
Virtually Constrained Admittance Control using Feedback
Linearization for Physical Human-Robot Interaction with

Rehabilitation Exoskeletons
Jianwei Sun1, Yasamin Foroutani1, and Jacob Rosen1

Abstract—Robot-assisted rehabilitation focuses in part on
path-based assist-as-needed reaching rehabilitation, which dy-
namically adapts the level of robot assistance during physical
therapy to ensure patient progress along a predefined trajectory
without over-reliance on the system. Additionally, bimanual
exoskeletons have enabled asymmetric rehabilitation schemes,
which leverage the patient’s healthy side to guide the reha-
bilitation through interactions with objects in virtual reality
that replicate activities of daily living. Within the context of
physical human-robot interaction, these tasks can be formulated
as constraints on the space of allowable motions. This study
introduces a novel feedback linearization-inspired time-invariant
admittance control scheme that enforces these motion constraints
by isolating and stabilizing the component of the virtual dynamics
transversal to the constraint. The methodology is applied to
two rehabilitation tasks: (1) a path-guided reaching task with
restoring force field, and (2) a bimanual interaction with a
virtual object. Each task is then evaluated on one of two
drastically different exoskeleton systems: (1) the V-Rex, a non-
anthropomorphic full-body haptic device, and (2) the EXO-UL8,
an anthropomorphic bimanual upper-limb exoskeleton. The two
systems exist on opposite ends of the task/joint space control,
non-redundant/redundant, off-the-shelf (industrial)/custom, non-
anthropomorphic/anthropomorphic spectra. Experimental re-
sults validate and support the methodology as a generalizable
approach to enabling constrained admittance control for reha-
bilitation robots.

Index Terms—Physical human-robot interaction (pHRI), ad-
mittance control, feedback linearization, holonomic constraints,
rehabilitation exoskeletons

I. INTRODUCTION

The field of robot-assisted rehabilitation in the context of
physical human-robot interaction (pHRI) has experienced a
recent surge in attention [1]–[4] in areas focused on improving
rehabilitation effectiveness and safety. One such instance is
path-guided rehabilitation, where the robot guides a patient
through a desired trajectory and often implements assist-as-
needed (AAN) schemes that adapt the level of robot assistance
to ensure progress without fostering over-reliance. Another
instance is the development of bimanual exoskeletons, which
has enabled asymmetric rehabilitation schemes that leverage
the patient’s healthy side to guide the rehabilitation through
virtual reality (VR)-based training tasks that replicate activities
of daily livings (ADLs) [5], [6]. These two categories of
rehabilitation tasks motivate and structure our contribution.

In path-guided robot-assisted rehabilitation, guidance virtual
fixtures [7]–[10], virtual force fields, and force fields with
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saturation [11]–[13] are often used to guide motion towards
predefined paths. The restoring force can be generated by
virtual springs [14], [15], spring damper systems [16], or
viscoelastic couplings [17]. A limitation of these approaches
is that the robot’s physical and virtual dynamics are often
neglected, which are influenced by the force fields and impact
guidance performance. To this end, velocity-field trajectories,
where the path is defined as a velocity profile, have been ex-
plored in conjunction with adjustable deadzones and adaptive
learning strategies [18], [19]. However, all the aforementioned
approaches are limited by requiring explicit consideration of
the path’s geometry in the force or velocity field definition
and stability assessment. This ultimately limits their general-
izability to new paths, which exists in abundance in ADLs.

Since many ADLs are bimanual [6], [20], robot-assisted
rehabilitation has also explored bimanual rehabilitation, which
is primarily facilitated through bimanual exoskeletons [1], [6],
[21]–[23], and often synergistically integrated with immersive
VR environments [2], [3], [24]. These training schemes can
emulate haptic interaction with virtual objects, which is known
to be an important aspect of the motor learning process when
used in conjunction with visual feedback [25], [26]. However,
a challenge of creating stable interaction is rendering stiff
objects, which requires large forces to be generated from small
displacements [6], [27]. Hybrid force-position control has also
been studied [28], [29], but the complexity of impedance
control may not be necessary for applications that are more
concerned about spatial accuracy. Advanced simulation tools,
such as [30], [31], require the exact geometry of the virtual
object, making implementation highly dependent on the object.
Furthermore, convex approximations may be needed to accu-
rately compute interaction forces, limiting accuracy for com-
plex geometries. These problems are inherent to dynamics-
based approaches, even though the end objective may only be
concerned about the kinematics of the interaction.

In either path-based reaching tasks or bimanual interaction
with virtual rigid objects, the robot’s motions must be re-
stricted to a subset. For the former, the subset is a predefined
path. For the latter, the subset is the space of motions in which
the relative pose of the hands is constant. Subset stabilization
has been explored through transverse feedback linearization,
which decouples the system dynamics into tangential and
transversal subsystems relative to the subset [32], [33], and
has found application in constrained pHRI [34]. While the
decoupled dynamics can simplify the design of feedback
controllers, such techniques require local coordinates for both
subsystems, which can be difficult to find in general (e.g., for
the desired motion subset in bimanual interaction).
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We present a novel feedback linearization-inspired ad-
mittance control methodology for holonomically constrained
pHRI. Specifically, we model the desired motion constraint
as a submanifold and apply feedback linearization to isolate
the motion component transversal to the constraint, without
requiring local coordinates for the tangential component. Our
approach unifies the two discussed motion constraints preva-
lent in robot-assisted rehabilitation. It overcomes the afore-
mentioned challenges in path-based reaching by decoupling
the path’s geometry from the design of the restoring fields,
allowing generalizability to new paths. For bimanual tasks, it
also enables the correct constrained motions without requiring
local coordinates in the constraint set, requiring the object to
be convex, or utilizing large forces to emulate object rigidity.
Specifically, our contributions are:

1) A novel admittance control methodology for constrained
pHRI, which is independent of the constraint geometry,
does not require local coordinates within the constraint
set, and is adjustable via a constraint strength parameter;

2) Theoretical proof of stability of the approach, demon-
strating how motions within the constraint set are unaf-
fected, and how the set is attractive and invariant;

3) Experimental verification of two motion constraints
common in robot-assisted rehabilitation on two
markedly different systems: (A) a path-guided reaching
task with adjustable restoring force field, on the V-Rex
full-body haptic exoskeleton, and (B) a bimanual virtual
object interaction found in VR-based asymmetric
bimanual rehabilitation, on the EXO-UL8 exoskeleton.

Demonstrating the applicability of the proposed uni-
fying method on two prevalent robot-assisted rehabilita-
tion tasks, on contrasting exoskeleton systems - existing
on opposite ends of the task/joint space control, non-
redundant/redundant, off-the-shelf (industrial)/custom, non-
anthropomorphic/anthropomorphic spectra - further illustrates
our method’s generalizability and versatility.

II. METHODOLOGY

Our proposed approach requires an admittance control sys-
tem, whose virtual dynamics represent the desired uncon-
strained pHRI motion. The constraint is then modeled as the
zero level set of a smooth function that only depends on
the virtual position. We introduce a parameter γ ∈ [0, 1] ⊂
R, called the constraint strength, which parameterizes how
stringently the constraint is enforced; a value of (γ = 0)
corresponds to unconstrained motion, whereas (γ = 1) fully
constrains the motion. The max value represents a perfectly
stiff constraint, which is necessary for emulating stable inter-
action with non-deformable virtual objects. Any intermediate
value of γ allows for some violation of the constraint set that is
also resisted by some restoring force, representative of typical
behavior in path-guided rehabilitation schemes. Thus, desired
behaviors in different robot-assisted rehabilitation applications
can be achieved by γ, as summarized below:

γ ∈


{0}, Unconstrained (nominal),
(0, 1), Partially constrained,
{1}, Fully constrained.

(1)

A. Nominal Virtual Dynamics

Admittance control is commonly used for pHRI, in which
human-applied forces are either measured or estimated, and
then used to propagate virtual dynamics, which are typically
second-order mass-damper systems [35]–[38]. These virtual
systems’ trajectories then become reference signals for the
robot, which, assuming its controller is sufficiently performant,
appears to move akin to the virtual dynamics. By assuming
satisfactory tracking performance, only the virtual dynamics
are considered from this point onward. Let θ(t) ∈ Rn represent
the generalized virtual position and τ(t) ∈ Rn be the human-
applied force, where n is the number of degrees-of-freedom
(DoFs). For each DoF, the dynamics can be parameterized by
virtual mass mi ∈ R>0 and damping bi ∈ R≥0:

miθ̈i(t) + biθ̇i(t) = ui(t), (2)

where i ∈ {1, . . . , n}, u ∈ Rn is the input to the virtual
system, and u(t) = τ(t). The explicit dependency on time
notation will be dropped for conciseness. The virtual second-
order dynamics can include more complexity by treating each
virtual link as a rigid body, resulting in the dynamics:

M(θ)θ̈ + C(θ, θ̇) +G(θ) = u, (3)

where M(θ) ∈ Rn×n is a positive-definite inertia matrix,
C(θ, θ̇) ∈ Rn represents the Coriolis and centripetal terms,
and G(θ) ∈ Rn is the gravity vector. Note that equation
(2) can be written in the form of equation (3) by letting
M(θ) = diag(m1, . . . ,mn), C(θ, θ̇) = col(b1θ̇1, . . . , bnθ̇n),
and G(θ) = 0n×1, where diag constructs a diagonal matrix
from its arguments and col stacks its arguments. Define
x := (θ, θ̇) ∈ R2n to be the state, which assumes a sufficiently
large coordinate chart, and rewrite the dynamics as:

ẋ =

[
θ̇

−M(θ)−1[C(θ, θ̇) +G(θ)]

]
+

[
0n×n

−M(θ)−1

]
u,

: = f(x) + g(x)u, (4)

and define f : R2n → R2n and g : R2n → R2n×n

accordingly. Equation (4) is the general form of the nominal
virtual dynamics, which will be used for subsequent sections.

B. Constraint Set Definition

To represent the constraint, let h : R2n → Rk be at
least a twice continuously differentiable function in the state,
henceforth referred to as the constraint function, and satisfying
1 ≤ k ≤ n and 0k×1 being a regular value. Since only
holonomic constraints are considered, let the constraints be
modeled as equality constraints on the state using h(x) =
h(x1:n) = 0k×1, where the 1 : n subscript refers to the first
n coordinates of x. Next, define the constraint set to be the
submanifold formed by the zero level set of h:

Ω := {x ∈ R2n | h(x) = 0k×1}. (5)

Then, as long as the state can be restricted to Ω, the constraint
equation is satisfied.
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C. Objective Formulation

To formalize the constrained motion requirements, a time-
invariant feedback control law u(x, γ) should be designed to
satisfy the following three objectives:

Objective 1 (Nominal): The dynamics should be uncon-
strained (u = τ ) and the same as the nominal dynamics for
trajectories inside the constraint set. Moreover, when γ = 0,
this requirement should hold over the entire domain R2n.

Objective 2 (Attractiveness): Unforced trajectories (τ = 0)
with initial conditions outside the constraint set should move
towards it; i.e., infx′∈Ω∥x(t) − x′∥ → 0 as t → ∞ for any
γ > 0. However, when γ = 1, even forced trajectories (τ ̸= 0)
should be attracted.

Objective 3 (Invariance): When the dynamics are fully
constrained (γ = 1), any trajectory that enters the constraint
set should remain there regardless of human-applied forces, τ ;
i.e., if x(0) ∈ Ω, then x(t) ∈ Ω for all t ≥ 0.

D. Virtual Constraints Controller

This subsection utilizes feedback linearization in order
to decouple the virtual dynamics into components that are
tangential and transversal to the constraint set. A stabilizing
control law is then implemented on the transversal component,
while human-applied forces are projected onto the tangential
component. Define a virtual output y = h(x) so that stabilizing
Ω becomes output regulation of y. Then, the dynamics of y
can be determined by differentiating it with respect to time:

y = h(x), (6)

ẏ =
∂h

∂x
ẋ =

[
∂h
∂θ 0k×n

]
ẋ = Lf h(x), (7)

ÿ = L2
f h(x) + Lg Lf h(x)u, (8)

where Lf and Lg are the Lie operators along vector fields
f and g, respectively. The dynamics of y are due to a
vector relative degree of (2, . . . , 2) from the constraints being
holonomic and the virtual dynamics of equation (4) being
second-order, allowing the system with virtual output y to be
input-output feedback linearizable [32]–[34], [39]. It is also
assumed that the choice of h results in Lg Lf h(x) ∈ Rk×n

having linearly independent rows on Ωc = R2n \Ω, where the
set is assumed to be nonempty. Then, for each i ∈ {1, . . . , k},
define the coordinate transformation:

ηi(x) :=

[
hi(x)

Lf hi(x)

]
, (9)

so that its dynamics are linear for some virtual control input,
vi = L2

f hi(x) + Lg Lf hi(x)u:

η̇i =

[
0 1
0 0

]
ηi +

[
0
1

]
vi. (10)

Each linear system ηi represents the dynamics of a component
of y, so y can be regulated by stabilizing each ηi subsystem
with a suitable state feedback:

vi = −kiη
i, (11)

for some ki ≻ 01×2, where ≻ refers to element-wise in-
equality. Although a linear controller suffices, any controller

vi(ηi) that stabilizes the origin of equation (10) stabilizes
Ω. Note that η := col(η1, . . . , ηk) : R2n → R2k is not a
diffeomorphism unless k = n. When k ̸= n, motion is allowed
on the n − k dimensional space Ω. By design, Ω consists
of only the zero-dynamics, so the virtual constraint controller
cannot interfere and the only forces that can act are human-
applied forces. To determine the input u to the admittance
controller, the virtual input v := col(v1, . . . , vk) that stabilizes
Ω needs to be transformed back into x-coordinates.

When γ = 1, the human-applied forces τ should not
interfere with the stability of Ω, so its component in the
subspace spanned by the rows of Lg Lf h needs to be replaced
by v := col(vi, . . . , vk). The remaining component of τ
respects the constraint and can be computed by projecting τ
into the space tangential to the constraint manifold, which is
the nullspace of Lg Lf h. Then, by using the Moore-Penrose
inverse of Lg Lf h, the control input is:

u = τ − γ(Lg Lf h)
†(Lg Lf h)τ

+ sgn(γ)(Lg Lf h)
†(v − L2

f h), (12)

where sgn is the signum function defined as:

sgn(x) :=


−1, if x ≤ 0,

0, if x = 0,

1, if x ≥ 0.

(13)

The control law consists of three components:
1) τ , the nominal human-applied forces.
2) −γ(Lg Lf h)

†(Lg Lf h)τ , the γ-scaled component of τ
in the space transversal to Ω. This term adjusts how
much of the human-applied forces in the transversal
direction are removed.

3) sgn(γ)(Lg Lf h)
†(v−L2

f h), the virtual transversal sta-
bilizing controller transformed back to x-coordinates.

The proposed control law leads to the following result.

Theorem 1. The control law of equation (12) satisfies the
three main objectives: (1) nominal, (2) attractiveness, and (3)
invariance.

Proof of Theorem 1. To satisfy the first objective, consider a
trajectory x(t) ∈ Ω. Then, since h(x) is identically zero for
this trajectory, the matrix Lg Lf h(x) and its Moore-Penrose
pseudoinverse are also zero, of dimension k × n and n × k,
respectively. Thus, substituting these matrices into the control
law of equation (12) reduces it to u = τ , which is independent
of γ, as required. Furthermore, when γ = 0, the control
law also reduces to u = τ . These two cases together satisfy
Objective 1.

To show that the last two objectives can by satisfied by the
control law of equation (12), consider the error dynamics away
from Ω. Let the error e ∈ Rn be defined as e := h(x), so that
its closed-loop dynamics are:

ė = Lf h, (14)

ë = L2
f h+ (Lg Lf h)τ

− γ(Lg Lf h)(Lg Lf h)
†(Lg Lf h)τ

+ sgn(γ)(Lg Lf h)(Lg Lf h)
†(v − L2

f h), (15)
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Fig. 1. (Top left) The V-Rex is a full-body haptic system consisting of five robotic serial manipulators interacting with the operator in task-space through the
hands, feet, and a harness at the pelvis. (Top right) The EXO-UL8 is a bimanual upper-limb exoskeleton interacting with the operator in joint-space through
three force/torque sensors per arm. (Bottom) The admittance controller consists of the virtual constraints controller of equation (12) and the virtual dynamics
of equation (4). The virtual constraints controller replaces the γ-scaled component of the nominal human-applied force in the transversal direction with the
output of a transversal stabilizing controller. The value of γ determines how strongly the operator can push back against the constraint. The same admittance
controller structure can be used in both the V-Rex and EXO-UL8 exoskeletons, even though they have different virtual dynamics and constraint functions.

which substitutes equation (12) into the virtual dynamics of
equation (4). By the assumption that Lg Lf h has linearly in-
dependent rows, and is rank k, (Lg Lf h)(Lg Lf h)

† = Ik×k.
Thus, equation (15) reduces to:

ë = L2
f h+ (1− γ)(Lg Lf h)τ + sgn(γ)(v − L2

f h). (16)

Considering the last two objectives, there are two cases of
interest: (1) γ > 0 with unforced dynamics (τ = 0), and (2)
γ = 1 and any value of τ . These cases correspond to par-
tially and fully constraining the dynamics to Ω, respectively.
However, in either case, equation (16) simplifies to:

ë = v. (17)

By defining ϵ := col(e1, ė1, . . . , ek, ėk), the error dynamics
become:

ϵ̇ =

(
Ik×k ⊗

[
0 1
0 0

])
ϵ+

(
Ik×k ⊗

[
0
1

])
v, (18)

where ⊗ is the Kronecker product. Then, substitute in the
virtual control law of equation (11) by observing that ϵ = η.

The closed-loop error dynamics of equation (18) then becomes
block-diagonal:

ϵ̇ = diag

([
0 1

−k1,1 −k1,2

]
, . . . ,

[
0 1

−kk,1 −kk,2

])
ϵ, (19)

where the matrix is formed as the block diagonal of all the
2× 2 blocks. Its eigenvalues are the union of the eigenvalues
of each 2 × 2 block. By the Routh-Hurwitz criteria, each
block’s eigenvalues are in the open left half-plane if ki ≻ 01×2

for all i ∈ {1, . . . , k}. Thus, the error dynamics can be
stabilized by an appropriate choice of gains ki. It is worth
noting that although the η-dynamics are linear, the choice of a
virtual transversal controller v does not have to be linear. The
feedback linearization allows the system dynamics of equation
(4) to be decoupled into transversal and tangential subsystems,
so the choice of a stabilizing transversal controller is flexible.
In any case, the stability of ϵ holds everywhere in the domain,
which satisfies Objective 2 and Objective 3. ■

The implementation of the virtual constraints controller
within the admittance controller is shown in Fig. 1.
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III. EXPERIMENTAL SETUP

In order to demonstrate the versatility of the proposed
method, two experiments are conducted on different exoskele-
tons: a path-based reaching task with restoring force field,
and bimanual manipulation of a virtual rigid object. The first
experiment demonstrates how the proposed methodology can
emulate the restoring force fields commonly found in path-
based schemes [7]–[17]. The second experiment shows how
the methodology ensures stable interaction with rigid virtual
objects, a prevalent challenge in VR-based pHRI applications
[2], [3], [6], [24], [27]. Whereas the first experiment varies
the constraint strength parameter in order to replicate varying
restoring force field strengths, the second experiment maxi-
mizes the parameter to emulate a perfectly rigid virtual object.
The second experiment is also in a much higher dimensional
space, showing the methodology’s advantage of not requiring
local coordinates. Together, these two distinct experiments
highlight the broad applicability of constrained admittance
control enabled by the proposed methodology. A depiction
of the experiments is shown in Fig. 2. For each experiment,
the pertinent exoskeleton system is first introduced, and then
the constraint modeling associated with the task is described.

A. Path-Based Reaching Task

1) V-Rex Full-Body Haptic Exoskeleton: The Virtual Real-
ity Exoskeleton (V-Rex) is a non-anthropomorphic full-body
haptic system consisting of five Kawasaki industrial serial
manipulators. Two RS-007L manipulators interact with the
operator’s hands, two BX-100S manipulators are connected
with safety breakaways at the feet, and one CX-210L provides
gravity offloading through a harness attached at the pelvis.
Each of the five manipulators has six powered revolute DoFs,
is independently controlled in task-space, and is also equipped
with a six-DoF force/torque sensor at the end effector. Nominal
motion via admittance control with the upper-left manipulator
is accomplished by integrating the force measurement at the
end effector to propagate a virtual second-order model of the
form in equation (2) in 3D. The virtual model parameters
used are mass: 10 kg and damping: 15 Ns/m, which were
selected empirically to enable agile motions while remaining
stable. The virtual trajectory is then transformed into joint-
space using an inverse kinematics solver, before serving as
reference signals for the embedded Kawasaki arm controller.
Fig. 1 shows the V-Rex and a block diagram of its control.

2) Elliptical Path Constraint with Restoring Force Field:
A path constraint can be implemented with varying levels
of constraint strength, ranging from free motion (γ = 0) to
fully constrained (γ = 1). To illustrate how γ affects the
interaction forces and corresponding trajectories during path-
based reaching tasks, a constraint set Ω is implemented in
the form of an ellipse, while a different ellipse oriented 90◦

from the first is used as a target trajectory. Both ellipses are
situated in the x3 = 0 plane (parallel to the ground). The
operator attempts to move along the target trajectory, even
though the virtual constraints controller is pushing them onto
Ω. Although the interaction is through the hand, the setup
serves to demonstrate the methodology and can be modified

A. B.

Fig. 2. The two robot rehabilitation tasks in this study are: (A) a unilateral
reaching task constrained to an elliptical path by an adjustable restoring
force field, typically found in path-guided rehabilitation, and (B) a bimanual
manipulation task of a virtual rigid object, commonly found in VR-based
robot rehabilitation. For each task, the submanifold of allowable motions
is modeled as a smooth function’s level set, and then used by the virtual
constraints controller to restrict nominal motions to the submanifold. The
tasks are experimentally verified on the V-Rex full-body haptic exoskeleton
and the EXO-UL8 upper-limb bimanual exoskeleton, respectively.

to simulate human gait. Equation (20) shows the elliptical path
constraint, with x1c and x2c defined as the ellipse center, and
the minor and major axes a = 0.15m and b = 0.2m chosen
to fit within the V-Rex’s workspace:

h(x) =

[
h1(x)
h2(x)

]
=

[
(x1−x1c)

2

a2 + (x2−x2c)
2

b2 − 1
x3

]
. (20)

The target ellipse has parameters a = 0.2m and b = 0.15m
and is drawn on a table below the manipulator, serving as
a visual aid for the operator, as show in Fig. 3. Constraint
strengths of γ ∈ {0.0, 0.3, 0.7, 1.0} are used for the trials. The
path constraint is enforced through a force field generated by
a virtual spring damper system, similar to [16]. This choice of
force field does not limit the system as any other stabilizing
field can be used, depending on the desired performance.
Furthermore, the experiment aims to demonstrate the main
advantage that the transversal component of the constraint is
isolated, allowing the stabilizing force fields to be developed
independently of the path’s geometry.

B. Bimanual Interaction with Virtual Object
1) EXO-UL8 Bimanual Upper-Limb Exoskeleton: The

EXO-UL8 is a custom bimanual powered redundant upper-
limb anthropomorphic exoskeleton consisting of two arms,
each with seven revolute DoFs [21], [22], [35], [40]. Each
arm is equipped with three six-DoF force/torque sensors
located at the upper arm, lower arm, and wrist. The measured
force/torque signals are first fused using the method from [22],
before propagating the virtual dynamics of the admittance
control in joint space, which is 14-dimensional and consists of
14 independent second-order systems of the form of equation
(2). The motions of this virtual system determine the nominal
motion of the exoskeleton. The combined virtual state then
serves as a reference signal that a computed torque controller
[41] tracks. The virtual system parameters were selected
empirically to be agile while remaining stable, and are shown
in Tab. I. Fig. 1 shows the system and its control architecture.
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Fig. 3. The path experiment uses the upper-left arm of the V-Rex constrained
to an ellipse (red) with varying constraint strengths, parameterized by γ. The
operator attempts to follow the target path (green), which is also an ellipse
but rotated 90◦ about the x3-axis in order to illustrate the effect of γ. A laser
pointer mounted at the end effector helps to visualize the 2D projection of
the motion onto the plane containing the two ellipses.

Fig. 4. The transversal states of the path-constrained reaching experiment as
defined in equation (20) and corresponding human-applied forces are shown
as timeseries for constraint strengths: γ = 0.7 (left), and γ = 1.0 (right).
Human-applied forces and the virtual constraints controller’s output influence
the virtual position when γ = 0.7, allowing the operator to deviate from the
constraint while experiencing a restoring force. However, when γ = 1.0, the
virtual position stabilizes independently of any human-applied force.

2) Relative Pose Constraint: Bimanual interaction with
virtual rigid objects involves constraining the 14-dimensional
space of motions to the subset in which the relative pose
between the end effectors is constant. To formulate this con-
straint, let Tl, Tr ∈ SE(3) be the homogeneous transformation
from the base (inertial) frame to the left and right end effectors,
respectively. Using the product-of-exponentials formulation,
each transformation can be written as a map of the joint angles:

Tl(θ
l) =

(
7∏

i=1

eξ̂
l
iθ

l
i

)
Tl(0), (21)

TABLE I
PARAMETERS OF THE VIRTUAL DYNAMICS FOR THE EXO-UL8’S

ADMITTANCE CONTROLLER.

Left/Right Joint Inertia (kg · m2) Damping (kg · m2/s)
1 0.5 2.5
2 0.5 2.0
3 0.25 1.0
4 0.25 1.0
5 0.125 1.0
6 0.05 2.0
7 0.05 2.0

where {ξli}7i=1 are the twists in local coordinates associated
with each of the left joints, and Tl(0) is the transformation in
the default configuration. Similarly for the right arm, Tr is a
function of θr, and parameterized by the right twists {ξri }7i=1.
Then, the relative transformation between the end effectors
is Trl(θ

r, θl) = T−1
r (θr)Tl(θ

l). Using local coordinates for
SE(3), and defining θ := (θr, θl), the constraint function is:

h(θ, θ̇) = [p(θ), α(θ)]− (p0, α0), (22)

where (p(·), α(·)) : R14 → R3 × R3 are local coordinates
for Trl(θ), and (p0, α0) ∈ R3 × R3 is the desired constant
relative pose between the end effectors. The coordinates of the
desired relative pose, (p0, α0), are measured when contact is
first made with the virtual object. Note that the choice of local
coordinates on SE(3) does not matter as long as they exist over
the range of the desired motion. In our experiments, canonical
coordinates are used for position and ZYX Tait-Bryan angles
for orientation. Specifically, given matrix coordinates for a
relative pose, Trl ∈ SE(3):

Trl(θ) =

[
R(θ) p(θ)
0 1

]
, (23)

α(θ) =

sin−1(−R21(θ)/
√

1−R31(θ)2)
sin−1(−R31(θ))

sin−1(−R32(θ)/
√

1−R31(θ)2)

 , (24)

where the coordinate chart is defined on the subset of SE(3)
in which R31 ̸= ±1. A high-dimensional motion set with a
constraint manifold Ω = h−1(0) for which local coordinates
on Ω are hard to find demonstrates the generalizability of the
proposed feedback linearization-based approach.

C. Derivation of Transversal Forces

To allow visualization, the transversal components of the
human-applied forces can be extracted by projecting the
sensor-measured human-applied forces, τ ∈ Rn into the
transversal directions, which are obtained from the first n
columns of each row of the Jacobian of the constraint function
(h : R2n → Rk) and then unit-normalized. Since the constraint
set is a submanifold, the Jacobian of the constraint function
is non-singular when evaluated on the constraint set, which is
where the visualization is plotted. The human-applied forces
can then be projected using these unit vectors to get its
transversal component. Let N(x) =

[
· · · n̂i(x)

⊤ · · ·
]⊤ ∈
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Fig. 5. The manipulator’s trajectory (blue line), the controller’s restoring force, and the transversal component of the human-applied force (scaled for better
visualization) are plotted for each trial. The operator attempts to follow a target trajectory oriented 90◦ (green line) from the constraint set (red line). In the
unconstrained trial (γ = 0), no restoring forces are present and the operator can follow the target, as expected. When the motion is partially constrained
(0 < γ < 1), the virtual constraints controller generates restoring forces transversal to the constraint (red arrows), which push the motion towards the constraint
set. The transversal components of the human-applied forces (yellow arrows) are plotted to show how the operator has to apply more force in the γ = 0.7
trial than in the γ = 0.3 trial since γ scales how much of the human forces is present in the transversal direction. Note that the controller’s restoring forces
are independent of γ > 0 as designed in equation (12). When fully constrained (γ = 1), no amount of human force is able to move the position away from
the constraint as shown by the trajectory aligning perfectly with the constraint path. Each trial took approximately 30 seconds to complete.

Rk×n, where n̂i(x) ∈ R1×n is the unit-normalized vector of
ni(x), which is defined as:

ni(x) := ê⊤i
∂h

∂x
(x)

[
In×n

0n×n

]
, (25)

and êi is the ith unit basis vector. Then, the transversal
component of τ can be computed as N(x)τ .

D. Software Implementation and Numerical Considerations

While computing the gradient and Hessians for h in the
elliptical path constraint of equation (20) may be tractable,
the same quantities for the relative pose constraint of equation
(22) require significantly more work. To ensure correctness
and minimize the impact of numerical errors, symbolic tools,
such as SymForce [42] or Sympy [43], can symbolically dif-
ferentiate the quantities and generate corresponding optimized
C++ code that can be evaluated quickly online.

Note that when x ∈ Ω, h(x) = 0, so the matrix Lg Lf h(x)
and its Moore-Penrose inverse are also zero, of dimension
k × n and n × k, respectively. In practice, when floating-
point arithmetic is used, care should be taken to ensure that
numerically small values in Lg Lf h(x) are treated as zero.
Specifically, each row of Lg Lf h(x) should first be checked
for whether it is numerically non-zero; call the set of non-
zero row indices NZ(x) ⊆ {1, . . . , k}. Next, form the matrix
L = row(r1, . . . , rk), where row ri is defined as:

ri :=

{
row i of Lg Lf h(x), if i ∈ NZ(x),

01×n, otherwise.
(26)

Then, any instance of the vector (Lg Lf h(x))
†w, where w ∈

Rk, as in the case of equation (12), can be written as a linear
combination of non-zero columns of L†:

(Lg Lf h(x))
†w ≈

∑
i∈NZ(x)

(L†)iwi, (27)

where (L†)i is the ith column of L†.

IV. RESULTS

A. Path-Based Reaching Task
The path-based reaching task assesses the controller with

four constraint strengths, ranging from free motion (γ = 0) to
fully constrained (γ = 1). The operator starts at the left-most
edge of the target ellipse (-200mm, -450mm) and the virtual
constraints controller is activated. Fig. 4 shows the transversal
states of equation (20) as a function of time. When γ = 1, the
states converge to zero regardless of the human-applied forces,
as expected. When 0 < γ < 1, the human-applied forces can
resist the controller and prevent the state from reaching zero,
as shown in the left column of Fig. 4 and the middle subfigures
of Fig. 5. In these cases, the operator haptically experiences
the restoring force field generated by the controller.

Fig. 5 plots the motion trajectories, with the transver-
sal component of the human-applied forces and the virtual
constraint controller’s output overlaid. During free motion
(γ = 0), there are no constraint-enforcing forces. In the
partially constrained cases (γ = 0.3, γ = 0.7), the operator
can guide the robot along the target path; however, the motion
is partially resisted, resulting in transversal forces pushing
towards the constraint. This controller output is not affected
by γ as shown in equation (12), and is only a function of
the system’s state, resulting in minimal variation in the two
partially constrained trials. On the other hand, equation (12)
shows that as γ increases, a larger proportion of the transversal
component of the human-applied forces is removed. As a
result, the operator must exert more force to maintain the target
trajectory, which is shown by the larger human-applied force
arrows in the γ = 0.3 and γ = 0.7 cases of Fig. 5. In the fully
constrained case (γ = 1), the robot’s trajectory remains on
the constraint path despite the human-applied forces pushing
towards the target path.

B. Bimanual Interaction with Virtual Object
The bimanual interaction starts with the operator in the

EXO-UL8 freely moving each arm, shown in subfigure 1 of
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Fig. 6. Subimages show keyframes of the bimanual interaction with a virtual object. The object is not explicitly defined by its geometry, but rather as a
constraint on the total joint space in which the relative pose between the hands is fixed. During keyframe (1), the hands are unconstrained (γ = 0). In
keyframe (2), the constraint is activated by setting γ = 1. Subsequent motions (2)-(4) show that the virtual rigid coupling between the hands gives the illusion
of interacting with a virtual rigid object that can be freely manipulated.

Fig. 7. Subplots show the six local coordinates of the transversal state of the relative pose between the EXO-UL8’s end effectors as defined in equation (22),
where X,Y, Z correspond to position, and α1, α2, α3 correspond to orientation. The gray regions show unconstrained motion (γ = 0), during which the
constraint values are not set (dashed red lines), whereas the region in the middle is fully constrained (γ = 1). Since the desired pose is snapshot at the start
of the constrained motion (left edge of gray region), the virtual state (blue) is equal to the constraint value (red) at this point in time. During the constrained
motion, the virtual constraints controller tracks the constraint while rejecting any human-applied forces in the transversal direction (orange) that push the
virtual state away from the constraint manifold. Note that the spikes in the virtual state are explained in Fig. 8.

Fig. 6. Once the operator’s hands are in a desired configura-
tion, e.g., around a virtual object, the relative pose between the
hands is measured as (p0, α0), which is used in the constraint
function of equation (22). The virtual constraints controller
is activated by setting the constraint strength to γ = 1, as
shown at the left gray boundary in Fig. 7. Subsequent motion
within the constraint set physically appears as the hands being
rigidly coupled, as seen in subfigures 2−4 of Fig. 6, emulating
interaction with a virtual rigid object.

Furthermore, during this time the component of the human
interaction force transversal to the constraint set does not
impact the constraint controller’s tracking performance as
shown in Fig. 7, which is expected since γ = 1. The remain-
ing tangential component of the interaction force component
allows the virtual object (a relative pose between the end
effectors) to move only in the 14− 6 dimensional joint space
constraint manifold, as illustrated by subfigures 2 − 4 of
Fig. 6. Once the interaction is complete, the constraints are
deactivated by setting γ = 0 at the right gray boundary in

Fig. 7, and the hands can move independently again.

V. DISCUSSION

A. Advantages Over Existing Approaches

The two experiments showcase the prominent features of
our approach, namely its abilities to:

1) enable constrained pHRI independently of the constraint
geometry (both experiments),

2) overcome the requirement of local coordinates for the
constraint manifold (both experiments).

3) adjust the constraint strength in order to emulate com-
monly used force fields (first experiment),

4) enable stable interaction with stiff virtual objects without
requiring convexity (second experiment).

In order to compare the advantages of our constrained ad-
mittance control approach to the state-of-the-art, the following
relevant metrics are used: (1) generalizability, which specifies
the classes of constraints supported due to parameterization
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TABLE II
RELATIVE COMPARISON TO STATE-OF-THE-ART APPROACHES

Study\Metric Generalizability Switching Computation

He [7]
Path, 2D Surface

−
Gains
−

Iterative
−

Selvaggio [8]
Path
−

Continuous
gains
=

Iterative
(Newton’s method)

−

Shi [11]
Path
−

Continuous
torque profiles

=

Iterative
(Newton’s method)

−

Asl [14]
Path
−

Continuous
force profiles

=

Sampling
−

Ours Zero level set
of h

None Analytical

requirements; (2) switching, which indicates whether switch-
ing between different schemes or control gains is necessary
depending on whether the constraint is active; and (3) compu-
tation, which gauges the approach’s algorithmic complexity.
Some studies, namely [7], [8], [11], [14], only handle path-
based constraints because the allowable motion tangential to
the path can be parameterized, such as by arc length. However,
these approaches would not generalize well to higher dimen-
sional manifolds for which finding a parameterization may be
intractable. Thus, the first metric captures the limitation in
this regard. The second metric is concerned about switching
behavior of controller gains or restoring force profiles at the
constraint boundary, which could adversely affect stability.
For instance, [14] defines a tunnel around the path and has
different, but continuous, force profiles depending on the
robot’s position, and [7] implements gain scheduling based on
the robot’s position relative to the constraint boundary. Lastly,
many approaches require finding the point on the constraint
set that is minimal distance to the robot’s position in order to
construct a direction in which a constraint-enforcing scheme
could act [7], [8], [11]. However, the method for finding the
point is often iterative and is an optimization problem in
itself, which may detract from real-time performance. Thus,
the computation metric indicates whether iterative subroutines
are necessary. A comparison of our approach with existing
approaches using these three metrics is given in Table. II. Each
comparison is indicated by − or = to indicate less performant
or comparable to ours, respectively.

1) Path-Based Reaching Task: This experiment utilized a
virtual spring damper system to generate the corrective force
field transversal to the constraint path in order to demonstrate
how our approach can emulate existing experiments found in
the literature. However, our method is advantageous in that
the force field is completely agnostic of the constraint path’s
geometry, and can be generated by any stabilizing controller.
Furthermore, while the experiment utilizes a closed elliptical
path for demonstrating the path constraint, which is commonly
found in path-guided rehabilitation tasks, our proposed method
is not limited to a specific path or robotic system. Unlike many
existing control schemes for path following that require either
a parameterized path or one comprised of timed waypoints, our
method is time-invariant and can be applied to any valid path

Fig. 8. The instances (pale red) when the virtual Z-position (blue) deviates
from the constraint set (around -10cm) in the bottom left subfigure of Fig.
7 is caused by joint 6 (wrist flexion/extension) of the EXO-UL8’s right arm
(green) reaching its lower mechanical limit (dashed black line). Since the joint
cannot physically go lower, the virtual position cannot maintain its set point.
A similar case is evident in the α2-orientation component of the virtual state.

without requiring a parameterization for the submanifold, and
any admittance control rehabilitation robot utilizing second-
order virtual dynamics.

2) Bimanual Interaction with Virtual Object: The virtual
constraints controller enables bimanual interaction with virtual
rigid objects by constraining the relative pose between the
operator’s hands. This experiment highlights the distinction of
our approach in that it does not require local coordinates for
the constraint manifold. The space of allowable motions for
this bimanual interaction constraint corresponds to a 14−6 = 8
dimensional submanifold, for which finding a local param-
eterization is difficult. The approach is also agnostic to the
geometry of the virtual object when constraining the motion,
which places no restrictions on the shape of the object, such
as convexity. The only place in which the object’s geometry is
used is in detecting initial contact in order to record (p0, α0).
However, detecting contact is much simpler than constraining
dynamics to respect their geometries, which is typically done
in force-based approaches. The proposed method also does
not suffer from instability of contacting high-stiffness objects,
making it appropriate for virtual interactions in VR-based
rehabilitation applications.

B. Effects of Physical Joint Limits

In the Z-position and α2-orientation subplots of Fig. 7, the
virtual state appears to deviate from the constraint manifold
at 13s, 22s, and 30s. This behavior is not a limitation of the
virtual constraints controller, but rather due to the hard joint
limits of the EXO-UL8. At these instances, joint 6 of the right
arm reaches its minimum allowed value of −30◦ as shown in
Fig. 8, so the corresponding virtual states h cannot maintain
its set points of h3 = −10 cm and h5 = −40◦.

C. Limitations and Possible Extensions

1) Nonholonomic Constraints: The use of second-order vir-
tual dynamics in the admittance control is to make the physical
interaction predictable by leveraging our intuition of how rigid
bodies move. In the virtual constraints controller, this choice
manifests as the transversal output having a vector relative
degree of 2 due to the virtual constraints being holonomic.
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Fig. 9. A 1D bump function of the form of equation (28) over the interval
[−1, 1]. Note that the function is smooth everywhere and only zero on the
desired interval. The zero level set of the function forms the desired bounding
region, normally specified with inequality constraints.

However, the method can extend to non-holonomic constraints
with virtual dynamics of any order by following the same
approach, as long as the virtual outputs remain input-output
feedback linearizable.

2) Inequality Constraints: One limitation of the approach
arises in modeling the constraint set as the zero level set of
an equality constraint: h(x) = 0. The consequence of this is
that modeling bounding regions (e.g., a ≤ x ≤ b in 1D) or
manifolds with boundaries is not possible. However, if h(x) is
not required to be analytic, then this can be done using bump
functions, where a 1D case is shown below:

b(x) :=


e

1
x−a , x < a,

0 , a ≤ x ≤ b,

e−
1

x−b , b < x.

(28)

Fig. 9 shows b(x). Note that b(x) is smooth everywhere on its
domain, and is only zero on the desired interval [a, b]. Thus,
h(x) = b(x) can be used as the desired constraint function.
The zero level set of h(x) is the desired constraint set, so
trajectories are bounded within [a, b].

3) Global Asymptotic Stability: The proposed methodology
utilizes feedback linearization, which has inherent limitations
in that results are local. In general, the state space could
be a smooth manifold rather than R2n. The choice of local
coordinates assumes that all trajectories of the dynamics are in
the same sufficiently large coordinate chart. Consequently, the
asymptotic stability results of Theorem 1 are only presented
in this coordinate chart. However, a smooth manifold has
smoothly compatible coordinate charts, so relevant coordinate
transformations can extend the dynamics and the proposed
controller. But, additional care must be taken to correctly apply
transformations when switching between coordinate charts.

4) Point-to-Point Trajectories: Although gait rehabilitation
consist of cyclic trajectories akin to the first experiment,
many upper-limb rehabilitation tasks consist of reach-to-grasp
motions in which the subject follows straight line segments to
move in a point-to-point fashion. Frenet-Serret frames cannot
be directly applied to define a constraint function due to
the lack of curvature. However, if a convention for pointing
either the normal/binormal direction is defined a priori, then
the constraint function could be constructed as the distances
along these directions. End points of the line segment can
additionally be enforced via the aforementioned method on
implementing inequality constraints.

VI. CONCLUSION

This study presents a novel feedback linearization-inspired
method for constraining admittance control to virtual subsets,
without explicit dependency on the constraint geometry. Two
prevalent rehabilitation exoskeleton applications are explored:
a path-guided reaching task, and a bimanual interaction with
a virtual object. In the first experiment, the method constrains
motion to an elliptical path using a virtual spring damper
restoring force field. A constraint strength parameter limits
how much the operator can resist the constraint, serving as an
analogue for the restoring force field strength. In the second
experiment, the method constrains end effectors of a bimanual
exoskeleton in its 14-dimensional joint space to simulate stable
interaction with a rigid virtual object, demonstrating its advan-
tage in not requiring local coordinates to represent allowable
motions. Experimental results illustrate the virtual constraint
controller’s stability against constraint-violating forces, while
remaining transparent to permissible motions. The experiments
highlight the methodology’s versatility and generalizability for
enabling constrained pHRI for rehabilitation exoskeletons.
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and a Ph.D. in Mechanical Engineering (Bionics
Lab) from the University of California, Los An-
geles (UCLA) in 2024. His research focuses on
nonlinear control, estimation, and safety for phys-
ical human-robot interaction with exoskeletons and
haptic robots.

Yasamin Foroutani received a B.Sc. in Mechanical
Engineering from Sharif University of Technology
in 2019. She is currently a Ph.D. candidate in the
Department of Mechanical and Aerospace Engineer-
ing at the University of California, Los Angeles
(UCLA), where she received a M.Sc. degree in
2022. Her research focuses on robot motion planning
and image-based automation in surgical and haptic
robots.

Jacob Rosen received a B.Sc. degree in mechan-
ical engineering, and M.Sc. and Ph.D. degrees in
biomedical engineering from Tel-Aviv University,
Tel-Aviv, Israel, in 1987, 1993, and 1997, respec-
tively. He is a professor in the Department of Me-
chanical and Aerospace Engineering and the director
of the Bionics Lab at the University of California,
Los Angeles (UCLA). His research interests focus
on medical robotics, biorobotics, human-centered
robotics, surgical robotics, wearable robotics, reha-
bilitation robotics, and neural control.

11


	Introduction
	Methodology
	Nominal Virtual Dynamics
	Constraint Set Definition
	Objective Formulation
	Virtual Constraints Controller

	Experimental Setup
	Path-Based Reaching Task
	V-Rex Full-Body Haptic Exoskeleton
	Elliptical Path Constraint with Restoring Force Field

	Bimanual Interaction with Virtual Object
	EXO-UL8 Bimanual Upper-Limb Exoskeleton
	Relative Pose Constraint

	Derivation of Transversal Forces
	Software Implementation and Numerical Considerations

	Results
	Path-Based Reaching Task
	Bimanual Interaction with Virtual Object

	Discussion
	Advantages Over Existing Approaches
	Path-Based Reaching Task
	Bimanual Interaction with Virtual Object

	Effects of Physical Joint Limits
	Limitations and Possible Extensions
	Nonholonomic Constraints
	Inequality Constraints
	Global Asymptotic Stability
	Point-to-Point Trajectories


	Conclusion
	References
	Biographies
	Jianwei Sun
	Yasamin Foroutani
	Jacob Rosen


