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Diversification of the vertebrate limb: sequencing the events

Aditya Saxena1, Kimberly L. Cooper1,†

1Division of Biological Sciences, Section of Cell and Developmental Biology, University of 
California San Diego, La Jolla, California, USA.

Abstract

Naturalists leading up to the early 20th century were captivated by the diversity of limb form 

and function and described its development in a variety of species. The advent of discoveries 

in genetics followed by molecular biology led to focused efforts in few ‘model’ species, 

namely mouse and chicken, to understand conserved mechanisms of limb axis specification and 

development of the musculoskeletal system. ‘Non-traditional’ species largely fell by the wayside 

until their recent resurgence into the spotlight with advances in next-generation sequencing 

technologies (NGS). In this review, we focus on how the use of NGS has provided insights into 

the development, loss, and diversification of amniote limbs. Coupled with advances in chromatin 

interrogation techniques and functional tests in vivo, NGS is opening possibilities to understand 

the genetic mechanisms that govern the remarkable radiation of vertebrate limb form and function.

Keywords

limb development; evolution of development; next generation sequencing; limb loss; cis­
regulatory evolution

Introduction

Limbs of different shapes and proportions enabled amniotes to invade a variety of 

ecological niches. The diversification of limb form allowed kangaroos and jerboas to 

hop, humans to walk upright, and bats and birds to fly. Limb loss and reduction, on 

the other hand, has allowed squamates to slither beneath the ground or under water. For 

decades, chicken and mouse limbs have served as a crucial experimental paradigm to 

uncover conserved developmental programs that control pattern formation in all three axes, 

cellular differentiation, and proximal-distal growth of the amniote limb [1,2]. However, 

modifications to these conserved developmental programs that could explain divergent 

limb forms in nature have remained less understood until recently. Rapid advances in 

next-generation sequencing (NGS)[3] and comparative genomic approaches[4,5], including 

reduced costs, are now bridging this gap to enable comparative assessments of gene 

expression and chromatin architecture in the developing limbs of a variety of species[6–17]. 

We focus on a few of these examples to illustrate the promise that NGS holds to advance our 

current understanding of the evolutionary diversification of the amniote limb.
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Shared developmental origins of genitalia and limbs during amniote 

evolution

The limbs and genital tubercle, the precursor to the external genitalia/phallus, are among 

the most apparent outgrowths in the developing mouse embryo (Figure 1a). The genital 

tubercle and cloaca, a signaling center that controls genital tubercle development and that 

is retained as a separately functional structure in many other species, lie posterior to the 

limb buds in the caudal regional of the embryo [7]. Despite their non-overlapping embryonic 

locations, there is a functional overlap of key transcription factors and signaling pathways 

that determine the pattern of both the genital tubercle and hindlimbs [18,19]. Collectively, 

these observations have hinted that the evolutionary origin of external genitalia in terrestrial 

vertebrates may be somehow developmentally linked to limb bud pattern and outgrowth.

In contrast to the single medial phallus in mouse, the external male genitalia in squamates 

are a pair of outgrowths, called the hemi-penis. Also, unlike mouse, the developing 

squamate hemi-penis and cloaca lie in close proximity to the embryonic limb field (Figure 

1b). In fact, the squamate hemi-penis emerges from the hindlimb-bud (anole lizards) or 

its remnants (pythons and house snakes), giving further credence to the hypothesis that 

developing limbs and external genitalia shared a common developmental origin early in the 

evolution of amniotes [7].

To confirm and gain deeper understanding of the shared developmental trajectory of these 

appendages, Tschopp and colleagues also applied comparative transcriptome analysis of 

the early- and late-developing limb buds and external genitalia (hemi-penis or genital 

tubercle) of anole and mouse embryos [7]. They discovered that a great degree of 

molecular architecture is shared between hindlimb buds and external genitalia during early 

development in anole, and in fact these structures computationally cluster together in anole 

but not in mouse. Most of the similarity lies in transcription factors and signaling molecules, 

highlighting molecular programs at play in the shared developmental origin of limbs and 

external genitalia. The authors suggest that the developmental divergence of the squamate 

hemi-penis and the genital tubercle in mammals may have followed the posterior shift in 

embryonic position of the cloaca in mammals (Figure 1a, b), though vestiges of the ancestral 

similarity to limbs remain.

How did the molecular similarities between amniote appendages arise, and how have they 

been retained? Are there pleiotropic cis-regulatory elements that drive transcription of genes 

in both external genitalia and limb buds, or is all similarity due to the additive effects 

of elements with activity that is specific to each appendage? To answer this question, 

Infante and colleagues performed ChIP-Seq to detect the H3K27ac histone modification that 

marks active enhancers and promoters and discovered more than 9,600 putative regulatory 

elements that are active in mouse embryonic genital tubercle and/or limb buds [8]. Though 

a majority (~84%) of these elements showed appendage-specific acetylation patterns, a 

smaller proportion (~16%) were indeed acetylated in both of these structures.

One such shared limb-genital tubercle enhancer, called HLEB, regulates expression of Tbx4, 

a T-box transcription factor that is necessary for the development of the hindlimb [20] and 
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external genitalia in mice [8]. HLEB is conserved not only in the limbed mouse and anole 

but also in vestigial-limbed (pythons) and limbless snakes (king cobras). An assessment of 

squamate HLEB activity in transgenic mouse embryos showed that though anole HLEB has 

retained its activity in both appendages, snake HLEB sequences drive expression only in the 

mouse genital tubercle but not in the limb, suggesting appendage-specific degeneracy of this 

dual-activity enhancer (Figure 1a–c). A recent advance in the ability to access and edit the 

anole germ line genome [21], a major limitation in many amniote species, opens possibilities 

to dissect the in vivo function of the HLEB in the limb bud and hemi-penis in embryos that 

retained their ancestrally shared developmental origins.

Comparative genomic analysis between mouse and squamate genomes further revealed a 

surprising degree of conservation of experimentally validated mouse limb enhancers in 

limbed anoles as well as in three distinct snake species that have vestigial (pythons & boas) 

or no limbs (king cobras) [8]. Such conservation in snakes suggests selective pressure might 

have preserved limb enhancer elements that also drive gene expression in other structures, 

including the external genitalia. In contrast, lack of selection to preserve limb-specific 

enhancers in snake genomes, starting when limb function was reduced or lost, might allow 

these to diverge more rapidly.

One such example of the extreme degeneracy of a limb-restricted cis-regulatory element 

in snakes is the ‘ZPA regulatory sequence’ (ZRS) enhancer, which initiates and sustains 

expression of the anteroposterior patterning gene sonic hedgehog in developing limb 

buds and is highly conserved among limbed tetrapods (Figure 1a–c). The ZRS of both 

vestigial-limbed [6] and limbless snakes [9] has degenerated to an extent that it drives 

aberrant, reduced, or no lacZ reporter expression in transgenic mouse limbs. Since the 

ZRS is essential for limb outgrowth in mice, replacement of the mouse ZRS with the 

most severely attenuated python or cobra ZRS causes severe limb truncation [9]. There 

is ample evidence for other such degenerate sequences throughout the snake genome; an 

alignment of 29 vertebrate genomes, including boa and python, identified 5,439 conserved 

non-coding elements (CNEs) that are highly and specifically divergent in snakes, which 

includes the ZRS. The nearest genes to these snake - divergent CNEs are enriched 

for genes with demonstrated importance during limb development, and many overlap 

experimentally validated limb enhancers [5]. The most-divergent snake CNEs among these 

provide excellent targets for further in vivo experiments that may provide evidence for the 

proximate and causative mechanism(s) of limb loss in the snake lineage.

Overall, NGS and comparative genomic approaches have allowed us to discover the shared 

developmental origins and evolutionary emergence of genitalia from limbs of amniotes. 

These studies have also revealed and partially explained the surprising conservation of 

limb enhancers in limbless species. Pleiotropic limb enhancers shared with genitalia and 

other structures as well as enhancers with activity limited to the limb may explain how 

constraint and degrees of selection each act to diversify vertebrate genomes and consequent 

development of the limbs.
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Diversification of amniote limb form and proportion

The feathered wings and scaled feet of birds, elongated fingers in the bat wing, and 

disproportionately long feet of three-toed jerboas are compelling examples of diversity 

within the fore and hindlimbs of a species and between homologous limb elements of 

different species. Focusing on these examples, here we discuss how NGS, comparative 

genomics, and functional tests have revealed genetic signatures that generate such diversity 

of limb form.

While most birds have feathered wings and scales on their feet, feathers cover the feet of 

many species, such as grouse and snowy owls. In domestic pigeons, breeders have favored 

a feather-footed phenotype so much that some breeds exhibit extreme ‘muffs’ of feathers 

as long as those of the wing that would appear to have no selective advantage in natural 

populations. However, the genetic mechanisms that transform aspects of hindlimb identity 

to more forelimb-like may similarly underlie both artificially and naturally selected foot 

feathering. Quantitative trait locus (QTL) analysis and comparative ChIPSeq analysis of 

scale- and feather-footed pigeon breeds, powered by whole genome assemblies, revealed 

mutations upstream of Pitx1 and Tbx5, genes that associate with feathered feet (Figure 

2b). These cis-regulatory mutations in developing feathered feet contribute to reducing 

the expression of the hindlimb transcription regulator Pitx1 and to misexpressing Tbx5 
in the hindlimb, a transcription factor ordinarily restricted to and necessary for forelimb 

development [10, Figure 2a]. Comparative transcriptomic analysis of developing limbs of 

these breeds identified Pitx1- and Tbx5-dependent transcriptional targets and revealed partial 

co-option of a forelimb-specific genetic program that could explain how molecular shifts 

in limb identity from hindlimb to forelimb drove the development of feathers on the feet 

[11]. In addition to explaining the molecular mechanism underlying a domesticated trait 

in pigeons that has fascinated breeders for centuries, these findings provide insight into 

putative genetic targets of natural selection in diverse bird species.

The only mammals capable of bird-like powered flight are the bats, though they achieve 

this feat using wings with an entirely different structure than birds. Bat wings with 

elongated digits and broad interdigital membranes and unwebbed feet with shorter toes also 

present yet another case of contrasts in the fore- versus hindlimb. Transcriptomic analysis 

comparing embryonic bat fore- and hindlimbs identified differential expression of known 

limb patterning and developmental pathways [13,14]. Of particular note is the enrichment 

of long non-coding RNAs (lncRNAs) and lower expression of ribosomal proteins in the 

developing wing [13]. Perhaps most interestingly, comparative genomics identified ‘bat 

accelerated regions’ of rapid evolution within H3K27ac peaks, and several of these are 

located near genes implicated in limb development [13,22]. These transcriptomic and 

cis-regulatory changes provide promising candidates to design experiments that will test 

their precise molecular function in vivo, perhaps using mice as an experimental system, 

and identify causative mechanisms that drove extreme forelimb modifications during bat 

evolution and development.

Diversification is often initiated in the embryo, as exemplified above, but is further 

amplified in neonatal and juvenile animals by postnatal growth differences. For example, 
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differential postnatal growth of metatarsals has resulted in drastically elongated feet that 

enable bipedality in the three-toed jerboas [23]. With exception of species like pigeons 

with phenotype and genotype variation in breeds that is tractable using genetic approaches, 

most species of interest in the evolution of limb development are distantly related to a 

‘reference species’, namely mice, for which we know the most about the genetics of limb 

development. The phylogenetic position of the jerboa, with the most extremely divergent 

hindlimb architecture among the nearest relatives of Mus musculus, therefore provides an 

extraordinary opportunity for direct comparisons between species to identify mechanisms 

that diversified skeletal proportion.

Though not a typical application of differential RNA-seq analysis, the relatively close 

phylogenetic relationship of jerboas and mice allowed us to identify 10% of the 

transcriptome associated with the disproportionate postnatal growth acceleration of jerboa 

metatarsals, which could explain the evolution of bipedality. Among many expression 

differences that likely belie a complex polygenic mechanism [24], we observed expression 

of Shox2 in jerboa metatarsal growth cartilages [unpublished]. The Shox2 transcription 

factor is restricted to the proximal skeleton of all other vertebrate species that have been 

analyzed [25], and its misexpression in the distal limb is sufficient to elongate mouse 

metatarsals [unpublished]. Similarly, comparing differential chromatin accessibility between 

species by ATAC -Seq analysis revealed a chromatin region upstream of Shox2 in jerboa that 

might harbor cis-regulatory changes that modularize the gain of Shox2 expression in jerboa 

metatarsals (Figure 3). Identification of such differentially accessible regions associated with 

differentially expressed genes throughout jerboa and mouse genomes can help us define 

genomic regions of interest for functional manipulation in mice to identify mechanisms of 

differential skeletal growth.

Future of limb development with next-generation sequencing

The few examples we highlight in this review, and others we briefly reference, demonstrate 

how NGS techniques have facilitated the unbiased discovery of transcriptomic changes, 

differential enhancer activity, and sequence evolution associated with limb diversification 

across ‘non-traditional’ amniote species. Our ability to sequence, assemble, annotate, and 

compare genomes has seen unprecedented advances [3,4] since the first animal genome 

was sequenced just over two decades ago [26]. With large-scale efforts to make thousands 

of vertebrate genomes publicly available [27], opportunities are rapidly emerging to 

discover and functionally test the consequences of genome evolution with respect to limb 

diversification. Rather than ‘stamp collecting’, these efforts may begin to reveal a set of 

principals by which evolution has reshaped species.

The greatest limitations now are the ability to rear animals in captivity, or collect embryonic 

and juvenile samples from wild populations, and the ability to access and manipulate the 

germ line genome of amniotes. Overcoming these challenges in even a few representative 

species will unlock opportunities for targeted in vivo experiments to help us comprehend 

how variations in gene expression that alter conserved developmental programs caused the 

diversification of vertebrate limb form and function. Are some genes more ‘evolvable’ than 

others? Are some genes controlled by more modular cis-regulatory elements than others 
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so that pleiotropic functions are under non-pleiotropic control? What are the phenotypic 

consequences of sequence changes, individually and collectively? Together with genetic 

studies that focused largely on conserved coding sequence functions in traditional model 

species in the intervening decades before the resurgence of evo-devo, studies in non­

traditional species will give comprehensive insight to understand not only development from 

egg to adult but also the evolutionary explosion of countless adult forms.
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Figure 1. 
Development of hindlimb buds and external genitalia in (a) mouse, (b) anole lizard, and 

(c) snake. HLB, hind limb bud. GT, genital tubercle. HP, hemi-penis. In each species, cis­

regulatory control of Tbx4 by the hindlimb element A (HLEA) and dual activity hindlimb 

element B (HLEB) and control of sonic hedgehog by the ZPA regulatory sequence (ZPA) are 

depicted. Hindlimb activity of all three elements has degenerated in snakes.
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Figure 2. 
In the developing hindlimbs (green) of the (a) scaled feet pigeon breeds, hindlimb-specific 

cis-regulatory regions drive robust Pitx1 expression. Forelimb-specific Tbx5 cis-regulatory 

regions are inactive (grey circle) in the hindlimbs, resulting in no Tbx5 expression. 

(b) In feather-footed breeds, a deletion upstream of Pitx1 is associated with reduced 

hindlimb Pitx1 expression, and cis-regulatory mutations near Tbx5 are associated with its 

misexpression in the hindlimbs. These cis-regulatory mutations could lead to the reactivation 

of forelimb-specific Tbx5 enhancers (conceptually represented using a red circle) in the 

hindlimbs and/or a gain of novel hindlimb-specific enhancers (green star).
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Figure 3. 
Hindlimbs of (a) mouse and (b) jerboa with femurs (red) and metatarsals (blue) highlighted. 

Proximally active (red) cis-regulatory regions drive Shox2 expression in mouse and jerboa 

femurs. These regions are inactive (grey) in the distal mouse limb, and no Shox2 expression 

is detected in mouse metatarsals. Jerboa metatarsals express Shox2, which may be explained 

by the activation of cis-regulatory sequences typically restricted to the proximal limb (red).
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