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Abstract

Several approaches to implementing symbol-like represen-
tations in neurally plausible models have been proposed.
These approaches include binding through synchrony (Shas-
tri & Ajjanagadde, 1993), mesh binding (van Der Velde &
de Kamps, 2006), and conjunctive binding (Smolensky, 1990;
Plate, 2003). Recent theoretical work has suggested that most
of these methods will not scale well – that is, they cannot en-
code structured representations that use any of the tens of thou-
sands of terms in the adult lexicon without making implausible
resource assumptions (Stewart & Eliasmith, 2011; Eliasmith,
in press). Here we present an approach that will scale appro-
priately, and which is based on neurally implementing a type
of Vector Symbolic Architecture (VSA). Specifically, we con-
struct a spiking neural network composed of about 2.5 million
neurons that employs a VSA to encode and decode the main
lexical relations in WordNet, a semantic network containing
over 100,000 concepts (Fellbaum, 1998). We experimentally
demonstrate the capabilities of our model by measuring its per-
formance on three tasks which test its ability to accurately tra-
verse the WordNet hierarchy, as well as to decode sentences
employing any WordNet term while preserving the original
lexical structure. We argue that these results show that our
approach is uniquely well-suited to providing a biologically
plausible, human-scale account of the structured representa-
tions that underwrite cognition.

Keywords: knowledge representation; biologically plausible;
scaling; neural; vector symbolic

Introduction
One of the central challenges for contemporary cognitive
modelling is scaling. As Jeff Hinton remarked in his address
to the Cognitive Science Society, “In the Hitchhiker’s Guide
to the Galaxy, a fearsome intergalactic battle fleet is acciden-
tally eaten by a small dog due to a terrible miscalculation of
scale. I think that a similar fate awaits most of the models
proposed by Cognitive Scientists” (Hinton, 2010). This ob-
servation can be taken as a challenge for cognitive modellers:
Will the principles demonstrated in a small-scale cognitive
model scale up to the complexity of a human-sized cogni-
tive system? This scaling problem has often been thought to
be a special challenge for biologically inspired approaches to
cognitive modelling (Jackendoff, 2002). This is because the
basic principles employed in such models often do not allow
for a straightforward characterization of structured represen-
tations, despite the ubiquity of such representations in cog-
nitive behaviour. This same concern is not as immediate for
symbolicist approaches which typically take structured repre-
sentations to be primitive (Anderson, 2007).

In this paper, we briefly review past connectionist ap-
proaches to addressing the problem of representing structure,
and discuss recent criticisms of those approaches which sug-
gest that they will not scale. We then present a new ap-
proach that we have developed that allows for the represen-
tation and manipulation of large-scale structured representa-
tions in anatomically and physiologically plausible models
of brain function. In past work we have provided theoreti-
cal arguments suggesting that this approach will scale better
than others (Stewart & Eliasmith, 2011). Here, our focus is
on empirically demonstrating that claim. We do so by en-
coding the central structural relations in WordNet into neural
representations in a spiking network. We present the results
of three experiments showing that 1) this information can be
decoded for arbitrary lexical items, 2) lexical hierarchies of
any depth within WordNet are successfully represented, and
3) these lexical representations can be combined to represent
structured sentences with the same methods.

Past Approaches
There have been many approaches to representing structure in
connectionist networks. We consider three of the most suc-
cessful: 1) binding through synchrony; 2) mesh binding; and
3) conjunctive binding.

The suggestion that structured cognitive representations
could be constructed using binding through synchrony (Shas-
tri & Ajjanagadde, 1993) was imported into cognitive mod-
elling from the earlier hypothesis that feature binding in vi-
sion can be accounted for by the synchronization of neu-
rons in visual cortex (von der Malsburg, 1981). Recently,
this approach has seen a revival in the DORA architecture
(Doumas et al., 2008) and its variants, which focus on repre-
senting structures for analogical reasoning. In these models,
the temporal relationships between connectionist nodes are
employed to represent structured relations. Structured rep-
resentations (e.g. bigger(Fido, Sarah)) are constructed out
of four levels of representation, where nodes in higher lev-
els represent more complex structures via their connections
to nodes in lower layers. As has been argued in more detail
elsewhere, this kind of representational scheme will not scale
well (Stewart & Eliasmith, 2011; Eliasmith, in press) because
the number of nodes needed to support arbitrary structured
representations over even small vocabularies (e.g. 6000 lex-
ical items) is larger than the number of neurons in the brain.
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Notably, this is not an issue with the use of synchrony per
se, but rather with the the way binding has been mapped to
network nodes. However, it has also been suggested that syn-
chrony itself will not scale well to binding complex structures
(Stewart & Eliasmith, 2011; O’Reilly & Munakata, 2000).

A different approach to structured representation has been
taken by van Der Velde & de Kamps (2006) in their work
on the Neural Blackboard Architecture (NBA). To avoid the
exponential growth in resources, the NBA employs “neu-
ral assemblies.” These assemblies are temporarily bound
to particular symbols using a mesh grid of neural circuits
(e.g. bind(noun1, Fido)). Larger structures are then built
by binding these assemblies to roles using a gating circuit
(e.g. gate(agent1, bind(noun1, Fido))). Neural assemblies
that bind roles and their gated word assemblies are used to
define higher level structure assemblies which can be used
to represent sentential structures. The use of temporary bind-
ing in this manner significantly reduces the resource demands
of this approach compared to DORA. However, as argued in
Stewart & Eliasmith (2011) and demonstrated in more detail
in Eliasmith (in press), just to represent simple sentences of
the form relation(agent, theme) from a vocabulary of 60,000
terms, this approach requires about 480 cm2 of cortex, ap-
proximately one fifth of total cortical area. This is much
larger than known language areas which account for both rep-
resentation and processing of linguistic terms. Consequently,
while the NBA has improved scalability compared to DORA,
it remains implausible.

The final approach we consider is the class of propos-
als broadly called conjunctive coding approaches, or, more
recently, Vector Symbolic Architectures (VSAs; (Gayler,
2003)). In general, these approaches propose some kind of
nonlinear vector operation to bind two vectors together. The
earliest and perhaps best known such approach is that pro-
posed by Smolensky (1990), which employs the tensor prod-
uct as the binding operation. The model presented in this
paper employs a VSA which uses circular convolution as
the binding operation (after Plate (2003)). The crucial dif-
ference between using the tensor product vs. using circu-
lar convolution is that for an n-dimensional vector, a tensor
binding results in an n2-dimensional vector, whereas the cir-
cular convolution binding results in an n-dimensional vector.
This computational difference results in severe scaling differ-
ences when considering possible biological implementations.
In particular, tensor products scale exponentially poorly as
the depth of the structure increases. For example, Eliasmith
(in press) shows that encoding a sentence where lexical items
have hierarchical relations of depth two or greater (e.g. Sarah
isA(person isA(mammal))) will require approximately 625
cm2 of cortex. Again, this is significantly larger than relevant
language areas.

The above considerations suggest two main challenges
for connectionist implementations of structured representa-
tions: lexical scaling and hierarchical scaling. Lexical scal-
ing means having a lexicon that is as large as an adult hu-

man’s vocabulary. Hierarchical scaling refers to being able to
encode the depth of grammatical and lexical relations found
in adult humans. Any method that claims to provide appro-
priate scaling will have to demonstrate success along both of
these dimensions. The approach that we adopt in this work
employs a neural implementation of a VSA which uses cir-
cular convolution for binding. The purpose of this paper is to
demonstrate empirically that our approach successfully meets
both of these challenges.

Theoretical Approach and Methods
WordNet
The target of our efforts – the human-scale knowledge base
that we will be encoding – is WordNet, a manually con-
structed lexical database of the English language (Fellbaum,
1998). WordNet’s design is intended to reflect the organiza-
tion of concepts in a psychologically plausible way using a
handful of common relationships. In WordNet words are di-
vided into ”synsets” or synonym sets of words that have the
same meaning. Words that have multiple meanings are listed
in multiple synsets, so the fundamental unit in WordNet is
not a word but a word sense. Each synset is linked to other
synsets by relations, of which there are several types. The
two relation types that are of the most interest are hypernymy
and holonymy. A hypernym of a concept is the general type
of the concept (i.e. dog has the hypernym canine); a holonym
of a concept is something that that concept is a part of (i.e.
lock has the holonym door). These relations are explicitly
encoded in the lexicon we employ. The inverse of the hy-
pernym and holonym relations are also implicitly included in
our encoding, although we do not test their extraction as this
requires more complex control of signal flow that is beyond
our present scope. The depiction of lexical relations found in
WordNet is slightly simplified, though it is sufficient for our
purposes; a complete description of the simplifications made
can be found in Fellbaum (1998).

Each synset can be defined in terms of its relationships with
other synsets. This means that a term such as dog can be
defined as:

dog = isA(canine) and partOf(pack) (1)

We will make extensive use of this type of representation in
our model. We think of the relations in (1) as belonging to the
dog synset, and pack and canine as the targets of the relations.

Vector Symbolic Architectures
VSAs in general provide a means for representing struc-
tured knowledge using high-dimensional vectors. This makes
VSAs amenable to neural implementation using the Neu-
ral Engineering Framework, which shows how to systemat-
ically use populations of spiking neurons to represent vectors
and functions thereof (Eliasmith & Anderson, 2003). In a
VSA, each symbol to be represented is randomly assigned a
high-dimensional vector. Two core operations are provided,
each of which takes two vectors as input and returns a third.
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Binding (~) two vectors returns a third vector that is disim-
ilar to both of the original vectors. The superposition (+)
of two vectors returns a third vector that is similar to both
of the original vectors. Here we employ a close relative of
Holographic Reduced Representations (Plate, 2003), a type
of VSA in which binding is implemented via circular convo-
lution, superposition is implemented via vector addition and
vectors representing symbols are randomly chosen from the
D-dimensional unit sphere. The circular convolution returns
a vector which has the same dimension as the two input vec-
tors, which is a significant improvement over the tensor prod-
uct VSA discussed in the Past Approaches section.

We can use these operations to encode graph-like struc-
tures such as WordNet. First we fix a dimension D for our
vectors (D=512 in our model). Then each WordNet synset
and each relation type is assigned a random vector on the D-
dimensional unit sphere called an ID-vector. Each synset is
also assigned a second D-dimensional vector, built-up using
the VSA operations, which stores the structural information
about the synset. To construct this vector, for each relation
belonging to a particular synset, we bind the ID-vector for
the relation type to the ID-vector for the target of the relation.
We then superpose the results from all the relations. The fol-
lowing equation demonstrates this process for the dog synset:

dog = isA~ canineID +partOf~packID (2)

where all variables on the right-hand side are ID-vectors. We
have disambiguated the two vectors assigned to a synset by
denoting the ID-vector with the ID subscript. What makes
(2) useful is that dog preserves information about its con-
stituents; we can use a third operation, dereferencing, to de-
termine what a given vector is bound to in dog. The deref-
erencing operation is performed by binding dog with the in-
verse of the given vector. As an example, imagine we want to
extract the synset that the dog synset is related to via the isA
relation type. We bind dog with isA, the inverse of the isA
vector:

dog~ isA

= (isA~ canineID +partOf~packID)~ isA

= isA~ canineID ~ isA+partOf~packID ~ isA

≈ canineID +partOf~packID ~ isA (3)

Equation (3) shows that dog~ isA is canineID superposed
with another vector which can effectively be regarded as
noise. All that remains is to remove that noise, and we will
discuss methods for doing so below.

We call vectors constructed in the manner of dog in (2) se-
mantic pointers because they are a compressed representation
of their constituents, and preserve similarity (i.e. semantic)
relations in their compressed form. In addition, the derefer-
encing operation is similar to the dereferencing of pointers
in programming languages. Semantic pointers have a wide
range of uses; indeed, they are central to the Semantic Pointer

Architecture (Eliasmith, in press) which was used to create
Spaun, currently the world’s largest functional brain model,
which is able to account for several perceptual, motor and
cognitive behaviours (Eliasmith et al., 2012).

Now, given a semantic pointer representing a synset, we
can traverse the connections between that synset and related
synsets by dereferencing its semantic pointer with the ID-
vector of a relation type, obtaining a noisy version of the ID-
vector of the target of the relation, as demonstrated in (3).

After this initial dereferencing, we must still determine
how to remove the noise from the vector returned by the
dereferencing operation. Looking again at equation (3), we
see that dog~ isA is similar to canineID since it consists of
canineID superposed with a noise vector, and is dissimilar to
the rest of the ID-vectors (packID, isA, partOf) since they
are related to dog~ isA via the binding operation. A cleanup
memory, which returns the vector in a vocabulary which is
most similar to a given input vector, is a potential solution to
this denoising problem. However, we want our model to be
able to traverse the full WordNet hierarchy, not just a single
relation, and ID-vectors alone contain no structural informa-
tion. We need to have some way to move from the ID-vector
for a synset to its semantic pointer. We can perform both the
denoising and mapping to semantic pointer in one step by us-
ing an associative cleanup memory rather than a pure cleanup
memory. In short, we take the noisy ID-vector returned by
the dereferencing operation and feed it into an associative
cleanup memory mapping each synset’s ID-vector to its se-
mantic pointer, thus obtaining a clean semantic pointer which
can then be used in further traversals.

Neural Representation and Computation
Thus far we have described VSAs and how they can be used
to encode structural knowledge such as WordNet, but have
not yet said anything of how to implement them in neurons.
For this purpose we turn to the Neural Engineering Frame-
work (NEF), a set of methods for building biologically plau-
sible models using principles for neural representation, com-
putation and dynamics (Eliasmith & Anderson, 2003). The
central idea behind the NEF is that a group of spiking neu-
rons can represent vectors over time, and that connections
between groups of neurons can compute functions on those
vectors. More precisely, a group of neurons represents any
of a set of vectors, that is, a vector space. The NEF provides
a set of methods for determining what the connections need
to be to compute a given function on the vector space repre-
sented by a group of neurons. Suppose we wish to compute
the function y = f(x), where vector space x is represented in
population A, and vector space y is represented in population
B. To do so, the NEF assumes that each neuron in A and B has
a “preferred direction vector.” The preferred direction vector
is the vector (i.e. direction in the vector space) for which that
neuron will fire most strongly. Consequently, the spiking ac-
tivity of every neuron in a population A can be written

ai(x) = G[ αieix + Jbias ] (4)
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where ai is the ith neuron in the population, G is the spik-
ing neural nonlinearity, αi is the gain of the neuron, ei is the
preferred direction (or encoding) vector, and Jbias is a bias
current to account for background activity of the neuron. The
elements in the square brackets determine the current flowing
into the cell, which then drives the spiking of the chosen sin-
gle cell model G. For computational efficiency, we employ a
leaky integrate-and-fire (LIF) neuron model, though the NEF
can be applied for arbitrary neuron models. Equation (4) is
referred to as an encoding equation because it describes how
a vector space, in this case x, is encoded into neural spikes.
The NEF assumes a least-squares optimal linear decoding to
reconstruct x or any nonlinear function thereof, f(x). Thus,
we must find the decoders d f

i , such that

E =
1
2

∫
[ f (x)−∑

i
ai(x)d

f
i ]

2dx (5)

is minimized. Finding the decoders in this manner then pro-
vides us with a way to estimate any vector f(x) given the ac-
tivities from the encoding equation. We can write this as the
decoding equation:

f̂ (x) = ∑
i

ai(x)d
f
i (6)

where N is the number of neurons in the group and f̂ (x) is the
estimate of f(x) where x is the input driving the neurons. Re-
call that our purpose in defining the representation of a vector
space in a neural population is to use it to compute a function
between two populations. If we define the encoding and de-
coding for groups A and B using equations (4) and (6), we can
substitute the decoding of A into the encoding of B, thereby
deriving connection weights. In addition, if the function we
wish to compute is linear, we can include the relevant lin-
ear operator in the weight equation. The weight equation for
computing any combination of linear and nonlinear functions
is then:

ωi j = d f
i α jLe j (7)

where i indexes the neurons in group A and j indexes the
neurons in B, f is any nonlinear function and L is any DB x
DA linear operator, where DA and DB are the dimensionalities
of the two vector spaces.

It is worth noting that these representations and computa-
tions can be implemented to any desired precision, by adding
enough neurons. Specifically, the root mean-squared-error
goes down as 1/N (Eliasmith & Anderson, 2003). One of the
main concerns of this paper is to demonstrate that the opera-
tions required for representing human-scale lexical structure
can be done with a reasonable number of neurons.

It is straightforward to use the NEF to create networks of
spiking neurons for computing the inverse and circular con-
volution operations (Eliasmith, 2005). However, neurally im-
plementing an associative memory requires a specific appli-
cation of these methods, which we will outline in the next
section.

Neural Associative Memory
There are several ways in which associative memories can be
implemented (see (Lansner, 2009) for a review). Recently,
(Stewart et al., 2010) used the NEF to construct an efficient,
fast autoassociative (a.k.a. cleanup) memory out of spiking
neurons, and this approach can be trivially extended to con-
struct an associative memory. Moreover, they demonstrate
that this approach significantly outperforms a linear associa-
tor, a direct function approximator and a standard multi-layer
perceptron. However, that paper only considers lexicons up
to 10,000 items, and does not discuss any actual lexical pro-
cessing, as is our focus here.

Given a noisy version of an ID-vector as input, we want
our associative memory to output a clean version of the corre-
sponding semantic pointer. A simple algorithm that achieves
this is to take the dot product of the input vector with each of
the ID-vectors in the vocabulary, threshold these values (set
to 0 all values below some fixed threshold), multiply each se-
mantic pointer vector by its corresponding thresholded value,
and add all the resultant vectors together to obtain a single D-
dimensional vector. If the input vector is only similar to one
of the ID-vectors, then all of the dot products will be thresh-
olded except for one and the output vector will be equal to the
correct semantic pointer.

We can use the NEF to implement this algorithm in spiking
neurons as follows. Assign each synset a small (∼20) popula-
tion of neurons. Then we set the preferred direction vector of
each neuron equal to the ID-vector for the synset that the neu-
ron is assigned to. Equation (4) shows the activities of each
population can be seen as encoding the similarity between the
input vector and the population’s assigned ID-vector. To de-
termine the weight matrices between these populations and
the output population, we first minimize equation (5) with f
set to a thresholding function to find optimal decoders, and
then substitute these into equation (7) with L set to semantic
pointer of the population’s assigned synset. Thus, the output
of a population with ID-vector e and semantic pointer s is a
neural reconstruction of threshold(xT e) ·s. Summing the out-
put of all the association populations is implicitly performed
by the dendrites of the neurons in the output population.

The Model
The core of the model is a network of spiking neurons, con-
structed using the techniques outlined above, which, given
a semantic pointer corresponding to a WordNet synset and
a query vector corresponding to a relation type, returns the
semantic pointer corresponding to the target of the relation.
This network can be used to traverse the WordNet hierarchy
by running it recursively, with the output of the last run used
as input on the next run. The tasks of moving the output into
the input, controlling which relation goes into the query vec-
tor population, etc, are not investigated here as they are pe-
ripheral to our central concern of representing human-scale
structured knowledge in a biologically plausible manner.

A schematic diagram of the model is depicted in Fig-
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Figure 1: The network of spiking neurons that traverses the WordNet graph. Assume S = R~TID +U ~VID where R, TID, U,
and VID are all ID-vectors and T is the semantic pointer corresponding to TID. All nodes represent neural populations.

ure 1. The nodes correspond to populations of spiking neu-
rons which represent and manipulate 512-dimensional vec-
tors. All neurons employ the leaky integrate-and-fire neu-
ron model. Each time the model was run to perform a single
edge traversal, it was simulated for 100 ms with a simulation
timestep of 1 ms, after which the vector represented by the
Output population was taken to be the output of the model.
The Binding node, which performs a circular convolution be-
tween two vectors, contains 51,400 neurons, and each of the
other 4 nodes outside the associative memory contain 25,600
neurons. The associative memory contains 117,659 popula-
tions, one for each WordNet synset, with 20 neurons each,
resulting in a grand total of 2,506,980 neurons. This is equiv-
alent to approximately 14.7 mm2 of cortex, much smaller
than previous neural approaches to structured representation,
which required on the order of 500 cm2 cortex (as there are
about 170,000 neurons per mm2; (Eliasmith, in press)).

Experimental Results
We performed three experiments on the model to test different
aspects of its performance. For each experiment, a trial con-
sists of using the network to answer a single question about
the WordNet graph (the question is different for each exper-
iment). A run consists of a group of trials. For each experi-
ment we perform some number of runs, calculate the perfor-
mance on each run as the percentage of trials on which the
model answered correctly, and report the mean performance
over all the runs. We employ a bootstrapping method to ob-
tain 95% confidence intervals on the mean performance. This
data can be seen in Table 1. The model was perfectly success-
ful on Experiment 1, and nearly so on Experiments 2 and 3.

Experiment 1: Decoding Accuracy
This test investigates how many of the 117,659 concepts in
the WordNet can be accurately decoded. For this experiment,
we present the model with a semantic pointer corresponding
to a randomly chosen synset and an ID-vector corresponding
to a relation type, and see if the model returns the semantic
pointer corresponding to the target of that relation. For exam-
ple, we might present the network with the semantic pointer
for dog and the ID-vector for the relation isA and see if the

network returns the semantic pointer for canine. To be con-
sidered correct, the returned vector must have a larger dot
product with the correct semantic pointer than with any incor-
rect semantic pointer in the vocabulary, and this dot product
must pass a threshold of 0.7. We ran 20 runs, each of which
consisted of 100 trials, amounting to 2000 edge traversals.

Experiment 2: Hierarchy Traversal

This experiment is designed to test the model’s ability to tra-
verse the network to arbitrary depth. To that end, we use the
model to answer the following question: given two synsets
and a relation type, can the second synset be reached from the
first synset solely by following links of the specified type? We
present the model with the semantic pointer corresponding to
the first synset as well as the ID-vector for the given rela-
tion type. Then we run the model, and compare the output
vector to the semantic pointer for the second synset. If they
are the same (their normalized dot product is above a fixed
threshold), then the model responds with a Yes. If not, we
feed the output vector back into the model as the new seman-
tic pointer and run the model again. This process is repeated
until the model returns a vector with a norm below a fixed
threshold. If the model reaches this point, it responds with a
No. Here it is especially important that the decoded semantic
pointer be very similar to the correct semantic pointer since
we recursively use the output, and large errors would build
up with successive edge traversals. Our tests were performed
using only the isA relation type as it is the most prominent in
WordNet and permits the deepest traversals. We ran 20 runs,
each consisting of 20 positive examples (the second synset
could be reached in the actual WordNet graph), and 20 nega-
tive examples.

Table 1: Experimental Results
Experiment % correct 95% CI

lower upper
1. Decoding Accuracy 100.0 100.0 100.0
2. Hierarchy Traversal 95.5 94.3 96.9
3. Sentence Encoding 99.6 99.3 99.8
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Experiment 3: Sentence Encoding
The final experiment we performed was designed to con-
firm that this method of knowledge representation is flexi-
ble enough to allow concepts to bind to arbitrary roles while
still encoding the thousands of relationships between them-
selves. To this end, we test whether the network can accu-
rately decode a crude approximation of a sentence, consist-
ing of synsets bound to one of six different roles. To build a
sentence, we randomly choose roles for inclusion, each with
a different probability, and then synsets are randomly cho-
sen to fill the selected roles. Each role type is assigned an
ID-vector, in the same way that ID-vectors are assigned to re-
lation types. A semantic pointer for the sentence is created by
binding synset ID-vectors to role ID-vectors in the usual way.
We then present the network with the semantic pointer for the
sentence and the ID-vector for a role, and see if the vector it
outputs is the same as the semantic pointer for the concept
filling that role in that sentence. To determine the correct-
ness of a particular decoding, we used the same criteria as in
Experiment 1. We ran 20 runs, each of which consisted of
constructing 30 sentences and asking the model about each
role therein, amounting to 2411 edge traversals.

Conclusion
These empirical results demonstrate that our spiking neural
network can accurately represent structured knowledge rep-
resentations approaching the scale of those found in an adult
human. Moreover, our’s is the only approach with neural re-
source requirements that fall within the range of biological
plausibility.
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