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Abstract

In this study, we demonstrate the extensive scalability of the biasing potential replica exchange 

multisite λ dynamics (BP-REX MSλD) free energy method by calculating binding affinities for 

512 inhibitors to HIV Reverse Transcriptase (HIV-RT). This is the largest exploration of chemical 

space using free energy methods known to date, requires only a few simulations, and identifies 55 

new inhibitor designs against HIV-RT predicted to be at least as potent as a tight binding reference 

compound (i.e., as potent as 56 nM). We highlight that BP-REX MSλD requires an order of 

magnitude less computational resources than conventional free energy methods while maintaining 

a similar level of precision, overcomes the inherent poor scalability of conventional free energy 

methods, and enables the exploration of combinatorially large chemical spaces in the context of in 
silico drug discovery.
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Recent studies suggest that the development of new pharmaceutical small-molecule drugs 

currently requires $1–2 billion and 10+ years before drug approval and market launch.1,2 

Pre-phase I discovery alone can account for as much as 30% of this cost, with lead 

optimization requiring 17% and an average of 2 years of active research.1–3 In an effort to 

reduce costs and accelerate drug discovery, computational chemistry tools are frequently 

employed in the preclinical drug development stages of hit identification and lead 

optimization,4–6 with overall success.7–10 Alchemical free energy calculations, including 

Free Energy Perturbation theory11 and Thermodynamic Integration12 (FEP/TI), have been 

shown to be particularly effective in lead optimization by allowing novel chemical 

modifications to a lead compound to be evaluated computationally prior to experimental 

synthesis and activity determination. Provided sufficient statistical sampling and correct 

representation of the energetics of a system, these calculations can yield a rigorous 

determination of protein-ligand binding free energy differences for localized, pairwise 

molecular perturbations.13–16 Recent advances in computer hardware technology in the form 

of graphics processing units (GPUs) and enhanced sampling techniques have provided 

effective solutions to problems of speed and convergence encountered historically.6,14–17 

However, the fact remains that current alchemical free energy methodologies scale poorly 

with the total number of compounds modeled, i.e., linearly for pairwise perturbations. 

Therefore, there is an inherent scalability limitation that has yet to be addressed, impeding 

computational explorations of very large chemical spaces, e.g., several hundred ligands.

In this Letter, we address these scalability issues by demonstrating the effectiveness of an 

innovative free energy method, λ dynamics, designed to study large chemical spaces within 

the context of a pharmaceutics design problem.18–22 Unlike conventional free energy 

methods, which calculate the relative binding affinity of pairs of compounds separately,11–15 

λ dynamics, as implemented in the CHARMM molecular simulation package,23,24 can 

simultaneously calculate relative binding affinities between several substituents attached at a 

single site18,19 or on multiple sites.20–22 This is achieved by making λ, the parameter that 

alchemically transforms one ligand into another, a continuous variable that is propagated 

along with the Cartesian coordinates of the system using extended Lagrangian methods.18 

Thus, λ fluctuates dynamically throughout a molecular dynamics (MD) fsimulation based 
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on a ligand’s interactions with its environment, analogous to an experimental competitive 

binding assay against a drug target.19 In an unprecedented application of free energy 

methodologies, we show that many hundreds of inhibitors to HIV Reverse Transcriptase 

(HIV-RT)7,25,26 can be evaluated simultaneously within a single calculation using multisite 

λ dynamics (MSλD). MSλD requires 20–30 times less computational resources compared 

to FEP/TI methods, and no loss of statistical precision is observed.

MSλD simulations were performed with the biasing potential replica exchange algorithm 

(BP-REX MSλD)21 on the indole scaffold of a catechol diether inhibitor of HIV-RT 

reported by Lee et al. (Figure 1).25 The availability of high-quality experimental data, 

including activity assay results and crystallographic structures, from the Jorgensen group 

make this an appealing benchmark for the present demonstration of MSλD scalability.7,25–30 

Simulations were performed as described previously,21 with the addition of adaptive 

landscape flattening variable biases and a soft-core Lennard-Jones interaction potential.22 

Eight substituents at three sites (X, Y, and Z) around the inhibitor core yielded 512 possible 

permutations of unique inhibitor designs (Figure 1). These substituents resemble previous 

perturbations made by Jorgensen and co-workers7,25,26,30 and occupy similar volumes, a 

metric previously identified to optimize MSλD sampling.21 We note, however, that by 

utilizing a soft-core interaction potential reliable results can be obtained with ease regardless 

of substituent volumetric differences.22

Simulations were performed in duplicate with five replicas for both the unbound ligand (30 

ns/replica) and the protein–ligand complex (40 ns/replica), for a total of 3.75 μs of sampling, 

to provide the free energy changes for the vertical arms in an alchemical thermodynamic 

cycle (Figure S1).13 All ligands remained bound in the same pocket, and binding free 

energies were calculated relative to the reference compound X = H, Y = CN, Z = H 

(H/CN/H), where the experimental EC50 was determined to be 56 nM.25 Within the λ 
dynamics framework, the relative free energy difference (ΔΔGbind) for each pair of 

compounds can be calculated from

ΔΔGX(i); Y( j); Z(k) X(l); Y(m); Z(n) = − kBTln
P(λX(l) = 1; λY(m) = 1; λZ(n) = 1)
P(λX(i) = 1; λY( j) = 1; λZ(k) = 1) (1)

where P(λX(l)=1;λY(m)=1;λZ(n)=1) represents the population of the inhibitor of interest and 

P(λX(i)=1;λY(j)=1;λZ(k)=1) represents the reference inhibitor’s population.20 Alphabetic 

subscripts refer to individual substituents at each site (Figure 1). Inhibitor populations, 

P(λX=1;λY=1;λZ=1), are determined by counting the amount of time each unique ligand is 

sampled, reweighted across all replicas.21 Additional computational details are presented in 

the Supporting Information (SI).

Relative binding affinities were calculated for all 512 inhibitors using eq 1 (Figure 2A, Table 

S1); statistical uncertainties (σ) were calculated as the standard error of the mean across the 

many duplicate simulations and were on average 0.13 kcal/mol. A cutoff of ±0.50 kcal/mol 

was used to select ligands with differing chemical properties or groups but that maintained a 

Vilseck et al. Page 3

J Phys Chem Lett. Author manuscript; available in PMC 2019 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



similar binding affinity as the reference compound. As shown in Figure 2A, 55 out of 512 

inhibitors were found to be more or as potent as the reference compound with ΔΔGbind ≤ 

0.50 kcal/mol, and 18 were more potent by at least −0.50 kcal/mol. In comparison, in prior 

computationally guided studies by Jorgensen and co-workers, only a single compound, 

H/CN/CH3, was reported that was experimentally more potent than the reference.25 Of the 

55 compounds identified in this work, we note that all but 1 have at least 1 fluorine (F) or 

chlorine (Cl) atom at any site, over half have a F or Cl atom at 2 out of 3 sites, and 5 of the 

top 10 have F or Cl at all three sites (Table S1). These results suggest that the addition of 

halogen atoms at X, Y, or Z sites is highly favorable for increasing inhibitor potency for the 

indole derivatized catechol diether ligand. Experimentally, this has been verified for several 

catechol diethers developed by Jorgensen and co-workers,7,25–27,30 with many ligands 

displaying nanomolar to picomolar activities.

To evaluate MSλD convergence and verify the precision of the ΔΔGbind results, 

conventional TI calculations were performed in conjunction with the multistate Bennett 

acceptance ratio (MBAR) method.31 Sampling all 512 molecules would be computationally 

unfeasible with TI/MBAR; therefore, a subset of 34 molecules was investigated that had 

either experimental data available, the lowest predicted ΔΔGbind, or the highest σ (Figure 

S2). As shown in Figure 2B, this data set extends over a significant range of 9 kcal/mol in 

computed affinities and thus provides an adequate comparison set for evaluating the 

precision of the larger MSλD data set. A Pearson correlation of 0.968 and a mean unsigned 

error (MUE) of 0.52 kcal/mol are observed, suggesting that excellent agreement is achieved 

between the methods. It is worth reiterating that MSλD free energies were obtained from a 

single simulation of 512 ligands, whereas TI/MBAR required 49 separate pairwise 

perturbations to examine only 34 ligands, and that MSλD is able to accurately rank ligands 

from most to least active over this entire 9 kcal/mol range of comparison. As an additional 

check of precision, a Welch t test was performed to demonstrate the statistical significance 

of all MSλD ΔΔGbind (Table S1). With a significance level of 0.01 (corresponding to a 99% 

confidence interval), 490 molecules show statistically meaningful ΔΔGbind differences from 

0.00, including all 18 ligands predicted to be more potent by at least −0.50 kcal/mol. The 

remaining 21 molecules had ΔΔGbind within ±0.50 kcal/mol of the reference compound, 

thus supporting the claim that these molecules are as potent as the reference compound.

To assess the accuracy of our calculations, MUE and root-mean-square errors (RMSEs) were 

calculated for the six indole inhibitors with reported experimental EC50 values.25,26 We 

emphasize that this analysis reflects the underlying accuracy of the force field employed in 

the calculations and not the precision of the methodology. CHARMM can employ any 

number of existing force fields with MSλD, and thus, the accuracy of the current results 

may be improved via force field adjustment, a task that is, however, beyond the scope of this 

work. In addition, two other bicycle-containing catechol diethers were examined with BP-

REX MSλD, specifically, indolizine and naphthalene derivatives (Figure S3), yielding 22 

additional data points for comparison.25,26 Experimental binding free energies were 

estimated from available EC50 values (eq 2), similar to previous work from the Jorgensen 

group.32 We note that EC50 is not a direct measurement of binding affinity and the 

experimental uncertainties are unknown. To minimize errors introduced by choosing an 

arbitrary reference molecule, relative free energies were converted to absolute values by 
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adding a single offset free energy such that eq 3 is satisfied.9 Absolute free energies of 

binding (ΔGbind) for all ligand series are reported in Table S2 and plotted in Figure 3.

ΔGbind = RTln(EC50) (2)

∑i = 1
N ΔGexpt

i = ∑i = 1
N ΔGbind

i (3)

The MUE and RMSE for all 28 ΔGbind is 0.88 and 1.11 kcal/mol, respectively, 

commensurate with errors from other research groups using free energy methods and 

different force fields for computer-aided drug design,9,14,16,25,33 i.e., between 1.0 and 1.5 

kcal/mol, including previous MSλD calculations.20,21 The 10 compounds with fluorine at X 

and Z sites displayed excellent agreement with experiment, yielding a MUE and RMSE of 

0.50 and 0.72 kcal/mol, respectively. Thus, the fidelity of the predicted ΔGbind results with 

experiment lends credence to the accuracy of the larger 512 indole results, especially for the 

many fluorine-containing inhibitors predicted to be more potent than the H/CN/H indole 

reference (Table S3).

With the ability to quantitatively evaluate 512 unique ligands collectively, patterns in the 

preferred substitution at each site can be analyzed and new structural insights can be gained. 

By independently sorting binding affinities by substituent and site (Figure S4), it becomes 

readily apparent that Cl, F, and H substituents are favorable attachments at all three sites. In 

contrast, hydroxy (OH), methoxy (OCH3), and cyano (CN) substituents were favored at 

predominately one site in the most potent molecules. At site X, for example, trifluoromethyl 

(CF3) is disfavored due to steric clashes with Val179, which pushes the peptide chain away 

and weakens aryl-aryl contacts between Tyr181 and the catechol ring (Figure 4A); however, 

OH and OCH3 are solvent exposed and able to make favorable hydrogen bonds to water. At 

site Y, CN benefits from favorable ion-dipole interactions with Lys223 (Figure 4B), with 

CN–Lys distances of 4.0–7.0 Å frequently observed in the trajectories, in agreement with 

published crystal structures.25 Finally, reported steric sensitivity with regards to the 

orientation of Tyr181 at site Z (Figure 4C) described crystallographically is recapitulated in 

the MSλD simulations.25,28 Specifically, Tyr181 is observed to switch between edge-to-face 

and edge-to-edge conformations in conjunction with transitions between Z site substituents. 

Additional structural insights obtained from the MSλD trajectories are discussed in greater 

detail in the SI.

We suggest that the ability of BP-REX MSλD to predict potent inhibitors within a large 

chemical space, covering several hundreds of ligands, will dramatically improve the utility 

and facility with which free energy calculations can be employed to guide lead optimization 

in a typical drug discovery campaign. To demonstrate this point further, scalability between 

traditional free energy methods, including FEP and TI methods, can be compared to BP-

REX MSλD in the context of this study of 512 inhibitors. For example, the 49 TI 

calculations performed herein, featuring triplicate production runs and multiple closed 
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thermodynamic cycles,34 required ~8.1 μs of total sampling, far exceeding the resources 

expended with MSλD yet covering 15 times less chemical space! Extrapolation from 34 to 

512 molecules suggests that a minimum of 84–122 μs of sampling would be required with 

TI/MBAR, while MSλD accomplished this task with 30 times less sampling! A more 

generalized scalability analysis presented in the SI shows that MSλD-based methods display 

superior scalability in both the number of simulations and simulation length.

In conclusion, an exhaustive investigation of 512 possible permutations of inhibitor designs 

with BP-REX MSλD using only 3.75 μs of total simulation time identified 55 new inhibitor 

designs predicted to be more or as potent as a 56 nM reference inhibitor. Comparisons to 

independent TI/MBAR calculations and available experimental data have demonstrated that 

a high degree of precision and accuracy, within ± 0.5–1.0 kcal/mol, is achieved while also 

being 20–30 times more efficient than conventional free energy methods. A structural 

analysis of key interactions of the most favorable chemical groups has been discussed and 

corroborates well crystallographic data published by Jorgensen and co-workers.7,25–30 

Furthermore, this study utilized GPU accelerated MD code, enabling the longest protein 

calculations to finish within 2–3 days, approximately 4–5 times faster than previous central 

processing unit (CPU)-based simulations. This work initiates future λ dynamics applications 

by demonstrating the ability to efficiently explore highly dimensional ligand chemical 

spaces with minimal computational costs compared to FEP/TI methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Indole derivatized inhibitor simulated with BP-REX MSλD. Eight substitutions were 

investigated at three sites, X/Y/Z, for a total of 512 unique inhibitor designs.
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Figure 2. 
(A) Relative free energies of binding for 512 indole inhibitors to HIV-RT computed with 

MSλD. Red data points highlight inhibitors predicted to be as potent as the reference 

compound (index 33); blue points indicate more potent affinities (ΔΔGbind ≤ −0.50 kcal/

mol). (B) Correlation between MBAR and MSλD computed ΔΔGbind (kcal/mol) for 34 

ligands. The solid black line represents y = x, and gray dashed lines represent y = x ± 1. 

Error bars are shown for all data points.
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Figure 3. 
Correlation between computed and experimental ΔGbind for three ligand series bound to 

HIV-RT: indole (blue ), indolizine (green ), and naphthalene (orange ). Error bars show 

computed uncertainties. The solid black line is the y = x line, and gray dashed lines 

represent y = x ± 1.
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Figure 4. 
Structural depictions of the non-nucleoside inhibitor binding pocket. Site X (A), site Y (B) 

and site Z (C) substituents with nearby residues are highlighted in yellow and indigo. An 

alternate conformation of Tyr181 is also shown in orange (C).
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