methods!........................................................................................................................!14!
2.4.1! Data!collection!.................................................................................................................................................!14!
2.4.2! Noise!floor!test!................................................................................................................................................!14!
2.4.3! Shake!table!test!...............................................................................................................................................!14!
2.4.4! Single!phone!detection!algorithm!design!............................................................................................!14!
2.4.5! Network!detection!algorithm!design:!...................................................................................................!15!

2.5! Discussion!...............................................................................................................................................!15!
2.6! Supplementary material!......................................................................................................................!16!
2.6.1! Data!collection:!The!MyShake!application!..........................................................................................!16!
2.6.2! Classifier!analysis:!Detecting!earthquakes!on!a!phone!.................................................................!18!
2.6.3! Network!detection!algorithm!...................................................................................................................!23!
2.6.4! Estimate!warning!time!for!Katmandu,!Nepal!....................................................................................!26!

2.7! Acknowledgments!.................................................................................................................................!26!

Chapter 3! Initial Observations from MyShake Network!........................................................!27!
3.1! Abstract!...................................................................................................................................................!27!
3.2! Introduction!...........................................................................................................................................!27!
3.3! MyShake Methodology Refresh!........................................................................................................!28!
3.4! Seismic data recorded by MyShake!..................................................................................................!30!
3.5! Discussion and conclusions!.................................................................................................................!33!
3.6! Supplementary material!......................................................................................................................!34!
3.7! Acknowledgments!.................................................................................................................................!48!

Chapter 4! Characterize the earthquakes!....................................................................................!49!
4.1! Abstract!...................................................................................................................................................!49!
4.2! Introduction!...........................................................................................................................................!49!
4.3! Data used!................................................................................................................................................!51!
4.4! Timing and location accuracy of smartphone records!.................................................................!54!
4.5! Location and origin time estimation!.................................................................................................!55!
4.6! Magnitude estimation!..........................................................................................................................!61!
4.7! Discussion!...............................................................................................................................................!64!
4.8! Conclusion!..............................................................................................................................................!65!
4.9! Supplementary Figures!.......................................................................................................................!65!
4.10! Data and Resources!............................................................................................................................!71!
4.11! Acknowledgements!.............................................................................................................................!71!

Chapter 5! The potential of using smartphones for structural health monitoring!..............!73!
5.1! Abstract!...................................................................................................................................................!73!
5.2! Introduction!...........................................................................................................................................!73!



!
!

ii!

5.3! Background of Millikan Library!.......................................................................................................!76!
5.4! Method!....................................................................................................................................................!76!
5.5! Results!.....................................................................................................................................................!79!
5.6! Estimation of the orientation of the phones!....................................................................................!82!
5.7! Discussion and Conclusions!................................................................................................................!84!
5.8! Supplementary material!......................................................................................................................!86!
5.8.1! Structural!health!monitoring!infrastructure!......................................................................................!88!

5.9! Acknowledgements!...............................................................................................................................!89!

Chapter 6! Conclusion!......................................................................................................................!90!

Bibliography!..........................................................................................................................................!94!
 



!
!

iii!

List of      Figures 
 

Figure!2.1!Noise!floor!of!the!phones.!Noise!floors!of!the!smartphones!color!coded!by!the!phone!
release!date!(also!shown!in!the!legend!as!MM/YY).!Dashed!black!lines!are!typical!ground!
motion!amplitudes!of!earthquakes!10!km!from!the!epicenter!for!various!magnitudes.!Noise!
floor!for!high!quality!MEMS!sensor!(HP!MEMS!S!blue)!and!a!typical!forceSbalance!
accelerometer!from!a!regional!network!(BKS!in!northern!CA!S!purple)!are!also!shown.!.................!6!

Figure!2.2:!ThreeSdimensional!shake!table!test.!The!input!seismogram!is!from!a!real!earthquake!
that!has!been!modified!for!IEEES693S2005!tests.!(A)!Waveform!comparison!between!phone!
(blue)!and!reference!accelerometer!(red)!recordings!from!an!input!signal!that!has!peak!
acceleration!of!0.5g.!(B)!Spectrum!comparison!of!Y!components.!The!X!and!Y!components!are!
in!the!plane!of!the!phone,!which!is!lying!flat!on!the!horizontal!shake!table!and!is!not!attached.!
The!Z!component!is!perpendicular!to!the!plane!of!the!phone!and!is!vertical!for!this!test.!..............!7!

Figure!2.3:!Shake!table!test!with!an!input!sweep!signal!(0.5S7Hz).!(A)!Waveform!comparison!
between!a!phone!fixed!on!the!table!(blue),!a!phone!placed!freely!on!the!table!(black)!and!the!
reference!accelerometer!attached!to!the!table!(red).!(B)!Frequency!domain!comparison!of!the!
signals!in!(A).!(C)!Calculated!correlation!coefficient!and!RMS!(Root!Mean!Square)!ratio!
between!the!signal!recorded!by!the!phone!placed!freely!on!the!shake!table!and!the!reference!
accelerometer.!The!correlation!coefficient!is!a!measure!of!the!phase!match!and!RMS!is!a!
measure!for!amplitudes!match.!We!use!1!Hz!frequency!band!to!filter!the!record!and!calculate!
the!coefficient!with!a!step!frequency!0.1!Hz.!The!xSaxis!is!the!center!frequency!of!the!frequency!
band.!The!correlation!coefficient!shows!how!well!the!phase!is!recorded!by!the!phone,!and!the!
RMS!ratio!shows!the!amplitude!recovery.!Above!2S3!Hz!the!phone!starts!to!slide!so!the!full!
amplitude!is!not!recovered,!however,!the!phase!is!recovered!up!to!7S8!Hz.!..........................................!8!

Figure!2.4:!Earthquake!recorded!by!phone!and!classifying!earthquakes.!(A)!Example!12Shour!3S
component!acceleration!record!from!a!private/personal!Samsung!Galaxy!S4!phone!starting!at!
4!pm!August!23,!2014.!It!shows!the!accelerations!of!everySday!human!motions!for!the!first!~8!
hours,!then!appears!stationary!during!the!night.!The!red!box!at!the!end!of!the!figure!highlights!
the!time!window!of!figure!b.!(B)!1!minute!of!data!from!the!period!shown!in!(A)!at!the!time!of!
the!M6!Napa!earthquake!38!km!from!the!phone.!The!earthquake!occurred!at!3:20:44!am!local!
time.!(C)!Scaled!feature!plot!showing!IQR!versus!ZC!for!the!classifier!training!dataset.!The!blue!
dots!are!the!centroids!of!human!activities,!and!the!red!dots!are!the!earthquake!features.!(D)!3D!
plot!of!the!3!features!we!used!to!distinguish!earthquakes.!Adding!the!CAV!to!IQR!and!ZC!drags!
some!of!the!human!activates!(blue!dots)!to!the!third!dimension!but!not!the!earthquake!data,!
this!helps!improve!the!results.!...................................................................................................................................!9!

Figure!2.5:!Estimated!magnitude.!Comparison!of!our!estimated!magnitudes!with!the!real!magnitude!
for!earthquakes!in!Japan!using!phoneSlike!data.!The!green!line!is!the!1:1!line,!and!the!two!grey!
lines!are!the!1!magnitude!unit!shift,!each!blue!point!is!the!magnitude!estimate!at!a!single!
simulated!phone.!The!red!pluses!are!the!average!event!estimates,!which!is!the!average!of!
multiple!single!phone!estimates.!............................................................................................................................!12!

Figure!2.6:!Snapshots!of!trigger!detections!for!the!2014!M5.1!La!Habra!earthquake!simulation!at!3,!
5!and!7!sec!after!the!event!origin!time.!Grey!dots!are!stations;!pink!indicates!a!trigger.!The!true!



!
!

iv!

earthquake!location!is!the!red!star!with!circles!at!10,!20!and!30!km!radius.!The!blue!star!
represents!the!estimated!event!location,!first!detected!at!5!sec.!The!magnitude!estimate!at!each!
point!in!time!is!shown!upper!right.!.......................................................................................................................!13!

Figure!2.7:!MyShake!activity!November!1,!2014!S!February!28,!2015.!(a)!Number!of!phones!that!
downloaded!MyShake!and!registered!with!our!network!(green!curve),!and!the!number!of!
active!phones!running!the!application!on!a!given!day!based!on!the!SOH!information!(blue!
curve).!!Server!at!CPC!restarts!during!the!first!month!is!the!reason!the!number!of!active!phones!
drops!to!zero.!(b)!Number!of!phone!triggers!each!day!with!waveforms!uploaded!to!the!CPC,!a!
total!of!17600!triggers!were!collected.!................................................................................................................!17!

Figure!2.8:!Example!earthquake!record!used!to!train!the!ANN!classifier!algorithm.!The!waveform!is!
the!EW!component!from!a!regional!network!station!16.5!km!from!the!epicenter!of!the!western!
Tottori!earthquake!(M7.3)!of!October!6,!2000.!The!data!has!been!modified!to!represent!a!
smartphone!recording!at!the!same!location.!Only!2Ssec!windows!of!data!from!the!yellow!region!
were!used!to!train!our!algorithm.!..........................................................................................................................!19!

Figure!2.9:!Structure!of!Artificial!Neural!Network!(ANN)!classifier!algorithm.!It!has!three!layers:!one!
input!layer!with!3!nodes,!a!hidden!layer!with!5!nodes,!and!an!output!layer!with!1!node.!For!the!
hidden!layer!and!output!layer,!the!inputs!from!the!previous!layer!to!the!each!node!will!be!first!
summed!and!then!fed!into!an!activation!function!shown!as!f.!..................................................................!21!

Figure!2.10:!Receiver!operating!characteristic!(ROC)!curve.!Shows!the!ANN!classifier!performance!
on!30%!test!data!split!from!the!training!data.!The!ROC!curve!shows!the!false!positive!rate!
(classified!as!earthquake!when!it!is!a!nonSearthquake)!on!the!xSaxis,!,!against!true!positive!rate!
(classified!as!an!earthquake!when!it!is!an!earthquake)!on!the!ySaxis.!Ideally,!the!curve!will!
climb!quickly!toward!the!topSleft!corner!meaning!the!model!correctly!predicted!the!cases.!Our!
result!is!quite!close!to!the!ideal!cases.!..................................................................................................................!22!

Figure!2.11:!Phone!trigger!times!versus!epicentral!distance.!The!regional!network!data!from!
California!and!Japan!was!modified!to!phoneSquality!data!and!then!our!classifier!applied!to!the!
data!to!determine!when!a!trigger!occurs.!The!red!line!is!the!bestSfit!to!the!data!and!has!a!
moveout!velocity!of!3.2!km/sec;!most!triggers!are!generated!by!the!SSwave!or!the!later!surface!
wave.!The!blue!outline!is!the!timeSspace!window!used!for!association!of!triggers!with!an!event!
by!the!network!detection!algorithm.!....................................................................................................................!23!

Figure!3.1:!Distribution!of!MyShake!registered!users!and!detected!earthquakes.!(a)!Registered!
MyShake!users!are!shown!in!clusters.!The!number!in!each!circle!indicates!the!number!of!
registered!users!in!the!cluster,!and!the!color!of!the!circle!shows!the!order!of!the!number!of!
phones,!i.e.,!a!purple!circle!indicates!the!number!of!phones!is!of!order!tens!of!thousands,!
magenta!is!thousands,!red!is!hundreds,!yellow!is!tens,!and!blue!for!less!than!10.!(b)!237!
Earthquakes!recorded!by!MyShake!users!since!February!12,!2016.!The!locations!of!the!
earthquakes!are!shown!as!circles,!which!are!colorScoded!by!the!depth!and!whose!sizes!are!
scaled!by!the!magnitude!of!the!earthquake.!Figures!are!generated!on!August!11th!2016.!...........!29!

Figure!3.2:!(a)!Location!of!the!M5.2!Borrego!Springs!earthquake!and!the!MyShake!phones!at!the!
time!of!the!event.!Blue!star!is!the!epicenter!of!the!earthquake.!Green!dots!are!phones!that!
triggered!using!the!ANN!algorithm.!The!red!dots!are!phones!that!were!not!ready!to!detect!
earthquakes!(likely!due!to!human!activities),!and!the!orange!dots!show!the!phones!that!were!



!
!

v!

ready!to!detect!the!earthquakes!but!did!not.!(b)!MyShake!trigger!time!vs!distance.!Blue!dots!
are!the!phones’!trigger!times,!and!the!green!and!red!curves!are!the!estimated!P!and!S!wave!
travel!time!based!on!Model!ak135![Kennett!et!al.,!1995].!...........................................................................!31!

Figure!3.3:!(a)!Record!section!plot!for!phones!within!200!km.!Each!blue!trace!is!one!horizontal!
recording!from!MyShake!user,!and!the!green!and!red!curve!is!the!estimated!P!and!S!wave!
based!on!ak135.!Amplitudes!of!the!recordings!are!normalized!in!each!trace.!(b)!PGA!value!
observations!with!distance.!PGA!values!from!MyShake!(blue)!and!traditional!seismic!stations!
(red)!are!shows!as!observed!on!the!largest!horizontal!component.!The!seismic!station!data!are!
from!Southern!California!Earthquake!Data!Center!(SCEDC).!.....................................................................!32!

Figure!3.4:!Example!MyShake!waveforms.!!(a!and!b)!Comparison!of!the!waveforms!recorded!by!
MyShake!and!a!nearby!traditional!seismic!station!(horizontal!component)!for!the!M5.2!Borrego!
Springs!earthquake.!(a)!MyShake!waveform!recorded!37.2!km!from!the!epicenter,!and!a!
traditional!seismic!station!0.88!km!from!the!smartphone.!(b)!MyShake!waveform!recorded!at!
100.9!km!from!the!epicenter,!and!a!traditional!seismic!station!1.93!km!from!the!smartphone.!
See!Figure!3.10!and!Figure!3.11!for!the!comparison!of!other!components.!(c)!M7.8!Ecuador!
earthquake!recorded!at!170!km!away!from!epicenter.!(d)!M5.1!Oklahoma!earthquake!recorded!
by!a!phone!at!130!km!from!epicenter.!For!(c!and!d)!the!zero!time!is!the!phone!trigger!time.!The!
vertical!black,!green!and!red!lines!are!the!origin!time!and!predicted!PS!and!SSwave!arrival!time!
respectively!(estimated!using!ak135!model).!...................................................................................................!32!

Figure!3.5:!The!time!history!of!the!phones!registered!with!our!server!(blue!curve),!and!the!phones!
actively!contributing!data!to!MyShake!in!a!24Shour!interval!(green!curve).!Registered!phones!
are!defined!as!the!phones!with!MyShake!installed!that!have!sent!at!least!one!data!point!to!our!
server.!The!total!number!of!registered!phones!is!a!little!lower!that!the!total!number!of!phones!
that!have!downloaded!and!installed!the!app.!!Active!phones!are!defined!as!the!phones!sent!data!
back!to!the!server!within!last!24!hours.!..............................................................................................................!34!

Figure!3.6:!Waveform!examples!from!different!parts!of!the!world!recorded!by!MyShake.!The!
earthquake!location/time!is!shown.!Time!zero!is!the!time!when!the!phone!triggered,!and!
negative!time!corresponding!the!data!recorded!in!the!1!min!buffer!before!the!trigger.!The!
green!and!red!lines!are!the!estimated!P!and!S!arrival!times!using!the!ak135!model.!The!
waveform!from!Nepal!has!about!1!second!missing!data,!which!occasionally!happens!in!
MyShake!app.!Continues!below.!..............................................................................................................................!35!

Figure!3.7:!Magnitude!and!depth!distribution!of!MyShake!detected!earthquakes.!...................................!38!

Figure!3.8:!Record!section!plot!for!the!vertical!component!of!MyShake!recorded!waveforms.!The!
green!and!red!lines!are!the!estimated!PS!and!SSarrival!times!estimated!using!ak135.!...................!39!

Figure!3.9:!PGA!comparison!and!observation!times.!(a)!Histogram!of!PGA!difference!between!
MyShake!recordings!and!the!closest!traditional!seismic!station.!A!positive!value!means!that!the!
PGA!value!observed!by!MyShake!is!larger!than!that!from!the!traditional!seismic!station.!(b)!
PGA!observation!times!for!MyShake!and!traditional!seismic!stations.!The!blue!and!red!curves!
are!the!estimated!PS!and!SSwave!arrival!using!ak135.!..................................................................................!40!

Figure!3.10:!Waveform!comparisons!of!all!3!components!for!a!smartphone!37.2!km!from!the!M5.2!
Borrego!Springs!earthquake!with!a!traditional!seismic!sensor!0.88!km!away.!The!blue!traces!



!
!

vi!

are!recorded!by!MyShake!phone,!and!the!red!traces!are!recorded!by!the!seismic!station.!Both!
the!raw!waveforms!and!filtered!waveforms!are!shown.!..............................................................................!41!

Figure!3.11:!Waveform!comparisons!of!all!3!components!for!a!smartphone!100.9!km!from!the!M5.2!
Borrego!Springs!earthquake!with!a!traditional!seismic!sensor!1.93!km!away.!The!blue!traces!
are!recorded!by!MyShake!phone,!and!the!red!traces!are!recorded!by!the!seismic!station.!Both!
the!raw!waveforms!and!filtered!waveforms!are!shown.!..............................................................................!42!

Figure!3.12:!Map!of!the!M7.8!Ecuador!Earthquake!and!one!3Scomponent!recording.!(a)!Location!of!
the!2016S04S16!M7.8!Ecuador!Earthquake.!Green!dots!are!phones!that!triggered!using!the!ANN!
algorithm.!The!red!dots!are!phones!that!were!not!ready!to!detect!earthquakes!(likely!due!to!
human!activities),!and!the!orange!dots!show!the!phones!that!were!ready!to!detect!the!
earthquakes!but!did!not.!(b)!3!component!recordings!from!a!user!at!170.3!km!from!the!
earthquake.!Time!zero!is!the!time!when!the!phone!triggered,!and!negative!time!corresponding!
the!data!recorded!in!the!1!minute!buffer!before!the!trigger.!The!green!and!red!lines!are!the!
estimated!P!and!S!arrival!time!estimated!by!using!the!ak135!model.!The!large!amplitudes!after!
the!S!wave!arrival!are!likely!from!the!user!picking!up!the!phone!when!he/she!felt!the!
earthquake.!The!ground!motion!recorded!before!the!human!activities!are!shown!in!Figure!3.4c.
!...............................................................................................................................................................................................!43!

Figure!3.13:!Map!of!the!M5.1!Oklahoma!earthquake!and!one!3Scomponent!recording.!(a)!Location!of!
the!2016S02S13!M5.1!Oklahoma!Earthquake.!Green!dots!are!phones!that!triggered!using!the!
ANN!algorithm.!The!red!dots!are!phones!that!were!not!ready!to!detect!earthquakes!(likely!due!
to!human!activities),!and!the!orange!dots!show!the!phones!that!were!ready!to!detect!the!
earthquakes!but!did!not.!(b)!3!component!recordings!from!a!user!at!130.5!km!from!the!
earthquake.!Time!zero!is!the!time!when!the!phone!triggered,!and!negative!time!corresponding!
the!data!recorded!in!the!1!minute!buffer!before!the!trigger.!The!green!and!red!lines!are!the!
estimated!P!and!S!arrival!time!estimated!by!using!the!ak135!model.!...................................................!44!

Figure!3.14:!Additional!examples!of!PSwaves!recordings!for!larger!earthquakes.!Time!zero!is!the!
time!when!the!phone!triggered,!and!negative!time!corresponding!the!data!recorded!in!the!1!
minute!buffer!before!the!trigger.!The!green!and!red!lines!are!the!estimated!P!and!S!arrival!time!
estimated!by!using!the!ak135!model.!...................................................................................................................!45!

Figure!3.15:!Top!figure!shows!an!example!of!the!signalSnoiseSratio!(SNR)!as!a!function!of!frequency!
for!the!horizontal!component!in!Figure!3.10.!It!is!computed!by!using!the!amplitude!of!the!FFT!
of!the!signal!divide!by!the!mean!noise!spectrum!amplitude.!The!phone!is!at!37.18!km!away!
from!the!M5.2!earthquake!in!Southern!California.!The!bottom!figure!shows!time!frequency!
representation!of!the!signal,!including!frequency!spectrum,!spectrogram,!and!the!time!domain!
waveform!for!this!recording.!....................................................................................................................................!46!

Figure!3.16:!Top!figure!shows!an!example!of!the!signalSnoiseSratio!(SNR)!as!a!function!of!frequency!
for!the!horizontal!component!for!the!2016S05S18!07:57:05!UTC,!M6.7!Ecuador!earthquake.!The!
phone!is!at!99.41!km!away!from!the!earthquake.!The!bottom!figure!shows!time!frequency!
representation!of!the!signal,!including!frequency!spectrum,!spectrogram,!and!the!time!domain!
waveform!for!this!recording.!....................................................................................................................................!47!

Figure!4.1:!(a)!Earthquakes!with!one!or!more!useful!waveform!recordings!from!MyShake!phones!in!
the!first!two!years!of!operation!(Feb!12,!2016!to!Feb!12,!2018).!The!size!of!the!circle!and!color!
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Chapter 1 Introduction 
 

In the last century, we witnessed so many devastating earthquakes, to name a few, the 
1906 Great San Francisco earthquake, 1976 M7.5 Tangshan earthquake, the 2004 M9.1 
Indonesia earthquake, 2011 M9.0 Tohoku-Oki earthquake, and so on. Seismologists are 
constantly trying to develop ways to inform and to protect people from earthquake hazards. The 
deployment of global seismic network, greatly improved our ability to monitor and study the 
earthquakes. We started to have better understanding of how and where do the earthquakes 
usually occur. This thesis summarizes the development and progress on building a global 
smartphone seismic network by taking the power of crowdsourcing. The approach taken here is a 
combination of data science with the earth science. The following chapters give the detail of how 
did we build this network with the initial observations.  

In Chapter 2, this thesis talks about the motivation behind this project and the initial 
investigation of building this global smartphone seismic network. Before we build this 
smartphone seismic network, we asked a few questions: (1) can the sensors inside the 
smartphones sensitive enough to record earthquakes? We report the noise floor tests we did to 
answer this question. We found most sensors inside the smartphones could detect earthquakes 
larger than M5 within 10 km with some best sensors starting to see M3.5 earthquakes in certain 
frequency bands. A trend of decreasing the noise level on newer phones has also been observed 
to suggest that the sensors may get better in the future to record smaller earthquakes. (2) Can the 
smartphones reproduce the shaking of the earthquake well even when they are not fully coupled 
with the ground? The answer confirmed by doing shake table tests with putting the phones on the 
table directly. Even with large shakings, the phones could record the shaking reasonably good, 
especially for the frequency content. (3) Can we recognize earthquake movements recorded on 
the phone from the daily human activities? To address this core problem, we build a prototype 
system to collect the human activity data for 4 months and the shake table tests data as well as 
simulated earthquake data. With the data we collected, an Artificial Neural Network (ANN) 
approach is designed to recognize earthquake-like movement from the daily recordings on the 
phones. Different features that characterize the difference between earthquake-like and human-
like motions are compared and selected carefully to feed into the ANN. After training, the ANN 
could recognize most of the earthquakes within 10 km above M5.0, and commit about 7% false 
positive rate. In the end of this chapter, we also talk about a simple network detection algorithm 
to aggregate results from multiple phones in a region. 1000 simulations were conducted to 
validate the performance of the network detection algorithm.   

After Chapter 2, MyShake was release to the public on Feb 12th 2016. Within a short 
time, MyShake users occupied the 6 continents and started to contribute data to the central 
server. Chapter 3 shows the initial observations from the data collected from this network within 
6 months after its release to the public. Earthquakes from M2.5 to M7.8 with useful waveforms 
were recorded by the MyShake user globally. One particular earthquake event – the M5.2 
Borrego Springs earthquake occurred on Jun 10th 2016 is showing here. Most of the phones 
triggered either on the P wave or the S wave depending on the distances from the event, the site 
effect and the noise level of the sensors. The record section plot of the waveforms recorded by 
MyShake users shows clear moveout of the P and S waves at difference distances. The Peak 
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Ground Accelerations from the phones show a similar attenuation relationship as that from the 
seismic network, even though the amplitudes from MyShake is higher, may due to the local site 
effect, and the fact that the phones are in buildings and put freely on desks and so on. Besides, 
you can see the comparison of the MyShake recordings with a nearby seismic station at about 40 
and 100 km for the M5.2 earthquake. At closer distance, the matching of the waveforms are 
good, and even the P wave matches well. But at about 100 km, due to the high noise level on the 
phones, the P wave portion is buried into the noise but you can still see the S wave and the 
strongest portion matching well. This will be what we expect to see for the phones close and far 
away from the earthquakes. Finally, in this chapter, we will also show the observations of 
waveforms recorded by MyShake have clear P wave arrivals, especially for larger magnitude 
earthquakes, even at farther distances, we can still see it very clear. One example is from M7.8 
Ecuador earthquake recorded by one MyShake user at about 170 km, we can clearly see the P 
wave. These observations are promising both in terms of real-time earthquake early warning and 
other seismological applications.  

Chapter 4 continues to show the application we can do using the waveforms recorded by 
MyShake users. We start to compute the most important earthquake parameters, such as location, 
origin time, and magnitude. We first select the earthquakes that have more than 5 useful 
earthquake waveforms recorded by MyShake. We manually picked the P and S wave arrivals 
from each waveform. With 18 events with both P and S phases, we could estimate the locations 
of the earthquake with a mean error of 8.4 km and standard deviation 7.6 km relative to USGS 
locations. Since the high noise level of some of the phones, not all the waveforms can pick the P 
wave arrivals. Many of the waveforms can only pick the S wave arrivals, depending on the 
magnitudes of the earthquake and epicentral distances of the phones. We could use only the S 
wave arrivals from each earthquake to estimate the location and origin time of the earthquake 
using grid-search approach by assuming the S wave speed as 3.55 km/s. The location estimations 
using the S wave arrival times have a mean of 17.8 km with standard deviation 22.8 km in terms 
of error from the USGS catalog locations. The origin time estimation residuals with the USGS 
catalog origin time have a mean of 0.1 s with standard deviation 6.9 s. Generally, we found that 
with a better coverage of the phones, we could do a better job in terms of estimating the location. 
Besides the locations and origin times of the earthquakes, we could also estimate the magnitudes 
from the waveforms. Most of the errors of the estimated magnitudes with the catalog ones are 
within 1 magnitude unit with the mean difference 0.3 and standard deviation 0.4 (estimated – 
catalog magnitude). As MyShake recordings are generally larger amplitude than the nearby 
seismic stations, we also tried to find the optimum factor to scale down the MyShake recording 
amplitudes to reduce this effect by minimizing the magnitude estimations compare with USGS 
magnitudes. We found the factor 1.6 is the best for the current dataset, and with this correction, 
the mean magnitude difference between MyShake estimated magnitudes and the USGS ones 
reduced from 0.3 to 0.1. This chapter illustrates the usefulness of the waveforms recorded by 
MyShake users, which could be used to provide valuable information about earthquakes for 
places where no or few seismic stations exists.  

In addition to the seismological applications we show in the previous chapters, chapter 5 
also explores using the sensors inside the smartphones to extract the fundamental frequency of 
the buildings as a way to monitor the health state of the buildings. In order to prove the sensors 
inside the phones could be used as this purpose, we conducted the shaker test to shake a 9-story 
building on Caltech campus. Testing phones were placed on the floor of the top story and 
recorded the shaking during the test. We show we could extract the fundamental frequencies 
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from the recorded waveform from single phone by transforming it to the frequency domain. If 
we have multiple phones nearby, we could stack the waveforms to lower the noise level and 
improve the signal noise ratio to see smaller amplitude peaks. As we compare the displacement 
derived from the phone recording by double integration to that from the reference sensor, both 
phase and amplitude match well. The test is similar to the results expected for stationary phones 
resting on stands at night, or when placed on a desk or left in a bag on the floor. The results here 
illustrate the potential of using MyShake-enabled personal smartphones to record building 
shaking resulting from nearby earthquakes and using that data to extract the building 
characteristics. In this chapter, we also present a method to determine the orientation of the 
smartphone if its orientation is not known, but prior information about the building 
characteristics is available.  
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Chapter 2  MyShake methodology 
 

Published as: Qingkai Kong, Richard M Allen, Louis Schreier, and Young-Woo Kwon. 2016. 
"MyShake: A Smartphone Seismic Network for Earthquake Early Warning and beyond", 
Science Advances 2 (2): e1501055–e1501055. doi:10.1126/sciadv.1501055.  

 
2.1 Abstract 

Large magnitude earthquakes in urban environments continue to kill and injure thousands 
to hundreds of thousands of people inflicting lasting societal and economic disasters. Earthquake 
early warning (EEW) provides seconds to minutes of warning allowing people to move to safe 
zones and automated slowdown and shutdown of transit and other machinery.  The handful of 
EEW systems operating around the world use traditional seismic and geodetic networks that only 
exist in a few nations. Smartphones are much more prevalent than traditional networks and 
contain accelerometers that can also be used to detect earthquakes. In this chapter, we report on 
the development of this new type of seismic system--MyShake--that harnesses personal/private 
smartphone sensors to collect data and analyze earthquakes. We show that smartphones can 
record magnitude 5 earthquakes at distances of 10 km or less, and develop an on-phone detection 
capability to separate earthquakes from other every-day shakes. Our proof-of-concept system 
then collects earthquake data at a central site where a network detection algorithm confirms that 
an earthquake is underway and estimates the location and magnitude in real-time. This 
information can then be used to issue an alert of forthcoming ground shaking. MyShake could be 
used to enhance EEW in regions with traditional networks, and could provide the only EEW 
capability in regions without. In addition, the seismic waveforms recorded could be used to 
deliver rapid microseism maps, study impacts on buildings and possibly image shallow earth 
structure and earthquake rupture kinematics. 
 
2.2 Introduction 

Large magnitude earthquakes in densely populated regions do not occur very frequently, 
but they can kill tens to hundreds of thousands of people, injure many more, and cause 
substantial financial loss [Holzer and Savage, 2013]. Earthquake Early Warning (EEW) systems 
can detect the location and magnitude of an earthquake in a few seconds, and issue a warning to 
the target area before the damaging waves arrive [HEATON, 1985; Allen and Kanamori, 2003]. 
This new technology can reduce the fatalities, injuries, and damage caused by earthquake by 
alerting people to take cover, slowing and stopping trains, opening elevator doors, and many 
other applications [Allen, 2011]. The development of EEW to date has largely focused on the use 
of traditional seismic and geodetic networks, which only exists in a handful of countries around 
the world [Allen et al., 2009b]. Smartphones are much more prevalent, and have a variety of 
built-in sensors and communications. There were 2.6 billion smartphones worldwide in 2014, 
and this number is expected to pass 6 billion by 2020. In this chapter, we report on development 
of MyShake, a crowdsourcing project [Allen, 2012b] to harness the accelerometers in personal 
smartphones to record earthquake-shaking data for research, hazard information and earthquake 
early warning.  
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We build on other crowdsourcing projects in seismology. The Quake Catcher Network 

(QCN) and Community Seismic Network (CSN) primarily use low cost MEMS accelerometers 
that plug into computers and can be installed in buildings to detect earthquakes [Cochran et al., 
2009b; Clayton et al., 2011]. These networks consist of a few hundred to a few thousand 
accelerometers, but are limited by the need to pass hardware from the network operators to the 
users. By using the sensors in smartphones, we only need to pass software from the network 
operators to users, which is relatively simple using the Google Play and iTunes store. The CSN 
also explored the use of smartphone accelerometers. Their approach was to ask if newly 
incoming data is similar to previously defined human activities. If not, it is treated as an 
anomaly, and communicated to a processing center where a picking algorithm will determine if it 
is earthquake or not [Faulkner et al., 2011; Olson et al., 2011]. Our MyShake design is different 
in that we use past earthquake information to develop a classifier algorithm to identify 
earthquake shaking on a single phone, and then communicate with a centralized processing 
center (CPC). Previous work has also demonstrated that the GPS sensors on smartphones (rather 
than the accelerometer) can be used to detect earthquakes and potentially provide a warning 
[Minson et al., 2015]. To date, this has been shown to be possible on dedicated smartphones, but 
not on personal smartphones. Another crowd-sourcing project is using twitter to detect 
earthquakes. A tweet-frequency time series constructed from tweets containing the word 
earthquake in various languages, and an algorithm is used to identify possible earthquakes [Earle 
et al., 2011]. Finally, the USGS Did You Feel It (DYFI) system is a web-based approach for 
collecting reports of shaking and damage as experienced by individuals. The reports are 
converted into intensity and used to generate detailed shaking intensity maps when enough 
people report [Survey and Dewey, 2005; Wald et al., 2011]. The intensity estimate relies on 
subjective descriptions by the reporter. By using smartphone sensors, MyShake utilizes the 
power of crowd sourcing, while also reporting shaking timeseries and accurate locations.  

The MyShake network builds on some initial work at UC Berkeley to determine the 
quality of the accelerometers in smartphones [Dashti et al., 2011]. We have extended this work 
to develop an android-based application that runs efficiently on the users’ smartphone and 
detects whether the movement of a phone is likely caused by an earthquake verses other human 
activities. It sends this information back to our processing center where a network detection 
algorithm confirms that an earthquake is underway. The location, origin time, and magnitude of 
the earthquake are then determined based on multiple triggers from the network of phones. This 
information can be used to estimate the shaking intensity and remaining time until damaging 
waves arrive at a target location. In the following we detail (a) size and proximity requirements 
for earthquake signals to be recorded by smartphones, (b) development of our on-phone 
detection capability to distinguish earthquakes from other shakes, and (c) design of a network 
detection algorithm to operate at the processing center to confirm when an earthquake is 
underway, locate and characterize it. This has been achieved within the real-world constrains of 
building an android application that runs in the background on private phones without draining 
power. 
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2.3 Results  

To better understand which earthquakes we can record on smartphones, we determined the noise 
floor [McNamara and Buland, 2004] of the accelerometers on multiple android phones by 
placing them in a basement and allowing them to record for one month. The noise floor of the 
phones contains the internal noise of the phone itself plus other environmental sources in a quiet 
basement. Once this level is known, we can assess the necessary size of earthquakes such that the 
ground shaking amplitude exceeds the noise. Figure 2.1 compares the noise floor of the test 
phones to the amplitude of shaking for various magnitude earthquakes at 10 km [Clinton and 
Heaton, 2002]. All phones are sensitive to the shaking for M5 or larger earthquakes 10 km or 
less from the phone in the frequency range of 1 to 10 Hz, and they are capable of recording the 
longer periods of larger magnitude events. There is a gradual improvement in the sensor 
capabilities with the release date of the phone (see the color change from cold to warm). The 
more recent phone models are sensitive to shaking for M3.5 at 10 Hz. The in-phone 
accelerometers can record shaking for the earthquakes that do damage in the frequency range 
that causes most damage (1 to 10 Hz). Also, we expect the quality of the sensors in phones to 
improve further with time. The HP MEMS accelerometer (blue, Figure! 2.1 was recently 
developed for seismic imaging applications [Homeijer et al., 2011]. It is currently too expensive 
for inclusion in smartphones, but illustrates that MEMS sensors can have similar capabilities to 
more traditional strong motion sensors (station BKS, Figure!2.1).  

 
 
Figure 2.1 Noise floor of the phones. Noise floors of the smartphones color coded by the phone 
release date (also shown in the legend as MM/YY). Dashed black lines are typical ground motion 
amplitudes of earthquakes 10 km from the epicenter for various magnitudes. Noise floor for high 
quality MEMS sensor (HP MEMS - blue) and a typical force-balance accelerometer from a 
regional network (BKS in northern CA - purple) are also shown. 
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Figure 2.2: Three-dimensional shake table test. The input seismogram is from a real earthquake 
that has been modified for IEEE-693-2005 tests. (A) Waveform comparison between phone 
(blue) and reference accelerometer (red) recordings from an input signal that has peak 
acceleration of 0.5g. (B) Spectrum comparison of Y components. The X and Y components are 
in the plane of the phone, which is lying flat on the horizontal shake table and is not attached. 
The Z component is perpendicular to the plane of the phone and is vertical for this test. 

 

Next we must determine how well phones can record the true shaking in an earthquake. 
Both the quality of the sensor and how well coupled the phone is to the ground play key roles 
here. We deployed multiple phones on shake tables to answer this question; some were bolted to 
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the table, others could freely slide. Our results confirm previous work [D’Alessandro and 
D’Anna, 2013] that phones bolted to shake tables are capable of recording ground motion 
accurately between 0.5 and 10 Hz. We also tested phones placed freely on the shake table, since 
personal phones are not bolted to the ground. Figure 2.2 shows a three-dimensional shake table 
test with the peak acceleration 0.5g. The phone under testing had some relative motion with the 
table, but minimal. We can see that the waveform of the phone and the reference accelerometer 
are very similar, and the frequency response of the phone acceleration is good from 0.5 Hz up to 
10 Hz. In a one-dimensional shake table test with a sweep signal (increasing amplitude and 
frequency gradually), we found that it was not until the horizontal accelerations reached certain 
threshold, in this case ~0.3g and above ~3Hz, that we started to see sliding. When the phones 
slid, it had the effect of clipping the peak amplitudes but the frequency content remained similar 
(Figure 2.3). This is a limitation of the data recorded, and we must recognize that recorded 
amplitudes are lower bounds on the actual value. 
  

 
 

Figure 2.3: Shake table test with an input sweep signal (0.5-7Hz). (A) Waveform comparison 
between a phone fixed on the table (blue), a phone placed freely on the table (black) and the 
reference accelerometer attached to the table (red). (B) Frequency domain comparison of the 
signals in (A). (C) Calculated correlation coefficient and RMS (Root Mean Square) ratio 
between the signal recorded by the phone placed freely on the shake table and the reference 
accelerometer. The correlation coefficient is a measure of the phase match and RMS is a measure 
for amplitudes match. We use 1 Hz frequency band to filter the record and calculate the 
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coefficient with a step frequency 0.1 Hz. The x-axis is the center frequency of the frequency 
band. The correlation coefficient shows how well the phase is recorded by the phone, and the 
RMS ratio shows the amplitude recovery. Above 2-3 Hz the phone starts to slide so the full 
amplitude is not recovered, however, the phase is recovered up to 7-8 Hz.  

Given that a smartphone can record earthquake shaking, the key challenge for a 
smartphone network using private/personal phones is being able to separate earthquake shaking 
from every-day motion of the phone. Figure 2.4a shows 12-hours of 3-component acceleration 
data that was recorded on a smartphone. It contains both human activities and the M6.0 Napa 
earthquake on August 24, 2014 [Brocher et al., 2015] at the very end of the waveform. Figure 
2.4b shows the zoomed in view of the accelerations associated with the Napa quake recorded on 
the same phone. 

 

 
 
Figure 2.4: Earthquake recorded by phone and classifying earthquakes. (A) Example 12-hour 3-
component acceleration record from a private/personal Samsung Galaxy S4 phone starting at 4 
pm August 23, 2014. It shows the accelerations of every-day human motions for the first ~8 
hours, then appears stationary during the night. The red box at the end of the figure highlights the 
time window of figure b. (B) 1 minute of data from the period shown in (A) at the time of the M6 
Napa earthquake 38 km from the phone. The earthquake occurred at 3:20:44 am local time. (C) 
Scaled feature plot showing IQR versus ZC for the classifier training dataset. The blue dots are 
the centroids of human activities, and the red dots are the earthquake features. (D) 3D plot of the 
3 features we used to distinguish earthquakes. Adding the CAV to IQR and ZC drags some of the 
human activates (blue dots) to the third dimension but not the earthquake data, this helps 
improve the results.   
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In order to develop an algorithm to separate earthquake shaking from human activities, 
we first developed an application for android smartphones to trigger on significant motions, and 
send the data to a central processing center (CPC). It has been designed for distribution to 
personal/private phones and has a trigger algorithm that runs in the background monitoring the 
accelerometer continuously. It uploads parameters and data to our CPC when triggered. 
Functionality at the CPC allow us (a) to monitor and change the operational parameters on the 
user phones, (b) collect heart-beat and state-of-health information from the phones, (c) collect 
autonomous phone-trigger information, (d) trigger phones from CPC to record data, and (e) 
upload waveform data for autonomous and CPC triggers. A small release of MyShake in 
November 2014 deployed the application on 75 phones. A key issue for a crowdsourcing 
application to be successful is minimizing the impact on the users: in the case of a phone this 
means minimizing power usage. The MyShake application currently uses about the same power 
that a smartphone uses when it is on, but is not being used. For most users, a phone running 
MyShake does not need to be charged more than once every 24 hours. 

Using the data collected, we have developed an Artificial Neural Network (ANN) 
approach to identify the different characteristics of earthquake and human motions (see 
supplementary material for details). The algorithm assesses 2 sec windows of data and 
determines if the motion is likely an earthquake or not. We must first train our algorithm. The 
training data comes from three sources: every-day motion recordings uploaded to our CPC from 
the MyShake release as described above, phone recordings of earthquakes from shake table tests, 
and seismic data from traditional networks in Japan that was modified to reproduce smartphone-
quality records, which is described in supplementary material. We tested a total of 18 
characteristics identifying the 3 best features: Interquartile range of the acceleration vector sum 
(IQR), the maximum zero crossing rate (ZC), and the cumulative absolute velocity of the 
acceleration vector sum (CAV). IQR is an amplitude parameter that shows the middle 50% range 
of amplitude of the movement. ZC is a simple frequency measure that counts the number of 
times when the signal crosses baseline zero. CAV is a cumulative measure of amplitude on the 
three components in the time window and is determined as follows: 

!"# = |!(!)|!"!
!                                                             (2.1) 

Where a(t) is vector sum of the 3 components acceleration.  
 

Figure 2.4c shows how IQR (a measure of amplitude) and ZC (a measure of frequency) 
separate earthquakes from non-earthquake motions. Earthquakes are high frequency with 
moderate amplitudes while every-day motions are lower frequencies but high amplitudes or very 
low amplitudes but high frequencies. The IQR and ZC are the best two parameters to separate 
earthquakes, but adding CAV can provide some additional information to help improve 
performance (Figure 2.4d).  

The trained ANN algorithm is then applied to US earthquake data modified to phone-
quality records and a separate set of every-day motion data (Table 2.1). 98% of the earthquake 
records within 10 km of the events are recognized as earthquakes; the success rate reduces with 
increasing distance and decreasing magnitude as expected. 93% of the every-day motions are 
correctly recognized, meaning that for an operational system we should expect ~7% of phone 
triggers to be false (earthquake) triggers. 
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Table 2.1: Performance of the ANN algorithm. Performance of classifier when applied to 
earthquake and non-earthquake data not used to train the ANN algorithm. In the case of 
earthquake data the percentage of records that were correctly classified as earthquakes is shown 
along with the number of records (in parentheses) for various earthquakes recorded within 
various distances of the epicenter. For the every-day human activity data, the percentage 
correctly identified as non-earthquake and falsely identified as earthquakes is shown. 

Earthquake classification Within 10 km Within 20 km Within 30 km 

1989 Loma Prieta M7 100% (2/2) 100% (4/4) 100% (11/11) 

1994 Northridge M6.7 100% (4/4) 100% (19/19) 100% (29/29) 

2004 Parkfield M6 95% (19/20) 90% (35/39) 86% (36/42) 

2014 Napa M6 100% (2/2) 75% (6/8) 42% (10/24) 

2014 La Habra M5.1 100% (13/13) 42% (22/52) 25% (30/120) 

    

Human activity classification non-earthquake 
(correct) 

earthquake (false)  

20150201-20150228 93% (3562/3823) 7% (261/3823)  

 
The final component of our system is a network detection algorithm running at the CPC 

to confirm when an earthquake is underway, and estimate source parameters from multiple 
triggered phones in a region. When a phone determines that it is recording an earthquake, two 
types of data are passed to the CPC: (a) the trigger information including trigger time, phone 
location, and the maximum amplitude of the 3 components, and (b) waveform data that contains 
3-component acceleration from 1 minute before the trigger to 4 minutes after. The trigger 
information is easier to upload rapidly via cellular or Wi-Fi networks and is what we use for real-
time processing. The waveform data is currently uploaded with a lower priority and only 
uploaded when the phones are connected to Wi-Fi and power. 

Our first-generation network detection algorithm is based on current earthquake early 
warning ElarmS-2 methodologies [Kuyuk et al., 2014]. It searches for a temporal and spatial 
cluster of triggers, and requires greater than 60% of operating active phones to have triggered 
within a 10 km radius region for an event to be declared, see the supplementary material for 
details. Once an event is created, the algorithm will continue to update the origin time, location, 
and magnitude of the earthquake based on the continual flow of trigger information. Currently, 
the origin time is set to the earliest trigger time, and the centroid of the all the triggered phones 
within 10 km of the phone trigger is used as the epicenter. Our first generation magnitude 
estimation is based on expected ground shaking amplitude as a function of distance. We use the 
Peak Ground Acceleration (PGA) and the distance of the station to estimate the magnitude using 
the following regression relation based on the earthquake data from Japan that was modified to 
reproduce smartphone-quality records: 

!!"# = 1.352× log !"# + 1.658× log !"#$%&'( + 4.858                       (2.2) 
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Where PGA is the maximum absolute amplitude from the 3-component acceleration, and 

distance is the epicentral distance derived from the phone location and estimated location of the 
earthquake. Figure 2.5 compares estimated magnitude and the real magnitude for both individual 
phone (blue dots) and the average event estimates (red pluses). We can see that, most of the 
estimated magnitudes are within 1 magnitude unit for individual phone, and all average event 
estimates are within 1 magnitude unit. When the network consists of many more phones, we 
might expect the uncertainty in the magnitude to be reduced. However, we must also recognize 
that phone-based amplitude estimates must be treated as lower bounds given the possibility of 
decoupling. Given these uncertainties, it is clear that having even a single observation from a 
traditional seismic station could make a significant difference providing some "ground truth" to 
the magnitude estimate. 

 

Figure 2.5: Estimated magnitude. Comparison of our estimated magnitudes with the real 
magnitude for earthquakes in Japan using phone-like data. The green line is the 1:1 line, and the 
two grey lines are the 1 magnitude unit shift, each blue point is the magnitude estimate at a 
single simulated phone. The red pluses are the average event estimates, which is the average of 
multiple single phone estimates. 

!

The final step for an alert is to estimate the shaking intensity and time till shaking at a 
users' target location. This is relatively straight forward using the estimated event epicenter, 
origin time and magnitude, the users' location, and S-wave traveltime curves and ground motion 
prediction equations [Worden et al., 2012] just as with the current EEW system in California. 

It is a known problem that magnitude estimates based on peak shaking observations from 
seismic stations saturate [Anon, 2011; Colombelli et al., 2012]. This will also be a problem for 
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MyShake. There are several possible improvements. Firstly, the smartphone-based magnitude 
estimate could be improved by updating the magnitude based on the area experiencing strong 
shaking. Stronger magnitude earthquakes cause strong shaking over large areas. Another 
possibility is to make use of GPS-based permanent ground displacements as is being done with 
the more traditional network-based early warning systems [Colombelli et al., 2013; Grapenthin 
et al., 2014]. It was recently shown that smartphone-based GPS observations could be used for 
EEW [Minson et al., 2015]. The challenge when using only GPS on smartphones is that GPS is 
very power-hungry. A possible hybrid, would be to start monitoring the GPS on a phone when 
the MyShake classifier identifies an earthquake. This could provide an updated magnitude 
estimate that does not saturate and would not suffer from the power issues associated with an 
only-GPS approach. 

We applied the network detection algorithm in a simulated real-time manner to phone-
like triggers for US earthquakes (Table 2.1). For the stations that are close to the epicenter 
(within 10km), almost all stations are triggered. Figure 2.6 shows performance snapshots for the 
M5.1 La Habra earthquake [Donnellan et al., 2015], which had the poorest success rate in 
triggering on individual phone-like waveforms due to the relatively small magnitude compared 
with other test earthquakes (Table 2.1). The figure shows the location of the triggers at each time 
step; the radiating nature of the ground motion and associated triggers is clearly seen. The 
earthquake is first identified 5 sec after the origin time (Figure 2.6b). The error in the initial 
magnitude estimate is 0.1 magnitude units, the location error is 3.8 km, and the origin time error 
is 1.7 sec (Table 2.3). The performance of this MyShake simulation is similar to the actual 
performance of the real-time ShakeAlert/ElarmS EEW system, which issued its first alert 5.3 
seconds after the origin time with an initial magnitude error of 0.8, location error of 1.5km and 
origin time error of 0.2 sec. In reality when we have a denser phone network, we would expect to 
detect the earthquake faster. Movie S1 and S2 show performance animations for the 2014 La 
Habra and 2004 Parkfield events [Langbein et al., 2005] respectively.  

 

Figure 2.6: Snapshots of trigger detections for the 2014 M5.1 La Habra earthquake simulation at 
3, 5 and 7 sec after the event origin time. Grey dots are stations; pink indicates a trigger. The true 
earthquake location is the red star with circles at 10, 20 and 30 km radius. The blue star 
represents the estimated event location, first detected at 5 sec. The magnitude estimate at each 
point in time is shown upper right. 

!

We also conducted 1000 simulations that incorporate random human-activity triggers in 
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addition to earthquake triggers to explore system performance for different densities of phones 
(see supplementary material). We found good performance (similar to the La Habra example) 
when there are 300 or more phones in a 111 by 111 km region, corresponding to an average 
distance between phones of 6.4km (Table 2.4). If the number of phones drops to 200 in the same 
region, then out of 1000 simulations, we found 32 events that were not detected, i.e. 3% of 
events were missed. In addition to missing some earthquakes, the accuracy of the locations and 
origin times is degraded. We also conducted a second group of 1000 simulations without 
earthquakes, just false triggers. None of these generated a false event. This is because we require 
>60% of active phones within a 10 km radius region to trigger for an event declaration. Our 
ultimate design goal is to have much smaller distances between active phones than 6.4 km, yet 
we must recognize that the network algorithm will need to be modified to reflect the active 
network and these changes may need to happen in real-time. 

 
2.4 Materials and Methods 

2.4.1 Data collection 

The MyShake application was used to collect all smartphone data used in this study.  It 
can be installed on android phones to record acceleration data. For the noise floor tests and shake 
table tests, MyShake recorded continuously, and saved the data locally on the phone. The human 
activity data was recorded using a trigger-based method, 5 minutes of data was collected when 
the phone satisfied the trigger we described above (see more details in supplementary material at 
the end of the chapter).  

2.4.2 Noise floor test 

The noise floor tests were performed by putting smartphones in a quiet basement on the 
Berkeley campus.  The phones recorded continuously for one month at 50 samples per second. 
The method used to calculate the noise floor (Figure 2.1) is described in [McNamara and 
Buland, 2004].  

2.4.3 Shake table test 

The shake table tests were conducted at the Pacific Earthquake Engineering Research 
Center.  The phones recorded at 50 samples per second continuously when the shake table 
simulated the earthquakes.  A high quality reference accelerometer also installed on the shake 
table provided the reference traces. We then compared the recordings from the phones and 
reference accelerometer both in the time and frequency domain. During the tests, some phones 
were bolted on the shake table while the rest were placed freely on the table.  

2.4.4 Single phone detection algorithm design 

The earthquake detection algorithm running on the phones was designed using past 
earthquake data (from traditional seismic networks but modified to be phone-like quality), shake 
table data, and human activity data recorded on the smartphones. We used an artificial neural 
network to design the algorithm to distinguish earthquakes from human activities. The 
processing of data and steps are described in detail in supplementary material at the end of the 
chapter.  
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2.4.5 Network detection algorithm design: 

The network detection algorithm is designed based on the current ElarmS-2 
methodologies [Kuyuk et al., 2014].  It searches for temporal and spatial clusters of triggers from 
active phones. We tested the algorithm both on the simulated earthquake data and simulated 
trigger data (see the chapter supplementary material for details).  

 
2.5 Discussion  

The MyShake project to date demonstrates proof-of-concept for a smartphone-based 
seismic network that provides instrumental recordings of ground shaking in damaging 
earthquakes, and potentially delivering earthquake early warning. What is key to this study is 
that the system has been designed for and tested on privately owned smartphones, of which there 
are billions. To harness the full potential of crowd sourcing, scientists must use sensors that are 
already being purchased by consumers, we must develop systems that can harness the data from 
these sensors with minimal impact to the owners, and we must provide the owners with real 
benefits to participating. MyShake uses the accelerometers on common smartphones, the 
application is freely available from the Google Play store for easy installation and automatic 
update, it uses minimal power meaning phones only need to be recharged daily as is common 
practice, and participation leads to delivery of earthquake hazard information and could include 
the delivery of earthquake shaking alerts. MyShake details and updates can be found at MyShake 
webpage.  

In the future, existing earthquake early warning systems that use traditional seismic and 
geodetic networks could benefit from MyShake just as MyShake could benefit from integration 
of data from traditional networks. As described above, observations from even one traditional 
seismic station could help reduce uncertainties in MyShake earthquake estimates. Likewise, a 
handful MyShake phone triggers could be used to confirm a preliminary earthquake detection 
from one or two traditional network station triggers; most traditional EEW systems require 
several stations to trigger before issuing an alert. Finally, and perhaps most importantly, 
MyShake could deliver alerts in regions that have little in the way of traditional seismic 
networks. This includes Haiti and Nepal that both had recent devastating earthquakes, and other 
high hazard regions like Iran, Afghanistan, Pakistan, Mongolia, Malaysia, Indonesia and the 
Philippines. As an example, the recent earthquakes in Nepal are estimated to have killed over 
8000, while there are only a handful of seismic stations in the region. Yet, there are an estimated 
6 million smartphones in Nepal. Based on the 80 km separation of the M7.8 epicenter from 
Katmandu where most of the fatalities occurred, a warning system could provide ~20 sec 
warning (see supplementary material). 

Finally, MyShake is first and foremost a seismic network, for which we have developed 
an early warning algorithm. The network could provide millions of seismic waveforms for a 
wide range of research activities following large magnitude earthquakes in urban environments. 
These could be used to generate microseism maps providing information about local 
amplification effects, and be used to study the impact of the shaking on buildings. The data could 
also potentially be used to image shallow Earth structure beneath our cities, and perhaps even to 
image the earthquake rupture process itself. 
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2.6 Supplementary material 

2.6.1 Data collection: The MyShake application 

"MyShake" is an android application used to release to private/personal phones. It was 
released to 75 phones in November 2014 (Figure 2.7). This test release was aimed at student 
volunteers on the UC Berkeley campus. The trigger algorithm at the time consisted of a simple 
STA/LTA algorithm [Allen, 1978]. The application first requires the phone to remain stationary 
for 30 minutes, meaning the acceleration is minimal and most likely the phone is siting on a 
stationary surface. When it meets this requirement, the phone enters into "steady state". The ratio 
of short-term average (STA) and long-term average (LTA) on any of the 3-components must 
then exceed a threshold to trigger. When it does, trigger information was immediately sent to 
CPC including the phone location, time of the trigger, phone ID, and the maximum amplitude. A 
total of 5 minutes of data was also stored locally on the phone from 1 minute before the trigger to 
4 minutes after. A ring buffer stores the last minute of accelerometer data in memory at all times 
for this purpose. The application also uploads state-of-health (SOH) information every 2 hours 
and can receive updates and triggers from the CPC. The SOH information provides us with basic 
information about the number of phones running the application, their location, lifetime of the 
app, etc. We can also update/change the settings of the application on an individual phone or all 
phones from the CPC, for example changing the trigger parameters. Finally, we can trigger 
recording on a phone from the CPC. Either individual phones or the entire network can be 
triggered to record for a period of time. The waveform data was only uploaded when the phone 
was plugged into power and had a Wi-Fi connection to minimize power and data-plan usage. All 
these parameters can be modified remotely. We collected four months of triggered human 
activity data for our training and testing dataset (Figure 2.7). During this period 17600 triggers 
(all due to human activities) were uploaded to our CPC.  
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Figure 2.7: MyShake activity November 1, 2014 - February 28, 2015. (a) Number of phones that 
downloaded MyShake and registered with our network (green curve), and the number of active 
phones running the application on a given day based on the SOH information (blue curve).  
Server at CPC restarts during the first month is the reason the number of active phones drops to 
zero. (b) Number of phone triggers each day with waveforms uploaded to the CPC, a total of 
17600 triggers were collected.  

!

Accurate time is key for all data. The drift in the internal clock on the phones is 
unacceptable for earthquake-related applications, typically ranging from 0.4 – 8.6 sec/day 
[Zhong et al., 2011]. Thus, geographically distributed nodes need to synchronize their clocks. In 
the last decade, much research has been conducted to synchronize different internal clocks by 
referring external signal sources such as power lines, FM radio, Wi-Fi, mobile station, etc. Of 
them, Network Time Protocol (NTP) is the most commonly used clock synchronization protocol. 
With a very low network and computation cost, NTP is able to synchronize all the participating 
nodes within a few milliseconds. In the MyShake application all the accelerometer data is 
associated with its local device clock, so we synchronize them to Coordinated Universal Time 
(UTC) via NTP. The MyShake application synchronizes its local clock every 1 hour, thereby 
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minimizing network and computation cost while ensuring sufficient clock accuracy at all times.  
Power usage of the application is also important. Careful selection of which sensors to 

use and when is needed to reduce the power needs to a level that would not impact normal daily 
smartphone use. Our goal was an application that could continuously run in the background and 
still only require the phone to be charged once per day for most/typical phone users. Working 
within these power requirements, we found that it is possible to monitor the accelerometer data 
continuously all day. However, it is not possible to continuously use the GPS unit, as it is very 
power hungry. Instead, we only access GPS at specific times when needed. For the initial 2014 
release we only attempted to obtain a location when the phones triggers. When a location request 
is made to the phone, it returns the best available location.  If a GPS location is available it is 
returned.  If not, then the location based on triangulation with cell phone towers is used, if not, 
then the last available location is used. 

The current version of MyShake that we plan to release publically is modified to add the 
classifier analysis developed to distinguish earthquake from non-earthquake motions, and the use 
of GPS location has been modified. We continue to have the same initial STA/LTA trigger 
requirement, after the STA/LTA triggered, we use 2-sec data windows with a 1-sec step to 
calculate the three key features (IQR, ZC and CAV) up to 10 sec after the STA/LTA trigger. The 
calculated features in each time window are fed into the Artificial Neural Network (ANN) 
detector (on the phone) to determine if it is a likely earthquake or not. This two-step approach is 
implemented so that we do not increase the power requirements, since the STA/LTA method is a 
simple and low cost computation method. The approach to determining location has also been 
improved by determining the best available location at the time the phone enters steady state. 
Now, when the phone enters steady state, the application will try to sample the GPS location. It 
may take a few seconds to minutes before it gets a stable GPS location. Since phones typically sit 
in steady state for some time (while sitting on a desk or charging over night) it is unlikely that a 
trigger occurs in the first few seconds or minutes. If for some reason the phone cannot get the 
GPS location, e.g. the phone is inside a large building, then the cell phone network location that 
based on cell phone towers is used. The phone then stores the best available location for the 
duration of the steady state phase and associated it with the other trigger information when the 
phone next moves.   

2.6.2 Classifier analysis: Detecting earthquakes on a phone 

We used three types of data for training, validating and testing our classifier. Firstly, 
normal human activity data collected from the MyShake November 2014 release for four-month 
period shown in Figure 2.7. For waveforms to be uploaded, the phone must be stationary, and 
then move to trigger the STA/LTA algorithm as described above. 10 seconds of data 
immediately following the human trigger is used in our analysis. We used the first three months 
of data to train and validate the algorithm, and the last month was kept for final testing. 

The second type of data consists of earthquakes recorded on smartphones that were 
placed on a shake table. These include 241 3-component records from 45 shake table tests runs. 
The input waveforms into the shake table were past earthquakes with amplitudes rescaled to 
satisfy the displacement capabilities of the shake table. We only selected the strongest portion of 
the waveforms recorded by the smartphones, see an example in Figure 2.8. We focus on the 
strongest portion of the waveforms, as it is difficult for our classifier to distinguish weak 
earthquake shaking from human activities. This dataset was used entirely for the training and 
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validation phase. 

 
Figure 2.8: Example earthquake record used to train the ANN classifier algorithm. The 
waveform is the EW component from a regional network station 16.5 km from the epicenter of 
the western Tottori earthquake (M7.3) of October 6, 2000. The data has been modified to 
represent a smartphone recording at the same location. Only 2-sec windows of data from the 
yellow region were used to train our algorithm.  

!

The third type of data also consists of earthquakes, but recorded on regional seismic 
networks in Japan and US. It was first modified to replicate waveforms recorded on a 
smartphone. To do this we first converted the 24-bit data to 16-bit data, then we added a 
smartphone noise record from the noise floor tests to produce accelerometer records similar to 
what we would record on a phone laying on a sturdy table during the event. Phones are not 
expected to trigger on the initial low-energy P-waves, especially for smaller earthquakes, instead 
to trigger on the larger amplitude portions earthquake shaking. We therefore selected windows of 
data from only the strongest portion of shaking (e.g. Figure 2.8). We used strong motion data 
from Japan's KiK-Net and K-Net to train and validate our algorithm. Data with horizontal peak 
amplitude greater than 0.2g for the period from January 1, 1996 to February 1, 2015 was 
downloaded from NIED (National Research Institute for Earth Science and Disaster Prevention). 
A total of 317 3-component records from 203 events were selected. To further test the 
performance of the algorithm, we used earthquake data from the California Integrated Seismic 
Network (CISN.org). We used 389 3-component records within 30 km of the earthquake 
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epicenter from 5 events that obtained from CESMD (Center for Engineering Strong Motion 
Data), NCEDC (Northern California Earthquake Data Center), and SCEDC (Southern California 
Earthquake Data Center), the results is showing in Table 2.1. 

All data was first high-pass filtered in a simulated real-time manner using the method 
described in [Kanamori et al., 1999]. A range of characteristics in overlapping 2-sec data 
windows was calculated with 1-sec step. We experimented with using different window lengths 
and steps and found this to be the best compromise between having more data and keeping the 
window short to detect earthquakes more rapidly. 18 different features including frequency 
features, amplitude features, and statistical features was tested, the approach similar to the ones 
described in [Kong and Zhao, 2012]. All features had low to moderate computational 
requirements making it feasible to rapidly determine their values on a phone. 

Since there were far more data points from human activities than that from earthquake 
data, this imbalance of classes could affect our classifier. In order to create a dataset with equal 
classes, we used the kmeans cluster method [Kuhn and Johnson, 2013] to group the human 
activities into a number of clusters, with the number of clusters being equal to the number of the 
earthquake data points. The centroid of the cluster was taken to represent human activity data. 
This not only created a balanced dataset for us to train our classifier, but also reduced the 
computation burden during the training.  

We selected the best 3 features to distinguish between earthquake and non-earthquake 
data using greedy forward feature selection. They are the interquartile range (IQR) between the 
25th and 75th percentile of the acceleration vector sum, the zero crossing rate from the 
component with the highest value (ZC), and the cumulative absolute velocity (CAV) of 
acceleration vector sum. IQR is an amplitude parameter that shows the middle 50% range of 
amplitude of the movement. ZC is a simple frequency measure. CAV is a cumulative measure of 
amplitude on the three components in the time window and is determined as in equation 2.1. 

An ANN (artificial neural network) approach is used to classify a particular data window 
as an earthquake or not an earthquake. Each feature was first scaled to a range of 0 to 1. We used 
an ANN with one hidden layer and completed a grid search to test different numbers of neurons. 
Best performance is achieved when the ANN has 1 hidden layer with 5 neurons (Figure 2.9) with 
a standard sigmoid activation function defined as: 
 

 

 

s(x) = 1
1+ e−x
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Figure 2.9: Structure of Artificial Neural Network (ANN) classifier algorithm. It has three layers: 
one input layer with 3 nodes, a hidden layer with 5 nodes, and an output layer with 1 node. For 
the hidden layer and output layer, the inputs from the previous layer to the each node will be first 
summed and then fed into an activation function shown as f.  

!

The ANN was trained and validated using 3 months of human activity data, and 
earthquake data from shake table tests and Japanese events. The dataset was split multiple times 
using 70% of the data for training and 30% for testing for cross-validation tests. The accuracy of 
the classifier when applied to the test datasets is very good, showing 98% to 99% accuracy each 
time (Table 2.2, and Figure 2.10). 
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Figure 2.10: Receiver operating characteristic (ROC) curve. Shows the ANN classifier 
performance on 30% test data split from the training data. The ROC curve shows the false 
positive rate (classified as earthquake when it is a non-earthquake) on the x-axis, , against true 
positive rate (classified as an earthquake when it is an earthquake) on the y-axis. Ideally, the 
curve will climb quickly toward the top-left corner meaning the model correctly predicted the 
cases. Our result is quite close to the ideal cases.   

 

 1 2 3 4 5 6 7 8 9 10 

Score 0.9893 0.9830 0.9839 0.9811 0.9919 0.9919 0.9893 0.9857 0.9821 0.9966 

Mean 0.986 (±0.001) 
 

Table 2.2: Accuracy score for ANN classifier with 10-fold cross validation. The score row 
shows the accuracy score for each run defined as 

!""#$!"% !,! = ! !! !(!! = !!)!!!
!!! , 

where n is the number of samples used, and I is a function that takes 1 when the argument is true, 
and 0 otherwise. This means that if the ANN classifier correctly classify the data, then I will be 
1, otherwise 0. So the higher the average score, the better the ANN classifier. We ran a 10-fold 
cross validation, which means we split data into 10 sets of n/10 and trained on 9 datasets and 
tested on 1 dataset. We repeat this process 10 times, and each time select a different dataset as 
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test set. The mean row shows the average score from the 10 runs, with the deviation showing in 
the parentheses. 

 
Our trained ANN classifier algorithm was tested by applying it to a dataset consisting of 

data that was not used in the training/validation process. This contained the last month of 
MyShake human activity data (February 1 to 28, 2015), and data from large US earthquakes 
modified to represent waveforms recorded on smartphones. Note that no selection criteria were 
applied to the US earthquake data (recall that for the Japan earthquake data, we only selected the 
stations have clear large amplitudes).  We applied the classifier to all available waveforms, and 
the results of this validation are shown in Table 2.1 and described in the main text. 

 

Figure 2.11: Phone trigger times versus epicentral distance. The regional network data from 
California and Japan was modified to phone-quality data and then our classifier applied to the 
data to determine when a trigger occurs. The red line is the best-fit to the data and has a moveout 
velocity of 3.2 km/sec; most triggers are generated by the S-wave or the later surface wave. The 
blue outline is the time-space window used for association of triggers with an event by the 
network detection algorithm.  

2.6.3 Network detection algorithm  

Our first-generation network detector identifies multiple triggers in a space-time cluster, 
and is based on the approach used in our ElarmS-2 earthquake early warning algorithm for 
traditional regional seismic networks [Kuyuk et al., 2014]. We stored triggers for 20 seconds and 
look for 4 or more triggers within a 10 km radius region that can be associated. We require 
greater than 60% of operating phones to have been triggered within 10 km of the location of the 
event for an event to be declared (the estimated event location is the centroid of the locations of 
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the triggered phones.). The origin time is assumed to be that of the first phone to trigger. The 
magnitude is estimated based on the peak ground acceleration of the triggered phones as 
described in the main text. Triggers from phones at greater than 10 km must then fall within a 
defined space-time region to be associated with the event (Figure 2.11). 
 

Earthquake Origin time 
Event 

latitude 

Event  

longitude 

Alert 

time 
Mag. 

Location 
error (km) 

Origin time 
error (sec) 

La Habra: 
True 

March 29, 
2014 

04:09:42 
33.932 -117.917  5.1 

3.76 2 

La Habra: 
Estimated 04:09:44 33.900 -117.930 04:09:47 5.2 

Parkfield: 
True 

Sep 28, 2004 
17:15:24 35.815 -120.374  6.0 

1.55 2 
Parkfield: 
Estimated 17:15:26 35.810 -120.390 17:15:28 5.5 

 

Table 2.3: Simulated network detection performance for US earthquakes. Simulated phone 
triggers from 2014 La Habra M5 earthquake and 2004 M6 Parkfield earthquake were used to test 
the network detection algorithm. The magnitude, location and origin time estimates and errors 
are given for the initial MyShake estimates.  

We used simulated phone triggers from two earthquakes to test the performance of the 
algorithm: 2014 La Habra M5 earthquake and 2004 M6 Parkfield earthquake. Table 2.3 for the 
performance of the algorithm. In these simulations we assume zero latency due to processing and 
network transmission. We estimated the actual latency that will be introduced into the system 
due to the processing on the phone and network transmission. First, to estimate the processing 
delay of the ANN on the phone we did a test run for one night and found the average processing 
time is to be 4.5 milliseconds. Second, the transmission of the trigger data from phone to CPC is 
via UDP (User Datagram Protocol), which is a common choice for time-sensitive applications. 
We found that the average delay time of transmitting the data from the phone to the CPC via 
UDP is 50 milliseconds. 

In addition to the simulated phone triggers from real earthquakes, we generated phone-
triggers for a simulated network to test performance sensitivities of our network detector. We 
used a 1° by 1° box and randomly distributed N stations within the box where N can be 100, 200, 
300, 400 or 500. We allowed randomly distributed false triggers at a rate based on the 
assumption that 10% of phones initially trigger due to movement every second, and then 7% are 
classified erroneously as an earthquake. We then added earthquake triggers due to earthquakes 
using the following method.  

The trigger time for each phone is based on Figure 2.11. Given the distance of the phone 
from the epicenter, the trigger time is randomly selected within the time range given by the blue 
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lines on Figure 2.11. To determine a probability that a phone triggers, we developed a simple 
regression relation for the probability of a trigger given the estimated peak ground acceleration 
(PGA) at the site. We estimated peak ground acceleration at the site using a standard ground 
motion prediction equation [Snoke, 2009]. Our observations from the M5.1 La Habra earthquake 
are that the probability a phone triggers is 1, 0.8, 0.4, 0.25, 0.1, 0.01 at epicentral distances up to 
5, 10, 20, 30, 40, and 50 km respectively.  Using these observations we performed a simple 
regression between log10PGA and trigger probability.  The resulting regression relation is  

! = 0.798×!"#!"!"# − 0.557 

where P is the probability that a phone is triggered. In the case that P>1 we set P=1 and P<0 we 
set P=0.  
 

Number 
of 

stations  

Location 
error (km) 

Origin time 
error (sec) 

Detection time after 
true origin time (sec) 

Events not detected 
(out of 1000) 

N = 100 14.02±8.92 4.41±2.80 6.59±2.87 11 

N = 200 5.29±4.42 1.77±0.96 3.93±0.99 32 

N = 300 4.36±4.79 1.42±0.77 3.53±0.80 0 

N = 400 3.56±3.18 1.27±0.66 3.48±0.69 0 

N = 500 3.50±3.86 1.26±0.73 3.51±0.63 0 

 

Table 2.4: Simulated network performance for various phone densities. N is the number of 
randomly distributed stations within a 1°x1° box (~111x111 km); we did 1000 simulations in 
each case for a M6.0 earthquake. The location errors are the differences between the true 
earthquake location and the estimated earthquake location. The origin time errors are the time 
difference between the true earthquake origin time and that estimated. The detection time is the 
time after the true earthquake time that the algorithm detects it. In all cases we show the average 
value ± standard deviation. The last column shows the number of simulations in which the 
earthquake was not detected.  

!

In 1000 simulations for each value of N, there were no false network earthquake 
detections. For N=500, 400 or 300 the performance is similar with all events detected ~3.5 sec 
after the origin time with location errors of ~4km (Table 2.4). For N=200, 32 of the 1000 events 
were not detected, and 11 were not detected for N=100 (Table 2.4). It also took longer to detect 
the events, and the locations had larger errors for N=100 and 200 illustrating the need for a dense 
distribution of smartphone detectors for this approach to work. The N=300 case corresponds to 
average distance between phones of 6.4 km. We also did 1000 simulations with only noise data 
without earthquakes, and found the algorithm did not have false alert issued. This is due to the 
requirement that >60% of active phones trigger within a 10 km radius for an earthquake to be 
declared. 
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2.6.4 Estimate warning time for Katmandu, Nepal  

For the M7.8, 25 April 2015 earthquake in Nepal we can estimate the possible warning 
time in Katmandu using our smartphone seismic network approach. The location of the epicenter 
is 28.147°N, 84.708°E, and the location of Katmandu is 27.700°N, 85.333°E, a separation of 79 
km. The S phase of the earthquake will arrive at Katmandu in 25.2 seconds based on iasp91 
model (39). Assuming there are smartphones near the location of the earthquake, and because 
our network detection algorithm makes use of phones within 10 km of the epicenter, we would 
expect an earthquake detected when the S-wave reaches 10 km from the epicenter, which is 3.9 
seconds after the origin time based on iasp91. Therefore, there could be ~20 seconds warning if 
we have a smartphone seismic network in Nepal.   
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Chapter 3  Initial Observations from MyShake Network 
 

Published as: Qingkai Kong, Richard M Allen, Louis Schreier. 2016, "MyShake: Initial 
Observations from a Global Smartphone Seismic Network", Geophysical Research Letters, 
doi:10.1002/2016GL070955 

 
3.1 Abstract  

In the first 6 months since the release of the MyShake app, there were almost 200,000 
downloads. On a typical day about 8,000 phones provide acceleration waveform data to the 
MyShake archive. The on-phone app can detect and trigger on P-waves and is capable of 
recording magnitude 2.5 and larger events. More than 200 seismic events have been recorded so 
far, including events in Chile, Argentina, Mexico, Morocco, Nepal, New Zealand, Taiwan, 
Japan, and across North America. The largest number of waveforms from a single earthquake to 
date comes from the M5.2 Borrego Springs earthquake in southern California, for which 
MyShake collected 103 useful 3-component waveforms. The network continues to grow with 
new downloads from the Google Play store every day, and expands rapidly when public interest 
in earthquakes peaks such as during an earthquake sequence. 

 
3.2 Introduction 

Since the introduction of low-cost accelerometers in consumer devices such as cars and 
computers, seismologists have been experimenting with how these sensors might contribute to 
the science of seismology and hazard reduction [Allen, 2007; Cochran et al., 2009b; Fleming et 
al., 2009; Chung et al., 2011; Clayton et al., 2011, 2015; Wu et al., 2016, 2013; Evans et al., 
2014; Wu and Lin, 2014; Wu, 2015]. While these devices have significantly lower price tags than 
traditional seismic stations, the data is lower quality and the operation of networks of low-cost 
devices is complex and not necessarily low-cost. Various types of lower-cost sensor networks 
have been explored with varying degrees of success, e.g. Allen [2012]. At the higher-quality end 
of the spectrum, the USGS Netquakes devices include a high-quality MEMS accelerometer in a 
station package that is installed by engineers in household basements and makes use of the in-
home wifi [Luetgert et al., 2009, 2010]. Other efforts have made use of USB accelerometers 
attached to personal computers or low-cost computers as with the Community Seismic Network 
[Clayton et al., 2011, 2015; Kohler et al., 2013] and Quake Catcher Network [Cochran et al., 
2009a, 2009b; Chung et al., 2011; Lawrence et al., 2014]. In all these cases hardware must be 
transported from the network operator to a station host. Both hardware and software must then be 
installed and maintained for the station and network to continue to function.  

The advantage of using smartphones is that all the hardware is already packaged in a 
device that is ubiquitous in urban environments around the world. In addition, convenient 
software distribution and maintenance platforms exist in the form of the Google Play and iTunes 
stores and the associated software development kits. The disadvantages of smartphones as 
seismic sensors are also obvious: the phones are not fixed, phone resources are not tailored for 
seismology, recording earthquakes is not typically a priority for owners, the phones experience 
all kinds of motions that have nothing to do with earthquakes, and rapid full waveform data 
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recovery may present challenges.  
Multiple efforts are underway using smartphones to detect earthquakes. Bossu et al., 

[2015, 2016]  describe the collection of quick eye-witness reports from people within a few tens 
of minutes after a felt-earthquake occurrence. Multiple efforts make use of the accelerometer. In 
some cases, a “trigger” message is generated and sent to a central server when a phone moves 
[Faulkner et al., 2011; Olson et al., 2011; Finazzi, 2016], in others phones are used in a 
dedicated way to record earthquake shaking by attaching them to walls or other structures and 
recording continuously [Naito et al., 2013]. The GPS/GNSS sensor on the phone can also be 
used to detect ground motion when the motion is sufficiently large [Minson et al., 2015]. 
MyShake attempts to combine all of these elements by turning a typical personal smartphone 
into a seismometer. The MyShake app has a filter to distinguish earthquakes from other human 
activities, it uploads earthquake triggers to a real-time server for analysis, and also uploads the 
acceleration timeseries data to a server for further research analysis [Kong et al., 2016a].  

This chapter presents initial observations from the seismic data recorded by MyShake 
since the public release in February 2016. We detail the rapid expansion to a global seismic 
network recording earthquakes across six continents, and show that smartphone sensors are 
capable of recording seismic events with magnitude 2.5 and larger. For larger earthquakes, these 
sensors can record the entire wave train starting from P wave. Previous shake-table tests have 
assessed the quality of the smartphone waveform data [Dashti et al., 2011, 2012; Reilly et al., 
2013; D’Alessandro and D’Anna, 2013; Kong et al., 2016], here we compare smartphone 
recordings in the field to nearby traditional seismic stations. Finally, we examine the potential for 
MyShake to provide seismic data in many regions where there are little or no traditional seismic 
stations such as Nepal and Ecuador, and where seismicity is a relatively new phenomenon like 
Oklahoma. 

 
3.3 MyShake Methodology Refresh 

MyShake was developed on the android platform as an application to monitor the 
accelerometers inside the smartphones. The motion of the smartphones is summarized into 3 key 
parameters that feed into an Artificial Neural Network (ANN), which has been trained to 
distinguish earthquakes from human activities. Once the ANN algorithm detects an earthquake-
like motion, the app will send a message in real-time to the server. This message, which contains 
location, time, and amplitude of the trigger, can be used for earthquake early warning or other 
types of rapid detection applications. At the same time, the app collects 3-component 
acceleration time-series data, at 25 Hz. The waveform data has a duration of 5 minutes, including 
1-minute before, and 4-minutes after the trigger. The one minute of data before the trigger 
ensures that the entire earthquake waveform is recorded even when the phone only triggers on a 
later phase of the ground motion. When the phone is connected to WIFI and power, the 
waveform recordings are uploaded to the server for further analysis. For more details about the 
app and methodology, see Kong et al., [2016]. 
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Figure 3.1: Distribution of MyShake registered users and detected earthquakes. (a) Registered 
MyShake users are shown in clusters. The number in each circle indicates the number of 
registered users in the cluster, and the color of the circle shows the order of the number of 
phones, i.e., a purple circle indicates the number of phones is of order tens of thousands, magenta 
is thousands, red is hundreds, yellow is tens, and blue for less than 10. (b) 237 Earthquakes 
recorded by MyShake users since February 12, 2016. The locations of the earthquakes are shown 
as circles, which are color-coded by the depth and whose sizes are scaled by the magnitude of the 
earthquake. Figures are generated on August 11th 2016. 

!

Since MyShake was released publicly on February 12, 2016 in the Google Play store, 
there have been almost 200,000 downloads and the app is presently installed on 36,000 phones 
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distributed across six continents (numbers from Google Play Store) within 6 months. Figure 3.1a 
shows the global distribution of all phones registered with the system. The number of phones 
contributing shows peaks in North America and some other places where earthquake hazard is 
high including Nepal and India. On a typical day between 8,000 and 10,000 phones provide data 
to the system (see Figure 3.5).  
!

3.4 Seismic data recorded by MyShake 
As of August 11th, 2016, MyShake has recorded 237 earthquakes from M2.5 to M7.8 

around the globe since released to the public (“recorded earthquakes” are defined as having at 
least one good smartphone-recorded earthquake waveform sent back to the server, and confirmed 
by a seismologist). Figure 3.1b shows the distribution of the recorded earthquakes, and includes 
regions with good seismic network coverage like the U.S., Taiwan, Japan, and Chile, and also 
areas without dense networks, such as Nepal and Ecuador. Not surprisingly, locations with 
higher density of MyShake users, like California, have a larger number of earthquake detections. 
This is due to the higher density of users closer to the epicenter. Example waveforms from 
around the world are included in Figure 3.6. Not only shallow, but also large deep earthquakes 
have been detected by MyShake. These are shown by the warmer color circles in the Figure 3.1b. 
The distribution of the magnitude and depth of the recorded earthquakes can be found in Figure 
3.7.  

The earthquake which has generated the most waveforms to date is the M5.2 earthquake 
that occurred near Borrego Springs in southern California on June 10, 2016 at 08:04:38 UTC. 
Figure 3.2a shows the status and performance of the MyShake network at the time of the event. 
The green dots show the locations of the phones that triggered on the earthquake ground motion 
using the ANN algorithm on each phone. The orange dots are the phones that were “ready”, i.e. 
they were monitoring the accelerometer to detect an earthquake, but did not trigger on this event. 
The red dots show other MyShake phones that were in communication with the network but 
were not monitoring for an earthquake at the time of the event. Not surprisingly, the percentage 
of phones that triggered on the event decreases with increasing epicentral distance as the 
amplitude of the ground motion decreases.  

The trigger times of the phones is shown in Figure 3.2b along with the expected P- and S-
wave arrival times. Most phones are triggered on the P- or S-waves, as would be expected, and it 
is encouraging to see that the ANN detection algorithm is still recognizing the earthquake out to 
distances of ~200 km.  

Figure 3.3a is the record section showing horizontal component waveform data from 
phones out to 200 km from the epicenter. The S-wave energy is clearly recorded by the 
smartphone sensors out to 200 km, and the P-wave energy is also visible on some phones at these 
distances. The P-wave signal is clearer on the vertical component record section (Figure 3.8).  

One of the key parameters for earthquake hazard studies is the Peak Ground Acceleration 
(PGA). Figure 3.3b presents a comparison of the PGA values observed by MyShake phones and 
traditional seismic stations. While the values are similar and show the same trend with epicentral 
distance, the ratio of the PGA values from the phones to that of the nearest seismic station is 2.0. 
Figure 3.9a shows a histogram of PGA difference between MyShake recordings and the closest 
traditional seismic station.  This may reflect the fact that the phones are in buildings and on 
tables rather than being free field sites as with most traditional stations. It may also reflect the 



!
!

31!

fact that most people (and their phones) live in basin locations and on sediments leading to 
amplification effects. Figure 3.9b shows a comparison of the occurrence time of the PGA value 
on MyShake recordings and traditional seismic stations showing correlation with the S-wave 
arrivals. Figure 3.4a and b show comparisons of the waveforms recorded on a smartphone and a 
nearby traditional seismic station. It shows good agreement between the waveforms (they are 
separated by 1-2km) but also shows that the PGA is greater on the phone records. For other 
components comparisons see Figure 3.10 and Figure 3.11.  

The other recorded earthquakes typically have far fewer waveforms than the Borrego 
Springs earthquakes, because of lower density of MyShake phones. The largest earthquake 
recorded to date is the M7.8 2016-04-16 Ecuador earthquake. In this event two phones triggered 
at distances of 170 and 200 km (The location of the phones and earthquake is shown in Figure 
3.12a). Figure 3.4c is the waveform record at 170 km and shows that the phone triggered on the 
P-wave arrival even at this great distance. Shortly following the S-wave arrival there is a very 
large acceleration likely due to the phone owner picking up the phone (see the whole waveform 
in Figure 3.12).  

MyShake has also recorded multiple earthquakes in Oklahoma. Figure 3.4d is one 
example from the 2016-02-13 M5.1 event recorded at a phone 130.5 km away. While the 
individual counts are clearly visible in the record, the phone still triggered on the P-wave arrival. 
Figure 3.13 shows the map of this earthquake, and the waveforms for the 3 components. 
Additional examples of P-wave recordings are shown in Figure 3.14 illustrating that P-wave 
arrivals are typically recorded out to ~100 km for M5 and larger events. Figure 3.6 shows some 
more examples of recordings from other regions.  

 
Figure 3.2: (a) Location of the M5.2 Borrego Springs earthquake and the MyShake phones at 
the time of the event. Blue star is the epicenter of the earthquake. Green dots are phones that 
triggered using the ANN algorithm. The red dots are phones that were not ready to detect 
earthquakes (likely due to human activities), and the orange dots show the phones that were 
ready to detect the earthquakes but did not. (b) MyShake trigger time vs distance. Blue dots are 
the phones’ trigger times, and the green and red curves are the estimated P and S wave travel 
time based on Model ak135 [Kennett et al., 1995].  
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Figure 3.3: (a) Record section plot for phones within 200 km. Each blue trace is one horizontal 
recording from MyShake user, and the green and red curve is the estimated P and S wave based 
on ak135. Amplitudes of the recordings are normalized in each trace. (b) PGA value 
observations with distance. PGA values from MyShake (blue) and traditional seismic stations 
(red) are shows as observed on the largest horizontal component. The seismic station data are 
from Southern California Earthquake Data Center (SCEDC).  

!

 
Figure 3.4: Example MyShake waveforms.  (a and b) Comparison of the waveforms recorded by 
MyShake and a nearby traditional seismic station (horizontal component) for the M5.2 Borrego 
Springs earthquake. (a) MyShake waveform recorded 37.2 km from the epicenter, and a 
traditional seismic station 0.88 km from the smartphone. (b) MyShake waveform recorded at 
100.9 km from the epicenter, and a traditional seismic station 1.93 km from the smartphone. See 
Figure 3.10 and Figure 3.11 for the comparison of other components. (c) M7.8 Ecuador 
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earthquake recorded at 170 km away from epicenter. (d) M5.1 Oklahoma earthquake recorded by 
a phone at 130 km from epicenter. For (c and d) the zero time is the phone trigger time. The 
vertical black, green and red lines are the origin time and predicted P- and S-wave arrival time 
respectively (estimated using ak135 model). 

!

3.5 Discussion and conclusions 
Based on the data recorded by the MyShake network during the first 6 months of 

operation, the MyShake approach of using personal smartphones has the clear potential to 
provide data useful for multiple seismological studies and hazard reduction efforts. It is 
remarkable how quickly the network has grown, primarily driven by news media and citizen 
scientist interest in the project. While technical challenges still remain, and there are 
opportunities to improve the data quality through further improvements in the on-phone app, the 
network is already collecting a substantial volume of earthquake timeseries. MyShake has 
already provided data from many earthquake-prone areas, including the US, Nepal, Chile, Japan, 
Taiwan, New Zealand.  

The MyShake data is of sufficient quality to be useful in many types of scientific and 
hazard reduction projects. The data collected shows that the full seismic waveform (P-wave, S-
wave and surface waves) can be recorded with a high signal to noise ratio at distances in excess 
of 100 km for earthquakes of magnitude 5 and larger (see examples in Figure 3.15 and Figure 
3.16). It can also provide peak ground motion information for much smaller earthquakes; a M2.5 
earthquake is the smallest detected to date. The network can provide a very dense array of 
stations across urban centers if deployed on enough phones, providing a perhaps unprecedented 
opportunity for full wavefield analysis. The network can also be used for more traditional 
seismic studies as it can be used to detect, locate, and estimate the magnitude of earthquakes in 
regions that have few or no seismic stations. Micro-zonation peak ground motion maps can also 
easily be generated from the data. These maps may also have a third dimension when arrays of 
phones also provide observations on multiple floors of high-rise buildings. More events with 
large numbers of observations are needed to fully understand the potential uses of this data.  

The rapid expansion of the network and the large number of recordings are all possible 
because we harness a ubiquitous hardware/software package: android smartphones. While the 
sensor network therefore already exists—it is estimated that there are over one billion 
worldwide—the challenge is in reaching enough sensor owners and persuading them to run 
MyShake. MyShake must therefore minimize any interference with other phone functions. This 
means that the applications must run in the background and consume as little power as possible. 
We must also provide the owner with some value. The current version of the app has a user 
interface that provides basic information about “recent” (past week) earthquakes as many other 
apps do. In addition, there is some educational material with information about past earthquakes 
including videos illustrating the intensity of shaking at the users’ location in those past 
earthquakes, and information on how to be earthquake safe. Finally, users are participating in a 
citizen science project whereby they are helping to develop and test the MyShake network. Over 
the coming months and years substantial effort will be needed to maintain and grow the number 
of users.  

One key objective is also to use the network to deliver earthquake alerts as described by 
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[Kong et al., 2016a]. This is not only the right thing to do as it will reduce the impact of 
earthquakes on MyShake participants, but it is also important for MyShake to provide this 
service in order to increase that value of the app to phone owners and thereby increase the 
number of phones running MyShake and recording earthquakes. The fact that we can clearly 
detect P-wave arrivals with MyShake will allow the application of P-wave based methodologies 
for early warning as are currently employed by traditional seismic networks running early 
warning systems [Allen et al., 2009b].  

Perhaps the most important conclusion is that MyShake has demonstrated the potential to 
collect seismic waveform data of similar density and useful quality to what we are accustomed to 
in California, Japan and the few other densely instrumented regions. The network can provide 
more data in areas with few seismic stations like Nepal, Ecuador, Haiti, etc., including regions 
with few stations because significant-risk seismicity is a new phenomenon like Oklahoma and 
Texas. 

 

 
3.6 Supplementary material 

 

 
 
Figure 3.5: The time history of the phones registered with our server (blue curve), and the 
phones actively contributing data to MyShake in a 24-hour interval (green curve). Registered 
phones are defined as the phones with MyShake installed that have sent at least one data point to 
our server. The total number of registered phones is a little lower that the total number of phones 
that have downloaded and installed the app.  Active phones are defined as the phones sent data 
back to the server within last 24 hours.  
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Figure 3.6: Waveform examples from different parts of the world recorded by MyShake. The 
earthquake location/time is shown. Time zero is the time when the phone triggered, and negative 
time corresponding the data recorded in the 1 min buffer before the trigger. The green and red 
lines are the estimated P and S arrival times using the ak135 model. The waveform from Nepal 
has about 1 second missing data, which occasionally happens in MyShake app. Continues below. 
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Continued 
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Continued 
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Figure 3.7: Magnitude and depth distribution of MyShake detected earthquakes. 
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Figure 3.8: Record section plot for the vertical component of MyShake recorded waveforms. 
The green and red lines are the estimated P- and S-arrival times estimated using ak135. 

 



!
!

40!

 
Figure 3.9: PGA comparison and observation times. (a) Histogram of PGA difference between 
MyShake recordings and the closest traditional seismic station. A positive value means that the 
PGA value observed by MyShake is larger than that from the traditional seismic station. (b) PGA 
observation times for MyShake and traditional seismic stations. The blue and red curves are the 
estimated P- and S-wave arrival using ak135.   
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Figure 3.10: Waveform comparisons of all 3 components for a smartphone 37.2 km from the 
M5.2 Borrego Springs earthquake with a traditional seismic sensor 0.88 km away. The blue 
traces are recorded by MyShake phone, and the red traces are recorded by the seismic station. 
Both the raw waveforms and filtered waveforms are shown.  
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Figure 3.11: Waveform comparisons of all 3 components for a smartphone 100.9 km from the 
M5.2 Borrego Springs earthquake with a traditional seismic sensor 1.93 km away. The blue 
traces are recorded by MyShake phone, and the red traces are recorded by the seismic station. 
Both the raw waveforms and filtered waveforms are shown.  
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Figure 3.12: Map of the M7.8 Ecuador Earthquake and one 3-component recording. (a) Location 
of the 2016-04-16 M7.8 Ecuador Earthquake. Green dots are phones that triggered using the 
ANN algorithm. The red dots are phones that were not ready to detect earthquakes (likely due to 
human activities), and the orange dots show the phones that were ready to detect the earthquakes 
but did not. (b) 3 component recordings from a user at 170.3 km from the earthquake. Time zero 
is the time when the phone triggered, and negative time corresponding the data recorded in the 1 
minute buffer before the trigger. The green and red lines are the estimated P and S arrival time 
estimated by using the ak135 model. The large amplitudes after the S wave arrival are likely 
from the user picking up the phone when he/she felt the earthquake. The ground motion recorded 
before the human activities are shown in Figure 3.4c.  
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Figure 3.13: Map of the M5.1 Oklahoma earthquake and one 3-component recording. (a) 
Location of the 2016-02-13 M5.1 Oklahoma Earthquake. Green dots are phones that triggered 
using the ANN algorithm. The red dots are phones that were not ready to detect earthquakes 
(likely due to human activities), and the orange dots show the phones that were ready to detect 
the earthquakes but did not. (b) 3 component recordings from a user at 130.5 km from the 
earthquake. Time zero is the time when the phone triggered, and negative time corresponding the 
data recorded in the 1 minute buffer before the trigger. The green and red lines are the estimated 
P and S arrival time estimated by using the ak135 model.  
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Figure 3.14: Additional examples of P-waves recordings for larger earthquakes. Time zero is the 
time when the phone triggered, and negative time corresponding the data recorded in the 1 
minute buffer before the trigger. The green and red lines are the estimated P and S arrival time 
estimated by using the ak135 model. 
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Figure 3.15: Top figure shows an example of the signal-noise-ratio (SNR) as a function of 
frequency for the horizontal component in Figure 3.10. It is computed by using the amplitude of 
the FFT of the signal divide by the mean noise spectrum amplitude. The phone is at 37.18 km 
away from the M5.2 earthquake in Southern California. The bottom figure shows time frequency 
representation of the signal, including frequency spectrum, spectrogram, and the time domain 
waveform for this recording.  
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Figure 3.16: Top figure shows an example of the signal-noise-ratio (SNR) as a function of 
frequency for the horizontal component for the 2016-05-18 07:57:05 UTC, M6.7 Ecuador 
earthquake. The phone is at 99.41 km away from the earthquake. The bottom figure shows time 
frequency representation of the signal, including frequency spectrum, spectrogram, and the time 
domain waveform for this recording.  
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Chapter 4 Characterize the earthquakes 
 

 

4.1 Abstract  
MyShake harnesses private/personal smartphones to build a global seismic network. It 

uses the accelerometers embedded in all smartphones to record ground motions induced by 
earthquakes, returning recorded waveforms to a central repository for analysis and research. A 
demonstration of the power of citizen science, MyShake expanded to 6 continents within days of 
being launched, and has recorded about 800 earthquakes in the first 2 years of operation. The 
data recorded by MyShake phones has the potential to be used in scientific applications, thereby 
complimenting current seismic networks. In this paper: (1) we evaluate the capabilities of 
smartphone sensors to detect earthquakes by analyzing the earthquake waveforms they have 
collected.  (2) We determine the maximum epicentral distance at which MyShake phones can 
detect earthquakes as a function of magnitude.  (3) We then determine the effectiveness of the 
MyShake network in estimating the location, origin time, and magnitude of earthquakes 
(“events”) which have both P- and S- wave signals above noise levels, and also have more than 5 
waveforms for that event.  This allows for locations with a mean error of 8.4 km relative to 
USGS locations for 18 events.  For events with only S-wave arrivals available, we were able to 
estimate the locations as well, although the errors in the locations were larger (with mean error of 
14 km) for 41 events.  Magnitude estimates can also be determined with mean errors of 0.0 units 
standard deviation 0.3 units from the USGS catalog, after we corrected the amplitude.  Our 
findings indicate that while MyShake cannot compete with the detection capabilities of 
traditional seismic networks, these preliminary results suggest that MyShake could provide basic 
earthquake catalog information in regions that currently have no traditional networks.   With an 
expanding MyShake network, we expect the event detection capabilities to improve and provide 
useful data on seismicity and hazards.   

 
4.2 Introduction 

After more than a century of development, geophysical instrumentation has become more 
and more diversified. High quality seismic instruments [Havskov and Alguacil, 2015], geodetic 
instruments [Larson, 2009], and interferometric synthetic aperture radar [Bürgmann et al., 2000] 
enable new discoveries and understanding of earthquake physics and active tectonics. In 
addition, the emergence of various new sensing technologies provides new ways of detecting 
earthquakes, collecting additional data to learn about the earthquake process, and potentially, 
making important contributions to seismology [Allen, 2012a].  

“Did You Feel It,” a USGS earthquake survey platform, collects macroseismic intensity 
data from Internet users which is then used to generate intensity maps immediately following 
earthquakes [Survey and Dewey, 2005; Atkinson and Wald, 2007; Wald et al., 2011]. Twitter 
messages from users who felt an earthquake can be used to detect and characterize events in real-
time [Earle, 2010; Earle et al., 2010; Sakaki et al., 2010]. By monitoring traffic to its website, 
the European-Mediterranean Seismological Centre can detect and assess the effect of an 
earthquake within a few minutes [Bossu et al., 2011]. Low-cost MEMS sensors inside computers 
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or placed in specially installed stand-alone boxes in homes or offices can be used to monitor and 
study earthquakes [Cochran et al., 2009b; Chung et al., 2011; Clayton et al., 2011, 2015; Hsieh 
et al., 2014; Wu, 2015; Wu et al., 2016]. Distributed acoustic sensing (DAS) transforms 
telecommunication fiber-optic cables into seismic arrays, enabling meter-scale recording over 
kilometers of linear fiber length [Dou et al., 2017; Lindsey et al., 2017].     

As more and more people have access to, and a need for smartphones, these small 
devices comprise an ever-more-widespread and dense network around the globe. Seismologists 
have learned that smartphones can be used in different ways to detect earthquakes. For example, 
by monitoring when users turn on a specific earthquake application on their phone, earthquakes 
can be recognized within minutes as clusters of application activity [Bossu et al., 2015, 2018]. 
The MEMS sensors inside the smartphones that record acceleration have also been shown to be 
capable of detecting earthquakes [Faulkner et al., 2011, 2014, Dashti et al., 2012, 2014; Finazzi, 
2016; Kong et al., 2016a].  

MyShake was launched by UC Berkeley in 2016 as a citizen science project. It aims to 
build a global smartphone seismic network that can be used for research, ultimately contributing 
to a reduction in earthquake hazards.  In the first 2 years, just under 300,000 people downloaded 
the MyShake app globally.  Now, two years after the launch, there are 20,000 phones with the 
app installed, and on any given day about 8,000 phones contribute data. The core of MyShake is 
an artificial neural network, built into the on-phone app, that is trained to recognize earthquake-
like movement and distinguish it from everyday human movements [Kong et al., 2015, 2016a]. 
Whenever the phone detects the earthquake-like movement, a 5-minute segment of 3-component 
acceleration data is stored on the phone and then uploaded to the MyShake server to be analyzed.  
The time series starts 1-minute before the trigger detected, and continues for 4-minutes post-
trigger. Kong et al (2016a) show examples of the waveform data recorded by MyShake, 
illustrating the potential to use them in different seismological applications. The MyShake data 
can also potentially be used to monitor the health state of buildings (Kong et al. 2018).  

In this paper, we will try to understand the smartphone seismic network by using the data 
we recorded from daily users. Comparing this data with that of the earthquake catalog, we could 
see different detection capabilities between the traditional seismic network and this new 
smartphone network. We will attempt to construct the relationship of expected distance of 
smartphone network recordings based on magnitude of earthquake. We will also show how, 
when there are enough recordings, the waveforms recorded by MyShake phones can be used to 
estimate basic earthquake parameters, including location, origin time and magnitude of the 
earthquake. This illustrates how the MyShake network could be used to monitor earthquake 
activity in regions of dense populations that currently have no seismic network. Even given 
various errors because of the multitude of sources, the results from the MyShake smartphone 
seismic network look promising.  
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Figure 4.1: (a) Earthquakes with one or more useful waveform recordings from MyShake 
phones in the first two years of operation (Feb 12, 2016 to Feb 12, 2018). The size of the circle 
and color represent magnitude and depth of the earthquake (both magnitudes and locations are 
from USGS ComCat catalog). The small inset figure shows the density of the MyShake users 
with warmer color showing more users. (b) The heatmap of the number of unique MyShake 
phones within 3-degree bins. (c) Distribution of earthquake magnitudes for which one or more 
useful waveforms were recorded.by MyShake (blue triangles) and the catalog events (red circle). 
The number of events is measured in 0.5 magnitude bins. Figure 4.11 are showing the difference 
of the number of events recorded by MyShake and the USGS catalog on the map.  

 
4.3 Data used 

The dataset used in this paper comes from global MyShake users. As described in detail 
in Kong et al. 2016b, the MyShake application has two levels of triggering algorithm, that is 
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STA/LTA (short-term average and long-term average) [Allen, 1978] and the ANN algorithm to 
determine whether the movement of the phone is due to earthquake or human activities. Once the 
movements satisfy the ANN algorithm and are determined to be earthquake-like motion, the 
phone will record a 5-minute segment of 3-component accelerations that will be uploaded to the 
server later when the phone is connected to WIFI and power. An earthquake waveform database 
is created from the uploaded waveforms by scanning for “candidate events” registered in 
publically available USGS (United States Geological Survey) ComCat catalogs.  For each 
“candidate event” from the USGS catalog, we search within a pre-defined spatiotemporal 
window for possible triggers in our smartphone waveforms database. Waveforms that meet the 
requirements of the above spatiotemporal window are reviewed by a seismologist to filter out 
those caused by human activities, and to remove the so-called “incomplete waveforms,” which 
are missing blocks of data. Waveforms that pass all the checks are put into the earthquake 
database.  In the first two years, 757 earthquakes have had at least one recording from a 
MyShake user. 

 

 

Figure 4.2: Distance of waveform recordings recorded by MyShake as a function of magnitude. 
The blue dots are waveforms recorded by MyShake, and the red curve is the fitted line to the 
furthest recordings from MyShake database. We only search M2.5 and above events that are 
corresponding to the USGS catalog event using a space and time window. The red curve is the 
analytic representation for estimate the furthest waveforms we expect to see for different 
magnitudes. The inset figure on the top left is the cumulative distribution of the signal to noise 
ratio (SNR) for all the earthquake recordings measured on one horizontal component (Y 
component). 

!

Figure 4.1a shows the location of earthquakes for which one or more seismic waveforms 
(confirmed by a seismologist) was uploaded from MyShake phones.  The corresponding unique 
MyShake user distributions are shown in Figure 4.1b. We can see that with more phones, more 
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events have been recorded. Figure 4.1c shows the number of events recorded by MyShake that 
are within 0.5 magnitude of USGS ComCat catalog events. For almost all the magnitude bins, 
MyShake records fewer events than the traditional seismic network, but for magnitude 4.5 and 
above, MyShake follows a slightly different slope line, which indicates that MyShake has better 
detection capability for larger magnitude earthquakes. At smaller than M4.5, we see that the gap 
between MyShake and the catalog increases as magnitude decreases.  

Waveforms uploaded to our server are 3-component acceleration waveforms, in 5-minute 
segments (1-min before the earthquake and 4-min after), sampled at about 25 Hz. Figure 4.2 
shows epicentral distances of the earthquake waveforms recorded by MyShake users for 
earthquakes of various magnitudes. Obviously, as the magnitude of the earthquakes increases, 
the distance from which smartphones can record useful waveforms also increases. To understand 
at what range we expect MyShake users to record earthquake waveforms, we fit an analytic 
expression to the furthest recordings in each magnitude bin using least-square regression. For 
earthquakes of M2.5 to M8.0, we derived the following relationship between the magnitude of 
the earthquake and the distance in kilometers from which we expect to see recordings from 
current MyShake users: 

 
Dist. =122.860e0.275mag − 229.348  

The “mag” and “Dist” are magnitude and epicentral distance for the earthquake. The 
curve of the above equation is shown as the red curve in Figure 4.2. The small inset figure in 
Figure 4.2 shows the cumulative distribution of the signal to noise ratio (SNR) for all the 
earthquake waveforms from MyShake users. The SNR is calculated on the Y-component by 
selecting a 2-second signal from the PGA value (±1 sec around it), and a 2-second noise from the 
beginning of the waveform (we have 1 min noise before the trigger). Within the 2-second 
window for the signal and noise, we calculate the square of the root mean square (RMS) 
amplitude and take the ratio. The 25, 50, and 75 percentile of the SNR are 6.1, 14.6 and 50.9 for 
the MyShake recorded earthquake waveforms.  

Figure 4.3 shows six selected waveforms recorded around the globe by MyShake users. 
We focused this selection on locations where we don’t have dense seismic networks; additional 
waveforms are available in the supplementary material. The X and Y components of the 
acceleration records are parallel to the short and long direction of the phone-screen plane, while 
the Z component is the direction perpendicular to the phone screen. On most of these waveforms, 
we can see clear P- and S-waves. Because we also record 1-min of data before the phone 
triggers, even when the phone triggers on the S phase we still have the P-wave recorded if it is 
above the noise.  
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Figure 4.3: 3-component acceleration waveforms from MyShake detections globally. The black 
line is the event origin time from USGS catalog, green and red lines are estimated P and S arrival 
time from model ak135 [Kennett et al., 1995]. Time 0 on each panel is the time when the phone 
thinks it detects an earthquake.  

 
4.4 Timing and location accuracy of smartphone records 

Since the location and time service on the smartphones will contain errors, we try to 
estimate and adjust for errors in the data we have collected. In this session, we report the location 
error and timing error from our experiment and the data we collected from the MyShake users.  

MyShake requests GPS locations from participating phones, which is available only in 
cases where users have agreed to share that information via their GPS location service. In order 
to get a better understanding of typical “location errors” for smartphone GPS systems, we did a 
test by placing 20 smartphones near a window in a 9-story building on the 9th floor for 12 hours, 
and sampled the GPS location at about 25 Hz. This is the ideal case: the phones are stationary, 
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and are placed near a window, inside a building. In Figure 4.12, we plot the mean location error 
and the standard deviation from the phone measurements to a reference point near the phone, 
with latitude and longitude obtained from Google maps. Overall, we could see the errors on the 
phones are very small, with standard deviation all within 0.4 m.  There was only one phone (id 6) 
that had a mean distance error of 557 m with standard deviation 0.001 m, for unknown reasons. 
Typically smartphone GPS locations are accurate to within a 4.9 m radius under open sky, 
however, their accuracy worsens near buildings, bridges, and trees (from Official U.S. 
government information about the Global Positioning System).  

As the smartphone clock could drift over time, a Network Time Protocol (NTP) in 
MyShake corrects the internal clock of the phones on an hourly basis. To facilitate an assessment 
of the accuracy of phone timing, we retained the data and statistics returned by each phone as 
part of the NTP. To represent the overall trend, we sampled and analyzed 24 random day-long 
'snapshots' from all MyShake users, for a twelve-month span beginning in August of 2016 These 
24 days encompassed ~6.2 million usable records, each of which represents a successful NTP 
query by a phone running MyShake. The statistics collected included the round trip time for the 
phone's NTP query to reach and return from the server, as well as the offset in milliseconds of 
the server time relative to that of the phone's internal time when the query was initiated. The total 
actual offset ('true offset') was calculated as the recorded offset minus the one-way time lag—
approximated as half the round trip time—required for the query to reach the server. The round 
trip time is typically an order of magnitude smaller than the recorded offset (over 60% the 
reported values are < .01 seconds). Figure 4.13 shows the boxplot for the corrected offsets from 
this dataset, which represents the distribution of the phone timing uncertainty within 1 hour. For 
current MyShake users, 75% of the timing offsets are within 1.6 s, and 85% of the timing offsets 
are within 4.9 s. The median offset is 0.8 s, but at 95 percentile, the offsets go up to about 88 s.  

From the location and timing error estimation, we could see that the errors from the 
locations are usually small, and the timing errors are mostly small within 2s, but could be up to 
tens of seconds on some phones. These waveforms with very large timing offsets could be 
identified on the server, since when the phone triggers it sends a trigger message with the time on 
the phone to the server. By comparing this trigger message with the time it arrives, a simple filter 
could be set up to remove these large offsets triggers and waveforms.  
 

4.5 Location and origin time estimation 
One goal for MyShake is to detect earthquake and characterize the earthquake parameter 

to obtain reasonable estimates of the location, origin time, and magnitude of detected 
earthquakes. We selected earthquakes that have more than 5 waveforms, which are a total of 69 
earthquakes globally from February 12, 2016 to February 12, 2018, as shown in Figure 4.4. We 
manually selected all of the P phases and S phases for all 69 events. Due to signal to noise ratio, 
not all the waveforms will have a P phase or S phase picked out. Therefore, we ended up with 18 
events with more than 5 waveforms, and with both P and S wave arrivals selected, and 41 events 
with only S wave arrivals selected.  
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Figure 4.4: The location of the 69 selected events with more than 5 useful waveforms for anlysis. 
Size of the circle represents the magnitude and color coded by the depth of the event.  

 

If both P and S phase selections are available, to estimate the location of the earthquake, 
we could do a grid-search based on the time difference between the P and S waves. We minimize 
the squared error between the observed P, S difference and the estimated ones on each 
waveform. The search grid extends ±2 degrees in latitude and longitude around the centroid of 
all the available phones and we search on a grid with 0.2-degree step. After finding the best 
solution, we then start a finer grid around this solution by extending ±0.2 degrees in latitude and 
longitude with a 0.01-degree step. The depths of all these events are currently fixed at 8 km.  For 
the travel time estimates, we used a P-velocity of 6.10 km/s and an S-velocity of 3.55 km/s and 
we assumed straight rays.  We call this “ElarmS approach,” and it has been shown to be a 
reasonable approach and approximation for real-time detection systems in California [Allen et 
al., 2009a; Kuyuk et al., 2014]. (We also tested using the ak135 velocity model and got very 
similar results. Therefore, for simplicity and faster computation, we choose this simple velocity 
model for the current dataset.) The result of the grid search is shown in Figure 4.5a. We can see 
that the mean epicentral distance error for these events is 8.4 km with a standard deviation of 7.6 
km. A comparison of these event locations, estimated by using only the S phase selections, is 
shown in Figure 4.5b (the method is described in the next two paragraphs), which has epicentral 
distance error 14.0 km with 19.0 km standard deviation. With both P and S phase selections, we 
could have better results than with just S phase selections.   
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Figure 4.5: (a) The distribution of the epicentral distance errors from the estimation using the 
time difference between P and S phases. The red line is showing the mean value.  There are total 
of 18 events. (b) The distribution of the corresponding 18 events epicentral distance errors from 
the estimation using S phase pickings alone. The red line is showing the mean value. 

 
Our objective is to use MyShake to detect and locate as many earthquakes as possible.  

For this reason, we are assessing the ability of using just the S-wave to locate events.  The 
relatively high noise floor of the MEMS (Micro Electro Mechanical Systems) sensor built into 
smartphones [Kong et al., 2016a] means that the P-wave arrival is not always visible on the 
waveforms, especially for small earthquakes or phones at large distances. However, the S-wave 
arrivals are clear on the majority of waveforms recorded by MyShake users, as described above, 
where we have 41 events having more than 5 waveforms and a defined S phase.  
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Figure 4.6: (a) Estimated origin time error vs the epicentral distance error using only the S phase 
pickings. The size of the circle is showing the number of waveforms used in the calculation and 
the color is showing the station coverages that estimated from the azimuth of the two furthest 
stations and check whether it is in the range of 90 degree, 180 degree, 270 degree, and 360 
degree as an indicator of the station coverage. The mean epicentral distance error is 17.8 km, 
median error 6.1 km and with a standard deviation 22.8 km. The mean origin time residual is 0.1 
s (Estimate origin time – Catalog origin time), median error is 1.0 s, and standard deviation 6.9 s. 
(b) The histogram of the epicentral distance error from only the best coveraged events which 
have the phones’ azimuthal range larger than 270 degree. The red line is the mean value 5.5 km, 
the median is 2.7 km and standard deviation is 7.2 km. 

 

We next use the grid-search method to estimate the latitude, longitude and origin time of 
the earthquake by minimizing the squared error of the estimated and the observed S-wave arrival 
time on each waveform. We currently fixed the depth at 8 km in the grid-search. For the travel 
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time estimates, we again use both the ak135 velocity model and the simplified ElarmS approach 
and get very similar results, therefore, we only report the one using the ElarmS approach. The 
search grid extends ±2 degrees in latitude and longitude around the centroid of all the available 
stations and we search on a grid with 0.2-degree step. The origin time search starts from the 
earliest station trigger time to 60 s before it in 1 sec steps. Once we find the best solution from 
this grid-search, we will have a finer grid to search based on the best solution from the coarse 
grid-search. The finer grid extends ±0.2 degrees from the coarse solution with a step at 0.01-
degree, while the origin time search extends ±10 s with 1 s as step.  

 

 

Figure 4.7: Location estimation example from a well-recorded event - M4.4 event in Berkeley 
on 2018-01-04, 10:39:37.730 (UTC). The magenta dots are the location of the waveforms used 
in the analysis. The red star is the USGS catalog location and the blue star is the estimation 
location. The error in the epicentral distance is 1.5 km and with a 2 s origin time error. The grid-
search is starting from the whole region showing in the map and finds the best solution at a 
coarse grid. The grid dots showing here are the finer grids in the analysis that color-coded by the 
sum of the square of the difference between the observed S phase time and the estimated S phase. 

 
The results of the final finer grid-search locations and origin times are shown in Figure 

4.6a. The mean epicentral distance error is 17.8 km, median error 6.1 km and with a standard 
deviation 22.8 km. The mean origin time residual is 0.1 s (Estimate origin time – Catalog origin 
time), median error is 1.0 s, and standard deviation 6.9 s. The circles in the figure are sized by 
the number of waveforms used in the calculation and colored by the phone coverage. In general, 
the events with good azimuthal coverage of the phones and the more waveforms tend to have 
better location and origin time estimation. All the events except 1 with an error more than 40 km 
have only very limited station coverage and the event occur outside of the network.  
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Therefore, we only pick out the events with good phone azimuthal coverage – above 270 

degree (the ones showing as blue dots) and compute the location errors, which is shown in 
Figure 4.6b. The mean distance error is 5.5 km, the median is 2.7 km and standard deviation is 
7.2 km, which are significantly better compare with the events without good coverage.  

 
Figure 4.8: (a) Location estimation example from M4.6 event in Peru on 2017-02-01, 
11:38:30.100 (UTC). The magenta dots are the location of the waveforms used in the analysis. 
The red star is the USGS catalog location and the blue star is the estimation location from the 
finer grid search using only S phase pickings. The epicentral distance error is 64.8 km between 
the estimated and catalog location. The grid-search is starting from the whole region showing in 
the map and finds the best solution at a coarse grid. The grid dots showing here are the finer grid 
in the analysis that color-coded by the sum of the square of the difference between the observed 
S phase time and the estimated S phase (b) Location estimation for the same events but using 
both P and S phase pickings. The location error is 23.2 km. 
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Figure 4.7 shows an example of our estimation at Berkeley, CA, USA where we have 

good phone coverage. With the finer grid-search, the estimated location error and origin time 
error are 1.5 km and 2 s from the corresponding catalog counterparts. Figure 4.8a shows an 
example of our estimation at a place where there is not a good traditional seismic network – 
Peru. We only picked 8 S-wave phases from the MyShake users (shown as the magenta dots in 
the figure), the estimated location and origin time errors are 64.8 km and -14 s from the 
corresponding catalog counterparts.  Given that this event was outside of the phone network, and 
the azimuthal coverage of the MyShake phones is only 12.6 degrees, this is a reasonable 
location. As for this event, we can pick both P and S wave arrivals for more than 5 phones, 
therefore, we can minimize the relative time between P and S wave. The location will be 
improved because we have more information to constrain the results. Figure 4.8b shows the 
results of the location estimation error significantly improved from 64.8 km to 23.2 km after 
taking into account the P phase selections as well. Therefore, for earthquakes where we can 
extract both P and S wave arrivals, our estimation could be better than when using S waves 
alone.  
 

4.6 Magnitude estimation 

The magnitude is another parameter to characterize the earthquake. It is important to 
obtain a reasonable magnitude of an earthquake from MyShake recorded data. Currently, we 
have many events from California as we have the densest concentration of MyShake users here. 
Therefore, we apply the relationship of estimating the ML magnitude in California [Bakun and 
Joyner, 1984] as our starting point to estimate the magnitude. 

With more data to be recorded in the future from various locations, we can fine-tune 
relationships for different regions around the globe. For estimating the ML magnitude, we use 
the “estimate magnitude” function from ObsPy [Beyreuther et al., 2010; Megies et al., 2011], 
which estimates local magnitude from the distance, poles and zeros, the peak to peak amplitude, 
and the time span from peak to peak.  

In Figure 4.9a, the estimated magnitudes using the estimated locations from above are 
plotted against the USGS catalog magnitudes. Most of the magnitudes estimations are within 1 
magnitude unit difference, with the mean difference 0.3 and standard deviation 0.4 (estimated – 
catalog magnitude). Only 4 events have a magnitude estimation difference slightly larger than 1 
unit, and all of them except 1 has relatively fewer waveforms. Another observation is that most 
of the magnitude estimations are higher than the USGS catalog magnitudes. We can see the 
histogram in the inset is skewed to the left. We discussed in the initial observations [Kong et al., 
2016b] that MyShake recordings usually have larger amplitude than the nearby seismic stations, 
which is likely due to the fact that the phones are not coupled to the ground, but instead placed 
on the desk or places in the buildings. Therefore, these larger magnitude estimations are likely 
due to this amplitude difference.  
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Figure 4.9: (a) Estimated magnitudes versus USGS catalog magnitudes using the estimated 
locations. The red line is 1 to 1 magnitude, and the two dashed lines are 1 magnitude unit off 
from the 1 to 1 line. Each dot is estimated using different number of waveforms illustrated by the 
color. The inset plot is histogram of the residual magnitude (estimated magnitude – catalog 
magnitude). The mean of the residual is 0.3, and standard deviation is 0.4. The line in the 
histogram is the mean value. (b) Estimated magnitudes versus USGS catalog magnitudes using 
the estimated locations after waveform amplitude correction by dividing the amplitude by a 
factor of 1.6 that found by best matching the USGS catalog magnitude. The mean of the residual 
is 0.1, and standard deviation is 0.4. 

!

We could potentially correct this higher amplitude by scaling down the amplitude of the 
waveforms we recorded, estimating the best scaling factor to ensure that the MyShake data is as 
close as possible to USGS magnitudes. We did a grid-search with a factor from 1.0 to 3.0, and 
divided all the waveform amplitudes by using this factor and found that the factor 1.6 was the 
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best scaling factor. Figure 4.9b shows the estimation of the magnitudes with the scaled 
waveforms.  We can see the results now change to mean 0.1 with a standard deviation 0.4 unit of 
the magnitude. Therefore, MyShake recordings are about 1.6 times larger on average in this 
dataset, and we could continue to calibrate the MyShake amplitude with more data recorded in 
the future.  

 
Figure 4.10: (a) Estimated magnitudes versus USGS catalog magnitudes using the USGS 
catalog locations. The red line is 1 to 1 magnitude, and the two dashed lines are 1 magnitude unit 
off from the 1 to 1 line. Each dot is estimated using different number of waveforms illustrated by 
the color. The inset plot is histogram of the residual magnitude (estimated magnitude – catalog 
magnitude). The mean of the residual is 0.2, and standard deviation is 0.3. The line in the 
histogram is the mean value. (b) Estimated magnitudes versus USGS catalog magnitudes using 
the USGS catalog locations after waveform amplitude correction by dividing the amplitude by a 
factor of 1.6 that found by best matching the USGS catalog magnitude. The mean of the residual 
is 0.0, and standard deviation is 0.3. 
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In order to see the difference of the magnitude estimation using the estimated locations 
and the USGS locations, we also estimated magnitudes using USGS catalog locations. Figure 
4.10a shows estimated magnitudes using USGS catalog locations as the basis of calculation. It 
has a very similar distribution as that in Figure 4.9a using the estimated locations, with a slightly 
smaller mean of the residual as 0.2, and the standard deviation as 0.3. Figure 4.10b shows the 
estimation of the magnitude after the amplitude correction by dividing 1.6. The similar 
distribution illustrates that even using our own location estimation, with potential errors, we 
could still get a reasonable estimation of magnitude. 
 

4.7 Discussion 

The MyShake project is still an ongoing project, with many challenges that need to be 
addressed. However, the approach taken to build this global seismic network has been proved to 
be valid: within a short time, we have covered the whole globe, and the data collected shows 
great potential for routine seismological applications. There are still many things need to be 
explored to understand this type of network. In this discussion, we have described the 
difficulties, and the future improvements we think are required for creating a better global 
smartphone seismic network.  

Firstly, on the operational side, many elements of this process currently still involve 
human interactions. For example, in our analysis, a seismologist needs to review the waveforms 
to confirm that they are useful, the S wave arrivals are selected manually, and so on. To build a 
fully functioning global seismic network, all these steps need to be automated. The smartphone 
seismic network differs from the traditional seismic network in many aspects. To name a few, 
the configuration of the smartphone network is constantly changing, and we have more detection 
capabilities at night than during the day (as more phones are steady during night); the triggering 
algorithm may be triggered on the P wave, S wave, or any part of the seismic motion; the 
instrumentation is highly heterogeneous in terms of the sensors inside the phones and different 
arrangements of the phone itself; and there is the ongoing question of how to increase the 
number of participants and keep the users using MyShake, etc. All of these complexities need 
careful treatments and new algorithms for automation. We are currently working on this issue 
and gaining better understanding of this new type of network.  

Secondly, on the analysis side, there are a few limitations as regards using the MyShake 
data shown in this paper. As mentioned above, the qualities of the waveforms are different, even 
with two different phones at the same location; there is the question of how to weight the quality 
of the waveforms, and conducting quality control is not an easy problem. In addition, as regards 
events with many phones at further distances, we have to live with the fact that many of them 
only have the S wave arrivals available at the site, even though if we had P phases we could do a 
better job. Therefore, developing a robust phase selection algorithm for this noisy dataset is 
important. In addition, phones may be located in different types of buildings, on different floors, 
in places where the amplifications from the site response, from the response of the buildings, 
from the response of the desks, etc., will require us to use many phones in the region to 
aggregate the results in an average sense, and to calibrate the amplitude of MyShake recordings 
against the traditional seismic stations. Also, currently, the sources of location error estimates 
need more analysis, which can only be conducted once we have more detected events. 
Estimating location uncertainties from MyShake and quantifying each type of error will be 
useful for us in providing better location estimations.   
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Thirdly, for MyShake, due to the nature of the citizen science, there is a well-known 
limitation for building the seismic network. This seismic network is dynamically changing all the 
time, since the users are moving all the time. Additionally, MyShake users will tend to be 
clustered in large cities where populations are concentrated. Therefore, earthquakes in rural areas 
or far away from population centers can be missed. During the day, MyShake users are moving 
around, which can reduce the detection capability of the network. A side effect of this is that 
arthquakes occurring far away from cities may be detected via waveforms reported from several 
cities nearby, which can cause station coverage to be highly irregular, i.e. the earthquakes are 
outside of our seismic network. For this type of earthquake, usually the location estimations are 
not good, even on the traditional seismic network. A feasible solution to the above limitations is 
to combine information from the nearby traditional seismic stations or some permanent low cost 
sensors (Cochran et al. 2009; Clayton et al. 2011; Wu et al. 2016, Nof et al. 2017), which 
requires standardization of the data format and building a platform to conduct the data fusion.  
 

4.8 Conclusion 

In this paper, we show some basic understandings gleaned from the data we have 
collected through the MyShake network. We compared the magnitude distribution of MyShake 
detections with those from catalog events, which provide us with a good comparison of the 
capabilities of this smartphone seismic network. Additionally, from the waveforms we recorded 
from global users, we derived a relationship that could estimate for a certain magnitude, to what 
distance we expect to see recordings from the smartphone users.  Comparing location errors and 
timing errors from our experiment and database helped us to evaluate the errors associated with 
these types of devices.  

In addition, our analysis shows how to use the waveforms recorded by consumer 
smartphones to conduct routine seismological applications, including estimating the location, 
origin time and magnitude of an earthquake. From the estimated earthquake parameters, we 
could see the potential of the MyShake network to contribute to the current seismology 
community by providing more data to define these earthquakes. Especially in places where there 
are few traditional seismic stations, but a large population, MyShake could potentially provide 
valuable data to help understand earthquakes and tectonic settings. There are of course many 
challenges and limitations to address and overcome in the future, but a network such as MyShake 
can enhance our ability to better understand the earthquakes occurring globally, as well as to 
engage the public in locations where these earthquake occur.  
 

4.9 Supplementary Figures 
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Figure 4.11: (a) The ratio of number of MyShake recorded events over that from USGS catalog 
within 3-degree bins. It includes all events above M2.5. The colors are showing the ratio. (b) 
Same as (a), but it shows all the events above M5.0 using a 5-degree bin.   
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Figure 4.12: Location errors from the smartphone GPS experiments. The error bars are showing 
the standard deviations from all the measurements for each phone.  

 

 

Figure 4.13: Timing error for the phones within 1 hour estimated by the offsets from the NPT 
synchronization. The red line is showing the median of the data and the box showing the 25 and 
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75 percentile, while the two bars at the top and bottom are whiskers which is 1.5 times of the 
Interquartile Range (IQR) from the box.  

 

The following figures are selected 3-component acceleration waveforms from MyShake 
detections globally. The black line is the event origin time from USGS catalog, green and red 
lines are estimated P and S arrival time from model ak135. Time 0 on each panel is the time 
when the phone thinks it detects an earthquake.    
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4.10 Data and Resources 
USGS catalog can be accessed at: https://earthquake.usgs.gov/fdsnws/event/1/. MyShake 

data are currently archived at Berkeley Seismology Laboratory and are constrained by the 
privacy policy of MyShake (see http://myshake.berkeley.edu/privacy-policy/index.html). 
Information about access to all the other data for research purposes contact rallen@berkeley.edu.   
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Chapter 5 The potential of using smartphones for structural health 
monitoring 

 

Published as: Qingkai Kong, Richard Allen, Julian Bunn, Monica Kohler, Thomas Heaton. 
"Structural health monitoring of buildings using crowdsourced smartphones", Seismological 
Research Letters, doi:10.1785/0220170111 

 
5.1 Abstract  

This chapter presents the results of a shaker test of the Millikan Library in Pasadena, 
California using sensors inside smartphones to demonstrate their potential usage as a way to 
monitor health states of buildings. This approach to structural health monitoring could allow 
many more commercial and residential buildings to be monitored because it removes the cost 
prohibitive nature of traditional seismic arrays, and the complexity of deploying the instruments. 
Recordings from the smartphones during the shaking show high correlation with those from a 
reference sensor in the building, illustrating that the phones can capture the shaking even when 
not fully coupled to the floor. The fundamental translational frequencies for the east-west and 
north-south directions and the torsional frequencies of the building can be extracted from single 
phone recordings. As we compare the displacement derived from the phone recording by double 
integration to that from the reference sensor, both phase and amplitude match well. Signal-to-
noise is improved further by stacking records from multiple phones. These test results 
demonstrate the ability to extract the fundamental translational and torsional frequencies, and 
absolute displacements from upper levels of buildings shaken by small, local earthquakes. This 
work builds on the ongoing MyShake project – a global smartphone seismic network.  

 
5.2 Introduction 

Structures such as buildings, bridges, roads, and dams are an essential part of modern 
society. Even though they are designed to be used in different conditions, extreme unpredictable 
events, i.e., earthquakes, hurricanes, as well as deterioration due to aging, can cause serious 
concerns about the safety and functionality of the structures. Therefore, there is a need to 
monitor the health states of the structures throughout their lifetime.  

Structural Health Monitoring (SHM) is a process that involves, first, observing a 
structural or mechanical system over time using periodically spaced measurements; second, 
extracting the damage-sensitive features from these measurements; and, third, statistically 
analyzing these features to determine the current state of system health [Farrar and Worden, 
2007]. Different types of sensors are deployed in the structures either permanently or temporarily 
to extract measurements such as acceleration, velocity, displacement, deformation, stress, 
temperature etc. [Moreno-Gomez et al., 2017]. SHM is expensive both in terms of the hardware 
and the human effort; it is implemented in only a few large-scale structures, and must currently 
be deployed and maintained by practicing structural engineering professionals. Therefore, it is 
virtually impossible to conduct continuous, long-term monitoring of the state of health of most 
buildings due to the cost of both hardware and human efforts.  



!
!

74!

 
The emergence of wireless sensors, low-cost MEMS (Micro Electro Mechanical 

Systems) sensors and sensor networks has started to provide lower cost solutions to replace 
traditional tethered monitoring systems [Xu et al., 2004; Paek et al., 2005; Lynch and Loh, 2006; 
Kim et al., 2007; Kohler et al., 2013; Yin et al., 2016]. But to use them in a nationwide effort or 
even at the city level would require a large-scale effort for engineers to deploy and maintain 
these systems.  In addition, many building owners are reluctant to install sensors in their 
buildings as they are fearful of legal issues or simply choose not to prioritize their building 
performance problems. 

MyShake aims to build a global smartphone seismic network by utilizing the power of 
crowdsourcing. It turns an everyday hand-held device into a portable seismometer by monitoring 
data from the accelerometer in a smartphone to detect earthquakes [Kong et al., 2015, 2016a]. 
After release of the MyShake app to the public on Feb 12th 2016, it has been downloaded by 
more than 270,000 users globally.  Today, about 10,000 active phones contribute data to the 
system each day for monitoring earthquakes. The results from the collected data are promising 
[Kong et al., 2016b]; MyShake can record M5 earthquakes up to about 200 km from the 
smartphone, and it can record small magnitude earthquakes (M2.5) at closer distances.  

The quality of the data recorded by MyShake, and the ease of building and scaling up 
with this network, led us to investigate whether we might expand the use of MyShake data to the 
area of SHM. If private smartphone sensors can be used as a mechanism to collect data on the 
health state of buildings, then smartphones could overcome the substantial challenge of 
deploying the sensors manually in buildings, and provide a way to monitor the buildings at very 
low cost of hardware and maintenance. Since the smartphones may also be located throughout a 
building, this approach could provide a dense in-building network to monitor the structural 
health state of the building floor by floor.  

Multiple groups have studied the feasibility of using a low-cost sensor network to 
conduct SHM [Cochran et al., 2009b; Clayton et al., 2011, 2015, Kohler et al., 2013, 2016; Yin 
et al., 2016]. These studies use specially designed low-cost sensor boxes that can be deployed in 
a building either by professional engineers or community volunteers. These sensors cost tens of 
dollars to a few hundred dollars each, but the more significant cost is associated with the fact that 
someone must manually deploy the sensors in buildings.  This makes it challenging to scale up 
these networks due to the human labor, permitting, and permission efforts required.  

In our study, smartphones provide an opportunity to replace this manual deployment 
process with a straightforward software download and installation onto the user’s phone. In a 
typical smartphone, a built-in 3-axis accelerometer measures the movement of the phone in 3 
dimensions (one vertical and two orthogonal horizontal components if the phone is oriented with 
one side parallel to the ground). Previous shake table tests of the accelerometers inside 
smartphones have shown that typical high-end accelerometers (used in iPhones and high-end 
Android phones) are capable of recording motion in the frequency range 0.2 – 20 Hz and 
amplitude range 10 – 2000 mg (g is gravitational acceleration) [D’Alessandro and D’Anna, 
2013; Reilly et al., 2013; Dashti et al., 2014; Kong et al., 2016a]. Engineers have explored the 
use of smartphone sensors to monitor the health states of large-scale structures such as bridges. 
Yu et al., 2015 conducted a series of tests to show that using smartphones to carry out health 
monitoring of bridges is feasible. [Ozer et al., 2015; Feng et al., 2016] show that by using 
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smartphones attached to a pedestrian bridge, they can infer modal parameters from the 
recordings of the phones and layout of a structure for a crowdsourcing platform.  

Here we explore the use of private smartphones to monitor building health. This is the 
first step in investigating whether the existing global MyShake network of smartphones as well 
as similar crowd-sourcing smartphone efforts [Faulkner et al., 2014; Finazzi, 2016] could be 
harnessed for this purpose, in addition to monitoring earthquake activity. We show results from a 
shaker test of the Millikan Library building on the Caltech campus in which we placed the 
phones on the floor of the 9th (top level) floor.  We determine if we can extract the fundamental 
frequencies of the building, and estimate the displacement of the floor due to motions similar to 
that from a small, nearby earthquake. Personal smartphones are of course in motion with their 
owners for portions of the day as the owner walks, commutes etc.  Our test is similar to the 
results expected for stationary phones resting on stands at night, or when placed on a desk or left 
in a bag on the floor. The results presented here illustrate the potential of using MyShake-
enabled personal smartphones to record building shaking resulting from nearby earthquakes and 
using that data to extract the building characteristics. We also present a method to determine the 
orientation of the smartphone if its orientation is not known, but prior information about the 
building characteristics is available.  

 

 

Figure 5.1: Background of the test. (A) The Millikan Library building viewed from the northeast. 
The two dark colored panels on the near-side of the building comprise the east shear wall 
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(modified from [Bradford et al., 2004]). The inset figure (modified from [Clinton et al., 2006]) 
shows the plan of the building, where the star is the location of the test phones and the dot is the 
location of the Episensor station CI MIK.  (B) The shaker located on the roof, used to generate 
oscillation of the building.  The two exposed buckets contain lead masses which spin in opposite 
directions to generate a sinusoidal horizontal force. (C) The 25 smartphones used in the test, all 
placed on the floor of the 9th (top level) floor. The duration of the shaking in the North-South 
direction is 1:29 pm to 3:02 pm, and in the East-West direction is 3:38 pm to 5:03 pm, local time.  

 
5.3 Background of Millikan Library 

The shaker test was conducted at the Millikan Library building on the campus of the 
California Institute of Technology (Caltech) (Figure 5.1a). Millikan Library is a nine-story, 
reinforced concrete building, approximately 44 m tall, and 21 m by 23 m in plan. The building 
has concrete moment frames in both the east-west (E-W) and north-south (N-S) directions. Shear 
walls on the east and west sides of the building provide most of the stiffness in the N-S direction, 
and shear walls in the central core provide added stiffness in both directions [Bradford et al., 
2004].  

The Millikan Library building is instrumented with a permanent, dense array of uni-axial 
strong-motion sensors (Kinemetrics FBA-11s in 1 g and 2 g) with 36 channels throughout the 
building. On each floor there are 3 horizontal accelerometers; in addition, 3 vertical 
accelerometers are installed in the basement. A 3-axis Episensor is installed on the 9th floor with 
a 24-bit data logger [Bradford et al., 2004] (see the location in Figure 5.1a). In addition, the 
building is instrumented with 10 Community Seismic Network (CSN) accelerometers distributed 
on per floor [Kohler et al., 2013]. Previous studies have shown changes in the modal parameters 
of the building through time as a result of large-amplitude ground shaking [Clinton et al., 2006]. 
These studies illustrate the importance of understanding and documenting the dynamic properties 
of different classes of structures (i.e. steel-frame versus reinforced-concrete buildings) within the 
linear response regime before nonlinear response might occur.  

 
5.4 Method 

A Kinemetrics model VG-1 synchronized vibration generator (”shaker”) was installed on 
the roof of Millikan Library in 1972 (Figure 5.1b). The shaker has two buckets that rotate 
elliptically in opposite directions around a center spindle. These buckets can be loaded with 
different configurations of lead weights, and depending on the alignment of the buckets, the 
shaker can apply a sinusoidal force in any horizontal direction [Bradford et al., 2004].  

In our tests, we applied forces to the building first in the N-S direction, and then in the E-
W direction at discrete frequencies. The applied frequencies of oscillation spanned 0.2 to 2.45 
Hz and were varied gradually over the course of approximately 2.5 hours. The rate of change of 
frequency varied over the course of the sweep. The sweep progressed at 0.05-Hz intervals with 
frequencies held constant for 60 s most of the time, but near the modal frequencies, the constant-
frequency interval was extended to 600 s. The extended run-time was used for the building’s 
fundamental east-west mode frequency of 1.2 Hz, the fundamental north-south mode frequency 
of 1.7 Hz, and the fundamental torsional mode frequency of 2.4 Hz. Additional details of the test 
runs are provided in the supplementary material (Table 5.1).  
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Brand/Model N Acc. Type Vendor 
Max Range 

 (m/s^2) 
Resolution 

 (m/s^2) 

Samsung S3 1 MPL InvenSense 19.6 3.83E-02 

Samsung S4* 2 K330 STMicroelectronics 19.6 5.99E-04 

Samsung S5* 1 MPU6500 InvenSense 19.6 5.99E-04 

Sumsung S6* 1 MPU6500 InvenSense 19.6 5.99E-04 

Sumsung Note2 2  LSM330DLC STMicroelectronics  19.6 9.58E-03 

Samsung Note4 1 LCM20610  InvenSense  39.2   1.20E-03 

Samsung Note5* 1 K6DS3TR STMicroelectronics 39.2 1.20E-03 

Samsung-Exhibit-II 1 BMA222 Bosch 19.6 1.53E-01 

Nexus 5 2 MPU6515 InvenSense 39.2 1.20E-03 

LG-G2* 1 LGE STMicroelectronics 39.2 1.20E-03 

LG-G-Stylo 1 LGE Bosch 156.9 9.58E-03 

LG-Leon* 1  LGE  Bosch 156.9 9.58E-03 

LG-G4 1  LGE Bosch  156.9  9.58E-03 

HTC-One-M9 1 N/A HTC Corp 39.2 1.00E-02 

MotoX 2 LIS3DH STMicroelectronics 156.9 4.79E-03 

HuaWei Prism 3 BMA150 Bosch 39.2 1.53E-01 

Sony Xperia 2  MPL  InvenSense 19.6  3.83E-02 

HTC Amaze 1 Panasonic Panasonic 19.6 1.20E-02 

 

Table 5.1: Smartphones used in the test. Brand and model of the phones are shown, N is the 
number phones used in the test. Acc. Type is the model of the accelerometer. Max Range and 
Resolution show the range of the amplitude and the smallest measurable value that the sensor 
can measure. The phones flagged with * indicate that the phone is used in the 7-phone stack. The 
resolution values are from the sensor specifications. 
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Smartphones were placed in the northwest corner of the 9th floor (top level) of Millikan 
Library (Figure 5.1a, c) with their x-axis approximately aligned in the E-W direction. Note that 
for this test the phones are placed at the most advantageous location, as the displacements on the 
corner of the 9th floor will be greater than at many other locations in the structure. Twenty-five 
different models of Android phones were tested (see Table 5.1 for details) as the accelerometers 
in Android phones are of various qualities [Kong et al., 2016a]. The phones have flat response in 
the frequency range 0.1 to 12.5 Hz, and we use a sampling rate of 25 samples per second for 
these tests. The resolution listed in Table 1 is from the phone specifications and shows the best 
case when the phone is insulated from environmental vibrations. 

 

 

Figure 5.2: Waveform comparisons. Waveform comparisons between the Episensor (CI MIK) 
and a Samsung Galaxy S4 phone for the two horizontal components.  (A) North-south 
component. (B) East-west component. The red time series is from the single phone recording 
(Samsung Galaxy S4), and the blue is from the MIK recording. Frequency labels indicate when 
the test run is at or near the fundamental or torsional frequencies of the building. The amplitude 
and phase alignment is generally good; see Figure 5.8 which expands the time window of 4820 
to 4850s.  
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5.5 Results 

Acceleration waveforms were recorded by the smartphones and compared to waveforms 
from a 3-component Episensor which is permanently installed on the 9th floor, to validate the 
smartphone motion.  The Episensor has a 24-bit Q980 data logger, and its data are continuously 
telemetered to the Southern California Seismic Network (SCSN) as station MIK.  We will refer 
to it as station CI MIK in the following figures. Comparison of the acceleration waveforms 
between the Episensor and one of the Samsung Galaxy S4 phones is shown in Figure 5.2. The 
recording from the phone generally has a larger amplitude during peak shaking and a higher 
noise level which is above the lower amplitude shaking compared with the recording from CI 
MIK. Between times 2000 to 8000 s the shaking was applied in the N-S direction, and from 9000 
to 15,000 s it was applied in the E-W direction (Figure 5.2). During each time interval, shaking 
was applied at a range of frequencies including the fundamental translational mode in that 
direction and the fundamental torsional mode which excites motion in both directions due to the 
rotational nature of torsion about a vertical axis. It is clear that the recordings from the phone and 
the Episensor from N-S and E-W shaking show good correlation, though the amplitude of the 
phone signal is greater than the Episensor. A shorter time window of the comparison is shown in 
Figure 5.8 illustrating the phase matching. The signals during the torsional motion (shaking 
frequency around 2.35 Hz), however, do not correlate in the same way, due to the different 
locations of the sensors on the 9th floor. At the location of the Episensor, the torsional motion is 
mainly in the N-S direction; the smartphones located at the northwest corner of the building, 
however, experienced motion in both the N-S and E-W directions, causing the amplitude 
difference. This can be seen in the time range from 13000 s to 14000 s (Figure 5.2).  

 

Figure 5.3: Spectrum comparisons in the N-S direction where the fundamental mode of the 
building is at 1.7 Hz and the fundamental torsion mode is at 2.35 Hz. Blue is spectrum for the 
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Episensor (CI MIK), red is spectrum for a single phone (Samsung Galaxy S4) and the green 
spectrum is from the 7-phone stack. The modal peaks are clearly visible in all cases. 

 
Just one smartphone records building response to the shaking well, especially at the 

fundamental frequencies and torsional frequency. From the spectrum (Figure 5.3), we clearly see 
the peak at the fundamental frequency and torsional frequency, and can thus extract them from a 
single phone. Since we have 25 smartphones at the same location we can also stack them to 
improve the signal-to-noise ratio. This assumes that noise recorded by different phones is truly 
random, and stacking across different phones will cancel the noise but not the coherent signals 
caused by the building’s response to shaking.  

 

Figure 5.4: Waveform comparisons for two horizontal components between the stack of 7 phone 
recordings and the Episensor (CI MIK). (A) N-S component. (B) E-W component. The red time 
series is from the stacked recordings from 7 phones, and the blue is from the MIK recording. 
Frequency labels indicate when the test run is at or near the fundamental or torsional frequencies 
of the building. 
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Since the phones are not synchronized with each other (each phone has its own network 
time), we use cross-correlation to find the best alignment of the recordings from different 
phones. We calculated the cross-correlation of the entire N-S component time series between 
different phone recordings and a base phone recording by shifting them within 120 s windows to 
find the maximum correlation coefficient. In order to get the best stack, we select the phones 
with different thresholds of the correlation coefficients. Correlation coefficient thresholds of 0.6, 
0.5, 0.4, 0.3, resulted in stacks with 7, 10, 14, and 16 phones, respectively. The quality of the 
waveforms recorded are also variable due to the different accelerometers in the phones; thus, 
stacking more phones does not always improve the resulting waveform. By comparing the 
waveforms and spectra (more on this below), we conclude that stacking 7 phones gives us the 
best results (the correlation coefficient is larger than 0.6). These 7 phones are flagged with a star 
in Table 1, and we see that most of them have the best accelerometers based on specification 
resolution. Figure 5.4 shows the comparison of the waveforms between the Episensor (CI MIK) 
and the stack of 7 phones. We see that the stack amplitudes are a better match to those observed 
on CI MIK. The noise levels during low-amplitude shaking are lower, and the observed 
amplitudes during peak shaking are more similar.  

The main goal of our shaker test is to extract the fundamental frequencies of the building 
from the phones and to compare them for accuracy with those of the Episensor. To calculate the 
spectrum of the building’s shaking, we found that a multi-taper spectrum analysis obtains better 
results than a direct FFT. In the multi-taper analysis, the time series data to be analyzed is 
multiplied by a series of orthogonal tapers, and then Fourier transformed and squared to obtain 
the estimate of the power spectrum density (PSD). The orthogonal tapers will generate many 
independent estimates of the PSD instead of only one, and an average of them will suppress the 
random variance in the estimation [Prieto et al., 2009].  We select the N-S and E-W component 
individually, and apply the multi-taper analysis. Figure 5.3 shows the amplitude spectrum for the 
recordings of the N-S component from the Episensor, a single phone, and the stacked phone time 
series. Overall, we observe that the single phone spectrum has a noise level around 10e-5 and the 
stacked phone time series has a noise level of about 10e-6, which make the peaks around 1.25 to 
1.5 Hz observable. However, the fundamental frequency in the N-S direction is clearly visible in 
all cases at 1.7 Hz. The fundamental torsional mode frequency at 2.35 Hz is also distinguishable 
in all cases.  The E-W component spectrum produces similar results and the peak of the 
fundamental frequency is clearly visible; see Figure 5.9 in the supplementary material for the 
spectrum comparison for the E-W component.  

Peak and relative displacement amplitudes at a given floor of the building are also 
important to the civil engineering community to quantify localized deformation of the building 
(e.g., inter-story drift). In Figure 5.5, we show comparisons of the displacement time series 
between the Episensor, a single phone, and stacked phone recordings. Overall, the result from 7 
stacked phone time series shows better agreement with the Episensor in both phase and 
amplitude. These are obtained through double integration of the acceleration recordings by first 
removing the mean and trend in the record, and then applying a 0.5 Hz high-pass filter.  They 
show good agreement with a peak displacement of about 0.05 cm for this frequency range. 
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Figure 5.5: Displacement time series comparisons (high-pass filtered at 0.5 Hz). These 
recordings are extracted from the period of largest-amplitude response to the shaking that 
occurred in the N-S direction, between 4820 and 4850 s (See Figure 5.2a for reference). (A) The 
Episensor (CI MIK) compared with a single phone (Samsung Galaxy S4). (B) The Episensor 
compared with the 7-phone stack. See Figure 5.8 for the accelerations in the same time range. 

!

5.6 Estimation of the orientation of the phones 
Sometimes we have the reverse problem in which we know the building’s fundamental 

frequency but do not know the phone’s orientation. If a building’s modal frequencies and 
corresponding mode shapes are already known, then it is possible to deduce the orientation of an 
arbitrarily-rotated smart phone that is recording a known mode: rotate the phone until the 
resulting filtered motion is aligned with the mode shape. Analogous methods have been applied 
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to find the orientation of three-component seismic sensors in various conditions [Duennebier et 
al., 1987; Ekstrom and Busby, 2008; Stachnik et al., 2012]. In our case, application of this 
method will only work for the translational model shapes, and when the phone produces a high 
signal-to-noise ratio recording, most likely from the free oscillations of the building following 
earthquake shaking. Also, the elevation of the phone is a factor as phones on the higher floors 
will likely have higher signal-to-noise ratio recordings.  

 

Figure 5.6: Horizontal component recordings after application of a narrow-band filter 1.69 to 
1.71 Hz. Energy can be seen on both components. The upper panel is the component oriented 
roughly N-S, and bottom panel is the component oriented roughly E-W. The phone used here is 
the same Samsung Galaxy S4 as the one shown in Figure 5.2.  

Since we know that the N-S fundamental frequency of the Millikan Library building is 
1.7 Hz, we should be able to estimate which component is N-S by applying a narrowband filter 
to the phone’s two horizontal component records. Figure 5.6 shows that the component shown in 
the top panel is likely close to the N-S direction; this is before any corrective rotation is applied. 
We observe that there is a small signal on the bottom panel component as well, likely due to the 
fact that the phone is not perfectly oriented N-S during the tests.  

To find the most accurate orientation of the phone during the tests, we can rotate the two 
horizontal components until an angle is found that minimizes the signal on one component. 
Figure 5.7 shows the result of rotating the phone 1.5 degrees; the energy on the E-W component 
is minimized. Of course, this is easy for our test, since we shake the building in one direction at a 
time. During an earthquake, the later parts of the motion that are dominated by free vibrations 
should be usable in the same way to orient the phones. This will allow more meaningful analysis 
of earlier parts of the record.  
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Figure 5.7: Result of rotating the horizontal components of the narrow-band filtered signal 
(Figure 5.6) anticlockwise 1.5 degrees in order to minimize energy on one component. The 
upper panel shows the axis aligned to N-S after having rotated the components, the lower panel 
is the axis aligned to E-W.  

Although a building’s mode may not already be known, in some cases it is possible to 
estimate modal properties from the known geometry of the building.  In particular, many 
buildings are approximately rectangular and the orientation of the building’s normal modes are 
approximately aligned with the natural axes of the building. If structural design information is 
available to determine the most compliant direction of building deformation, then one can 
assume that the lowest-frequency normal mode of a building is also aligned with this direction. 
Even if the axis of the lowest frequency mode is unknown, it is often safe to assume that it is one 
of the two natural axes of the building. Knowing which of the two axes is the correct one can be 
determined by observing the building’s response with just one record of approximately-known 
orientation (it is most beneficial to have at least one sensor with known orientation).  

In some cases, tall buildings may have additional modes (overtones) at frequencies that 
are odd-integer multiples of the fundamental mode frequency [Lee et al., 2003]. The orientations 
of higher modes can also be used to orient the phones.  Finally, there are cases in which shear 
waves travel vertically up a building (typical wave velocity of 150 m/s). In general, the 
polarization of vertically propagating shear waves is approximately constant over the building 
height.  If the polarization of the incident wave is known, then the orientation of the phones can 
be determined by finding the appropriate rotation to reproduce the incident ground motion.  
Examples of how this is applied can be found in [Cheng et al., 2015].  

 
5.7 Discussion and Conclusions 

Structural health monitoring is important for keeping track of the changes in the state of 
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buildings, not only of large-scale structures, but also of everyday residential buildings for the 
purpose of damage detection. Harnessing the smartphones of individual private users could open 
the door to monitoring many more structures including residential buildings in the future.  

When compared with the current wireless sensor network monitoring systems, using 
consumer smartphones as a way to conduct structural health monitoring has the following 
benefits: 

• Ability to monitor millions of buildings within short periods of time. 

• Almost no cost for hardware and installation labor. 

• Low cost for long-term maintenance. 

• Complementary data to the current monitoring system. 
 

The first point is the most important benefit of using smartphones; millions of buildings 
could be monitored with just the download of an application. This will greatly improve our 
current monitoring ability at the city scale or even nation scale to reduce the earthquake risks. 
Also, a smartphone monitoring system is complementary to existing structural health monitoring 
systems by providing more data in the same building for validation and to fill in spatial sampling 
gaps. 

This chapter is only a starting point for the concept of crowdsourcing structural health 
monitoring. There are still many challenges, including the following:  

• Determining accurate location, height (floor), and orientation of the phone is one of the 
biggest technical issues to solve. There are several commercial solutions combining 
different sensors in the phones to get an estimate, but the results need to be tested. 
Another potential solution is to ask users to input their location and floor number after the 
earthquake into a questionnaire.  

• This test placed the phones in an ideal location, i.e. on the top floor at the corner of the 
building with the phones lying on the floor. In reality, only a few phones may satisfy 
these requirements. Testing of phones on different floors, in different locations, and on 
different surfaces (desk, couch etc.) is also necessary.  

• Tests in different building types will also provide more insight into the types of 
information we can extract from the phone records for different buildings.  

• Making use of ambient vibrations of the building and nearby small earthquakes to extract 
a building’s characteristic parameters will expand the capability of SHM from the 
phones. More work is needed to determine if ambient noise recordings could be 
recovered from phones and the lower limits of earthquake shaking that can provide useful 
recordings.  

 

These challenges illustrate that much research is needed before we can have a fully 
operational crowdsourced structural health monitoring system. However, the initial tests shown 
here illustrate the promise of using smartphones for structural health monitoring of buildings, 
and provide the basis for this future development of MyShake functionality.   
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5.8 Supplementary material 
 

 

 

 

Figure 5.8: Acceleration record comparison for a single phone and the MIK station for time 
range 4820 s to 4850s (see Figure 5.2a for reference). The red recording is from a single phone 
(Samsung Galaxy S4) and the blue recording is from the MIK station. The phase alignment is 
excellent; the peak amplitudes show some deviation from the MIK recording. Also note that the 
phones and the MIK station are not in the same location; see the main text for their locations.  
The color version of this figure is available only in the electronic edition. 
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Figure 5.9: Spectrum comparisons for the E-W direction where the fundamental mode of the 
building is at 1.15 Hz and the fundamental torsion mode is at 2.35 Hz. Blue is spectrum for the 
Episensor (CI MIK), red is spectrum for a single phone (Samsung Galaxy S4) and the green 
spectrum is for the 7-phone stack. The color version of this figure is available only in the 
electronic edition. 
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Figure 5.10: A partial screenshot of the Millikan Library Cloudlet Display during the shaker 
tests. The display shows (from left to right, along the top): the instantaneous displacement of 
each sensor in the E-W direction (in 0.1 mm units); the displacements in the N-S direction; inter-
story drift (a dimensionless measure of the difference in displacements between floors divided by 
floor height); a table of maximum displacements observed on each floor over the previous 10 
seconds, 1 hour, and 1 day, for each measured axis.  The lower left plot shows the displacement 
as a function of time for the sensor on the 9th floor. Note the sinusoidal oscillations in the N-S 
curve in the lower plot (red points) compared to the near-zero displacements in the E-W curve 
(blue points). The color version of this figure is available only in the electronic edition. 

5.8.1 Structural health monitoring infrastructure 

We have developed Cloud-based computational infrastructure that supports structural 
health monitoring by real-time analysis of acceleration data streaming from phone-based or more 
traditional sensors. The purpose of the infrastructure is to record and report detection signals and 
continuous observed measurements, during and immediately following shaking events such as 
earthquakes. Examples of this include rapid determination of peak ground motion measurements 
following earthquakes or explosions, maps and videos of ground and building shaking on small 
spatial scales, and monitoring the state-of-health of buildings for structural damage and global 
structural response.  
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A feature of the infrastructure is the provision of a local “Cloudlet,” in practice a small, 

network-attached computer running specialized software, that is located in a building under 
study; it handles calculations of building properties appropriate for, and configured to, the 
building. The software running on the Cloudlet processor works with the pre-defined set of 
sensors which are located in the building. By scheduled and frequent contact with those sensors, 
the software obtains the latest sensor measurements and continuously re-computes the following 
quantities in real time: a) visual displays for on-site situational awareness parameters (websites, 
cell phone apps), b) location-specific frequency domain products, c) location-specific time 
domain products, and d) location-specific parameters. The Cloudlet processor also offers a set of 
HTTP endpoints, typically accessed over secure SSL connections. These endpoints deliver real-
time Web browser displays that can be used by end-users such as building owners or managers to 
monitor the quantities listed above in pseudo or near real time.  

We deployed a Cloudlet dedicated to the Millikan Library during the shaker tests 
described in this paper. In addition to the smartphone sensors and Episensors, ten MEMS 
accelerometers are permanently installed in the Millikan Library building, one per floor. Figure 
5.10 shows part of a screen snapshot from the Cloudlet’s browser display at a moment in time 
when the shaker was causing the building to be shaken along its N-S axis. It illustrates several 
calculated building products including current status of the building, and a table of the maximum 
displacements observed over the last 10 sec, 1 hour and 1 day. The Cloudlet hardware and 
software can be adopted by any building whose state of health is being monitoring by networked 
accelerometers such as cell phones. 
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Chapter 6 Conclusion  
 

MyShake as a unique crowdsourcing project achieved much within its first 2 years. With 
the trial and errors, now we have much better understanding of the system, it can now handle the 
heavy load without any problems. But building the whole system to start to collect data is just the 
very beginning of the journey, exploring how we could utilize the data and making contributions 
to the earthquake community and society are our final goals. I hope the chapters in this thesis 
could provide you an overview of our approach to build this network - a combination of earth 
science with the data science under the umbrella of crowdsourcing. Even though this approach 
has its own limitations, it shows very promising results in helping us to understand earthquake 
physics as well as reduce the risk of the damages. The conclusion here will give you a summary 
of each chapter and the future work to make improvement of this system.  

In Chapter 2 the procedures we took to prove the concept of the idea is presented. The 
noise floor tests help us understand the sensitivity of the sensors inside the phones – they could 
record earthquakes larger than M5 within 10 km, but with the newer sensors, we start to see the 
M3.5 shakings within certain frequency range. From these tests, it is clear that the sensors inside 
the phones could be used to record earthquakes even though the noise level is higher than the 
high-quality sensors. Besides, the shake table tests we did with the phones put freely on top it 
show the promising results that the phone could reproduce the shaking very well even they are 
not bolted on the table. In addition, it also shows the phones start to have clipped amplitude if 
they start to have relative motion to the shake table, but the frequency content can still preserved 
very well. After these tests, we started to build our prototype system and use it to collect the 
human activity data from the students from Berkeley and friends. 4 months data was collected to 
understand the human behaviors with the phones. We carefully investigated the difference 
between the shaking of human activities and that from the earthquakes (from shake table tests 
and the simulated data), and came up the Artificial Neural Network (ANN) approach to 
distinguish the earthquakes activities from the human activities. As we need to do this in real-
time to detect the earthquakes, we only used 2-sec window to extract the features from both 
types of the shakings. We found out a combination of amplitude features with the frequency 
features could do a decent job by distinguishing the shakings. The trained ANN algorithm is 
implemented in the application that could be downloaded by the users. Once the ANN algorithm 
on the phone detected something like earthquake, it will send a short message data including 
time, location, and amplitude back to the server for further confirm for earthquakes. At the same 
time, it stores 5-min 3-component time series data and upload it to the server when it is 
connected to WIFI and power. A network detection algorithm running on the server checks if it 
is a real earthquake by aggregating the trigger data from multiple smartphones in a region. The 
whole system was implemented based on the design in this chapter and released to the public to 
start to collect data. There are many aspects could be improved on the design of the system, for 
example, currently, the ANN algorithm is designed using the same training data, and everyone 
download the application will use the same model. A better way to do this is to train the 
personalized model for each phone, so that the human specific behavior and the hardware on the 
phone will be all in the consideration of the better model. Two ways could be used to address 
this problem, first we collect all the human data on the server, and train a model for each phone 
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only use the human data from this phone and push the model back to the phone after training. 
But this centralized approach need to collect human data to the server and have the potential of 
privacy issues. An alternative is to use distributed training to train the model on the phone itself 
that eliminates the need to collect the data to the server. After training the model individually on 
the phone, we could collect the difference of the trained model to a reference model or some 
other summarized parameters to learn the specific of this particular phone. This better model 
trained for each phone will reduce the false detection right now that due to the underrepresented 
behavior of the students. On the server level, the current network detection algorithm is designed 
for small or medium network, and it will become really inefficient when we have millions of 
smartphones reporting the earthquake at the same time. There is a need to design new and 
efficient algorithms to cluster the triggers in time and space to address this problem.  

After we released the application to the public, chapter 3 summaries the initial 
observations we obtained from this global smartphone seismic network. The trigger time of the 
phones during the earthquakes correlated with the P and S waves, the waveform comparisons of 
MyShake users and a nearby seismic station, the P-wave portion recorded on the waveforms, and 
so on all show the great promise of this global smartphone seismic network. With the excitement 
of collecting this great dataset, many potential fundamental earth science applications need to be 
tested and validated on the data. Some of the potentials of using the MyShake data are (1) 
detecting more earthquakes and make the event catalog more complete, especially at places 
where there are not so many seismic stations. The improve of the completeness of the catalog 
will enable us understand better of the tectonic environment, and the local fault systems; (2) this 
dense network data could potentially help us to study the earthquake source using some of the 
current existing methods like focal mechanisms, finite source modeling, back-projection and so 
on; (3) with a dense distributed seismic network, we are likely to collect more near-field data to 
help us understand and constrain the near-field deformation. It will also be really useful for the 
earthquake engineering community as well; (4) the high-resolution microzonation map is a 
possible product for our MyShake network, it will be extremely important to reduce the 
earthquake hazards with this finer-scale shaking map. There are many other applications with 
this network, but we should realize the difference of this smartphone seismic network with the 
traditional seismic network. First of all, this smartphone network is a dynamic network in space. 
Most people live in clusters in terms of space, therefore, our smartphone seismic network is 
high-biased towards these clusters. Besides, the configuration of the network is constantly 
moving and changing, due to the movements of the phone owners with time. This will be so 
different than the fixed seismic network we used decades in seismology. How could we take into 
account of this dynamically changing both in time and space into our detection of the 
earthquakes? To understand the nature of the network is extremely important for the further 
seismological applications we mentioned above. In addition, the recording instruments is not 
bolted on the ground but instead placed anywhere, desk, backpack, in the buildings, and so on, 
we need to calibrate the amplitudes recorded on the phones as well. All these challenges provide 
us an opportunity to combine data science with the earth science to address the problems. 

Chapter 4 starts to introduce our exploration of using the data we collected to conduct 
seismological applications. Especially, the earthquakes characteristics, i.e. origin time, location 
and magnitude are very important in terms of evaluate the earthquakes. Therefore this chapter 
reports our ability to use the waveforms recorded on the smartphones to estimate these 
parameters. Using the grid-search approach, we could get a reasonable origin time and the 
location of the earthquakes. The magnitude of the earthquake could be estimated using the 
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standard local magnitude estimation used in California. But could we design better algorithms 
using machine learning to efficiently find out these parameters? Especially if we have a large and 
dense network, I can envision the machine learning based approach will give us faster solutions. 
Besides, the waveforms recorded by the smartphones might be clipped if the shaking is too large, 
could we recover the clipped signal by using the machine learning approaches? More 
interestingly, since the smartphones has the timing error associated with the data we recorded, 
but whether we could use the magic of large number of phones to cancel out the errors from 
multiple resources, and get a better estimation of the origin time and location. The same goes to 
the amplitudes of the waveforms we used to estimate the magnitude of the earthquake, could this 
large number of waveforms from a dense smartphones help reduce the magnitude estimation 
error? All these need to be tested when we have a large number of users and a dense network. 
Computationally, everything right now is processed on the cloud server using a centralized 
approach. We could image of the traffic from all the phones try to communicate with this central 
server when we have millions of smartphones in a region. With the emergent of the edge 
computing [Shi and Dustdar, 2016; Satyanarayanan, 2017], distributing the communication and 
computing to the edge nodes in our global smartphone seismic network could potentially address 
this problem.  

Not only MyShake data will be useful to the seismological applications, but also beyond 
seismology as well. Chapter 5 discusses the potential of using MyShake data in structural health 
monitoring by doing a shaker test to shake a 9-story building. The data collected the smartphones 
shows that we could extract the fundamental frequencies of the buildings in different directions. 
This opens the door to use MyShake data to monitor the health state of the buildings before and 
after the earthquakes, and identify the potential damage of the buildings during the earthquakes. 
The advantage of using the smartphones to monitor the health state of the buildings is the ease of 
deploying these sensors. There is no need to deploy the sensors inside the buildings, since people 
are living in buildings. Therefore, we could easily set up a large-scale sensor network for the city 
level or beyond. But as discussed in this chapter, we still have many technical challenges to solve 
before we can enable the monitoring. Such as finding the accurate location for the phones in the 
buildings, especially which floor are important; the building types and heights will have a large 
effect on extracting the fundamental frequencies, we need to build a database for the 
observations; using ambient noise will enable more applications for the monitoring, but it also a 
much harder problem as the phones have much higher noise levels. Also, MyShake data could be 
used in other applications as well. For example the waveform recording showing in chapter 3 
where we could see the human responses after the large earthquake shaking passed the location 
can be used to infer the post-earthquake response. The information will be important to 
understand how the users react to the earthquake and to design better practices to reduce injury. 
In addition, the location data of the users before and after the earthquakes could be used to show 
the population distribution and by overlaying the shaking intensity map, we could use the 
information to guide the rescue team after the earthquake. But all these different applications 
would benefit from a large number of users using MyShake.  

MyShake is a project illustrates the power of combining data science with earth science, 
and there are still many outstanding questions in both fields that will interest data scientists as 
well as seismologists. We believe these chapters in this thesis just layout the beginning of this 
project, and in the next few years, we hope using the data driven approach from data science 
with the domain science knowledge, MyShake will continue to grow to provide important dataset 
and useful applications in various directions. One important part is missing in this thesis is the 
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earthquake early warning applications we talked briefly in chapter 2. Currently we are working 
on this functionality to issue the warnings to the public, and we hope this function will be soon 
available to the world.  
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