
UCLA
UCLA Previously Published Works

Title
Data-Consistent Non-Cartesian Deep Subspace Learning for Efficient Dynamic MR Image 
Reconstruction

Permalink
https://escholarship.org/uc/item/8kd5947w

ISBN
9781665429238

Authors
Chen, Zihao
Chen, Yuhua
Xie, Yibin
et al.

Publication Date
2022-03-01

DOI
10.1109/isbi52829.2022.9761497
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8kd5947w
https://escholarship.org/uc/item/8kd5947w#author
https://escholarship.org
http://www.cdlib.org/


Data-Consistent non-Cartesian deep subspace learning for 
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Abstract

Non-Cartesian sampling with subspace-constrained image reconstruction is a popular approach 

to dynamic MRI, but slow iterative reconstruction limits its clinical application. Data-consistent 

(DC) deep learning can accelerate reconstruction with good image quality, but has not been 

formulated for non-Cartesian subspace imaging. In this study, we propose a DC non-Cartesian 

deep subspace learning framework for fast, accurate dynamic MR image reconstruction. Four 

novel DC formulations are developed and evaluated: two gradient decent approaches, a directly 

solved approach, and a conjugate gradient approach. We applied a U-Net model with and 

without DC layers to reconstruct T1-weighted images for cardiac MR Multitasking (an advanced 

multidimensional imaging method), comparing our results to the iteratively reconstructed 

reference. Experimental results show that the proposed framework significantly improves 

reconstruction accuracy over the U-Net model without DC, while significantly accelerating the 

reconstruction over conventional iterative reconstruction.

Index Terms—
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1. INTRODUCTION

Dynamic magnetic resonance imaging (MRI) can be used to evaluate organ motion, tissue 

dynamic contrast enhancement (DCE), and nuclear magnetic resonance (NMR) relaxations. 

Dynamic imaging is therefore vital for applications such as cardiac and cancer imaging, 

as well as for relaxometry in any organ. The slow speed of MRI often results in high 

undersampling of the acquired k-t space signals, motivating constrained subspace/low-rank 

[1] and/or compressed sensing [2] reconstruction alongside acquisition schemes such as 

randomized and/or non-Cartesian sampling. The specific combination of non-Cartesian 

acquisition and subspace reconstruction is central to many promising imaging frameworks 

such as MR fingerprinting [3–5], MR Multitasking [6], Extreme MRI [7], and GRASP-Pro 

[8, 9].
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Subspace methods alleviate many of the computational challenges of dynamic imaging 

by efficiently modeling, reconstructing, and storing dynamic images in a low-dimensional 

subspace rather than in the time domain. However, the use of non-Cartesian sampling 

counteracts this computational efficiency: non-Cartesian Fourier encoding operators such 

as the nonuniform fast Fourier transform (NUFFT) [10] have no direct inverse, so non-

Cartesian subspace imaging is still largely performed via iterative reconstruction. The 

resulting long reconstruction time limits practical adoption of these imaging frameworks.

In recent years, deep learning reconstruction methods have shown great advantage over 

iterative methods in reducing reconstruction time [11–13]. Data-consistency (DC) layers, or 

unrolled deep learning, utilize the acquired data to adjust the network’s output and have been 

shown to improve image quality and generalizability over purely training-data-driven deep-

learning reconstruction [14–20]. The general DC problem has previously been formulated 

using gradient descent (GD) [16, 17, 19], density-compensated gradient descent (DGD) [20], 

or conjugate gradient (CG) [15, 18] approaches—and in the case of Cartesian encoding, as a 

coil-by-coil direct inversion layer [14, 15].

In the realm of subspace image reconstruction, Chen et al. have formulated non-Cartesian 

deep subspace learning without DC layers [21], and Sandino et al. [22, 23] have formulated 

DC deep subspace learning reconstruction for Cartesian trajectories using GD-DC or 

CG-DC layers. However, data-consistent non-Cartesian deep subspace learning remains a 

challenge: current non-Cartesian DC MRI strategies for dynamic imaging are formulated in 

k-t space [16, 18–20] rather than in the more computationally efficient subspace; GD based 

DC layers are inefficient due to illconditioning of the non-Cartesian reconstruction problem 

[24]; and iterative CG-DC layers offer slower reconstruction.

In this study, we developed and evaluated four novel formulations of data-consistent non-

Cartesian deep subspace learning image reconstruction: GD-DC, preconditioned gradient 

descent (PGD-DC), directly-solved data consistency (DS-DC), and CG-DC. Inspired by 

Toeplitz encoding models [25], the DS-DC approach relies on an invertible block-Toeplitz 

model of the combined forward/adjoint encoding operator, allowing a coil-wise closed-form 

solution of the non-Cartesian DC equation. We compared these DC layers to each other and 

to non-DC deep learning in the context of cardiac MR Multitasking [26], using a U-Net [27] 

model as the network module.

2. THEORY

2.1. Non-Cartesian subspace image reconstruction

In subspace reconstruction for non-Cartesian dynamic MRI, a dynamic image represented as 

a matrix X ∈ ℂNxNy × T  is decomposed into a spatial factor U ∈ ℂNxNy × L and a temporal 

factor Φ ∈ ℂL × T  according to X = UΦ. When the rows of Φ constitute an orthonormal 

basis, U can be interpreted as coordinates within the L-dimensional subspace spanned by 

the rows of Φ. A suitable Φ can often be quickly extracted from a subset of acquired data 

b via PCA or SVD [1], or calculated a priori [28], depending on the application. The most 

time-consuming step of reconstruction is therefore to estimate U, typically by solving:
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U = argmin
U

b − AΦ(U) 2
2 + λR(U) (1)

AΦ(U) = Ω FNUSU Φ (2)

Here FNU is the NUFFT, S applies sensitivity maps, Ω is the k-t space undersampling 

operator and λR(U) is a regularization term, often a sparse regularizer in order to leverage 

compressed sensing [29]. Conventionally, this minimization problem is solved by iterative 

methods such as alternating direction method of multipliers (ADMM) or the fast iterative 

soft-thresholding algorithm (FISTA).

2.2. Non-Cartesian deep subspace learning

Deep learning frameworks instead use a feedforward neural network to reconstruct U. This 

can be done, for example, by passing an initial guess U0 through a convolutional neural 

network (CNN):

Ucnn = CNN U0 , (3)

where the network has been trained to produce an output Ucnn that resembles the solution to 

Eq. (1) [21].

This network output Ucnn can further pass through a data consistency (DC) layer that 

improves data fidelity by re-incorporating the measured k-space into the network’s 

reconstruction. We formulate the DC problem similarly to Eq. (1), replacing R(U) with 

U − Ucnn 2
2 in order to produce a CNN-regularized reconstruction:

U = argmin
U

b − AΦ(U) 2
2 + λ U − Ucnn 2

2 . (4)

The solution can be expressed as:

U = AΦ*AΦ + λI −1 AΦ*b + λUcnn , (5)

where the operator AΦ*  is the conjugate transpose of AΦ.

However, Eq. (5) is difficult to solve analytically for non-Cartesian MRI. Time-consuming 

CG iterations could be used to solve Eq. (5), but would offset the reconstruction time 

advantages of using deep learning.

2.3. Non-Cartesian subspace DC layer with gradient descent methods

To avoid inverting AΦ* AΦ + λI, we can formulate the DC network in a gradient descent 

manner:
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Udc = Ucnn − α AΦ*AΦ Ucnn − AΦ*(b) . (6)

Eq. (6) subtracts the gradient of the data-fidelity term in Eq. (4) from the CNN output Ucnn 

to improve data fidelity.

AΦ* AΦ(U) is calculated according to:

AΦ*AΦ(U) = SHFNU
H Ω*Ω FNUSUΦ ΦH . (7)

A subspace kernel method can efficiently compute Eq. (7) by calculating FNUSU , right-

multiplying L × L subsets of Ω*Ω(· Φ)ΦH for each unique k-space trajectory, and finally 

applying SHFNU
H  [29]. This keeps all calculations within the L-dimensional subspace and 

avoids the larger memory usage of the time domain.

It was established in previous work that the non-Cartesian reconstruction problem is ill-

conditioned due to nonuniform density, and that adding a preconditioner can accelerate 

convergence in gradient descent [24]. As such, we also formulate preconditioned gradient 

descent for non-Cartesian subspace DC as:

Udc = Ucnn − αS†P EΦ*EΦ SUcnn − EΦ*(b) (8)

EΦ(Y ) = Ω FNUY Φ (9)

Here EΦ is the coil-wise encoding matrix, and P is a preconditioner approximating the 

pseudoinverse of FNU
H FNU by compensating its nonuniform weighting in k-space.

2.4. Non-Cartesian subspace directly-solved DC layer with inverse Block Toeplitz method

Inspired by the Toeplitz method that can significantly accelerate the calculation of 

E*E(x) = FNU
H Ω*Ω FNUx  for static images [25], here we formulate a block-Toeplitz model 

for EΦ* EΦ which can be analytically inverted, opening the door to a direct solution to 

non-Cartesian subspace DC problem. The static Toeplitz method models E*E as a linear 

shift-invariant system that performs a convolution and can therefore be represented by 

a Toeplitz matrix. This Toeplitz matrix can be represented as E*E = ZHF−1QFZ, where 

F is the Cartesian FFT, Z zero-pads to twice the image size in each spatial dimension 

to accommodate circular convolution boundaries, and where Q is a diagonal matrix that 

performs a k-space multiplication derived from the FFT of the point spread function (PSF).

The block-Toeplitz model for EΦ* EΦ combines the Toeplitz model of non-Cartesian forward/

adjoint encoding and the L × L subspace kernel concept to express EΦ* EΦ as L × L 

block-Toeplitz, with the (i,j)-th block of EΦ* EΦ taking the form:
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EΦ*Eϕ i, j = ZHF−1Q(i, j)FZ, (10)

where Q(i,j) applies the k-space filter for that block. Equivalently, we can say that 

EΦ* EΦ(Y ) = ZHF−1W (FZY ), where W(·) right-multiplies an L × L kernel W(n) with 

elements wij
(n) = qnn(i, j) at the nth of 2Nx · 2Ny k-space locations.

Then we can consider a coil-wise DC equation

Y = argmin
Y

EΦ(Y ) − b 2
2 + λ Y − SUcnn 2

2
(11)

which has the solution

Y = Eϕ*EΦ + λI −1 EΦ*(b) + λSUcnn . (12)

The operator EΦ* EΦ + λI can be directly inverted by regularized inversion of each L × L 

kernel W(n), i.e., as:

Y = ZHF−1(W + λI)−1 FZ EΦ*(b) + λSUcnn (13)

Where the function (W + λI)−1(·) right-multiplies an L × L kernel (W(n) + λI)−1 at the nth 

k-space location.

Then, the data-consistent spatial factor Udc can be calculated by complex coil combination 

Udc = S†Y . This method directly solves the non-Cartesian DC problem.

3. EXPERIMENTS

In this work, we evaluated three DC options described in the Theory section above: vanilla 

GD-DC based on Eq. (6), PGD-DC based on Eq. (8), and DS-DC based on the block-

Toeplitz inversion in Eq. (13). We further evaluated a CG-DC layer based on Eq. (5) with 5 

CG iterations.

3.1. Datasets

All data were dynamic MR cardiac images acquired with a T1 MR Multitasking protocol 

[26] on three different 3T MRI scanners (MAGNETOM Verio, MAGNETOM Vida, and 

Biograph mMR; Siemens Healthcare, Erlangen, Germany) at the same center. The k-t 

space data were acquired with a continuous IR-FLASH sequence and golden-angle radial 

trajectories. Label images were reconstructed iteratively as described in [26] with L = 32, 

during which the temporal factors were generated from dictionaries and auxiliary data [6, 

26]. This produced a multidimensional array of images at each combination of c =20 cardiac 

phases, r = 6 respiratory phases and τ =344 T1-recovery timepoints. Thus, there are T = 

20×6×344 = 41,280 temporal frames for each dynamic image. The image matrix size for 
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each frame is 320 × 320, corresponding to a FOV of 540 × 540 mm2 (twice the prescribed 

FOV of 270 × 270 mm2).

For deep subspace reconstruction, we directly fed spatial factors U rather than images X 
into the network. We concatenated the real and imaginary parts of U0’s and of labeled U’s 

as separate channels to preserve complex values, for network input and output sizes of 320 

× 320 × 64. In total there were 120 dynamic image sets, in which 96 sets were used for 

training, 12 sets for validation and 12 sets for testing.

3.2. Evaluation metrics

Since the networks were trained on spatial factors U but the final dynamic images are 

calculated as X = UΦ, we did comparisons for both U and for reconstructed dynamic 

images. The reference images for our comparisons were iteratively reconstructed using 

wavelet sparsity regularization and 20 iterations of an ADMM algorithm.

For spatial factor/subspace coordinates U, we used normalized root-mean-square error 

(NRMSE) to evaluate the networks. For dynamic images, peak signal-to-noise ratio (PSNR), 

structural similarity index (SSIM) and NRMSE were calculated from the reconstructed 

image sequences for the whole cardiac cycle (20 frames) at the end-expiration (EE) 

respiratory phase, and for inversion times corresponding to bright-blood and dark-blood 

contrast weighting (i.e., the two most clinically important qualitative image contrasts).

3.3. Experimental setup

All the proposed DC networks consist of a CNN Block (U-Net) and a DC layer (Fig. 

1), which were implemented in TensorFlow. The input U0 was obtained by zero-filled 

regridding: U0 = S†FNU
H DΩ*(b)ΦH, where D applies a density compensation filter.

To compare the performance of different DC layers, we pretrained the U-Net block without 

DC layer for 200 epochs (5 hours) on one Nvidia Titan RTX GPU with 24GB of RAM, and 

directly added different DC layers at the end of the U-Net block without further training. 

Adam optimizer and mean squared error (MSE) loss were used in training. The step size α 
in GD-DC and PGD-DC, as well as the regularization coefficient λ in DS-DC and CG-DC, 

were determined by choosing the best values for the validation set. The preconditioner in 

PGD-DC was a Cartesian k-space ramp which adjusted for radial k-space density. A single 

DC layer was used for each network to minimize reconstruction time.

In the comparison, four proposed DC networks (GD-DC, PGD-DC, DS-DC and CG-DC) 

and the pretrained U-Net without DC layer were compared with iterative reconstructed 

reference images among the testing set.

4. RESULTS

The spatial factor reconstruction time is shown in Table 1. GPU memory use of each DC 

layer was 1.6 GB. All the single-step DC models accelerated the reconstruction time by 

more than 50x compared to 180 sec iterative reconstruction.
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For quantitative comparison among the testing set, Table 1 shows the NRMSE of different 

models for the spatial factor U directly output by the network; Table 2 shows the PSNR, 

SSIM and NRMSE of different models for reconstructed dynamic images for bright blood 

and dark blood contrast weightings. Since each dynamic image contains 20 cardiac frames, 

we have 12×20=240 testing images for each contrast in Table 2. CG-DC had the best 

quantitative metrics (p<0.001), but its computation time was >6x that of the single-step DC 

layers. Among the single-step DC layers, DS-DC performed best (p<0.001), followed by 

PGD-DC, GD-DC and U-Net w/o DC, for both the spatial factor and dynamic images.

Fig. 2 shows an example testing case of the T1-weighted images at EE respiratory phase and 

end-diastolic cardiac phase for bright blood and dark blood contrasts. The visual comparison 

is consistent with the quantitative results: CG-DC and DS-DC have the smallest errors, 

followed by PGD-DC, GD-DC and U-Net w/o DC. The error maps of CG-DC and DS-DC 

have fewer structural features than those of other models, implying that CG-DC and DS-DC 

provided less systematic error.

5. DISCUSSION & CONCLUSIONS

In this study, we developed a DC non-Cartesian deep subspace learning framework 

to accelerate dynamic MR reconstruction and proposed four DC approaches: GD-DC, 

PGD-DC, DS-DC and CG-DC. All the deep learning models except CG-DC accelerated 

reconstruction by more than 50x over iterative reconstruction. All DC models outperformed 

the naïve U-Net w/o DC in quantitative comparisons. CG-DC had the least error but longest 

inference time (22 s), while DS-DC provided the best accuracy amongst the fast (3.5 s) 

single-step DC layers. CG-DC may be desirable when imaging a single slice with one 

inference, whereas DS-DC may be more attractive when imaging multiple slices.

All the subspace DC formulations substantially reduced the memory required for large-scale 

dynamic image reconstruction compared to direct implementation of previously proposed 

DC layers in the time domain. A DC layer in k-t space here would have required operating 

on the 8,200 readout time points rather than the L = 32 entries in U, requiring 410 GB of 

memory instead of our 1.6 GB.

Although our DC layers were applied in subspaces here, the proposed inverse block-Toeplitz 

DS-DC can be readily adapted to time-domain or static imaging to improve the efficiency of 

general non-Cartesian deep learning.

In this work, we chose U-Net as our CNN block for simplicity. The proposed DC layers 

can be easily added to other advanced CNN blocks to further improve their reconstruction 

quality. This study also only evaluated a single pre-trained CNN+DC block, but multiple 

CNN+DC blocks and end-to-end training may offer even further improvement.

In conclusion, the proposed DC deep subspace learning framework significantly improves 

reconstruction accuracy over the plain U-Net model, while significantly accelerating 

reconstruction over conventional iterative algorithms. Clinical studies are needed to evaluate 

the diagnostic accuracy and clinical value of the proposed deep learning reconstruction 

model.
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Fig. 1. 
Network architecture in proposed methods
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Fig. 2. 
Example T1-weighted images from iterative reconstruction and different networks with 

corresponding error maps. (A): Bright blood contrast images; (B): dark blood contrast 

images. Top row: examples images; bottom row: corresponding error maps.
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Table 1.

NRMSE over spatial factor U among the testing set. Values in brackets are standard deviations. Best results 

among single-step DC models are bolded. Best results among all models are italic.

No DC Single-step DC Iterative DC

Model Input U 0 U-Net w/o DC GD-DC PGD-DC DS-DC CG-DC

NRMSE 0.279 (0.096) 0.169 (0.052) 0.156 (0.053) 0.152 (0.050) 0.135 (0.041) 0.117 (0.036)

Inference Time N/A 1.7s 3.5s 3.5s 3.5s 22s
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Table 2.

Quantitative metrics over dynamic images among the testing set. Values in brackets are standard deviations. 

Best results among single-step DC models are bolded. Best results among all models are italic.

Model
PSNR SSIM NRMSE

Bright Blood Dark Blood Bright Blood Dark Blood Bright Blood Dark Blood

No DC U-Net w/o DC 33.67 (2.95) 36.89 (2.60) 0.854 (0.057) 0.915 (0.024) 0.174 (0.054) 0.108 (0.032)

Single-step DC

GD-DC 34.14 (3.03) 37.44 (2.69) 0.873 (0.053) 0.926 (0.024) 0.165 (0.053) 0.102 (0.032)

PGD-DC 34.31 (3.00) 37.76 (2.44) 0.873 (0.051) 0.927 (0.022) 0.163 (0.058) 0.098 (0.028)

DS-DC 35.37 (2.87) 38.68 (2.41) 0.888 (0.040) 0.933 (0.017) 0.144 (0.048) 0.088 (0.024)

Iterative DC CG-DC 35.73 (2.83) 39.25 (2.29) 0.897 (0.040) 0.945 (0.014) 0.138 (0.044) 0.082 (0.022)
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