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ABSTRACT OF THE DISSERTATION

Distributed Strategy Selection Over Graphs: Optimality and Privacy

By

Navid Rezazadeh

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2022

Professor Solmaz Kia, Chair

This dissertation contributes toward distributed strategy selection for networked mobile

agents (robots, humans, unmanned aerial vehicles, etc.) for problems where the goal is

to maximize the overal utility of the agents. The objective is the design of infrastructure-

free decentralized cooperative decision-making algorithm that can have a robust performance

in encountering uncertainties of the system. The main driving application of this work is

cooperative strategy selection solutions for tasks such as distributed area patrolling, persis-

tent monitoring, sensor placement, and route selection where avoiding action overlaps and

maximizing the performance of the agents is challenging. This dissertation work is an effort

to design a decentralized strategy selection algorithm relying on the local processing power

of the agents and the communication network among them.

To motivate our work, We study the problem of persistent monitoring of the finite num-

ber of inter-connected geographical nodes for event detection via a group of heterogeneous

mobile agents. We tie a utility function to the maximum reward available in each point of

interest and use it in our strategy selection algorithm to incentivize the agents to visit the

geographical nodes with higher rewards. We show that the design of an optimal monitoring

policy to maximize the gathered reward over a mission horizon is an NP-hard problem. By

showing that the reward function is a monotone increasing and submodular set function, we

xv



formulate a general utility maximization problem as maximizing a submodular set function

subject to partition matroid. We then proceed to propose a suboptimal strategy selection

algorithm with known optimality bound. We work in the value oracle model where the only

access of the agents to the utility function is through a black box that returns the utility

function value. The agents are communicating over a connected undirected graph and have

access only to their own strategy set. Hence, our objective is to propose a polynomial-time

distributed algorithm to obtain a suboptimal solution with guarantees on the optimality

bound. Our proposed algorithm is based on a distributed stochastic gradient ascent scheme

built on the multilinear-extension of the submodular set function. We use a maximum con-

sensus protocol to minimize the inconsistency of the shared information over the network

caused by a delay in the flow of information while solving for the fractional solution of the

multilinear extension model. Furthermore, we propose a distributed framework for finding

a set solution using the fractional solution. We show that our distributed algorithm results

in a strategy set that when the team objective function is evaluated at the worst case the

objective function value is in 1 − 1/e of the optimal solution. However, our proposed com-

munication protocol trivially informs adversarial elements on the selected strategies by the

agents. Our next contribution is to design a distributed algorithm that enables each agent

to find a suboptimal policy locally with a guaranteed level of privacy. We base our modified

algorithm’s privacy preservation characteristic on our proposed stochastic rounding method

and tie the level of privacy to the variable γ ∈ [0, 1]. That is, the policy choice of an agent

can be determined with the probability of at most γ. We show that our distributed algo-

rithm results in a strategy set that when the team’s objective function is evaluated in the

worst case, the objective function value is in 1 − (1/e)h(γ) − O(T ) of the optimal solution,

highlighting the interplay between level of optimality gap and guaranteed level of privacy.

To address the problem of decreased performance bound as the result of increased privacy

levels we explore other methods of privacy preservation. We particularly study the privacy

preservation methods in consensus-based communication protocols. We study the problem

xvi



of privacy preservation of the continuous-time Laplacian static average consensus algorithm

using additive perturbation signals. We consider this problem over a strongly connected and

weight-balanced digraph. Starting from a local reference value, in static average consensus

algorithm, each agent constantly communicates with its neighboring agents to update its

local state to compute the average of the reference values across the network. Since every

agent transmits its local reference value to its in-neighbors, the reference value of the agents

is trivially disclosed. We investigate the possibility of preserving the privacy of the reference

value of the agents by adding admissible perturbation signals to the local dynamics and the

transmitted out signals of the agents. Admissible additive perturbation signals are those

signals that do not perturb the final convergence point of the algorithm from the average of

the reference values of the agents. Our results show that if an adversarial agent has access to

the output of another agent and all the input signals transmitted to that agent, the adversary

can discover the private reference value of that agent, regardless of the perturbation signals.

Otherwise, the privacy of the agent can be preserved. Our proposed randomized distributed

strategy selection is prone to requiring an excessive number of samples in special scenar-

ios. To address this problem, we look into reusing offline samples and modeling the system

through neural networks. However, neural networks are notorious to be unpredictable and

therefore not suitable to be used in dynamic systems. We proposed a method of certifying

neural networks in the context of dynamical systems and policy-making using contraction

theory to address the problem of uncertainty.
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Chapter 1

Introduction

1.1 Motivation

In extension of cities and technology there is always a need for surveillance to monitor for

incidences of interest. Traditionally, the surveillance systems are stationary and usually

cover limited areas. The cost and communication bandwidth limitation bounds the number

of the stationary sensors that can be deployed. To solve the coverage within the limits of the

system, use of mobile sensors, e.g. aerial sensors, which the infrastructure can move within

the urban area is of interest. Hence, it is of profound importance to design a dispatch policy

that orchestrates the topological distribution of a set of mobile sensors such that the best

service for a global monitoring task is obtained with a reasonable computational cost. Long

term multi-agent patrolling of an area offers a low cost and effective monitoring solution for

applications such as discovering forest fires and oil spillage in their early stages, and locating

endangered animals in a large habitat.

Closed-form optimal monitoring policies and strategies could exist when some constraints

are place on the problem. However, operational uncertainties such as node/route/agent
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appearance and removal are inevitable during a long term persistent monitoring. Based on

the area where agents are deployed, dropping the constraints and modeling the context-

related uncertainties can yield a more robust and reliable patrolling strategy while making

the calculation of an optimal long term patrolling strategy intractable. Hence, one approach

of solving these class of problems is finding sub-optimal strategies with known optimality

gap. The problem becomes even more challenging when the agents are asked to cooperatively

decide on their strategy through talking to each other over a communication graph. The

cooperation is necessary to reduce the overlap of the agents’ actions.

While decentralized solutions have been shown to be more efficient and resilient in the face

of uncertainty, several issues are constantly at the forefront of this class of solutions. Because

agent collaboration necessitates the transmission of information, adversary actors might tap

into the communication network and coordinate attacks against the agents. As a result, in

order to get agents to engage in a suggested distributed system, their privacy concerns must

be adequately handled. This dissertation is an attempt to solve the problem of distributed

strategy selection with a focus on privacy issues.

1.2 Literature Survey

In this section, we review the state-of-art distributed mobile sensor dispatch and networked

strategy selection results in the literature. Then we move to reviewing the privacy preserva-

tion algorithms in the networked systems. Finally, we review some recent results on the use

of certified deep learning methods in modeling and control of complex dynamic systems and

later we discuss how it can be a start point for future work.
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1.2.1 Distributed Monitoring

In recent years, coordinating the movement of mobile sensors to cover areas that have not

been adequately sampled/observed has been explored in controls, wireless sensors and robotic

communities with problems related to coverage, exploration, and deployment. Many of the

proposed algorithms strive to spread sensors to desired positions to obtain a stationary con-

figuration such that the coverage is optimized, see e.g.,[5, 6, 7, 8, 9, 10, 11, 12]. Some sensor

placement problems such [8, 10, 11, 12] are context-aware, and include also a period of explo-

ration and observation to increase the knowledge used to find the optimal residing position

of the sensors. In this thesis, instead of aiming to achieve an improved stationary network

configuration as the end result of the sensors’ movement, our objective is to explore context-

aware mobility strategies that dynamically reposition the mobile sensors to maximize their

utilization and contribution over a mission horizon. Motivating applications include persis-

tent monitoring to discover forest fires [13] or oil spillage in its early stages [14], locating

endangered animals in a large habitat [15] and event detection in urban environments [16].

Specifically, we consider a persistent monitoring of a set of finite V inter-connected geograph-

ical nodes via a set of finite A mobile sensors/agents, where |V| > |A|. The mobile agents

are confined to a set of pre-specified edges E ⊂ V × V , e.g., aerial or ground corridors, to

traverse from one node to another, see Fig. 1.1. Depending on their vehicle type, agents may

have to take different edges to go from one node to another. Also, they may have different

travel times along the same edge. We study dispatch policy that orchestrates the topologi-

cal distribution of the mobile agents such that an optimized service for a global monitoring

task is provided with a reasonable computational cost. To quantify the service objective

we assign to each node v ∈ V the reward function Rv(t) composed of nonnegative concave

and increasing function of time. For example, in data harvesting or health monitoring, the

concave function can be weighted idle time of the node v or in event detection, it can be

the probability of at least one event taking place at inter-visit times. Optimal patrolling
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Figure 1.1 – Examples of a set of geographical nodes of interest and the edges between them spread

in a forest with a few mobile sensors dispatched to detect the location of possible fires.

designs a dispatch policy (what sequence of nodes to visit at what times by which agents)

to score the maximum collective reward for the team over the mission horizon. However, as

we explain below, this problem is NP-hard. Our aim then is to design a suboptimal solution

that has polynomial time complexity.

Dispatch policy design for patrolling/monitoring of geographical nodes can be divided into

two categories: the edges to travel between the nodes are not specified (design in continuous

edge space) or otherwise (design in discrete edge space). When there are no prespecified

inter-node edges, the optimal patrolling policy design includes also finding the optimal inter-

node trajectories that the agents should follow without violating their mobility limits. In

some applications, however, the mobile agents are confined to travel through pre-specified

known edges between the nodes. For example, in a smart city setting, regulations can

4



restrict the admissible routes between the geographical nodes. In the dispatch policy design

in discrete edge space, the complexity of finding the optimal policy for a single patrolling

agent is the same as the complexity of solving the Traveling Salesman problem, where the

computational complexity grows exponentially with the number of the nodes [17]. In case

of multiple patrolling agents, the problem is even more complex, since each agent’s policy

design depends on the other agents’ policy. This problem is formalized in earlier studies

such as [18, 19]. Generally, when there are multiple edges to travel between every two

nodes or when each node is connected to multiple other nodes, finding an optimal long term

patrolling scheme is not tractable. Constraining the agents to travel through specific edges

to traverse among the geographical nodes allows seeking optimal solutions for the problem.

For example, when the connection topology between the geographical nodes is a path or a

cyclic graph, optimal solutions for the problem are proposed in [20, 21, 22, 23]. To overcome

the complexity issue on generic graphs, [24] explores forming different cycles in the graph

and assigning agents to these cycles to patrol the nodes periodically and seeks to minimize

the time that a node stays un-visited. Alternatively, [25] proposes agents to move to the

most rewarding neighboring node based on their current location.

We propose a robust and suboptimal solution to the long term patrolling problem that we

stated earlier. Instead of using the customary idle time, t, as a reward function, which reduces

the optimal dispatch policy design to the minimum latency problem [26], we consider reward

functions described by an increasing concave function. This allows modeling a wider class of

patrolling problems such as patrolling for event detection. We let the utility function to be

the sum of the rewards collected over the mission horizon by the mobile agents. We discuss

that the design of optimal patrolling policy to maximize this utility over the mission horizon is

an NP-hard problem. Specifically, we show that the complexity of finding the optimal policy

increases exponentially with the mission horizon and number of agents. Next, we show that

the utility function is a monotone increasing and submodular set function. To establish

this result, we develop a set of auxiliary lemmas based on the Karamata’s inequality [27].
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Given the submodularity of the utility function, we propose a receding horizon sequential

greedy algorithm to compute a suboptimal dispatch policy with a polynomial computation

cost and guaranteed bound on optimality. The receding horizon nature of our solution

induces robustness to uncertainties of the environment. Our next contribution is to add

a new term to our utility function to compensate for the shortsightedness of the receding

horizon approach, see Fig. 2.2. When agents patrol a large set of inter-connected nodes,

this added term becomes useful by giving them an intuition of the existing reward in the

farther nodes. In recent years, submodular optimization has been widely used in sensor and

actuator placement problems [6, 7, 28, 29, 30, 31]. In comparison to the sensor/actuator

placement problems, the challenge in our work is that the assigned policy per each mobile

agent over the receding horizon is a dynamic scheduling problem rather than a static sensor

placement. To deal with this challenge, we use the matroid constraint [32] approach to

design our suboptimal submodular-based policy. Finally, we discuss how our algorithm can

be implemented in a decentralized manner. A simulation study demonstrates our results.

Our notation is standard, though to avoid confusion, certain concepts and notation are

defined as the need arises.

1.2.2 Distributed Strategy Selection

Modern industries such as transportation, supply chain, energy, and finance are moving

fast towards modular and distributed operations where communicating smart sub-systems

are expected to coordinate their actions for the optimal operation of the entire system.

Optimal strategy selection problems for these networked systems often appear as combi-

natorial optimization problems where the objective function is a submodular set function.

Some example cases include sensor and actuator placement problems [28, 33], energy storage

placement [34, 35], measurement scheduling [36], voltage control in smart grid [37], persistent

monitoring via mobile robots [38]. For reasons such as robustness, scalability, privacy preser-
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vation, and avoiding a single failure point, these optimal decision-making problems are highly

desired to be solved in a distributed manner. While there has been a plethora of work in de-

veloping central solutions for submodular maximization, satisfactory distributed algorithmic

solutions for in-network submodular maximization problems where agents communicate over

a graph have remained elusive. in this thesis, we consider a distributed strategy selection

problem that is modeled as submodular maximization subject to partition matriod. We seek

a distributed solution in which the agents communicate over a connected undirected graph.

Submodular function maximization: A set function f : 2P → R≥0 defined on the ground set

P is submodular if ∀S ⊂ T ⊂ P , and p ∈ P \ T we have

f(S ∪ {p})− f(S) ≥ f(T ∪ {p})− f(T ). (1.1)

Submodular set functions naturally possess the diminishing returns property, i.e., the gain

of adding a particular element p to a set decreases or stays the same as the size of the set

increases. Submodularity is an inherent property in many practical utility/objective func-

tions such as weighted coverage functions, facility location service function, entropy, and

mutual information functions, which appear in strategy selection problems such as sensor

placement, measurement scheduling, workforce hiring, and database sampling [39]. Unlike

minimization of submodular functions that can be done in polynomial time [40, 41], submod-

ular function maximization problems are NP-hard [42]. Luckily, submodularity is a property

of set functions with deep theoretical consequences that enables establishing constant factor

approximate (suboptimal solutions) for submodular maximization problems. Research on

problems involving the maximization of monotone submodular functions dates back to the

work of Nemhauser, Wolsey, and Fisher in the 1970’s [42, 43, 44]. A fundamental result by

Nemhauser et al. [42] establishes that the simple sequential greedy algorithm is guaranteed

to provide a constant 1/2-approximation factor solution for submodular maximization sub-

ject to matroid constraints. The sequential greedy algorithm reaches the final solution by
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sequentially finding the best current decision based on the decisions made previously and

without considering the consequences or interactions with future decisions. These bounds

can be made tighter with additional knowledge on the diminishing return property of the

submodular objective function quantified by total curvature c ∈ [0, 1] [45]. For example [45]

shows that the constant factor approximation for submodular maximization subject to a

matroid constraint is 1
1+c

[45].

More recently, another suboptimal solution for submodular maximization subject to ma-

troid constraints with an improved optimality gap is proposed in the literature using the

multilinear continuous relaxation of a submodular set function [4, 46, 47, 48, 49]. The

relaxation transforms the discrete problem into a continuous optimization problem with

linear constraints. Then, a continuous gradient-based optimization algorithm referred to

as continuous greedy algorithm, is used to solve the continuous optimization problem. A

suboptimal solution for submodular maximization subject to matroid constraint with the

improved constant-factor approximation of (1− 1/e) then is obtained by proper rounding of

the continuous-domain solution [4, 46]. This approach however requires a central authority

to solve the problem. It is worth noting that the literature has shown that for monotone sub-

modular functions, it is computationally hard to approximate this problem within a factor

better than 1− 1/e ≈ 0.63% [50].

Distributed submodular function maximization: In multi-agents setting, for example, multi-

agent sensor placement problems where the agents are self-organizing autonomous mobile

agents with communication and computation capabilities, it is desired to solve the strategy

selection problems modeled as constrained submodular maximization problems in a dis-

tributed way without involving a central authority. The problems in distributed settings

can be divided into two categories: distributed constraint problems and distributed utility

problems. In a distributed constraint problem there is a shared utility but each agent has to

choose its strategy from a local constraint set that is disjoint from other agents’ and is only
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known to the agent. An example is the heterogeneous coverage problem where each agent

has a set of heterogeneous sensors while the area to cover is shared among them. The agents

should decide what sensor(s) each to deploy to maximize the area coverage as a team. In

distributed utility problems, however, the team’s utility function is the sum of the separable

local utilities and agents choose their strategies from a shared strategy set. An example case

is the optimal Welfare problem [4] where each agent should make strategy choices from a

joint set such that the sum of local utilities is maximized. Our focus in this thesis is on

distributed solution design for a fragmented-constraint submodular maximization problem.

For distributed constraint problems, the sequential greedy algorithm can be implemented in

a decentralized way through sequential message-passing or via sequential message-sharing

through a cloud [38]. However, a decentralized sequential greedy algorithm comes with

communication routing overhead. For agents communicating over a connected graph, im-

plementing sequential message-passing requires finding the Hamiltonian path (a connected

path that visits every agent on the graph only once) which is an NP-hard problem to solve.

If Hamiltonian path does not exist in a graph, a path that visits the agents in least frequent

times should be identified for communication efficient sequential message-passing. Moreover,

it is shown that the order of sequence changes the actual approximation factor of the solution

obtained by the sequential greedy algorithm [51]. The complexity of finding the sequence

that delivers the best solution increases exponentially as the size and the connectivity of

the communication network increases. Several attempts have been also undertaken to adapt

the sequential greedy algorithm for large-scale submodular maximization problems by re-

ducing the size of the problem through approximations [52] or using several processing units

to achieve a faster sequential greedy algorithm, but with some sacrifices on the optimality

bound [53, 54, 55, 56]. However, these decentralized implementations are mainly intended

for parallel processing purposes and are not extendable to decentralized operations when

agents communicate over connected graphs.
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Some attempts have also been made in devising distributed solutions for submodular max-

imization using multi-linear extension approaches. For the class of distributed utility func-

tions semi-distributed and fully distributed solutions with an optimality gap close to (1−1/e)

is studied in [57, 58, 59]. However, for the class of distributed constraint problems, the re-

sults in the literature are rather limited. For the special class of submodular set functions

with curvature c = 1 , and when each agent is limited to choose only a single strategy from

its own strategy set, [2] has proposed an average consensus-based distributed algorithm to

the maximization problem over connected graphs. The solution of [2] requires a closed-form

expression of the multi-linear extension function. However, the computational complexity

of constructing the closed-form of multi-linear extension of a submodular function and its

derivatives increases exponentially with the size of the strategy set. Moreover, the result

also depends on a centralized rounding scheme.

In this thesis, motivated by the improved optimality gap of the multilinear continuous

relaxation-based algorithms, we develop a distributed implementation of the algorithm of [46]

over a connected undirected graph. Particularly, we consider a distributed submodular set

function maximization problem formulated by a shared utility function and disjoint strat-

egy sets (fragmented-constraint class). Moreover, in our setup, the agents are allowed to

choose multiple strategies from their strategy sets. We propose a gradient-based algorithm,

which uses a maximum consensus scheme over the communication graph and results in a

distributed implementation of the continuous greedy algorithm. The multi-linear extension

function of a submodular function, as we review in Section 3.2, is equivalently the expected

value of the submodular function evaluated at random sets obtained by picking strategies

from the strategy set independently with a probability. This stochastic interpretation al-

lows approximating the multi-linear extension function and its derivatives empirically with

a reasonable computational cost via sampling from the strategy set [46]. Of course, as

expected, this approach comes with a penalty on the optimality gap that is inversely pro-

portional to the number of samples. In our algorithm, to manage the computational cost
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of constructing the multilinear extension of the utility function and its derivatives, we use

a sampling-based evaluation of the multilinear extension. Our careful analysis captures the

effect of this approximation on our algorithm’s optimally gap. We complete our solution

by designing a distributed rounding procedure that computes the final suboptimal strategy

of each agent. Rounding procedures, either deterministic or randomized, are widely used

in the design and analysis of combinatorial optimization algorithms solved by continuous

relaxation/approximation algorithms. Rounding procedures convert an optimal solution of

a relaxed problem into an approximately optimal solution to the original problem. Pipage

rounding [60] and randomized Pipage rounding [46] are examples of such procedures. How-

ever, these methods are designed for central submodular maximization solvers and do not

trivially extend to the distributed settings. In a distributed setting, generally, the round-

ing procedure requires extra coordinating communication between the agents. However,

our choice of maximum consensus algorithm as the agreements protocol between the agents

removes the need for further communication. We show that after the coordination of the

agents through maximum consensus for a given period of time, each agent can use a local

randomized Pipage procedure to reach a deterministic set of strategies as its local solution

without the necessity to interact with other agents. Furthermore, we show that the resulting

global suboptimal strategy generated by our distributed algorithm lies in the feasible con-

straint set. Through rigorous analysis which takes into account the total curvature of the

utility function, we show that our proposed distributed algorithm in finite time T achieves,

with a known probability, a 1
c
(1 − e−c) − O(1/T ) optimality bound, where 1/T is the step

size of the algorithm and the frequency at which agents communicate over the network. A

numerical example demonstrates our results.
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1.2.3 Private Strategy Selection

We consider a group of A, |A| = N agents with communication and computation capabili-

ties, interacting over a connected undirected graph G(A, E). Each agent a ∈ A has a distinct

discrete policy set Pa and wants to choose κa∈Z≥1 policies from its policy set such that a

monotone increasing and submodular utility function f : 2P → R≥0, P=
⋃

a∈APa, evaluated

at all the agents’ policy selection is maximized1 While seeking a distributed solution for this,

each agent wants to have a formal guarantee that its final policy choice stays private. Even

though a distributed solution eliminates the necessity of information aggregation in a cen-

tral location, inter-agent communication can still expose distributed network operations to

adversarial eavesdroppers. These adversaries can be other agents in the network or outside

eavesdroppers that intercept communication messages. Because in problem (4.1) the agents

have joint utility function, privacy preservation is particularly a challenging problem. This

problem falls in the so-called distributed-constraint submodular maximization class of prob-

lems in networked systems. In a distributed-constraint problem, there is a shared utility, but

each agent has to choose its strategy from a local constraint set that is disjoint from other

agents and is only known to the agent [2, 51, 61, 62, 63, 64]. An example is the heteroge-

neous coverage problem where each agent has a set of heterogeneous sensors while the area

to cover is shared among them [39]. This is different than the distributed-utility problems

such as Welfare problem [4] where the team’s utility function is the sum of the separable

local utilities, and agents choose their strategies from a shared strategy set [57, 58, 59].

Submodular maximization subject to matroid constraint is an NP-hard problem [42]. How-

ever, thanks to the inherent properties of submodular functions, suboptimal solutions with

quantifiable approximation factors have been successfully proposed in the literature. The

most well-known result is the sequential greedy algorithm that dates back to the 1970s by [42],

guaranteeing 1/2-approximation factor solution for problem (4.1) when it is solved in a cen-

1For clarity, we provide a brief description of the notation and the definitions in Section ??.

12



tralized manner. The sequential greedy algorithm preset a sequence, and each agent chooses

its own best local policy given the choices of the preceding agents in the sequence. The

sequential greedy algorithm can be implemented via sequential message-passing over a con-

nected graph. However, this comes with routing overhead to identify the shortest path that

visits every agent. But more importantly, in the sequential greedy algorithm, the agents’

privacy is breached as each agent passes its local policy set to those proceeding it in the

message-passing sequence.

More recently, another suboptimal solution for submodular maximization subject to matroid

constraints with an improved approximation factor tor of (1−1/e) is proposed [4, 46, 47, 48,

49]. This method relies on the use of continuous relaxation using a multilinear extension of

submodular set functions and matroid polytope. The continuous relaxation is solved using a

gradient ascent algorithm, and the integer solution then is rounded using appropriate round-

ing procedures such as Pipage rounding [60] or randomized Pipage rounding [46]. Besides

its improved optimality gap, this approach has been shown to be amenable for distributed

implementations that use synchronous inter-neighbor communication both for distributed-

constraint problems [2, 61, 62] and distributed-utility problems [57, 58, 59]. However, none

of the existing work in distributed submodular maximization addresses the privacy preser-

vation of the agents formally. Our privacy preservation mechanism is different than existing

perturbation methods for distributed algorithms such as differential privacy [65, 66], which

rely on adding additive noises to the inter-agent communication massages. Differential pri-

vacy has also been the main approach in centralized submodular maximization problems

subject to cardinality constraint [67, 68] and matroid constraint [69]. Instead of adding

noises to data or inter-agent communications, the innovation in our work is to base our

privacy preservation mechanism on our proposed stochastic rounding method and tie the

level of privacy to a variable γ ∈ [0, 1]. γ defines the probability an agent’s policy choice

can be determined. We show that our distributed algorithm results in a strategy set that

when the team’s objective function is evaluated at worst case, the objective function value
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is in 1−(1/e)1−κmax
√
1−γ−O(T ), κmax = max

a∈A
κa of the optimal solution in value oracle model,

highlighting the interplay between level of optimality gap and guaranteed level of privacy.

1.2.4 Privacy of Networked Systems

Decentralized multi-agent cooperative operations have been emerging as effective solutions

for some of today’s important socio-economical challenges. However, in some areas involving

sensitive data, for example in smart grid, banking or healthcare applications, the adaption

of these solutions is hindered by concerns over the privacy preservation guarantees of the

participating clients. Motivated by the demand for privacy preservation evaluations and

design of privacy-preserving augmentations for existing decentralized solutions, in this work

we consider the privacy preservation problem in the distributed static average consensus

problem using additive obfuscation signals.

The static average consensus problem in a network of agents each endowed with a local

static reference value consists of designing a distributed algorithm that enables each agent to

asymptotically obtain the average of the static reference values across the network. The solu-

tions to this problem have been used in various distributed computing, synchronization, and

estimation problems as well as control of multi-agent cyber-physical systems. The average

consensus problem has been studied extensively in the literature (see e.g., [70, 71, 72], [73]).

The widely adopted distributed solution for the static average consensus problem is the sim-

ple first-order Laplacian algorithm in which each agent initializes its local dynamics with its

local reference value and transmits this local value to its neighboring agents. Therefore, the

reference value is readily revealed to the outside world, and thus the privacy of the agents

implementing this algorithm is trivially breached. This work studies the multi-agent static

average consensus problem under the privacy preservation requirement against internal and

external passive eavesdroppers in the network. By passive, we mean agents that only listen
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to the communication messages and want to obtain the reference value of the other agents

without interrupting the distributed operation. The solution we examine is to induce pri-

vacy preservation property by adding obfuscation signals to the internal dynamics and the

transmitted output of the agents.

Privacy preservation solutions for the average consensus problem have been investigated in

the literature mainly in the context of discrete-time consensus algorithms over connected

undirected graphs. The general idea is to add obfuscation signals to the transmitted out

signal of the agents. For example, in one of the early privacy-preserving schemes, Kefay-

ati, Talebi, and Khalaj [74] proposed that each agent adds a random number generated by

zero-mean Gaussian processes to its initial condition. This way the reference value of the

agents is guaranteed to stay private but the algorithm does not necessarily converge to the

anticipated value. Similarly, in recent years, Nozari, Tallapragada and Cortes [75] also relied

on adding zero-mean noises to protect the privacy of the agents. However, they develop their

noises according to a framework defined based on the concept of differential privacy, which

is initially developed in the data science literature [76, 77, 78, 79]. In this framework, [75]

characterizes the convergence degradation and proposes an optimal noise in order to keep

a level of privacy to the agents while minimizing the rate of convergence deterioration. To

eliminate deviation from desired convergence point, Manitara and Hadjicostis [80] proposed

to add a zero-sum finite sequence of noises to the transmitted signal of each agent, and

Mo and Murray [3] proposed to add zero-sum infinite sequences. Because of the zero-sum

condition on the obfuscation signals, however, [80] and [3] show that the privacy of an agent

can only be preserved when the eavesdropper does not have access to at least one of the

signals transmitted to that agent. Additive noises have also been used as a privacy preser-

vation mechanism in other distributed algorithms such as distributed optimization [65] and

distributed estimation [81, 82]. A thorough review of these results can be found in a recent

tutorial work [83]. For the discrete-time average consensus, on a different approach, [84] uses

a cryptographic approach to preserve the privacy of the agents. Moreover, [85] proposes to
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use the dynamic average consensus algorithm of [86] as a privacy-preserving algorithm for

the average consensus problem.

We consider the problem of privacy preservation of the continuous-time static Laplacian

average consensus algorithm over strongly connected and weight-balanced digraphs using

additive obfuscation signals. Similar to the reviewed literature above, in our privacy preser-

vation analysis, we consider the extreme case that the eavesdroppers know the graph topol-

ogy. But, instead of stochastic obfuscations, here we use deterministic obfuscations signals.

These obfuscations are in the form of continuous-time integrable signals that we add to the

transmitted out signal of the agents are also to the agreement dynamics of the agents. We

refer to the obfuscation signals that do not disturb the final convergence point of the algo-

rithm as admissible obfuscation signals. In our approach, instead of using by the customary

zero-sum vanishing additive admissible signals, we start by carefully examining the stability

and convergence proprieties of the static average consensus algorithm in the presence of the

obfuscations to find the necessary and sufficient conditions on the admissible obfuscation

signals. The motivation is to explore whether there exist other types of admissible obfusca-

tion signals that can extend the privacy preservation guarantees. An interesting theoretical

finding of our study is that the admissible obfuscation signals do not have to be vanishing.

Also, we show that the necessary and sufficient conditions that specify the admissible ob-

fuscation signals of the agents are highly coupled. We discuss how the agents can choose

their admissible obfuscation signals locally with or without coordination among themselves.

The conditions we obtain to define the locally chosen admissible obfuscation signals are cou-

pled through a set of under-determined linear algebraic constraints with constant scalar free

variables.

Understanding the nature of the admissible obfuscation signals is crucial in the privacy

preservation evaluations, as it is rational to assume that the eavesdroppers are aware of the

necessary conditions on such signals and use them to breach the privacy of the agents. In
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our study, we evaluate the privacy preservation of the Laplacian average consensus algorithm

with additive obfuscation signals against internal and external eavesdroppers, depending

on whether the coupling variables of the necessary conditions defining the locally chosen

admissible obfuscation signals are known to the eavesdropper or not. This way, we study

privacy preservation against the most informed eavesdroppers and also explore what kind

of guarantees we can provide against less informed eavesdroppers that do not know some

parameters. We show that when the coupling variables are known to the eavesdroppers, they

can use this extra piece of information to enhance their knowledge set to discover the private

value of the other agents. In this case, our main result states that the necessary and sufficient

condition for an eavesdropper to be able to identify the initial value of another agent is to

have direct access to all the signals transmitted to and out of the agent. When this condition

is not satisfied, the privacy guarantee is that the eavesdropper not only cannot obtain the

exact reference value but also cannot establish an estimate on it. Precisely, to show that any

agent i is private, we show that across the network there are arbitrarily different reference

values, including for agent i, for which the signals received by the eavesdropper is exactly the

same as those corresponding to the initializing the algorithm at the actual reference values.

This shows that the use of deterministic obfuscation signals results in a stronger privacy

guarantee than the stochastic approaches such as ϵ-differential privacy [75] and of [3] where

even though the exact reference value is concealed, an estimate on the reference value can

be obtained, see, e.g., [3, Fig. 4].

Our next contribution is to design asymptotic observers that internal and external eavesdrop-

pers that have access to all the input and output signals of an agent can use to identify that

agent’s initial condition. For these observers, we also characterize the time history of their

estimation error. Our results show that external eavesdroppers need to use an observer with

a higher numerical complexity to compensate for the local state information that internal

eavesdroppers can use. As another contribution, we identify examples of graph topologies

in which the privacy of all the agents is preserved using additive admissible obfuscation sig-
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nals. On the other hand, if the coupling variables of the necessary conditions defining the

locally chosen admissible obfuscation signals are unknown to the eavesdroppers, we show

that the eavesdroppers cannot reconstruct the private reference value of the other agents

even if they have full access to all the transmitted input and output signals of an agent. We

use input-to-state stability (ISS) results (see [87, 88]) to perform our analysis.

A preliminary version of our work has appeared in [89]. In this work the results are extended

in the following directions: (a) we derive the necessary and sufficient conditions to charac-

terize the admissible signals; (b) we study privacy preservation also with respect to external

eavesdroppers; (c) we consider a general class of a set of measurable essentially bounded

obfuscation signals; (d) we improve our main result from sufficient condition to necessary

and sufficient condition.

1.2.5 Certified Neural Networks

While learning-based controllers have achieved significant success, they still lack safety guar-

antees. For instance, in general, the temporal evolution of a robot’s trajectories under

a learned policy cannot be certified. On the other hand, when a system’s dynamics are

known, control-theoretic properties, such as stability and contraction, directly examine the

temporal progression of a system’s states to verify whether a system remains within a safe

set, and whether the system’s trajectories converge. In this work, we seek to enforce the

desired temporal evolution of the closed-loop system’s states while learning the policy from

an offline set of data, i.e. we seek to learn control policies such that under the learned policy,

the convergence of a robot’s trajectories is achieved.

To achieve such trajectory convergence, our design approach leverages Contraction the-

ory [90]. Contraction theory provides a framework for identifying the class of nonlinear

dynamic systems that have asymptotic convergent trajectories. Intuitively, a region of the
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Figure 1.2 – The schematic of two neighboring trajectories that exhibit contraction. The distance

between the trajectories decreases over time: ∥δxt+1∥ < ∥δxt∥, i.e. trajectories converge.

state space is a contraction space if the distance between any two close neighboring trajec-

tories decays over time. This notion of convergence is relevant to many robotic tasks such

as tracking controllers where we want a robot to either reach a goal or track a reference

trajectory. In this work, we want to learn policies from offline data such that they achieve

convergence of a robot’s trajectories in closed loop. While contraction theory provides a sim-

ple and intuitive characterization of convergent trajectories, finding the distance metric with

respect to which a robot’s trajectories exhibit contraction – which is called the contraction

metric – is often non-trivial. To address this challenge, we propose to jointly learn the robot

policy and its corresponding contraction metric.

We learn the robot dynamics model from an offline data set consisting of the robot’s state

and input trajectories. This setting is similar to the setting of offline model-based reinforce-

ment learning (RL) where a dynamics model and a policy are learned from a set of robot

trajectories that are collected offline. Learning from offline data is appropriate for safety-

critical applications where online data collection is dangerous [91]. We learn a dynamics

model of the system from the data and propose a data augmentation algorithm for learning

contraction policies. Randomly sampled states are propagated forward in time through the

learned dynamics model to generate auxiliary sample trajectories. We then learn both our

policy and our contraction metric such that the distance between the robot trajectories from

the data set and the auxiliary sample trajectories decreases over time. Learning contraction
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policies is particularly relevant to offline RL as it allows us to regard the errors in the learned

dynamics model as external disturbances and obtain a tracking error bound in regions where

the learning errors of the dynamics model are bounded [92, 93].

We evaluate the performance of our proposed framework on a set of simulated robotic goal-

reaching tasks. The performance of our proposed framework is compared with a number of

control algorithms. We demonstrate that as a result of enforcing contraction, the robot’s

trajectories converge faster to the goal position with a higher degree of accuracy. It is

further shown that learning contraction policies increases the robustness of the learned policy

with respect to learned dynamics model mismatch, i.e. enforcing contraction increases the

robustness of the learned policies. In summary, our contributions are the following:

• We propose a framework for learning convergent robot policies from an offline data set

using Contraction theory.

• We develop a data augmentation algorithm for learning contraction policies from the

offline data set.

• We provide a formal analysis for bounding contraction policy performance as a function

of dynamics model mismatch.

• We perform numerical evaluations of our proposed policy learning framework and

demonstrate that enforcing contraction results in favorable convergence and robust-

ness performance.

For systems with unknown dynamics, several offline RL algorithms have been developed

recently which either directly learn a policy using an offline data-set [94, 95, 96, 97] or

learn a surrogate dynamics model from the offline data to learn an appropriate policy [98,

99]. However, the majority of such RL algorithms lack formal safety guarantees, and the

convergent behavior of the learned policies is not certified [100, 101].
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When the system dynamics are known, robust and certifiable control policy design can be

achieved through various control-theoretic methods such as reachability analysis [102], Fun-

nels [103, 104], and Hamilton-Jacobi analysis [105, 106]. Lyapunov stability criteria, Con-

traction Theory, and Control Barrier Functions have been extensively utilized for providing

strong convergence guarantees for nonlinear dynamical systems [90, 107, 108, 109, 110]. How-

ever, even when the dynamics are known, finding a proper Lyapunov function or a control

barrier function is itself a challenging task. To address these challenges, learning algorithms

have been utilized for learning the Lyapunov and Control Barrier Functions [111, 112, 113].

[100] and [114] propose to learn contraction metrics to find contraction control policies for

known systems.

Various recent works have considered combining control-theoretic tools with learning algo-

rithms to enable learning safe policies even when dynamics are unknown. [115, 116] consider

learning stable dynamics models. In [117], Contraction theory is used to learn stabilizable

dynamics models of unknown systems. In [101, 118], Lyapunov functions are used for en-

suring the stability of the learned policies. [119] proposed to learn the system dynamics and

its corresponding Lyapunov function jointly to ensure the stability of the learned dynamics

model.

In this work, we consider learning contraction policies from offline data for systems with

unknown dynamics. Our work is closely related to [100] and [114], where Contraction theory

has been used for certifying convergent trajectories. The current work is different in that,

unlike these approaches where dynamics are explicitly known and assumed to be control-

affine, we consider access to only an offline data set. We assume that we can learn an

implicit model of system dynamics, in the form of a neural network function approximator,

and provide robustness guarantees with respect to the errors of the learned dynamics model.
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1.3 Objective

The objective of this dissertation work is to develop an effective infrastructure-free UWB-

based cooperative localization. The main driving application of this work is cooperative lo-

calization solutions for firefighters and first-responders in extreme indoor environments where

taking inter-agent measurements in line-of-sight (LoS) and maintaining network connectivity

are challenging. This dissertation work is end-to-end, spanning algorithm design, theoretical

modeling and analysis, testbed development, and experimental demonstrations/validation.

In cooperative localization, taking account of the correlations between agents is important

for the consistency of the algorithm. However, the exact account of cross-correlation terms

comes with high computation and communication cost, a stringent requirement on network

connectivity, and communication channel condensations. In an effort to develop practical

cooperative localization algorithms under limited connectivity, in this dissertation, we in-

vestigate loosely coupled algorithms where the correlations are accounted for in an implicit

manner by a conservative but consistent estimate of the joint covariance matrix of the team

members. We also study the design of a server-assisted loosely-coupled cooperative localiza-

tion is investigated such that the cooperative localization system can inherit the advantages

of both loosely coupled cooperative localization (high flexibility and low cost) and tightly

coupled cooperative localization (high accuracy).

Another objective of this work is the accurate modeling. We also aim to address the chal-

lenges in the proper processing of the UWB range measurements in the framework of the

our proposed cooperative localization approaches. Even though UWB offers a decimeter

level accuracy in line-of-sight (LoS) ranging, its accuracy degrades significantly in non-line-

of-sight (NLoS) due to the significant unknown positive bias in the measurements. Thus,

the measurement models for the UWB LoS and NLoS ranging conditions are different, and

proper processing of NLoS measurements requires a bias compensation measure. The state-

22



of-art bias mitigation methods require a large amount of prior information and are hard to

implement in real-time settings. Therefore, we aim to develop algorithmic bias compensa-

tion methods for UWB measurement under non-line-of-sight conditions such that they can

be implemented in real-time on small portable computing boards. On the other hand, in

practice, the measurement modal discriminators determine the type of UWB range measure-

ments with only some level of certainty. To take into account the probabilistic nature of the

NLoS identifiers, we aim to employs an interacting multiple model (IMM) estimator with in

proposed cooperative localization framework.

The last part of this dissertation work design of proper wireless communication protocol for

UWB transceivers such that they can be used as infrastructure-free communication medium

in cooperative localization. The default communication protocols of the off-the-shelf UWB

devices in the market are half-duplex, meaning that this transceivers cannot transmit (TX

mode) and receive (RX mode) data packets at the same time. In other words, packets

transmitted to a device in transmitter mode will be lost even there is no interference during

the propagation if the intended receiver is in transmitting mode. Our objective in this

work is to design a dynamic TDMA scheme as medium access control (MAC) protocol for

ultra-wideband (UWB) communication. This dynamic TDMA protocol divides the channel

access into different time slots and dynamically changes the time schedule such that the

time schedule of the agents accommodates the change of the network topology because

of the agents’ mobility. To improve energy efficiency of our inter-agent communication,

our objective is to use a negotiation-based rescheduling method motivated by the sensor

protocols information via negotiation (SPIN) protocol to schedule cooperative localization

updates selectively to reduce the communication cost while maintaining an acceptable level

of localization performance. We further improve our communication and sensing resource

management by developing a deep neural network (DNN) based measurement scheduling

method.
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1.4 Notations

We denote the vectors with bold small font. The pth element of vector x is denoted by xp or

[x]p. We denote the inner product of two vectors x and y with appropriate dimensions by x.y.

Furthermore, we use 1 as a vector of ones with appropriate dimension. We denote sets with

capital curly font. For a P = {1, · · · , n} and a vector x ∈ Rn
≥0 with 0 ≤ xp ≤ 1, the set Rx is

a random set where p ∈ P is in Rx with the probability xp. Hence, we call such vector x as

membership probability vector. Furthermore, for S ⊂ P , 1S ∈ {0, 1}n is the vector whose pth

element is 1 if p ∈ S and 0 otherwise; we call 1S the membership indicator vector of set S. |x|

is the absolute value of x ∈ R. By overloading the notation, we also use |S| as the cordiality

of set S. We denote a graph by G(A, E) where A is the node set and E ⊂ A×A is the edge

set. G is undirected if and only (i, j) ∈ E means that agents i and j can exchange information.

An undirected graph is connected if there is a path from each node to every other node in

the graph. We denote the set of the neighboring nodes of node i by Ni = {j ∈ A|(i, j) ∈ E}.

We also use d(G) to show the diameter of the graph. Given a set F ⊂ X ×R and an element

(p, α) ∈ X ×R we define the addition operator ⊕ as F⊕{(p, α)} = {(u, γ) ∈ X ×R | (u, γ) ∈

F , u ̸= p} ∪ {(u, γ +α) ∈ X ×R | (u, γ) ∈ F , u = p} ∪ {(p, α) ∈ X ×R | (p, γ) ̸∈ F}. Given a

collection of sets Fj ∈ X × R, j ∈ N , we define the max-operation over these collection as

MAX
j∈N

Fj = {(u, γ) ∈ X × R|(u, γ) ∈ F̄ s.t. γ = max
(u,α)∈F̄

α}, where F̄ =
⋃

j∈N Fj.

We denote the standard Euclidean norm of vector x ∈ Rn by ∥x∥ =
√
x⊤x, and the (essential)

supremum norm of a signal f : R≥0 → Rn by ∥f∥ess = (ess) sup{∥f(t)∥, t ≥ 0}. The set

of measurable essentially bounded functions f : R≥0 → Rn is denoted by L∞
n . The set

of measurable functions f : R≥0 → Rn that satisfy
∫ t

0
∥f(τ)∥dτ < ∞ is denoted by L1

n.

For sets A and B, the relative complement of B in A is A\B = {x ∈ A |x ̸∈ B}. For a

vector x ∈ Rn, the sum of its elements is sum(x). In a network of N agents, to emphasize

that a variable is local to an agent i ∈∈ {1, · · · , N}, we use superscripts. Moreover, if

pi ∈ R is a variable of agent i ∈∈ {1, · · · , N}, the aggregated pi’s of the network is the
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vector p = [{pi}Ni=1] = [p1, · · · , pN ]⊤ ∈ RN .

We denote 2A to be the set of all the subsets of a set A. For a set B and a singleton set {a},

for simplicity we represent B∪{a} by B∪a. Given an event set V and e ∈ V , P (e) : V → [0, 1]

denotes the probability of event e happening. We denote a sequence of m increasing real

numbers (t1, · · · , tm) (i.e., tk ≤ tk+1 for k ∈ {1, · · · ,m}) by (t)m1 . Given (t)n1 and (v)m1 we

denote by (t)n1 ⊕ (v)m1 their concatenated increasing sequence, i.e., for (u)n+m
1 = (t)n1 ⊕ (v)m1

we have that any uk, k ∈ {1, · · · , n +m} is either in (t)n1 or (v)m1 or is in both of (t)n1 and

(v)m1 . We assume that (u)n+m
1 preserves the relative labeling of (t)n1 or (v)m1 , i.e., if tk and

tk+1, k ∈ {1, · · · , n− 1} (resp. vk and vk+1, k ∈ {1, · · · ,m− 1}) correspond to ui and uj in

(u)n+m
1 , then i < j.

1.5 Preliminaries

1.5.1 Graph Theory

We review some basic concepts from algebraic graph theory following [120]. A weighted

directed graph (digraph) is a triplet G = (V , E ,A), where V = {1, . . . , N} is the node set,

E ⊆ V × V is the edge set and A = [aij] ∈ RN×N is a weighted adjacency matrix with the

property that aij > 0 if (i, j) ∈ E and aij = 0, otherwise. A weighted digraph is undirected

if aij = aji for all i, j ∈ V . An edge from i to j, denoted by (i, j), means that agent j

can send information to agent i. For an edge (i, j) ∈ E , i is called an in-neighbor of j

and j is called an out-neighbor of i. We denote the set of the out-neighbors of an agent

i ∈ V by N i
out. We define N i

out+i = N i
out ∪ {i}. A directed path is a sequence of nodes

connected by edges. A digraph is called strongly connected if for every pair of vertices

there is a directed path connecting them. We refer to a strongly connected and undirected

graph as a connected graph. The weighted out-degree and weighted in-degree of a node i, are
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respectively, diin =
∑N

j=1 aji and diout =
∑N

j=1 aij. A digraph is weight-balanced if at each

node i ∈ V , the weighted out-degree and weighted in-degree coincide (although they might

be different across different nodes). The (out-) Laplacian matrix is L = [ℓij] is L = Dout−A,

where Dout = Diag(d1out, · · · , dNout) ∈ RN×N . Note that L1N = 0. A digraph is weight-

balanced if and only if 1⊤
NL = 0. For a strongly connected and weight-balanced digraph,

rank(L) = N − 1, rank(L+ L⊤) = N − 1, and L has one zero eigenvalue λ1 = 0 and the rest

of its eigenvalues have positive real parts. We let R ∈ RN×(N−1) be a matrix whose columns

are normalized orthogonal complement of 1N . Then

T⊤LT=

0 0

0 L+

 , T=

[
1√
N
1N R

]
, L+=R⊤LR. (1.2)

For a strongly connected and weight-balanced digraph, −L+ is a Hurwitz matrix.

1.5.2 Concave Functions and Series

We develop the general auxiliary results below to use in the proof of Theorem of chapter 2.

These results show some of the properties of the sum of evaluation of a concave and increasing

function over increasing sequences and their concatenation. The decreasing sequence (δt)n1

majorizes the decreasing sequence (δv)n1 , if

δt1≥δt2≥· · ·≥δtn,

δv1≥δv2≥· · ·≥δvn,

δt1 + · · ·+ δti ≥ δv1 + · · ·+ δvi, ∀i∈{1, · · · , n− 1}

and

δt1 + · · ·+ δtn = δv1 + · · ·+ δvn
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hold.

Theorem 1.5.1 (Karamata’s inequality [27]). Let f : R → R be a concave and increasing

function. Then, if sequence (δt)n1 majorizes (δv)n1 , then f(δt1)+ · · ·+f(δtn) ≤ f(δv1)+ · · ·+

f(δvn) holds.

Lemma 1.5.1. Let f : R → R be a concave and increasing function with f(0) = 0. If

sequences (δt)n1 and (δv)m1 with n ≤ m satisfy δt1 + · · · + δti ≥ δv1 + · · · + δvi, ∀i ∈

{1, · · · , n− 1} and δt1 + · · ·+ δtn = δv1 + · · ·+ δvm then

f(δt1) + · · ·+ f(δtn) ≤ f(δv1) + · · ·+ f(δvm)

holds.

Proof. We note that the sequence (δu)m1 defined as δui = δui for i ∈ {1, · · · , n} and δui = 0

for i ∈ {n+1, · · · ,m} majorizes any sequence (δv)m1 defined in the lemma statement. Then,

since f(0) = 0, the proof follows from the Karamata’s inequality [27].

Corollary 1.5.1. Let f : R≥0 → R≥0 be a monotone increasing and concave function. Then

for any a, b, c, d ∈ R≥0 such that 0 ≤ a ≤ c and 0 ≤ b ≤ d, then

f(c) + f(d)− f(c+ d) ≤ f(a) + f(b)− f(a+ b)

holds.

Proof. The assumption is that a ≤ c and b ≤ d. Therefor, we have a+ b ≤ c+ d. By taking

a, b, c+ d and c, d, a+ b as δt’s δv’s respectively. There will be two possible cases for δt’s as

(A1) : δt1 = c+ d, δt2 = a, δt3 = b,

(A2) : δt1 = c+ d, δt2 = b, δt3 = a,
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and there will be six possible cases for δv’s as

(B1) : δv1 = a+ b, δv2 = d, δv3 = c,

(B2) : δv1 = a+ b, δv2 = c, δv3 = d,

(B3) : δv1 = d, δv2 = a+ b, δv3 = c,

(B4) : δv1 = c, δv2 = a+ b, δv3 = d,

(B5) : δv1 = c, δv2 = d, δv3 = a+ b,

(B6) : δv1 = d, δv2 = c, δv3 = a+ b.

Taking any cases of A or B, we have δt1 + δt2 + δt3 = δv1 + δv2 + δv3 = a + b + c + d.

Comparing any cases of A with any cases of B, δt1 ≥ δv1. Taking case (A1), since a > b

then we have c + d + a ≥ a + b + d and c + d + a ≥ a + b + c and also simply we have

c + d + a ≥ c + d. Therefor, Taking case A1 and comparing with any cases of B, we have

δt1 + δt2 ≥ δv1 + δv2. The same reasoning also can be done for case A2. Hence taking any

cases of A and B, we know that δt1, δt2, δt3 majorizes δv1, δv2, δv3. This results in

f(c) + f(d) + f(a+ b) ≤ f(a) + f(b) + f(c+ d)

and consequently

f(a) + f(b)− f(a+ b) ≤ f(c) + f(d)− f(c+ d).

Lemma 1.5.2. For any (q)l1, let

g((q)l1) =
∑l−1

i=1
f(∆qi),
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where ∆qi = qi+1 − qi and f be a concave and increasing function with f(0) = 0. Now,

consider two increasing sequences (t)n1 and (u)l1, and their concatenation (a)n+l
1 = (t)n1⊕ (u)l1.

Then,

g((a)n+l
1 )− g((t)n1 ) ≥ 0.

holds

Proof. If ap = t1 and aq = tn, then since (a)n+l
1 is a increasing sequence, p< q. Let the sub-

sequence of (a)n+l
1 ranging from index p to q be (v)m1 where m ≥ n. Letting ∆vi = vi+1 − vi

and ∆ti = ti+1− ti, we rearrange ∆vi’s and ∆ti’s in a descending order to form the sequences

(δv)l−1
1 and (δt)n−1

1 . Since ap = t1 and aq = tn, we have

m−1∑
i=1

∆vi =
m−1∑
i=1

δvi =
n−1∑
i=1

δti =
n−1∑
i=1

∆ti = tn − t1.

Because (a)n+l
1 = (t)n1 ⊕ (u)l1, then ∀i ∈ {1, · · · , n} there exists Si ⊂ {1, · · · ,m} such that∑

j∈Si δvj = δti, where Si ∩ Sk = ∅, i ̸= k. Consequently, for r ∈ {1, · · · ,m}, we have∑r
i=1 δvi=

∑
j∈S δtj for S⊂{1, · · · , n} and |S| ≤ r. Since (δt)n−1

1 is a decreasing sequence,

we can write ∑r

i=1
δvi ≤

∑r

i=1
δti.

Thus,

f(δt1)+· · ·+f(δtn−1)≤f(δv1)+· · ·+f(δvm−1)

holds as a result of Lemma 1.5.1. Given that

f(δt1)+· · ·+f(δtn−1)=
n−1∑
i=1

f(∆ti)

and

f(δv1)+· · ·+f(δvm−1)=
m−1∑
i=1

f(∆vi) ≤
n+1−1∑
i=1

f(∆ai),
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then
n−1∑
i=1

f(∆ti)≤
n+1−1∑
i=1

f(∆ai),

which concludes the proof.

Lemma 1.5.3. For any (q)l1, let

g((q)l1) =
∑l

i=1
f(∆qi)

where ∆qi = qi+1 − qi and f is a concave and increasing function with f(0) = 0. Now,

consider three increasing sequences (t)n1 and (v)m1 and (u)l1 and concatenations (a)n+l
1 =

(t)n1 ⊕ (u)l1 and (b)m+l
1 = (v)m1 ⊕ (u)l1 where (v)m1 is a sub-sequence of (t)n1 , then

(
g((b)m+l

1 )− g((v)m1 )
)
−
(
g((a)n+l

1 )− g((t)n1 )
)
≥ 0.

Proof. Let the sequence (u)p1 be the first p elements of (u)l1. Then, we can form

∆Sp =
(
g((v)m1 ⊕ (u)p1)− g((v)m1 ⊕ (u)p−1

1 )
)

−(
g((t)n1 ⊕ (u)p1)− g((t)n1 ⊕ (u)p−1

1 )
)
,

where (u)01 to be an empty sequence with no members. Since (v)m1 is a sub-sequence of (t)n1

and (u)p1 having one member more over (u)p−1
1 , then we have

∆Sp = (f(∆S1) + f(∆S2)− f(∆S1 +∆S2))

−

(f(∆S3) + f(∆S4)− f(∆S3 +∆S4))

with 0 ≤ ∆S3 ≤ ∆S1 and 0 ≤ ∆S4 ≤ ∆S2. From Corollary 1.5.1, we can conclude that
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∆Sp ≥ 0. Then, given

l∑
p=1

∆Sp=
(
g((b)m+l

1 )−g((v)m1 )
)
−
(
g((a)n+l

1 )− g((v)m1 )
)
,

the proof is concluded.

1.5.3 Submodular Functions

A set function f : 2P → R≥0 is monotone increasing if f(P1) ≤ f(P2), and submodular if

for any p ∈ P \ P2,

∆f (p|P1) ≥ ∆f (p|P2), (1.3)

hold for any sets P1 ⊂ P2 ⊂ P . The total curvature of a submodular set function f : 2P →

R≥0, which shows the worst-case increase in the value of the function when member p is

added, is defined as

c = 1− min
S,p ̸∈S

∆f (p|S)
∆f (p|∅)

(1.4)

Note that c ∈ [0, 1]; the curvature of c = 0 means that the function is modular, i.e.,

f({p1, p2}) = f({p1}) + f({p2}), p1, p2 ∈ P , while c = 1 means that there is at least a

member that adds no value to function f in a special circumstance. Curvature c represents

a measure of the diminishing return of a set function. Whenever the total curvature is not

known, it is rational to assume the worst case scenario and set c = 1.

In the rest of this work, without loss of generality, we assume that the ground set P is

equal to {1, · · · , n}. For a submodular function f : 2P → R≥0, its multilinear extension
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F : [0, 1]n → R≥0 in the continuous space is

F (x) =
∑
R⊂P

f(R)
∏
p∈R

[x]p
∏
p̸∈R

(1− [x]p), x ∈ [0, 1]n. (1.5)

F in (1.5) is indeed equivalent to

F (x) = E[f(Rx)], (1.6)

where Rx ⊂ P is a set where each element p ∈ Rx appears independently with the proba-

bilities [x]p. Then, taking the derivatives of F (x) yields

∂F

∂[x]p
(x) = E[f(Rx ∪ {p})− f(Rx \ {p})], (1.7)

and

∂2F

∂[x]p∂[x]q
(x) = E[f(Rx ∪ {p, q})− f(Rx ∪ {q} \ {p})

− f(Rx ∪ {p} \ {q}) + f(Rx \ {p, q})]. (1.8)

Given a ground set P , a matroid is defined as the pairM = {P , I} with I ⊂ 2P such that

(a) for any B ∈ I and A ⊂ B then A ∈ I, and (b) for any A,B ∈ I and |B| > |A|, then

there exists x ∈ B \ A such that A ∪ x ∈ I.

• B ∈ I and A ⊂ B then A ∈ I

• A,B ∈ I and |B| > |A|, then there exists x ∈ B \ A such that A ∪ x ∈ I

Partition matroid M is defined as M = {R ⊂ P
∣∣ |R ∩ Pi| ≤ ki, ∀i ∈ A}, 1 ≤ κi ≤ |Pi|

and A = {1, . . . , N}, with
⋃

i∈APi = P and Pi ∩ Pj = ∅, i ̸= j. The matroid polytop for
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partition matroid is a convex hull defined as (with abuse of notation)

M = {x ∈ [0, 1]n
∣∣ ∑

p∈Pi

[xi]p ≤ κi,∀i ∈ A}. (1.9)

where [x]p, p ∈ Pi associated with membership probability of strategies in Pi, i ∈ A =

{1, · · · , N}, we have
∑

p∈Pi
[x]p ≤ κi.

In the following results we derive some auxiliary results on the first and the second order

derivatives of the multilinear extension F .

Lemma 1.5.4 (Second derivative of multi linear extension for general case). Consider the

set value optimization problem (4.1). Suppose f : P → R≥0 is an increasing and submodular

set function and consider its multilinear extension F : Rn
≥0 → R≥0. Then

∣∣∣∣ ∂2F

∂xp∂xq

∣∣∣∣ ≤ f(S⋆), p, q ∈ P .

Proof. Since p ̸∈ Rx ∪ {q} \ {p}, therefor by submodularity of f we can write

0 ≤ ∆f (p|Rx ∪ {q} \ {p}) ≤ f({p}),

0 ≤ ∆f (p|Rx\{p, q}) ≤ f({p}). (1.10)

Knowing that

∆f (p|Rx∪{q}\{p})=f(Rx ∪ {p, q})−f(Rx ∪ {q}\{p}),

and

∆f (p|Rx\{p, q}) = f(Rx ∪ {p})\{q})− f(Rx\{p, j}),
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then definition (4.5) can be written as

∂F

∂xp∂xq
= E[∆f (p|Rx ∪ {q}\{p})−∆f (p|Rx\{p, q})]. (1.11)

Putting (1.10) and (1.11) together results in

∣∣∣∣ ∂2F

∂xp∂xq

∣∣∣∣ ≤ f({p}).

where knowing that f({p}) ≤ f(S⋆) concludes the proof.

Lemma 1.5.5 (First and second derivatives of the multilinear extension for a known cur-

vature). Let f : 2P → R≥0, P = {1, · · · , n}, be increasing and submodular set func-

tion with curvature c, and the multinear extension function F (x) defined in (4.2). Then,

∂F
∂[x]p

≥ (1 − c)f(p) for all p ∈ P and x ∈ [0, 1]n. Moreover, −cf(R⋆) ≤ ∂2F
∂[x]p[x]q

≤ 0 for all

p, q ∈ P and x ∈ [0, 1]n.

Proof. The derivative of F (x) can be written as

∂F

∂[x]p
(x) = ∆f (p |Rx \ {p}). (1.12)

Furthermore, by the definition of the total curvature (4.21) we can write c ≥ 1− ∆f (p|Rx\p)
f(p)

,

and by conjunction with equation (1.12), we have ∂F
∂[x]p
≥ (1− c)f(p) which proves the first

part of Lemma. Since p ̸∈ Rx ∪ {q}\{p}, therefore by the definition of the total curvature

(4.21) we can write

(1− c)f({p})≤∆f (p|Rx ∪ {q} \ {pi})≤f({p}). (1.13)

Moreover, Since p ̸∈ Rx \ {p, q}, therefore by the definition of the total curvature (4.21) we
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can write

(1− c)f({p}) ≤ ∆f (p|Rx \ {p, q}) ≤ f({p}). (1.14)

Knowing that ∆f (p|Rx∪{q}\{p})=f(Rx∪{p, q})−f(Rx∪{q}\{p}) and ∆f (p|Rx\{p, q}) =

f(Rx ∪ {p}) \ {q})− f(Rx \ {p, q}), the definition of second order derivative of F (4.5), we

can be written as

∂F

∂[x]p∂[x]q
=E[∆f (p|Rx ∪ {q}\{p})−∆f (p|Rx\{p, q})]. (1.15)

Putting (1.13) and (1.14) and (1.15) together in conjunction with submodular property of

f results in −cf({p}) ≤ ∂2F
∂[x]q∂[x]q

≤ 0. Knowing that f({p}) ≤ f(R⋆) results in proving the

second part of Lemma.

Lemma 1.5.6 (Directional Convexity). Let f : 2P → R≥0, P = {1, · · · , n}, be monotone

increasing and submodular set function with a multinear extension function F (x) defined

in (4.2). Then, for any given x ∈ [0, 1]n and w ∈ {−1, 0, 1}n where wp = 1, wq = −1 and

wl = 0, l ∈ {1, · · · , n}\{p, q} for some p, q ∈ {1, · · · , n}, F (x+ λw) : R→ R≥0 is a convex

function of λ.

Proof. Defining the vector w ∈ Rn and wp = 1, wq = −1 and wl = 0, l ̸= p, q, then the

multilinear extension of set function f in the direction of w is defined as

F (x+ λw) =∑
R⊂P\{p,q}

f({p} ∪ R)([x]p + λ)(1− ([x]q − λ))P(R)+

f({q} ∪ R)(1− ([x]p + λ))([x]q − λ)P(R)+

f(R)(1− ([x]p + λ))(1− ([x]q − λ))P(R)+

f(R)−f({p, q} ∪ R))([x]p + λ)([x]q−λ)P(R).
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with P(R) =
∏

r∈Rxr
∏

r ̸∈R(1−xr). Taking the second derivative of F (x+λw) with respect

to λ yields

∂2F (x+ λw)

∂λ2
=
∑

R⊂P\{p,q}

2P(R)(f({p} ∪ R) + f({q} ∪ R)

− f(R)− f({p, q} ∪ R)).

The submodularity of f asserts that ∂2F (x+λw)
∂λ2 ≥ 0 and consequently, F (x+λw) is a convex

function of λ.

Lemma 1.5.7 (Interval Bound of Twice differentiable function). Consider a twice differen-

tiable function F (x) : [0, 1]n → R which satisfies
∣∣∣ ∂2F
∂[x]p∂[x]q

∣∣∣ ≤ α for any p, q ∈ {1, · · · , n}.

Then for any x1,x2 ∈ Rn satisfying x2 ≥ x1 and 1.(x2 − x1) ≤ β we have

∣∣∣∣ ∂F∂[x]p (x1 + ϵ(x2 − x1))−
∂F

∂[x]p
(x1)

∣∣∣∣ ≤ ϵαβ, (1.16a)

F (x2)− F (x1) ≥ ∇F (x1).(x2 − x1)−
1

2
αβ2, (1.16b)

for ϵ ∈ [0 1].

Proof. Let hp = [ ∂2F
∂[x]p∂x1

, · · · , ∂2F
∂[x]p∂xn

]⊤. Then, we can write

∣∣∣∣ ∂F∂[x]p (x1 + ϵ(x2 − x1))−
∂F

∂[x]p
(x1)

∣∣∣∣
=

∣∣∣∣∫ ϵ

0

hp(x1 + τ(x2 − x1)).(x2 − x1)dτ

∣∣∣∣
≤
∫ ϵ

0

α1.(x2 − x1)dτ = ϵαβ, (1.17)

Furthermore, F (x2)− F (x1) =
∫ 1

0
∇F (x1 + ϵ(x2 − x1)).(x̄(t+ 1)− x̄(t))dϵ ≥

∫ 1

0
(∇F (x1)−

ϵαβ).(x2− x1)dϵ = ∇F (x1).(x2−x1)− 1
2
αβ2, with the third line follow from equation (1.17),

which concludes the proof.
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Lemma 1.5.8. Suppose f : P → R≥0 is an increasing and submodular set function and

consider x to be a membership probability vector of set Q ⊂ P with 1.x = 1. We define Rx

to be the set resulted by sampling independently each member of Q according to probability

vector x and Tx = {t}, t ∈ Q to be a single member set which is chosen according to x. the

following holds for any random set S ∈ P \ Q.

E[f(Rxii
∪ S)] ≤ E[f(Txii

∪ S)].

Proof. Defining Rx = {r1, · · · , ro}, then we can write

E[f(Rx ∪ S)] = E[f(S) +
o∑

l=1

∆f (rl|S ∪ {r1, · · · , rl−1})]

≤ E[f(S) +
∑
rl∈Rx

∆f (rl|S)] = ES [ERx|S [f(S) +
∑
rl∈Rx

∆f (rl|S)]]

= ES [f(S) + ERx|S [
∑
rl∈Rx

∆f (rl|S)]] = ES [f(S) +
∑
rl∈Q

xl∆f (rl|S)]

= ES [f(S) + ETx|S [∆f (t|S)]] = ES [ETx|S [f(S) + ∆f (t|S)]] = E[f(Tx ∪ S)]

which concludes the proof.

1.5.4 Stochastic Estimation of The Relaxed Functions’ gradient

The stochastic interpretation (1.6) of the multilinear-extension and its derivatives leads to

empirical estimation of ∇F (x(t)). Chernoff-Hoeffding’s inequality can be used to quantify

the quality of these estimates given the number of samples.

Theorem 1.5.2 (Chernoff-Hoeffding’s inequality [121]). Consider a set of K independent

random variables X1, ..., XK where a < Xi < b. Let SK =
∑K

i=1Xi, then

P[|SK − E[SK ]| > δ] < 2 e
− 2δ2

K(b−a)2 ,
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for any δ ∈ R≥0.

The following lemma, whose proof relies on the Chernoff-Hoeffding’s inequality, can quantify

the quality of estimating the gradient of a multilinear extension function by sampling from

the ground set.

Lemma 1.5.9. Suppose f : P → R≥0 is an increasing and submodular set function and

consider its multilinear extension F : [0, 1]n → R≥0. Let ∇̃F (x) be the estimate of ∇F (x)

that is calculated by taking K ∈ Z>0 samples of set Rx according to membership probability

vector x. Then,

∣∣∣∣[∇̃F (x)]
p
− ∂F

∂[x]p
(x)

∣∣∣∣≥ 1

2T
f(R⋆), p ∈ {1, · · · , n}, (1.18)

with the probability of at least 2e−
1

8T2K, for any T ∈ Z>0.

Proof. Define the random variable

X=

(
(f(Rx∪ {p})−f(Rx\{p}))−

∂F

∂xp
(x)

)/
f(R⋆),

and assume that we take K samples from Rx to construct {Xk}Kk=1 realization of X. Since

f is a submodular function, then we have (f(Rx∪{p})−f(Rx\{p})) ≤ f(R⋆). Consequently

using equation (1.7), we conclude that 0 ≤ X ≤ 1. Hence, using Theorem 1.5.2, we have∣∣∣∑K
k=1Xk

∣∣∣ ≥ 1
2T
K with the probability of at least 2e−

1
8T2K . Hence, the estimation accuracy

of ∇F (x), is given by

∣∣∣∣[∇̃F (x)]
p
− ∂F

∂[x]p
(x)

∣∣∣∣ ≥ 1
2T
f(R⋆), p ∈ {1, · · · , n} with the probability

of at least 2e−
1

8T2K .
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1.5.5 Linear Systems Results

Lemma 1.5.10. Let L be the Laplacian matrix of a strongly connected and weight-balanced

digraph. Recall L+ = R⊤LR from (1.2). Let g(t) = [g1(t), ..., gn(t)]
⊤ ∈ L∞

n . Then,

lim
t→∞

∫ t

0

e−L+(t−τ)R⊤Lg(τ)dτ = 0, (1.19)

is guaranteed to hold if and only if

lim
t→∞

∫ t

0

e−(t−τ)gi(τ) dτ = α ∈ R, i ∈∈ {1, · · · , N}. (1.20)

Proof. Let

ζ̇ = −L+ζ + R⊤Lg(t), ζ(0) ∈ RN−1, (1.21)

η̇ = −η + R⊤Lg(t), η(0) ∈ RN−1. (1.22)

The trajectories t 7→ ζ and t 7→ η of these two dynamics for t ∈ R≥0 are given by

ζ(t) = e−L+tζ(0) +

∫ t

0

e−L+(t−τ)R⊤Lg(τ)dτ, (1.23)

η(t) = e−tη(0) + R⊤L

∫ t

0

e−(t−τ) g(τ)dτ. (1.24)

Let e = ζ − η. Then, the error dynamics between (1.21) and (1.22) is given by

ė = −e+ (I− L+)ζ. (1.25)

or equivalently

ė = −L+e+ (L+ + I)η. (1.26)
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Let (1.19) hold. Since −L+ is a Hurwitz matrix, we have limt→∞ ζ(t) = 0. Moreover, since

g is essentially bounded, the trajectories of ζ are guaranteed to be bounded. Therefore,

considering error dynamics (1.25), by invoking the ISS stability results [88], we have the

guarantees that limt→∞ e(t) = 0, and consequently limt→∞ η(t) = 0. As such, from (1.24)

we obtain

R⊤L lim
t→∞

∫ t

0

e−(t−τ)g(τ)dτ = 0. (1.27)

The nullspace of R⊤L∈R(N−1)×N is spanned by 1N , thus,

lim
t→∞

∫ t

0

e−(t−τ)g(τ)dτ = α1N , α ∈ R,

which validates (1.20). Now let (1.20) hold. Then, using (1.24), we obtain limt→∞ η(t) = 0.

Since g is essentially bounded, the trajectories of ζ are guaranteed to be bounded. Thereby,

considering error dynamics (1.26), by invoking the ISS stability results [88], we have the

guarantees that limt→∞ e(t) = 0, and consequently limt→∞ η(t) = 0. Since −L+ is a Hurwitz

matrix, we obtain (1.19) from (1.23).

Lemma 1.5.11. Let u : R≥0 → Rn be an essentially bounded signal and E ∈ Rn×n be a

Hurwitz matrix.

(a) If limt→∞ u(t) = ū ∈ Rn, and E ∈ Rn×n, then

lim
t→∞

∫ t

0

eE (t−τ)u(τ)dτ = −E−1 ū. (1.28)

(b) If limt→∞
∫ t

0
u(τ)dτ = ū ∈ Rn, then

lim
t→∞

∫ t

0

eE (t−τ)u(τ)dτ = 0. (1.29)

Proof. To prove statement (a) we proceed as follows. Let µ(t) = u(t) − ū. Next, consider
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ζ̇ = E ζ + µ, ζ(0) ∈ Rn, which gives ζ(t) = eE tζ(0) +
∫ t

0
eE(t−τ)µ(τ)dτ , t ≥ 0. Since E is

Hurwitz and µ is an essentially bounded and vanishing signal, by virtue of the ISS results

for linear systems [88] we have limt→∞ ζ(t) = 0. Consequently, limt→∞
∫ t

0
eE (t−τ)µ(τ)dτ = 0,

which guarantees (1.28).

To prove statement (b) we proceed as follows. Consider

ζ̇ = u, η̇ = Eη + u, ζ(0) = 0, η(0) ∈ Rn,

which result in ζ(t) =
∫ t

0
u(τ)dτ and

η(t) = eE tη(0) +

∫ t

0

eE (t−τ)u(τ)dτ. (1.30)

Given the conditions on u both ζ and η are essentially bounded signals (recall that E is

Hurwitz). Let e = η − ζ. Therefore, we can write

ė = Ee+ E ζ, e(0) = η(0) ∈ Rn.

Since ζ is essentially bounded and satisfies limt→∞Eζ(t) = Eū, with an argument similar

to that of the proof of statement (a), we can conclude that limt→∞ e(t) = −ū. As a result

limt→∞ η(t) = 0. Consequently, from (1.30), we obtain (1.29).

Lemma 1.5.12. Let G be a strongly connected and weight-balanced digraph. Then, every

island of any agent i, is strongly connected and weight-balanced.

Proof. Without loss of generality, we prove our argument by showing that the island G11 of

agent 1 is strongly connected and weight-balanced. By construction, we know that there

is a directed path from every agent to every other agent in G11 , therefore, G
1
1 is strongly

connected. Next we show that G11 is weight-balanced. Let V2 = V1
1\{1} and V3 = V\V2.Let

the nodes of G be labeled in accordance to (1,V2,V3), respectively, and partition the graph
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Laplacian L accordingly as

L =


d1out −A12 −A13

−A21 L22 0

−A31 0 L33

 .

Since G is strongly connected and weight-balanced, we have L1N = 0 and 1⊤
NL = 0, which

guarantee that

1⊤
|V1

1 |

−A12

L22

 = 0,

[
−A21 L22

]
1|V1

1 |
= 0. (1.31)

Therefore,

1⊤
|V1

1 |

−A12

L22

1|V1
1 |
= 0, 1⊤

|V1
1 |

[
−A21 L22

]
1|V1

1 |
= 0,

which we can use to conclude that sum(A⊤
12) = sum(A21). Let the Laplacian matrix of G11 be

L1
1. Partitioning this matrix according to order node set (1,V2), we obtain

L1
1 =

 d1,1out −A12

−A21 L22

 ,
where d1,1out =

∑
j∈V2

a1j = sum(A⊤
12). To establish G11 is weight-balanced digraph, we show

next that 1⊤
|V1

1 |
L1
1 = 0. From 1⊤

NL = 0, it follows that 1⊤
|V1

1 |

−A12

L22

 = 0. Therefore, to

prove G11 is weight-balanced, we need to show that d1,1out + sum(−A21) = 0, which follows

immediately from d1,1out = sum(A⊤
12) and sum(A⊤

12) = sum(A21).

42



1.5.6 Contraction Theory

Contraction theory assesses the stability properties of dynamical systems by studying the

convergence behavior of neighboring trajectories [90]. The convergence is established by

directly examining the evolution of the weighted Euclidean distance of close neighboring

trajectories. Formally, consider a differentiable autonomous discrete-time dynamical system

g(x) : Rn → Rn defined as

xt+1 = g(xt), (1.32)

with Jacobian

∇g(xt) =
∂g(x)

∂x

∣∣∣∣
x=xt

. (1.33)

Now, consider a differential displacement δxt. The differential displacement dynamics at xt

are governed by

δxt+1 = ∇g(xt)δxt. (1.34)

The system dynamics g(xt) are contractive if there exists a full rank state dependant metric

Θ(x) ∈ Rn × Rn such that the system trajectories satisfy

∥Θ(xt)δxt∥ > ∥Θ(xt+1)δxt+1∥. (1.35)

Equation (1.35) indicates that the weighted distance between any two infinitesimally close

states decreases as the dynamics evolve [122]. When Θ(x) = I the distances between trajec-

tories are measured in the Euclidean norm sense. Figure 1.2 illustrates the behavior of two

trajectories of a contractive system when Θ(x) = I.
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For a small finite displacement ∆xt, as an approximation of infinitesimal small displacement

δxt, the first-order Taylor expansion of the system dynamics allows us to locally approximate

the forward evolution of the displacement

∇g(xt)∆xt ≈ g(xt +∆xt)− g(xt). (1.36)

Thus, we may approximate the contraction condition (1.35) as

∥Θ(xt+1) (g(xt +∆xt)−g(xt)) ∥−∥Θ(xt)∆xt∥<0. (1.37)

Establishing a system as contractive allows for several useful stability properties to be de-

duced. We state motivating results from [90] in the following definition and proposition.

Definition 1. Given the discrete-time system xt+1 = g(xt), a region of the state space

is called a contraction region with respect to a uniformly positive definite metric M(xt) =

Θ(xt)
TΘ(xt), if in that region

∇g(xt)
TM(xt+1)∇g(xt)−M(xt) < 0, (1.38)

Proposition 1.5.3. A convex contraction region contains at most one equilibrium point.

It is shown in [90] that (1.38) is equivalent to condition (1.35) holding for all xt in the

contraction region. Thus, by Proposition 1.5.3, we may conclude that a unique equilibrium

exists within a convex region if (1.35) holds everywhere inside the region. Therefore, (1.37)

represents a useful numerical analog that can be enforced in order to drive a region towards

being contractive. By choosing a set of ∆xt, we will use condition (1.37) to enforce contract-

ing behavior of the closed-loop system. Going beyond autonomous systems, when a system

is subject to control input ut, i.e., xt+1 = g(xt) = f(xt,ut), contraction theory can be used

to design state feedback policies ut = u(xt) such that the closed-loop system trajectories
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converge to a given reference state. This may be done by determining u(xt) such that the

convex region of interest is contractive and the unique equilibrium is the desired reference

state. Such a control design process is outlined in the following sections.

1.6 Dissertation Outline

In chapter 2 to motivate our work, we study the problem of persistent monitoring of the

finite number of inter-connected geographical nodes for event detection via a group of het-

erogeneous mobile agents. We tie a utility function to the maximum reward available in

each point of interest and use it in our strategy selection algorithm to incentivize the agents

to visit the geographical nodes with higher rewards. We formulate a general utility maxi-

mization problem as maximizing a submodular set function subject to partition matroid. In

chapter 3 and 4 we then proceed to propose a suboptimal strategy selection algorithm with

known optimality bound. We work in the value oracle model where the only access of the

agents to the utility function is through a black box that returns the utility function value.

The agents are communicating over a connected undirected graph and have access only to

their own strategy set. In chapter 5, we design a distributed algorithm that enables each

agent to find a suboptimal policy locally with a guaranteed level of privacy. In chapter 6,

We particularly study the privacy preservation methods in consensus-based communication

protocols. We study the problem of privacy preservation of the continuous-time Laplacian

static average consensus algorithm using additive perturbation signals. In chapter 7, we

proposed a method of certifying neural networks in the context of dynamical systems and

policy-making using contraction theory.
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Chapter 2

A Sub-modular Approach to

Multi-agent Persistent Monitoring

In this chapter, We consider persistent monitoring of a finite number of inter-connected geo-

graphical nodes by a group of heterogeneous mobile agents. We assign to each geographical

node a concave and increasing reward function that resets to zero after an agent’s visit.

Then, we design the optimal dispatch policy of which nodes to visit at what time and by

what agent by finding a policy set that maximizes a utility that is defined as the total reward

collected at visit times. We show that this optimization problem is NP-hard and its com-

putational complexity increases exponentially with the number of the agents and the length

of the mission horizon. By showing that the utility function is a monotone increasing and

submodular set function of agents’ policy, we propose a suboptimal dispatch policy design

with a known optimality gap. To reduce the time complexity of constructing the feasible

search set and also to induce robustness to changes in the operational factors, we perform

our suboptimal policy design in a receding horizon fashion. Then, to compensate for the

shortsightedness of the receding horizon approach we add a new term to our utility, which

provides a measure of nodal importance beyond the receding horizon. This term gives the
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policy design an intuition to steer the agents towards the nodes with higher rewards on the

patrolling graph. Finally, we discuss how our proposed algorithm can be implemented in a

decentralized manner. A simulation study demonstrates our results.

2.1 Problem Statement

We consider a persistent monitoring of a set of finite V inter-connected geographical nodes

via a set of finite A mobile sensors/agents, where |V| > |A|. The mobile agents are confined

to a set of pre-specified edges E ⊂ V × V , e.g., aerial or ground corridors, to traverse from

one node to another, see Fig. 2.1. Depending on their vehicle type, agents may have to take

different edges to go from one node to another. Also, they may have different travel times

along the same edge. We study dispatch policy that orchestrates the topological distribution

of the mobile agents such that an optimized service for a global monitoring task is provided

with a reasonable computational cost. To quantify the service objective we assign to each

node v ∈ V the reward function,

Rv(t) =


0, t = t̄v,

ψv(t− t̄v), t > t̄v,

(2.1)

where ψv(t) is a nonnegative concave and increasing function of time and t̄v is the latest time

node v is visited by an agent. For example, in data harvesting or health monitoring, ψv(.)

can be the weighted idle time of the node v or in event detection, it can be the probability

of at least one event taking place at inter-visit times.

To formalize our objective, we first introduce our notations and state our standing assump-

tions. For any node v ∈ V , Nv is a set consisting node v and all the neighboring nodes that

are connected to node v via an edge in E . If there exists a path connecting node v ∈ V to

47



Figure 2.1 – Examples of a set of geographical nodes of interest and the edges between them.

Finite number of nodes to monitor in a city can be restricted to some particular scanning zones

(the picture on the left) or the cell partitioned map of the city (the picture on the right).

node w ∈ V , we let τ iv,w ∈ R>0 be the shortest travel time of agent i ∈ A from node v to w.

Assumption 1. Upon arrival of any agent i ∈ A at any time t̄ ∈ R>0 at node v ∈ V, the

agent immediately scans the node and the reward Rv(t̄) is scored for the patrolling team A

and t̄v of node v in (2.1) is set to t̄. If more than one agent arrives at node v ∈ V and scans

it at the same time t̄, the reward collected for the team is still Rv(t̄). If an agent i ∈ A needs

to linger over each node for δi ∈ R≥0 amount of time to complete its scan, during this time

the agent cannot scan the node again to score a reward for the team.

Let the tuple p = (Vp,Tp, ap) be a dispatch policy of agent ap ∈ A over the given mission

time horizon, where Vp and Tp are the vectors that specify the nodes and the corresponding

visit times assigned to agent ap. Moreover, we let np be the total number of nodes visited

by agent ap, i.e., np = dim(Vp). We refer to np as the length of the policy p. We refer

to (Vp(l),Tp(l)), l ∈ {1, 2, · · · , np}, as the lth step of policy p. Furthermore, for any agent

i ∈ A, we let P i be the set of all the admissible policies p over the mission horizon such that

ap = i.
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Assumption 2. For any policy p, we have Vp(l+ 1) ∈ NVp(l), for all l ∈ {1, 2, · · · , np − 1}.

We let P =
⋃

i∈AP i. Then, given any P̄ ⊂ P , the utility function R : 2P → R>0 is P̄ ⊂ P ,

the utility function R : 2P → R>0 is

R(P̄) =
∑

∀p∈P̄

∑np

l=1
RVp(l)(Tp(l)). (2.2)

Given (2.2), the optimal policy to maximize the utility over a given mission horizon is given

by

P⋆ = argmax
P̄⊂P

R(P̄), s.t. (2.3a)

|P̄ ∩ P i| ≤ 1 i ∈ A, (2.3b)

where | . | returns the cardinality of a set. The constraint condition (2.3b) is in the so-called

partition matroid form [32] and restricts the choice of the optimal solution to be a set that

contains of at most one member from each disjoint sets P i, i ∈ A. A set value optimization

problem of the form (2.3) is known to be NP-hard [123]. Lemma 2.1.1 below, whose proof is

given in the appendix, gives the cost of constructing the feasible set P and time complexity

of solving optimization problem (2.3).

Lemma 2.1.1 (Time complexity of problem (2.3a)). The cost of constructing the feasible

set P of optimization problem (2.3a) is of order O(
∑

i∈A Dn̄i), where D = maxv∈V(|Nv|) and

n̄i = max{np}∀p∈Pi. Furthermore, the time complexity of solving optimization problem (2.3a)

is O(
∏

i∈ADn̄i).

Proof. The time complexity of constructing the admissible policy set P i is of order of the

number of possible paths that agent i ∈ A can traverse over the mission horizon while

respecting Assumption 2, which is of order Dn̄i . Thus, the time complexity of constructing

the feasible set P =
⋃

i∈AP i is O(
∑

i∈A Dn̄i). Next, let P̄ be any subset of P that satisfies
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constraint (2.3b). Due to Assumption 1, the reward scored by implementing policy p =

(Vp,Tp, ap) ∈ P̄ cannot be calculated independent from the all the other policies in P̄\{p}.

Hence, to solve optimization problem (2.3a), we need to evaluate all the possible policy sets

P̄ satisfying the constraint (2.3b). Since P̄ can have at most one policy from the policy set

P i of i∈A and P i has O(
∑

i∈ADn̄i) members, then O(
∏M

i=1D
n̄i) different possibilities of P̄

exist which determines the time complexity of solving (2.3a).

If the system parameters, such as number of the mobile agents or the nodes, or the parameters

of ψv(.) of the reward function at any node v, change after the optimal policy design, the

optimization problem (2.3) should be solved again over the remainder of the mission horizon

under the new conditions. Our objective in this chapter is to construct a suboptimal solution

to solve the persistent monitoring problem given by (2.3) with polynomial time complexity.

Moreover, we seek a solution that has intrinsic robustness to changes that can happen during

the mission horizon.

We close this section by introducing some definitions and notations used subsequently. For

any set function g : 2Q → R, we let

∆g(q|Q̄)=g(Q̄ ∪ q)− g(Q̄),

for ∀Q̄ ∈ 2Q and ∀q ∈ Q, where ∆g shows the increase in value of the set function g going

from set Q̄ to Q̄ ∪ q. Recall that g : 2Q → R is submodular if and only if for two sets Q1

and Q2 satisfying Q1 ⊂ Q2 ⊂ Q, and for q ̸∈ Q2 we have [32]

∆g(q|Q̄1) ≥ ∆g(q|Q̄2).

Then submodularity is a property of set functions that shows diminishing reward as new

members are being introduced to the system. We say g : 2Q → R is monotone increasing if
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for all Q1,Q2 ⊂ Q we have Q1 ⊂ Q2 if and only if [32]

g(Q1) ≤ g(Q2).

We denote a sequence of m real numbers (t1, · · · , tm) by (t)m1 . Given two increasing (resp.

decreasing) sequences (t)n1 and (v)m1 , (t)
n
1 ⊕ (v)m1 is their concatenated increasing (resp. de-

creasing) sequence, i.e., for (u)n+m
1 = (t)n1 ⊕ (v)m1 , any uk, k ∈ {1, · · · , n+m} is either in (t)n1

or (v)m1 or is in both. We assume that (u)n+m
1 preserves the relative labeling of (t)n1 or (v)m1 ,

i.e., if tk and tk+1, k ∈ {1, · · · , n− 1} (resp. vk and vk+1, k ∈ {1, · · · ,m− 1}) correspond to

ui and uj in (u)n+m
1 , then i < j.

2.2 Suboptimal Policy Design

According to Lemma 2.1.1 the time complexity of finding an optimal patrolling policy

in (2.3a) increases exponentially by the maximum length, n̄i, of the admissible policies of any

agent i ∈ A and also by the number of the exploring agents M . In light of this observation,

to reduce the computational cost, we propose the following suboptimal policy design. Since

the maximum policy length n̄i is proportional to the length of the mission horizon, we first

propose to trade in optimality and divide the planning horizon into multiple shorter hori-

zons so that the policy design can be carried out in a consecutive manner over these shorter

horizons. Then, to reduce the optimality gap and also to induce robustness to the online

changes that can occur during the mission time, we propose to implement this approach in

a receding horizon fashion where we calculate the policy over a specified shorter horizon but

execute only some of the initial steps of the policy, and then we repeat the process. However,

a receding horizon approach suffers from what we refer to as shortsightedness. That is, over

large inter-connected geographical node sets, a receding horizon design is oblivious to the re-

ward distribution of the nodes that are not in the feasible policy set in the planning horizon.
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Figure 2.2 – An agent has two possible routes to take over the designated receding horizon. The

nodes’ color intensity shows their reward value. The blue route offers a higher reward over the

receding horizon but it puts the agent close to an area with a lower amount of reward, while the

red route results in lower total reward over the receding horizon but puts the agent near an area

with higher amount of reward.

Then, the optimal policy over the planning horizon can inadvertently steer the agents away

from the distant nodes with a higher reward, see Fig. 2.2. To compensate for this short-

coming, we introduce the notion of nodal importance and augment the reward function (2.2)

over the design horizon with an additional term that given an admissible policy, provides a

measure of how close an agent at the final step of the policy is to a cluster of geographical

nodes with a high concentration of reward.

Let the augmented reward, whose exact form will be introduced below, over the planning

horizon be R̄. Then, the optimal policy design over each receding horizon is

P⋆ = argmax
P̄⊂P

R̄(P̄), s.t. |P̄ ∩ P i| ≤ 1, i ∈ A (2.4)

where hereafter P =
⋃

i∈AP i is the set of the union of the admissible policies of the agents

P i, i ∈ A, over the planning horizon. Hereafter, we let t̄v0 be the last time node v ∈ V was

visited before a planning horizon starts.

Next, to reduce the computational burden further, we propose to use Algorithm 1, which is

a sequential greedy algorithm with a polynomial cost in terms of the number of the agents
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Algorithm 1 Sequential Greedy Algorithm

1: procedure SGOpt(P i, i ∈ A)
2: Init: P̄ ← ∅, i← 0, {̄t0v}v∈V
3: for i ∈ A do
4: pi⋆ = argmax

p⊂Pi

∆R̄(p|P̄).

5: P̄ ← P̄ ∪ pi⋆.
6: end for
7: Return P̄ .
8: end procedure

to obtain a suboptimal solution for (2.4). In what follows, we show that since the objective

function (2.4) is a submodular set function, Algorithm 1 comes with a known optimality

gap. We also show that with a proper inter-agent communication coordination Algorithm 1

can be implemented in a decentralized manner.

For v ∈ V , let N r
v be the set consisted of node v itself and its r-hope neighbors. This set

can be computed using the Breadth-first search in time O(|E| + |V|) [124]. Here, τ iw,v can

be computed via A⋆ algorithm in time O(|E|) [125]. Then, for every node v ∈ V , we define

the nodal importance with radius r at time τ as L(v, τ, r) =
∑

w∈N r
v
Rw(τ). Next, given an

agent i ∈ A that is at node w ∈ V at time t̂ ∈ R≥0, we define the relative nodal importance

of a node v ∈ V with respect to agent i as

L(v, w, t̂, i) = L(v, t̂+ τ iw,v, r)
/
τ iw,v.

Then, L(v,Vp(np),Tp(np), ap) is a measure of the relative size of the awards concentration

around any node v ∈ V that takes into account also the travel time of agent ap from the

final step of policy p = (Vp,Tp, ap) ∈ P to v. Let L(v, p) be the shorthand notation for

L(v,Vp(np),Tp(np), ap). To compensate for the shortsightedness of the receding horizon

design, then we revise the utility function to

R̄(P̄) = R(P̄) + α
∑

∀p∈P̄
max
∀v∈V̄

L(v, p), α ∈ R≥0. (2.5)
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The weighting factor α ∈ R≥0 defines how much significance we want to assign to the

distribution of the reward beyond the receding horizon. We should note that using a large

α can gravitate the agents to move towards the nodes close to the anchor nodes, and make

them oblivious to the rest of the nodes. For computational efficiency, instead of incorporating

the relative nodal importance of all the nodes, which can be achieved by setting V̄ equal to

V , we propose to use only V̄ subset of the nodes. We refer to nodes in V̄ as anchor nodes.

The anchor nodes can be selected to be the nodes with higher reward return or to be a set

of nodes that are scattered uniformly on the graph. It is interesting to note that the relative

nodal importance term in (2.5) is a reminiscent of terminal cost used in the model predictive

control (MPC). In MPC, terminal cost that is used to achieve an infinite horizon control with

closed-loop stability guarantees [126] in some way also compensates for the shortsightedness

of the design over finite planning horizon. Next, we show that the reward function (2.5) is

submodular over any given feasible policy set P in every planning horizon.

Theorem 2.2.1 (Submodularity of the reward function (2.5)). For any weighting factor

α ∈ R≥0, the reward function R̄ : 2P → R>0 in (2.5) is a monotone increasing and submodular

set function over P.

Proof. Let c(v,Q) : V × 2Q → Z>0 be the total number of visits to the geographical node v,

and IQ ⊂ V be the set of the nodes that are visited when a policy set Q ⊂ P is implemented.

Furthermore, let the increasing sequence

(tv(Q))c(v,Q)
1 = (tv1(Q), tv2(Q), · · · , tvc(v,Q)(Q))

be the sequence of time that node v ∈ IQ was visited when agents implement Q. Now

consider the reward function R̄ in (2.5). Then, the first summand of R̄ expands as

R(P̄) =
∑

v∈IP̄

(∑c(v,P̄)

j=1
ψv(∆tvj (P̄))

)
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, where ∆tvj (P̄) = tvj (P̄)− tvj−1(P̄) is the time between two consecutive visits of node v, and

tv0(P̄) = t̄v0. Next, consider the monitoring policy sets Q1, Q2 and monitoring policy q with

Q1 ⊂ Q2 ⊂ P , q ∈ P , q ̸∈ Q1, and q ̸∈ Q2. Because (tv(Q1))
c(v,Q1)
1 is a sub-sequence of

(tv(Q2))
c(v,Q2)
1 , using Lemma 1.5.2 and the fact that ψ(.)v is a normalized increasing concave

function, we conclude that

∑c(v,Q1∪q)

j=1
ψv(∆(tvj (Q2 ∪ q)))−

∑c(v,Q1)

j=1
ψl(∆(tvj (Q2)))≥ 0

for ∀v ∈ IP̄ . Therefore, ∆R(p|Q1) ≥ 0 which shows that R(P̄) is a monotone increasing set

function. Furthermore, using Lemma 1.5.3 we can write

c(v,Q2∪q)∑
j=1

ψv(∆(tvj (Q2 ∪ q)))−
c(v,Q2)∑
j=1

ψv(∆(tvj (Q2)))

≤
c(v,Q1∪q)∑

j=1

ψv(∆(tvj (Q1 ∪ q)))−
c(v,Q1)∑
j=1

ψv(∆(tvj (Q1))).

Hence,

∆R(q|Q1) ≥ ∆R(q|Q2)

which shows that R(P̄) is a submodular set function. Then, since the second summand of

R̄,
∑

∀p∈P̄ max
∀l∈V̄

L(l, p), is trivially positive and modular, the proof is concluded.

Due to Theorem 2.2.1, the suboptimal dispatch policy of Algorithm 1, which has a polynomial

computational complexity, has the following well-defined optimality gap.

Theorem 2.2.2 (Optimality gap of Algorithm 1). Let P⋆ be an optimal solution of (2.4)

and P̄ be the output of Algorithm 1. Then, R̄(P̄) ≥ 1
2
R̄(P⋆).

Proof. Since the objective function of (2.4) is monotone increasing and submodular over P ,
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the proof follows by invoking [32, Theorem 5.1].

2.2.1 Comments on Decentralized Implementations of Algorithm 1

To implement Algorithm 1, given the current position of each agent and {̄t0v}v∈V at the

beginning of each planning horizon, the admissible set of policies P i for each agent i ∈ A

should be calculated.

Let every agent know {ψv(t)}v∈V . A straightforward decentralized implement of Algorithm 1

then is a multi-centralized solution. In this solution, agents transmit the feasible policy

sets across the entire network until each agent knows the whole policy set P i, ∀i ∈ A

(flooding approach). Then, each agent acts as a central node and runs a copy of Algorithm 1

locally. Although reasonable for small-size networks, the communication and storage costs

of this approach scale poorly with the network size. The sequential structure of Algorithm 1

however, offers an opportunity for a communicationally and computationally more efficient

decentralized implementations, as described in steps 1 to 9 of Algorithm 2. Step 10 of

Algorithm 2 is included for receding horizon implementation purpose, where the execution

plan can be for example one or all of the agents visit at least one node. To implement

Algorithm 2, we assume that the agents A can form a bidirectional connected communication

graph Ga = (A, Ea), i.e., there is a path from every agent to every other agent on Ga. Then,

there always exists a route SEQ = s1 → · · · → si → · · · → sK , sk ∈ A, k ∈ {1, · · · , K},

K≥M , that visits all the agents (not necessarily only one time), see Fig. 2.3(a). The agents

follow SEQ to share their information while implementing Algorithm 2. The communication

cost to execute Algorithm 2 can be optimized by picking SEQ to be the shortest path [127]

that visits all the agents over graph Ga. If Ga has a Hamiltonian path, the optimal choice

for SEQ is a Hamiltonian path. Recall that a Hamiltonian path is a path that visits every

agent on Ga only once [128]. When, there is a SEQ that visits every agent on Ga, the directed
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Algorithm 2 Decentralized Implementation of Sequential Greedy Algorithm

1: Init: P̄ ← ∅, i← 1, {̄t0v}v∈V
2: while i ≤ K do
3: if si is being called for the first time then
4: agent si computes psi⋆ = argmax

p⊂Psi

∆R̄(p|P̄).

5: P̄ ← P̄ ∪ psi⋆.
6: end if
7: agent si pass P̄ to si+1.
8: i← i+ 1.
9: end while
10: agent sK based on the execution plan of the receding horizon operation updates {̄t0v}v∈V

and communicates it to the team

information graph GI = (A, EI) of Algorithm 2, which shows the information access of each

agent while implementing Algorithm 2, is full, see Fig. 2.3. That is, each agent in SEQ is

aware of the previous agents’ decision. Therefore, the solution obtained by Algorithm 2

is an exact sequential greedy algorithm and its optimality gap is 1/2. We recall that the

labeling order of the mobile agents does not have an effect on the optimality gap guaranteed

by Theorem 2.2.2 [129]. If an agent i ∈ A appears repeatedly in SEQ (e.g., the blue agent

in Fig. 2.3), with a slight increase in computation cost, we can modify Algorithm 2 to

allow agent i to redesign and improve its sub-optimal policy pi⋆ by re-executing step 4 of

Algorithm 2.

Another form of decentralized implementation of Algorithm 1, which may be more relevant

in urban environments, is through a client-server framework implemented over a cloud. In

this framework, agents (clients) connect to shared memory on a cloud (server) to download

or upload information or use the cloud’s computing power asynchronously. Let {T i}, i ∈ A,

be the set of disjoint time slots that is allotted respectively to agents A, see Fig. 2.4. To

implement Algorithm 1, agent i ∈ A connects to the server at the beginning of T i to check

out P̄ and {̄t0v}v∈V . Then, it completes steps 4 and 5 of Algorithm 1, and checks in the

updated P̄ to the server before T i elapses fully. The last agent based on the execution plan

of the receding horizon operation updates {̄t0v}v∈V and checks it in the cloud memory for
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4

Figure 2.3 – The plot on the left shows the bi-directional communication graph Ga in black along

with an example SEQ path in red. The plot on the right shows the complete information sharing

graph GI if agents follow SEQ while implementing Algorithm 2. Arrow going from agent i to agent

j means that agent j receives agent i’s information.

Figure 2.4 – {T i}i∈A, A = {1, 2, 3, 4, 5} are the time slots allotted to each agent to connect to the

cloud. The arrows show the time each agent took to do their calculations for an example scenario.

Here, the associated information graph GI is as the incomplete graph on the right with clique

number of 3.

next receding horizon planning. Since the time slots assigned to the agents do not overlap,

agent i has access to policy pk⋆ of all agents k which has already communicated to the cloud.

Thus, the information graph GI is full, and the optimality gap of 1/2 holds.

If there is a message dropout while executing Algorithm 2 or in the decentralized server-

client based operation an agent j takes a longer time than T j to complete and check-in P̄

to the cloud, the information graph becomes incomplete, see for example Fig. 2.4. Then,

the corresponding decentralized implementation deviates from the exact sequential greedy

Algorithm 2. For such cases, [129] shows that the optimality gap instead of 1/2 becomes

1
M−ω(GI)+2

, where ω(GI) is the clique number of GI [129]. Recall that the clique number of a

graph is equal to the number of the nodes in the largest sub-graph such that adding an edge

will cause a cycle [130].
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2.3 Numerical Evaluations

We consider persistent monitoring using 3 agents for event detection over an area that is

divided into 20 by 20 grid map as shown in Fig. 2.5(a). The geographical nodes of interest V

are the center of the cells in Fig. 2.5(a). The agents can travel from a cell to the neighboring

cells in the right, left, bottom, and top. The agents are homogeneous and the travel time

between any neighboring nodes for all the agents are identical and equal to 1 second. The

agents start their patrolling task from the nodes where they are depicted in Fig. 2.5(a). We

model the event occurrence in each geographical node as a Poisson process and define our

reward function at each node v ∈ V as (2.1) with ψv(t) = 1 − eλvt where λv ∈ R>0 is the

arrival rate of the event; for more details see [131]. Fig. 2.5(a) shows the reward value of the

nodes at t = 120 seconds when there is no monitoring. The color intensity of the cells in

Fig. 2.5(a) is proportional to λv; the higher λv, the darker the color of node v. The region

enclosed by the blue rectangle initially has a low reward but after 100 seconds its reward

value is increased to a higher value by changing λv of the corresponding cells. An animated

depiction of the change in the reward map because of different dispatch policies we discuss

below is available in [132]. We compare the performance of Algorithm 1, implemented in a

receding horizon fashion, and a conventional greedy algorithm where each agent always moves

to the neighboring node that has the instantaneous highest reward value. In implementing

Algorithm 1 in a receding horizon fashion, we assume that the planning horizon is 4 seconds

and the execution horizon is 1 second. We consider both the case of including (α = 0.1) and

excluding (α = 0) the nodal importance measure in the reward function (2.5). Fig. 2.5(b)

shows that the traditional greedy cell selection performs poorly compared to the other two

planning algorithms. The reason is that the three agents’ decision becomes the same after

a while, i.e., they start choosing the same cell after a while and moving together, therefore

all three agents act as if one agent is patrolling (recall Assumption 1). The performance of

Algorithm 1 is better than a standard greedy cell selection because the effect of agent i’s
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(a) Reward map (b) The collected reward

(c) Agents’ path when they follow Algorithm 1
and use α = 0 over [0, 150] seconds

(d) Agents’ path when they follow Algorithm 1
and use α = 0.1 over [0, 150] seconds

Figure 2.5 – Three agents patrol a field, divided into 20 by 20 cells.

patrolling policy is taken into account when agent i+ 1 is designed. Therefore, the chances

that all three agents go to the same cell together and move together is narrow. Furthermore,

we can note that implementing Algorithm 1 by considering the effect of nodal importance

delivers a better outcome. The reason is that in the case that there is no nodal importance,

the agents are drawn to the region of high importance near them and stay there as Fig. 2.5(c)

shows. However, there are other important regions with higher values that are farther away,

especially the area on the left top corner which is separated by a low rate stripe from where

agents start. Incorporating nodal importance, as Fig. 2.5(d) shows steers the agents to the

regions with a higher rate of reward that are beyond the receding horizon’s sight.
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2.4 Conclusions

We presented a multi-agent dispatch policy design for persistent monitoring of a set of

finite inter-connected geographical nodes. Our design relied on assigning an increasing and

concave reward function of time to each node that reset to zero after a visit by an agent. We

defined our design utility function as the sum of the rewards scored for the team when agents

visit the geographical nodes. By showing that the utility function is a monotone increasing

and submodular set function, we laid the ground to propose a suboptimal solution with

a known optimality gap for our dispatch policy design, which was NP-hard. To induce

robustness to the changes in the problem parameters, we proposed our suboptimal solution

in a receding horizon setting. Next, to compensate for the shortsightedness of the receding

horizon approach, we added a new term, called the relative nodal importance, to the utility

function as a measure to incorporate a notion of the importance of the regions beyond the

feasible solution set of the receding horizon optimization problem. Our numerical example

demonstrated the benefit of introducing this term. Lastly, we discussed how our suboptimal

solution can be implemented in a decentralized manner. Our future work is to investigate

decentralized algorithms that allow agents to communicate synchronously with each other

in order to have a consensus on a policy with a known optimality gap.
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Chapter 3

Distributed Strategy Selection I

Constrained submodular set function maximization problems often appear in multi-agent

decision-making problems with a discrete feasible set. A prominent example is the problem

of multi-agent mobile sensor placement over a discrete domain. However, submodular set

function optimization problems are known to be NP-hard. In this chapter, we consider a

class of submodular optimization problems that consists of maximization of a monotone and

submodular set function subject to a uniform matroid constraint over a group of networked

agents that communicate over a connected undirected graph. Our objective is to obtain

a distributed suboptimal polynomial-time algorithm that enables each agent to obtain its

respective policy via local interactions with its neighboring agents. Our solution is a fully

distributed gradient-based algorithm using the multilinear extension of the submodular set

functions and exploiting a maximum consensus scheme. This algorithm results in a policy

set that when the team objective function is evaluated at worst case the objective function

value is in 1− 1/e−O(1/T ) of the optimal solution. An example demonstrates our results.
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3.1 Problem Statement

We consider a group of A = {1, ..., N} with communication and computation capabilities

interacting over a connected undirected graph G(A, E). These agents aim to solve in a

distributed manner the optimization problem

max
R∈I

f(R) s.t. (3.1a)

I =
{
R ⊂ P

∣∣ |R ∩ Pi| ≤ 1, i ∈ A
}
, (3.1b)

where utility function f : 2P → R≥0 is monotone increasing and submodular set function

over the discrete policy space P =
N⋃
i=1

Pi, with Pi being the policy space of agent i ∈ A,

which is only known to agent i. In this chapter, we work in the value oracle model where

the only access to the utility function is through a black box returning f(R) for a given

set R. Every agent can obtain the value of the utility function at any subset R ∈ P . The

constraint (4.1b) is the partitioned matroidM = {P , I}, which ensures that only one policy

per agent is selected from each local policy set Pi, i ∈ A. An example application scenario of

our problem of interest is shown in Fig. 3.2. Without loss of generality, to simplify notation,

we assume that the policy space is P = {1, ..., n}, and is sorted agent-wise with 1 ∈ P1 and

n ∈ PN .

Finding the optimal solution R⋆ ∈ I of (3.1) even in central form is NP-Hard [45]. The

computational time of finding the optimizer set increases exponentially with N [131]. The

well-known sequential greedy algorithm finds a suboptimal solution RSG for (3.1) with the

optimality bound of f(RSG) ≥ 1
2
f(R⋆), i.e., a 1/2-approximation at worst case [45]. More

recently, by using the multilinear extension of the submodular utility functions, Vondrák [4]

developed a randomized centralized continuous greedy algorithm which achieves a (1−1/e)−

O(1/T )-approximate for set value optimization (3.1) in the value oracle model, see Algo-
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Algorithm 3 Practical implementation of the continuous greedy process [4].

1: x← 0, Init: t← 1,
2: while t ≤ T do
3: Draw K samples of R from P according to x
4: for p ∈ P do
5: Estimate wp ∼ E[f(Rx ∪ {p})− f(Rx \ {p})]
6: end for
7: Solve for R⋆ = argmax

R∈I

∑
p∈Rwp.

8: Update membership vector as x← x+ 1
T
1R⋆

9: t← t+ 1
10: end while
11: Use Pipage rounding to convert the fractional solution x to an integral solution.

Note: 1R⋆ is the v in (3.3).

rithm 31. Our objective in this chapter is to develop a distributed implementation of Algo-

rithm 3 to solve (3.1) for when agents interact over a connected graph G. Recall that in our

problem setting, every agent i ∈ A can evaluate the utility function for a given R ⊂ P but

it has access only to its own policy space Pi.

3.2 A Polynomial-Time Distributed Multi-Agent Ran-

domized Continuous Greedy Algorithm

Our proposed distributed multi-agent randomized continuous greedy algorithm to solve the

set value optimization problem (3.1) over a connected graph G is given in Algorithm 4, whose

convergence guarantee and suboptimality gap is given in Theorem 3.2.2 below. To provide

the insight into construction of Algorithm 4, we first review the idea behind the central

suboptimal solution via Algorithm 3 following [4]. We also provide some intermediate results

that will be useful in establishing our results.

1Pipage rounding is a polynomial time algorithm which moves a fractional point x on a hypercube to a
integral point x̂ on the same hypercube such that f(x̂) ≥ f(x)
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3.2.1 A Short Overview Of The Central Continuous Greedy Pro-

cess

As we mentioned earlier the continuous multilinear extension is a relaxation strategy that

extends a submodular function f(R), which is defined on the vertices of the n−dimensional

hypercube {0, 1}n to a continuous multilinear function F defined on [0, 1]n. The two functions

evaluate identically for any vector x ∈ [0, 1]n that is the membership indicator vector of a set

R ∈ P . Then, by way of a process that runs continuously, depending only on local properties

of F , we can produce a point x ∈ P (M) to approximate the optimum OPT = max
x∈P (M)

F (x)

(here recall (4.6)). The proposal is to move in the direction of a vector constrained by P (M)

which maximizes the local gain. To understand the logic behind Algorithm 3 let us review

the conceptual steps of this continuous greedy process.Lets views the process as a particle

starting at x(0) = 0 and following the flow

dx

dt
= v(x) where v(x) = argmax

v∈P (M)

(v.∇F (x)). (3.2)

over a unit time interval [0, 1]. We note that x(t) for t ∈ [0, 1] is contained in P (M), since

it is a convex combination of vectors in P (M).

Lemma 3.2.1. Consider the set value optimization problem (3.1). Suppose f : P → R≥0 is

an increasing and submodular set function and consider its multilinear extension F : Rn
≥0 →

R≥0. Then ∀x ∈ P (M)

1S⋆ .∇F (x) ≥ f(S⋆)− F (x).

and

dF

dt
= v(x).∇F (x) ≥ f(S⋆)− F (x).
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Proof. Consider a point x along the trajectory of our flow (3.2) and assume that x⋆ is the

true optimum OPT = F (x⋆) = f(S⋆). Now consider a direction v⋆ = max{x⋆−x,0}, which

is a nonnegative vector. Because 0 ≤ v⋆ ≤ x⋆ ∈ P (M), then v⋆ ∈ P (M). By virtue of

Lemma 1.5.5, F is monotone increasing, therefore, using max{x⋆ − x,0} = max{x⋆,x} − x

we have F (x + v⋆) = F (max{x⋆,x}) ≥ F (x⋆). However, x + v⋆ does not belong to P (M)

necessarily. Therefore, lets consider F (x+ζv⋆) for ζ ≥ 0. It can be shown that F (x+ζv⋆) is

concave in ζ and dF
dζ

is non-increasing. Thus, it can be established that F (x+ v⋆)−F (x) ≤
dF
dζ
|ζ=0 = v⋆.∇F (x). But, since v⋆ ∈ P (M), and v ∈ P (M) that is used to generate v

maximizes v.∇F (x), we can write v.∇F (x) ≥ v⋆.∇F (x) ≥ F (x+v⋆)−F (x) ≥ OPT−F (x).

Now we note that dF
dt

= v(x).∇F (x) ≥ OPT − F (x(t)). Moreover, since 1S⋆ .∇F (x) ≤

v⋆.∇F (x) then we have 1S⋆ .∇F (x) ≥ f(S⋆)− F (x).

Therefore, given x(0) = 0, using the Comparison Lemma [107], we can conclude the F (x) ≥

(1−e−t)OPT , and thus x(1) ∈ P (M) and also F (x(1)) ≥ (1−1/e)OPT . In the second stage

of the algorithm, the fractional solution x(1) is rounded to a point in {0, 1}n by use of Pipage

rounding method, see [60] for more details about Pipage rounding. The aforementioned

exposition is the conceptual design behind the continuous greedy process. The algorithm 3is

a practical implementation achieved by the use of a numerical iterative process

x(t+ 1) = x(t) +
1

T
v(t), (3.3)

and use of sampling to compute ∇F (x) and consequently v(t), see [4] for more details. In

what follows, we explain a practical distributed implementation of the the continuous greedy

process, which is realized as Algorithm 4, and is inspired by this central solution.
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Algorithm 4 Discrete Distributed implementation of the continuous greedy process.

1: Init: P̄ ← ∅, Fi ← ∅, t← 1,
2: while t ≤ T do
3: for i ∈ A do
4: Draw Ki sample policy sets R such that q ∈ R with the probability α for all (q, α) ∈ Fi.
5: for p ∈ Pi do
6: Compute wi

p ∼ E[f(R∪ {p})− f(R \ {p})] using the policy sample sets of step 4.
7: end for
8: Solve for p⋆ = argmax

p∈Pi

wi
p.

9: F−
i ← Fi ⊕ {(p⋆, 1

T )}.
10: Broadcast F−

i to the neighbors Ni.
11: Fi ← MAX

j∈Ni∪{i}
F−
j

12: end for
13: t← t+ 1.
14: end while
15: for i ∈ A do
16: Sample one policy p̄ ∈ Pi using Fi

17: P̄ ← P̄ ∪ {p̄}
18: end for

3.2.2 Design and Analysis of the Distributed Continuous Greedy

Process

We start off our design and analysis of the distributed continuous greedy process by intro-

ducing our notation and the set of computations that agents carry out locally using their

local information and interaction with their neighbors. The algorithm is performed over the

finite time horizon of T steps. Let Fi(t) ⊂ P× [0, 1] be the information set of agent i at time

step t, initialized at Fi(0) = ∅. For, any couple (p, α) ∈ Fi(t) the first element is the policy

and the second element is the corresponding membership probability. We let xi(t) ∈ Rn

(recall |P| = n) be the local copy of the membership probability of our suboptimal solution

of (3.1) at agent i at time step t, defined according to

xip(t) =


α, (p, α) ∈ Fi(t),

0 otherwise,

p ∈ P . (3.4)
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Recall that P = {1, ..., n} and it is sorted agent-wise with 1 ∈ P1 and n ∈ PN . Hence,

xi(t) = [x̂⊤
i1(t), · · · ,x⊤

ii(t), · · · , x̂
⊤
iN(t)]

⊤ where xii(t) ∈ R|Pi|
≥0 is the membership probability

vector of agent i’s own policy at iteration t, while x̂ij(t) ∈ R|Pj |
≥0 is the local estimate of

the membership probability vector of agent j by agent i. At time step t agent i solves the

optimization problem

ṽi(t) = argmax
y∈Pi(M)

y.∇̃F (xi(t)) (3.5)

with

Pi(M) =
{
[y⊤

1 , · · · ,y⊤
N ]

⊤ ∈Rn
≥0

∣∣∣1⊤.yi ≤ 1, yj = 0, j ∈ A\{i}
}
. (3.6)

The term ∇̃F (xi(t)) is the estimate of ∇F (xi(t)) which is calculated by taking Ki samples

of set Rxi(t) according to membership probability vector xi(t). Recall (4.4). Hence, ∂F
∂xp

is

estimated by averaging f(Rxi(t) ∪ {p}) − f(Rxi(t) \ {p}) over the samples. We denote the

pth element of ∇̃F (xi(t)) by w
i
p, and represent it by

wi
p ∼ E[f(Rxi(t) ∪ {p})− f(Rxi(t) \ {p})]. (3.7)

We note that given the definition of Pi(M), to compute (3.5), we only need wi
p for p ∈ Pi.

Remark 3.2.1 (Local computation of wi
p, p ∈ Pi, by agent i). Given the definition (3.4),

we note that wi
p, an estimate of ∂F

∂xp
can be obtained from drawing Ki sample policy sets R

such that q ∈ R with the probability α for all (q, α) ∈ Fi and using

wi
p ∼ E[f(R∪ {p})− f(R \ {p})], p ∈ Pi. (3.8)
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Let each agent propagate its local variable according to

x−
i (t+ 1) = xi(t) +

1

T
ṽi(t). (3.9)

One can make a conceptual connection between (3.9) and the practical implementation

of (3.2) discussed earlier. Because the propagation is only based on local information of

agent i, next, each agent, by interacting with its neighbors, updates its propagated x−
i (t+1)

by element-wise maximum seeking

xi(t+ 1) = max
j∈Ni∪{i}

x−
j (t+ 1). (3.10)

Lemma 3.2.2 below shows that, as one expects, xii(t + 1) = x−
ii(t + 1), i.e., the corrected

component of xi corresponding to agent i itself is the propagated value maintained at agent

i, and not the estimated value of any of its neighbors.

Lemma 3.2.2. Assume that the agents follow the distributed Algorithm 4. Let x̄(t) =

max
i∈A

xi(t) where xi is given in (3.4). Moreover, Then, x̄(t) = [x⊤
11(t), · · · ,x⊤

NN(t)]
⊤ at any

time step t.

Proof. Since f is a monotone increasing and submodular set function, we have f(Rxi(t) ∪

{p}) − f(Rxi(t) \ {p}) ≥ 0 and hence ∇̃F (xi(t)) has positive entries ∀i ∈ A. This results

in the optimization (3.5) subject to vector space (3.6) to output vector ṽi(t) ∈ Pi(M) that

has entries greater or equal to zero. Hence, according to the propagation and update rule

(3.9) and (3.10), we can conclude that xii(t) has increasing elements and only agent i can

update it and other agents only copy this value as x̂ji(t). Therefor, we can conclude that

x̂jip(t) ≤ xiip(t) for all p ∈ Pi which concludes the proof.
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We note that it follows from Lemma 3.2.2 that

xjj(t) = x−
jj(t), j ∈ A. (3.11)

In the distributed Algorithm 4 at each time step t each agent has its own belief on the

probabilities of the policies that is not necessarily the same as the belief of the other agents.

The following result establishes the difference between the belief of the agents.

Proposition 3.2.1. Let agents follow the distributed Algorithm 4. Then, the vectorized

membership probability xi(t) for each agent i ∈ A realized from Fi(t) satisfy

0 ≤ 1

N
1.(x̄(t)− xi(t)) ≤

1

T
d(G), (3.12a)

x̄(t+ 1)− x̄(t) =
1

T

∑
i∈A

ṽi(t), (3.12b)

1

N
1.(x̄(t+ 1)− x̄(t)) =

1

T
. (3.12c)

Proof. f is a monotone increasing and submodular set function therefor f(Rxi(t) ∪ {p}) −

f(Rxi(t) \ {p}) ≥ 0 and hence ∇̃F (xi(t)) has positive entries ∀i ∈ A. Then, because ṽj(t) ∈

Pj(M), it follows from (3.5) that ṽj(t) has non-negative entries, ṽjp(t) ≥ 0, which satisfy∑
p∈Pj

ṽjp(t) = 1. Therefore, it follows from (3.9) and Lemma 3.2.2 that

1.xjj(t+ 1) = 1.xjj(t) +
1

T
, j ∈ A. (3.13)

Using (3.13), we can also write

1.xjj(t) = 1.xjj(t− d(G)) +
1

T
d(G), j ∈ A. (3.14)

Furthermore, it follows from Lemma (3.2.2) that for all ∀p ∈ Pj and any i ∈ A\{j} we can
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write

xjjp(t) ≥ x̂ijp(t). (3.15)

Also, since every agent i ∈ A\{j} can be reached from agent j ∈ A at most in d(G) hops,

it follows from the propagation and update laws (3.9) and (3.10), for all ∀p ∈ Pj, for any

i ∈ A\{j} that

x̂ijp(t) ≥ xjjp(t− d(G)). (3.16)

Thus, for any j ∈ A and i ∈ A\{j}, (3.15) and (3.16) result in

1.xjj(t) ≥ 1.x̂ij(t) ≥ 1.xjj(t− d(G)). (3.17)

Next, we can use (3.14) and (3.17) to write

1.xjj(t) ≥ 1.x̂ij(t) ≥ 1.xjj(t)−
1

T
d(G), (3.18)

for j ∈ A and i ∈ A\{j}. Using (3.18) for any i ∈ A we can write

∑
j∈A

1.xjj(t) ≥ xii(t) +
∑

j∈A\{i}

1.x̂ij(t) ≥
∑
j∈A

1.xjj(t)−
1

T
Nd(G). (3.19)

Then, using Lemma 3.2.2, from (3.19) we can write

1.x̄(t) ≥ 1.xi(t) ≥ 1.x̄(t)− 1

T
Nd(G),

which ascertains (3.12a). Next, note that from Lemma 3.2.2, we have xjj(t) = x−
jj(t) for any

j ∈ A. Then, using (3.9) and invoking Lemma 3.2.2, we obtain (3.12b),which, given (3.13),

also ascertains (3.12c).
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Because f is normal and monotone increasing, we have the guarantees that wi
p ≥ 0. There-

fore, without loss of generality, we know that one realization of ṽi(t) in (3.5) corresponds to

1{p⋆} where

p⋆ = argmax
p∈Pi

wi
p. (3.20)

Next, let each agent i ∈ A propagate its information set according to

F−
i (t+ 1) = Fi(t)⊕

{
(p⋆,

1

T
)

}
, (3.21)

and update it using a local interaction with its neighbors according to

Fi(t+ 1) = MAX
j∈Ni∪{i}

F−
j (t+ 1). (3.22)

By definition to ⊕ and MAX operators, we have the guarantees that if (p, α1), then there

exists no α2 ̸= α1 that (p, α2) ∈ Fi.

Lemma 3.2.3. For ṽi(t) = 1{p⋆}, x
−
i (t+1) and xi(t+1) computed from, respectively, (3.9)

and (3.10) are the same as x−
i (t+1) and xi(t+1) constructed from, respectively, F−

i (t+1)

and Fi(t+ 1) using (3.4).

Proof. The proof follows trivially from the definition of the operator ⊕ and (3.4).

Initialized by Fi(0) = ∅, i ∈ A, (3.20), (3.21), and (3.21) where wi
p is computed via (3.8)

constitute a distributed iterative process, formally stated by Algorithm 4, that runs for T

steps. At the end of these T steps, as stated in Algorithm 4, each agent i ∈ A, obtains its

suboptimal policy P̄i by sampling one policy p̄ ∈ Pi with the probability given by xii(T ),
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where for p ∈ Pi,

xip(T ) =


α, (p, α) ∈ Fi(T ),

0 otherwise.

The following result gives the convergence guarantee and suboptimality gap of Algorithm 4.

Theorem 3.2.2 (Convergence guarantee and suboptimality gap of Algorithm 4). Let f :

2P → R≥0 be normalized, monotone increasing and submodular set function. Let S⋆ to be

the optimizer of problem (3.1). Then, the admissible policy set P̄, the output of distributed

Algorithm 4, satisfies

(
1− 1

e

)(
1−
(
2N2d(G)+1

2
N2 +N

)
1

T

)
f(S⋆)≤E[f(P̄)],

with the probability of
(∏

i∈A(1− 2e−
1

8T2Kj)|Pi|
)T

.

Proof. Knowing that
∣∣∣ ∂2F
∂xp∂xq

∣∣∣ ≤ f(S⋆) from Lemma 1.5.4 and (3.12c), it follows from

Lemma 1.5.7 that

F (x̄(t+ 1))− F (x̄(t)) ≥ ∇F (x̄(t)).(x̄(t+ 1)− x̄(t))− 1

2
N2 1

T 2
f(S⋆),

which, given (3.12b), leads to

F (x̄(t+ 1))− F (x̄(t)) ≥ 1

T

∑
i∈A

ṽi(t).∇F (x̄(t))−
1

2
N2 1

T 2
f(S⋆). (3.23)

Next, we note that by definition, x̄(t) ≥ xi(t) for any ∀i ∈ A. Therefore, given (3.12a), by

invoking Lemma 1.5.7, for any i ∈ A we can write

∣∣∣∣ ∂F∂xp (x̄(t))− ∂F

∂xp
(xi(t))

∣∣∣∣ ≤ N
1

T
d(G))f(S⋆), (3.24)
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for p ∈ {1, · · · , n}. Recall that at each time step t, the realization of ṽi(t) in (3.5) that

Algorithm 4 uses is

ṽi(t) = 1p⋆ , p⋆ ∈ Pi is given by (3.20) (3.25)

for every i ∈ A. Thus, 1.ṽi(t) = 1, i ∈ A. Consequently, using (3.24) we can write

∑
i∈A

ṽi(t).∇F (x̄(t)) ≥
∑
i∈A

ṽi(t).∇F (xi(t))−N2 1

T
d(G))f(S⋆). (3.26)

Next, we let

v̄i(t) = argmax
v∈Pi(M)

v.∇F (x̄(t))

and

v̂i(t) = argmax
v∈Pi(M)

v.∇F (xi(t)).

Because f is monotone increasing, by virtue of Lemma 1.5.5, ∂F
∂xp
≥ 0, and as such v̄i(t) = 1p̄

and v̂i(t) = 1p̂, where p̄ = argmax
p∈Pi

∂F (x̄(t))
∂xp

and p̂ = argmax
p∈Pi

∂F (xi(t))
∂xp

. Therefore, using

v̂i(t).∇F (xi(t)) ≥ v̄i(t).∇F (xi(t))

and

v̂i(t).∇F (xi(t)) ≥ ṽi(t).∇F (xi(t)),

i ∈ A, and (3.24) we can also write

∑
i∈A

v̂i(t).∇F (xi(t)) ≥
∑
i∈A

v̄i(t).∇F (xi(t)) ≥
∑
i∈A

v̄i(t).∇F (x̄(t))−N2 1

T
d(G)f(S⋆),

(3.27a)∑
i∈A

v̂i(t).∇F (xi(t)) ≥
∑
i∈A

ṽi(t).∇F (xi(t)). (3.27b)
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On the other hand, by virtue of Lemma 1.5.9, ∂̃F
∂xp

(xj(t)), p ∈ Pj that each agent j ∈ A uses

to solve optimization problem (3.20) (equivalently (3.5)) satisfies

∣∣∣∣∣ ∂̃F∂xp (xj(t))−
∂F

∂xp
(xj(t))

∣∣∣∣∣ ≤ 1

2T
f(S⋆) (3.28)

with the probability of 1 − 2e−
1

8T2Kj . Using (3.27b) and (3.28), and also that the samples

are drawn independently

∑
i∈A

ṽi(t).∇F (xi(t)) ≥
∑
i∈A

ṽi(t).∇̃F (xi(t))−N
1

2T
f(S⋆), (3.29a)

∑
i∈A

ṽi(t).∇̃F (xi(t)) ≥
∑
i∈A

v̂i(t).∇̃F (xi(t)) ≥
∑
i∈A

v̂i(t).∇F (xi(t))−N
1

2T
f(S⋆),

(3.29b)

with the probability of
∏

i∈A(1− 2e−
1

8T2Kj)|Pi|.

From (3.26), (3.27a),(3.29a), and (3.29b) now we can write

∑
i∈A

ṽi(t).∇F (x̄(t)) ≥
∑
i∈A

v̄i(t).∇F (x̄(t))− (2Nd(G)) + 1)N
1

T
f(S⋆), (3.30)

with the probability of 1− 2
∑

i∈A e−
1

8T2Ki .

Next, let v⋆
i be the projection of 1S⋆ into Pi(M). Knowing that Pi(M)s are disjoint sub-

spaces of P (M) covering the whole space then we can write

1S⋆ =
∑
i∈A

v⋆
i . (3.31)

Then, using (3.30), (3.31), and invoking Lemma 3.2.1 and the fact that v̄i(t).∇F (x̄(t)) ≥
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v⋆
i (t).∇F (x̄(t)) we obtain

∑
i∈A

ṽi(t).∇F (x̄(t)) ≥
∑
i∈A

v⋆
i (t).∇F (x̄(t))− (2Nd(G)) + 1)N

1

T
f(S⋆) =

1S⋆ .∇F (x̄(t))− (2Nd(G)) + 1)N
1

T
f(S⋆) ≥ f(S⋆)− F (x̄(t))− (2Nd(G)) + 1)

N

T
f(S⋆),

(3.32)

with the probability of
∏

i∈A(1− 2e−
1

8T2Kj)|Pi|. Hence, using (3.23) and (3.32), we conclude

that

F (x̄(t+ 1))− F (x̄(t)) ≥ 1

T
(f(S⋆)− F (x̄(t))− (2Nd(G)) + 1

2
N + 1)

N

T 2
f(S⋆), (3.33)

with the probability of
∏

i∈A(1− 2e−
1

8T2Kj)|Pi|.

Next, let g(t) = f(S⋆)− F (x̄(t)) and β = (2Nd(G)) + 1
2
N + 1) N

T 2f(S⋆), to rewrite (3.33) as

(f(S⋆)− F (x̄(t)))− (f(S⋆)− F (x̄(t+ 1))) =

g(t)− g(t+ 1) ≥ 1

T
(f(S⋆)− F (x̄(t)))− β =

1

T
g(t)− β. (3.34)

Then from inequality (3.34) we get

g(t+ 1) ≤ (1− 1

T
)g(t) + β (3.35)

with the probability of
∏

i∈A(1− 2e−
1

8T2Kj)|Pi|. Solving for inequality (3.35) at time T yields

g(T ) ≤ (1− 1

T
)Tg(0) + β

T−1∑
k=0

(1− 1

T
)k = (1− 1

T
)Tg(0) + Tβ(1− (1− 1

T
)T ) (3.36)

with the probability of
(∏

i∈A(1− 2e−
1

8T2Kj)|Pi|
)T

. Substituting back g(T ) = f(S⋆) −
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F (x̄(T )) and g(0) = f(S⋆)− F (x(0)) = f(S⋆), in (3.36) we then obtain

(1− (1− 1

T
)T )(f(S⋆)− Tβ) = (1− (1− 1

T
)T )(1− (2Nd(G)) + 1

2
N + 1)

N

T
)f(S⋆)

≤ F (x̄(T )), (3.37)

with the probability of
(∏

i∈A(1− 2e−
1

8T2Kj)|Pi|
)T

. By applying 1
e
≥ (1− (1− 1

T
)T ), we get

(1− 1

e
)(1−(2Nd(G)+1

2
N + 1)

N

T
)f(S⋆)≤ F (x̄(T )), (3.38)

with the probability of
(∏

i∈A(1− 2e−
1

8T2Kj)|Pi|
)T

.

Given (3.25), from the propagation and update rules (3.9) and (3.10) and Lemma 3.2.2 we

can conclude that 1.xii(T ) = 1. Furthermore by defining Rxii(T ) to be a random set where

each member if sampled according to xii(T ) and from Pi. Since 1.xii(T ) = 1, we can also

define Txii(T ) to be a random set where only one policy is sampled from Pi according to

xii(T ), then using Lemma 4.2.4, we can write

F (x̄(T )) = E[f(Rx(T ))] = E[f(Rx11(T ) ∪ · · · ∪ RxNN (T ))]

≤ E[f(Tx11(T ) ∪Rx22(T ) ∪ · · · ∪ RxNN (T ))]

≤ · · ·

≤ E[f(Tx11(T ) ∪ · · · ∪ TxNN (T ))]

which concludes the proof.

By simplifying the probability statement and dropping the higher order terms, the optimality

gap grantee of Theorem 3.2.2 holds with the probability of at least 1 − 2T n e−
1

8T2K , K =

min{K1, · · · , KN}; note that 1−2T n e−
1

8T2K ≤
(∏

i∈A(1− 2e−
1

8T2Kj)|Pi|
)T

. Then, it is clear

that the probability improves as T and the K, the number of the samples collected by agents,
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increase.

Remark 3.2.2 (Extra communication for improved optimality gap). Replacing the update

step (3.10) with xi(t+ 1) = yi(d(G)) where yi(0) = x−
i (t+ 1) and

yi(m) = max
j∈Ni∪{i}

yj(m− 1), m ∈ {1, · · · , d(G)},

i.e., starting with x−
i (t+1) and recursively repeating the update step (3.10) using the output of

the previous recursion for d(G) times, each agent i ∈ A arrives at xi(t+1) = x̄(t+1) (recall

Lemma 3.2.2). Hence, for this revised implementation, following the proof of Theorem 3.2.2,

we observe that (3.24) is replaced by
∣∣∣ ∂F∂xp

(x̄(t))− ∂F
∂xp

(xi(t))
∣∣∣ = 0, which consequently, leads

to

(
1− 1

e

)(
1−
(
1

2
N2 +N

)
1

T

)
f(S⋆)≤E[f(P̄)], (3.39)

with the probability of
(∏

i∈A(1− 2e−
1

8T2Kj)|Pi|
)T

. This improved optimality gap is achieved

by (d(G)−1)T extra communication per agent. The optimality bound (4.59) is the same bound

that is achieved by the centralized algorithm of [4]. To implement this revision, Algorithm 4’s

step 11 (equivalent to (3.21)) should be replaced by Fi = Hi(d(G)), where Hi(0) = F−
i , and

Hi(m) = MAX
j∈Ni∪{i}

H−
j (m− 1), m ∈ {1, · · · , d(G)}. (3.40)

3.3 Numerical Example

Consider the multi-agent sensor placement problem introduced in Fig. 3.2 for 5 agents for

which Bi = B, i.e., each agent is able to move to any of the sensor placement points. This

sensor placement problem is cast by optimization problem (4.1). The field is a 6 unit by 6 unit

78



T
K

10000 500 100 50 10 5 1

100 768 768 718 710 718 716 696
20 768 768 718 710 726 716 696
10 661 640 657 640 634 602 551
5 630 630 634 626 583 608 540
1 456 456 456 456 456 456 456

Table 3.1 – The outcome of Algorithm 4 for different iteration and sampling numbers.

square and the feasible sensor locations are the 6 by 6 grid in the center square of the field, see

Fig. 3.1. The points of interest are spread around the map (small red dots in Fig. 3.1) in the

total number of 900. The sensing zone of the agents A = {a, b, c, d, e} are circles with radii

of respectively {0.5, 0.6, 0.7, 0.8, 1.5}. The agents communicate over a ring graph as shown in

Fig. 3.1. We first solve this problem using our proposed distributed Algorithm 4. The results

of the simulation for different iteration and sampling numbers are shown in Table 3.1. The

algorithm produces good results at a modest number of iteration and sampling numbers (e.g.

see T = 20 and K = 500). Fig. 3.1(g) shows the result of the deployment using Algorithm 4.

Next, we solve this algorithm using the sequential greedy algorithm [131] in a decentralized

way by first choosing a route SEQ = 1 → 2 → 3 → 4 → 5 that visits all the agents, and

then giving SEQ to the agents so they follow SEQ to share their information in a sequential

manner. Figure 3.1(a)-(f) gives 6 possible SEQ denoted by the semi-circular arrow inside

the networks. The results of running the sequential greedy algorithm over the sequences in

Fig. 3.1(a)-(f) is shown in Table 3.2. What stands out about the sequential greedy algorithm

Case 1 2 3 4 5 6
Utility 634 704 699 640 767 760

Table 3.2 – Outcome of sequential greedy algorithm.

is that the choice of sequence can affect the outcome of the algorithm significantly. We can

attribute this inconsistency to the heterogeneity of the sensors’ measurement zone. We can

see that when sensor e is given the last priority to make its choice, the sequential greedy

79



algorithm acts poorly. This can be explained by agents with smaller sensing zone picking

high-density areas but not being able to cover it fully, see Fig. 3.3(h) which depicts the

outcome of a sequential greedy algorithm using the sequence in Case 1. A simpler example

justifying this observation is shown in Fig. 3.3 with the two disjoint clusters of points and

two sensors. One may suggest to sequence the agents from high to low sensing zone order,

however this is not necessarily the best choice as we can see in Table 3.2; the utility of case

6 is less than case 5 (the conjecture of sequencing the agents from strongest to weakest is

not valid). Moreover, this ordering may lead to a very long SEQ over the communication

graph. Interestingly, this inconsistency does not appear in solutions of Algorithm 4 where

the agents intrinsically are overcoming the importance of a sequence by deciding the position

of the sensors over a time horizon of communication and exchanging their information set.

3.4 Conclusion

We proposed a distributed suboptimal algorithm to solve the problem of maximizing an

monotone increasing submodular set function subject to a partitioned matroid constraint.

Our problem of interest was motivated by optimal multi-agent sensor placement problems

in discrete space. Our algorithm was a practical decentralization of a multilinear extension

based algorithm that achieves (1− 1/e− O(1/T )) optimally gap, which is an improvement

over 1/2 optimality gap that the well-known sequential greedy algorithm achieves. In our

numerical example, we compared the outcome obtained by our proposed algorithm with that

of a decentralized sequential greedy algorithm which is constructed from assigning a priority

sequence to the agents. We showed that the outcome of the sequential greedy algorithm

is inconsistent and depends on the sequence. However, our algorithm’s outcome due to its

iterative nature intrinsically tended to be consistent, which in some ways also explains its

better optimally gap over the sequential greedy algorithm. Our future work is to study the
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robustness of our proposed algorithm to message dropout.
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

(g) (h)

Figure 3.1 – Plots (a)-(f) show 6 different SEQs used in the sequential greedy algorithm. Plot

(g) shows the outcome of using Algorithm 4 whereas plot (h) shows the outcome of the sequential

greedy algorithm when SEQ in Case 1 (plot (a)) is used.
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Figure 3.2 – Let the policy set of each mobile sensor i ∈ A be Pi = {(i, p)|p ∈ Bi}, where Bi ⊂ B
is the set of the allowable sensor placement points for agent i ∈ A out of all the sensor placement

points B. Note that by definition, for any two agent i, j ∈ A, Pi ∩ Pj = ∅. The sensors are

heterogeneous, in the sense that the size of their sensing zone is different. The objective is to

place the sensors in points in B such that the total number of the observed points of interest is

maximized. The utility function, the sum of observed points, is known to be a monotone and

increasing submodular function of the agent’s sensing zone [1]. This sensor placement problem can

be formalized as the optimization problem (4.1). The agents are communicating over a connected

undirected graph and their objective is to obtain their respective placement points by interacting

only with their communicating neighbors.

Figure 3.3 – or The sequential greedy algorithm, when the blue agent chooses first assigns both

the blue and the orange agents to point A resulting in inferior performance compared to the case

that the orange agent chooses first. In the later case, orange agent gets A and the blue agent gets

B, which is indeed the optimal solution.
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Chapter 4

Distributed Strategy Selection II

Joint utility-maximization problems for multi-agent systems often should be addressed by

distributed strategy-selection formulation. Constrained by discrete feasible strategy sets,

these problems are broadly formulated as NP-hard combinatorial optimization problems.

However, in many cases, it is possible to reformulate this class of problems as constrained

submodular set function maximization problems which also belong to the NP-hard domain of

problems. A prominent example is the problem of multi-agent mobile sensor dispatching over

a discrete domain. This thesis considers a class of submodular optimization problems that

consist of maximization of a monotone and submodular set function subject to a partition

matroid constraint over a group of networked agents that communicate over a connected

undirected graph. We work with the value oracle model. Consequently, the only access of

the agents to the utility function is through a black box that returns the utility function

value given a specific strategy set. We propose a distributed suboptimal polynomial-time

algorithm that enables each agent to obtain its respective strategy via local interactions with

its neighboring agents. Our solution is a fully distributed gradient-based algorithm using the

submodular set functions’ multilinear extension followed by a distributed stochastic Pipage

rounding procedure. This algorithm results in a strategy set that when the team utility
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function is evaluated at the worst case, the utility function value is in 1
c
(1− e−c − O(1/T ))

of the optimal solution with c to be the curvature of the submodular function. An example

demonstrates our results.

4.1 Problem Statement

Consider a group of A={1, ..., N} agents with communication and computation capabilities,

interacting over a connected undirected graph G(A, E) where E ⊂ A × A is the edge set.

Recall that G is undirected if and only is (i, j) ∈ E means that agents i and j can exchange

information. An undirected graph is connected if there is a path from each node to every

other node in the graph.

Each agent i ∈ A has a distinct discrete strategy set Pi, known only to agent i, and wants to

choose at most κi ∈ Z>0 strategies from Pi such that a monotone increasing and submodular

utility function f : 2P → R≥0, P =
⋃

i∈APi, evaluated at all the agents’ strategy selection

is maximized. In other words, the agents aim to solve in a distributed manner the discrete

domain optimization problem

max
R⊂P,R∈I

f(R) (4.1a)

I =
{
R ⊂ P

∣∣ |R ∩ Pi| ≤ κi, ∀i ∈ A
}
. (4.1b)

The agents’ access to the utility function is through a black box that returns f(R) for any

given setR ⊂ P (value oracle model). The constraint set (4.1b) is a partition matroid, which

restricts the number of strategy choices of each agent i ∈ A to κi. In a distributed solution,

each agent i ∈ A should obtain its respective component R⋆
i ⊂ Pi of R⋆ = ∪Nj=1R⋆

j , the

optimal solution of (4.1), by interacting only with the agents that are in its communication

range.
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In the remainder of this chapter, without loss of generality, we assume that global strategy

set is given by P=
⋃

i∈APi = {1, · · · , n}. Also, we assume that the agents’ local strategies

each are non-empty consecutive integers and ordered such that if Pi = {p, p+1, · · · , q} ⊂ P ,

then p− 1 ∈ Pi−1 and q + 1 ∈ Pi+1.

The distributed solution we propose for solving (4.1) relies on a multilinear extension relax-

ation approach and a rounding procedure. In what follows, we introduce the notation and

definitions needed for this approach.

4.1.1 Multilinear Relaxation

The utility function f assigns values to all the subsets of P =
⋃

i∈APi = {1, · · · , n}. Thus,

equivalently, we can regard the set value utility function as a function on the Boolean hyper-

cube {0, 1}n, i.e., f : {0, 1}n → R. For a submodular function f : 2P → R≥0, its multilinear

extension F : [0, 1]n → R≥0 in the continuous space is [4]

F (x) =
∑
R⊂P

f(R)
∏
p∈R

[x]p
∏
p̸∈R

(1− [x]p), x ∈ [0, 1]n. (4.2)

Given x ∈ [0, 1]n we can defineRx to be the random subset of P in which each element p ∈ P

is included independently with probability [x]p and not included with probability 1 − [x]p.

Then the multilinear extension F in (4.2) is simply [4]

F (x) = E[f(Rx)], (4.3)

where E[.] indicates the expected value. Taking the derivatives of F (x) yields [4]

∂F

∂[x]p
(x) = E[f(Rx ∪ {p})− f(Rx \ {p})], (4.4)
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and

∂2F

∂[x]p∂[x]q
(x) = E[f(Rx ∪ {p, q})− f(Rx ∪ {q} \ {p})

− f(Rx ∪ {p} \ {q}) + f(Rx \ {p, q})]. (4.5)

Multilinear-extension function F (x), expands the function evaluation of the utility function

over the space between the vertices of the Boolean hypercube 0, 1n. For a solution via

a continuous relaxation method, the effect of partition matroid constraint should also be

considered. To do so, the matroid polytope for partition matroid is defined as

M = {x ∈ [0, 1]n
∣∣ ∑

p∈Pi

[x]p ≤ κi,∀i ∈ A}. (4.6)

The matroid polytope M is the convex hull of the vertices of the hypercube {0, 1}n that

satisfies the partition matroid constraint (4.1b). Additionally, note that according to (4.2),

F (x) for any x ∈ M is a weighted average of values of F at the vertices of the matriod

polytopeM. Then, equivalently, F (x) at any x ∈M is a normalized-weighted average of f

on the strategies satisfying constraint (4.1b). As such,

f(R⋆) ≥ F (x), x ∈M,

which is equivalent to f(R⋆) = max
x∈M

F (x), where R⋆ is the optimizer of problem (4.1) [4].

Therefore, solving the continuous domain optimization problem

max
x∈M

F (x), (4.7)

can lead to finding the R⋆.

A practical implementation of a gradient-based method to solve (4.7) is achieved by using
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an Euler discretized implementation with stepsize of 1
T

in T ∈ Z>0 steps. A significant

challenge in implementing a gradient-based method is the exponential cost of computing

the gradient ∇F (x) whose calculation requires the knowledge of f at each R ⊂ 2P . The

stochastic interpretation (4.3) of the multilinear extension and its derivatives however offer

a mechanism to estimate them with a reasonable computational cost via sampling.

4.2 Distributed Submodular Maximization Subject to

Partition Matroid

In this section we propose a distributed algorithm for the submodular maximization problem

defined in Section 4.1. Our solution relies on the continuous relaxation of the discrete

optimization (4.1). We first find a suboptimal solution to the relaxed problem and then

propose a rounding method to map this solution to a feasible suboptimal solution for (4.1).

4.2.1 Central Continuous Greedy Algorithm

The constrained gradient ascent

dx

dt
= v(x) where v(x) = argmax

w∈M
(w.∇F (x)), (4.8)

initialized at x(0)=0 to solve the relaxed problem (4.7), can lead to a suboptimal solution

for problem (4.1). SinceM is convex and x(0)=0∈M, the trajectory t 7→x of (4.8) belongs

toM for t ∈ [0, 1]. The following Lemma provides an essential property of the multilinear

extended function F which can be used in quantifying the optimality gap of gradient ascent

solver (4.8).

Lemma 4.2.1. Let f : 2P → R≥0 be normalized, monotone increasing and submodular set
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function with total curvature (4.21) of c. Given P1,P2 ⊂ P,

f(P2 ∪ P1)− f(P2) + (1− c)
∑

p∈P1∩P1

f({p}) ≥ (1− c)f(P1)

holds.

Proof. based on the definition of total curvature (4.21), for R,R′ ∈ P and p ̸∈ R,R′ we can

write

c∆f (p|R′) ≥ ∆f (p|R′)−∆f (p|R)

Hence, by taking P ′
1 = P1 \ P2 and P ′

1 = {p11, p12, ..., p1l}, then we can write

c∆f (p1i|{p11, p12, ..., p1(i−1)}) ≥

∆f (p1i|{p11, p12, ..., p1(i−1)})−

∆f (p1i|P ′
1 ∪ {p11, p12, ..., p1(i−1)}).

Therefore we can do a summation over the increments of all members of P ′
1

i=1∑
l

c∆f (p1i|{p11, p12, ..., p1(i−1)}) ≥

i=1∑
l

∆f (p1i|{p11, p12, ..., p1(i−1)})−

i=1∑
l

∆f (p1i|P2 ∪ {p11, p12, ..., p1(i−1)}).
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and by rearranging and knowing that f(P2 ∪ P ′
1) = f(P2 ∪ P1), we get

f(P2 ∪ P1)− f(P2) ≥ (1− c)f(P ′
1).

Then by adding (1− c)
∑

p∈P1∩P2
f(p) to the both sides of the inequality and knowing that

P1 = P ′
1 ∪ (P1 ∩ P2), we get

f(P2 ∪ P1)− f(P2) + (1− c)
∑

p∈P1∩P2

f(p) ≥

(1− c)(f(P ′
1) +

∑
p∈P1∩P1

f(p)) ≥ (1− c)f(P1),

which concludes the proof.

Lemma 4.2.2. Given that f : P → R≥0 is an increasing and submodular set function with

total curvature of c and multi-linear extension F : Rn
≥0 → R≥0. Assuming that R⋆ is the

optimizer of the problem (4.1) subject to matroidM, then ∀x ∈ P (M)

1R⋆ .∇F (x) ≥ f(R⋆)− cF (x),

holds.

Proof. Taking 1R⋆ to be the membership indicator vector of optimizer R⋆, then we can write

1R⋆ .∇F (x) =
∑
p∈R⋆

E[f(Rx ∪ {p})− f(Rx\{p})]

=
∑
p∈R⋆

E[f(Rx ∪ {p})− f(Rx) + f(Rx)− f(Rx\{p})]

= E[
∑
p∈R⋆

(
(f(Rx ∪ {p})−f(Rx))+(f(Rx)−f(Rx\{p}))

)
]. (4.9)
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Knowing that f(Rx)− f(Rx\{p})) = 0 if p ̸∈ Rx then (4.9) is reduced in

1R⋆ .∇F (x) = E[
∑
p∈R⋆

∆f (p|Rx) +
∑

p∈R⋆∩Rx

∆f (p|Rx\{p})] (4.10)

Since f is an increasing and submodular function therefor by assuming R⋆ = {s⋆1, · · · , s⋆o}

and using (1.1) the following holds.

f(Rx ∪R⋆) = f(Rx) +
o∑

k=1

∆f (si|Rx ∪ {s⋆1, · · · , s⋆k−1})

≤ f(Rx) +
∑
p∈R⋆

∆f (p|Rx) (4.11)

Furthermore, by the definition of total curvature (4.21) we have

∑
p∈R⋆∩Rx

(1− c)f({P}) ≤
∑

p∈R⋆∩Rx

∆f (p|Rx\{p}). (4.12)

By putting (4.10),(4.11) and (4.12) together we get

1R⋆ .∇F (x) ≥ E[f(Rx ∪R⋆)−f(Rx) +
∑

p∈R⋆∩Rx

(1− c)f({p})]. (4.13)

Definition of curvature (4.21) also implies that

f(Rx ∪R⋆)+
∑

p∈R⋆∩Rx

(1− c)f({p}) ≥ f(R⋆) + (1− c)f(Rx) (4.14)

Therefor, (4.13) and (4.14) results in

1R⋆ .∇F (x) ≥ E[f(R⋆)− cf(Rx)] = f(R⋆) + F (x)

which concludes the proof.
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Due to Lemma 4.2.2, ascent direction in (4.8) satisfies

dF

dt
= v(x).∇F (x) ≥ f(R⋆)− c F (x). (4.15)

From (4.15), we conclude that (4.8) results in F (x(1)) ≥ 1
c
(1− e−c) f(R⋆).

4.2.2 Distributed Discrete Gradient Ascent Solution

In the distributed setting described in our problem definition, every agent initially has access

only to its own strategy set. Let every agent i ∈ A maintain and evolve a local copy of the

membership probability vector as xi(t) ∈ Rn. Since P = {1, · · · , n} is sorted agent-wise, we

denote xi(t) = [x̂⊤
i1(t), · · · ,x⊤

ii(t), · · · , x̂
⊤
iN(t)]

⊤ ∈ Rn where xii(t) ∈ R|Pi|
≥0 is the membership

probability vector of agent i’s own strategy with entries of [xi(t)]p, p ∈ Pi at iteration

t ∈ {0, 1, · · · , T}, T ∈ Z>0, while x̂ij(t) ∈ R|Pj |
≥0 is the local estimate of the membership

probability vector of agent j by agent i with entries of [xi(t)]p, p ∈ Pj, j ∈ A \ {i}. Every

agent i ∈ A initializes at xi(0) = 0 and implements the propagation and update steps

x−
i (t+ 1) = xi(t) +

1

T
ṽi(t), (4.16a)

xi(t+ 1) = max
j∈Ni∪{i}

x−
j (t+ 1), (4.16b)

where

ṽi(t) = argmax
w∈Mi

w.∇̃F (xi(t)) (4.17)

with

Mi=
{
w∈ [0, 1]n

∣∣∣1⊤.w ≤ κi , [w]p = 0, ∀p ∈ P\Pi

}
. (4.18)
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The vector ∇̃F (xi(t)) is the empirical estimate of ∇F (xi(t)). At time step t, each agent

i ∈ A generates Ki independent samples {Rk
i (t)}

Ki
k=1 of random set Rxi(t) drawn according

to membership probability vector xi(t) from P and empirically computes gradient vector

∇F (xi(t)) ∈ Rn
≥0, which according to (4.4) is defined element-wise as

[
∇̃F (xi(t))

]
p
=

(
Ki∑
k=1

f(Rk
i (t)∪{p})−f(Rk

i (t)\{p})

)/
Ki,

p ∈ P = {1, · · · , n}.

In the propagation step (4.16a) agent i takes a step along a feasible gradient ascent direction

in its own local polytope (4.18). Because the propagation is only based on the local informa-

tion of agent i, in the update step (4.16b), the propagated x−
i (t+ 1) of each agent i ∈ A is

updated by element-wise maximum seeking among its neighbors. Lemma 4.2.3 below shows

that, as expected,

xii(t) = x−
ii(t), i ∈ A,

i.e., the corrected component of xi corresponding to agent i itself is the propagated value

maintained at agent i, and not the estimated value of any of its neighbors.

Lemma 4.2.3. Let the agents propagate and update their local membership probability vector

according to (4.16a) and (4.16b). Let

x̄(t) = max
i∈A

xi(t). (4.19)

Then, at any t ∈ {0, 1, · · · , T}, we have

x̄(t) = [x⊤
11(t), · · · ,x⊤

NN(t)]
⊤. (4.20)

Proof. Since f is monotone increasing and submodular, we have f(Rxi(t) ∪ {p})− f(Rxi(t) \
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{p}) ≥ 0 and hence ∇̃F (xi(t)) has positive entries ∀i ∈ A. Thus, ṽi(t) ∈Mi, the optimizer

of the optimization (4.17) has nonnegative entries. Hence, according to the propagation and

update rule (4.16a) and (4.16b), we can conclude that xii(t) has increasing elements and

only agent i can update it and other agents only copy this value as x̂ji(t). Therefore, we can

conclude that [x̂ji]p(t) ≤ [xii]p(t) for all p ∈ Pi which concludes the proof.

We interpret x̄(t) as the global probability membership vector of the network. Next lemma

states that both xi(t) and x̄(t) belong toM for any t ∈ {0, · · · , T}, i.e., the trajectories of

the local and global membership probability vectors never leave the matroid polytope.

Lemma 4.2.4. Let the agents propagate and update their local membership probability vector

according to (4.16a) and (4.16b). Then, (a) xi(t), x̄(t) ∈ M at any t ∈ {0, 1, · · · , T}; (b)

1.xii(T ) = κi, 1.x̂ij(T ) ≤ κj, j ∈ A \ {i}, and xi(T ) ∈ [0, 1]n.

Proof. The proof follows from a mathematical induction argument. The base case xi(0) =

0 ∈M and x̄(0) = 0 ∈M is trivially true. We take it to be true that at time t and for each

agent i ∈ A it hold that xi(t) ∈M with

1.xii(t) =
t

T
κi, and 1.x̂ij(t) ≤

t

T
κj, j ∈ A \ {i}.

for t < T and ṽi(t) ∈Mi satisfying

∑
p∈Pi

[ṽi(t)]p=κi, and
∑

p∈Pj

[ṽi(t)]p=0, j∈A\{i}.

Since [∇̃F (xi(t))]p ≥ 0 p ∈ P , then by propagation rule (4.16a), we establish that

1.x−
ii(t+ 1) =

t+ 1

T
κi,

1.x̂−
ij(t+ 1) ≤ t

T
κj, j ∈ A \ {i}.
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A a result ofMi, i ∈ A being disjoint convex subspaces ofM, the update rule (4.16b) leads

to

1.xii(t+ 1) =
t+ 1

T
κi,

1.x̂ij(t+ 1) ≤ t+ 1

T
κj, j ∈ A \ {i}.

Therefore, we conclude that xi(t+1) ∈M. Moreover, by the definition of x̄(t) in (4.20) and

Mi, i ∈ A being disjoint convex subspaces ofM, we deduct that

1.x̄(t) =
∑

i∈A
1.xii(t+ 1) =

t+ 1

T
κi i ∈ A,

for t < T and therefore, x̄(t + 1) ∈ M. We conclude the proof of (a) by induction and

trivially (b) follows.

The following theorem quantifies the optimality gap of F (x̄(T )) with respect to the solution

of the main problem (4.1). To characterize this optimality gap we take into account the total

curvature of the utility function, defined as

c = 1− min
S⊂P, p ̸∈S

∆f (p|S)
∆f (p|∅)

. (4.21)

The total curvature c ∈ [0, 1] of a submodular set function f : 2P → R≥0 shows the worst-case

increase in the value of the function when member p is added.

Theorem 4.2.1 (Optimality gap ). Let the agents propagate and update their local mem-

bership probability vector according to (4.16). Let κ =
∑

i∈A κi, Ki be number of samples

agent i used to compute ∇̃F (xi(t)), and R⋆ be the optimizer of problem (4.1). Then, with

the probability of at least
(∏

i∈A(1− 2e−
1

8T2Ki)|Pi|
)T

, the global probability membership vector
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x̄(T ) satisfies

F (x̄(T )) ≥ βf(R⋆), (4.22)

where

β =
1

c
(1−e−c)(1−(2 c κ d(G)+ c κ

2
+ 1)

κ

T
). (4.23)

Proof. Knowing that
∣∣∣ ∂2F
∂[x]p∂[x]q

∣∣∣ ≤ cf(R⋆) from Lemma 1.5.5, and (4.40c), it follows from

Lemma 1.5.7 that F (x̄(t+ 1))− F (x̄(t)) ≥ ∇F (x̄(t)).(x̄(t+ 1)− x̄(t))− κ2

2T 2 cf(R⋆), which,

given (4.40b), leads to

F (x̄(t+ 1))− F (x̄(t)) ≥

1

T

∑
i∈A

ṽi(t).∇F (x̄(t))−
κ2

2T 2
cf(R⋆). (4.24)

By definition, x̄(t) ≥ xi(t) for any ∀i ∈ A. Therefore, given (4.40a), by invoking Lemma 1.5.7,

for any i ∈ A we can write

∣∣∣∣ ∂F∂[x]p
(x̄(t))− ∂F

∂[x]p
(xi(t))

∣∣∣∣ ≤ κ

T
d(G)cf(R⋆), (4.25)

for p ∈ {1, · · · , n}. Recall that at each time step t, the realization of ṽi(t) in (4.17) that

Algorithm 5 uses for {p⋆1, · · · , p⋆κi
} ∈ Pi is

ṽi(t) = 1{p⋆1,··· ,p⋆κi}
, (4.26)
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for every i ∈ A. Thus, 1.ṽi(t) = κi, i ∈ A. Consequently, using (4.25) we can write

∑
i∈A

ṽi(t).∇F (x̄(t)) ≥∑
i∈A

ṽi(t).∇F (xi(t))−
κ2

T
d(G))cf(R⋆). (4.27)

Next, we let v̄i(t) = argmax
v∈Mi

v.∇F (x̄(t)) and v̂i(t) = argmax
v∈Mi

v.∇F (xi(t)). Then, using

v̂i(t).∇F (xi(t)) ≥ v̄i(t).∇F (xi(t)) and v̂i(t).∇F (xi(t)) ≥ ṽi(t).∇F (xi(t)), i ∈ A, and (4.25)

we can also write

∑
i∈A

v̂i(t).∇F (xi(t)) ≥
∑
i∈A

v̄i(t).∇F (xi(t)) ≥

∑
i∈A

v̄i(t).∇F (x̄(t))−
κ2

T
d(G)cf(R⋆), (4.28a)∑

i∈A
v̂i(t).∇F (xi(t))≥

∑
i∈A
ṽi(t).∇F (xi(t)). (4.28b)

On the other hand, by virtue of Lemma 1.5.9,
[
∇̃F (xi(t))

]
p
, p ∈ Pi that each agent i ∈ A

uses to solve optimization problem (4.56) (equivalently (4.17)) satisfies

∣∣∣∣[∇̃F (xi(t))
]
p
− ∂F

∂[x]p
(xi(t))

∣∣∣∣ ≤ 1

2T
f(R⋆) (4.29)

with the probability of at least 1−2e−
1

8T2Ki . Using (4.28b) and (4.29), and because the

samples are drawn independently, we obtain

∑
i∈A

ṽi(t).∇F (xi(t)) ≥
∑
i∈A

ṽi(t).∇̃F (xi(t))−
κ

2T
f(R⋆), (4.30a)

∑
i∈A

ṽi(t).∇̃F (xi(t)) ≥
∑

i∈A
v̂i(t).∇̃F (xi(t)) ≥∑

i∈A
v̂i(t).∇F (xi(t))−

κ

2T
f(R⋆), (4.30b)

with the probability of at least
∏

i∈A(1− 2e−
1

8T2Ki)|Pi|.
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From (4.27), (4.28a),(4.30a), and (4.30b) now we can write

∑
i∈A

ṽi(t).∇F (x̄(t)) ≥∑
i∈A

v̄i(t).∇F (x̄(t))−(2κd(G)) + 1)
κ

T
f(R⋆), (4.31)

with the probability of at least 1− 2
∑

i∈A e−
1

8T2Ki .

Next, let v⋆
i be the projection of 1R⋆ intoMi. Knowing thatMi’s are disjoint sub-spaces

ofM covering the whole space then we can write

1R⋆ =
∑

i∈A
v⋆
i . (4.32)

Then, using (4.31), (4.32), and invoking Lemma 4.2.2 and the fact that v̄i(t).∇F (x̄(t)) ≥

v⋆
i (t).∇F (x̄(t)) we obtain

∑
i∈A

ṽi(t).∇F (x̄(t)) ≥∑
i∈A

v⋆
i (t).∇F (x̄(t))− (2cκd(G) + 1)

κ

T
f(R⋆) =

1R⋆ .∇F (x̄(t))− (2cκd(G) + 1)
κ

T
f(R⋆) ≥

f(R⋆)− cF (x̄(t))− (2cκd(G) + 1)
κ

T
f(R⋆), (4.33)

with the probability of at least
∏

i∈A(1 − 2e−
1

8T2Ki)|Pi|. Hence, using (4.24) and (4.33), we

conclude that

F (x̄(t+ 1))− F (x̄(t)) ≥ 1

T
(f(R⋆)− cF (x̄(t))−

(2cκd(G)) + cκ

2
+ 1)

κ

T 2
f(R⋆), (4.34)

with the probability of at least
∏

i∈A(1 − 2e−
1

8T2Ki)|Pi|. Next, let g(t) = f(R⋆) − cF (x̄(t))
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and β = (2cκd(G)) + cκ
2
+ 1) κ

T 2f(R⋆), to rewrite (4.34) as

(f(R⋆)− cF (x̄(t)))− (f(R⋆)− cF (x̄(t+ 1))) =

g(t)− g(t+ 1) ≥ c

T
(f(R⋆)− cF (x̄(t)))− cβ =

c

T
g(t)− cβ. (4.35)

Then from inequality (4.35) we get

g(t+ 1) ≤ (1− c

T
)g(t) + cβ (4.36)

with the probability of at least
∏

i∈A(1− 2e−
1

8T2Ki)|Pi|. Solving for inequality (4.36) at time

T yields

g(T ) ≤ (1− c

T
)Tg(0) + β

∑T−1

k=0
(1− c

T
)k

=(1− c

T
)Tg(0) + Tβ(1− (1− c

T
)T ) (4.37)

with the probability of at least
(∏

i∈A(1− 2e−
1

8T2Ki)|Pi|
)T

. Substituting back g(T ) = f(R⋆)−

cF (x̄(T )) and g(0) = f(R⋆)− cF (x(0)) = f(R⋆), in (4.37) we then obtain

1

c
(1− (1− 1

T
)T )(f(R⋆)− Tβ) =

1

c
(1− (1− 1

T
)T )(1− (2cκd(G) + cκ

2
+ 1)

κ

T
)f(R⋆)

≤ F (x̄(T )), (4.38)

with the probability of at least
(∏

i∈A(1− 2e−
1

8T2Ki)|Pi|
)T

. By applying e−c ≥ (1−(1− c
T
)T ),

we get

1

c
(1−e−c)(1−(2cκd(G)+ cκ

2
+ 1)

κ

T
)f(R⋆)≤ F (x̄(T )), (4.39)
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with the probability of at least
(∏

i∈A(1− 2e−
1

8T2Ki)|Pi|
)T

. which concludes the proof.

Notice that since

1− 2T n e−
1

8T2K ≤
(∏

i∈A
(1− 2e−

1
8T2Ki)|Pi|

)T
,

where K = min{K1, · · · , KN}, the probability of the bound (4.22) improves as T , and the

number of the samples collected by the agents K increase.

The following result establishes the difference between each agent i’s local copy of the mem-

bership probability vector xi(t) and the global probability membership vector of the network

x̄(t). It also shows how the global probability membership vector evolves when agents im-

plement (4.16). This result is instrumental in establishing proof of Theorem 6.1.2.

Proposition 4.2.2. Let the agents propagate and update their local membership proba-

bility vector according to (4.16a) and (4.16b). Then, the membership probability xi(t),

t ∈ {0, · · · , T}, for each agent i ∈ A satisfies

0 ≤ 1

κ
1.(x̄(t)− xi(t)) ≤

1

T
d(G), (4.40a)

x̄(t+ 1)− x̄(t) =
1

T

∑
i∈A

ṽi(t), (4.40b)

1

κi
1.(x̄(t+ 1)− x̄(t)) =

1

T
, (4.40c)

where κ =
∑

i∈A κi and x̄(t) is given by equation (4.20).

Proof. f is a monotone increasing and submodular set function therefore f(Rxi(t) ∪ {p})−

f(Rxi(t) \ {p}) ≥ 0 and hence ∇̃F (xi(t)) has positive entries ∀i ∈ A. Then, because ṽi(t) ∈

Mi, it follows from (4.17) that ṽi(t) has non-negative entries, [ṽi(t)]p ≥ 0 which satisfy∑
p∈Pi

[ṽi(t)]p = κi. Therefore, it follows from (4.16a) and Lemma 4.2.3 that

1.xii(t+ 1) = 1.xii(t) +
κi
T
, i ∈ A. (4.41)
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Using (4.41) recursively for d(G) steps, we can also write

1.xii(t) = 1.xii(t− d(G)) +
κi
T
d(G), i ∈ A. (4.42)

Furthermore, it follows from Lemma (4.2.3) that for all ∀p ∈ Pi and any j ∈ A\{i}, we can

write

[xi(t)]p ≥ [xj(t)]p. (4.43)

Also, since every agent j ∈ A\{i} can be reached from agent i ∈ A at most in d(G) hops, it

follows from the propagation and update laws (4.16a) and (4.16b), for all ∀p ∈ Pi, for any

j ∈ A\{i} that

[xj(t)]p ≥ [xi(t− d(G))]p(t− d(G)). (4.44)

Thus, for i ∈ A and j ∈ A\{i}, (4.43) and (4.44) result in

1.xii(t) ≥ 1.x̂ji(t) ≥ 1.xii(t− d(G)). (4.45)

Next, we can use (4.42) and (4.45) to write

1.xii(t) ≥ 1.x̂ji(t) ≥ 1.xii(t)−
κi
T
d(G), (4.46)

for i ∈ A and j ∈ A\{i}. Using (4.46) for any i ∈ A we can write

∑
l∈A

1.xll(t) ≥ 1.xii(t) +
∑

j∈A\{i}
1.x̂ij(t) ≥∑

l∈A
1.xll(t)−

κl
T
d(G). (4.47)
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Then, using Lemma 4.2.3, from (4.47) we can write

1.x̄(t) ≥ 1.xi(t) ≥ 1.x̄(t)− κ

T
d(G),

with κ =
∑

i∈A κi, which ascertains (4.40a). Next, note that from Lemma 4.2.3, we have

xjj(t) = x−
ii(t) for any i ∈ A. Then, using (4.16a) and invoking Lemma 4.2.3, we ob-

tain (4.40b), which, given (4.41), also ascertains (4.40c).

Distributed Pipage Rounding Procedure

The final output of a distributed solver for problem (4.1) must be a set R̄ that belongs

to I defined in (4.1b). Recall that strategies corresponding to the vertices of the matroid

polytope M correspond to admissible strategy set I. However, x̄(T ) is a fractional point

in M. Moreover, only part of x̄(T ) is available at each agent i ∈ A. In what follows,

we propose a distributed rounding procedure that without any communication among the

agents, enables each agent i ∈ A to round its xii(T ), and use this rounded probability

membership vector to make its local strategy choice R̄i such that ∪i∈AR̄i = R̄ ∈ I.

Let each agent i ∈ A initialize its local rounded membership vector yii ∈ R|Pi| at yii(0) =

xii(T ). Then, by virtue of Lemma 4.2.4, we have yii(0) ∈ [0, 1]|Pi|, i ∈ A. Following

a stochastic Pipage rounding procedure, each agent i ∈ A at each rounding iteration τ

randomly selects two fractional elements [yii(τ)]p, [yii(τ)]q of yii(τ), i.e., [yii(τ)]p, [yii(τ)]q ∈
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Figure 4.1 – The first two steps of the stochastic Pipage rounding (4.48) for an agent i with

xii(T ) = [0.15, 0.25, 0.1, 0.2, 0.1, 0.8, 0.05, 0.35]⊤ that should choose two strategies from Pi.

(0, 1), and performs the randomized swapping/update


[yii(τ + 1)]p = [yii(τ)]p−δp(τ),

[yii(τ + 1)]q = [yii(τ)]q + δp(τ),

w.p.
δq(τ)

δp(τ)+δq(τ)
,


[yii(τ + 1)]q = [yii(τ)]q−δq(τ),

[yii(τ + 1)]p = [yii(τ)]p + δq(τ),

w.p.
δp(τ)

δp(τ)+δq(τ)
,

(4.48)

where δp(τ) = min([yii(τ)]p, 1− [yii(τ)]q) and δq(τ) = min(1− [yii(τ)]p, [yii(τ)]q); see Fig. 4.1

for an illustration. Here, ‘w.p.’ stands for ‘with probability of’. The following proposition

gives the convergence result of distributed Pipage rounding (4.48).

Proposition 4.2.3. Starting from yii(0) = xii(T ), let each agent i ∈ A implement the

rounding procedure (4.48). Then, yii(|Pi|) ∈ {0, 1}|Pi|, and 1.yii(|Pi|) = κi. Moreover,

ȳ = [y11(|P1|),y22(|P2|), · · · ,yNN(|PN |)] is a vertex ofM.

Proof. Given the definition of δp(τ) and δq(τ), at each iteration of (4.48), either [yii(τ+1)]p ∈

{0, 1} or [yii(τ + 1)]q ∈ {0, 1}. Moreover, yii(τ + 1) ∈ [0, 1]|Pi . Consequently, yii(|Pi|) ∈

{0, 1}|Pi|. Next, note that since yii(0) = xii(T ), i ∈ A, by virtue of Lemma 4.2.4, we have

1.yii(0) = κi. Therefore, because (4.48) is a zero-sum iteration, we have 1.yii(τ) = κi,

i ∈ A for any τ ∈ Z≥0, which confirms 1.yii(|Pi|) = κi and ȳ ∈ M. Lastly, because
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[yii(|Pi|)]r ∈ {0, 1}, r ∈ Pi for any i ∈ A, ȳ is a vertex ofM.

It is worth noting that 1.xii(T ) = κi, guaranteed by Lemma 4.2.4 for our proposed algo-

rithm (4.16), has a significant importance in enabling a rounding procedure without the

necessity for coordination among the agents. As we discuss in the numerical example of Sec-

tion 3.3, 1.xii(T ) = κi is not the case for the distributed continuous greedy algorithm of [2],

which uses an average consensus algorithm to coordinate the local probability membership

choices of the agents.

Our distributed stochastic Pipage rounding procedure concludes by each agent i ∈ A choos-

ing its suboptimal strategy set according to

R̄i = Rȳi
, where (4.49)

ȳi = [0⊤
|P1|×1, · · · ,yii(|Pi|)⊤, · · · ,0⊤

|PN |×1]
⊤,

with yii(|Pi|) obtained from (4.48), initialized at yii(0) = xii(T ). The following result shows

that our proposed distributed rounding procedure (4.48) results in a strategy selection (4.49)

that is loss-less in the expected value sense. That is, it results in not only a feasible selected

strategy set but also strategies that are selected in a distributed way with no loss in the

utility function compared to the fractional solution.

Theorem 4.2.4 (Utility evaluation after distributed Pipage rounding). Let each agents

i ∈ A choose its strategy set R̄i ⊂ Pi according to (4.49). Let R̄ =
⋃

i∈A R̄i. Then,

F (x̄(T )) ≤ E[f(R̄)]. (4.50)

Proof. Consider the distributed Pipage rounding (4.48). Let τi be any arbitrary itera-

tion stage of (4.48) for agent i ∈ A. Recall that we partitioned yi, i ∈ A as yi(τi) =
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[ŷi1(τi), · · · ,yii(τi), · · · , ŷiN(τi)]. Let

y(τ) = [y11(τ1), · · · ,yii(τi + τ), · · · ,yNN(τN)]

for any τj ∈ Z≥0, j ∈ A, and arbitrary i ∈ A.

Distributed Pipage rounding (4.48) results in

y(τ + 1) =


y(τ) + δp(τi) z, w.p. δq(τi)

δp(τi)+δq(τi)
∈ [0, 1],

y(τ)− δq(τi) z, w.p. δp(τi)

δp(τi)+δq(τi)
∈ [0, 1],

for a z ∈ {−1, 0, 1}n that satisfies [z]p = 1, [z]q = −1 and [z]r = 0, r ̸= p, q. Next, note that

the directional convexity of the multilinear function in Lemma 1.5.6 yields

F (y(τ)) ≤ δq(τi)

δp(τi) + δq(τi)
F (y(τ) + δp(τi)z)+

δp(τi)

δp(τi) + δq(τi)
F (y(τ)− δq(τi)z).

Hence, we can write

F (y(τ)) ≤ E[F (y(τ + 1))
∣∣y(τ)]. (4.51)

Next, taking expectation with respect to y(τ), we get

E[F (y(τ))] ≤ E[F (y(τ + 1))]. (4.52)

Note that because y(0)|{τj}Nj=1={0}N = x̄(T ), we have E[F (y(0)|{τj}Nj=1={0}N )] = F (x̄(T )).

Consequently, since y(τ) is defined for any arbitrary {τj}Nj=1, we can conclude that

F (x̄(T )) ≤ E[F (ȳ)], (4.53)
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where ȳ = [y11(|P1|),y22(|P2|), · · · ,yNN(|PN |)].

Proposition 4.2.3 states that ȳ is a vertex ofM, therefore F (ȳ) = f(Rȳ). On the other hand,

it follows from (4.49) that Rȳ =
⋃

i∈A R̄i. Consequently, (4.50) follows from (4.53).

4.2.3 A Minimal Information Implementation

Our proposed suboptimal solution to solve problem (4.1) consistes of iterative propagation

step (4.16a), and update step (4.16b), which requires local interaction between neighbors.

After T steps, once xi(T ) is obtained, each agent i ∈ A computes its suboptimal solution

from (4.49) after running Pipage procedure (4.48) locally for at most |Pi| steps to compute

yii(|Pi|). In the propagation step agents should draw Ki samples of Rxi
⊂ P to compute

∇̃F (xi(t)). In what follows, by relying on the properties of the updated local copies of the

probability membership vector, we outline a minimum information exchange implementation

of our distributed solution. The resulted implementation is summarized as the distributed

multilinear-extension-based iterative greedy algorithm presented as Algorithm 5.

Definition 4.1. Given a set F ⊂ P×R and a member (p, α) ∈ P×R, we define the addition

operator ⊕ as F ′ = F⊕{(p, α)} such that

F ′ =


F ∪ {(p, α)} ∄(p, γ) ∈ F ,

(F \ {(p, γ)}) ∪ {(p, γ + α)} ∀(p, γ) ∈ F .

Given a collection of sets Fi ∈ P×R, i ∈ A, we define the max-operation over these collection

as MAX
i∈A

Fi = {(u, γ) ∈ P × R|(u, γ) ∈ F̄ s.t. γ = max
(u,α)∈F̄

α}, where F̄ =
⋃

i∈AFi.

We define the local information set of each agent i at time step t as

Fi(t)=
{
(p, α)∈P×[0, 1]

∣∣∣[xi(t)]p ̸= 0 and α = [xi(t)]p
}
. (4.54)
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Algorithm 5 Discrete distributed implementation of the continuous greedy algorithm.

1: Init: F1 ← ∅, · · · ,FN ← ∅, t← 1,
2: while t ≤ T do
3: for i ∈ A do
4: Draw Ki sample strategy sets, {Rk

i }
Ki
k=1 such that q ∈ Rk

i w.p. α for all (q, α) ∈
Fi.

5: for p ∈ Pi do
6: Compute wi

p ∼ E[f(R∪ {p})− f(R\ {p})] using the strategy sample sets
of step 4.

7: end for
8: {p⋆1, · · · , p⋆κi

} = argmax ({wi
p}p∈Pi

, κi)

9: F−
i ← Fi ⊕

{
(p⋆1,

1
T
)
}
⊕ · · · ⊕

{
(p⋆κi

, 1
T
)
}

10: Broadcast F−
i to the neighbors Ni.

11: Fi ← MAX
j∈Ni∪{i}

F−
j

12: end for
13: t← t+ 1.
14: end while
15: for i ∈ A do
16: R̄i = {p̄1, · · · , p̄κi

} ← DistStochPipage(Fi)
17: end for
18: Return R̄1, · · · , R̄N

Since xi(0) = 0, then Fi(0) = ∅. Introduction of the information set Fi(t) provides a

framework through which the agents only store and communicate the necessary information.

Furthermore, it enables the agents to carry out their local computations using the available

information in Fi(t).

We start by observing that since in (4.17) we have w ∈ Mi, to carry out the propagation

step (4.16a), each agent should only compute [∇̃F (xi(t))]p, p ∈ Pi. At each agent i ∈ A,

define wi
p(t) =

[
∇̃F (xi(t))

]
p
, p ∈ Pi. Then w

i
p(t), p ∈ Pi is computed from

wi
p(t)=

(
Ki∑
k=1

f(Rk
i (t)∪{p})−f(Rk

i (t)\{p})

)/
Ki, (4.55)

using Ki samples of {Rk
i (t)}

Ki
k=1 such that q ∈ Rk

i (t) with the probability of α for all couples

(q, α) ∈ Fi(t). Notice that by definition (4.54), Fi(t) is a set of couples representing which
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Algorithm 6 DistStochPipage( )

1: Input: Fi

2: Init: R̄i = ∅
3: while |R̄i| < κi do
4: pick any (αp, p), (αp, p) ∈ Fi such that p, q ∈ Pi

5: Set:

{
δp = min{αp, 1− αq}
δq = min{αq, 1− αp}

6: Update



{
αp ← αp − δp
αq ← αq + δp

w.p. δq
δp+δq

or{
αq ← αq − δq
αp ← αp + δq

w.p. δp
δp+δq

7: if αp = 1 then R̄i ← R̄i ∪ {p}, Fi ← Fi\{(αp, p)}
8: if αq = 1 then R̄i ← R̄i ∪ {q}, Fi ← Fi\{(αq, q)}
9: end while
10: Return R̄i

element p ∈ P has an associated non-zero probability membership vector element in xi(t).

It follows from submodularity of f that f(Rk
i (t)∪{p})−f(Rk

i (t))\{p}) ≥ 0. Thus, wi
p(t) ≥ 0,

p ∈ Pi. Consequently, one realization of ṽi(t) of problem (4.17) is 1{p⋆1,··· ,p⋆κi}
, where

{p⋆1, · · · , p⋆κi
} = argmax ({wi

p}p∈Pi
, κi). (4.56)

Since 1{p⋆1,··· ,p⋆κi}
is a realization of ṽi(t), the corresponding realization of propagation rule (4.16a)

over the information set Fi(t) is

F−
i (t+ 1) = Fi(t)⊕ {(p⋆1,

1

T
)} ⊕ · · · ⊕ {p⋆κi

,
1

T
}, (4.57)

Given Definition 4.1, what ⊕ operator does here is to insert (p⋆j ,
1
T
), j ∈ {1, · · · , κi} in agent

i’s information set if there exists no element (p⋆j , α), α ̸= 0 in Fi(t); otherwise, operator ⊕
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pops out (p⋆j , α) and replaces it with (p⋆j , α + 1
T
). Therefore, F−

i (t + 1) is consistent with

the realization of x−
i (t + 1) through the membership probability vector to information set

conversion relation (4.54).

Instead of the agents sharing x−
i (t), i ∈ A with their neighbors, they can share their local

information set with their neighboring agents and execute a max operation over their local

and received information sets as

Fi(t+ 1) = MAX
j∈Ni∪{i}

F−
j (t+ 1). (4.58)

Consequently, through the membership probability vector to information set conversion re-

lation (4.54), Fi(t+ 1) is consistent with a realization of xi(t+ 1) .

Finally, given the definition of Fi(t) in (4.54) and in light of Proposition 4.2.3, the stochastic

rounding procedure (4.48) and (4.49) can be implemented according to Algorithm 6.

In light of the discussion above, Algorithm 5 gives our distributed multilinear extension based

suboptimal solution for problem (4.1). The following theorem establishes the optimality

bound of f(R̄) where R̄ =
⋃

i∈A{R̄i} is generated through the decentralized Algorithm 5.

Theorem 4.2.5 (Convergence guarantee and suboptimality gap of Algorithm 5). Let f :

2P → R≥0 be normalized, monotone increasing and submodular set function. Let R⋆ to be

the optimizer of problem (4.1). Following the distributed Algorithm 5, the admissible strategy

set R̄ with probability of at least 1− 2T n e−
1

8T2K , K = min
i∈A

Ki satisfies

E[f(R̄)] ≥ β f(R⋆),

where β is given in (4.23).

Proof. Given that the information set propagation rules (4.56), (4.57), and (4.58) are a
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realization of the vector space propagation rules (4.17), (4.16a), and (4.16b), we can conclude

that the vector y = [y⊤
1 , · · · ,y⊤

N ]
⊤ defined as


[y]p = α, (p, α) ∈ Fi(T ), p ∈ Pi

[y]p = 0, Otherwise

is a realization of x̄(T ) and satisfies F (x̄(T )) = F (y).

Moreover, sampling a single strategy p̄i according to yi out of Pi is equivalent to sampling

rule (4.48). Noting that y is a realization of x̄(T ), Lemma 6.1.2 and Theorem 4.2.4 leads us

to concluding the proof.

The constant approximation factor β is characterized in terms of the total curvature c of

the utility function f . Curvature c represents a measure of the diminishing return of a set

function. The curvature of c = 0 means that the function is modular, i.e., f({p1, p2}) =

f({p1}) + f({p2}), p1, p2 ∈ P . We can see from (4.23) that when c = 0, β = 1, meaning

that for modular functions our algorithm can find the optimal solution in finite time. On

the other hand, c = 1 means that there is at least a member that adds no value to function

f in a special circumstance. Whenever the total curvature is not known, it is rational to

assume the worst case scenario and set c = 1.

Remark 4.2.1 (Extra communication for improved optimality gap). Replacing the update

step (4.16b) with xi(t+ 1) = yi(d(G)) where yi(0) = x−
i (t+ 1) and

yi(m) = max
j∈Ni∪{i}

yj(m− 1), m ∈ {1, · · · , d(G)},

i.e., starting with x−
i (t+1) and recursively repeating the update step (4.16b) using the output

of the previous recursion for d(G) times, each agent i ∈ A arrives at xi(t+1) = x̄(t+1) (recall

Lemma 4.2.3). Hence, for this revised implementation, following the proof of Theorem 6.1.2,
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we observe that (4.25) is replaced by
∣∣∣ ∂F
∂[x]p

(x̄(t))− ∂F
∂[x]p

(xi(t))
∣∣∣ = 0, which consequently, leads

to

1

c
(1−e−c)(1−(c κ

2
+ 1)

κ

T
)f(R⋆)≤F (x̄ii(T )), (4.59)

with the probability of at least
(∏

i∈A(1− 2e−
1

8T2Kj)|Pi|
)T

. This improved optimality gap is

achieved by (d(G)− 1)T extra communication per agent. The optimality bound (4.59) is the

same bound that is achieved by the centralized algorithm of [46]. To implement this revision,

Algorithm 5’s step 11 (equivalent to (4.57)) should be replaced by Fi = Hi(d(G)), where

Hi(0) = F−
i , and

Hi(m) = MAX
j∈Ni∪{i}

H−
j (m− 1), m ∈ {1, · · · , d(G)}. (4.60)

4.3 Numerical Evaluation

We demonstrate our algorithm’s performance using a multi-agent information harvesting

problem. Consider a countable set of information sources D ⊂ R2 that are spread in a

two-dimensional area without any prior information on their spread density function. In

the same area, a countable set of prespecified information retrieval points B ⊂ R2 are

available for placing information harvester devices. We assume that the information is best

transferred from an information point d ∈ D to a harvester device dispatched at b ∈ B if the

distance between b and d is minimized. Hence, for each information point d ∈ D the closest

information retrieval point b ∈ B with a deployed device is assigned to harvest information.

Each agent i ∈ A is only able to deploy at most κi devices to its admissible deployment

locations Bi ⊂ B, where B1, · · · ,BN are not necessarily disjoint sets. To make the strategy

set of the agents disjointwe define the deployment strategy of each agent i ∈ A as Pi =
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Figure 4.2 – Set of information sources D and set of sensor placement point B.

{(i, b)|b ∈ Bi}. Note that if b ∈ Bi and b ∈ Bj then the strategies (i, b) ∈ Pi and (j, b) ∈ Pj

will be placing one sensors from agent i ∈ A and one sensor from agent j ∈ A at the

placement location b ∈ B. The goal of the agents A is to each choose a strategy set Ri ⊂ Pi,

|Ri| ≤ κi such that cumulative strategy of the team R =
⋃

i∈ARi results in smallest total

distance of information sources to the deployed devices, i.e. minimizing

L(R) =
∑
d∈D

min
(i,b)∈R

∥d− b∥ . (4.61)

Taking a phantom placement location b0 to be a random point in R2, the problem can be

reformulated as problem (4.1) where the utility function to maximize is

f(R) = L({b0})− L(R∪ {b0}). (4.62)

This utility function (4.62) measures the decrease in the loss associated with the active

set versus the loss associated with just the phantom placement location and maximizing
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this function is equivalent to minimizing the loss (4.61). It is known that the utility func-

tion (4.62) is submodular and monotone increasing [133].

For our numerical study, we consider 2000 information sources spread in a two-dimensional

field where there are 10 deployment locations B = {b1, · · · , b10}, see Fig. 4.2. We consider a

set of five agents A = {1, 2, 3, 4, 5} whose goal is to deploy κ1 = 5, κ2 = 2, κ3 = 1, κ4 =

1, κ5 = 1 devices at B1 = {b1 · · · , b10}, B2 = {b1, · · · , b5}, B3 = {b1, b2, b3}, B4 = {b1, b2},

and B5 = {b1, b2}. Hence the disjoint strategy sets are defined as P1 = {(1, b1), · · · , (1, b10)},

P2 = {(2, b1), · · · , (2, b10)}, P3 = {(3, b1), (3, b2), (3, b3)}, P4 = {(4, b1), (4, b2)}, and P5 =

{(5, b1), (5, b2)}. Although, the general form of the problem is NP-hard, we have designed

our numerical example such the optimal solution is trivial. Recall that to maximize the

utility (4.62) of the group the deployed sensors must be placed such that the distance be-

tween the information sources and deployed sensors is minimized. Since there are |B| = 10

deployment locations and
∑5

j=1 κj = 10 sensors to deploy, the optimal solution is to place

the deployed sensors to occupy all the sensor-placement locations. This deployment scenario

is only feasible if agent 1 deploys its κ1 = 5 devices at locations {b6, · · · , b10} ⊂ B1, i.e.

R1 = {(1, b6), (1, b7), (1, b8), (1, b9), (1, b10)}, agent 2 placing its κ2 = 2 at {b4, b5} ⊂ B2, i.e.

R2 = {(2, b4), (2, b5)}, agent 3 placing its κ3 = 1 at b3 ∈ B3, i.e. R3 = {(3, b3)}, agent 4 plac-

ing its κ4 = 1 at b2 ∈ B4, i.e. R4 = {(4, b2)}, and agent 5 placing its κ5 = 1 at b1 ∈ B5, i.e.

R5 = {(5, b1)}. This setting allows us to compare the outcome of the suboptimal solutions

against the optimal one. It is interesting to notice that the total curvature of utility func-

tion (4.62) is c = 1. This is because if we take the strategy set S = {(1, b1), (2, b2), (3, b3)}

and the strategy p = (4, b1), since, the strategies (1, b1) and (4, b1) place a sensor at the same

location then the utility equation (4.62) results in ∆f (p|S) = 0. Thus, given the definition

of the total curvature (4.21), we obtain c = 1.

Let the communication topology of the agents be an undirected ring graph, see Fig. 4.3. First,

we solve the problem using Algorithm 5. To evaluate the performance of our algorithm we
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Figure 4.3 – The communication graph of the agents is a ring graph. Six possible communication

sequences to implement a sequential greedy algorithm are shown.

generate 50 deployment scenarios, each corresponding to a set of 2000 randomly generated

information sources and 10 sensor locations. The results of implementing Algorithm 5 for the

different number of samples Ki (all agents use the same number of samples) and iteration

number T = 50 is shown in Fig. 4.4. Observe that using a modest number of iterations

T = 50 and a modest number of samples Ki = 1000 Algorithm 5 finds almost the optimal

solution in terms of occupying the placement locations; the average number of locations

occupied is 9.8. For this setting,the expected outcome of Algorithm 5 over the 50 placement

scenarios we consider, measured by utility function (4.62), is at 0.95 of the optimal solution.

The run-time of the algorithm for each agent is approximately 25 seconds on a computing

device with Intel(R) Xeon(R) CPU @ 2.30GHz and 13GB RAM.

Comparison with sequential greedy algorithm: Next, we solve the problem using a decentral-
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Figure 4.4 – The average number of sensor placement points covered by deployed sensors when

Algorithm 5 is implemented by different sample numbers and T = 50.

ized massage-passing sequential greedy algorithm following [38, 64]. That is, we choose a

route SEQ that visits all the agents on the communication graph. We then make the agents

perform the sequential greedy algorithm by sequential message-passing according to SEQ.

Fig. 4.3(a)-(f) gives 6 of the possible SEQ depicted by the semi-circular arrow inside the net-

works. As Fig. 4.5 shows the performance (measured by the number of occupied placement

locations) of the sequential greedy algorithm depends on what SEQ agents follow, with SEQ of

Fig. 4.3(a) delivering the worst performance. Moreover, the performance measured by utility

function (4.62) for SEQ (a),(b),(c),(d),(e), and (f) are respectively 0.75, 0.81, 0.87, 0.91, 0.85,

0.99 of the optimal utility value. We can attribute this inconsistency to the heterogeneity

of the agents’ sensor numbers. When agents with a larger number of choices pick first, this

limits the options of the agents with a lower number of sensors available. However, the

performance of Algorithm 5 is regardless of any particular path on the graph since, through

its iterative process, the agents get the chance to readjust their choices, see Fig. 4.6 for a

deployment outcome via Algorithm 5 and the sequential greedy algorithm. Intuitively, this

explains the better optimality gap of the continuous greedy algorithm over the sequential

greedy algorithm. The sequential greedy algorithm has a run-time of less than 1 second
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Figure 4.5 – The average number of covered placement points over 50 different randomly generated

information sources and sensor placement locations. The x-axis corresponds to the six SEQ in

Fig. 4.3(a)-(f) and Algorithm 5 denoted by Alg1. The y-axis corresponds to the average number of

sensor placement points covered by the deployed sensors.

for each agent on a device with Intel(R) Xeon(R) CPU @ 2.30GHz and 13GB RAM, which

is significantly less than 25 seconds that we reported for our proposed Algorithm 5 using

Ki = 1000 and T = 50 . Even though computationally efficient, as we discussed in the

introduction, the downsides of the sequential greedy algorithm are in its worse optimality

gap, the overhead associated with identifying the message-passing sequence, and the depen-

dence of the results on the message-passing sequence [51]. As we discussed earlier, finding

the communication sequence resulting in maximum utility value is an NP-Hard problem.

To find the best sequence SEQ over a communication network to get the highest utility, all

possible communication routes between the agents should be examined. When there are no

assumptions on the topology of the communication graph, O(n!) is the order of the worst

case number of sequences to be examined. In our particular example, the simple structure

of the communication graph (a ring) allows us to find the sequence with the highest reward

in O(n) search time. Moreover, since our efforts are toward decentralization, a prior decen-

tralized sequence selection algorithm should be designed to synchronize the agents on the

sequence the want to examined. This has been further studied in [51].
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Figure 4.6 – The left figure shows an instance of the placement result for Algorithm 5 and the right
figure shows the placement results for the Sequential Greedy of SEQ (a). Algorithm 5 is able to
place the sensors such that all of the placement locations are occupied while the Sequential Greedy
of SEQ (a) leaves out three unoccupied placement locations.

Comparison with the average consensus based algorithm of [2] : we compare our proposed

Algorithm 5, which is based on a maximum consensus communication to the algorithm

proposed in [2], which is based on an average consensus communication. Since the algorithm

of [2] is designed for when agents choose only one strategy each, we carry out this study

for κi = 1 for i ∈ {1, 2, · · · , 5}. The average consensus-based algorithm of [2] is only a

distributed implementation of the continuous greedy algorithm. Our analysis shows that for

a given number of iteration T = 50 and a given number of samples Ki = 1000 (same for all

agents) the algorithm in [2] yields the local probability vectors xi(T ) for each agent i ∈ A

such that F (xi(T )) ≥ 0.91f(R⋆) and also Algorithm 5 yields a probability membership x̄(T )

such that F (x̄(T )) ≥ 0.92f(R⋆) (The optimal solution was computed by the brute force

search). The main difference between the two algorithms however is in how xi(T ) of each

agent i ∈ {1, 2, · · · , 5} is placed with respect to the edges of the matroid polytopeM. Recall

that 1.xii(T ) = κi = 1 is of great importance for the rounding procedure. Let

D(t) =
∑
i∈A

(1.xii(t)− 1)1((1.xii(t)− 1) ≥ 0), (4.63)
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Figure 4.7 – The deviation of probability vectors xi(T ), i ∈ A from the convex hullM for average

consensus and maximum consensus communication protocols.

where 1 : R → {0, 1} is the indicator function. The value of D(T ) shows the deviation of

the local component of the membership probability vector xii(T ) from the edges of matroid

polytopeM. Figure 4.7 shows this value for the different numbers of iterations for the two

algorithms; Algorithm 5, as ensured by Lemma 4.2.4, results in D(T ) = 0 for any choice of

iteration number T . However, this is not the case for Algorithm of [2]. As the results in

Figure 4.7 shows this algorithm seems to satisfy D(T ) = 0 as the number of the iteration

increases. Figure 4.8 compares the value of D(t) of Algorithm 5 and the algorithm of [2] for

t ∈ [0, T ] over 10 different instances of the utility maximization problem (4.62). The former

algorithm is based on maximum consensus and D(t) for this algorithm converges to 0, as

predicted by Lemma 4.2.4. The latter algorithm is based on average consensus and D(t)

converges to a number greater than 0, meaning that xi(T ) of some of the agents are outside

M.
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Figure 4.8 – The value of D(t) calculated using xi(t), i ∈ A for average consensus and maximum

consensus communication protocols. The value of D(t) was calculated by running Algorithm 5

and the algorithm in [2] with κi = 1, i ∈ A over 10 different instances of the utility maximization

problem (4.62).

4.4 Conclusion

We proposed a distributed suboptimal algorithm to solve the problem of maximizing a mono-

tone increasing submodular set function subject to a partition matroid constraint when

agents communicate over a connected graph. Our problem of interest was motivated by op-

timal multi-agent sensor placement problems in discrete space. Our algorithm was a practical

decentralization of a multilinear extension-based algorithm that achieves 1
c
(1−e−c−O(1/T ))

optimally gap, which is an improvement over 1
1+c

optimality gap that the well-known se-

quential greedy algorithm achieves. Our algorithm included a distributed continuous greedy

algorithm followed by a local rounding procedure that required no inter-agent communi-

cation. Through a numerical study, we compared the outcome obtained by our proposed

algorithm with a decentralized sequential greedy algorithm that is constructed from assign-

ing a priority sequence to the agents. We showed that the outcome of the sequential greedy

algorithm is inconsistent and depends on the sequence. However, our algorithm’s outcome,

due to its iterative nature intrinsically tended to be consistent, which also explains its better

optimally gap over the sequential greedy algorithm. We also compared our algorithm to an
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existing distributed average consensus-based continuous greedy algorithm. We showed that

the main advantage of our proposed algorithm is its strong guarantee of reaching the edges

of the constraint set’s matroid polytope by all agents in finite time, which is of significance

in the Pi-page type rounding procedures. Our future work is to study the robustness of our

proposed algorithm to message dropout.
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Chapter 5

Private Strategy Selection

This chapter considers a multi-agent submodular set function maximization problem subject

to partition matroid in which the utility is shared, but the agents’ policy choices are con-

strained locally. The chapter’s main contribution is to design a distributed algorithm that

enables each agent to find a suboptimal policy locally with a guaranteed level of privacy. The

submodular set function maximization problems are NP-hard. For agents communicate over

a connected graph, therefore, this chapter proposes a polynomial-time distributed algorithm

to obtain a suboptimal solution with guarantees on the optimality bound. The proposed al-

gorithm is based on a distributed randomized gradient ascent scheme built on the multilinear

extension of the submodular set function in the continuous domain. Our next contribution

is the design of a distributed rounding algorithm without further communication between

the agents. We base our algorithm’s privacy preservation characteristic on our proposed

stochastic rounding method and tie the level of privacy to the variable γ ∈ [0, 1]. That is,

the policy choice of an agent can be determined with the probability of at most γ. We show

that our distributed algorithm results in a strategy set that when the team’s objective func-

tion is evaluated at worst case, the objective function value is in 1− (1/e)h(γ) −O(T ) of the

optimal solution, highlighting the interplay between level of optimality gap and guaranteed
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level of privacy.

5.1 Problem Statement

We consider a group ofA, |A| = N agents with communication and computation capabilities,

interacting over a connected undirected graph G(A, E). Each agent a ∈ A has a distinct

discrete policy set Pa and wants to choose κa∈Z≥1 policies from its policy set such that a

monotone increasing and submodular utility function f : 2P → R≥0, P=
⋃

a∈APa, evaluated

at all the agents’ policy selection is maximized1. In other words, the agents aim to solve in

a distributed manner the optimization problem

max
R⊂P, R∈I

f(R) where (5.1a)

I =
{
S ⊂ P

∣∣ |S ∩ Pa| ≤ κa, a ∈ A
}
. (5.1b)

Agents’ access to the utility function is through a black box that returns f(R) for any given

set R ∈ P (value oracle model). Constraint set (5.1b) is the partition matroid, which re-

stricts the number of policy choices of each agent a ∈ A to a prespecified number κa. While

seeking a distributed solution for (5.1), each agent wants to have a formal guarantee that

its final policy choice stays private. Even though a distributed solution eliminates the ne-

cessity of information aggregation in a central location, inter-agent communication can still

expose distributed network operations to adversarial eavesdroppers. These adversaries can

be other agents in the network or outside eavesdroppers that intercept communication mes-

sages. Because in problem (5.1) the agents have joint utility function, privacy preservation

is particularly a challenging problem.

Definition 2. Given a distributed algorithm used by agent a ∈ A to solve the policy selection

1For clarity, we provide a brief description of the notation and the definitions in Section ??.
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problem 4.1 to achieve the policy set R̄a ∈ Pa is γ-Private where γ ∈ [0, 1], if an intelligent

entity other than agent a is only able to estimate p ∈ R̄a with probability of at most 1 − γ,

for all p ∈ Pa

A distributed solution to problem (5.1) should enable each agent a ∈ A to choose κa policies

from its local policy set Pa. To propose our distributed algorithm, we assert a problem

reformulation by introducing virtual agents to the network. We split each agent a ∈ A into κa

fully connected local sub-agents embedded in agent a, see Fig 5.1, and design the distributed

algorithm such that each sub-agent is responsible to choose a single policy. Without loss

of generality, we index the sub-agent set as AEx = {1, · · · , NEx} where NEx =
∑

a∈A κa

and Aa = {a1, · · · , aκa} ⊂ AEx . Hence AEx =
⋃

a∈AAa. Moreover, we define the ground

set in the extended space as PEx = {1, · · · , nEx}, where nEx =
∑

a∈A κa|Pa| and the policy

set of each sub-agent i ∈ Aa ⊂ AEx is defined as PEx
i = {p1i , · · · , p

|Pa|
i } ⊂ PEx and PEx =⋃

i∈AEx PEx
i . The policy set of sub-agent i ∈ Aa is defined as a copy of the policy set of the

agent a. Hence, given that pli ∈ PEx
i and plj ∈ PEx

j are the copies of the l-th policy of agent

a ∈ A where sub-agents i, j ∈ Aa then for any R ∈ PEx the following holds

∆f (p
l
i|R) = ∆f (p

l
j|R) (5.2a)

∆f (p
l
i|R ∪ {plj}) = ∆f (p

l
j|R ∪ {pli}) = 0 (5.2b)

Moreover, we define the policy mapping function PolicMap(p) = q, p ∈ PEx
i to return q ∈ Pa

where p is a copy of policy q. In this extended space, problem (5.1) can equivalently be

represented as

max
R⊂PEs,R∈IEx

f(R) s.t. (5.3a)

IEx =
{
R ⊂ PEx

∣∣ |R ∩ PEx
i | ≤ 1, i ∈ AEx

}
. (5.3b)
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Figure 5.1 – The extension of an agent with κi = 3 to the sub-agents.

Without loss of generality we assume that PEx is ordered according to AEx in a sense that

1 ∈ PEx
1 and nEx ∈ PEx

NEx . AEx is ordered in a way that sub-agents of an agent are ordered

sequentially and the sub-agent sets are ordered in accordance with their corresponding agent

order inA. With the new formulation of the problem in the context of sub-agents, the optimal

solution to problem (5.3) is equivalent to the optimal solution of the main problem (5.1).

The equivalent problem formulation suggests that instead of each agent a ∈ A selecting κa

policies, they create κa sub-agents and each selecting only one policy out of Pa.

To solve (5.3), we use a continuous relaxation method. Notice that the utility set function f

assigns values to all the subsets of PEx=
⋃

i∈AEx PEx
i = {1, · · · , nEx}. Thus, equivalently, we

can regard the set value utility function as a function on the Boolean hypercube {0, 1}nEx
,

i.e., f : {0, 1}nEx → R. For a submodular function f : 2P
Ex → R≥0, its multilinear-extension

F : [0, 1]n → R≥0 in the continuous space is [4]

F (x) =
∑

R⊂PEx

f(R)
∏
p∈R

[x]p
∏
p ̸∈R

(1− [x]p), x ∈ [0, 1]n
Ex

, (5.4)

which expands the function evaluation of the utility function over the space between the

vertices of the Boolean hypercube {0, 1}nEx
. Given x ∈ [0, 1]n

Ex
we can define Rx to be the

random subset of P in which each element p ∈ P is included independently with probability
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[x]p and not included with probability 1− [x]p. Then the multilinear-extension F in (5.4) is

interpreted

F (x) = E[f(Rx)], (5.5)

where E[.] indicates the expected value. Then, we obtain [4]

∂F

∂[x]p
(x) = E[f(Rx ∪ {p})− f(Rx \ {p})]. (5.6)

The partition matroid constraint is also extended to continuous space using the matroid

polytope

M =
{
x ∈ [0, 1]n

Ex ∣∣ ∑
p∈PEx

i

[x]p ≤ 1, ∀i ∈ AEx
}
, (5.7)

which is the convex hull of the vertices of the hypercube {0, 1}nEx
that satisfies the partition

matroid constraint (5.3b). Additionally, note that according to (5.4), F (x) for any x ∈ M

is a weighted average of values of F at the vertices of the matriod polytope M. Then,

equivalently, F (x) at any x ∈ M is a normalized-weighted average of f on the strategies

satisfying constraint (5.1b). As such,

f(R⋆) ≥ F (x), x ∈M, and f(R⋆) = F (1R⋆),

which is equivalent to f(R⋆) = max
x∈M

F (x), where R⋆ is the optimizer of problem (5.3) [4].

Therefore, to find R⋆, we can solve the continuous domain optimization problem [4]

max
x∈M

F (x). (5.8)
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5.2 Distributed Private Policy Selection

Continuous relaxation (5.8) of the set value optimization problem (5.3) presents us with the

plethora of continuous domain optimization solvers such a gradient-based algorithms. But

since problem (5.8) is not a concave problem, a gradient accent approach does not necessarily

lead to the optimal value. Never the less in this section, we propose Algorithm 7 as a γ-

private distributed gradient ascent algorithm base on (5.8) to find a sub-optimal solution to

the problem (5.1).

Let every sub-sub-agent i ∈ AEx maintain and evolve a belief state vector as xi(t) ∈ RnEx
.

Each entry [xi(t)]p, p ∈ PEx
j , j ∈ AEx of the belief state corresponds to the estimate of sub-

agent i on the confidence of sub-agent j about choosing p as the final selected policy. Since

PEx = {1, · · · , nEx} is sorted sub-agent-wise, we denote xi(t) = [x̂⊤
i1(t), · · · ,x⊤

ii(t), · · · , x̂
⊤
iNEx(t)]⊤ ∈

RnEx
where xii(t) ∈ R|PEx

i |
≥0 is the belief vector of sub-agent i’s own policy with entries of

[xi(t)]p, p ∈ PEx
i at iteration t ∈ {0, 1, · · · , T}, T ∈ Z>0, while x̂ij(t) ∈ R|PEx

j |
≥0 is the lo-

cal estimate of the belief vector of sub-agent j by sub-agent i with entries of [xi(t)]p, p ∈

PEx
j , j ∈ AEx \ {i}. Let

λ =
T

1− κmax
√
1− γ

, κmax = max
a∈A

κa. (5.9)

Every sub-agent i ∈ AEx initializes at xi(0) = 0 and implements the propagation and update

steps

x−
i (t+ 1) = xi(t) +

1

λ
ṽi(t), (5.10a)

xi(t+ 1) = max
j∈Ni∪{i}

x−
j (t+ 1), (5.10b)
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where

ṽi(t) = argmax
w∈Mi

w.∇̃F (xi(t)) (5.11)

Mi=
{
w∈ [0, 1]nEx

∣∣∣1⊤.w ≤ 1 , [w]p = 0, ∀p ∈ PEx\PEx
i

}
. (5.12)

The value of ∇̃F (xi(t)) is the empirical estimate of ∇F (xi(t)) calculated locally by each

agent by using using Ki samples. The distributed sampling and empirical calculation of

∇̃F (xi(t)) are the same as the method introduced in previous chapter and are omitted here

for brevity. In the propagation step (5.10a) sub-agent i takes a step along a feasible gradient

ascent direction in its own local polytope (5.12). But because the propagation is only based

on the local information, in the update step (5.10b), the propagated x−
i (t+ 1) of each sub-

agent i ∈ A is updated by element-wise maximum seeking among its neighbors. Because

f is monotone increasing, we have ∂F
∂[x]p

≥ 0, which leads to 1.ṽi(t) = 1 where ṽi(t) ∈ Mi.

Therefore, given λ by equation (5.9), at the end of the propagation and update process at

time T , we have

1⊤.xii(T ) = 1− κmax
√

1− γ. (5.13)

For the rounding procedure it is essential that each sub-agent has a local belief state vector

on its own policy set that sums up to 1. Therefore, given (5.13), each sub-agent i ∈ AEx

applies a γ-private operation on its local belief state vector and generates the local belief

vector zi such that

zi = [0⊤, · · · ,x⊤
ii(T ) + yii, · · · ,0⊤]⊤ ∈ RnEx

(5.14)
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where yii is generated privately by sub-agent i such that

1⊤.yii =
κmax
√

1− γ. (5.15)

We are now ready to propose our distributed rounding scheme that enables each agent a ∈ A

to choose its local policy set. Our proposed rounding scheme does not require any inter-agent

communication because our design process leads to 1⊤.(xii(T ) + yii) = 1 and consequently

1⊤.zi = 1. Our proposed rounding method is cooperative in the level of sub-agents of an

agent a ∈ A. This is an acceptable assumption since the sub-agents of each agent a ∈ A are

virtual agents created by agent a. Given that Aa = {a1, · · · , aκa} ⊂ AEx, and defining from

T (0) = ∅, each sub-agent i = ak ∈ Aa of agent a ∈ A, uses the vector zi and a randomly

generated variable ζ ∈ [0, 1] to choose a single policy p ∈ PEx
i ⊂ PEx satisfying

∑p

l=1
[zi]l ≤ ζ ≤

∑p+1

l=1
[zi]l (5.16)

to get

T (k) = T (k − 1) ∪ {p}. (5.17)

Setting T̄a = T (κa), each agent a ∈ A chooses its policy set from the policy choices of its

sub-agents as

R̄a = {PolicyMap(p)|p ∈ Ta} (5.18)

Defining R̄ =
⋃

a∈A R̄a to be the collective selected policies of the agents A, the following

theorems assert the guaranteed optimality bound and privacy preservation guarantee of

Algorithm 7.

Theorem 5.2.1 (Sub-optimality gap of Algorithm 7). Let f : 2P → R≥0 be normalized,

128



monotone increasing and submodular set function. Let R⋆ to be the optimizer of prob-

lem (5.1). Then, the policy set R̄, the output of distributed Algorithm 7, satisfies

α
(
1− 1

e1−
κmax

√
1−γ

)
f(R⋆) ≤ E[f(R̄)]

with the probability of at least
(∏

i∈AEx(1− 2e−
1

8λ2
Ki)|P

Ex
i |κi

)T
and α = 1 −

(
2NEx2d(G) +

1
2
NEx2 +NEx

)
1
λ
.

Proof. Let x̄(t) = max
i∈AEx

xi(t). It follows from Lemma 1.5.4 and Proposition 4.2.2 that

F (x̄(t+ 1))− F (x̄(t)) ≥

∇F (x̄(t)).(x̄(t+ 1)− x̄(t))− 1

2
NEx2 1

λ2
f(R⋆),

which, further from Proposition 4.2.2 we get

F (x̄(t+ 1))− F (x̄(t)) ≥
1

λ

∑
i∈AEx

ṽi(t).∇F (x̄(t))−
1

2
NEx2 1

λ2
f(R⋆). (5.19)

Next, we note that by definition, x̄(t) ≥ xi(t) for any ∀i ∈ AEx. Therefore, given Proposi-

tion 4.2.2 and Lemma 1.5.7, for any i ∈ AEx, and p ∈ {1, · · · , nEx}, we can write

∣∣∣∣ ∂F∂[x]p (x̄(t))− ∂F

∂[x]p
(xi(t))

∣∣∣∣ ≤ NEx 1

λ
d(G))f(R⋆). (5.20)

Knowing that 1.ṽi(t) = 1, i ∈ AEx. Consequently, using (5.20) we can write

∑
i∈AEx

ṽi(t).∇F (x̄(t)) ≥∑
i∈AEx

ṽi(t).∇F (xi(t))−NEx2 1

λ
d(G))f(R⋆). (5.21)
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Next, we let

v̄i(t) = argmax
w∈Mi

w.∇F (x̄(t))

and

v̂i(t) = argmax
w∈Mi

w.∇F (xi(t)).

Because f is monotone increasing, we have ∂F
∂[x]p
≥ 0, we conclude that 1.v̄i(t) = 1, i ∈ AEx

and also 1.v̂i(t) = 1, i ∈ A. Therefore, using v̂i(t).∇F (xi(t)) ≥ v̄i(t).∇F (xi(t)) and

v̂i(t).∇F (xi(t)) ≥ ṽi(t).∇F (xi(t)), i ∈ AEx, and (5.20) we can also write

∑
i∈AEx

v̂i(t).∇F (xi(t)) ≥
∑

i∈AEx
v̄i(t).∇F (xi(t)) ≥∑

i∈AEx
v̄i(t).∇F (x̄(t))−NEx2 1

λ
d(G)f(R⋆), (5.22a)∑

i∈AEx
v̂i(t).∇F (xi(t)) ≥

∑
i∈AEx

ṽi(t).∇F (xi(t)). (5.22b)

On the other hand, by virtue of Lemma 1.18, ∂̃F
∂[x]p

(xi(t)), p ∈ PEx
i that each agent i ∈ AEx

uses to solve optimization problem (5.11) satisfies

∣∣∣∣∣ ∂̃F∂[x]p (xj(t))−
∂F

∂[x]p
(xj(t))

∣∣∣∣∣ ≤ 1

2λ
f(R⋆) (5.23)

with the probability of at least 1 − 2e−
1

8λ2
Kj . Using (5.22b) and (5.23), and also that the

samples are drawn independently

∑
i∈AEx̃

vi(t).∇F (xi(t)) ≥∑
i∈AEx

ṽi(t).∇̃F (xi(t))−NEx 1

2λ
f(R⋆), (5.24a)∑

i∈AEx
ṽi(t).∇̃F (xi(t)) ≥

∑
i ∈ AExv̂i(t).∇̃F (xi(t)) ≥∑

i∈AEx
v̂i(t).∇F (xi(t))−NEx 1

2λ
f(R⋆), (5.24b)

with the probability of at least
∏

i∈AEx(1− 2e−
1

8λ2
Ki)|P

Ex
i |.
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From (5.21), (5.22a),(5.24a), and (5.24b) now we can write

∑
i∈AEx

ṽi(t).∇F (x̄(t)) ≥∑
i∈AEx

v̄i(t).∇F (x̄(t))− (2NExd(G)) + 1)NEx 1

λ
f(R⋆), (5.25)

with the probability of at least 1− 2
∑

i∈AEx e
− 1

8λ2
Ki .

Next, let v⋆
i be the projection of 1R⋆ into Mi. Knowing that Mis are disjoint sub-spaces

ofM covering the whole space then we can write 1R⋆ =
∑

i∈AEx v⋆
i . Then, using (5.25) and

invoking Lemma 1.5.4 and the fact that v̄i(t).∇F (x̄(t)) ≥ v⋆
i (t).∇F (x̄(t)) we obtain

∑
i∈AEx

ṽi(t).∇F (x̄(t)) ≥∑
i∈AEx

v⋆
i (t).∇F (x̄(t))− (2NExd(G)) + 1)NEx 1

λ
f(R⋆) =

1R⋆ .∇F (x̄(t))− (2NExd(G)) + 1)NEx 1

λ
f(R⋆) ≥

f(R⋆)− F (x̄(t))− (2NExd(G)) + 1)
NEx

λ
f(R⋆), (5.26)

with the probability of at least
∏

i∈AEx(1 − 2e−
1

8λ2
Ki)|P

Ex
i |. Hence, using (5.19) and (5.26),

we conclude that

F (x̄(t+ 1))− F (x̄(t)) ≥

1

λ
(f(R⋆)− F (x̄(t))− (2NExd(G)) + 1

2
NEx + 1)

NEx

λ2
f(R⋆), (5.27)

with the probability of at least
∏

i∈AEx(1− 2e−
1

8λ2
Ki)|P

Ex
i |.

Next, let g(t) = f(R⋆)−F (x̄(t)) and β = (2NExd(G))+ 1
2
NEx+1)N

Ex

λ2 f(R⋆), to rewrite (5.27)
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as

(f(R⋆)− F (x̄(t)))− (f(R⋆)− F (x̄(t+ 1))) =

g(t)− g(t+ 1) ≥ 1

λ
(f(R⋆)− F (x̄(t)))− β =

1

λ
g(t)− β. (5.28)

Then from inequality (5.28) we get

g(t+ 1) ≤ (1− 1

λ
)g(t) + β (5.29)

with the probability of at least
∏

i∈AEx(1 − 2e−
1

8λ2
Ki)|P

Ex
i |. Solving for inequality (5.29) at

time T yields

g(T ) ≤ (1− 1

λ
)Tg(0) + β

T−1∑
k=0

(1− 1

λ
)k =

(1− 1

λ
)Tg(0) + λβ(1− (1− 1

λ
)T ) (5.30)

with the probability of at least
(∏

i∈AEx(1− 2e−
1

8λ2
Kj)|P

Ex
i |
)T

. Substituting back g(T ) =

f(R⋆)− F (x̄(T )) and g(0) = f(R⋆)− F (x(0)) = f(R⋆), in (5.30) we then obtain

(1− (1− 1

λ
)T )(f(R⋆)− λβ) =

(1− (1− 1

λ
)T )(1− (2NExd(G)) + 1

2
NEx + 1)

NEx

λ
)f(R⋆)

≤ F (x̄(T )), (5.31)

with the probability of at least
(∏

i∈AEx(1− 2e−
1

8λ2
Ki)|P

Ex
i |
)T

. Knowing that 1
e
≥ (1− 1

λ
)λ, we

can write (1
e
) ≥ (1− 1

λ
)λ and λ = T

1− κmax
√
1−γ

from equation (5.9), we can write (1
e
)1−

κmax
√
1−γ ≥

(1− 1
λ
)T and consequently 1− (1

e
)1−

κmax
√
1−γ ≤ 1− (1− 1

λ
)T . Hence, we conclude

α(1− 1

e1−
κmax

√
1−γ

)f(R⋆)≤ F (x̄(T ))
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, with the probability of at least
(∏

i∈AEx(1− 2e−
1

8λ2
Ki)|P

Ex
i |
)T

where

α = 1−(2NExd(G)+1

2
NEx + 1)

NEx

λ

. Moreover, by defining z̄ = max
i∈AEx

zi and because of equations (5.14), (5.15), we can conclude

[z̄]p ≥ [x̄(T )]p for p ∈ PEx. Hence, by the stochastic definition of extended function F given

by equation (5.5), we have F (x̄) ≤ F (z̄) and consequently

α(1− 1

e1−
κmax

√
1−γ

)f(R⋆)≤ F (z̄), (5.32)

By the stochastic interpretation of the extended function (5.5), we can write

F (¯̄z) = E[f(Rz̄)]. (5.33)

By decomposing z̄ to sub-agent level components, we can write

E[Rz̄] = E[f(
⋃
a∈A

⋃
i∈Aa

Rz̄i)]. (5.34)

Moreover, for a random set S ∈ PEx and the random setRzi = {p1, · · · , pm} ⊂ PEx
i , i ∈ AEx,

we have

E[f(S ∪Rzi)] = E[f(S) +
m∑
k=1

∆f (pk|S ∪ {p1, · · · , pl−1})]

≤ E[f(S) +
∑
p∈Rzi

∆f (p|S)] = E[f(S) +
∑

p∈PEx
i

∆f (p|S)]

=
∑

p∈PEx
i

[zi]pf(S ∪ {p}). (5.35)

Since 1⊤.zi = 1 and [zi]p ≥ 0, p ∈ PEx
i , then the expression

∑
p∈PEx

i
[zi]pf(S ∪ {p}) is

equivalent to E[f(S ∪ {p})] when the policy p is chosen randomly according to belief vector
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zi. Hence, by putting equations (5.34) and (5.35), we have

E[Rz̄] ≤ E[f(
⋃
a∈A

⋃
i∈Aa

pi] = E[f(
⋃
a∈A

Ta]

where pi is the randomly selected policy according to belief vector zi and Ta =
⋃

i∈Aa
pi is

the set of randomly selected policies of sub-agents of agent a. Having that f(Ta) = f(R̄a)

where R̄a = {PolicyMap(p)|p ∈ Ta}, and using the equations (5.32) and (5.33), we can write

α(1− 1

e1−
κmax

√
1−γ

)f(R⋆)≤ E[f(
⋃
a∈A

Ta] = f(R̄) (5.36)

with the probability of at least
(∏

i∈AEx(1− 2e−
1

8λ2
Ki)|P

Ex
i |
)T

, which concludes the proof.

Theorem 5.2.2 (Privacy characteristics of Algorithm 7). Given the distributed Algorithm 7

used by each agent a ∈ A to solve the policy selection problem 5.1 to achieve the policy set

R̄a ∈ Pa is γ-Private where γ ∈ [0, 1] that an intelligent entity other than agent a is only

able to estimate p ∈ R̄a with probability of at most γ, for all p ∈ Pa.

Proof. Since there are T communication rounds between the agents i ∈ AEx then due to

equations (5.10a) and (5.10a) and given that λ = T
1− κmax

√
1−γ

and the fact that yii is generated

randomly, then [zi]p, p ∈ PEx can be estimated to be at most 1 − κmax
√
1− γ. Moreover,

because the policy set of each sub-agent i ∈ AEq given by PEx
i = {p1i , · · · , p

|Pa|
i } is a copy of

policy set of agent a where i ∈ Aa, and PolicyMap(pki ) = PolicyMap(pkj ) where i, j ∈ Aa and

k ∈ {1, · · · , |Pa|}, then there are κa polices in PEx that are copies of the a single policy in

Pa. Since a single policy p ∈ PEx
i is sampled according to zi, then each policy in Pa can be

estimated to exist in R̄a with probability of at most 1− ( κmax
√
1− γ)κa < γ which concludes

the proof.

The results of Theorem 6.1.2 and Theorem 5.2.2 highlight the trade-off between the size of
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Algorithm 7 Distributed γ-Private extension-based algorithm

1: Init: R̄ ← ∅, xi(0)← 0, t← 1,
2: while t ≤ T do
3: for i ∈ AEx do
4: Draw Ki sample policy sets Rxi(t).
5: for p ∈ PEx

i do

6: Calculate
[
∇̃F (xi(t))

]
p
by empirically estimate

7: end for
8: Solve for ṽi(t) = argmax

w∈Mi

w.∇̃F (xi(t))

9: Propagate x−
i (t+ 1) = xi(t) +

1
λ ṽi(t)

10: Broadcast xi(t) to the neighbors Ni.
11: Update xi(t+ 1) = max

j∈Ni∪{i}
x−
j (t+ 1)

12: end for
13: t← t+ 1.
14: end while
15: for i ∈ AEx do
16: Generate yii and form zi
17: end for
18: for a ∈ A do
19: Sample T̄a using zi, i ∈ Aa using Algorithm 8
20: end for
21: Map the policies R̄a = {PolicyMap(p)|p ∈ Ta}
22: Return R̄ =

⋃
a∈A R̄a

optimality gap and the guaranteed level of privacy for Algorithm 7. Figure 5.2 shows the

trade-off when T is set to a very large value to eliminate the effect of α.

5.3 Conclusion

We proposed a distributed suboptimal algorithm to solve a distributed-constraint problem

of maximizing a monotone increasing submodular set function subject to a partition matroid

constraint. The main contribution of this chapter was to design a distributed algorithm that

enabled each agent to find a suboptimal policy locally with a guaranteed level of privacy.

Our algorithm was a distributed solution for the continuous relaxation of the problem of

interest followed by a fully distributed loss-less rounding procedure which was done without

any inter-agent communication. Instead of using the common differential privacy approach

to establish our privacy preservation result, we took advantage of the stochastic nature of
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Algorithm 8 Distributed rounding

1: Input: a, κa, Aa = {a1, · · · , aκa
}, PEx

i , zi, i ∈ Aa.
2: Init: T (0) = ∅, k ← 1,
3: for k ∈ {1, · · · , κa} do
4: Set i = ak
5: Generate a random number ζ ∈ [0, 1] with a uniform distribution.

6: Find p ∈ PEx
i such that

∑p
l=1[zi]l ≤ ζ ≤

∑p+1
l=1 [zi]l

7: end for
8: T (k) = T (k − 1) ∪ {p}
9: Ta = T (κa)
10: Return Ta

Figure 5.2 – The trade-off between optimality gap and privacy as a function of κmax. For κmax = 1

and γ = 0.5 the optimality gap is 0.4 for large values of T .

the rounding procedure. We proposed a novel privacy-preservation framework that tied the

level of privacy to a variable γ ∈ [0, 1], which determined the maximum probability that the

local policy choice of an agent is revealed. This letter is concluded by formally establishing

the trade-off between the worst-case optimality gap and the guaranteed level of privacy.
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Chapter 6

Privacy Preservation in Networked

Systems

This chapter considers the problem of privacy preservation against passive internal and

external eavesdroppers in the continuous-time Laplacian average consensus algorithm over

strongly connected and weight-balanced digraphs. For this problem, we evaluate the effec-

tiveness of the use of additive obfuscation signals as a privacy preservation measure against

eavesdroppers that know the graph topology. Our results include (a) identifying the neces-

sary and sufficient conditions on admissible additive obfuscation signals that do not perturb

the convergence point of the algorithm from the average of initial values of the agents; (b)

obtaining the necessary and sufficient condition on the knowledge set of an eavesdropper

that enables it to identify the initial value of another agent; (c) designing observers that in-

ternal and external eavesdroppers can use to identify the initial conditions of another agent

when their knowledge set on that agent enables them to do so. We demonstrate our results

through a numerical example.
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6.1 Problem Statement

Consider the static average consensus algorithm

ẋi(t) = −
∑N

j=1
aij (x

i(t)− xj(t)), xi(0) = ri, (6.1)

over a strongly connected and weight-balanced digraph G(V , E ,A). For such an interaction

typology, xi of each agent i ∈ V converges to 1
N

∑N
i=1 r as t→∞ [73]. In this algorithm, ri,

represents a reference value of agent i ∈ V . Because in (6.1), the reference value ri of each

agent i ∈ V is transmitted to its in-neighbors, this algorithm trivially reveals the reference

value ri of each agent i ∈ V to all its in-neighbors and any external agent that is listening to

the communication messages. In this chapter, we investigate whether in a network of N ≥ 3

agents, the reference value of the agents can be concealed from the eavesdroppers by adding

the obfuscation signals f i ∈ L∞
1 and gi ∈ L∞

1 to, respectively, the internal dynamics and the

transmitted signal of each agent i ∈ V (see Fig. 6.2), i.e.,

ẋi(t) = −
∑N

j=1
aij (x

i(t)− yj(t)) + f i(t), (6.2a)

yi(t) = xi(t) + gi(t), (6.2b)

xi(0) = ri, (6.2c)

while still guaranteeing that xi converges to 1
N

∑N
i=1 r as t → ∞. We refer to the set of

obfuscation signals {f j, gj}Nj=1 in (6.2) for which each agent i∈V still converges to the av-

erage of the reference values across the network, i.e., limt→∞ xi(t)= 1
N

∑N
i=1 x(0)=

1
N

∑N
i=1 r,

as the admissible obfuscation signals. We define the eavesdroppers formally as follows.

Definition 3 (eavesdropper). An eavesdropper is an agent inside (internal agent) or outside

(external agent) the network that stores and processes the accessible inter-agent communica-

tion messages to obtain the private reference value of the other agents in the network, without
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interfering with the execution of algorithm (6.2).

Definition 4 (Privacy preservation). Consider an eavesdropper as defined in Definition 3,

that has access to yj(t), t ∈ R≥0, of all agents j ∈ O ⊂ V in a network that implements (6.2)

with locally chosen admissible perturbation signals (f l, gl), l ∈ V. We say the privacy of

an agent i ∈ V is preserved if for any arbitrary γ ∈ R>0, there exists a tuple {xi′(0) =

ri
′
, f i′(t), gi

′
(t)}, with locally chosen admissible perturbations (f i′(t), gi

′
(t)) and

∣∣ri′ − ri
∣∣ > γ,

such that yj(t) ≡ yj
′
(t), t ∈ R≥0, for all j ∈ O.

When privacy of an agent i ∈ V is preserved in accordance to Definition 4, it means that

there exists arbitrary number of execution of algorithm (6.2) with arbitrary different refer-

ence values ri
′
(
∣∣ri′ − ri

∣∣ > γ for any γ ∈ R>0) for agent i for which the signals received by

the eavesdropper in all the executions are identical. Privacy preservation according to Defi-

nition 4 is stronger than the privacy preservation in stochastic approaches such as [3], where

even though the exact reference value is concealed, an estimate with a quantifiable confidence

interval on the reference value can be obtained; see Section 6.3 for more discussion.

We examine the privacy preservation properties of algorithm (6.2) against non-collaborative

eavesdroppers. The eavesdroppers are non-collaborative if they do not share their knowledge

sets with each other. The knowledge set of an eavesdropper is the information that it can

use to infer the private reference value of the other agents. The extension of our results

to collaborative agents is rather straightforward and is omitted for brevity. Without loss

of generality, we assume that agent 1 is the internal eavesdropper that wants to obtain the

reference value of other agents in the network. At each time t ∈ R≥0, the signals that are

available to agent 1 are

Y1(t) = {x1(τ), y1(τ), {yi(τ)}i∈N 1
out
}tτ=0.

For an external eavesdropper, the available signals depend on what channels it intercepts.
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{yj(t)}j∈N i
out −

∑N
j=1 aij (x

i(t)− yj(t)) +

f i(t)

∫
+

gi(t)

yi(t)
xi(t)

Figure 6.1 – Graphical representation of algorithm 6.2, where f i and gi are the additive obfuscation

signals.

We assume that the external eavesdropper can associate the intercepted signals to the cor-

responding agents. We represent the set of these signals with Yext(t). We assume that the

eavesdropper knows the graph topology. It is also rational to assume that the eavesdroppers

are aware of the form of the necessary conditions on the admissible obfuscation signals.

Theorem 6.1.1 (The set of necessary and sufficient conditions on the admissible obfuscation

signals). Consider algorithm (6.2) over a strongly connected and weight-balanced digraph with

obfuscation signals f i, gi ∈ L∞
1 , i ∈ V. Then, the trajectory t 7→ xi(t), of all agents i ∈ V

converges to 1
N

∑N
j=1 x

j(0) = 1
N

∑N
i=1 r as t→∞ if and only if

lim
t→∞

∫ t

0

∑N

k=1
(fk(τ)+dkout g

k(τ)) dτ = 0, (6.3a)

lim
t→∞

∫ t

0

e−L+(t−τ)R⊤(f(τ) + Ag(τ)) dτ = 0, (6.3b)

where L+ and R are defined in (1.2). □

Proof. To prove necessity, we proceed as follows. We write the algorithm (6.2) in compact

form

ẋ = −Lx− Lg + f +Dout g = −Lx+ f +Ag. (6.4)
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Left multiplying both sides of (6.4) by 1⊤
N gives

∑N

j=1
ẋj(t) =

∑N

j=1
(f i(t) + diout g

i(t)),

which results in

∑N

j=1
xj(t)=

∑N

j=1
xj(0)+

∫ t

0

∑N

j=1
(f i(τ) + diout g

i(τ)) dτ.

Because xi(0) = ri, to ensure limt→∞ xi(t) = 1
N

∑N
i=1 r, i ∈ V , we necessarily need (6.3b).

Next, we apply the change of variable

p =

 p1

p2:N

 = Tx, (6.5)

where T is defined in (1.2), to write (6.4) in the equivalent form

ṗ1=
1√
N

∑N

i=1
(f i + diout g

i), (6.6a)

ṗ2:N =−L+ p2:N+ R⊤(f +Ag). (6.6b)

The solution of (6.6) is

p1(t) =
1√
N

∑N

i=1
xi(0)+ (6.7a)

1√
N

∫ t

0

∑N

i=1
(f i(τ) + diout g

i(τ))dτ,

p2:N(t) = e−L+ t p2:N(0)+∫ t

0

e−L+(t−τ)R⊤(f(τ) +Ag(τ)) dτ. (6.7b)

Given (6.3a), (6.7a) results in limt→∞ p1(t) = 1√
N

∑N
i=1x

i(0) = 1
N

∑N
i=1 r. Consequently,

141



given (6.5), to ensure limt→∞ xi(t) = 1
N

∑N
i=1 r, i ∈ V , we need

lim
t→∞

p2:N(t) = 0. (6.8)

Because for a strongly connected and weight-balanced digraph, −L+ is a Hurwitz matrix,

limt→∞ e−L+ tp2:N(0) = 0. Then, the necessary condition for (6.8) is (6.3b).

The sufficiency proof follows from noting that under (6.3), the trajectories of (6.7) satisfy

limt→∞ p1(t) =
1√
N

∑N
i=1x

i(0) and limt→∞ p2:N(t) = 0. Then, given (6.5) and xi(0) = ri we

obtain limt→∞ xi(t) = 1
N

∑N
j=1r

j, i ∈ V .

The necessary and sufficient conditions in (6.3) that specify the admissible signals of the

agents are highly coupled. If there exists an ultimately secure and trusted authority that

oversees the operation, this authority can assign to each agent its admissible private obfus-

cation signals that collectively satisfy (6.3). However, in what follows, we consider a scenario

where such an authority does not exist, and each agent i ∈ V , to increase its privacy pro-

tection level, wants to choose its own admissible signals (f i, gi) privately without revealing

them explicitly to the other agents.

Theorem 6.1.2 (Linear algebraic coupling). Consider algorithm (6.2) over a strongly con-

nected and weight-balanced digraph. Let each agent i ∈ V choose its local obfuscation signals

f i, gi ∈ L∞
1 such that

lim
t→∞

∫ t

0

(f i(τ)+diout g
i(τ)) dτ = βi, (6.9)

where βi ∈ R. Then, the necessary and sufficient conditions to satisfy (6.3) are

∑N

k=1
βk = 0, (6.10a)

lim
t→∞

∫ t

0

e−(t−τ)gi(τ) dτ = α ∈ R, i ∈ V . (6.10b)

142



□

Proof. Given (6.9), it is straightforward to see that (6.10a) is necessary and sufficient for (6.3a).

Next, we observe that using (6.9), we can write limt→∞
∫ t

0
R⊤ (f(τ)+Dout g(τ))dτ = R⊤

[
β1 · · · βN

]⊤
.

Then, it follows from the statement (b) of Lemma 1.5.11 that limt→∞
∫ t

0
e−L+(t−τ)R⊤ (f(τ) +

Dout g(τ))dτ = 0. As a result, given f +Ag = f +Dout g − Lg, we obtain

lim
t→∞

∫ t

0

e−L+(t−τ)R⊤(f(τ) + Ag(τ)) dτ =

− lim
t→∞

∫ t

0

e−L+(t−τ)R⊤Lg(τ)dτ. (6.11)

Given (6.11), by virtue of Lemma 1.5.10, (6.3b) holds if and only if (6.10b) holds.

In Theorem 6.1.2, by enforcing condition (6.9) on the admissible signals the coupling between

the agents becomes a set of linear algebraic constraints. For a given set of {βi}Ni=1 and α,

Theorem 6.1.2 enables the agents to choose their admissible obfuscation signals locally with

guaranteed convergence to the exact average consensus; see Remark 6.1.1 below. Choosing

signals that satisfy condition (6.9) is rather easy. However, condition (6.10b) appears to

be more complex. The result below, whose proof is given in the appendix, identifies three

classes of signals that are guaranteed to satisfy condition (6.10b).

Lemma 6.1.1 (Signals that satisfy (6.10b) ). For a given α∈R, let g = g1+g2 ∈ L∞
1 satisfy

one of the conditions (a) limt→∞ g(t)=α (b) limt→∞ g1(t)=α and limt→∞
∫ t

0
g2(τ)dτ = ḡ<∞

(c) limt→∞ g1(t)=α and
∫ t

0
σ(|g2(τ)|)dτ <∞ for t ∈ R≥0, where σ is any class K∞ function.

Then, limt→∞
∫ t

0
e−(t−τ)g(τ)dτ = α. □

Proof. When condition (a) holds, the proof of the statement follows from statement (a)

of Lemma 1.5.11. When condition (b) is satisfied, the proof follows from the statements

(a) and (b) of Lemma 1.5.11 which, respectively, give limt→∞
∫ t

0
e−(t−τ)g1(τ)dτ = α and
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limt→∞
∫ t

0
e−(t−τ)g2(τ)dτ = 0. When condition (c) is satisfied, the proof follows from the

statement (a) of Lemma 1.5.11 which gives limt→∞
∫ t

0
e−(t−τ)g1(τ)dτ = α and noting that

∫ t

0
e−(t−τ)g2(τ)dτ

is the zero state response of system ζ̇ = −ζ + g2. Since g2(t) is essentially bounded, this

system is ISS, and as a result it is also integral ISS [88]. Then,
∫ t

0
e−(t−τ)g2(τ)dτ = 0, follows

from [88, Lemma 3.1].

An interesting theoretical finding that Lemma 6.1.1 reveals is that the admissible obfuscation

signals {f j, gj}Nj=1, unlike some of the existing results do not necessarily need to be vanishing

signals even for α = 0 and βi = 0, i ∈ V . For example, g1(t) = 0 and g2(t) = sin(ϕ0 +

2π( c
2
t2 + ω0t)), which is a waveform with linear chirp function [134] where ω0 is the starting

frequency at time t = 0, c ∈ R is the chirpyness constant, and ϕ0 is the initial phase, satisfy

condition (b) of Lemma 6.1.1 with α = 0. This function is smooth but loses its uniform

continuity as t → ∞. However, when a non-zero α is used the choices for non-vanishing

g that satisfy (6.10b) are much wider, e.g., according to condition (b) of Lemma 6.1.1 any

function that asymptotically converges to α can be used.

Remark 6.1.1 (Locally chosen admissible signals). If in a network the agents do not know

whether others are going to use obfuscation signals or not, then the agents use α = 0 and

βi = 0, i ∈ V in (6.10) and (6.9). This is because the only information available to the

agents is that their collective choices should satisfy (6.3). Then, in light of Theorem 6.1.2,

to ensure (6.3a) each agent i∈V chooses its local admissible obfuscation signals according

to (6.9) with βi=0. Consequently, according to Theorem 6.1.2 again, each agent i ∈ V needs

to choose its respective gi according to (6.10b) with α=0. Any other choice of {βi}Ni=1 and α

needs an inter-agent coordination/agreement procedure. We refer to the admissible signals

chosen according to (6.9) and (6.10) as the locally chosen admissible signals. □

In the case of the locally chosen admissible obfuscation signals without inter-agent coordina-

tion, since the agents need to satisfy (6.9) and (6.10) with α=βi=0, i ∈ V , these values will
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be known to the eavesdroppers. In case that the agents coordinate to choose non-zero values

for α and {β}Ni=1 such that (6.9) and (6.10) are satisfied, it is likely that these choices to be

known to the eavesdroppers. In our privacy preservation analysis below, we consider various

cases of the choices of α and/or {β}Ni=1 being either known or unknown to the eavesdroppers.

This way, our study explains the privacy preservation against the most informed eavesdrop-

pers and also explores what kind of guarantees exists against less informed eavesdroppers

that do not know all the parameters. The knowledge sets that we consider are defined as

follows.

Definition 5 (Knowledge set of an eavesdropper). The knowledge set of the internal eaves-

dropper 1 and external eavesdropper ext is assumed to be one of the cases below,

• Case 1:

Ka= {Ya(∞),G(V , E ,A),

form of conditions (6.9) and (6.10), α, {βi}Ni=1

}
, (6.12)

• Case 2:

K1=
{
Y1(∞),G(V , E ,A),

form of conditions (6.9) and (6.10), α}, (6.13)

Kext=
{
Yext(∞),G(V , E ,A),

form of conditions (6.9) and (6.10)}, (6.14)
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• Case 3:

Kext=
{
Yext(∞),G(V , E ,A),

form of conditions (6.9) and (6.10), {βi}Ni=1

}
, (6.15)

where a ∈ {1, ext}. □

Given internal and external eavesdroppers with knowledge sets belonging to one of the

cases in Definition 5, our study intends to determine: (a) whether the eavesdroppers inside

or outside the network can obtain the reference value of the other agents by storing and

processing the transmitted messages; (b) more specifically, what knowledge set enables an

agent inside or outside the network to discover the reference value of the other agents in

the network; (c) what observers such agents can employ to obtain the reference value of the

other agents in the network.

6.2 Privacy Preservation Evaluation

In this section, we evaluate the privacy preservation properties of the modified average

consensus algorithm (6.2) against an internal eavesdropper 1 and an external eavesdropper

whose knowledge sets are either of the two cases given in Definition 5. From the perspective of

an eavesdropper interested in private reference value of another agent i ∈ V , the dynamical

system to observe is (6.2) with xi as the internal state, (f i, gi, {yj}j∈N i
out
) as the inputs

and yi as the measured output. When inputs and measured outputs over some finite time

interval (resp. infinite time) are known, the traditional observability (resp. detectability)

tests (see [135],[136]) can determine whether the initial conditions of the system can be

identified. However, here the inputs f i and gi : R≥0 → R of agent i ∈ V are not available to

the eavesdropper. All is known is the conditions (6.9) and (6.10) that specify the obfuscation
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signals. With regard to inputs {yj}j∈N i
out

and output yi, an external agent should intercept

these signals while the internal eavesdropper 1 has only access to these inputs if it is an

in-neighbor of agent i and all the out-neighbors of agent i (e.g., in Fig. 6.3, agent 1 is an

in-neighbor of agent 2 and all the out-neighbors of agent 2).

6.2.1 Case 1 knowledge set

Identifying the initial condition of the agents in the presence of unknown additive obfuscation

signals may appear to be related to the classical concept of strong observability/detectability

in control theory [137, 138]. However, the necessary conditions on the unknown admissible

obfuscation signals provide additional information to the eavesdropper. Such information is

not being captured by the strong observability/detectability framework, rendering it inade-

quate for our study.

It may appear that identifying the initial condition of the agents in the presence of un-

known additive obfuscation signals is related to the classical concept of strong observabil-

ity/detectability in control theory [137, 138]. However, the necessary conditions on the

unknown admissible obfuscation signals (6.3) provide additional information to the eaves-

dropper. Such information is not being captured by the strong observability/detectability

framework, rendering it inadequate for our study.

Consider the internal eavesdropper, agent 1, when it intends to obtain the initial condition

of one of the agents i ∈ V . The critical part of the knowledge set of an eavesdropper when

it targets an agent is the signals that it has access to. To study privacy preservation for

agent i ∈ V , we partition the graph into islands whose nodes are classified into different

groups based on their information exchange by the eavesdropper and its out-neighbors, see

Fig. 6.2. For that, note that removing eavesdropper agent 1 and its incident edges results

in n̄1 ≥ 1 disjoint subgraphs Ḡ1k = (V̄1
k , Ē

1
k ) ⊂ G(V , E), k ∈∈ {1, · · · , n̄1}. Adding agent 1
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1

V1
k,2

V1
k,3

V1
k,4

V\V1
k

rest of network

Figure 6.2 – The kth induced island of eavesdropper 1. The super node V1k,2 in G1k is the set of the

out-neighbors of agent 1 that each of them has at least one out-neighbor that is not an out-neighbor

of agent 1. The super node V1k,4 is the set of the out-neighbors of agent 1 whose out-neighbors are

all also out-neighbors of agent 1. Finally, the super node V1k,3 is the set of the agents in G1k that are

not an out-neighbor of agent 1. An arrow from each node a (agent 1 or each super node) to another

node b (agent 1 or each super node) indicates that at least one agent in a can obtain information

from at least one agent in b. The thin connection lines may or may not exist in a network.

in subgraph Ḡ1k and including its incident edges to this subgraph results in an island graph

G1k = (V1
k , E

1
k ) ⊂ G(V , E) where V1

k = V̄1
k ∪ {1} and E1k = {(l, j) ∈ E| l ∈ V1

k , j ∈ V
1
k}.

Every island of agent 1 is connected to the rest of the digraph G only through agent 1 (see

Fig. 6.2). To simplify the notation, with out loss of generality, carry out the subsequent

study for agents in island k = 1, e.g., G11 . Based on how each agent interacts with agent 1,

we divide the agents of island G11 into three groups as described below (see Fig. 6.2)

• V1
1,2 =

{
i ∈ V1

1

∣∣ i ∈ N 1
out, N i

out ̸⊂ N 1
out+1

}
,

• V1
1,3 =

{
i ∈ V1

1

∣∣ i /∈ N 1
out

}
.

• V1
1,4 =

{
i ∈ V1

1

∣∣ i ∈ N 1
out, N i

out ⊆ N 1
out+1

}
.

V1
1,4 is the set of the agents that agent 1 has direct access to all their communication sig-

nals, while V1
1,2 and V1

1,3 are set of agents that some of inter-agent communication between

them is not available to agent 1. Without loss of generality, in what follows we assume that

the agents in the network are labeled according to the ordered set (1,V1
1,2,V

1
1,3,V

1
1,4,V\V

1
1 ).

We let the aggregated states and obfuscation signals of the agents in V1
1,l, l ∈ {2, 3, 4}, be
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xl = [xi]i∈V1
1,l
, gl = [gi]i∈V1

1,l
and f l = [f i]i∈V1

1,l
. Similarly, we let the aggregated states and ob-

fuscation signals of the agents in V\V1
1 be x5 = [xi]i∈V\V1

1
, g5 = [gi]i∈V\V1

1
and f5 = [f i]i∈V\V1

1
.

We partition L, A and Dout, respectively, to subblock matrices Lij’s, Aij’s and Dout
ij ’s in

a comparable manner to the partitioned aggregated state (x1,x2,x3,x4,x5)(see (??)). By

definition Lij = −Aij, i, j ∈ {1, · · · , 5}, i ̸= j. With the right notation at hand, we present

the following result which provides the privacy guarantee according to Definition 4 for the

agents belonging to V1
1,2 and V1

1,3. Note that, because every agent in G11 is connected to the

rest of the agents in digraph G only through agent 1, all the out-neighbors and in-neighbors

of agent 2 are necessarily in G11 .

Lemma 6.2.1 (A case of indistinguishable admissible initial conditions for an internal eaves-

dropper). Let agent 1 be the internal eavesdropper whose knowledge set is as Definition 6.12.

Let G11 = (V1
1 , E

1
1 ) be an island of agent 1 that satisfies V1

1,2 ̸= {}. Consider the modified static

average consensus algorithm (6.2) over a strongly connected and weight-balanced digraph G

where the agents are implementing {xi(0) = ri, f i, gi}Ni=1, with the locally chosen admissible

obfuscation signals (f i, gi) satisfying (6.9) and (6.10). Consider also an alternative execution

of (6.2) with {xi′(0), f i′, gi
′}Ni=1 satisfying

x1
′
(0) = x1(0), x′

4(0) = x4(0), x
′
5(0) = x5(0)

x′
2(0)− x2(0) = −A23L

−1
33 (x

′
3(0)− x3(0)), (6.16)

and

f i′(t) = f i(t), i ∈ V \ V1
1,2

f i′(t) = f i(t)−
[
A23e

−L33t(x′
3(0)−x3(0))

]
i−1

, i ∈ V1
1,2 (6.17)
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and

gi
′
(t) = gi(t), i ∈ V \ V1

1,2

gi
′
(t) = gi(t)+

[
e−D22t(x′

2(0)−x2(0)),
]
i−1

, i ∈ V1
1,2 (6.18)

Then,

yi(t) = yi
′
(t), t ∈ R≥0, i ∈ V\V1

1,3. (6.19)

Moreover,

∑N

i=1
xi

′
(0) =

∑N

i=1
xi(0) =

∑N

i=1
ri, (6.20)

lim
t→∞

xi
′
(t) =

1

N

∑N

i=1
ri, i ∈ V . (6.21)

□

Proof. If agent 1 knows βi, the proof follows from Lemma 6.2.2. If agent 1 does not know

βi, since it knows (6.10a), there exists at least one other agent k ∈ V\{1, i} whose βk is not

known to agent 1. We note that at the best case, βi + βk can be known to agent 1. Now

consider βik ∈ R\{0} and let βi′ = βi + βik and βk′ = βk− βik, and βl′ = βl for l ∈ V\{i, k}.

Now consider an alternative implementation of algorithm (6.2a)-(6.2b) with initial conditions

xl
′
(0) = xl(0) for l ∈ V\{i, k}, xi′(0) = xi(0)− βik and xk

′
(0) = xk(0) + βik and obfuscation

signals f l′(t) = f l(t), gl
′
(t) = gl(t) for l ∈ V\{i, k}, f i′(t) = f i(t) + d βike

−(diout+d)t, gi
′
(t) =

gi(t) + βike
−(diout+d)t and fk′(t) = fk(t)− d βike−(dkout+d)t, gk

′
(t) = gk(t)− βike−(dkout+d)t, where

d ∈ R is chosen such that d > max{di
out, d

k
out}. Let t 7→ xl

′
(t) and t 7→ yl

′
(t), t ∈ R≥0,

respectively, be the state and the transmitted signal of agent l ∈ V in this alternative case.

We note that using limt→∞
∫ t

0
dβike

−(diout+d)τdτ = dβik

diout+d
and limt→∞

∫ t

0
dβike

−(diout+d)τdτ =

1
diout+d

we can show limt→∞
∫ t

0
(f l′(τ)+dlout g

l′(τ)) dτ = βl′ , and limt→∞
∫ t

0
e−(t−τ)gl

′
(τ)dτ = α
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for l ∈ V . Therefore, since
∑N

l=j β
j′ = 0, by virtue of Theorem 6.1.2 we get

lim
t→∞

xl
′
(t) =

1

N

∑N

j=1
xl

′
(0) =

1

N

∑N

j=1
rl, l ∈ V . (6.22)

Next, let δxl(t) = xl(t)− xl′(t) and δyl(t) = yl(t)− yl′(t), l ∈ V . Then,


δẋl(t) = −dloutδxl(t) +

N∑
j=1

aljδy
j(t), l∈V\{i, k},

δẋl(t) = −dloutδxl(t)+
N∑
j=1

aljδy
j(t)+f l−f l′ , l∈{i, k},

(6.23a)


δyl(t)= δxl, l∈V\{i, k},

δyl(t)= δxl + gl−gl′ , l∈{i, k}.
(6.23b)

To complete our proof, we want to show that yl(t) = yl
′
(t) (or equivalently δyl(t) ≡ 0),

l ∈V , for t∈R≥0, thus agent 1 cannot distinguish between the initial conditions xi(0) and

xi
′
(0). Since, for a given initial condition and integrable external inputs the solution of an

ordinary differential equation is unique, we achieve this goal by showing that if δyl(t) = 0,

l ∈ V applied in the state dynamics (6.23a), the resulted output (6.23a) satisfy δyl(t)≡ 0,

l ∈ V , t ∈ R≥0. For this, first note that since δxl(0) = 0 for l ∈ V\{i, k}, then it follows

from (6.23a) with δyl(t) = 0, l∈V , that δxl(t) ≡ 0. Subsequently, from (6.23b), we get the

desired δyl(t) ≡ 0, t∈R≥0 for l∈V\{i, k}. Next, we note that, from (6.23a) with δyl(t) = 0,

l∈V , given δxi(0) = βik and δxk(0) = −βik we obtain

δxi(t) =βike
−dioutt − βike−dioutt + βike

−(diout+d)t

=βike
−(diout+d)t

δxk(t) =− βike−dkoutt + βike
−dkoutt − βike−(dkout+d)t

=− βike−(dkout+d)t

Subsequently, since gi − gi′ = −βike−(diout+d)τ and gk − gk′ = βike
−(dkout+d)τ , from (6.23b), we

151



get the desired δyl(t) ≡ 0, t ∈ R≥0 for l ∈ {i, k}, which completes our proof.

Couple of remarks are in order regarding the results of Lemma 6.2.1. First notice that

in proof of Lemma 6.2.1, we show that each (f i′, gi
′
), i ∈ V satisfies the locally chosen

admissible obfuscation signals conditions (6.9) and (6.10) for the same α and βis used to

generate {f i, gi}Ni=1. Next notice that due to (6.16) for any γ ∈ R, there always exists

xi
′
(0) for i ∈ (V1

1,2 ∪ V
1
1,3) that satisfies

∣∣xi′(0)− xi(0)∣∣ > γ, while signals received by the

eavesdropper as stated in (6.19), are identical for both execution of the algorithm using

{xi(0) = ri, f i, gi}Ni=1 and {xi′(0), f i′, gi
′}Ni=1. This means that the privacy all agents in

(V1
1,2 ∪ V

1
1,3) is preserved in accordance with Definition 4.

We can develop similar results, as stated in the corollary below, for an external eavesdropper

that does not have direct access to the output signal of some of the out-neighbors of agent

i ∈ V .

Corollary 6.2.1 (A case of indistinguishable admissible initial conditions for an external

eavesdropper). Let agent Ext be the internal eavesdropper whose knowledge set is as Defini-

tion 6.12 where the eavesdropper has access to yl(t), l ∈ O and agent k where the external

eavesdropper does not have access to yk(t), i.e. k ̸∈ O. Consider the modified static average

consensus algorithm (6.2) over a strongly connected and weight-balanced digraph G where the

agents are implementing {xi(0) = ri, f i, gi}Ni=1, with the locally chosen admissible obfuscation

signals (f i, gi) satisfying (6.9) and (6.10). Consider also an alternative execution of (6.2)

with {xi′(0), f i′, gi
′}Ni=1 satisfying

xi
′
(0) = xi(0) i ∈ V\N k

in ∪ {k}

xi
′
(0)− xi(0) = − aik

dk
out

(xk
′
(0)− xk(0)) i ∈ N k

in (6.24)
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and

f i′(t) = f i(t) i ∈ V\N k
in ∪ {k}

f i′(t) = f i(t)− aike
−dkoutt(xk

′
(0)− xk(0)) i ∈ N k

in (6.25)

and

gi
′
(t) = gi(t) i ∈ V\N k

in ∪ {k}

gi
′
(t) = gi(t) + e−dioutt(xk

′
(0)− xk(0)) i ∈ N k

in (6.26)

Then

yi(t) = yi
′
(t), t ∈ R≥0, i ∈ V\{k}. (6.27)

Moreover,

∑N

i=1
xi

′
(0) =

∑N

i=1
xi(0) =

∑N

i=1
ri, (6.28)

lim
t→∞

xi
′
(t) =

1

N

∑N

i=1
ri, i ∈ V . (6.29)

□

Proof. Proof of Corollary 6.2.1, is straight forward from proof of Lemma 6.2.1. The proof is

trivially concluded from equations (6.18),(6.17), and (6.16) through singling out an agent in

V1
1,3 and finding all of its in-neighbors in V1

1,2.

Corollary 6.2.1 shows (f i′, gi
′
), i ∈ V satisfies the locally chosen admissible obfuscation

signals conditions (6.9) and (6.10) for the same α and βis used to generate {f i, gi}Ni=1. Next

notice that due to (6.24), for any γ ∈ R>0, there always exist x
j ′(0), j ∈ N k

in and xk
′
(0) that
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satisfies
∣∣xj ′(0)− xj(0)∣∣ > γ and

∣∣∣xk ′(0)− xk(0)∣∣∣ > γ, while the signal transmitted by the

agents in V\{k} as stated in (6.27) are identical for both execution of the algorithm using

{xi(0) = ri, f i, gi}Ni=1 and {xi′(0), f i′, gi
′}Ni=1. Moreover, since O ⊂ V\{k}) leads to the fact

that the privacy of the agents N k
in ∪ {k} is preserved in accordance with Definition 4.

Through Lemma 6.2.1, we have established that the privacy of agents when the eavesdropper,

either internal or external, does not have access to at least one signal that is transmitted

in to the agent is preserved. The next results show that such guarantee does not hold for

agents whose incoming and outgoing signals are in the knowledge set of the eavesdropper.

Lemma 6.2.2 (Observer design for eavesdroppers with the knowledge set of Case 1). Con-

sider the modified static average consensus algorithm (6.2) with a set of locally chosen ad-

missible obfuscation signals {f j, gj}Nj=1 over a strongly connected and weight-balanced digraph

G. Let the knowledge set of the eavesdroppers be (6.12). An internal eavesdropper agent 1

and external eavesdropper ext that has access to the output signals of agent i ∈ V and all its

out-neighbors, can employ respectively observer

ψ̇ =
∑N

j=1
aij(y

i − yj), ψ(0) = −βi, (6.30a)

ν1(t) = ψ(t) + x1(t), (6.30b)

and observer

ζ̇ =
∑N

j=1
aij(y

i − yj), ζ(0) = −βi − α, (6.31a)

η̇ = −η + yi, η(0) ∈ R, (6.31b)

νext(t) = ζ(t) + η(t), (6.31c)

to asymptotically obtain ri, i ∈ V, i.e., νa → ri, a ∈ {ext, 1} as t → ∞. Moreover, at any
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time t ∈ R≥0, the estimation error of the observers respectively satisfies

ν1(t)−ri=x1(t)−xi(t) +
∫ t

0

(f i(τ)+diout g
i(τ))dτ −βi. (6.32)

and

νext(t)−ri= η(t)−xi(t)+
∫ t

0

(f i(τ)+diout g
i(τ))dτ−βi−α, (6.33a)

η(t) = e−tη0+

∫ t

0

e−(t−τ)xi(τ)dτ+

∫ t

0

e−(t−τ)gi(τ)dτ. (6.33b)

Proof. For an internal eavesdropper, given (6.2) and (6.30) we can write

ψ̇ + ẋi = f i + diout g
i

which, because of xi(0) = ri and ζ(0) = −βi, gives

ψ(t) = −xi(t) + ri +

∫ t

0

(f i(τ) + diout g
i(τ))dτ − βi, t ∈ R≥0.

Then, using (6.30b) and (6.2b) we obtain (6.32) as the estimation error. Subsequently,

because of (6.9) and since limt→∞(x1(t)−xi(t)) = 0, from (6.32) we obtain limt→∞ ν(t) = ri.

For an external eavesdropper, given (6.2) and (6.31a), we can write

ζ̇ + ẋi = f i + diout g
i,

which given xi(0)= ri and ζ(0)=−βi − α, for t ∈ R≥0 gives

ζ(t)=−xi(t)+ri+

∫ t

0

(f i(τ)+diout g
i(τ))dτ − βi − α. (6.34)

On the other hand, using (6.2b), t 7→ η(t) is obtained from (6.33b). Then, tracking er-
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Figure 6.3 – A strongly connected and weight-balanced digraph G in which node 1 is an articulation

point of the undirected representation of G. G11 , G
1
2 and G13 are the islands of agent 1.

ror (6.33a) is readily deduced from (6.31c) and (6.34). Next, given (6.9) and (6.10b) and

also limt→∞ e−tη0 = 0, we obtain limt→∞ ν(t) = ri + limt→∞(−xi(t) +
∫ t

0
e−(t−τ)xi(τ)dτ).

Subsequently, since limt→∞ xi(t) = 1
N

∑N
i=1 r, we can conclude our proof by invoking Lemma 1.5.11

that guarantees limt→∞
∫ t

0
e−(t−τ)xi(τ)dτ = limt→∞ xi(t) = 1

N

∑N
i=1 r.

To construct observer (6.30), the internal eavesdropper used its local state. To compensate

for the lack of internal state information, the external eavesdropper is forced to employ a

higher-order observer (6.31) and invoke condition (6.10b), which the internal eavesdropper

does not need. Thus, an external eavesdropper incurs a higher computational cost.

When an eavesdropper does not have direct access to all the signals in {yj(t)}j∈N i
out+i

, a

rational strategy appears to be that the eavesdropper estimates the signals it does not have

access to. If those agents also have out-neighbors that their output signals are not available

to the eavesdropper, then the eavesdropper should estimate the state of those agents as

well, until the only inputs to the dynamics that it observes are the additive admissible

obfuscation signals. For example, in Fig. 6.3, to obtain the reference value of agent 6, agent

1 compensates for the lack of direct access to y7(t), which enter the dynamics of agent 6, by

estimating the state of all the agents in subgraph G13 . Our results below however show that

this strategy is not effective. In fact, we show that an eavesdropper (internal or external)

is able to uniquely identify the reference value of an agent i ∈ V if and only if it has direct
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access to {yj(t)}j∈N i
out+i

for all t ∈ R≥0.

Building on our results so far, we are now ready to state the necessary and sufficient condition

under which an eavesdropper with knowledge set (6.12) can discover the reference value of

an agent i ∈ V .

Theorem 6.2.1 (Privacy preservation using the modified average consensus algorithm (6.2)

when the knowledge set of the eavesdroppers is given by Case 1 in Definition 5). Consider

the modified static average consensus algorithm (6.2) with a set of locally chosen admissible

obfuscation signals {f i, gi}Ni=1 over a strongly connected and weight-balanced digraph G. Let

the knowledge set of the internal eavesdropper 1 and external agent ext be (6.12). Then, (a)

agent 1 can reconstruct the exact initial value of agent i ∈ V\{1} if and only if i ∈ N 1
out

and N i
out ⊆ N 1

out+1; (b) the external agent ext can reconstruct the exact initial value of agent

i ∈ V if and only if {{yj(τ)}j∈N i
out+i
}∞τ=0 ⊆ Yext(∞).

Proof. Proof of statement (a): If i ∈ N 1
out and N i

out ⊆ N 1
out+1, Lemma (6.2.2) guarantees

that agent 1 can employ an observer to obtain the reference value of agent i. Next, we

show that if i ̸∈ N 1
out or N i

out ̸⊂ N 1
out+1, then agent 1 cannot uniquely identify the reference

value ri of agent i. Suppose agent i ∈ V\{1} satisfies i ̸∈ N 1
out (resp. i ∈ N 1

out and

N i
out ̸⊂ N 1

out+1). Without loss of generality let V1
1 be the island of agent 1 that contains

this agent i. Consequently, i ∈ V1
1,3 (resp. i ∈ V1

1,2). Then, by virtue of Lemma 6.2.1,

we know that there exists infinite number of alternative admissible initial conditions and

corresponding admissible obfuscation signals for any agents in V1
1,3 ∪ V

1
1,2 for which the time

histories of each signal transmitted to agent 1 are identical. Therefore, agent 1 cannot

uniquely identify the initial condition of any agents in V1
1,3 ∪ V

1
1,2. In light of Lemma 6.2.2

and Corollary 6.2.1, the proof of statement (b) is similar to that of statement (a) and is

omitted for brevity.

Remark 6.2.1 (Privacy preserving graph topologies). There are several classes of undirected
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Figure 6.4 – Examples of privacy-preserving graph topologies.

graphs for which any two agents on the graph have an exclusive neighbor with respect to the

other. Thus, by Theorem 6.2.1 privacy of all the agents is preserved from any internal eaves-

dropper when they implement algorithm (6.2). Examples include cyclic bipartite undirected

graphs, 4-regular ring lattice undirected graphs with N > 5, planar stacked prism graphs,

directed ring graphs, and any biconnected undirected graph that does not contain a cycle

with 3 edges (see [139] for the formal definition of these graph topologies). Some examples

of these privacy-preserving topologies are shown in Fig. 6.4. Theorem 6.2.1 also presents an

opportunity to make agents private with respect to a particular or all the other agents by

rewiring the graph so that the conditions of the theorem are satisfied. The idea of rewiring the

graph to induce privacy preservation has been explored in the literature [140, 141, 142, 143].

However, in practice, rewiring may be infeasible or costly. □

Next, we show that even though agent 1 cannot obtain the initial condition of the individual
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agents in V1
k,2 ̸= {} and V

1
k,3, k ∈ {1, · · · n̄1}, it can obtain the average of the initial conditions

of those agents. Without loss of generality, we demonstrate our results for k = 1.

Proposition 6.2.2 (Island anonymity). Consider the dynamic consensus algorithm (6.2)

over a strongly connected and weight-balanced digraph G in which V1
1,2 ̸= {}. Let n2,3 =

|V1
1,2 ∪ V1

1,3| and d1,1out =
∑

j∈(V1
1,2∪V1

1,4)

a1j be the out-degree of agent 1 in subgraph G11 . Then, the

eavesdropper 1 with the knowledge set (6.12) can employ the observer

ζ̇i =
∑N

j=1
aij(y

i − yj), ζi(0) = −βi, i ∈ V1
1,4,

η̇ = −
∑

j∈(V1
1,2∪V

1
1,4)

a1j(y
1 − yj), η(0) = −

∑
j∈V1

1\{1}
βi,

µ(t) =
η(t)−

∑
i∈V1

1,4
ζi

n2,3

+ x1(t).

to have limt→∞ µ(t) = 1
n2,3

∑
j∈(V1

1,2∪V
1
1,3)

rj.

Proof. Consider the aggregate dynamics of η and xi, i ∈ {2, 3, 4}, which reads as



η̇

ẋ2

ẋ3

ẋ4


=−



d1,1out −A12 0 −A14

−A21 Dout
22 −A23 −A24

−A31 −A32 Dout
33 0

−A41 −A42 0 Dout
44


︸ ︷︷ ︸

L
1
1



y1

y2

y3

y4


+



0

f2 +Dout
22 g2

f3 +Dout
33 g3

f4 +Dout
44 g4


.

Notice that L1
1 is the Laplacian matrix of graph G11 . By Virtue of Lemma 1.5.12 in the ap-

pendix we know that G11 is a strongly connected and weight-balanced digraph. Consequently,
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left multiplying both sides of equation above with 1⊤
|V1

1 |
gives

η̇+
∑

j∈V1
1\{1}

xi =
∑

j∈V1
1\{1}

(f j(t) + djout g
j(t)).

Thereby, given η(0) = −
∑

j∈V1
1\{1}
βi and xi(0) = ri, we obtain

η(t) =
∑

j∈V1
1\{1}

rj −
∑

j∈V1
1\{1}

xj(t) +
∑

j∈V1
1\{1}

∫ t

0

(f j(τ) + djout g
j(τ))dτ

−
∑

j∈V1
1\{1}

βi.

On the other hand, following the proof of Lemma 6.2.2, we can conclude that

∑
i∈V1

1,4

ζi(t) =
∑
i∈V1

1,4

ri −
∑
i∈V1

1,4

xi(t) +
∑
i∈V1

1,4

∫ t

0

(f i(τ) + diout g
i(τ))dτ

−
∑

i∈V1
1,4

βi.

Therefore, we can write

n2,3 µ(t) =
∑

j∈(V1
1,2∪V

1
1,3)

ri −
∑

j∈(V1
1,2∪V

1
1,3)

xi(t) −
∑

j∈(V1
1,2∪V

1
1,3)

βi

+
∑

j∈(V1
1,2∪V

1
1,3)

∫ t

0

(f j(τ) + djout g
j(τ))dτ + n2,3 x

1(t).

The proof then follows from the necessary condition (6.9) on the obfuscation signals, and the

fact that limt→∞ n2,3 x
1(t)−

∑
j∈(V1

1,2∪V
1
1,3)
xi(t) = 0 (recall that limt→∞ xi(t) = limt→∞ xj(t), ∀i, j ∈

V).
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6.2.2 Case 2 and Case 3 knowledge sets

The first result below shows that if βi corresponding to the locally chosen admissible obfus-

cation signals of an agent i ∈ V is not known to the eavesdropper, the privacy of the agent i

is preserved even if the eavesdropper knows all the transmitted input and output signals of

agent i and the parameter α. The proof of this lemma is given in the appendix.

Lemma 6.2.3 (Privacy preservation for i ∈ V via a concealed βi). Consider the modified

static average consensus algorithm (6.2) with a set of locally chosen admissible obfuscation

signals {f j, gj}Nj=1 over a strongly connected and weight-balanced digraph G. Let the knowl-

edge set of the eavesdropper 1 include the form of conditions (6.9) and (6.10), and also the

parameter α that the agents agreed to use. Let agent 1 be the in-neighbor of agent i ∈ V

and all the out-neighbors of agent i, i.e., agent 1 knows {yj(t)}j∈N i
out+i

, t ∈ R≥0. Then, the

eavesdropper 1 can obtain ri of agent i if and only if it knows βi.

A similar statement to that of Lemma 6.2.3 can be made about an external eavesdropper.

In the case of the external eavesdropper, it is very likely that the eavesdropper does not

know α, as well. Building on the result of Lemma 6.2.3, we make our final formal privacy

preservation statement as follows.

Theorem 6.2.3 (Privacy preservation using the modified average consensus algorithm (6.2)

when the knowledge set of the eavesdroppers is given by Case 2 in Definition 5). Consider

the modified static average consensus algorithm (6.2) with a set of locally chosen admissible

obfuscation signals {f j, gj}Nj=1 over a strongly connected and weight-balanced digraph G. Let

the knowledge set of the internal eavesdropper 1 and the external eavesdropper ext be given

by Case 2 in Definition 5. Then, the eavesdropper 1 (resp. agent ext) cannot reconstruct the

reference value ri of any agent i ∈ V\{1} (resp. i ∈ V).

Proof. Any agent i ∈ V\{1} satisfies either N i
out+i ⊂ N 1

out+1 or N i
out+i ̸⊂ N 1

out+1. Since the
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eavesdropper 1 does not know {βi}Nj=2, if N i
out+i ⊂ N 1

out+1, i ∈ V\{1}, (agent 1 has access to

all the transmitted input and output signals of agent i), it follows from Lemma 6.2.3 that it

cannot reconstruct ri. Consequently, if N i
out+i ̸⊂ N 1

out+1, i ∈ V\{1}, since the eavesdropper

1 lacks more information (it does not have access to some or all of the transmitted input

and output signals of agent i), we conclude that the eavesdropper 1 cannot reconstruct ri.

The proof of the statement for the external eavesdropper is similar to that of the internal

eavesdropper 1, and is omitted for brevity (note here that the external eavesdropper ext

lacks the knowledge of α, as well).

Next we show that in fact, knowing βi, i ∈ V , e.g., when it is known that agents use βi = 0,

does not result in the breach of privacy against external eavesdroppers that do not know α.

Theorem 6.2.4 (Privacy preservation using the modified average consensus algorithm (6.2)

when the knowledge set of the eavesdroppers is given by Case 3 in Definition 5). Consider

the modified static average consensus algorithm (6.2) with a set of locally chosen admissible

obfuscation signals {f j, gj}Nj=1 over a strongly connected and weight-balanced digraph G. Let

the knowledge set of the external eavesdropper ext be given by Case 3 in Definition 5. Then,

the eavesdropper ext cannot reconstruct the reference value ri of any agent i ∈ V.

Proof. The transmitted out signals of the agents implementing (6.2) with the locally chosen

admissible obfuscation signals {f j, gj}Nj=1 are y(t) = e−Ltx(0)+
∫ t

0
e−L(t−τ)(f(τ)+Ag(τ)) dτ+

g(t). Now consider an alternative implementation of (6.2) with initial conditions x′(0) =

x(0) − a1 and g′(t) = g(t) + a1 and f ′(t) = f(t) − [d1out, · · · , dNout]⊤a for any a ∈ R. Note

that {f j′ , gj
′}Nj=1 are valid locally chosen admissible obfuscation signals that satisfy (6.9) and

(6.10a) with the same parameter βi, i ∈ V of {f j, gj}Nj=1 and satisfy (6.10b) with α+a where

α is the parameter of (6.10b) corresponding to {gj}Nj=1. The transmitted out signal of the

agents in this implementation are y′(t) = e−Ltx′(0)+
∫ t

0
e−L(t−τ)(f ′(τ)+Ag′(τ)) dτ +g′(t) =

e−Ltx(0)− ae−LT1+
∫ t

0
e−L(t−τ)(f(τ) +Ag(τ)− [d1out, · · · , dNout]⊤a+A1a) dτ + g′(t) = x(t)−
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ae−Lt1 + g(t) + a1 = x(t) + g = y(t), where we used e−Lt1 = 1. Since the eavesdropper

ext does not know the parameter of the condition (6.10b) and y′(t) ≡ y(t) for all t ∈ R≥0,

it cannot distinguish between the actual and the alternative implementations. Therefore, it

cannot uniquely identify the initial condition of the agents.

Remark 6.2.2 (Guaranteed privacy preservation when an ultimately secure authority as-

signs the admissible obfuscation signals). If there exists an ultimately secure and trusted

authority that assigns the agents’ admissible private obfuscation signals in a way that they

collectively satisfy (6.3), the privacy of the agents is not trivially guaranteed. This is be-

cause it is rational to assume that the eavesdroppers know the necessary condition (6.3) and

may be able to exploit it to their benefit. However, in light of Theorem 6.2.4, we are now

confident to offer the privacy preservation guarantee for such a case. This is because in this

case, the eavesdroppers’ knowledge set lacks more information than Case 2 in Definition 5

(note that the locally chosen admissible obfuscation signals are a specially structured subset

of all the possible classes of the admissible obfuscation signals).

6.3 Performance Demonstration

6.3.1 Stochastic vs. deterministic privacy preservation

The deterministic and stochastic approaches to privacy preservation withhold different def-

initions of a private agent. In our deterministic setup, privacy is preserved when an eaves-

dropper, despite its knowledge set, ends up in an underdetermined system of equations when

it wants to obtain the reference value of an agent. Therefore, the eavesdropper is left with

infinite guesses of a private agent’s reference value, which it cannot favor any of them more

than the other. However, the stochastic privacy of an agent is preserved when the eaves-

dropper’s estimate of the reference value yields a non-zero uncertainty. For example, in [3]
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Figure 6.5 – Agent 1’s (eavesdropper) maximum likelihood estimator’s result when method of [3]

is used over graph of Fig. 6.6(a).

Figure 6.6 – Two strongly connected and weight-balanced graphs G.
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a maximum likelihood estimator is used by the eavesdropper to estimate the reference value

of the other agents. It is shown that the variance of P (k) of this estimator converges to a

constant matrix P . The privacy statement determines that the agents’ privacy whose corre-

sponding component in P converges to zero is breached. More specifically, given a vector ζ,

a space of the agents’ initial condition ζ⊤x(0) is disclosed to the eavesdropper if ζ⊤Pζ = 0

and if ζ⊤Pζ > 0, it is interpreted as conserving the privacy of the subspace. In this setting,

for an agent whose corresponding component of P is non-zero, the eavesdropper does not

know the agent’s exact reference value, but it has an estimate on it. Hence, we tend to favor

the deterministic notion of privacy over stochastic as the deterministic approach reveals less

information. Figure 6.5 is the replicate of the result of an example study over the graph in

Fig. 6.6(a) in [3], which shows the evolution of the covariance of the maximum-likelihood

estimator of the eavesdropper. As expected P44 converges to zero but P22 and P55 not. Even

though P22 and P55 are non-zero, they are pretty small, indicating that the eavesdropper can

have a good estimate of the reference values of these agents. In contrast in our work, our

privacy preservation shows that for agents whose privacy is preserved, the eavesdropper not

only cannot obtain the reference value but also cannot establish an estimate.

Consider the network given in Fig 6.6(a). To demonstrate over results consider the fol-

lowing three implementations of the modified continuous-time Laplacian average consensus
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algorithm (6.2) with the reference values and the additive obfuscation signals as follows:

Case (1) : r = [−3, 5, 1,−2, 10]⊤,

f(t) = [−3,−2cos( t

t2 + 1
),

t5

t5 + 1
, tan(

π

4
tanh(t)),−2tanh(t)]⊤,

g(t) = [1 + 0.23e−t, cos(10π
t2

t5 + 1
), (1 + e−tsin(10t))tanh(t),

1 + e(t−1)2 , log(e− e0.1t(1 + sin(t)))]⊤.

Case (2) : r = [−3, 15,−4,−2, 5]⊤,

f(t) = [−3,−2cos( t

t2 + 1
),−10e−2t +

t5

t5 + 1
, tan(

π

4
tanh(t)),

− 10e−2t − 2tanh(t)]⊤,

g(t) = [1 + 0.23e−t, cos(10π
t2

t5 + 1
),

5e−2t + (1 + e−tsin(10t))tanh(t), 1 + e(t−1)2 ,

5e−2t + log(e− e0.1t(1 + sin(t)))]⊤.

Case (3) : r = [−3, 25,−9,−2, 0]⊤,

f(t) = [−3,−2cos( t

t2 + 1
),−20e−2t +

t5

t5 + 1
, tan(

π

4
tanh(t)),

− 20e−2t − 2tanh(t)]⊤,

g(t) = [1 + 0.23e−t, cos(10π
t2

t5 + 1
),

10e−2t + (1 + e−tsin(10t))tanh(t), 1 + e(t−1)2 ,

10e−2t + log(e− e0.1t(1 + sin(t)))]⊤.

Let Case (1) correspond to the actual operation case, and the other two cases be admis-

sible alternative ones. Here, all the admissible obfuscation signals are smooth, uniformly

continuous and non-vanishing. They satisfy (6.9), (6.10a) and (6.10b) with α = 1 and

βi = 0, i ∈ V = {1, 2, 3, 4, 5}. The plots in the top row of Fig. (6.10) confirms convergence

of the algorithm to the exact average, as guaranteed by Theorem 6.2. The plots in the sec-
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ond row of Fig. (6.10) show that the transmitted-out signal yi of each agent i ∈ V satisfies

limt→∞ yi(t) = 1
N

∑N
j=1 r

j + α. Let δyi(t) be the communication signals difference between

Case (j), j ∈ {2, 3} and Case (1). As seen in the two bottom plots in Fig 6.10, only δy2(t) is

non-zero. This means that agent 1, in all three cases, receives exactly the same transmission

messages from its neighbors, agents 4, 5, and 3. This result, as predicted by Theorem 6.2,

shows that agent 1, the eavesdropper, cannot tell whether r2 is equal to 5 of Case (1), 15

of Case (2) or 25 Case (3). Moreover, agent 1 is not able to say which one of these cases

is more probable. A similar statement can be made about agent 3 and 5 whose privacy is

guaranteed in our framework. While the privacy of agent 2, 3 and 5 is preserved, according

to Lemma 6.2.2, agent 1 can employ an observer of form (6.30) to asymptotically estimate

the reference value of agent 4. The response of this estimator is shown in Fig. 6.11. Here to

make a comparison study with respect to [3], we used the undirected graph of Fig 6.6(a).

6.3.2 Performance over a digraph with external and internal eaves-

droppers

The first demonstration study we conduct is using execution of the modified static aver-

age consensus algorithm (6.2) over the strongly connected and weight-balanced digraph in

Fig. 6.6(b). The reference value and the locally chosen obfuscation signals of the agents are

r1 = 3, r2 = 2, r3 = 5, r4 = −3, r5 = −1,

f l(t) = dlout(sin(l
π

12
) + cos(l

π

12
))

√
(2 l)

4l
e−t, (6.35)

gl(t) = sin(l
π

12
+ lπt2), l ∈ V .

The locally chosen admissible obfuscation signals here satisfy the conditions in Theorem 6.2.1

with α = 0 and βi = 0, i ∈ V . The interested reader can examine these conditions con-
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veniently using the online integral calculator [144]. Let the eavesdropper be agent 1 whose

knowledge set is (6.12) (Case 1 in Definition 5). With regards to agents 4 and 5, de-

spite use of non-vanishing obfuscation signals g4 and g5, as guaranteed in Lemma 6.2.2,

agent 1 can employ local observers of the form (6.30) to obtain x4(0) = r4 = −3 and

x5(0) = r5 = −1 (see Fig. 6.8). Agent 1 however, cannot uniquely identify r2 and r3, since

N 2
out = {3} ̸⊆ N 1

out+1 = {1, 2, 4, 5}. To show this, consider an alternative implementation of

algorithm (6.2) with initial conditions and admissible obfuscation signals

x1
′
(0)=3, x2

′
(0)=1, x3

′
(0)=6, x4

′
(0)=−3, x5′(0)=−1,

f i′(t)=f i(t), gi
′
(t)=gi(t), i ∈ {1, 3, 4, 5},

f 2′(t)=f 2(t)− e−t, g2
′
(t)=g2(t) + e−t, (6.36)

where 1
5

∑5
i=1 x

i′(0) = 1
5

∑5
i=1 x

i(0) = 1
5

∑8
i=1 r

i = 1.2. As Fig. 6.7 shows the execution of

algorithm (6.2) using the initial conditions and obfuscation signals (6.35) (the actual case)

and those in (6.36) (an alternative case) converge to the same final value of 1.2. Let δyi =

yi− yi′, i ∈∈ {1, · · · , 5} be the error between the output of the agents in the actual and the

alternative cases. As Fig. 6.7 shows δyi ≡ 0 for all i ∈ N 1
out = {2, 4, 5}. This means that

agent 1 cannot distinguish between the actual and the alternative cases and therefore, fails

to identify uniquely the initial values of agent 2 and also agent 3. Figure 6.9 shows that an

external eavesdropper that has access to the output signals of agents 2 and its knowledge

set is (6.12) can employ an observer of the form (6.31) to identify the initial value of agent

2, i.e., r2 = 2.
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Figure 6.7 – Trajectories of the state of the agents under the actual initial conditions and the

obfuscation signals (6.35) as well as the alternative ones in (6.36) and time history of the difference

between the output signal of an agent in actual implementation scenario and its output signal in

the alternative implementation described in (6.36).

Figure 6.8 – Time history of the observers of the form (6.30) that agent 1 with knowledge set (6.12)

uses to obtain r4 and r5.
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Figure 6.9 – Time history of the observer (6.31) of an external eavesdropper with knowledge

set (6.12) that wants to obtain r2 and has direct access to y2 and y3 for all t ∈ R≥0.

Figure 6.10 – The consensus results for 3 different cases.
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Figure 6.11 – Privacy breach of agent 4 in all 3 cases of 6.6(a).

6.4 Conclusions

In this chapter, we considered the problem of preserving the privacy of the reference value

of the agents in an average consensus algorithm using additive obfuscation signals. We

started our study by characterizing the set of the necessary and sufficient conditions on

the admissible obfuscation signals, which do not perturb the final convergence point of the

algorithm. We assessed the privacy preservation property of the average consensus algorithm

with the additive obfuscation signals against internal and external eavesdroppers, depending

on how much knowledge the eavesdroppers have about the necessary conditions that specify

the class of signals that the agents choose their local admissible obfuscation signals from.

We showed that if the necessary conditions are fully known to the eavesdroppers, then an

internal or external eavesdropper that has access to all the transmitted input and out signals

of an agent can employ an asymptotic observer to obtain the reference value of that agent.

Next, we showed that indeed having access to all the transmitted input and out signals of

an agent at all t ∈ R≥0 is the necessary and sufficient condition for an eavesdropper to

identify the initial value of that particular agent. On the other hand, we showed that if

the necessary conditions defining the locally chosen admissible obfuscation signals are not

fully known to the eavesdroppers, then the eavesdroppers cannot reconstruct the reference

value of any other agent in the network. Our future work includes extending our results to

other multi-agent distributed algorithms such as dynamic average consensus and distributed
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optimization algorithms.
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Chapter 7

Certified Neural Networks

This chapter proposes a data-driven method for learning convergent control policies from

offline data using Contraction theory. Contraction theory enables constructing a policy that

makes the closed-loop system trajectories inherently convergent towards a unique trajectory.

At the technical level, identifying the contraction metric, which is the distance metric with

respect to which a robot’s trajectories exhibit contraction is often non-trivial. We propose

to jointly learn the control policy and its corresponding contraction metric while enforcing

contraction. To achieve this, we learn an implicit dynamics model of the robotic system

from an offline data set consisting of the robot’s state and input trajectories. Using this

learned dynamics model, we propose a data augmentation algorithm for learning contraction

policies. We randomly generate samples in the state-space and propagate them forward in

time through the learned dynamics model to generate auxiliary sample trajectories. We then

learn both the control policy and the contraction metric such that the distance between the

trajectories from the offline data set and our generated auxiliary sample trajectories decreases

over time. We evaluate the performance of our proposed framework on simulated robotic

goal-reaching tasks and demonstrate that enforcing contraction results in faster convergence

and greater robustness of the learned policy.
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7.1 Problem Statement

We consider the problem of control policy design for a robot with unknown discrete-time

dynamics model f(x,u) : X × U → X , where X ∈ Rn is convex, U ∈ Rm. We assume that

we can use an offline data set D consisting of tuples of state transitions and control inputs

(xt,xt+1,ut) satisfying unknown system dynamics

xt+1 = f(xt,ut). (7.1)

Our objective is to obtain a data-driven state-feedback control policy ut = u(xt) to steer

the system (7.1) towards a desired reference state xr ∈ Rn, i.e. xt → xr as t → ∞. To

compensate for the lack of knowledge of the true system dynamics, we propose using a model

of the system dynamics that we learn from the offline data D. Note that this indicates that

our learned dynamics model may still not be available explicitly and may only be available

as implicit dynamics such as neural networks approximators. More specifically, we aim to

design a control policy u(xt) that leverages the learned dynamics model

x
′

t+1 = f
′
(xt,ut), (7.2)

to drive the system asymptotically to xr.

7.2 Learning Deep Contraction Policies

To develop a policy that results in contractive behavior, we seek to enforce the approximate

condition in (1.37), requiring the weighted distances of close neighboring trajectories to

decrease over time. To enforce this condition, we need to ensure that we have sufficiently

close neighboring points for each point within our training set. However, our training data
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Figure 7.1 – We sample a small displacement ∆xt around the data point xt to augment an auxiliary

point x̃t = xt+∆xt to our data set. Then, we propagate the auxiliary state x̃t and the actual state

xt through our learned dynamics model f
′
under feedback control law u(xt) to calculate the next

states: x̃
′
t+1 and x

′
t+1, respectively. Finally, we require that the weighted distance between the two

states decreases over time as stated in condition (7.4).
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set may not include such neighboring trajectories. We augment our data set with auxiliary

trajectories that enable us to enforce this condition at each data point. That is, for each

xt ∈ D, we augment our data set with a ∆xt sampled from

∆t =
{
∆xt ∈ Rn

∣∣∣ ∥∆xt∥ < λ
}
, (7.3)

where the parameter λ is set in the training process. We sample points from ∆t to ensure that

∆xt is a small displacement with respect to the training data set. Then, for each data point

xt, we create the auxiliary state x̃t = xt+∆xt. Both of these points are propagated through

our learned dynamics model to calculate the states at the next time step: x
′
t+1 = f

′
(xt,u(xt))

and x̃
′

t+1 = f
′
(x̃t,u(x̃t)). The initial state, the auxiliary state, and the predicted evolution

of these two states are then combined into a tuple (xt, x̃t,x
′
t+1, x̃

′

t+1). The collection of all

such tuples over each xt ∈ D form the augmented data set D′.

Now, we want to evaluate the contracting behavior of the controller u(xt) through the

learned model on the augmented data set D′. Thus, we seek to enforce condition (1.37) for

the elements of D′

∥Θ(x
′

t+1)(x̃
′

t+1 − x
′

t+1)∥ − ∥Θ(xt)∆xt∥ < 0, (7.4)

with respect to a contraction metric Θ(xt). Contractive behavior is illustrated in Figure 7.1,

showing the weighted distance between x̃t and xt decays as the system evolves to x̃
′

t+1 and

x
′
t+1. We evaluate the approximate contraction condition only at the states xt that exist in

the data set D. This is due to the fact that the dynamics model is learned from D and hence

f
′
is expected to behave the most accurately at these points, which in turn will increase

the quality of the learned policy. This will enforce contractive behavior with respect to the

learned dynamics model f ′. Later we will discuss how we can ensure contractive behavior of

the closed-loop behavior of the true dynamics model f .
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Since in general, the contraction metric Θ(x) is not known, and it is directly coupled to the

control policy, we propose a learning-based approach to jointly learn both the control policy

and the metric with respect to which the policy exhibits contraction. We refer to such a

policy as a deep contraction policy. To this end, let us start by assuming that we know a

control policy u(x) that makes f
′
(x,u(x)) contractive. Consider now that we want to learn

a corresponding contraction metric. Let this contraction metric be represented by a model

Θ̂(x;wΘ) which is parameterized by weights wΘ. We then obtain the best parameters of

this contraction metric, denoted by w⋆
Θ, from

w⋆
Θ = argmin

wΘ

LΘ(D′;wΘ), (7.5)

where

LΘ(D′;wΘ) = ED′

(
∥Θ̂(x

′

t+1;wΘ)(x̃
′

t+1 − x
′

t+1)∥ − ∥Θ̂(xt;wΘ)∆xt∥
)
.

The term ∥Θ̂(x
′
t+1;wΘ)(x̃

′

t+1 − x
′
t+1)∥ − ∥Θ̂(xt;wΘ)∆xt∥ is an approximate measure of the

contraction condition (7.4) which ideally should be negative for all elements of D′. Since

enforcing (7.4) directly results in a non-differentiable optimization, we minimize (7.6) as a

proxy for (7.4). Note that LΘ is computed over all data points in D′. When paired with

differentiable contraction metric Θ̂(x;wΘ), the choice of loss function (7.6) is differentiable

and is amenable to gradient decent optimization.

Now, let’s consider the more general case where both the policy and its contraction metric

are unknown. We want to learn both the state-feedback policy and the contraction metric

together. We want to learn a control policy represented by a function approximator û(x;wu),

parameterized by weights wu, such that the closed-loop system is contractive with respect

to the metric model Θ̂. To achieve this, we propagate the initial data points in D′ with the

control policy model û(x;wu) as x
′
t+1 = f

′
(xt, û(xt;wu)) and x̃

′

t+1 = f
′
(x̃t, û(x̃t;wu)).
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We obtain the parameters of the contraction metric wΘ, denoted by w⋆
Θ, and the parameters

of the control policy wu, denoted by w⋆
u, by minimizing a loss function Lu over the data set

D′

(w⋆
u,w

⋆
Θ) = argmin

wu,wΘ

Lu(D′;wu,wΘ), (7.6)

where

Lu(D′;wu,wΘ) = ED′

(
∥Θ̂(x

′

t+1;wΘ)(x̃t+1 − x
′

t+1))∥ − ∥Θ̂(xt;wΘ)∆xt∥
)
.

Loss function (7.7) ensures that the region of interest X is contractive with respect to Θ̂ and

the learned dynamics model f ′. However, so far there has been no mechanism to ensure that

the unique equilibrium of the contractive system is indeed the desired reference value xr. To

alleviate this, we need the learning process to be aware of the desired reference value, which

we would like to be the equilibrium of the contraction region. The measure of awareness

that we introduce is based on the ability of the controller û(x;wu) to steer the system from

an initial state x0 ∈ X to the desired state value xr in k time steps, i.e. how close x
′

k gets

to xr. Therefore, to enforce the system’s states to contract to xr, we add another penalty

term to our loss function to obtain the final loss function utilized for learning the policy and

contraction metric:

L(D′,Y ;wΘ,wu)=Lu(D′;wΘ,wu)+αLtr(Y ;wu), (7.7)

where

Ltr(Y ;wu) =
∑
x0∈Y

∥∥∥x′

k(x0)− xr
∥∥∥ , (7.8)

is the tracking loss with α ∈ R>0 as the penalty factor. Here, x
′

k(x0) is the k
th state value
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Algorithm 9 Learning Deep Contraction Policies

1: Input:
2: Data set: (xt,xt+1,ut) ∈ D
3: Set of sampled initial states : x0 ∈ Y
4: Reference state: xr

5: Init:
6: f

′
(xt,ut)← learned dynamics using D

7: wΘ,wu ← randomly sampled
8: for Nepochs do
9: Calculate x

′

k’s using Y and f
′
(xt,u(xt;wf ))

10: Calculate Ltr(wu) using x0 ∈ Y and xk’s
11: ∆xt ← uniform random sample from ∆t

12: Create D′ using sampled ∆xt

13: Calculate Lu(wΘ,wu) using ∆xt’s and D′

14: L(wΘ,wu)← Lu(wΘ,wu) + αLtr(wu)
15: Calculate gradients ∇wΘ

L and ∇wuL
16: Update wΘ and wu

17: end for

of the process x
′
t+1 = f

′
(x

′
t, û(x

′
t;wu)), initialized at x

′
0 = x0 where x0 is drawn from a

countable set Y ∈ X . The number of time steps k is set by the designer and, as the reader

may infer, affects the transient behavior of the closed-loop system.

7.3 Contraction of True Dynamics Under Learned Pol-

icy

A major concern regarding control policy design using a learned model from offline data

is that of model mismatch. In order to bound the controller performance degradation, we

assume a known upper bound on the Lipschitz constant of the model error f(xt,ut) −

f
′
(xt,ut), which we denote as Lf−f ′ . In practice, such an upper bound may be estimated by

fitting a Reverse Weibull distribution over the data set D [145, 146].

Lemma 7.3.1. Consider an unknown system f(x,u) and its learned model f
′
(x,u) with an

upper-bound estimation on the Lipschitz constant of f(x,u) − f ′
(x,u) as Lf−f ′ . The error
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between the learned model and the unknown system is bounded by ε, i.e. ∥f(x,u)−f ′
(x,u)∥ <

ε, for all (x,u) ∈ X × U where

ε = max
(xt,xt+1,ut)∈D

∥xt+1 − f
′
(xt,ut)∥+ Lf−f ′D (7.9)

with D = max
(x,u)∈X×U

min
(xt,ut)∈D

∥∥∥∥∥∥∥
x
u

−
xt

ut


∥∥∥∥∥∥∥ .

Proof. We ground our error analysis on the training error of the tuples (xt,ut) ∈ D and

propagate the error to the general state and control tuples (x,u) ∈ X × U .

∥f(x,u)− f ′
(x,u)∥ ≤ ∥f(xt,ut)− f

′
(xt,ut)∥+

∥(f(x,u)− f ′
(x,u))− (f(xt,ut)− f

′
(xt,ut))∥ ≤

∥f(xt,ut)− f
′
(xt,ut)∥+ Lf−f ′

∥∥∥∥∥∥∥
x
u

−
xt

ut


∥∥∥∥∥∥∥ .

The first and the second inequalities are obtained by adding and subtracting the terms

f(xt,ut) and f
′
(xt,ut), and also using the norm and Lipschitz constant properties. If we

define E(xt,ut,x,u) as the right hand side of the second inequality, then

max
(x,u)∈X×U

min
(xt,ut)∈D

E(xt,ut,x,u) ≤ ε

where

ε = max
(xt,xt+1,ut)∈D

∥∥∥xt+1 − f
′
(xt,ut)

∥∥∥+ Lf−f ′D,

which concludes the proof.

The constant D in Lemma 7.3.1 is the maximum distance that a point (x,u) ∈ X × U can

have from its nearest data point (xt,ut) ∈ D.
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Deep contraction policy learning proposed in Algorithm 9 ideally ensures contractive behav-

ior of the controlled learned system f
′
(xt,u(xt)) at the states xt ∈ D. More specifically, by

defining an approximate measure of contraction condition (1.35) as Cg(xt) : X ×∆t → R

Cg(xt)(xt,∆xt) = ∥Θ̂(g(xt))(g(x̃t)− g(x))∥ − ∥Θ̂(xt)∆xt∥,

the controlled learned model being contractive is equivalent to E∆xt

(
Cf ′ (xt,û(xt))

(xt,∆xt)
)
<

0 for all xt ∈ D and ∆xt ∈ ∆t. Hence, it remains for us to verify whether the learned policy

exhibits contraction with the true unknown system dynamics in the sense of contraction

condition (1.35), i.e. E∆xt

(
Cf(xt,û(xt))(xt,∆xt)

)
< 0 for all xt ∈ X and ∆xt ∈ ∆t. We seek

to derive a condition under which we are guaranteed that the controlled true dynamics are

also contractive with the learned policy. To arrive to such quantification, we begin with

contraction of the learned model Cf ′ (xt,û(xt))
(xt,∆xt) at the training points, xt ∈ D and end

with an upper bound estimation of the contraction of the true dynamics Cf(xt,û(xt))(xt,∆xt)

at any points x ∈ X . The following Proposition establishes the condition under which the

approximate contraction measure holds for the true robot dynamics under the trained u(xt).

Proposition 7.3.1. Let E∆xt

(
Cf ′ (xt,û(xt))

(xt,∆xt)
)
< 0 for all xt ∈ D. Let the Lipschitz

constant of Θ̂ij(xt), f(xt,ut)−f
′
(xt,ut), f

′
(xt,ut), û(xt), f

′
(xt, û(xt)) and Cf ′ (xt,û(xt))

(xt,∆xt)

be given as LΘij
,Lf−f ′ , Lf ′ , Lu, Lf ′

u
, and LC, respectively. Additionally, let |Θ̂ij(xt)| < γ, λ

be given by (7.3), and ε be given as in (7.9). Then the true dynamics (7.1) are contractive

under the trained controlled policy û(xt), i.e. E∆xt

(
Cf(xt,û(xt))(xt,∆xt)

)
< 0 for all xt ∈ X

and ∆xt ∈ ∆t, if

ζ + λ(ετLf ′
u
+ (ετ + nγ)Lf−f ′ (1 + Lu)) < 0, (7.10)

where τ =
√∑

ij

L2Θij
and ζ = max

x∈X
min
xt∈D

C(xt) + LC ∥xt − x∥.

Proof. We want to derive a sufficient condition which ensures that contraction condition (7.4)
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holds for the true dynamics model. Using the learned dynamics model, the left-hand side

of (7.4) for xt ∈ X can be bounded for the true dynamics as

∥Θ̂(xt+1)(x̃t+1 − xt+1)∥ − ∥Θ̂(xt)∆xt∥ ≤

∥Θ̂(x
′

t+1)(x̃
′

t+1 − x
′

t+1)∥ − ∥Θ̂(xt)∆xt∥+

∥(Θ̂(xt+1)− Θ̂(x
′

t+1))(x̃
′

t+1 − x
′

t+1)∥+

∥Θ̂(x
′

t+1)((x̃t+1 − x̃
′

t+1)− (xt+1 − x
′

t+1))∥+

∥(Θ̂(xt+1)− Θ̂(x
′

t+1))((x̃t+1 − x̃
′

t+1)− (xt+1 − x
′

t+1))∥,

where xt+1 = f(xt, û(xt)), x̃t+1 = f(x̃t, û(x̃t)), x
′
t+1 = f

′
(xt, û(xt)), and x̃

′

t+1 = f
′
(x̃t, û(x̃t)).

The inequality holds due to addition and subtraction of proper terms and norm properties.

The inequality can be further simplified using the Frobenius norm of the contraction metric

Θ̂. Since, by assumption, the entries of the contraction metric are bounded by γ, we have

∥Θ̂(x)∥F ≤ nγ. Having an upper bound estimate of the Lipschitz constant of entries of the

contraction metric LΘij
and recalling that ∥(x̃′

t+1 − x
′
t+1)∥ ≤ ε from Lemma 7.3.1, leads to

the result ∥(Θ̂(xt+1)− Θ̂(x
′
t+1))∥F ≤ ε

√∑
ij

L2Θij
. In addition, using the estimated Lipschitz

constant Lf−f ′ , we have that ∥((x̃t+1− x̃
′

t+1)− (xt+1−x
′
t+1))∥ ≤ Lf−f ′

∥∥∥∥∥∥∥
 x̃

u(x̃)

−
 x

u(x)


∥∥∥∥∥∥∥.

Now, using the Lipschitz constant of u(x) as Lu, we have that ∥((x̃t+1 − x̃
′

t+1) − (xt+1 −

x
′
t+1))∥ ≤ Lf−f ′λ(1 + Lu). Finally, we can write the following inequality:

∥Θ̂(xt+1)(x̃t+1 − xt+1)∥ − ∥Θ̂(xt)∆xt∥ ≤

∥Θ̂(x
′

t+1)(x̃
′

t+1 − x
′

t+1)∥ − ∥Θ̂(xt)∆xt∥+

λ(ετLf ′
u
+ (ετ + nγ)Lf−f ′ (1 + Lu)), (7.11)

where τ =
√∑

ij

L2Θij
. With Lipschitz constant LC , we can derive an upper bound for
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Figure 7.2 – Norm of the tracking error over a collection of 256 initial states for the 2D car problem
(left) and the 3D drone problem (middle). The y axis is shown on a logarithmic scale and results
capture the mean plus and minus one standard deviation. We see that the additional complexity of
the 3D drone over the 2D car model allows for greater variation in algorithm performance. Norm
of the average final tracking error versus the norm of the initial tracking error (right). As the initial
states approach the boundary of the region of interest, controller performance tends to degrade.

Cf ′ (xt,û(xt))
(x,∆xt), xt ∈ X and ∆xt ∈ ∆t, such that Cf ′ (x,û(x))(xt,∆xt) < ζ where

ζ = max
x∈X

min
xt∈D

Cf ′ (xt,û(xt))
(xt,∆xt) + LC∥xt − x∥

. Finally by taking the expectation on Equation (7.11), we get

E∆xt

(
∥Θ̂(xt+1)(x̃t+1 − xt+1)∥ − ∥Θ̂(xt)∆xt∥

)
≤

ζ + λ(ετLf ′
u
+ (ετ + nγ)Lf−f ′ (1 + Lu))

which concludes the proof.

7.4 Implementation and Evaluation

We evaluate the performance of the contraction policies in a set of goal-reaching robotic tasks

by comparing our method against a number of offline control methods suitable for systems

with learned dynamics models. In particular, we compare our framework with the following
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algorithms:

1. MPC: An iterative Linear Quadratic Controller (iLQR) as described in [147] ran in a

receding horizon fashion.

2. Learning without contraction: To evaluate the effectiveness of the contraction

penalty, we further evaluate the robot’s performance in the absence of any contraction

terms in the loss function.

3. Reinforcement Learning: We also use the state-of-the-art offline RL method Con-

servative Q-Learning (CQL) [148] for further comparisons.

We evaluate the performance of our approach on two different robotic settings involving

nonlinear dynamical systems of varying complexity represented by neural networks. The

dynamics of these systems have closed-form expressions, but it is assumed that we do not have

access to such expressions. We assume that we only have access to a set of system trajectories

and learn a dynamics model from the state-action trajectories. The learned dynamics are

represented as neural networks to the model-based control methods: deep contraction policy,

MPC controller, and contraction-free learning. The RL implementation develops the policy

directly from the same offline data set that is used to train the dynamics model in a model-

free fashion. This allows us to implement our algorithm on the learned systems while having

an analytical baseline to compare against to quantify robustness. Additionally, we consider

state and control sets X ,U defined by box constraints in order to constrain the size of the

training data. Clearly for such constraints, X is convex. The dynamical systems we have

chosen for our performance evaluation are as follows:

1. 2D Planar Car: A planar vehicle that is capable of controlling its acceleration, α,

and angular velocity, ω. Here x := [px, py, θ, v] and u := [α, ω] where px, py are the
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planar positions, v is the velocity, and θ is the heading angle. The system dynamics

are governed by: ẋ = [v cos(θ), v sin(θ), ω, α]⊤.

2. 3D Drone: An adaptation of a drone model that is given by [100] and [149]. This

model describes an aerial vehicle capable of directly controlling the rate of change of it’s

normalized thrust Ḟ , and Euler Angles, ϕ̇, θ̇, ψ̇. Here x := [px, py, pz, vx, vy, vz, F, ϕ, θ, ψ]

and u := [ϕ̇, θ̇, ψ̇] where pi, vi are the translational positions and velocities along the

ith axis, respectively. Omitting the first order integrators in pi, F, ϕ, θ, ψ for brevity,

the dynamics can then be expressed as [v̇x, v̇y, v̇z] = [−F sin(θ), F cos(θ) sin(ϕ), g −

cos(θ) cos(ϕ)], where g is the acceleration due to gravity.

For both systems we assume a timestep of ∆t = 0.1s and a final time of T = 10s.

7.4.1 Learning System Dynamics

All of the continuous dynamical systems described above are represented to our controllers as

fully connected neural networks which capture the discretization of the model integration:

xt+1 − xt ≈ f
′
(xt,ut;wf ). The training dataset D is generated by aggregating reference

trajectories through the state space generated from an iLQR controller applied directly to

the true dynamics f(xt,ut). The reference trajectories Φ (xt,ut) were chosen such that

xt ∈ X and ut ∈ U for all t. Trajectory data was used in order to implement a discounted

multistep prediction error as in [150] until sufficient integration accuracy was achieved.

7.4.2 Controller Implementation

The contraction metric and control policy neural networks, Θ̂(xt;wΘ) and û(xt;wu), are

trained according to Algorithm 9.
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For our ablation study, we remove the contraction penalty term and simply find a policy

for minimizing the tracking error norm. Without a contraction penalty, the impact of con-

traction conditions during the learning process vanishes. In order to create a controller for

this case, each xt ∈ D is forward evolved a number of time steps under the learned control

policy and trained with a discounted cumulative loss of the tracking error norms over each

timestep.

For the MPC controller, the iLQR planner utilizes the learned dynamics model in order to

calculate the linearization relative to the state and control inputs. This linearization is used

along with weighting matrices Q = 100I,R = 1000I in order to calculate an iLQR control

law.

In order to train an offline reinforcement learning algorithm like CQL, the algorithm needs

access to state, action, and reward pairs. We reutilize the offline iLQR trajectories created

for dynamics learning as training episodes for the offline CQL RL algorithm. The reward at

each time step is taken to be the negative norm of the tracking error at the next time step

given the currently taken action.

Table 7.1 – Tracking Error Norm RMSE, 3D Drone

Dynamics Model Test Loss Contraction learning No contraction term MPC iLQR
1 5.67e-05 1.905 ± 0.651 2.391± 0.968 2.161± 0.913
2 8.19e-05 2.026 ± 0.676 2.528± 0.880 2.966± 1.593
3 1.14e-04 2.214 ± 0.889 3.315± 0.917 6.458± 2.284
4 1.58e-04 2.891 ± 1.061 5.392± 1.290 N/A∗

5 2.64e-04 3.571 ± 1.252 N/A∗ N/A∗

∗Values of N/A represent cases where sufficiently stabilizing controllers were not generated.
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Figure 7.3 – Angular position and angular velocity of the double pendulum system. The controlled
learned model and controlled true dynamics are shown. Results are shown for two different sets of
initial conditions

7.4.3 Performance Results

In order to compare the performance of our method with the alternative implementations

outlined above, we propose a number of metrics to compare the controllers:

• The time evolution of the tracking error, to quantify the controllers’ ability to converge

to the desired reference xr.

• The converged tracking error versus the initial tracking error, to quantify the con-

trollers’ ability to operate over the working space X × U .

• Root Mean Square Error (RMSE) of the tracking error versus learned model loss, to

quantify the controllers’ ability to deal with model mismatch.

For all analyses, the controllers were each presented with an identical set of 256 initial

conditions within X . The control methods were implemented as described above in an

attempt to drive these initial states to the desired reference xr. The results were aggregated

over the 256 initial conditions for the 2D car and 3D drone.

In the time evolution analysis, desirable controllers have trajectories that quickly converge,

have minimal tracking error norm, and have high convergence precision. Results directly
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comparing all of the controllers relative to this performance measure for the two dynamical

systems are given in Figure 7.2 (left and middle). The results show that over the two different

systems and a multitude of initial conditions, the contraction learning policy performs well

relative to the proposed comparison controllers. For the simpler dynamic system of the

two, the 2D planar car, the results are comparable among all controllers but favor the

contraction controller, while the more complex drone environment shows the clear benefits

of our approach. The enforcement of contraction conditions forces nearby trajectories to

converge to one another, and when near the reference point, this has the effect of reducing

the norm of the tracking error further than the systems designed without contraction in

mind. The contraction controller consistently has the lowest mean norm of the tracking

error over all the sampled initial states.

Comparing the converged tacking error, in this case, the average of the final 10 timestamps

of each trajectory, versus the initial tracking error gives insight into the performance of the

controllers’ over the entire state and control space X and U . Cases with a higher initial

tracking error represent trajectories that start closer towards the boundary of our working

space X × U . Favorable controllers are ones in which the converged tracking error remains

constant or grows slowly as the initial tracking error increases. Figure 7.2 (right) directly

shows this comparison. The results here clearly show that the MPC controller and the

learned policy without the contraction terms have difficulty as the initial state norm gets

further from the desired reference. For the MPC controller, the poor performance is likely

caused by not having expressive enough dynamics due to the repeated linearization process.

The contraction-free policy shows good performance for small initial tracking errors but

quickly degrades as this value grows. Such a control method acts extremely locally. Training

a collection of states to converge to the reference without the additional contraction structure

does not yield favorable stability properties. The CQL policy and deep contraction learning

generate trajectories with minimal degradation as the tracking error increases, with the

contraction learning method consistently having the highest degree of performance.
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Finally, for the 3D drone scenario, the impact of the learned dynamics model quality on the

model-based controllers’ performance is studied. To this end, multiple models of different

quality were learned from the same offline data set. Since the CQL policy is directly learned

from the offline data and does not utilize the learned dynamics model, this method is omitted

from this analysis. In this case, favorable controllers are ones in which the error grows slowly

with increasing model inaccuracy. Comparison of the RMSE values of the tracking error

norm over the length of the trajectories for the varying quality dynamics models are shown

in Table 7.1. The contraction learning model shows favorable performance as dynamics

model mismatch increases due to the robustness properties discussed in Section ??. For

particularly low-quality learned dynamics models we even see that the deep contraction

policy is able to generate stabilizing controllers where the contraction-free policy and MPC

controller fail to do so.

7.4.4 Non-control Affine Analysis

In order to quantify the ability of our deep contraction policy learning to generalize to more

complex systems, we perform an illustrative analysis of our controller on the double pendulum

model given in [151]. Such a system is chaotic with a non-affine control input. Figure 7.3

shows the comparison of two scenarios where the designed controller was implemented on

both the learned model and the true dynamics. The trajectories show the controller is able

to accomplish the task when applied to the learned model. However, when applied to the

true dynamics, the controller positions the arms with a slight positional error while keeping

the angular velocity at zero.
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7.5 Conclusion

In this chapter, we established a framework for learning a converging control policy for an

unknown system from offline data. We leveraged Contraction theory and proposed a data

augmentation method for encoding the contraction conditions directly into the loss function.

We jointly learned the control policy and its corresponding contraction metric. We compared

our method with several state-of-the-art control algorithms and showed that our method

provides faster convergence, a smaller tracking error, lower variance of trajectories. For our

future work, we would like to extend the current work to develop the stochastic confidence

bound of our control design approach design.

190



Chapter 8

Conclusion and Future Work

This dissertation work has focused on the development of distributed strategy selection for

networked mobile agents (robots, people, unmanned aerial vehicles, and so on) for challenges

in which the aim is to maximize the agents’ total utility. The goal is to create a decentralized

cooperative decision-making algorithm that does not require any infrastructure and can func-

tion well in the face of system uncertainty. The work’s principal application is cooperative

strategy selection solutions for tasks like dynamic area patrolling, persistent monitoring, sen-

sor placement, and area coverage, where avoiding action overlaps and increasing the agents’

performance is difficult. This dissertation project aims to create a decentralized strategy

selection algorithm that relies on the agents’ local processing power and communication net-

work. To address this problem, we tied a utility function to the combined set of decisions

made by the team of agents. By showing that the utility function is a monotone increasing

and submodular function, we formulate a general utility maximization problem as maximiz-

ing a submodular set function subject to partition matroid. We then proceed to propose

a suboptimal strategy selection algorithm with known optimality bound. We work in the

value oracle model where the only access of the agents to the utility function is through a

black box that returns the utility function value and where the agents can communicate over
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a connected undirected graph and have access only to their own strategy set. Our proposed

algorithm is based on a distributed stochastic gradient ascent scheme built on the multi-

linear extension of the submodular set function. We use a maximum consensus protocol to

minimize the inconsistency of the shared information over the network caused by a delay in

the flow of information while solving for the fractional solution of the multilinear extension

model. Furthermore, we propose a distributed framework for finding a set solution using

the fractional solution. However, our proposed communication protocol informs adversar-

ial elements on the selected strategies by the agents. Our next contribution is to design

a distributed algorithm that enables each agent to find a suboptimal policy locally with a

guaranteed level of privacy. We base our modified algorithm’s privacy preservation charac-

teristic on our proposed stochastic rounding method and tie the level of privacy to a privacy

variable. That is, the policy choice of an agent can be determined with at most a certain

probability. We also show that there is an interplay between the level of optimality gap and

the guaranteed level of privacy. To address the problem of the interplay between optimality

gap and level of privacy we investigated the privacy preservation method by adding permis-

sible perturbation signals to the local dynamics and the agents’ broadcast out signals, we

study the feasibility of protecting the privacy of the reference value of the agents. Admissible

additive perturbation signals are ones that do not deviate from the algorithm’s ultimate de-

cision point from when no perturbation signal is introduced. Our findings indicate that if an

adversarial agent has access to another agent’s output as well as all of the input signals sent

to that agent, the adversary can figure out what that agent’s secret decision is, independent

of the perturbation signals. Otherwise, the agent’s privacy can be protected. Our proposed

method is targeting networks that serve the average consensus algorithms. In future work,

the goal will be to redesign our privacy-preserving method to be compatible with maximum

consensus decision-making protocols. In some cases, our suggested randomized distributed

strategy selection may need an excessive amount of samples. To solve this challenge, we

consider reusing offline data and employing neural networks to represent the system. Neural
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networks, on the other hand, are known for being unpredictable, making them unsuitable

for use in dynamic systems. We developed some preliminary results to address the problem

of uncertainty, we suggested a way of certifying neural networks in the context of dynamical

systems and policy-making utilizing contraction theory. However, our proposed scheme does

not directly address the reuse of samples in randomized distributed strategy selection and

multi-linear extension of a submodular set function. In future work, we suggest tailoring our

contraction theory-based approach to conform with our proposed randomized distributed

strategy selection scheme.
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