
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Representation Learning for Music and Audio Intelligence

Permalink
https://escholarship.org/uc/item/8kf625sz

Author
Chen, Ke

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8kf625sz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Representation Learning for Music and Audio Intelligence

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Ke Chen

Committee in charge:

Professor Shlomo Dubnov, Chair
Professor Taylor Berg-Kirkpatrick, Co-Chair
Professor Julian McAuley
Professor Miller Puckette

2024

Copyright

Ke Chen, 2024

All rights reserved.

The Dissertation of Ke Chen is approved, and it is acceptable in quality and form

for publication on microfilm and electronically.

University of California San Diego

2024

iii

EPIGRAPH

Music is the arithmetic of sounds as optics is the geometry of light.

Claude Debussy

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

Acknowledgements . xii

Vita . xv

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1
1.1 Introduction . 1
1.2 Novel Contribution . 5
1.3 Dissertation Organization . 6

Chapter 2 Hierarchical Token-Semantic Audio Transformer . 7
2.1 Introduction . 7
2.2 Supplementary Materials . 9
2.3 Model Architecture . 9

2.3.1 Encode the Audio Spectrogram . 10
2.3.2 Patch-Merge and Window Attention . 10
2.3.3 Token Semantic Module . 11

2.4 Experiments . 12
2.4.1 Event Classification on AudioSet . 12
2.4.2 Evaluations on ESC-50 and Speech Command V2 15
2.4.3 Localization Performance on DESED . 16

2.5 Conclusion . 17

Chapter 3 Zero-Shot Audio Source Separation . 18
3.1 Introduction . 19
3.2 Supplementary Materials . 21
3.3 Audio Source Separation via Neural Networks . 22

3.3.1 Time-domain Separation Models . 22
3.3.2 Frequency-domain Separation Models . 22
3.3.3 Datasets of Source Separation . 23
3.3.4 Universal Source Separation . 24

3.4 Audio Classification and Localization . 24

v

3.5 Model Architecture and Pipeline . 25
3.5.1 Weakly Labeled Data . 25
3.5.2 Audio Clips Sampling . 26
3.5.3 Anchor Segment Mining . 26
3.5.4 Audio Models in Use: PANN and HTS-AT . 28
3.5.5 Query-based Source Separator . 30
3.5.6 Zero-shot Learning via Latent Source Embeddings 32

3.6 Experiments . 32
3.6.1 Audio Classification and Localization . 33
3.6.2 Audio Source Separation . 35
3.6.3 Zero-Shot Verification . 39
3.6.4 Visualization of Hierarchical Separation . 39

3.7 Conclusion . 40

Chapter 4 Contrastive Language-Audio Pretraining . 43
4.1 Introduction . 44
4.2 Supplementary Materials . 46
4.3 LAION-Audio-630K and Training Dataset . 46

4.3.1 LAION-Audio-630K . 46
4.3.2 Training Dataset . 47
4.3.3 Dataset Format and Preprocessing . 47

4.4 Model Architecture . 49
4.4.1 Contrastive Language-Audio Pretraining . 49
4.4.2 Downstream Tasks in Inference Stage . 50
4.4.3 Audio Encoders and Text Encoders . 50
4.4.4 Feature Fusion for Variable-Length Audio . 51

4.5 Attentional Feature Fusion . 52
4.5.1 Keyword-to-Caption Augmentation . 53

4.6 Experiments . 54
4.6.1 Hyperparameters and Training Details . 54
4.6.2 Evaluation Metrics . 55
4.6.3 Text-to-Audio Retrieval . 56
4.6.4 Zero-shot and Supervised Audio Classification . 59

4.7 Conclusion . 60
4.8 Additional Information . 60

4.8.1 Details of LAION-AUDIO-630K . 60
4.8.2 Additional Experiment on Freesound Dataset . 62

4.9 Experiment Settings on Data Exclusion . 64
4.10 Reference of CLAP . 64

Chapter 5 MusicLDM: Text-To-Music Generation . 66
5.1 Introduction . 66
5.2 Supplementary Materials . 68
5.3 Related Work . 69

vi

5.3.1 Text-to-Audio Generation . 69
5.3.2 Plagiarism on Diffusion Models . 69
5.3.3 Mixup on Data Augmentation . 70

5.4 Model Architecture . 70
5.4.1 MusicLDM . 70
5.4.2 Beat-Synchronous Mixup . 73

5.5 Experiments . 76
5.5.1 CLAP Setup . 77
5.5.2 MusicLDM Setup . 78
5.5.3 Generation Quality . 81
5.5.4 Text-Audio Relevance, Novelty and Plagiarism . 83
5.5.5 Subjective Listening Test . 85

5.6 Limitations and Impacts . 88
5.7 Conclusion . 90

Chapter 6 Conclusion and Future Work . 91

Bibliography . 93

vii

LIST OF FIGURES

Figure 1.1. The illustration of the representation models in the field of natural language
processing, namely BERT [22], GPT [11], and T5 model [86]. 2

Figure 1.2. The illustration of the representation models in the field of computer vision,
namely ResNet [41], EfficientNet [107], and Vision Transformer ViT [24]. 3

Figure 1.3. The illustration of the proposed audio representation model and its applica-
tions throughout the chapters in this dissertation, namely audio classifica-
tion, source separation, multi-modal learning, and music generation. 4

Figure 2.1. The model architecture of HTS-AT. The left part introduces the encod-
ing process of the audio input as the mel-spectrogram. The middle part
introduces the training paradigm of the proposed model. The right part
introduces the training target and how we use such representations. 10

Figure 3.1. The architecture of zero-shot audio source separation trained from weakly-
labelled data, including datasets, sampling strategies, anchor segment
mining, embedding extraction, and query-based audio source separation
module. 20

Figure 3.2. The standard architecture of deep-learning-based audio source separation
models. Left top: synthesis-based separation model. Left bottom: mask-
based separation model. Right: the general type of frequency-domain
separation model. 21

Figure 3.3. Two employed models for audio classification and localization. Left: Pre-
trained Audio Neural Networks (PANN) in CNN14 architecture. Right:
Hierarchical Token-Semantic Transformer (HTS-AT) in 4-block architec-
ture as proposed in Chapter 2. 29

Figure 3.4. The model architecture of query-based source separator (Left) and the
paradigm of zero-shot audio source separation in the inference stage (Right). 30

Figure 3.5. The visualization of zero-shot audio source separation performed on the
trailer of “Harry Potter and the Sorcerer’s Stone”: https://www.youtube.
com/watch?v=VyHV0BRtdxo . 42

Figure 4.1. The architecture of our proposed contrastive language-audio pretraining
model (CLAP) based on HTS-AT, including audio encoders, text encoders,
feature fusion, and keyword-to-caption augmentation. 48

Figure 4.2. The model architecture of attentional feature fusion. This illustration is
referred from [19]. 52

viii

https://www.youtube.com/watch?v=VyHV0BRtdxo
https://www.youtube.com/watch?v=VyHV0BRtdxo

Figure 4.3. Examples of keyword-to-caption augmentation from AudioSet labels and
the de-biased version for the model training. 53

Figure 4.4. The audio length distribution of Epidemic Sound and Freesound. 61

Figure 5.1. The architecture of MusicLDM, which contains a contrastive language-
audio pretraining (CLAP) model, an audio latent diffusion model with
VAE, and a Hifi-GAN neural vocoder. 71

Figure 5.2. Mixup strategies. Left: tempo grouping and downbeat alignment via Beat
Transformer. Middle: BAM and BLM mixup strategies. Right: How BAM
and BLM are applied in the feature space of audio signals and audio latent
variables. 73

Figure 5.3. The violin plot of the audio-audio similarity, and the text-to-audio similarity. 83

Figure 5.4. The generation examples by two MusicLDM models and their most similar
tracks in the Audiostock training set. 87

ix

LIST OF TABLES

Table 2.1. The mean average precision (mAP) performance on the AudioSet evalu-
ation set across different models. Pretrain: if the model is pretrained on
ImageNet. #Params.: the number of model parameters. Ensemble-mAP: the
performance achieved by the model ensemble. 13

Table 2.2. The accuracy performance of audio classification on the ESC-50 dataset and
the Speech Command V2 dataset. 15

Table 2.3. The event-based F1-scores of each class on the DESED test set. Models
with * are from DCASE 2021 [2], which are partial references since they
use extra training data and are evaluated on DESED test set and its another
private subset. 16

Table 3.1. The illustration of source separation datasets. 24

Table 3.2. The mean average precision (mAP) performance of audio classification
from different baselines on the Audioset evaluation set. 33

Table 3.3. The SDR performance of different models with different source embeddings
in the validation set. 37

Table 3.4. The SDR performance in MUSDB18 test set. All models are categorized
into three slots. 38

Table 3.5. The SDR performance of the 2048-d HTS-AT-SEP in the zero-shot verifica-
tion experiment. 39

Table 4.1. The illustration of LAION-Audio-630K dataset and its comparison to exist-
ing datasets. 47

Table 4.2. The text-to-audio retrieval result (mAP@10) of using different audio/text
encoder on AudioCaps and Clotho. 56

Table 4.3. The text-to-audio retrieval performance on AudioCaps and Clotho datasets,
where “LA.” refers to LAION-Audio-630K, “template” refers to the text
prompting by templates, “K2C aug.” refers to the keyword-to-caption aug-
mentation, and “fusion” refers to the feature fusion. 57

Table 4.4. The zero-shot (ZS.) and supervised (SV.) audio classification results. The
SoTA of each dataset/setting is denoted by the reference after the number. . 59

Table 4.5. The dataset resource of LAION-Audio-630k. 62

Table 4.6. All datasets used for the training of CLAP. 62

x

Table 4.7. The text-to-audio retrieval performance on Freesound evaluation set. 63

Table 4.8. The overlaps between the training data and the zero-shot evaluation data, we
excluded all these overlaps from the evaluation sets to calculate the audio
classification metrics. 65

Table 5.1. Comparison of zero-shot classification performance of the CLAP (trained
on more music data) with previous baselines. 77

Table 5.2. The evaluation of generation quality among MusicLDMs and baselines.
AA-Train. and TA-Train. refer to the audio-audio training scheme and the
text-audio training scheme. MusicGen and MusicLDM are works in the
same period. 80

Table 5.3. The objective metrics to measure the relevance and novelty (plagiarism).
And the subjective listening test to evaluate the quality, relevance, and
musicality. 83

xi

ACKNOWLEDGEMENTS

As an incoming Ph.D. student back in 2019, I was brimming with enthusiasm for music

research, imagining an expansive five-year plan for my project. Over the five-year journey

spanning both my personal and academic life, I came to realize that to accomplish such a plan,

delving into the research realms of audio, language, and vision are necessary and require more

explorations. These diverse experiences not only imbued my music research with novel insights

and methodologies, but also inspire my growth to a more professional researcher, as well as an

explorer in the vast tapestry of life. While the graduation marks a milestone of my research, it

embraces a new chapter of the inception in the project — it is the just the beginning.

I want to express my deep appreciation to Professor Shlomo Dubnov, Professor Taylor

Berg-Kirkpatrick, Professor Julian McAuley, and Professor Miller Puckette for their support

as members of my committee. Through various paper drafts and revisions, their guidance has

proved to be invaluable. Their profound wisdom not only inspires me but also equips me with

the knowledge to navigate research bottlenecks, refine paper writings, and deliver impactful

presentations. Beyond their roles in academia, they have served as friends in a broader spectrum

of my life, with invaluable communications on overcoming challenges in internships, music

performance, job finding, and other life experiences. I would also like to thank Professor Gus

Xia at Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) and Professor Wei

Li at Fudan University. Without them, my research on music and audio would not have started.

It is their generous availability and support that helped me get into this field.

I want to express my heartfelt gratitude to my girlfriend, Jingyue Huang, whose support

has been instrumental in reaching the final stage of my Ph.D. journey. Together, we explore

countless adventures: traveling cities across the United States; sharing our love for music on

different artists, singers, and compositions; collaborating on research papers and conference

attendance; and cherishing every moment of our lives. Her encouragement and companionship

have been invaluable in making me towards the completion of my doctoral studies. I am filled

with anticipation for the many more wonderful experiences that await us.

xii

I want to thank to all people during my Ph.D. daily life, including my roommates

Zhankui He, Shihan Ran, Zesen Zhang, and Chuai Chuai; research collaborators and friends

Hao-Wen Dong (UCSD), Zehao Wang (UCSD), Delong Wang (UCSD), Xingjian Du (University

of Rochester), Yusong Wu (University of Montreal), Tianyu Zhang (University of Montreal),

Yuchen Hui (University of Montreal), Cheng-i Wang (Audioshake), Gorden Wicherm (MERL),

Jonathan Le Roux (MERL), Francois G. Germain (MERL), Beici Liang (NOMONO), Zeyu Jin

(Adobe), Jiaqi Su (Adobe), Junyan Jiang (NYU Shanghai), Ziyu Wang (NYU Shanghai), Shuai

Yu (Donghua University), Qiuqiang Kong (Chinese Univerity of Hong Kong), Yi Luo (Tencent),

Bilei Zhu (Bytedance), Haohe Liu (University of Surrey), Zachary Novack (UCSD), Nikita

Srivatsan (Carnegie Mellon University), Zexue He (UCSD), Yuheng Zhi (UCSD), Minghua Liu

(UCSD), Xiyuan Zhang (UCSD), Zilong Wang (UCSD), Li Zhong (UCSD), Tianyi Shan (UCSD),

Xinyue Wei (UCSD), Xiaoshuai Zhang (UCSD), Zi Lin (UCSD), Lihao Wang (Bytedance),

Lintao Ying (Netease), Li Wang (Baidu); and all staffs from UCSD Music Department and

Computer Science Engineering Department for support in daily affairs and communication.

Finally, I would like to thank my parents Xiumei Li and Xiaozhou Chen for their support

throughout my entire life. They always support my decision, no matter whether there are

unknown difficulties ahead.

Chapter 2 contains some materials (texts, tables, and figures) from a published confer-

ence paper: Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, Shlomo

Dubnov, HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification

and Detection, in proceedings of International Conference on Acoustics, Speech and Signal

Processing, ICASSP 2022. The dissertation author was the first author of this publication.

Chapter 3 contains some materials (texts, tables, and figures) from a published conference

paper: Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, Shlomo Dubnov,

Zero-shot Audio Source Separation through Query-based Learning from weakly labeled Data,

in proceedings of AAAI Conference on Artificial Intelligence Conference, AAAI 2022; and

a preprint online paper: Qiuqiang Kong*, Ke Chen*, Haohe Liu, Xingjian Du, Taylor Berg-

xiii

Kirkpatrick, Shlomo Dubnov, Mark D Plumbley, Universal Source Separation with Weakly-

Labelled Data, in the arXiv preprint 2305.07447. The dissertation author was the first author or

the co-first-author of these publications.

Chapter 4 contains some materials (texts, tables, and figures) from a published conference

paper: Yusong Wu*, Ke Chen*, Tianyu Zhang*, Yuchen Hui*, Taylor Berg-Kirkpatrick, Shlomo

Dubnov, Large-Scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-

To-Caption Augmentation, in proceedings of International Conference on Acoustics, Speech

and Signal Processing, ICASSP 2023. The dissertation author was the co-first-author of this

publication.

Chapter 5 contains some materials (texts, tables, and figures) from a published conference

paper: Ke Chen*, Yusong Wu*, Haohe Liu*, Marianna Nezhurina, Taylor Berg-Kirkpatrick,

Shlomo Dubnov, MusicLDM: Enhancing Novelty in Text-To-Music Generation using Beat-

Synchronous Mixup Strategies, in proceedings of International Conference on Acoustics, Speech

and Signal Processing, ICASSP 2024. The dissertation author was the first author of this

publication.

xiv

VITA

2019 Bachelor of Engineering, Fudan University

2021 Master of Arts, University of California San Diego

2024 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

Ke Chen, Jiaqi Su, and Zeyu Jin, “MDX-GAN: Enhancing Perceptual Quality in Multi-Class
Source Separation via Adversarial Training”, in IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2024.

Ke Chen*, Yusong Wu*, Haohe Liu*, Marianna Nezhurina, Taylor Berg-Kirkpatrick, and Shlomo
Dubnov, “MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous
Mixup Strategies”, in IEEE International Conference on Acoustics, Speech and Signal Process-
ing, ICASSP 2024.

Haohe Liu, Ke Chen, Qiao Tian, Wenyu Wang, and Mark D Plumbley, “AudioSR: Versatile
Audio Super-resolution at Scale”, in IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2024.

Yusong Wu*, Ke Chen*, Tianyu Zhang*, Yuchen Hui*, Taylor Berg-Kirkpatrick, and Shlomo
Dubnov, “Large-Scale Contrastive Language-Audio Pretraining with Feature Fusion and Key-
word to Caption Augmentation”, in IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2023.

Hao-Wen Dong, Ke Chen, Shlomo Dubnov, Julian McAuley, and Taylor Berg-Kirkpatrick,
“Multitrack Music Transformer”, in IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2023.

Ke Chen, Gordon Wicherm, Francois Germain, and Johnathan Le Roux, “Pac-HuBERT: Self-
Supervised Music Source Separation via Primitive Auditory Clustering and Hidden-Unit BERT”,
in IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023.

Keren Shao*, Ke Chen*, Taylor Berg-Kirkpatrick, and Shlomo Dubnov, “Towards Improving
Harmonic Sensitivity and Prediction Stability for Singing Melody Extraction”, in International
Society for Music Information Retrieval Conference, ISMIR 2023.

Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, and Shlomo Dubnov,
“Zero-shot Audio Source Separation through Query-based Learning from weakly labeled Data”,
in AAAI Conference on Artificial Intelligence Conference, AAAI 2022.

xv

Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, and Shlomo Dubnov,
“HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and
Detection”, in IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2022.

Ke Chen, Shuai Yu, Cheng-i Wang, Wei Li, Taylor Berg-Kirkpatrick, and Shlomo Dubnov,
“TONet: Tone-Octave Network for Singing Melody Extraction from Polyphonic Music”, in IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022.

Xingjian Du, Ke Chen, Zijie Wang, Bilei Zhu, and Zejun Ma, “ByteCover2: Towards Dimen-
sionality Reduction of Latent Embedding for Efficient Cover Song Identification”, in IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022.

Ke Chen, Hao-Wen Dong, Yi Luo, Julian McAuley, Taylor Berg-Kirkpatrick, Miller Puckette,
and Shlomo Dubnov, “Improving Choral Music Separation through Expressive Synthesized Data
from Sampled Instruments”, in International Society for Music Information Retrieval Conference,
ISMIR 2022.

Shlomo Dubnov, Ke Chen, and Kevin Huang, “Deep Musical Information Dynamics: Novel
Framework for Reduced Neural-Network Music”, in Journal of Creative Music Systems, JCMS
2022.

Ke Chen, Beici Liang, Xiaoshuan Ma, and Minwei Gu, “Learning Audio Embeddings with User
Listening Data for Content-based Music Recommendation”, in IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP 2021.

Ke Chen, Cheng-i Wang, Taylor Berg-Kirkpatrick, and Shlomo Dubnov, “Music SketchNet:
Controllable Music Generation via Factorized Representations of Pitch and Rhythm”, in Interna-
tional Society for Music Information Retrieval Conference, ISMIR 2020.

Ziyu Wang*, Ke Chen*, Junyan Jiang, Yiyi Zhang, Maoran Xu, Shuqi Dai, Xianbin Gu, and
Gus Xia, “POP909: A Pop-song Dataset for Music Arrangement Generation”, in International
Society for Music Information Retrieval Conference, ISMIR 2020.

Hao-Wen Dong, Ke Chen, Julian McAuley, and Taylor Berg-Kirkpatrick, “MusPy: A Toolkit
for Symbolic Music Generation”, in International Society for Music Information Retrieval
Conference, ISMIR 2020.

xvi

ABSTRACT OF THE DISSERTATION

Representation Learning for Music and Audio Intelligence

by

Ke Chen

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Shlomo Dubnov, Chair
Professor Taylor Berg-Kirkpatrick, Co-Chair

With recent breakthroughs in machine learning, the pursuit of efficient and effective

feature representation has gradually taken center stage, igniting groundbreaking possibilities for

various downstream applications. While significant progress has been made in the domains of

natural language processing and computer vision, there arises an imperative need to construct a

robust audio representation model that empowers advanced audio applications.

In this dissertation, we begin from an initial design of an innovative audio transformer

as the cornerstone, HTS-AT, that employs imperative designs to capture semantic and acoustic

information of audio data. We present a step-by-step demonstration on how we unleash the

xvii

power of HTS-AT to unlock a wide range of advanced audio downstream applications in

audio understanding and audio generative AI. Specifically, we first adapt HTS-AT to audio

event classification, assessing its prowess in comprehending the semantics of audio tracks.

Subsequently, we leverage the audio embedding of HTS-AT into audio source separation,

evaluating its capability to conceive the acoustic feature of audio. To embrace more applications

in conjunction with other modalities, we propose a contrastive language-audio pretraining model

(CLAP) that combines HTS-AT with the language understanding model to incorporate the shared

information between audio and text representations. From all above explorations, we achieve the

target of content creation by proposing MusicLDM, a latent diffusion model that leverages the

embeddings of CLAP to perform the text-to-music generation.

Throughout all designs, experiments, and application studies, we achieve successful

adaptations and superior performance of different audio downstream tasks rising from a simple

audio transformer. Besides, more potential applications in the field of audio content extraction

and creation are awaiting, as we will touch upon our ongoing and forthcoming endeavors in

addressing their challenges and realizing their full potential.

xviii

Chapter 1

Introduction

1.1 Introduction

In the grand symphony of human existence, audio emerges as an effective medium,

weaving together the expressions of humanity and the natural world. It contains various forms,

each bearing its own purpose and allure. Speech, the messenger of our thoughts and emotions,

conveys our workaday dialogue, leisure conversations, and cadence of formal presentations.

General sound events and noises envelops us as a constant reminder of the bustling tapestry

of life that surrounds us. And music, the arithmetic of sounds with attractive harmonies, lucid

structures, and inspiring motivations, drives us to articulate the essence of our humanity.

Beneath such an enchanting medium, the bedrock of science appears as audio reveals its

secrets through patterns and principles. From the perspective of signal processing, audio signals

are the combinations of different fundamental frequencies and involves the compression and

degradation through heir transmissions. From the perspective of artificial intelligence, audio data

contains distinctive patterns and statistical distributions that can be predicted and normalized.

Throughout the decades, the pursuit of mankind has illuminated a convergent path, where

the realms of audio signal processing and artificial intelligence intersect and intertwine. The

advancements in the field of machine learning lead to the breakthroughs in different audio

tasks, from the rudimentary tasks of audio classification and localization to the lofty ambitions

of audio source separation and generation. Indeed, the ascendance of artificial intelligence

1

BERT GPT

T5

Figure 1.1. The illustration of the representation models in the field of natural language
processing, namely BERT [22], GPT [11], and T5 model [86].

plays an imperative role in introducing data-driven techniques into the field of traditional signal

processing. As the result, new state-of-the-art performance is achieved and even some previously

insurmountable challenges can be addressed.

With recent breakthroughs in artificial intelligence, deep learning has emerged as a pivotal

factor, yielding promising results across various research domains, including natural language

processing, computer vision, and data mining. Neural networks, including convolutional neural

network (CNN) [64], recurrent neural network (RNN [94], LSTM [48], GRU [5]), transformer

[113], and mamba [39], have become crucial components within deep learning architectures.

While progress in deep-learning-based audio research may appear slower compared to other

fields, observed the development of various models achieving superior performance across many

2

ResNet

EfficientNet

ViT

Figure 1.2. The illustration of the representation models in the field of computer vision, namely
ResNet [41], EfficientNet [107], and Vision Transformer ViT [24].

audio tasks. These tasks include audio classification [60], music recommendation [15], speech

source separation [73], audio generation [36], and others. At this juncture in audio intelligence,

a significant challenge emerges — Can we create a unified model capable of addressing diverse

downstream applications within the audio domain?

This challenge is also a focal point in representation learning [6] research. The methodol-

ogy of this research views the training of deep learning models as a process to uncover efficient

and effective representations of input data. Fortunately, across various artificial intelligence

research domains, researchers have proposed different deep learning models as representation

models that consistently excel in diverse downstream tasks.

In natural language processing, as depicted in Figure 1.1, models like BERT [22], GPT

[11], and T5 [86] demonstrate exceptional generalization capabilities across tasks such as text

summarization, question answering, translation, and text generation. Similarly, in computer

vision, as depicted in Figure 1.2, models like ResNet [41], EfficientNet [107], and Vision Trans-

3

Audio
Representation

Audio Classification

Source Separation

Multi-Modality

Music Generation

More CLAP

Zero-Shot ASP

MusicLDM

HTS-AT

Figure 1.3. The illustration of the proposed audio representation model and its applications
throughout the chapters in this dissertation, namely audio classification, source separation, multi-
modal learning, and music generation.

former ViT [24] establish effective image representations for tasks including image classification,

object segmentation, and image generation. The strength of representation learning lies in its

ability to generalize across diverse downstream applications and its role as a foundational model

[9] to foster innovation. These benefits further lead to the groundbreaking achievements in both

natural language processing and computer vision fields. We have witnessed the rise of large

language models (LLMs) [1] and text-to-image generation models [88, 91] as a result.

However, in the field of audio processing, representation learning remains relatively under-

explored. While audio models like PANN [60] and PSLA [38] have yielded great performance

in audio classification tasks, they are limited by a lack of diverse model designs and connecting

modules to validate their effectiveness across other audio tasks. Furthermore, the architectures of

these models are somewhat outdated, hindering their potential to achieve more promising results.

Therefore, there is an urgent need to design advanced audio representation models and develop

pipelines for leveraging these models across various downstream audio tasks. This is crucial for

advancing the current stage of audio processing research.

4

1.2 Novel Contribution

In this dissertation, as depicted in Figure 1.3, we address a gap in audio research by

introducing an advanced audio representation model, HTS-AT, built upon the transformer

architecture [113]. We further explore the capabilities of this model by applying it to four distinct

audio downstream tasks, aiming to validate its efficacy and performance as an representation

model:

1. We apply HTS-AT in the audio classification task to evaluate its ability on the semantic

information extraction. And we compare it with previous baselines to demonstrate its

superior performance.

2. We then apply HTS-AT in the audio source separation task to address an unsolved challenge

of universal source separation. We propose a zero-shot audio source separation pipeline

(ZS-ASP) by leveraging HTS-AT as the representation model to separate arbitrary sources

in the audio mixtures.

3. We further re-design HTS-AT by connecting it with the text encoder module to build a

contrastive language-audio pretraining model (CLAP). CLAP leverages the large-scale

data training and emerges great generalization ability in bridging audio and text data in the

retrieval task and zero-shot audio classification task.

4. his model employs a latent diffusion approach, drawing from CLAP, Variational Auto-

encoder (VAE) [57], and the vocoder Hifi-GAN [59]. We further implement techniques to

enhance the novelty of generated music and mitigate the risk of plagiarism from training

data.

From the above explorations, we demonstrate how HTS-AT could serve as a central audio

representation model to capture both content-level details and semantic information of audio

5

data, Moreover, it exhibits significant generalization capabilities across various audio tasks — a

goal we expect to achieve in designing an audio representation model.

1.3 Dissertation Organization

The left chapters of the dissertation are organized as follows:

• In Chapter 2, we introduce the model architecture of HTS-AT as the proposed audio

representation model and demonstrate its performance on the audio classification task.

• In Chapter 3, we apply HTS-AT into the zero-shot audio source separation pipeline, and

introduce its methodology and experimental results.

• In Chapter 4, we introduce the contrastive language-audio pretraining model (CLAP)

based on the HTS-AT architecture.

• In Chapter 5, we introduce MusicLDM , a latent diffusion text-to-music generation model

based on CLAP, VAE [57], and Hifi-GAN [59].

Preliminaries and related works pertinent to each specific audio task will be introduced

in their respective chapters.

6

Chapter 2

Hierarchical Token-Semantic Audio Trans-
former

In this chapter, we begin the exploration of designing an audio representation learning

model. While the architectural design of such a model is crucial, an even more fundamental

question revolves around its learning target. Throughout decades of research in representation

learning across various domains, certain tasks have emerged as initial targets for different types

of representation models. In the field of computer vision, image classification serves as the

initial task for the basis of image representation models [41, 107, 24]. In the field of natural

language processing, BERT-like models [22, 70, 42] gradually lead the language modeling

by preserving word embeddings that capture contextual nuances inside sentences. For audio

and music processing, our aim is to identify a suitable target that bridges the gap between

content-level information and semantic understanding within audio segments. Therefore, we

set the audio classification task as our primary target, upon which we base the design of audio

representation models.

2.1 Introduction

Audio classification is an audio retrieval task which aims to learn a mapping from audio

samples to their corresponding labels. Depending on the audio categories, it involves sound event

detection [77], music instrument classification [44], among others. It establishes a foundation for

7

many downstream applications including music recommendation [15], keyword spotting [119],

music generation [16, 23], and others.

With burgeoning research in the field of artificial intelligence, we have seen significant

promising progress in audio classification. For data collections, many datasets with different

types of audio (e.g. AudioSet [35], ESC-50 [84], Speech Command [119], and others) provide

platforms for the training and evaluation of models on different subtasks.

For the model design, the audio classification task is thriving based on neural-network-

based models. Convolutional neural networks (CNNs) have been widely used in this field, such

as DeepResNet [32], TALNet [118], PANN [60], and PSLA [38]. These models leverage CNN

to capture features on the audio spectrogram, and further improve their performance through

the design of the depth and breadth of the network. Recently, by introducing the transformer

structure [113] into audio classification, the audio spectrogram transformer (AST) [37] further

achieves the best performance through the self-attention mechanism and the pretrained model

from computer vision. In this chapter, we take a further step on a transformer-based audio

classification model by first analyzing remaining problems in the AST.

First, since the transformer takes the audio spectrogram as a complete sequential data,

AST takes long time to train and consumes large GPU memories. In practice, it takes about one

week to train on the full AudioSet dataset with four GPUs of 12 GB memories. One method to

boost training speed is to use the ImageNet [20] pretrained model in computer vision. However,

this also limits the model to those pretrained hyperparameters, which reduces its scalability in

more audio tasks. Indeed, we find that without pretraining, AST can only achieve the baseline

performance with the mean average precision of 0.366 on AudioSet, which raises our attention

to its learning efficiency on the audio data. Second, AST uses a class-token (CLS) to predict

labels, making it unable to predict the start and end time of events in audio samples. Most

CNN-based models naturally support the frame-level localization by empirically taking the

penultimate layer’s output as a event presence map. This inspires us to design a module that

makes every output token of an audio transformer aware of the semantic meaning of events (i.e.

8

a token-semantic module [34]) for supporting more audio tasks (e.g. sound event detection and

localization).

In this chapter, we propose an Hierarchical Token-Semantic Audio Transformer (HTS-

AT) for audio classification. Our contributions of HTS-AT can be listed as:

• HTS-AT achieves or equals SOTAs on AudioSet and ESC-50, and Speech Command V2

datasets. Moreover, the model without pretraining can still achieve the performance that is

only 1%-2% lower than the best results.

• HTS-AT takes fewer parameters (31 Million vs. 87 Million), fewer GPU memories, and less

training time (80 hrs vs. 600 hrs) than AST’s to achieve the best performance.

• HTS-AT further enables the audio transformer to produce the localization results of event only

with weakly labeled data. And it achieves a better performance than the previous CNN-based

model.

2.2 Supplementary Materials

The code implementation of HTS-AT and its pretrained weights of different settings are

released in https://github.com/RetroCirce/HTS-Audio-Transformer.

2.3 Model Architecture

A typical transformer structure consumes lots of GPU memories and training time,

because the length of input tokens is too long and remains unchanged in all transformer blocks

from beginning to end. As a result, the machine saves the output and its gradient of each block via

large GPU memories, and spends much calculation time maintaining a large global self-attention

matrix. To combat these problems, as depicted in Figure 2.1, we propose two key designs: a

hierarchical transformer structure and a window attention mechanism.

9

https://github.com/RetroCirce/HTS-Audio-Transformer

time frame

fr
eq

ue
nc

y

......

......

...

time→frequency→window

......

Patch-Embed

Patch
Tokens

Sw
in

 T
ra

ns
fo

rm
er

Pa
tc

h-
M

er
ge

Sw
in

 T
ra

ns
fo

rm
er

Pa
tc

h-
M

er
ge

Sw
in

Tr

an
sf

or
m

er

Pa
tc

h-
M

er
ge

Sw
in

Tr
an

sf
or

m
er

Group 1 Group 2 Group 3 Group 4

window
attention

Patch-Embed

Reshape

Token-Semantic CNN

Sw
in

 T
ra

ns
fo

rm
er

Sw
in

 T
ra

ns
fo

rm
er

Sw
in

Tr

an
sf

or
m

er

Event Presence Map

avg-pool

Label Prediction

Encode Audio Mel-Spectrogram HTS-AT Training Output

Latent Tokens

Figure 2.1. The model architecture of HTS-AT. The left part introduces the encoding process
of the audio input as the mel-spectrogram. The middle part introduces the training paradigm
of the proposed model. The right part introduces the training target and how we use such
representations.

2.3.1 Encode the Audio Spectrogram

In the left of Figure 2.1, an audio mel-spectrogram is cut into different patch tokens with

a Patch-Embed CNN of kernel size (P×P) and sent into the transformer in order. Different

from images, the width and the height of an audio mel-spectrogram denote different information

(i.e. the time and the frequency bin). And the length of time is usually much longer than that of

frequency bins. Therefore, to better capture the relationship among frequency bins of the same

time frame, we first split the mel-spectrogram into patch windows w1,w2, ...,wn and then split

the patches inside each window. The order of tokens follows time→frequency→window as

shown in Figure 2.1. With this order, patches with different frequency bins at the same time

frame will be organized adjacently in the input sequence.

2.3.2 Patch-Merge and Window Attention

In the middle of Figure 2.1, the patch tokens are sent into several groups of transformer-

encoder blocks. At the end of each group, we implement a Patch-Merge layer [71] to reduce

the sequence size. This merge operation is applied by first reshaping the sequence to its

original 2D map (T
P × F

P ,D), where D is the latent state dimension. Then it merges adjacent

patches as (T
2P × F

2P ,4D) and finally applies a linear layer to reduce the latent dimension to

(T
2P × F

2P ,2D). As illustrated in Figure 2.1, the shape of the patch tokens is reduced by 8 times

10

from (T
P × F

P ,D) to (T
8P × F

8P ,8D) after 4 network groups, thus the GPU memory consumption is

reduced exponentially after each group.

For each transformer block inside the group, we adopt a window attention mechanism

to reduce the calculation. As shown in different color boxes in the middle right of Figure

2.1, we first split the patch tokens (in 2D format) into non-overlapping (M ×M) attention

windows aw1,aw2, ...,awk. Then we only compute the attention matrix inside each M ×M

attention window. As a result, we have k window attention (WA) matrices instead of a whole

global attention (GA) matrix. The computational complexities of these two mechanisms in one

transformer block for f × t audio patch tokens with the initial latent dimension D are:

GA: O(f tD2 +(f t)2D) (2.1)

WA: O(f tD2 +M2 f tD) (2.2)

where the window attention reduces the second complexity term by (f t
M2) times. For audio

patch tokens in a time-frequency-window order, each window attention module will calculate

the relation in a certain range of continuous frequency bins and time frames. As the network

goes deeper, the Patch-Merge layer will merge adjacent windows, thus the attention relation is

calculated in a larger space. In the code implementation, we use the swin transformer block with

a shifted window attention [71], a more efficient window attention mechanism. This also helps

us to use the swin transformer pretrained vision model in the experiment stage.

2.3.3 Token Semantic Module

The existing AST uses a class-token (CLS) to predict the classification label, which

limits it from further indicating the start and end times of events as realized in CNN-based

models. In the final layer output, each token contains information about its corresponding time

frames and frequency bins. We expect to convert tokens into activation maps for each label-class

11

(i.e. aware of semantic meaning [34]). For strong-label datasets, we can let the model directly

calculate the loss in specific time ranges. For weakly labeled datasets, we can leverage the

transformer to locate via its strong capability to capture the relation. In HTS-AT, as shown in

the right of Figure 2.1, we modify the output structure by adding a token-semantic CNN layer

after the final transformer block. It has a kernel size (3, F
8P) and a padding size (1,0) to integrate

all frequency bins and map the channel size 8D into the event classes C. The output (T
8P ,C)

is regarded as a event presence map. Finally, we average the featuremap as the final vector

(1,C) to compute the binary cross-entropy loss with the groundtruth labels. Apart from the

localization functionality, we also expect the token-semantic module to improve the classification

performance, as it considers the final output by directly grouping all tokens .

2.4 Experiments

In this section, we evaluate the performance of HTS-AT in four datasets: the event

classification on AudioSet [35], ESC-50 [84]; the keyword spotting on Speech Command V2

[119]; and additionally, the event detection on DESED [98].

2.4.1 Event Classification on AudioSet

Dataset and Training Detail

The AudioSet contains over two million 10-sec audio samples labeled with 527 sound

event classes. In this chapter, we follow the same training pipeline in [60, 38, 37] by using

the full-train set (2M samples) to train our model and evaluating it on the evaluation set (22K

samples). All samples are converted to mono as 1 channel by 32kHz sampling rate. We use

1024 window size, 320 hop size, and 64 mel-bins to compute STFTs and mel-spectrograms. As

a result, the shape of the mel-spectrogram is (1024,64) as we pad each 1000-frame (10-sec)

sample with 24 zero-frames (T =1024, F=64). The shape of the output featuremap is (1024,527)

(C=527). The patch size is 4× 4, the patch window length is 256 frames, and the attention

window size is 8×8. Since 8 is divisible by 64, the attention window in the first layer will not

12

Table 2.1. The mean average precision (mAP) performance on the AudioSet evaluation set
across different models. Pretrain: if the model is pretrained on ImageNet. #Params.: the number
of model parameters. Ensemble-mAP: the performance achieved by the model ensemble.

Model Pretrain #Params. mAP Ensemble-mAP

Baseline [35] ✗ 2.6M 0.314 -
DeepRes [32] ✗ 26M 0.392 -
PANN [60] ✗ 81M 0.434 -
PSLAP [38] ✓ 13.6M 0.444 0.474

AST [37] ✗ 87M 0.366 -
ASTP [37] ✓ 87M 0.459 0.475 (0.4851)

HTS-ATH ✗ 28.8M 0.440 -
HTS-ATHC ✗ 31M 0.453 -
HTS-ATHCP ✓ 31M 0.471 0.487

span two frames with a large time difference. The latent dimension size is D=96 and the final

output latent dimension is 8D=768, which is consistent to AST. Finally, we set 4 network groups

with 2, 2, 6, 2 swin-transformer blocks respectively.

We follow [60, 38] to use the balance sampler, α = 0.5 mix-up [127], spectrogram mask-

ing [82] with time-mask=128 frames and frequency-mask=16 bins, and weight averaging. The

HTS-AT is implemented in PyTorch and trained via the AdamW optimizer (β1=0.9, β2=0.999,

eps=1e-8, decay=0.05) with a batch size of 128 (32×4) in 4 NVIDIA Tesla V-100 GPUs. We

apply a warm-up schedule by setting the learning rate as 0.05, 0.1, 0.2 in the first three epochs,

then the learning rate is halved every ten epochs until it returns to 0.05. We use the mean average

precision (mAP) to evaluate the classification performance.

Experimental Results

In Table 2.1, we compare our HTS-AT with different benchmark models and three self-

ablated variations: (1) H: only hierarchical structure; (2) HC: with hierarchical structure and

token-semantic module; and (3) HCP: (2) with pretrained vision model (the full setting). Our

1AST provides a second bigger ensemble result by using models with different patch settings, which is partially
comparable with our settings.

13

best setting achieves a new SOTA mAP 0.471 in a single model as a large increment from 0.459

by AST. We also ensemble six HTS-ATs with different training random seeds in the same settings

to achieve the mAP as 0.487, and outperforms AST’s 0.475 and 0.485. We analyze our results in

two facets.

Token Semantic Module and Pretraining

PSLA, AST and HTS-AT adopt the ImageNet-pretrained model, where PSLA uses the

pretrained EfficientNet [107], AST uses DeiT [109], and our HTS-AT uses the swin-transformer

in Swin-T/C24 setting2 for 256×256 images. We can see that the unpretrained single HTS-AT

can achieve an mAP as 0.440. It is improved to 0.453 by the addition of token semantic module,

1.8% lower than 0.471. Finally the pretrained HTS-AT achieves the new best mAP as 0.471.

However, the unpretrained single AST only reflects 0.366, 9.3% lower than 0.459. These indicate

that: (1) the pretrained model definitely improves the performance by building a solid prior on

pattern recognition; and (2) HTS-AT shows a far better scalability to different hyperparameters

than AST, since its unpretrained model can still achieve the third best performance.

Parameter Size and Training Time

When comparing the parameter size of each model, the AST has 87M parameters. And

HTS-AT is more lightweight with 31M parameters, which is even compatible with CNN-based

models. As for the estimated training time, PANN takes about 72 hours to converge and HTS-AT

takes about 20× 4 = 80 hours in V-100 GPUs; and AST takes about 150× 4 = 600 hours in

4 TITAN RTX GPUs3. The speed improvement corresponds to the less calculation and GPU

memory consumption of HTS-AT, as we could feed 128 samples instead of only 12 samples in

AST per batch. Therefore, we conclude that HTS-AT consumes less training time and has fewer

parameters than AST’s.

2https://github.com/microsoft/Swin-Transformer
3We make memories not exceed 12GB in V-100 in line with TITAN RTX.

14

Table 2.2. The accuracy performance of audio classification on the ESC-50 dataset and the
Speech Command V2 dataset.

Model ESC-50 Acc.(%) Model SCV2 Acc.(%)

PANN [60] 90.5 RES-15 [116] 97.0
AST [37] 95.6 ± 0.4 AST [37] 98.1 ± 0.05

ERANN [115] 96.1 KWT-2 [7] 97.3 ± 0.03
HTS-AT 97.0 ± 0.2 HTS-AT 98.0 ± 0.03

2.4.2 Evaluations on ESC-50 and Speech Command V2

Dataset and Training Detail

The ESC-50 dataset contains 2000 5-sec audio samples labeled with 50 environmental

sound classes in 5 folds. We train the model for 5 times by selecting 4-fold (1600 samples) as

training set and the left 1-fold (400 samples) as test set. And we repeat this experiment 3 times

with different random seeds to get the mean performance and deviation. The Speech Command

V2 contains 105,829 1-sec spoken word clips labled with 35 common word classes. It contains

84843, 9981, and 11005 clips for training, validation and evaluation. Similarly, we train our

HTS-AT for 3 times to obtain the prediction results. We use the mean accuracy score (acc) for

the evaluation on both datasets. For the data processing, we resample the ESC-50 samples into

32kHz and the Speech Command clips 16kHz. And we follow the same setting.

Experimental Results

We use our best AudioSet-pretrained HTS-AT to train on these two dataset respectively

and compare it with benchmark models (also in AudioSet or extra data pretraining). Since 1-sec

and 5-sec does not take the full 10-sec input trained on AudioSet, we repeat the 1-sec and 5-sec

by 10 and 2 times to make it 10-sec. As shown in Table 2.2, the results shows that our HTS-AT

achieves a new SOTA as 97.0% on ESC-50 dataset and equals the SOTA 98.0% on Speech

Command V2. Our deviations are relatively smaller than AST’s, indicating that HTS-AT is more

stable after convergence.

15

Table 2.3. The event-based F1-scores of each class on the DESED test set. Models with * are
from DCASE 2021 [2], which are partial references since they use extra training data and are
evaluated on DESED test set and its another private subset.

Model Alarm Blender Cat Dishes Dog Shaver Frying Water Speech Cleaner Average

PANN [60] 34.3 42.4 36.3 17.6 35.8 23.8 9.3 30.6 69.7 51.0 35.1
HTS-AT 48.6 52.9 67.7 25.0 48.0 42.9 60.3 43.0 46.8 49.1 48.4

HTS-AT - Ensemble 47.5 55.1 72.4 30.9 49.7 41.9 63.2 44.3 51.3 50.6 50.7

Zheng et al.* [?] 41.4 54.1 72.4 29.4 47.8 61.01 49.2 33.7 69.5 65.5 52.4
Kim et al.* [?] 34.7 59.8 71.6 40.4 47.3 26.2 61.8 32.8 64.9 66.7 50.6
Lu et al.* [?] 37.1 41.4 62.5 40.6 39.7 46.5 46.5 34.5 54.5 46.9 45.0

2.4.3 Localization Performance on DESED

We additionally evaluate HTS-AT’s capability to localize the sound event as start and end

time in given audio samples. We use the DESED test set [98], which contains 692 10-sec test

audio samples in 10 classes with the strong labels. We mainly compare our HTS-AT with PANN.

We do not include AST and PSLA since AST does not directly support the event localization

and the PSLA’s code is not published. We also compare it partially with models in DCASE

2021 [?], nevertheless they use extra training data and are evaluated on DESED test set and its

another private subset. We use the event-based F1-score on each class as the evaluation metric,

implemented by a Python library psds eval4.

The F1-scores on all 10 classes in the DESED by different models are shown in Table 2.3.

We find that HTS-AT achieves better F1-scores on 8 classes and a better average F1-score 50.7%

than PANN. When compared among leaderboard models, our model still achieves some highest

scores of certain classes. However, the F1-scores on Speech and Cleaner are relatively low,

indicating that there are still some improvements for a better localization performance. From the

above experiments, we can conclude that HTS-AT is able to produce the specific localization

output via the token-semantic module, which extends the functionality of the audio transformer.

4https://github.com/audioanalytic/psds eval

16

2.5 Conclusion

In this chapter, we propose HTS-AT, a hierarchical token-semantic transformer for audio

classification, as the design of the audio presentation learning model. It achieves a new SOTA on

multiple datasets of different audio classification scenarios, demonstrating its strong capability

to bridge between content-level audio information and semantic audio information. Furthermore,

the token-semantic module enables HTS-AT to locate the events start and end time. Experiments

show that HTS-AT is a high performance, high scalability, and lightweight audio transformer.

In the next chapter, we will continue to leverage HTS-AT, as the core network of our audio

representation model, into an more advanced application, audio source separation.

This chapter contains some materials (texts, tables, and figures) from a published con-

ference paper: Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, Shlomo

Dubnov, HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification

and Detection, in proceedings of International Conference on Acoustics, Speech and Signal

Processing, ICASSP 2022. The dissertation author was the first author of this publication.

17

Chapter 3

Zero-Shot Audio Source Separation

From the Chapter 2, HTS-AT serves as an effective audio representation learning model

to achieve superior performance on audio classification. However, the effectiveness of the audio

representation model will not solely work on a single task. It is essential to recognize that the

effectiveness of an audio representation model extends beyond a single task. To comprehensively

assess HTS-AT, we aim to extend its applicability to various tasks in audio and music signal

processing.

Upon deeper analysis, the intrinsic goal of audio classification emerges as a semantic

extraction task from audio signals. However, the successful performance on audio classification

does not guarantee that the representation of HTS-AT effectively conceives audio content

information from the original inputs. Aggressive compression or abstraction of audio signals

by the model can partially lead to the high performance on audio classification [60], which

inadequately capture essential audio content information. This could potentially limit the utility

of such representation models in downstream applications that require such content.

In order to further evaluate HTS-AT, we introduce it into the field of audio source

separation, as a content extraction task. This exploration aims to further determine whether

HTS-AT can effectively address challenges in audio source separation tasks and ascertain its

efficacy as an audio representation model capable of preserving both semantic and content-level

information from audio signals.

18

3.1 Introduction

Audio source separation is a core task in the field of audio processing using artificial

intelligence. The goal is to separate one or more individual constituent sources from a single

recording of a mixed audio piece. Audio source separation can be applied in various downstream

tasks such as audio extraction, audio transcription, and music and speech enhancement. Although

there are many successful backbone architectures, such as Wave-U-Net, TasNet, and D3Net

[103, 73, 106]), fundamental challenges and questions remain — how can the models be made

to better generalize to multiple, or even unseen, types of audio sources when supervised training

data is limited?

The challenge is known as universal source separation, meaning that we only need a

single model to separate as many sources as possible. Most models mentioned above require

training a full set of model parameters for each target type of audio source. As a result, training

these models is both time and memory intensive. There are several heuristic frameworks [?] that

leverage meta-learning to bypass this problem, but they have difficulty generalizing to diverse

types of audio sources. In other words, these frameworks succeeded in combining several source

separators into one model, but the number of sources is still limited.

One potential approach to overcome this challenge is to train a model with an audio

separation dataset that contains a very large variety of sound sources. The more sound sources a

model can see, the better it will generalize. However, the scarcity of the supervised separation

datasets makes this process challenging. Most separation datasets contain only a few source types.

For example, MUSDB18 [87] and DSD100 [72] contain music tracks of only four source types

(vocal, drum, bass, and other) with a total duration of 5-10 hours. MedleyDB [8] contains 82

instrument classes but with a total duration of only 3 hours. There exists some large-scale datasets

such as AudioSet [35] and FUSS [122], but they contain only weakly labeled data. AudioSet, for

example, contains 2.1 million 10-sec audio samples with 527 sound events. However, only 5%

of recordings in Audioset have a localized event label [45]. For the remaining 95% of recordings,

19

clip-1

Audio Dataset

Sampling Strategy

clip-2 clip-n

...

Audio
Tagging
Model

segment-1

...

Latent Features

clip-1 clip-2 clip-n

...

Anchor Segment Mining

segment-2 segment-n

Embedding Extraction Audio Mixture

Query-based SeparationSeparation
Model

Figure 3.1. The architecture of zero-shot audio source separation trained from weakly-labelled
data, including datasets, sampling strategies, anchor segment mining, embedding extraction, and
query-based audio source separation module.

the correct occurrence of each labeled sound event can be anywhere within the 10-sec sample. In

order to leverage this large and diverse source of weakly labeled data, we first need to localize

the sound event in each audio sample, which is referred as an audio tagging task [29].

In this chapter, as illustrated in Figure 3.1, we devise a pipeline that comprises of three

components:

1. A data simulation process using a large-scale weakly labeled audio dataset and a sampling

strategy to create training data of source separation in multiple source targets.

2. An audio representation learning model, proposed as HTS-AT in Chapter 2, for performing

20

audio samples latent feature audio separation

Encoder Decoder

mask

audio separation

Encoder

latent featureaudio samples latent separation

Separator

Decoder

audio samples audio separation

audio spectrograms spectrogram separation

STFT iSTFTSeparation Mask
Separator

Figure 3.2. The standard architecture of deep-learning-based audio source separation models.
Left top: synthesis-based separation model. Left bottom: mask-based separation model. Right:
the general type of frequency-domain separation model.

audio classification and localization tasks to contribute to the final source separation target,

during the anchor segment mining and embedding extraction steps.

3. A query-based U-Net source separator, trained by the mixture data from the proposed

sampling strategy and the separation condition from HTS-AT.

The HTS-AT can localize the occurrences of sound events from weakly labeled audio

samples and encode them as latent source embeddings. The separator learns to separate out a

target source from an audio mixture given a corresponding target source embedding query, which

is produced by the embedding processor. Further, the embedding processor enables zero-shot

generalization by forming queries for new audio source types that were unseen at training time.

In the experiment, we find that our model can separate unseen types of audio sources, including

musical instruments and held-out AudioSet’s sound classes, effectively by achieving the SDR

performance on par with existing state-of-the-art (SOTA) models.

3.2 Supplementary Materials

The code implementation of zero-shot audio source separation and its pretrained weights

of different settings are released in https://github.com/RetroCirce/Zero Shot Audio Source

Separation.

21

https://github.com/RetroCirce/Zero_Shot_Audio_Source_Separation
https://github.com/RetroCirce/Zero_Shot_Audio_Source_Separation

3.3 Audio Source Separation via Neural Networks

Deep learning methods for audio source separation have outperformed traditional methods

such as Non-negative Matrix Factorization [65]. Figure 3.2 introduces the source separation

models in the time domain (left) and in the frequency domain (right).

3.3.1 Time-domain Separation Models

A neural network time-domain separation model f is typically constructed as an encoder-

decoder architecture, as shown in the left of Figure 3.2. Formally, given a single-channel audio

clip x ∈ RL and a separation target s ∈ RL, where L is sample length, the separator f contains

two types: a synthesis-based separation system that directly outputs the waveform of the target

source, and a mask-based separation that predict a mask that can be multiplied to the mixture to

output the target source.

Separation models such as Demucs [93] and Wave-U-Net [103], f directly estimates

the final separation target: ŝ = f (x). Mask-based separation models such as TasNet [73] and

ConvTasNet [74] predict masks in the latent space produced by the neural network. The masks

control how much of sources should remain from the mixture. Then, a decoder is designed

to reconstruct the separated waveform from the masked latent feature produced by the neural

network.

3.3.2 Frequency-domain Separation Models

In contrast to time-domain models, frequency-domain models leverage a spectrogram,

such as a short-time Fourier transform (STFT), to facilitate the separation process. Harmonic

features have more patterns in the frequency domain than those in the time domain. This might

help improve separation performance in source separation tasks, such as music source separation

and environmental sound separation [75].

Formally, given a mono audio clip x, we denote the STFT of x as a complex matrix

22

X ∈ CT×F , where T is the number of time frames and F is the number of frequency bins. We

denote the magnitude and the phase of X as |X | and ∠X , respectively. The right part of Figure

3.2 shows a frequency-domain separation system f predicting a magnitude ideal ratio mask

(IRM) [80] M ∈ RT×F or a complex IRM (cIRM) [121] M ∈ CT×F that can be multiplied by

the STFT of the mixture to obtain the STFT of the separated source. The complex STFT of the

separated source Ŝ ∈ CT×F can be calculated by:

Ŝ = M⊙X . (3.1)

where ⊙ is the element-wise complex multiplication. Then, the separated source ŝ ∈ RL can be

obtained by applying an inverse STFT on Ŝ.

Frequency domain models include fully connected neural networks [125], recurrent

neural networks (RNNs) [49, 105, 112], and convolutional neural networks (CNNs) [13]. UNets

[53, 43] are variants of CNN that contain encoder and decoder layers for source separation.

Band-split RNNs (BSRNNs) [75] apply RNNs along both the time and frequency axes to capture

time and frequency domain dependencies. There are also approaches such as hybrid Demucs

[93] which combine time and frequency domain systems to build source separation systems.

3.3.3 Datasets of Source Separation

Many previous source separation systems require clean source data to train source

separation systems. However, the collection of clean source data is difficult and time-consuming.

Table 3.1 summarizes datasets that can be used for source separation. We can observe that

previous clean source datasets have duration of around tens of hours, while weakly labeled

datasets (detail in section 3.5.1) are extremely larger than clean source datasets. Among the

large-scale datasets, AudioSet [?] is a representative weakly labeled dataset containing over

5,800 hours of 10-second audio clips, with an ontology of 527 sound classes. The ontology

of AudioSet has a tree structure, where each audio clip may contain multiple tags. Such data

23

Table 3.1. The illustration of source separation datasets.

Dataset Duration (hours) Classes Type

Voicebank-Demand [114] 19 1 Clean
MUSDB18 [87] 6 4 Clean
UrbanSound8K [95] 10 10 Clean
FSDKaggle 2018 [30] 20 41 Clean
FUSS [122] 23 357 Clean
AudioSet [35] 5,800 527 weakly labeled

scale inspires us to use AudioSet, and explore how to deal with the weakly labeled AudioSet in

addressing challenges of universal source separation.

3.3.4 Universal Source Separation

Universal source separation attempts to employ a single model to separate different

types of sources. Currently, the meta-learning model MetaTasNet [96] can separate up to four

sources in MUSDB18 dataset in the music source separation task. SuDoRM-RF [111], the

Uni-ConvTasNet [54], the PANN-based separator [61], and MSI-DIS [67] extend the universal

source separation to speech separation, environmental source separation, speech enhancement

and music separation and synthesis tasks. However, most existing models require a separation

dataset with clean sources and mixtures to train, and only support a limited number of sources

that are seen in the training set. An ideal universal source separator should separate as many

sources as possible even if they are unseen or not clearly defined in the training. In this chapter,

by continuing from HTS-AT, we move further by proposing a pipeline that can use audio event

samples for training a separator that generalizes to diverse and unseen sources.

3.4 Audio Classification and Localization

As introduced in Chapter 2, the audio classification task is to classify one or more target

sound events in given audio signals. The audio localization task further requires the model to

output the specific time-range of events on the audio timeline. Currently, the convolutional

24

neural network (CNN) is being widely used to detect sound events. The Pretrained Audio Neural

Networks (PANN) [60] and the PSLA [38] achieve the current CNN-based SOTA for the sound

event detection, with their output featuremaps serving as an empirical probability map of events

within the audio timeline. For the transformer-based structure, the audio spectrogram transformer

(AST) [37] re-purposes the visual transformer structure ViT [24] and DeiT [109] to use the

transformer class-token to predict the sound event. It achieves the best performance on the sound

event detection task in AudioSet. However, it cannot directly localize the events because it

outputs only a class-token instead of a featuremap. In this chapter, we leverage HTS-AT to detect

and localize the sound event. Moreover, we use HTS-AT to process the weakly labeled data that

is sent downstream into the following separator.

3.5 Model Architecture and Pipeline

3.5.1 Weakly Labeled Data

In contrast to clean source data, weakly labeled data only contain the labels of what

sound classes are present in an audio recording. Weakly labeled data may also contain interfering

sounds. There are no time stamps for sound classes or clean sources. We denote the n-th audio

clip in a weakly labeled dataset as an where a is the abbreviation for the audio. The tags of an is

denoted as yn ∈ {0,1}K , where K is the number of sound classes. The value yn(k) = 1 indicates

the presence of a sound class k while yn(k) = 0 indicates the absence of a sound class k. We

denote a weakly labeled dataset as D = {an,yn}N
n=1, where N is the number of training samples

in the dataset. The weakly labeled audio recording also contains unknown interference sounds,

i.e., yn(k) = 0 may contain missing tags for some sound class k.

The goal of a weakly labeled USS system is to separate arbitrary sounds trained with

only weakly labeled data. Recapping Figure 3.1, we depict the architecture of our proposed

zero-shot audio source separation system, containing four steps:

1. We apply a sampling strategy to sample audio clips of different sound classes from a

25

weakly labeled audio dataset.

2. We define an anchor segment as a short segment that is most likely to contain a target

sound class in a long audio clip. We apply an anchor segment mining algorithm to localize

the occurrence of events/tags in the weakly labeled audio tracks.

3. We use pretrained audio classification model (i.e., HTS-AT) to predict the tag probabilities

or embeddings of anchor segments.

4. We mix anchor segments as input mixtures, train a query-based separation network to

separate the mixture into one of the target source queried by the sound class condition.

3.5.2 Audio Clips Sampling

The original AudioSet is highly unbalanced — sound classes such as “Speech” and

“Music” have almost 1 million audio clips, while sound classes such as “tooth breath” have

only tens of training samples. Without balanced sampling, the neural network may never see

infrequent sound classes in a relatively short training period, resulting an under-optimization of

the source separation in certain sources.

Following the training scheme of audio classification systems [60, 37], we apply a

balanced sampling strategy to construct training data of source separation, which samples audio

clips from different sound classes to constitute a mini-batch to ensure the clips contain balanced

sound classes (i.e., each sound class is sampled evenly from the unbalanced dataset). We denote

a mini-batch of sampled audio clips as {ai}B
i=1, where B is the mini-batch size.

3.5.3 Anchor Segment Mining

Anchor segment mining is the core part of Universal or Zero-shot audio source separation

systems trained on weakly labeled data. Since the weakly labeled audio tracks do not always

contain the labeled sound class throughout its timeline, we need to extract a short audio segment

inside this track to create source data for training the separation model.

26

We define anchor segment mining, as a procedure of sound event localization, to localize

anchor segments in an audio clip. This can help us extract audio clips with relatively clean sound

sources from weakly labeled audio samples.

Formally, given an audio clip ai ∈ RL, an anchor segment mining algorithm extracts an

anchor segment si ∈ RL′
from ai, where L′ < L is the samples number of the anchor segment.

For each audio clip in mini-batch {ai}B
i=1, we apply a pretrained audio localization model to

detect an anchor segment si, where the center of si is the time stamp where the sound class label

is most likely to occur in terms of probability.

Specially, an audio localization model outputs two prediction results:

1. The event classification prediction pe ∈ [0,1]K , where K is the number of sound classes.

2. The framewise event prediction pframe ∈ [0,1]T×K , where T the number of frames.

Typically, the event prediction pe is usually calculated by summarizing the averaged value and

the maximum value along the framewise event prediction pframe (detail in Chapter 2).

During the anchor segment mining step, we use the audio localization model to perform

framewise event prediction of an audio clip. Then, for the target sound class k of this audio clip,

we denote the anchor segment score of the sound class k as:

qk(t) =
t+τ/2

∑
t−τ/2

pframe(t,k), (3.2)

where τ is the duration of anchor segments. Then, the center time t of the optimal anchor segment

is obtained by:

tanchor = argmax
t

qk(t). (3.3)

We apply the anchor segment mining strategy as described in (3.2) and (3.3) process a mini-batch

of the audio clips {a1, ...,aB} into a mini-batch of anchor segments {s1, ...,sB}.

27

Algorithm 1. The data sampling and anchor segment mining steps for data preparation.

1: Inputs: dataset D = {an,yn}N
n=1 containing K sound classes, mini batch size B.

2: Outputs: a mini-batch of mixture and anchor segment pairs {(s,si)}B
i=1.

3: Step 1: Balanced Sampling: Uniformly sample B sound classes from sound classes
{1, ...,K} without replacement. Sample one audio clip ab,b = 1, ...,B for each selected
sound class. We denote the mini-batch of audio clips as {a1, ...,aB}.

4: Step 2: Anchor Segment Detection: Apply a pretrained audio localization model on each ai
to detect the optimal anchor time stamp ti by (3.2)(3.3). Extract the anchor segment si ∈ RL′

whose center is ti.
5: Step 3 Segment Re-verification: Use the same localization model to predict the event

classification prediction of si and apply threshold θ ∈ [0,1]K to get binary results ri ∈ {0,1}K ,
where where ri(k) is set to 1 if the presence probability is larger than θ(k). Permute {si}B

i=1
so that ri ∧ r(i+1)%B = 0, where % is the modulo operator.

6: Step 4: Mixing: Create mixture source pairs {(s,si)}B
i=1 .

Together, Algorithm 1 illustrates the procedure for creating training data. Step 1 describes

audio clip sampling and Step 2 describes anchor segment mining. To further avoid two anchor

segments containing the same classes being mixed, we propose an Step 3 to further filter the

mined anchor segments from a mini-batch of audio clips {s1, ...,sB} to constitute mixtures. Step

4 describes mixing detected anchor segments into mixtures to train the separation system.

3.5.4 Audio Models in Use: PANN and HTS-AT

Audio classification models, including HTS-AT as our proposed audio representation

model, are capable of localizing the time stamps of audio events, even though they are only

trained on weakly labeled datasets such as AudioSet [60, 38, 37, 118]. To verify if the proposed

HTS-AT serves as an advanced audio representation model to previous classification baselines.

We apply both PANN [60] and HTS-AT to perform the anchor segment mining procedure.

Figure 3.3 shows the model architectures of both PANN and HTS-AT. The event presence

map in both PANN and HTS-AT outputs denote the the framewise prediction pframe ∈ [0,1]T×K .

Additionally, the output of the penultimate layer with a size of (T,H) can be used to obtain its

averaged vector with a size of H as a latent source embedding for conditional source separation

as our last step, where H is the dimension of the latent embedding.

28

log-mel spetrogram

Conv2D (3,3,64)

Conv2D (3,3,128)

Conv2D (3,3,256)

Conv2D (3,3,2048)

...

C
N

N
-14

Avg-PoolingEvent Presence Map

Event Classification

average
Latent Feature

project

time frame

fr
eq

ue
nc

y

......

.........

time→frequency→window

Patch-Embed Conv2D

Sw
in

 T
ra

ns
fo

rm
er

Pa
tc

h-
M

er
ge

ST
.

PM
.

Patch Tokens

ST
.

PM
. ST

.

PM
.

Hierarchical Transformer Blocks

Latent Output

Token-Semantic Conv2D

Event Presence Map

average

Event Classification

Avg-Pooling

Latent Feature

Figure 3.3. Two employed models for audio classification and localization. Left: Pretrained
Audio Neural Networks (PANN) in CNN14 architecture. Right: Hierarchical Token-Semantic
Transformer (HTS-AT) in 4-block architecture as proposed in Chapter 2.

The detailed architecture of HTS-AT has been introduced in Chapter 2. It applies Swin-

Transformer [71] blocks to process the patch-level audio inputs as the sequence. A token-semantic

2D-CNN [34] is implemented at the end to further process the reshaped output (T
8P ,

F
8P ,H) into

the framewise event presence map (T,K) ,which can be averaged to an event classification vector

K. The latent embedding, at the same time, is produced by averaging the reshaped output into a

H-dimension vector with an average-pooling layer.

For the Pretrained Audio Neural Networks (PANN), as shown in the left of Figure

3.3, it contains CNN blocks constructed by the VGG architecture [99] to convert an audio

mel-spectrogram into a (T,K) featuremap, where T is the number of time frames and K is

the number of sound event classes. The model averages the featuremap over the time axis to

obtain a final probability vector (1,K) and computes the binary cross-entropy loss between it

and the groudtruth label. Since CNNs can capture the information in each time window, the

featuremap (T,K) is empirically regarded as a presence probability map of each sound event at

each time frame. When determining the latent source embedding for the following pipeline, the

penultimate layer’s output (T,H) can be used to obtain its averaged vector (1,H) as the latent

source embedding.

29

Query-based Source Separator Inference Stage

HTS-AT or PANN

Figure 3.4. The model architecture of query-based source separator (Left) and the paradigm of
zero-shot audio source separation in the inference stage (Right).

3.5.5 Query-based Source Separator

By the utilized audio localization models (PANN or HTS-AT), we can localize the most

possible occurrence of a given sound event in audio samples. Finally, we could get two 2-sec

audio segments s1,s2 as the most possible occurrences of the sound classes k1,k2 by the anchor

segment mining on two original audio clips a1,a2.

Subsequently, we resend two segments s1,s2 into the SED system to obtain two source

embeddings e1,e2. Each latent source embedding (1,H) is incorporated into the source separation

model to specify which source needs to be separated.

Specifically, we collect s1,s2,e1,e2, we mix two clips with energy normalization. We

first calculate the energy of a signal si by E = ||si||22. We denote the energy of si and si+1 as Ei

and Ei+1. We apply a scaling factor αi =
√

Ei/Ei+1 to si+1 when creating the mixture s:

s = si +αsi+1. (3.4)

30

By this means, both anchor segments s1 and s2 have the same energy which is beneficial to the

optimization of the separation system. On the one hand, we match the energy of anchor segments

to let the neural network learn to separate the sound classes. On the other hand, the amplitude

diversity of sound classes is increased.

Then we send two training triplets (s,s1,e1),(s,s2,e2) into the separator f , respectively.

We let the separator to learn the following regression:

f (s,e j) 7→ s j, j ∈ {1,2}. (3.5)

As shown in the left part of Figure 3.4, we base on U-Net [92] to construct our source

separator, which contains a stack of downsampling and upsampling CNNs. The mixture clip s is

converted into the spectrogram by Short-time Fourier Transform (STFT). In each CNN block, the

latent source embedding e j is incorporated by two embedding layers producing two featuremaps

and added into the audio featuremaps before passing through the next block. Therefore, the

network will learn the relationship between the source embedding and the mixture, and adjust

its weights to adapt to the separation of different sources. The output spectrogram of the final

CNN block is converted into the separate waveform s′ by inverse STFT (iSTFT). Suppose that

we have n training triplets {(s1,s1
j ,e

1
j),(s

2,s2
j ,e

2
j), ...,(s

n,sn
j ,e

n
j)}, we apply the Mean Absolute

Error (MAE) to compute the loss between separate waveforms S′ = {s1′,s2′, ...,sn′} and the target

source clips S j = {s1
j ,s

2
j , ...,s

n
j}:

L = MAE(S j,S′) =
1
n

n

∑
i=0

|si
j − si′| (3.6)

Combining these two components together, we could utilize more datasets (i.e. containing

sufficient audio samples but without separation data) in the source separation task. Indeed, it

also indicates that we no longer require clean sources and mixtures for the source separation task

[61] if we succeed in using these datasets to achieve good performance.

31

3.5.6 Zero-shot Learning via Latent Source Embeddings

As shown in the right part of Figure 3.4, after the training stage, the audio localization

models can also be utilized to obtain the latent source embedding e of given clips s, and send the

embedding into the separator to perform the audio source separation. And in the inference stage,

we utilize this model to separate more sources that are unseen or undefined in the training set.

Formally, suppose that we need to separate an audio aq according to a query source class

kq. In order to get the latent source embedding eq, we first need to collect N clean clips of this

source {sq1,sq2, ...,sqN}. Then we feed them into the audio representation model to obtain the

latent embeddings {eq1,eq2, ...,eqN}. The eq is obtained by taking the average of them:

eq =
1
N

N

∑
i=1

eqi (3.7)

Then, we use eq as the query for the source kq and separate aq into the target track f (xq,eq). A

visualization of this process is depicted in Figure 3.4.

The 527 classes of Audioset are ranged from ambient natural sounds to human activity

sounds. Most of them are not clean sources as they contain other backgrounds and event

sounds. After training our model on Audioset, we find that the model is able to achieve a good

performance on separating unseen sources. According to [117], we declare that this follows a

Class-Transductive Instance-Inductive (CTII) zero-shot setting by training the separation model

with certain types of sources and using unseen queries to generalize the model.

3.6 Experiments

There are two experimental stages for us to train a zero-shot audio source separator. First,

we need to train the audio classification and localization model as the first component. Then,

we train an audio source separator as the second component based on the processed data. In the

following subsections, we will introduce the experiments in these two stages.

32

Table 3.2. The mean average precision (mAP) performance of audio classification from different
baselines on the Audioset evaluation set.

Model mAP
AudioSet Baseline [35] 0.314

DeepRes. [32] 0.392
PANN. [60] 0.434
PSLA. [38] 0.444

AST. (single) w/o. pretrain [37] 0.366
AST. (single) [37] 0.459

768-d HTS-AT 0.471
768-d HTS-AT w/o. pretrain 0.453

2048-d HTS-AT w/o. pretrain 0.459

3.6.1 Audio Classification and Localization

Dataset and Training Details

Similar to Chapter 2, we train both HTS-AT and PANN on AudioSet, with 2 million

10-sec audio samples and labeled with a set of 527 sound labels. We use the full=train set of

AudioSet (2M samples) for training and the evaluation set (22K samples) for evaluation. For the

pre-processing of audio, all samples are converted to mono as 1 channel by 32,000 Hz sampling

rate. To compute STFTs and mel-spectrograms, we use 1024 window size and 320 hop size. As a

result, each frame is 320
32000 = 0.01 sec. The number of mel-frequency bins is F = 64. Each 10-sec

sample constructs 1000 time frames and we pad them with 24 zero-frames (T = 1024). The

shape of the output featuremap is (1024,527) (K = 527). The patch size is 4×4 and the time

window is 256 frames in length. Different from Chapter 2, we further propose two settings for

HTS-AT with a latent dimension size H of 768 or 2048. We adopt the 768-d model to make use

of the swin-transformer ImageNet-pretrained model for achieving a potential best result. And we

adopt the 2048-d model in the following separation experiment because it shares the consistent

latent dimension size with PANN’s. We set 4 network groups in the HTS-AT, containing 2,2,6,

and 2 swin-transformer blocks respectively.

33

We implement both PANN and HTS-AT in PyTorch, train it with a batch size of 128 and

the AdamW optimizer (β1=0.9, β2=0.999, eps=1e-8, decay=0.05) [56] in 8 NVIDIA Tesla V-100

GPUs in parallel. We adopt a warm-up schedule by setting the learning rate as 0.05, 0.1, 0.2 in

the first three epochs, then the learning rate is halved every ten epochs until it returns to 0.05.

AudioSet Results

Following the standard evaluation pipeline, we use the mean average precision (mAP) to

verify the classification performance on Audioset evaluation set. In Table 3.2, we compare the

HTS-AT with previous SOTAs including PANN, PSLA, and AST. Among all models, PSLA,

AST, and our 768-d HTS-AT apply the ImageNet-pretrained models. Specifically, PSLA uses

the pretrained EfficientNet [107]; AST uses the pretrained DeiT; and 768-d HTS-AT uses the

pretrained swin-transformer in Swin-T/C24 setting1. We also provide the mAP result of the

768-d HTS-AT without pretraining for comparison. For the 2048-d HTS-AT, we train it from

zero because there is no pretrained model. For the AST, we compare our model with its single

model’s report instead of the ensemble one to ensure the fairness of the experiment. All HTS-ATs

are converged around 30-40 epochs in about 20-hour training.

Table 3.2 presents the mAP results of different models on the AudioSet evaluation set,

which is consistent to Table 2.1. The 768-d HTS-AT achieves a new mAP SOTA as 0.471 on

Audioset, additionally, the newly-trained 2048-d HTS-AT without pretraining weights can also

achieve the pre-SOTA mAP as 0.459. This indicates that both HTS-ATs in 768-d and 2048-d

settings are capable of being utilized in the audio source separation process to provide the audio

embedding as the separation condition.

1https://github.com/microsoft/Swin-Transformer

34

3.6.2 Audio Source Separation

Dataset and Training Details

We train our audio separator in AudioSet full-train set, validate it in Audioset evaluation

set, and evaluate it in MUSDB18 test set as following the 6th community-based Signal Separation

Evaluation Campaign (SiSEC 2018). MUSDB18 contains 150 songs with a total duration of 3.5

hours in different genres. Each song provides a mixture track and four original stems: vocal,

drum, bass, and other. All SOTAs are trained with MUSDB18 training set (100 songs) and

evaluated in its test set (50 songs). Different from these SOTAs, we train our model only with

Audioset full-train set other than MUSDB and directly evaluate it in MUSDB18 test set.

Since Audioset is not a natural separation dataset (i.e., no mixture data), to construct

the training set and the validation set, during each training step, we sample two classes from

527 classes and randomly take each sample a1,a2 from two classes in the full-train set. We

implement a balanced sampler that all classes will be sampled equally during the whole training.

During the validation stage, we follow the same sampling paradigm to construct 5096 audio

pairs from Audioset evaluation set and fix these pairs. By setting a fixed random seed, all models

will face the same training data and the validation data.

We compare two audio localization system in the source separation pipeline: PANN or

HTS-AT . The separator comprises 6 encoder blocks and 6 decoder blocks. In encoder blocks,

the numbers of channels are namely 32, 64, 128, 256, 512, 1024. In decoder blocks, they are

reversed (i.e., from 1024 to 32). There is a final convolution kernel that converts 32 channels

into the output audio channel. Batch normalization [52] and ReLU non-linearity [3] are used

in each block. The final output is a spectrogram, which can be converted into the final separate

audio c′ by iSTFT. Similarly, we implement our separator in PyTorch and train it with the Adam

optimizer (β1=0.9, β2=0.999, eps=1e-8, decay=0), the learning rate 0.001 and the batch size of

64 in 8 NVIDIA Tesla V-100 GPUs in parallel.

35

Evaluation Metrics

We use source-to-distortion ratio (SDR) as the metric to evaluate our separator. For the

validation set, we compute three SDR metrics between the prediction and the groundtruth in

different separation targets:

• The target of mixture-SDR: f (s,e j) 7→ s j

• The target of clean-SDR: f (s j,e j) 7→ s j

• The target of silence-SDR: f (s¬ j,e j) 7→ 0

Where the symbol ¬ j denotes any clip which does not share the same class with the j-th

clip. In our setting, ¬1 = 2 and ¬2 = 1. The clean SDR is to verify if the model can maintain the

clean source given the self latent source embedding. The silence SDR is to verify if the model

can separate nothing if there is no target source in the given audio. These help us understand if

the model can be generalized to more general separation scenarios only by using the mixture

training. For the testing, we only compute the mixture SDR between each stem and each original

song in MUSDB18 test set. Each song is divided into 1-sec clips. The song’s SDR is the median

SDR over all clips. And the final SDR is the median SDR over all songs.

The Choice of Source Embeddings

We choose three source embeddings for our separator: (1) the 527-d presence probability

vector from PANN, referring to [61]; (2) the 2048-d latent embedding from PANN penultimate

layer; and (3) the 2048-d latent embedding from HTS-AT. This helps to verify if the latent

source embedding can perform a better representation for separation, and if the embedding from

HTS-AT is better than that from PANN.

In the training and validation stage, we get each latent source embedding directly from

each 2-sec clip according to the pipeline in Figure 3.1. After picking the best model in the vali-

dation set, we follow Figure 3.4 to get the query source embeddings in MUSDB18. Specifically,

36

Table 3.3. The SDR performance of different models with different source embeddings in the
validation set.

Validation Set: AudioSet Evaluation Set

Metric-SDR: dB mixture clean silence

527-d PANN-SEP [61] 7.38 8.89 11.00
2048-d PANN-SEP 9.42 13.96 15.89

2048-d HTS-AT-SEP 10.55 27.83 16.64

we collect all separate tracks in the highlight version of MUSDB10 training set (30 secs in each

song, 100 songs in total) and take the average of their embeddings on each source as four queries:

vocal, drum, bass, and other.

Separation Results

Table 3.3 shows the SDRs of two models in the validation set. We could clearly figure

out that when using the 2048-d latent source embedding, PANN achieves better performance in

increasing three types of SDR by 2-4 dB than that of 527-d model. A potential reason is that

the extra capacity of the 2048-d embedding space helped the model better capture the feature of

the sound comparing to the 527-d probability embedding. In that, the model can receive more

discriminative embeddings and perform a more accurate separation.

Then we pick the best models of 527-d PANN-SEP, 2048-d PANN-SEP, 2048-d HTS-

AT-SEP and evaluate them in MUSDB18. As shown in Table 3.4, there are three categories of

models: (1) Standard Model: these models can only separate one source, in that they need to

train 4 models to separate each source in MUSDB18. (2) Query-based Model: these models

can separate four sources in one model. Both models in (1) and (2) require the training data in

MUSDB training set and cannot generalize to separate other sources. And (3) Zero-shot Model:

our proposed models can separate four sources in one model without any MUSDB18 training

data. Additionally, they can even separate more sources. Specifically, for our proposed 2048-d

HTS-AT model, we repeat the training three times with different random seeds.

From Table 3.4 our proposed model 2048-d HTS-AT-SEP outperforms PANN-SEP

37

Table 3.4. The SDR performance in MUSDB18 test set. All models are categorized into three
slots.

Standard SOTA Model
Median SDR vocal drum bass other

WaveNet [103] 3.25 4.22 3.21 2.25
WK [120] 3.76 4.00 2.94 2.43
RGT1 [90] 3.85 3.44 2.70 2.63

SpecUNet [69] 5.74 4.66 3.67 3.40
MMDLSTM [105] 6.60 6.41 5.16 4.15
Open Unmix [104] 6.32 5.73 5.23 4.02

Query-based Model w/. MUSDB18 Training
Median SDR vocal drum bass other
AQMSP [66] 4.90 4.34 3.09 3.16

Meta-TasNet [96] 6.40 5.91 5.58 4.19

Zero-shot Model w/o. MUSDB18 Training
Median SDR vocal drum bass other

527-d PANN-SEP 4.16 0.95 -0.86 -2.65
2048-d PANN-SEP 6.06 5.00 3.38 2.86

2048-d HTS-AT-SEP 6.15 5.44 3.80 3.05

models in all SDRs (6.15, 5.44, 3.80, 3.05). The deviation of SDR performance on four stems

are ±0.22, ±0.32, ±0.23, and ±0.20. The SDRs in vocal, drum, and bass are compatible with

standard and query-based SOTAs. However, we observe a relatively low SDR in the ”other”

source. One possible reason is that the ”other” embedding we calculate for MUSDB18 is not

general because it denotes different instruments and timbres in different tracks. Another possible

reason is that the separation quality is related to the random combination of training data, and

different orders may cause differences on some specific types of sounds. These sub-topics can

be further researched in the future.

In summary, the most novel and surprising observation is that our proposed audio

separator succeeds in separating 4 sources in MUSDB18 test set without any of its training data

but only Audioset. The model performs as a zero-shot separator by using any latent source

embedding collected from accessible data, to separator any source it faces.

38

Table 3.5. The SDR performance of the 2048-d HTS-AT-SEP in the zero-shot verification
experiment.

Class Conversation Whisper Clap Cat Orchestra Aircraft Engine Pour Scratch Creak

Mixture-SDR 9.08 8.04 9.67 9.49 9.18 8.47 8.31 7.92 8.42 6.56
Clean-SDR 17.44 10.50 17.78 15.01 10.06 13.09 14.85 14.28 15.52 13.79

Silence-SDR 14.05 13.86 14.45 17.63 12.08 11.97 11.56 12.76 13.95 13.61

3.6.3 Zero-Shot Verification

In this section, we conduct another experiment to separate sources that are held-out from

training. We first select 10 sound classes in Audioset. Then during the training, we remove

all data of these 10 classes. The model only learns how to separate clips mixed by the left

517 classes. During the evaluation, we construct 1000 (100×10) mixture samples in Audioset

evaluation set whose constituents only belong to these 10 classes. Then we calculate the mixture

SDR, the clean SDR, and the silence SDR of them.

Table 3.5 shows the results by the 2048-d HTS-AT model. We can find that the model

can still separate the held-out sources well by achieving the average mixture SDR, clean SDR,

and silence SDR as 8.52 dB, 14.23 dB, and 13.59 dB (calculated under 10 classes). The detailed

SDR distribution of these 1000 samples is depicted in the open source repository. The intrinsic

reason for this good performance is that the SED system captures many features of 517 sound

classes in its latent space. And it generalizes to regions of the embedding space it never saw

during training, which the unseen 10 classes lie in. Finally, the separator utilizes these features

in the embedding to separate the target source. The zero-shot setting of our model is essentially

built by a solid feature extraction mechanism and a latent source separator.

3.6.4 Visualization of Hierarchical Separation

One application of the proposed zero-shot audio source separation model is to separate

arbitrary audio recordings into individual sources with sound ontology. Figure 3.5 shows the

automatically detected and separated waveforms of a movie clip from Harry Potter and the

Sorcerer’s Stone from the AudioSet sound ontology from level 1 to level 3. Level 1 indicates

39

coarse sound classes and level 3 indicates fine sound classes. In level 1, the model successfully

separates human sounds, music and sounds of things. In level 2, the model further separates

human group actions, vehicle, and animals. In level 3, the model separates fine-grained sound

classes such as bell, bird, crowd, and scary music. We can observe that the proposed separation

model works well on different hierarchies of sound classes without knowing any source informa-

tion of the movie soundtrack. This shows a broad potential application of such models in the

practical usages of audio analysis, understanding and editing on arbitrary soundtracks.

3.7 Conclusion

In this chapter, we further explore the effectiveness of HTS-AT on addressing the chal-

lenges in the field of audio source separation. We introduce a zero-shot audio source separator

capable of leveraging weakly labeled data for training, targeting different sources for separation,

and accommodating unseen sources based on content-level information from the audio represen-

tation model. Training the entire system on Audioset and evaluating it on the MUSDB18 dataset,

experimental results demonstrate that our system achieves performance comparable to standard

supervised models. Additionally, We verify our system in a complete zero-shot setting to prove

its generalization ability. With this system, more weakly labeled audio data can be utilized for

source separation, enabling separation of additional sources within this pipeline. These results

further establish the efficacy of HTS-AT as the proposed audio representation model, capable

of capturing both content-level and semantic information of audio signals, and its significant

contribution to other fields of music and audio signal processing.

This chapter contains some materials (texts, tables, and figures) from a published con-

ference paper: Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, Shlomo

Dubnov, Zero-shot Audio Source Separation through Query-based Learning from weakly labeled

Data, in proceedings of AAAI Conference on Artificial Intelligence Conference, AAAI 2022;

and a preprint online paper: Qiuqiang Kong*, Ke Chen*, Haohe Liu, Xingjian Du, Taylor

40

Berg-Kirkpatrick, Shlomo Dubnov, Mark D Plumbley, Universal Source Separation with Weakly-

Labelled Data, in the arXiv preprint 2305.07447. The dissertation author was the first author or

the co-first-author of these publications.

41

H
ie

ra
rc

h
y

Le
ve

l 1

H
ie

ra
rc

h
y

Le
ve

l 2

H
ie

ra
rc

h
y

Le
ve

l 3

In
p

u
t

au
d

io

Figure 3.5. The visualization of zero-shot audio source separation performed on the trailer of
“Harry Potter and the Sorcerer’s Stone”: https://www.youtube.com/watch?v=VyHV0BRtdxo

42

https://www.youtube.com/watch?v=VyHV0BRtdxo

Chapter 4

Contrastive Language-Audio Pretraining

In Chapter 3, HTS-AT proves to be an efficient and effective audio representation model.

It excels not only in capturing semantic information for tasks like audio classification and

localization but also in preserving content-level information crucial for addressing challenges

in zero-shot audio source separation. The experimental results underscore our confidence in

leveraging the potential of HTS-AT to enhance various audio and music applications, spanning

classification, separation, recommendation, and even generation tasks.

However, the new challenges come out as we dive deeply into the nuanced designs

and the applications of HTS-AT. While the ability to capture both semantic and content-level

information from audio signals marks a promising start for an audio representation model, a

significant limitation persists in its capacity to bridge other modalities. It is noted that many

applications of audio and music processing extend beyond a singular modality (i.e., audio itself).

For example, content creators often leverage text descriptions and images as “hints” to guide

the music generation and editing process. Similarly, users often engage in conversations with

AI-agents to gradually uncover their music preference in the recommendation scenarios. Such

applications are not currently doable within the single architecture of HTS-AT, which relies

solely audio information and is not able to accept inputs from other modalities like texts or

images. Prior to exploring further applications of HTS-AT, it is imperative to revisit the design

of HTS-AT and equip it with the capability to incorporate audio with other modalities.

43

Among all modalities in the world, we focus on one of the primary resources — language.

Language serves as a central communication medium for human beings, and large language

models (LLMs) such as ChatGPT [1] have emerged as increasingly promising tools for bridging

new knowledge. In this chapter, we explore how we can integrate HTS-AT with the language

modality to spark innovation in audio and music technologies and applications.

4.1 Introduction

Audio is one of the most common information types in the world alongside text and

image data. However, different audio tasks typically require finely-annotated data, which limits

the amount of available audio data due to the labor-intensive collection procedure. Consequently,

designing an effective audio representation for many audio tasks without requiring a lot of

supervision remains a challenge.

The contrastive learning paradigm is a successful solution for training a model on large-

scale noisy data collected from internet. The recently proposed Contrastive Language-Image

Pretraining (CLIP) [85] learns the correspondence between text and image by projecting them

into a shared latent space. The training is conducted by regarding the ground-truth image-text

pair as the positive sample and left as negative. In contrast to training on uni-modal data, CLIP

is not constrained by data annotation and shows great robustness by achieving high accuracy

in a zero-shot setting on out-of-domain variations of ImageNet dataset [20]. Additionally,

CLIP shows great success in downstream tasks such as text-to-image retrieval and text-guided

captioning. Similar to vision, audio and natural languages also contain overlapping information.

In audio event classification task, for instance, some text descriptions of an event can be mapped

to the corresponding audio. These text descriptions share a similar meaning that could be learned

together with the related audio to form an audio representation of crossmodal information.

Additionally, training such a model requires simply paired audio and text data, which is easy to

collect.

44

Several recent studies [40, 26, 21, 124, 81, 76, 123] have presented the prototype of the

contrastive language-audio pretraining model for the text-to-audio retrieval task. [124] utilizes

Pretrained Audio Neural Network (PANN) [60] as the audio encoder, BERT [22] as the text

encoder, and several loss functions to evaluate the text-to-audio retrieval performance. [21]

further ensemble our proposed HTS-AT and RoBERTa [70] into the encoder list to further

enhance performance. Then, [26] investigates the effectiveness of the learned representation

in the downstream task of audio classification. Some other studies, such as AudioClip [40]

and WaveCLIP [123], focus more on the contrastive image-audio (or image-audio-language)

pretraining model. All these models show great potential for contrastive learning in the audio

domain.

Nonetheless, current studies have not shown the full strength of the language-audio

contrastive learning. First, the models mentioned above are trained on relatively small datasets,

showing that large-scale data collection and augmentation for training are needed. Second, prior

work lacks a full investigation of selections and hyperparameter settings of audio/text encoders,

which is essential for determining the basic contrastive language-audio architecture. Third, the

model struggles to accommodate varied audio lengths, particularly for the transformer-based

audio encoder. There should be a solution to handle audio inputs of variable-length. Finally,

the majority of language-audio model studies focuses solely on text-to-audio retrieval without

assessing their audio representations in downstream tasks. As a representation model, we expect

more discoveries of its generalization ability to more downstream tasks.

In this chapter, we make contributions to improve the dataset, model design and the

experiment setting from above concerns based on the HTS-AT representation model:

• We release LAION-Audio-630K, currently the largest public audio caption dataset of 633,526

audio-text pairs. To facilitate the learning process, we employ the keyword-to-caption model to

augment labels of AudioSet [35] into corresponding captions. This dataset can also contribute

to other audio tasks.

45

• We construct a pipeline of contrastive language-audio pretraining, as CLAP. Two audio

encoders (HTS-AT, PANN) and three text encoders (BERT,RoBERTa, CLIP-Transformer) are

selected for testing. We employ feature fusion mechanisms to enhance the performance and

enable our model to handle variable-length inputs.

• We conduct comprehensive experiments on the model, including the text-to-audio retrieval task,

as well as zero-shot and supervised audio classification downstream tasks. We demonstrate

that scaling of the dataset, keyword-to-caption augmentation, and feature fusion can improve

the performance of the model in different perspectives. It achieves the state-of-the-art (SOTA)

in the text-to-audio retrieval and audio classification tasks, even comparable to the performance

of supervised models.

4.2 Supplementary Materials

The code implementation of CLAP and its pretrained weights of different settings are

released in https://github.com/LAION-AI/CLAP. The dataset LAION-Audio-630K is released

in https://github.com/LAION-AI/audio-dataset.

4.3 LAION-Audio-630K and Training Dataset

4.3.1 LAION-Audio-630K

We collect LAION-Audio-630K, a large-scale audio-text dataset consisting of 633,526

pairs with the total duration of 4,325.39 hours. It contains audios of human activities, natural

sounds and audio effects, consisting of 8 data sources from publicly available websites. We

collect these datasets by downloading audios and relevant text descriptions. Based on our

current knowledge, LAION-Audio-630K is the largest audio-text dataset publicly available and

a magnitude larger than previous audio-text datasets as shown in Table 4.1.

46

https://github.com/LAION-AI/CLAP
https://github.com/LAION-AI/audio-dataset

Table 4.1. The illustration of LAION-Audio-630K dataset and its comparison to existing
datasets.

Dataset Pairs Duration (hours)

Clotho [25] 5,929 37.00
SoundDescs [58] 32,979 1060.40
AudioCaps [55] 52,904 144.94
LAION-Audio-630K (ours) 633,526 4325.39

4.3.2 Training Dataset

To test how model performance will scale on different sizes and types of dataset, we use

three training set setting in the paper, varying from small to large size. These settings employ

three datasets:

1. AudioCaps and Clotho (AC+CL) [55, 25] consist of 55K training samples of audio-text

pairs.

2. LAION-Audio-630K (LA.) consists of around 630K audio-text pairs.

3. Audioset [35] consists of around 2 million audio samples with only labels available for

each audio track.

When processing these datasets, we exclude all overlapping data in evaluation sets. More

details of the training datasets can be found in section 4.8.1.

4.3.3 Dataset Format and Preprocessing

All audio files used in this work are preprocessed to mono channel at a sample rate of

48,000 Hz in FLAC format. For datasets with only tags or labels available, we extend labels

into captions using the template “The sound of label-1, label-2, ..., and label-n” or the

keyword-to-caption model (detail in section 4.5.1). As a result, we can leverage more data into

the training of the contrastive language-audio pretraining model. Combining all the datasets, we

increase the total number of audio samples with text caption to around 2.6 million.

47

Audio Waveforms Text Data

dow
nsam

ple

Conv2DConv2D

Mel-FilterBank Mel-FilterBank

Captions Labels

Text Encoder

Keyword-to-Caption
Augmentation

Captions

1

1

1

1

1

Zero-shot Audio Classification

Audio

Encoder

Text
Encoder

match

Audio
Encoder Projection Layers

Finetune

Supervised Audio Classification

Class Prob.
Vector (1,C)

MLP

MLP

MLP

Attention Feature Fusion

Other Encoder Layers

MLP Layer

Audio
Encoder

MLP Layer
Merge Conv2D

Repeat + Pad

Figure 4.1. The architecture of our proposed contrastive language-audio pretraining model
(CLAP) based on HTS-AT, including audio encoders, text encoders, feature fusion, and keyword-
to-caption augmentation.

48

4.4 Model Architecture

4.4.1 Contrastive Language-Audio Pretraining

Figure 4.1 depicts the general architecture of our proposed contrastive language-audio

encoder model. Similar to CLIP [85], we have two encoders to separately process the input

of audio data Xa
i and text data X t

i , where (Xa
i ,X

t
i) is one of audio-text pairs indexed by i. The

audio embedding Ea
i and the text embedding Et

i are respectively obtained by the audio encoder

faudio(·) and the text encoder ftext(·), with projection layers:

Ea
i = MLPaudio(faudio(Xa

i)) (4.1)

Et
i = MLPtext(ftext(X t

i)) (4.2)

Where the audio/text projection layer is a 2-layer multi-layer perceptron (MLP) with ReLU [3] as

the activation function to map the encoder outputs into the same dimension D (i.e., Ea
i ,E

t
i ∈ RD).

The model is trained with the contrastive learning paradigm between the audio and text

embeddings in pair, following the same loss function (i.e., CLIP-Loss) in [85]:

L = 1
2N ∑

N
i=1(log exp(Ea

i ·Et
i /τ)

∑
N
j=1 exp(Ea

i ·Et
j/τ)

+ log exp(Et
i ·Ea

i /τ)

∑
N
j=1 exp(Et

i ·Ea
j /τ)

) (4.3)

Where τ is a learnable temperature parameter for scaling the loss. Two logarithmic terms consider

either audio-to-text logits or text-to-audio logits. N is usually the number of data, but during the

training phase, N is used as the batch size, as we cannot compute the whole matrix of all data but

update the model by batch gradient descent.

After we train the model, the embeddings (Ea,Eb) can be used for different tasks as

shown in Figure 4.1 and listed in the below subsection.

49

4.4.2 Downstream Tasks in Inference Stage

Text-to-Audio Retrieval

The target audio embedding Ea
p can find the nearest text embedding Et

q among M texts

Et = {Et
1, ...,E

t
M} by the cosine similarity function, determining the best match.

Zero-shot Audio Classification

For M audio classes C = {C1, ...,CM}, we can construct M prompt texts X t = {X t
1, ...,X

t
M}

(e.g., “the sound of class-name”). For a given audio Xa
p , we determine the best match X t

q among

X t by the cosine similarity function over their embeddings. One advantage of using the contrastive

language-audio pretraining is that the categories of audio are unrestricted (i.e., zero-shot) since

the model can convert the classification task into the text-to-audio retrieval task.

Supervised Audio Classification

After training the model, for a given audio Xa
p , its embedding Ea

p can be further mapped

into a fixed-category classification task by adding a projection layer at the back and finetuning

(i.e., the non-zero-shot setting).

4.4.3 Audio Encoders and Text Encoders

Similar to Chapter 3, we select two models, PANN [60] and the proposed HTS-AT,

to construct the audio encoder. PANN is a CNN-based audio classification model with 7

downsampling CNN blocks and 7 upsampling blocks. HTS-AT is a transformer-based model

with 4 groups of swin-transformer blocks [71] and a token-semantic module [34]. For both of

them, we use the output of the penultimate layer, a H-dimension vector as the output sent to the

projection MLP layer, where HPANN = 2048 and HHT S−AT = 768.

We select three models, CLIP transformer [85] (text encoder of CLIP), BERT [22],

and RoBERTa [70], to construct the text encoder. The output dimension of text encoders is

respectively HCLIP = 512. HBERT = 768, and HRoBERTa = 768. We apply both 2-layer MLPs

50

with ReLU activation [3] to map both audio and text outputs into 512 dimensions, which is the

size of audio/text representations when training with the contrastive learning paradigm.

4.4.4 Feature Fusion for Variable-Length Audio

Unlike image data that can be resized to a unified resolution, audio has a nature of

variable length. Conventionally, one would input the full audio into the audio encoder and take

the average of per-frame or per-chunk audio embeddings as output (i.e., slice & vote). However,

the conventional method is computationally inefficient on long audio.

As shown in the left of Figure 4.1, we train and inference on different lengths of audio

inputs in constant computation time by combining both coarsely global and randomly sampled

local information. For an audio in T seconds and a fixed chunk duration d = 10 seconds:

• T ≤ d: we first repeat the input, then pad it with zero values. For example, a 3-second input

will be repeated as 3×3 = 9-second and padded with 1-second zero values.

• T > d: we first downsample the input from T to d-second as a global input. Then we randomly

slice three d-second clips, respectively from the front 1
3 , middle 1

3 and back 1
3 of the input,

as local inputs. We send these 4× d inputs into the first layer of audio encoder to get the

initial features, then three local features will be further converted to one feature by another

2D-Convolution layer with 3-stride in the time axis. Finally, the local feature Xa
local and the

global feature Xa
global will be fused as:

Xa
f usion = αXa

global +(1−α)Xa
local (4.4)

Where α = fAFF(Xa
global,X

a
local) is a factor obtained by attention feature fusion (AFF) [19],

a two-branch CNN model for learning the fusion factor of two inputs. Comparing with the

“slice & vote” method, the feature fusion also saves the training time as we only process audio

slices in the first few layers.

51

Figure 4.2. The model architecture of attentional feature fusion. This illustration is referred
from [19].

4.5 Attentional Feature Fusion

The attentional feature fusion (AFF), a two-branch CNN network, to combine the global

information and the local information of input audios (originally the images in the computer

vision research) together.

As shown in Figure 4.2, the fusion architecture accepts two inputs: X is the global

information (Xa
global), and Y is the merged local information (Xa

local) Two inputs are sent to two

CNN networks to generate the coefficient α , then X and Y are added by this coefficient as

presented in Equation 4.4.

52

Figure 4.3. Examples of keyword-to-caption augmentation from AudioSet labels and the de-
biased version for the model training.

4.5.1 Keyword-to-Caption Augmentation

As mentioned in section 4.3.1, some datasets contains reasonable labels or tags as

keywords of the corresponding audios. As shown in the right of Figure 4.1, we used a pre-trained

language model T5 [86] to make captions on top of these keywords. We also de-bias the output

53

sentence as post-processing. For example, we replace “woman” and “man” with ‘person’ as

gender de-biasing. Some examples of keyword-to-caption by T5 model from AudioSet labels

are provided in Table 4.3.

Additionally, when applying keyword to caption, we excluded samples shorter than 2

seconds, as we found in such case the audio is merely a single event, thus matching poorly with

the caption generated. When using keyword to caption in training dataset including audioset, we

use only the captions generated by keyword to caption and exclude the captions generated by

template.

4.6 Experiments

In this section, we conduct three experiments on our proposed model. First, we train with

different audio and text encoders to find the best baseline combination. Then, we train our model

on various dataset size, with the feature fusion and keyword-to-caption augmentation to verify

the efficacy of the proposed methods.

For the first two experiments, we evaluate our model via recall and mean average precision

(mAP) on audio-to-text and text-to-audio retrieval. Lastly, we use the best model to conduct

zero-shot and supervised audio classification experiments to evaluate the generalization ability

to the downstream tasks.

4.6.1 Hyperparameters and Training Details

As mentioned in section 4.3.2, we use AudioCaps, Clotho, LAION-Audio-630K, along

with the additional dataset — AudioSet by keyword-to-caption augmentation, to train our model.

For the audio data, we use 10-second input length, 480 hop size, 1024 window size, 64 mel-bins

to compute STFTs and mel-spectrograms. As the result, each input sent to the audio encoder is

of the shape (T = 1024,F = 64). For the text data, we use a maximum token length of 77.

When training the model without the feature fusion, the audio longer than 10-second will

be randomly chunked to a 10-second segment. During training, we use the Adam [56] optimizer

54

with β1 = 0.99, β2 = 0.9 with a warm-up and cosine learning rate decay at a basic learning rate

of 10−4. We train the model using a batch size of 768 on AudioCaps+Clotho dataset, 2304

on training dataset containing LAION-Audio-630K, and 4608 on training dataset containing

AudioSet. We train the model for 45 epochs.

4.6.2 Evaluation Metrics

The primary focus on assessing the efficacy of the models in terms of retrieval perfor-

mance utilizes the metrics such as R@1, R@5, R@10 and Mean Average Precision (mAP).

The Clotho and AudioCaps datasets, in particular, are characterized by the presence of five text

ground-truths per audio sample. Therefore, in evaluating the retrieval performance on these

datasets, we adopt the same metrics as used in previous studies, specifically, those outlined in

[76, 81] in https://github.com/XinhaoMei/audio-text retrieval/blob/main/tools/utils.py#L74.

For text-to-audio retrieval, we treat each text from an audio as independent test sample,

and calculate the average of text-to-audio retrieval metrics on test samples that are five times the

size of test set. In evaluating audio-to-text recall, the recall for each audio is calculated by taking

the best audio-to-text retrieval result from the five text ground-truths. Additionally, audio-to-text

Mean Average Precision (mAP) is calculated as

mAP@10 =
1
R

10

∑
r=1

(P(r)∗ rel(r)) (4.5)

where P(r) represents the precision at recall level r, and rel(r) is a binary indicator of whether

the text at recall level r is relevant or not.

In the case of other datasets, such as Freesound, in which there is only one text associated

with each audio sample, the recall and mean average precision (mAP) are measured in the

standard manner.

55

https://github.com/XinhaoMei/audio-text_retrieval/blob/main/tools/utils.py#L74

Table 4.2. The text-to-audio retrieval result (mAP@10) of using different audio/text encoder on
AudioCaps and Clotho.

Model
AudioCaps (mAP@10) Clotho (mAP@10)

A→T T→A A→T T→A

PANN + CLIP Transformer 4.7 11.7 1.9 4.4
PANN + BERT 34.3 44.3 10.8 17.7
PANN + RoBERTa 37.5 45.3 11.3 18.4
HTS-AT + CLIP Transformer 2.4 6.0 1.1 3.2
HTS-AT + BERT 43.7 49.2 13.8 20.8
HTS-AT + RoBERTa 45.7 51.3 13.8 20.4

4.6.3 Text-to-Audio Retrieval

Audio and Text Encoders

We first conduct experiments to choose the best audio encoder and text encoder for

the text-to-audio retrieval task. We combine two audio encoders with three text encoders in

section 4.4.3 where both are loaded from pretrained checkpoints as the same to [81, 76, 21]. In

this experiment, we only train on AudioCaps and Clotho datasets (∼55K data), and report the

best mAP@10 on audio-to-text (A→T) and text-to-audio (T→A) perspectives.

According to the results in Table 4.2, for audio encoder, HTS-AT performs better than

PANN combined with the RoBERTa or BERT text encoder. For the text encoder, RoBERTa

achieves better performance than BERT while the CLIP transformer performs the extremely

worst. This coincides with the choice of text encoder in previous works [76, 26]. When further

analyzing the loss convergence trends of CLIP transformer model, we find that RoBERTa is less

over-fitting, while CLIP transformer is of high-over-fitting, thus resulting its low generalization

performance.

Dataset Scale

Consequently, we apply HTS-AT-RoBERTa as our best model setting to conduct the

text-to-audio retrieval experiments as a comprehensive evaluation in Table 4.3. We adopt the

same metrics in [76, 81] to compute recall scores at different ranks in this task. In the training

56

Ta
bl

e
4.

3.
T

he
te

xt
-t

o-
au

di
o

re
tr

ie
va

lp
er

fo
rm

an
ce

on
A

ud
io

C
ap

s
an

d
C

lo
th

o
da

ta
se

ts
,w

he
re

“L
A

.”
re

fe
rs

to
L

A
IO

N
-A

ud
io

-6
30

K
,

“t
em

pl
at

e”
re

fe
rs

to
th

e
te

xt
pr

om
pt

in
g

by
te

m
pl

at
es

,“
K

2C
au

g.
”

re
fe

rs
to

th
e

ke
yw

or
d-

to
-c

ap
tio

n
au

gm
en

ta
tio

n,
an

d
“f

us
io

n”
re

fe
rs

to
th

e
fe

at
ur

e
fu

si
on

.

M
od

el
Tr

ai
ni

ng
Se

t
A

ud
io

C
ap

s
E

va
l.

C
lo

th
o

E
va

l.

T-
A

R
et

ri
ev

al
A

-T
R

et
ri

ev
al

T-
A

R
et

ri
ev

al
A

-T
R

et
ri

ev
al

R
@

1
R

@
5

R
@

10
R

@
1

R
@

5
R

@
10

R
@

1
R

@
5

R
@

10
R

@
1

R
@

5
R

@
10

M
M

T
[8

1]
A

ud
io

C
ap

s
or

C
lo

th
o

36
.1

72
.0

84
.5

39
.6

76
.8

86
.7

6.
7

21
.6

33
.2

7.
0

22
.7

34
.6

M
L

-A
C

T
[7

6]
A

ud
io

C
ap

s
or

C
lo

th
o

33
.9

69
.7

82
.6

39
.4

72
.0

83
.9

14
.4

36
.6

49
.9

16
.2

37
.6

50
.2

C
L

A
P-

H
T

S-
A

T
[2

1]
A

ud
io

C
ap

s
+

C
lo

th
o

+
W

T
5K

34
.6

70
.2

82
.0

41
.9

73
.1

84
.6

16
.7

41
.1

54
.1

20
.0

44
.9

58
.7

H
T

S-
A

T-
R

oB
E

R
Ta

A
ud

io
C

ap
s

+
C

lo
th

o
36

.7
70

.9
83

.2
45

.3
78

.0
87

.7
12

.0
31

.6
43

.9
15

.7
36

.9
51

.3
H

T
S-

A
T-

R
oB

E
R

Ta
A

ud
io

C
ap

s
+

C
lo

th
o

+
L

A
.

32
.7

68
.0

81
.2

43
.9

77
.7

87
.6

15
.6

38
.6

52
.3

23
.7

48
.9

59
.9

H
T

S-
A

T-
R

oB
E

R
Ta

(f
us

io
n)

A
ud

io
C

ap
s

+
C

lo
th

o
+

L
A

.
36

.2
70

.3
82

.5
45

.0
76

.7
88

.0
17

.2
42

.9
55

.4
24

.2
51

.1
66

.9
H

T
S-

A
T-

R
oB

E
R

Ta
A

C
ap

s.
+

C
lo

th
o

+
L

A
.+

A
ud

io
Se

t(
te

m
pl

at
e)

34
.7

70
.5

83
.2

45
.3

79
.5

89
.2

16
.4

39
.0

51
.0

21
.8

44
.6

60
.1

H
T

S-
A

T-
R

oB
E

R
Ta

A
C

ap
s.

+
C

lo
th

o
+

L
A

.+
A

ud
io

Se
t(

K
2C

au
g.

)
36

.1
71

.8
83

.9
46

.8
82

.9
90

.7
16

.1
38

.3
51

.1
22

.7
48

.5
60

.8
H

T
S-

A
T-

R
oB

E
R

Ta
(f

us
io

n)
A

C
ap

s.
+

C
lo

th
o

+
L

A
.+

A
ud

io
Se

t(
K

2C
au

g.
)

35
.1

71
.9

83
.7

44
.2

80
.8

90
.3

16
.9

41
.6

54
.4

24
.4

49
.3

65
.7

57

set, we gradually increase the scale of the dataset. We find that scaling up the dataset from

“AudioCaps + Clotho” to “LA.” does not improve the result on AudioCaps evaluation set but

gets better performance on Clotho evaluation set, which is similar to the comparison between

MMT [81] and CLAP-HTS-AT [21]. One reason is that AudioCaps contains audios similar to

AudioSet on which the audio encoder’s loaded checkpoint is pretrained. When the model receives

more data from other sources, it increases its generalization but moves the distribution out of

AudioSet data. Therefore, the performance on AudioCaps drops but that on Clotho increases a

lot, demonstrating a trade-off of the model to keep the performance among different types of

audios.

Keyword-to-Caption and Feature Fusion

When adding the feature fusion mechanism and keyword-to-caption augmentation to

the model, we can observe that either of them improves the performance. The feature fusion is

effective especially in Clotho dataset because it contains longer audio data (> 10-second). When

we add AudioSet into the training set with either template prompting or keyword-to-caption

augmentation, we can see the performance increases again on AudioCaps while decreases on

Clotho. This further confirms the trade-off performance between AudioCaps and Clotho datasets

mentioned above. And the keyword-to-caption augmentation does bring in better performance

than the simple template text prompting method on most metrics.

As the result, our best model outperforms previous methods on most metrics (mainly

R@1=36.7% on AudioCaps and R@1=18.2% on Clotho) in the text-to-audio retrieval tasks. We

show that training on large-scale datasets (LAION-Audio-630K and AudioSet with keyword-to

caption augmentation), and feature fusion can effectively improve model performance.

58

Table 4.4. The zero-shot (ZS.) and supervised (SV.) audio classification results. The SoTA of
each dataset/setting is denoted by the reference after the number.

Model
Audio Classification Dataset & Setting

ESC-50 US8K VGGSound FSD50K

ZS. ZS. ZS. SV. SV.

Wav2CLIP [123] 41.4 40.4 10.0 46.6 43.1
AudioClip [40] 69.4 65.3 - - -
Microsoft [21] 82.6 73.2 - - 58.6

CLAP 89.1 73.2 29.1 75.4 64.9
CLAP+Fusion 88.0 75.8 26.3 75.3 64.4
CLAP+K2C Aug. 91.0 77.0 46.2 75.3 59.7

SoTA* 82.6 [21] 73.2 [21] 10.0 [123] 64.1 [79] 65.6 [62]

4.6.4 Zero-shot and Supervised Audio Classification

Zero-shot Audio Classification

To study the model generalization and robustness, we conduct zero-shot audio classifica-

tion experiments on three top-performing models in previous experiments. We evaluate models

on three audio classification dataset, namely ESC-50 [84], VGGSound [14], and Urbansound8K

(US8K) [95]. We use top-1 accuracy as the metric. We classify audio by performing audio-to-

text retrieval with each text corresponds to the text prompt converted from class label via “This

a sound of label.”. We noticed a dataset overlap between our training data and the zero-shot

dataset we are evaluating on. We excluded all the overlap samples and perform zero-shot

evaluation on the whole remaining dataset.

Supervised Audio Classification

We perform supervised audio classification by fine-tuning the audio encoder on VG-

GSound and FSD50K [28] datasets. We do not conduct this experiment on ESC-50 and Ur-

bansound8K because the potential data leakage issue in those dataset will makes the results

incomparable with the previous methods. Specially, mAP is used as the metric to evaluate

FSD50K.

59

As shown in the in Table 4.4, our models achieves new SoTAs of zero-shot audio

classification across all three datasets, demonstrating the high generalization ability of our model

to unseen data. Keyword-to-Caption augmentation increases the performance of VGGSound and

US8K a lot as it adds more text captions to “enrich” the text embedding space. Feature fusion

not only enables the model to handle variable-length input, but also achieves better performance

than previous models. Our best supervised audio classification result outperforms the current

state-of-the-art on VGGSound dataset and is close to state-of-the-art on FSD50K dataset. The

results verify that the proposed model also learns efficient audio representation during contrastive

learning paradigm.

4.7 Conclusion

In this chapter, we propose a large-scale audio-text dataset and improvements on current

language-audio contrastive learning paradigm. We show that LAION-Audio-630, AudioSet

with keyword-to-caption augmentation, and feature fusion effectively leads to better audio

understanding, task performance, and enables effective learning on variable-length data. As the

result, we successfully extend the proposed HTS-AT into a more advanced audio representation

model – CLAP, that is able to bridge both audio and language modalities beyond the singular

audio information. With CLAP, we can anticipate more advanced applications of audio and

music processing along with textual inputs.

4.8 Additional Information

4.8.1 Details of LAION-AUDIO-630K

• We list the specifications of website/sources from which we collect the audio samples and text

captions for LAION-Audio-630K in Table 4.5.

• We list the details of three datasets in Table 4.6. We use the combination of them to train the

model in the section 4 of the submission.

60

10 1 100 101 102

sound length

0

1000

2000

3000

4000

5000

6000

re
la

tiv
e

fre
qu

en
cy

Epidemic Sound Audio Duration

(a) The audio length distribution of Epi-
demic Sound.

10 3 10 2 10 1 100 101 102 103 104 105

sound length

0

10000

20000

30000

40000

50000

re
la

tiv
e

fre
qu

en
cy

Freesound Audio Duration

(b) The audio length distribution of
Freesound.

Figure 4.4. The audio length distribution of Epidemic Sound and Freesound.

• We present the distribution of audio length on Epidemic Sound and Freesound [31] in Figure

4.4, as parts of LAION-Audio-630K, to demonstrate the existence of variable-length problem

in audio data processing and model training.

The samples in Freesound dataset are collected from Freesound [31]. All audio clips

from Freesound are released under Creative Commons (CC) licenses, while each clip has its own

license as defined by the clip uploader in Freesound, some of them requiring attribution to their

original authors and some forbidding further commercial reuse. Specifically, here is the statistics

about licenses of audio clips involved in LAION-Audio-630K:

• CC-BY: 196,884

• CC-BY-NC: 63,693

• CC0: 270,843

• CC Sampling+: 11,556

We listed the licenses for each sample in our dataset release page at https://github.com/

LAION-AI/audio-dataset/tree/main/laion-audio-630k.

61

https://github.com/LAION-AI/audio-dataset/tree/main/laion-audio-630k
https://github.com/LAION-AI/audio-dataset/tree/main/laion-audio-630k

Table 4.5. The dataset resource of LAION-Audio-630k.

Data Source Number of Samples Duration Data Type

BBC sound effects 15,973 463.48hrs 1 caption per audio, audio
Free To Use Sounds 6,370 175.73hrs Filename as caption, audio
Sonniss Game effects 5,049 84.6hrs Filename as caption, audio
We Sound Effects 488 12.00hrs Filename as caption, audio
Paramount Motion Sound Effects 4,420 19.49hrs Filename as caption, audio
Audiostock 10,000 46.30hrs 1 caption per audio, audio
Freesound [31] 515,581 3003.38rs 1-2 captions per audio, audio
Epidemic Sound 75,645 220.41hrs 2 captions per audio, audio

Table 4.6. All datasets used for the training of CLAP.

Data Source Number of Samples Duration Data Type
AudioCaps + Clotho

AudioCaps 49,274 136.87hrs 1 caption per audio, audio
Clotho 3,839 23.99hrs 5 captions per audio, audio

LAION-Audio-630K
BBC sound effects 15,973 463.48hrs 1 caption per audio, audio
Episodesound 75,645 220.41hrs 2 captions per audio, audio
freesound 414,127 2,528.15hrs 1-2 captions per audio, audio
Free To Use Sounds 6,370 175.73hrs Filename as caption, audio
Sonniss Game effects 5,049 84.6hrs Filename as caption, audio
We Sound Effects 488 12.00hrs Filename as caption, audio
Paramount Motion Sound Effects 4,420 19.49hrs Filename as caption, audio
Audiostock 10,000 46.30hrs 1 caption per audio, audio

FSD50K 36,796 70.39hrs 1 caption per audio, audio
MACS 3,537 9.825hrs Several (2∼) captions per audio, audio
Wavtext5K 4,072 23.2hrs 1 caption per audio, audio

AudioSet
AudioSet 1,912,024 463.48hrs 2 captions per audio,audio

4.8.2 Additional Experiment on Freesound Dataset

To further evaluate the efficacy of feature fusion, apart from AudioCaps and Clotho

datasets, we further evaluate our model on Freesound evaluation set, which contains more than

10-sec audio samples (similar to Clotho dataset).

The result is shown in Table 4.7, the notation is the same as the Table 4.3 in our submission

paper. The performance on Freesound dataset shares a similar trend with that on Clotho dataset:

• The performance trained on “AudioCaps + Clotho + LA.” is better than that trained on

62

https://sound-effects.bbcrewind.co.uk
https://www.freetousesounds.com/product/all-in-one-sound-library-bundle
https://sonniss.com/gameaudiogdc/
https://www.wesoundeffects.com/
https://www.paramountmotion.com/odeon-sound-effects
https://audiostock.net/se
https://www.epidemicsound.com/sound-effects/

Ta
bl

e
4.

7.
T

he
te

xt
-t

o-
au

di
o

re
tr

ie
va

lp
er

fo
rm

an
ce

on
Fr

ee
so

un
d

ev
al

ua
tio

n
se

t.

M
od

el
Tr

ai
ni

ng
Se

t
Fr

ee
so

un
d

(m
A

P@
10

)

A
→

T
T
→

A

H
T

S-
A

T-
R

oB
E

R
Ta

A
ud

io
C

ap
s

+
C

lo
th

o
+

L
A

.
25

.9
24

.5
H

T
S-

A
T-

R
oB

E
R

Ta
(f

us
io

n)
A

ud
io

C
ap

s
+

C
lo

th
o

+
L

A
.

26
.4

24
.9

H
T

S-
A

T-
R

oB
E

R
Ta

A
ud

io
C

ap
s

+
C

lo
th

o
+

L
A

.+
A

ud
io

Se
t(

K
2C

A
ug

.)
22

.9
21

.8
H

T
S-

A
T-

R
oB

E
R

Ta
(f

us
io

n)
A

ud
io

C
ap

s
+

C
lo

th
o

+
L

A
.+

A
ud

io
Se

t(
K

2C
A

ug
.)

24
.6

22
.9

63

“AudioCaps + Clotho + LA. + AudioSet”. Similar to Clotho, the Freesound dataset contains

audio samples that are different from AudioSet, adding the AudioSet into the training will

move the model’s distribution out of general audio data to AudioSet-like audio data, such

decreasing the performance.

• The performance with feature fusion is better than that without feature fusion, as the Freesound

dataset contains the samples larger than 10-secs, which is the same to Clotho dataset. Their

performance trend are similar.

From the above experiment, we can further conclude that the feature fusion can improve

the performance of text-to-audio task (i.e., generate better audio representations) on the variable-

length audio samples.

4.9 Experiment Settings on Data Exclusion

We excluded all the overlap samples and perform zero-shot evaluation on the whole

remaining dataset. Table 4.8 shows the detail of it.

4.10 Reference of CLAP

This chapter contains some materials (texts, tables, and figures) from a published confer-

ence paper: Yusong Wu*, Ke Chen*, Tianyu Zhang*, Yuchen Hui*, Taylor Berg-Kirkpatrick,

Shlomo Dubnov, Large-Scale Contrastive Language-Audio Pretraining with Feature Fusion and

Keyword-To-Caption Augmentation, in proceedings of International Conference on Acoustics,

Speech and Signal Processing, ICASSP 2023. The dissertation author was the co-first-author of

this publication.

64

Table 4.8. The overlaps between the training data and the zero-shot evaluation data, we excluded
all these overlaps from the evaluation sets to calculate the audio classification metrics.

Datasource A Datasource B

Number of
samples from

Datasource A that
are also in

Datasource B

ESC50-all Clotho-train 94
ESC50-all Clotho-valid 27
ESC50-all Clotho-test 34

ESC50-all FSD50K-train 399
ESC50-all FSD50K-valid 60
ESC50-all FSD50K-test 171

US8K-all Clotho-train 411
US8K-all Clotho-valid 150
US8K-all Clotho-test 209

US8K-all FSD50K-train 697
US8K-all FSD50K-valid 180
US8K-all FSD50K-test 341

Clotho-test FSD50K-train 54
Clotho-test FSD50K-valid 15
Clotho-test FSD50K-test 33

FSD50K-test Clotho-train 137
FSD50K-test Clotho-valid 31
FSD50K-test Clotho-test 33

Clotho-valid FSD50K-train 53
Clotho-valid FSD50K-valid 10

FSD50K-valid Clotho-train 38
FSD50K-valid Clotho-valid 10

AudioCaps-test
Audioset-

unbalanced-train
4,875

AudioCaps-test
Audioset-

balanced-train
0

AudioSet-test AudioCaps-train 0
AudioSet-test AudioCaps-valid 0

65

Chapter 5

MusicLDM: Text-To-Music Generation

In Chapter 4, we analyze the limitation of the proposed HTS-AT model when it encounters

the application requiring the information from multiple modalities. The refinement of HTS-AT

involves connecting it with a text encoder to construct CLAP, a contrastive language-audio

pretraining model capable of bridging both audio and text information. These efforts lead to

a groundbreaking development in the generation task — text-to-music generation. Previously,

a single HTS-AT model was inadequate for serving as an audio representation model for this

application due to the absence of text input, which is addressed by CLAP.

In this chapter, we introduce the combination of the CLAP model, the variational auto-

encoder module, and the audio synthesis vocoder to create a text-to-music generation model,

MusicLDM. Besides, we delve into a detailed analysis of methods to prevent plagiarism in the

music generation task to ensure the novelty of the generated music.

5.1 Introduction

Text-guided generation tasks have gained increasing attention in recent years and have

been applied to various modalities, including text-to-image, text-to-video, and text-to-audio

generation. Text-to-image generation has been used to create both realistic and stylized images

based on textual descriptions, which can be useful in various scenarios including graphic

design. Text-to-audio generation is a relatively new, but rapidly growing area, where the goal

66

is to generate audio pieces, such as sound events, sound effects, and music, based on textual

descriptions. Diffusion models have shown superior performance in these types of cross-modal

generation tasks, including systems like DALLE-2 [88] and Stable Diffusion [91] for text-to-

image; and AudioGen [63], AudioLDM [68], and Make-an-Audio [51] for text-to-audio.

As a special type of audio generation, text-to-music generation has many practical

applications [10, 27]. For instance, musicians could use text-to-music generation to quickly build

samples based on specific themes or moods and speed up their creative process. Amateur music

lovers could leverage generated pieces to learn and practice for the purpose of musical education.

However, text-to-music generation presents several specific challenges. One of the main

concerns is the limited availability of text-music parallel training data [4]. Compared to other

modalities such as text-to-image, there are relatively few text-music pairs available, making

it difficult to train a high-quality conditional model. Large and diverse training sets may be

particularly imperative for music generation, which involves many nuanced musical concepts,

including melody, harmony, rhythm, and timbre. Further, the effectiveness of diffusion models

trained on more modest training sets has not been fully explored. Finally, a related concern in

text-to-music generation is the risk of plagiarism or lack of novelty in generated outputs [4].

Music is often protected by copyright laws, and generating new music that sounds too similar

to existing music can lead to legal issues. Therefore, it is important to develop text-to-music

models that can generate novel and diverse music while avoiding plagiarism, even when trained

on relatively small training datasets.

In this chapter, we focus on both these challenges: we develop a new model and training

strategy for learning to generate novel text-conditioned musical audio from limited parallel

training data. Currently, since there is no open-source model for text-to-music generation, we

first construct a state-of-the-art text-to-music generation model, MusicLDM, which adapts the

Stable Diffusion [91] and AudioLDM [68] architectures to the music domain. Next, to address

the limited availability of training data and to encourage novel generations, we adapt an idea from

past work in other modalities: mixup [127], which has been applied to computer vision and audio

67

retrieval tasks, augments training data by recombining existing training points through linear

interpolation. This type of augmentation encourages models to interpolate between training

data rather than simply memorizing individual training examples, and thus may be useful in

addressing data limitations and plagiarism in music generation. However, for music generation,

the naive application of mixup is problematic. Simply combining waveforms from two distinct

musical pieces leads unnatural and ill-formed music: tempos and beats (as well as other musical

elements) are unlikely to match. Thus, we propose two novel mixup strategies, specifically

designed for music generation: beat-synchronous audio mixup (BAM) and beat-synchronous

latent mixup (BLM), which first analyze and beat-align training samples before interpolating

between audio samples directly or encoding and then interpolating in a latent space, respectively.

We design new metrics that leverage a pretrained text and audio encoder (CLAP) to test

for plagiarism and novelty in text-to-music generation. In experiments, we find that our new

beat-synchronous mixup augmentation strategies, by encouraging the model to generate new

music within the convex hull of the training data, substantially reduce the amount of copying in

generated outputs. Further, our new model, MusicLDM, in combination with mixup, achieves

better overall musical audio quality as well as better correspondence between output audio and

input text. In both automatic evaluations and human listening tests, MusicLDM outperforms

state-of-the-art models at the task of text-to-music generation while only being trained on 9K

text-music sample pairs.

5.2 Supplementary Materials

The code implementation of MusicLDM and its pretrained weights of different settings

are released in https://github.com/RetroCirce/MusicLDM. Music samples and qualitative results

are available at https://musicldm.github.io.

68

https://github.com/RetroCirce/MusicLDM
https://musicldm.github.io

5.3 Related Work

5.3.1 Text-to-Audio Generation

Text-to-audio generation (TTA) [68, 63, 126] is a type of generative task that involves

creating audio content from textual input. In years past, text-to-speech (TTS) [89, 108] achieved

far better performance than other types of audio generation. However, with the introduction of

diffusion models, superior performance in various generation tasks became more feasible. Recent

work has focused on text-guided generation in general audio, with models such as Diffsound

[126], AudioGen [63], AudioLDM [68], and Make-an-Audio [51] showing impressive results. In

the domain of music, text-to-music models include the retrieval-based MuBERT [78], language-

model-based MusicLM [4], diffusion-based Riffusion [33] and Noise2Music [50]. However, a

common issue with most recent text-to-audio/music models is the lack of open-source training

code. Additionally, music models often requires large amounts of privately-owned music data

that are inaccessible to the public, which makes it difficult for researchers to reproduce and build

upon their work.

5.3.2 Plagiarism on Diffusion Models

Diffusion models have been shown to be highly effective at generating high-quality and

diverse samples for text-to-image tasks. However, a potential issue with these models is the

risk of plagiarism [100, 12], or the generation novelty. As stated by [100], diffusion models are

capable of memorizing and combining different image objects from training images to create

replicas, which can lead to highly similar or even identical samples to the training data. [12]

explores different methods that could extract the training data with a generate-and-filter pipeline,

showing that new advances in privacy-preserving training of diffusion models are required.

Such issues are especially concerning in the domain of music, where copyright laws are heavily

enforced and violations can result in significant legal and financial consequences. Therefore,

there is a need to develop strategies to mitigate the risk of plagiarism in text-to-music generation

69

using diffusion models.

5.3.3 Mixup on Data Augmentation

Mixup [127] is a widely used data augmentation technique that has shown remarkable

success in improving model generalization and mitigating overfitting. The basic principle of

mixup is to linearly combine pairs of training samples to effectively construct new samples that

lie on the line connecting the original samples in the feature space, encouraging the model to

learn a more continuous and robust decision boundary. In this chapter, we explore the mixup

technique in the context of text-to-music generation based on latent diffusion models. Different

from the mixup in other modalities, music mixup involves a delicate balance of musical elements

to prevent the mixed music from being chaotic noise. Moreover, in diffusion models, mixup also

can refer to the combination of latent features, rather than music signals. We propose two mixup

strategies tailored for music latent diffusion models and explore their potential benefits for data

augmentation and generation performance.

5.4 Model Architecture

5.4.1 MusicLDM

As illustrated in Figure 5.1, MusicLDM has similar architecture as AudioLDM: a con-

trastive language-audio pretraining (CLAP) model in Chapter 4, an audio latent diffusion model

[68] with a pretrained variational auto-encoder (VAE) [57], and a Hifi-GAN neural vocoder [59].

Formally, given an audio waveform xxx ∈ RT its corresponding text, where T is the length

of samples, we feed the data into three modules:

1. We pass xxx through the audio encoder of CLAP (i.e., HTS-AT) faudio(·), to obtain the semantic

audio embedding EEEa
x ∈ RD, where D is the embedding dimension.

2. We pass the text of x through the text encoder of CLAP (i.e., RoBERTa) ftext(·), to to obtain

the semantic text embedding EEEt
x ∈ RD.

70

audio waveform mel-spectrogram

STFT+MelFB

A spectacular
dramatic trailer

corresponding text

CLAP
Audio Encoder

CLAP
Text Encoder

U-Net Latent Diffusion Model

......

FiLM Cocatenation

VAE
Decoder

VAE
Encoder

Hifi-GAN

OR

Figure 5.1. The architecture of MusicLDM, which contains a contrastive language-audio
pretraining (CLAP) model, an audio latent diffusion model with VAE, and a Hifi-GAN neural
vocoder.

3. We transform xxx into in the mel-spectrogram xxxmel ∈ RT×F . Then we pass xxxmel into the VAE

encoder, to obtain an audio latent representation yyy∈RC× T
P×

F
P , where T is the mel-spectrogram

frame size, F is the number of mel bins, C is the latent channel size of VAE, and P is the

downsampling rate of VAE. The VAE is pretrained to learn to encoder and decode the

mel-spectrogram of music data.

In MusicLDM, the latent diffusion model has a UNet architecture where each encoder or

decoder block is composed of a ResNet layer [41] and a spatial transformer layer [91]. During

the training, the semantic embedding of the input audio EEEx is concatenated with the latent feature

of each UNet encoder and decoder block by the FiLM mechanism [83]. The output of the

diffusion model is the estimated noise εεεθ (zzzn,n,EEEx) from n to (n−1) time step in the reverse

process, where θ is the parameter group of the diffusion model, and zzzn is the n-step feature

generated by the forward process. We adopt the training objective [46] as the mean square error

(MSE) loss function:

Ln(θ) = Ezzz0,εεε,n||εεε − εεεθ (zzzn,n,EEEx)||22 (5.1)

71

where zzz0 = yyy is the audio latent representation from VAE (i.e., the groundtruth), and εεε is the

target noise for training. More details regarding the training and the architecture of the latent

diffusion model can be referred in section 5.5.2.

For MusicLDM, we make two changes from the text-to-audio generation scenarios to the

text-to-music scenarios.

First, since the original contrastive language-audio pretraining (CLAP) model is pre-

trained on text-audio pair datasets dominated by sound events, sound effects and natural sounds,

we retrained the CLAP on text-music pair datasets (details in section 5.5.2) to improve its

understanding of music data and corresponding texts. We also retrained the Hifi-GAN vocoder

on music data to ensure high-quality transforms from mel-spectrograms to music waveforms.

Second, in the original AudioLDM, the model is only fed with audio embeddings as the

condition during the training process, i.e., EEEx = EEEa
x ; and it is fed with text embeddings to perform

the text-to-audio generation, i.e., EEEx = EEEt
x. This approach leverages the alignment of text and

audio embeddings inside CLAP to train the latent diffusion model with more audio data without

texts. However, this audio-to-audio training εεεθ (zzzn,n,EEEa
x) is essentially an approximation of

the text-to-audio generation εεεθ (zzzn,n,EEEt
x). Although CLAP is trained to learn joint embeddings

for text and audio, it does not explicitly enforce the embeddings to be distributed similarly

in the latent space, which can make it challenging for the model to generate coherent text-to-

audio outputs solely with audio-to-audio training. This problem becomes more severe when the

available text-music pair data is limited. Moreover, relying solely on audio embeddings ignores

the available text data, which means that we are not leveraging the full potential of our dataset.

Consequently, generating accurate and realistic text-to-audio generations may not be effective.

To further investigate this task, we introduce two additional training approaches for

comparison:

1. Train the MusicLDM directly using the text embedding as the condition, i.e., εεεθ (zzzn,n,EEEt
x)

2. Train the MusicLDM using the audio embedding as the condition, then finetune it with text

72

Beat Transformer

Music Dataset

tem
po

downbeat

alignment

Beat-Synchronous Audio Mix-Up

CLAP

VAE

Diffusion
Model

CLAP

VAE Dec.

Beat-Synchronous Latent Mix-Up

VAE
Enc.

Hifi-GAN

Diffusion
Model

Audio Space

Latent Space

audio mix-up

latent mix-up

Music
Others

Figure 5.2. Mixup strategies. Left: tempo grouping and downbeat alignment via Beat Trans-
former. Middle: BAM and BLM mixup strategies. Right: How BAM and BLM are applied in
the feature space of audio signals and audio latent variables.

embedding, i.e.,εεεθ (zzzn,n,EEEa
x)→ εεεθ (zzzn,n,EEEt

x)

The first approach follows the original target of text-to-audio, serving as a comparison

with audio-to-audio training. The second approach is proposed as an improvement on audio-to-

audio generation, as we shift the condition distribution from the audio embedding back to the

text embedding during the training of the diffusion model.

In section 5.5.3, we compared the above two approaches with the original audio-to-

audio training approaches to determine the best approach for generating high-quality and highly

correlated text-to-music outputs.

5.4.2 Beat-Synchronous Mixup

As shown in Figure 5.2, we propose two mixup strategies to augment the data during the

MusicLDM training: Beat-Synchronous Audio Mixup (BAM) and Beat-Synchronous Latent

Mixup (BLM).

Beat-tracking via Beat Transformer

Musical compositions are made up of several elements, such as chord progressions,

timbre, and beats. Of these, beats play a crucial role in determining the musical structure

and alignment. In most audio retrieval tasks, mixup is a popular technique that involves ran-

domly mixing pairs of audio data to augment the training data. However, when mixing two

73

music samples that have different tempos (beats per minute), the mixture can be chaotic and

unappealing.

To avoid this, we use a state-of-the-art beat tracking model, Beat Transformer [128], to

extract the tempo and downbeat map of each music track, as shown in the left of Figure 5.2.

We categorize each music track into different tempo groups and during training, we only mixed

tracks within the same tempo group to ensure the tracks were in similar tempos. Furthermore, we

align the tracks by comparing their downbeat maps and selecting a certain downbeat to serve as

the starting position for the mixup track. This preprocessing approach allows us to better select

the music data available for mixup, resulting in mixup tracks that are neatly ordered in terms of

tempo and downbeats.

Beat-Synchronous Audio Mixup

As depicted in the upper part of Figure 5.2, once we select two aligned music tracks xxx1

and xxx2, we mix them by randomly selecting a mixing ratio from the beta distribution λ ∼B(5,5),

as:

xxx = λxxx1 +(1−λ)xxx2 (5.2)

We then use the mixed data xxx to obtain the CLAP embedding EEEx and the audio latent variable yyy.

We train the latent diffusion model using the standard pipeline. This beat-synchronous audio

mixup strategy is referred to as BAM.

Beat-Synchronous Latent Mixup

As depicted in the lower part of Figure 5.2, in the latent diffusion model, the mixup

process can also be applied on the latent variables, referred as beat-synchronous latent mixup

(BLM). After selecting two aligned music tracks xxx1 and xxx2, we feed them into the VAE encoder

74

to obtain the latent variables yyy1 and yyy2. We then apply the mixup operation to the latent variables:

yyy = λyyy1 +(1−λ)yyy2 (5.3)

In contrast to BAM, BLM applies the mixup operation to the latent space of audio, where

we cannot ensure that the mixture of the latent variables corresponds to the actual mixture of the

music features in the appearance. Therefore, we first generate a mixed mel-spectrogram xxxmel by

feeding the mixed latent variable yyy into the VAE decoder. Then, we feed xxxmel to the Hifi-GAN

vocoder to obtain the mixed audio xxx as the input music. With xxx and yyy, we follow the pipeline to

train the MusicLDM.

What are BAM and BLM doing?

As shown in the right of Figure 5.2, we demonstrate the interpolation between the

feature space of audio when using BAM and BLM. In the feature space of audio signals, the ”•”

represents the feature point of music data, while the ”△” denotes the feature point of other audio

signals, such as natural sound, audio activity, and noise. During the pretraining process of VAE,

a latent space is constructed for encoding and decoding the music data. The VAE aims to learn

the distribution of the latent variables that can best represent the original data and transform the

original feature space into a lower-dimensional manifold. This manifold is designed to capture

the underlying structure of the music data. Therefore, any feature point within this manifold is

considered to be a valid representation of music.

BAM and BLM are concerned with augmenting the data at different levels of feature

space. As shown in right of Figure 5.2, BAM linearly combines two points in audio space to

form a new point on the red line. BLM, represented by the blue line, performs a similar operation,

but result in a new point in the VAE-transformed latent space, which will be decoded back onto

the music manifold of audio space.

Both BAM and BLM offer unique advantages and disadvantages. BAM applies mixup in

75

the original feature space, resulting in a smooth interpolation between feature points. However,

BAM cannot ensure a reasonable music sample that lies within the music manifold. This issue is

more problematic using the simple audio mixup strategy without tempo and downbeat alignments.

BLM, conversely, augments within the music manifold, fostering robust and diverse latent

representations. However, BLM is computationally more expensive as it requires computing the

latent feature back to audio via VAE decoder and Hifi-GAN. Furthermore, when the ill-defined

or collapsed latent exists in VAE, BLM may be out of effectiveness.

Both BAM and BLM are effective data augmentation techniques that encourage the

model to learn a more continuous and robust decision boundary on the audio feature space, or

implicitly from the latent space to the audio space, which can improve the model’s generalization

performance and mitigate overfitting. In the context of text-to-music generation, these mixup

strategies can have a potential to mitigate the limitations of data size and help avoid plagiarism

issues. By introducing small variations through mixup, the model can touch a more rich space of

music data and generate music samples that are correlated to the texts but show differences to

the original training data. Later in section 5.5.3, we evaluated whether these strategies mitigate

the data limitation and plagiarism issues.

5.5 Experiments

In this section, we conducted three experiments on our proposed method. First, we

trained MusicLDM with different mixup strategies and compared them with available baselines.

Second, we evaluated MusicLDM in terms of text-music relevance, novelty and plagiarism risk

via metrics based on CLAP scores. Finally, we conducted a subjective listening test to give an

additional evaluation.

76

Table 5.1. Comparison of zero-shot classification performance of the CLAP (trained on more
music data) with previous baselines.

ESC-50 US8K VGGSound GTZAN

Wav2CLIP [123] 41.4 40.4 10.0 -
audioCLIP [40] 68.6 68.8 - -
CLAP (Elizalde et al. [26]) 82.6 73.2 - 25.2
CLAP (ours in Chapter 4) 91.0 77.0 46.2 71.0
CLAP (ours on music data) 90.1 80.6 46.6 71.0

5.5.1 CLAP Setup

Hyperparameters

We finetuned our pretrained CLAP model on music datasets in addition to its original

training data, allowing it to better understand the relation between music and textual descriptions.

The audio encoder of CLAP is HTS-AT and the text encoder is RoBERTa-base [70]. The HTS-AT

has an embedding dimension of 768 and has 4 groups of swin-transformer blocks, each group has

depth of [2,2,12,2] and number of head in [4,8,16,32]. The RoBERTa consists of a transformer

model with 12 layers, 8 heads, and a inner width of 512. The audio embedding and the text

embedding have the dimension size D = 512.

Dataset and Training Details

The new CLAP model is trained on dataset of 2.8 Million text-audio pairs, including

extra music data at https://github.com/LAION-AI/audio-dataset/blob/main/data collection, with

an approximate total duration of 20,000 hours. We use the batch size of 2304 and the Adam [56]

optimizer with β1 = 0.99, β2 = 0.9 with a warm-up and cosine learning rate decay at a basic

learning rate of 0.0001.

Zero-shot Classification Performance

Similarly to Chapter 4, we evaluate the performance of the newly-trained CLAP on

the zero-shot audio classification tasks, namely on the benchmark datasets of ESC-50 [84],

Urbansound 8K [95], and VGGSound [14]. To demonstrate that the retrained CLAP involves

77

https://github.com/LAION-AI/audio-dataset/blob/main/data_collection

more understandings of music data, we further add a music genre classification benchmark

dataset GTZAN [110] into the evaluation. As shown in Table 5.1, our retained CLAP achieves

best performance acoustic event classification in Urbansound 8K and VGGSound dataset, while

still maintaining comparable performance in ESC-50 dataset and on par performance in GTZAN

music classification dataset. Although the performance on GTZAN music dataset is not improved,

the extra data used for training CLAP might result in a better representation space which is

beneficial for text-to-music generation model as verified by the outperforming results on other

datasets.

5.5.2 MusicLDM Setup

Hyperparameters

For audio signal processing, we use the sampling rate of 16 kHz to convert all music

samples for the training of MusicLDM. Each input data is a chunk of 10.24 seconds randomly

selected from the dataset, i.e., L = 163840. We use the hop size 160, the window size 1024, the

filter length 1024, and the number of mel-bins 128 to compute the short-time Fourier transform

(STFT) and mel-spectrograms. As the result, the input mel-spectrogram has the time frame

T = 1024 and the mel-bins F = 128.

We adopt a convolutional VAE as the latent audio representation model, consisting of

a 4-block downsampling encoder and a 4-block upsampling decoder. The downsampling and

upsampling rate P = 8 and the latent dimension C = 16, i.e., the bottleneck latent variable y

has a shape of (C × T
P × F

P) = (16× 128× 16). For the latent diffusion model, we refer the

UNet latent diffusion model1. It contains 4 encoder blocks, 1 bottleneck block, and 4 decoder

blocks. Each block contains 2 residual CNN layers and 1 spatial transformer layer [113]. The

channel dimensions of encoder blocks are 128, 256, 384, and 640 and reversed in decoder blocks.

For Hifi-GAN, we adopt its official repository 2 along with the configuration 3. We change the

1https://huggingface.co/spaces/multimodalart/latentdiffusion
2https://github.com/jik876/hifi-gan
3https://github.com/jik876/hifi-gan/blob/master/config v1.json

78

https://huggingface.co/spaces/multimodalart/latentdiffusion
https://github.com/jik876/hifi-gan
https://github.com/jik876/hifi-gan/blob/master/config_v1.json

number of mel-bins to 128 to fit the processing of MusicLDM.

Dataset and Training Details

We used the Audiostock dataset in LAION-Audio-630K (in Chapter 4 for training Musi-

cLDM, which provides correct text descriptions for correspoinding music tracks. Specifically,

the Audiostock dataset contains 9,000 music tracks for training and 1000 tracks for testing with

the total duration of 455.36 hours.

We trained all MusicLDM modules with music clips of 10.24 seconds at 16 kHz sampling

rate. In both VAE and diffusion model, music clips are represented as mel-spectrograms with

T =1024 frames and F=128 mel-bins. Unlike AudioLDM, the VAE module of MusicLDM

utilizes a downsampling rate of P=8 and a latent dimension of C=16. The architecture and

training process of MusicLDM follow those of AudioLDM [68].

For the training of VAE, we use the Adam optimizer [56] with a learning rate of 4.5×10−6

with a batch size of 24. We apply the mel-spectrogram loss, adversarial loss, and a Gaussian

constraint loss as the training object of VAE. For the training of Hifi-GAN, we use the batch

size of 96 and the AdamW optimizer with β1 = 0.8, β2 = 0.99 at the learning rate of 2×10−4.

For the training of MusicLDM, we use the batch size of 24 and the AdamW optimizer with the

basic learning of 3×10−5. In the forward process, we use 1000-step of a linear noise schedule

from β1 = 0.0015 to β1000 = 0.0195. In the sampling process, we use the DDIM [101] sampler

with 200 steps. We adopt the classifier-free guidance [47] with a guidance scale w = 2.0. When

applying the mixup strategy, we use the mixup rate p = 0.5. The CLAP model is trained on

24 A100 GPUs. The VAE and Hifi-GAN model are trained on 4 A6000 GPUs. Last, the latent

diffusion model is trained on single NVIDIA A6000 GPU. All models are converged at the end

of the training.

79

Ta
bl

e
5.

2.
T

he
ev

al
ua

tio
n

of
ge

ne
ra

tio
n

qu
al

ity
am

on
g

M
us

ic
L

D
M

s
an

d
ba

se
lin

es
.A

A
-T

ra
in

.a
nd

TA
-T

ra
in

.r
ef

er
to

th
e

au
di

o-
au

di
o

tr
ai

ni
ng

sc
he

m
e

an
d

th
e

te
xt

-a
ud

io
tr

ai
ni

ng
sc

he
m

e.
M

us
ic

G
en

an
d

M
us

ic
L

D
M

ar
e

w
or

ks
in

th
e

sa
m

e
pe

ri
od

.

M
od

el
Tr

ai
ni

ng
D

at
a

Si
ze

A
A

-T
ra

in
.

TA
-T

ra
in

.
FD

pa
nn

↓
FD

vg
g
↓

In
ce

pt
io

n
Sc

or
e
↑

K
L

D
iv

.↓

R
iff

us
io

n
[3

3]
—

✗
✓

68
.9

5
10

.7
7

1.
34

5.
00

M
uB

E
R

T
[7

8]
—

—
—

31
.7

0
19

.0
4

1.
51

4.
69

A
ud

io
L

D
M

(w
/.

or
ig

in
al

C
L

A
P)

[6
8]

45
5

ho
ur

s
✓

✗
38

.9
2

3.
08

1.
67

3.
65

M
oû

sa
i[

97
]

25
00

ho
ur

s
✗

✓
30

.7
3

10
.5

9
1.

50
3.

88
M

us
ic

G
en

*
[1

8]
20

00
0

ho
ur

s
✗

✓
25

.1
9

2.
17

1.
82

3.
10

M
us

ic
L

D
M

✓
✗

26
.6

7
2.

40
1.

81
3.

80
M

us
ic

L
D

M
(O

nl
y

TA
-T

ra
in

in
g)

✗
✓

32
.4

0
2.

51
1.

49
3.

96
M

us
ic

L
D

M
w

/.
m

ix
up

45
5

ho
ur

s
✓

✗
30

.1
5

2.
84

1.
51

3.
74

M
us

ic
L

D
M

w
/.

B
A

M
✓

✗
28

.5
4

2.
26

1.
56

3.
50

M
us

ic
L

D
M

w
/.

B
L

M
✓

✗
24

.9
5

2.
31

1.
79

3.
40

M
us

ic
L

D
M

w
/.

Te
xt

-F
in

et
un

e
✓

✓
27

.8
1

1.
75

1.
76

3.
60

M
us

ic
L

D
M

w
/.

B
A

M
&

Te
xt

-F
in

et
un

e
45

5
ho

ur
s

✓
✓

28
.2

2
1.

81
1.

61
3.

61
M

us
ic

L
D

M
w

/.
B

L
M

&
Te

xt
-F

in
et

un
e

✓
✓

26
.3

4
1.

68
1.

82
3.

47

80

Implementation of Comparison Model

For generating from Riffusion and MuBERT, we use the official API of Riffusion 4 and

MuBERT 5.

5.5.3 Generation Quality

Following evaluation techniques used in past work on audio generation [68], we use

frechet distance (FD), inception score (IS), and kullback-leibler (KL) divergence to evaluate

the quality of generated musical audio outputs. Frechet distance evaluates the audio quality

by using an audio embedding model to measure the similarity between the embedding space

of generations and that of targets. In this dissertation, we use two standard audio embedding

models: VGGish [99] and PANN [60]. The resulting distances we denote as FDvgg and FDpann,

respectively. Inception score measures the diversity and the quality of the full set of audio outputs,

while KL divergence is measured on individual pairs of generated and groundtruth audio samples

and averaged. We use the audioldm eval library 6 to evaluate all the metrics mentioned above,

comparing the groundtruth audio from the Audiostock 1000-track test set with the 1000 tracks of

music generated by each system based on the corresponding textual descriptions.

Table 5.2 presents the results for our models in comparison with baselines. We sent

textual descriptions from the test set to the official APIs of Riffusion, MuBERT, Moûsai, and

MusicGen to generate corresponding audio results. Both Riffusion and MuBERT were unable to

achieve results comparable to the remaining models. The sub-optimal performance of Riffusion

resulted from poor music generation quality, while MuBERT generated high-quality pieces

from real sample libraries but fell short in replicating the distribution of Audiostock dataset.

Moûsai and MusicGen yielded much better generation quality by leveraging advanced model

architectures as well as the large scale of internal training data. We also retrained the original

AudioLDM model on the Audiostock dataset but rely on the original CLAP models for condition

4https://huggingface.co/riffusion/riffusion-model-v1
5https://github.com/MubertAI/Mubert-Text-to-Music
6https://github.com/haoheliu/audioldm eval

81

embeddings. Throughout all models, we observed that MusicLDM variants, trained on only

455 hours music tracks, are able to achieve competitive FDpann, FDvgg, and IS scores with only

a slightly inferior on the KL divergence score to MusicGen. This underscores the efficacy of

CLAP model pretrained for music, providing more suitable music embeddings as conditioning

information.

We also observe the inferior results of “MusicLDM (Only TA-Training)” in comparison

to audio-to-audio training variants. This suggests that a gap exists between distributions of text

and audio embeddings, making it challenging to generate high-quality audio solely from text

embedding.

This hypothesis is further supported by the results of combining audio-to-audio training

and text-to-audio fine-tuning. We observe a significant decrease in FDvgg with small changes in

FDpann and IS, indicating a substantial improvement in generation quality, driven by leveraging

both audio and text embeddings during training.

Last, we compared MusicLDM with different mixup strategies, namely simple mixup

[127], BAM, and BLM. The comparison reveals the negative impact of the simple mixup on all

metrics. This degradation in generated sample quality, characterized by instrumental interference

and noise, is attributed to the simple mixup’s inability to guarantee musicality in the mix. Similar

observations are evident in the BAM results, indicated by a drop in FDpann and IS. However, the

tempo and downbeat alignments of BAM (and BLM), along with the original mixup benefits,

counterbalance this defect to a certain extent, enhancing the model’s generalization ability and

improving certain metrics. BLM, as a latent space mixing method, aligns with our hypothesis

that latent space mixup yield audio closely resembling music. This technique allows us to largely

bypass the potential confusion issues tied to audio mixing, thus capitalizing on mixup’s ability

to drive generalization and prevent copying via data augmentation. Furthermore, incorporating

text-finetuning results in a comprehensive improvement of music generation quality, solidifying

BLM as the most effective strategy.

82

Table 5.3. The objective metrics to measure the relevance and novelty (plagiarism). And the
subjective listening test to evaluate the quality, relevance, and musicality.

Model
Objective Metrics

Subjective Listening Test
Relevance Novelty and Plagiarism Risk

Text-Audio Similarity↑ SIMAA@90 ↓ SIMAA@95 ↓ Quality↑ Relevance↑ Musicality↑

Test Set (Ref.) 0.325 — — — — —
Retrieval Max (Ref.) 0.423 — — — — —

MuBERT [78] 0.131 0.107 0 2.02 1.50 2.33
MusicLDM (original) 0.281 0.430 0.047 1.98 2.17 2.19
MusicLDM w/. mixup 0.234 0.391 0.028 — — —
MusicLDM w/. BAM 0.266 0.402 0.027 2.04 2.21 2.01
MusicLDM w/. BLM 0.268 0.401 0.020 2.13 2.31 2.07

1.0

0.5

0.0

MusicLDM (mix-up) MusicLDM (original) MusicLDM (BLM) MusicLDM (BAM) MuBERT

Text-Audio SimilarityAudio-Audio Similarity

Figure 5.3. The violin plot of the audio-audio similarity, and the text-to-audio similarity.

5.5.4 Text-Audio Relevance, Novelty and Plagiarism

We proposed two metric groups, text-audio similarity and nearest-neighbor audio

similarity ratio to assess text-audio relevance, novelty, and plagiarism risk in various models.

First, text-audio similarity measures the relevance between the text and the audio. It is

defined as the dot product between the groundtruth text embedding EEEt
gd from the test set and

the audio embedding EEEa from music generated by models, i.e., EEEt
gd ·EEE

a. The embeddings from

both text and audio are normalized in CLAP model, thus the dot product computes the cosine

similarity between text and audio embeddings.

Second, we would also like to measure the extent to which models are directly copying

samples from the training set. We verify this by first computing the dot products between the

audio embedding of each generated music output to all audio embeddings from the Audiostock

83

training set and returning the maximum – i.e., the similarity of the nearest-neighbor in the training

set. Then, we compute the fraction of generated outputs whose nearest-neighbors are above

a threshold similarity. We refer this as the nearest-neighbor audio similarity ratio, providing

SIMAA@90 where the threshold is 0.9, and SIMAA@95 with 0.95.

The lower this fraction, the lower the risk of plagiarism – i.e., fewer samples have very

close training neighbors. In the Appendix D, we show pairs of examples with both high and low

similarity scores to give further intuition for this metric.

As shown in the left and middle column of Table 5.3, we present the average text-audio

similarity and nearest-neighbor audio similarity ratios for two thresholds on the 1000 tracks

in the Audiostock test set and the generated music from MuBERT and different variants of

MusicLDM. We also provide two reference points for text-audio similarity: “Test Set” and

“Retrieval Max”. Specifically, “Test Set” refers to computing the cosine similarity between the

groudtruth text embedding and the groudtruth audio embedding. And “Retrieval Max” refers to

first computing the cosine similarities between each text embedding from the test set to all audio

embeddings from the training set, then picking the highest score as the score of this text, and

taking the average over all text scores.

We can observe that the original MusicLDM without mixup achieves the highest text-

audio relevance with an average score of 0.281, but also the highest (worst) nearest-neighbor

audio similarity ratio. MusicLDM with the simple mixup strategy achieves the lowest SIMAA@90

ratio while sacrificing a lot in the relevance of the generation. The MusicLDM with BAM and

BLM achieve a balance between the audio similarity ratios and the text-to-audio similarity. In

combination with the quality evaluation results in Table 5.2, we can conclude that all mixup

strategies are effective as a data augmentation techniques to improve generalization of the model

to generate more novel music. However simple mixup degrades the generation quality, which

affects the relevance score between audio and text, and also thus makes it less similar to the tracks

in the training set. BAM and BLM apply the tempo and downbeat filtering on the music pairs

to mix, allowing the model to maintain superior generation quality (Table 5.2) and text-audio

84

relevance (Table 5.3), while still utilizing the benefit brought by the mixup technique to make the

generation more novel (less plagiarism). Among the objective metrics, BLM is the best mixup

strategy in terms of quality, relevance and novelty of the generated audio. This indicates mixing

in the latent space is more efficient than mixing directly in audio space, perhaps because the

latent embedding approach implicitly projects the mixture to the learned manifold of well-formed

music.

We show the detailed distribution of these metrics over 1000 generated tracks in Figure

5.3, where, for example, audio-audio similarity denotes the individual scores used to calculate

the average SIMAA. We find that the original MusicLDM without mixup has more samples with

high training similarity than other models, which further reflects that it is more prone to copying.

5.5.5 Subjective Listening Test

As shown in the right of Table 5.3, we conduct the subjective listening test on four

models, namely MuBERT, the original MusicLDM, and that with BAM or BLM strategy, to

further evaluate the actual hearing experience of the generated music. We do not include the

simple mixup MusicLDM because its generation is at a low quality while we avoid confusing

subjects with too many models in the same time.

The subjective listening test was conducted in an online survey format to gather feedback

and insights on the text-to-music generation using MusicLDMs and MuBERT. The generation of

Riffusion was not included due to its lower quality and relevance compared to the standard. The

test had an estimated duration of approximately 10 minutes.

At the beginning of the test, participants were asked to provide their age range and music

background as metadata. Subsequently, participants were randomly assigned six groups of

generated songs. Each group consisted of four songs generated from MusicLDM, MusicLDM

with BAM, MusicLDM with BLM, and MuBERT, all based on the same textual description.

The order of the songs within each group was shuffled to eliminate positional bias during rating.

Participants were required to rate each song based on three metrics:

85

• Relevance: Determine how well the song matches the given music description. Rate the

song based on how closely it aligns with the provided description.

• Quality: Assess the overall quality of the music. Consider factors such as clarity, absence

of noise, and general audio quality. Rate the song based on these criteria.

• Musicality: Evaluate the musical attributes of the song, including rhythm, melodies, and

textures. Rate the song based on its overall musical appeal.

Each song in the subjective listening test had a duration of approximately 10 seconds and

included a fade-in and fade-out to mitigate bias from the song’s beginning and ending sections.

The rating scale used for evaluating the songs was designed such that a higher score indicates

better quality. Participants were asked to rate each song based on the provided metrics, taking

into account the song’s overall quality, relevance to the given text, and personal preference on its

musicality.

We invite 15 subjects to listen to 6 groups of the generations randomly selected from the

test set. Each of group contains four generations from four models and the corresponding text

descriptions.

From Table 5.3, we observe that the samples of MusicLDM with BAM or BLM mixup

strategy achieve a better relevance and quality than those of MuBERT and the original Musi-

cLDM, this strengths our above analysis. The MuBERT samples achieve the best Musicality,

because its generation is combined from the real music samples. The generation samples of

MusicLDM with BAM or BLM mixup strategies also achieve better relevance and quality than

those of the original MusicLDM, with an inferior on musicality but still maintaining above

an acceptable threshold. Combined with the objective metrics, beat-synchronous latent mixup

stands to be the most effectiveness method for enhancing the text-to-music generation in terms

of quality, text-music relevance and novelty (i.e., reducing the risk of plagiarism).

86

Figure 5.4. The generation examples by two MusicLDM models and their most similar tracks in
the Audiostock training set.

Plagiarism Verification

As mentioned in section 5.5.4, we introduced the computation of the nearest-neighbor

audio similarity ratio by comparing the cosine similarity between generated music and music

tracks in the training set of Audiostock.

In this section, we provide visualizations of the similarity between the generated mu-

sic and the training music using spectrograms, showcasing if the proposed BLM-version of

MusicLDM can mitigate the plagirism from the trainning data.

As shown in Figure 5.4, we present two groups of music pairs from MusicLDM and

MusicLDM-BLM models. To achieve this, we divided the training music tracks into 10-second

segments and determined the most similar segment to the generated music track.

For instances with high similarity, the cosine similarity of CLAP audio embeddings

reveals highly similar structural patterns, indicating a close resemblance in the music arrange-

ments. Conversely, low CLAP cosine similarity indicates significant differences between the

spectrograms of the generated music and the training music. This demonstrates the effectiveness

87

of CLAP embeddings in assessing the similarity between music tracks and serving as a means

to detect novelty and potential instances of plagiarism in the generated samples. Add we also

observe how BLM helps MusicLDM prevent the plagiarism risk and generate novel music

samples with a lower audio similarity to the groundtruth tracks than the original model.

5.6 Limitations and Impacts

As the generation task, there exists several limitations and impacts of our study.

Firstly, MusicLDM is trained on the music data in a sampling rate of 16 kHz, while most

standard music productions are 44.1 kHz. This constraint, tied to the Hifi-GAN vocoder’s subpar

performance at high sampling rates, impedes practical text-to-music application and necessitates

further improvements.

Secondly, resource constraints such as limited real text-music data and GPU processing

power prevent us from scaling up MusicLDM’s training. We are unable to determine if mix-up

strategies could yield similar trends as observed with the Audiostock dataset. This issue exists in

the image generation task as well.

Lastly, while we recognize beat information as crucial for music alignment, there is scope

for exploring other synchronization techniques like key signature and instrument alignment. We

also intend to investigate the application of different audio space filters to select suitable music

pairs for mixing.

The development and implementation of MusicLDM, or generally a text-to-music gener-

ation model offers potential benefits and also raises concerns that must be addressed responsibly.

Positive Impacts

• Promoting Creativity: This model can serve as a tool to augment human creativity. Artists,

composers, and music amateurs can use it to transfer their textual ideas into music,

broadening the realm of artistic exploration and making music creation more accessible

and convenient.

88

• Cultural Preservation and Evolution: The model provides a unique platform to archive,

digitize, and even evolve cultural musical expressions. Textual descriptions of traditional

and folk music can be transformed into the actual music, thereby helping to preserve

heritage while simultaneously allowing for creative adaptations. Literature, such as poetry,

can be interpreted as music to explore more relations between different types of cultural

expression forms.

• Education and Research: In academia, this model can be used as a pedagogical tool in

music education. It can aid in understanding the complex relationship between music and

linguistic structures, enriching interdisciplinary research in musicology, linguistics, and

artificial intelligence.

• Entertainment Industry Innovation: The entertainment industry could use this model to

generate soundtracks for movies, games, and other media based on scripts. This could

potentially revolutionize the way music is produced for media, reducing time and costs.

Negative Impacts

• Artistic Job Displacement: While this model can augment human creativity, it may also

lead to job losses in the music industry if widely adopted for composing and production.

The model could potentially replace human composers in certain contexts, particularly in

industries such as film and gaming that require a significant amount of background music.

• Copyright Issues: In this dissertation, one of the targets is to mitigate the copyright issues

and plagiarism. The generated music could unintentionally resemble existing works,

raising complex copyright infringement issues. It is crucial to implement measures to

ensure that the model does not violate intellectual property rights.

• Ethical Misuse: The model could be misused to create music promoting hate speech,

misinformation, or other harmful content if the input text has such characteristics. Thus, it

is essential to develop safeguards to mitigate the risk of misuse.

89

• Cultural Appropriation and Homogenization: While the model can help preserve music,

there is a risk of homogenizing unique cultural musical styles or misappropriating them

without proper credit or context.

The design and application of this model should be carried out responsibly, considering

the potential ethical, social, and economic consequences. Balancing its many benefits with its

potential downsides will require the collective effort of developers, users, policy makers, and

society at large.

5.7 Conclusion

In this chapter, we introduce MusicLDM, a text-to-music generation model that incorpo-

rates CLAP, VAE, Hifi-GAN, and latent diffusion models. We enhance MusicLDM by proposing

two efficient mixup strategies: beat-synchronous audio mixup (BAM) and beat-synchronous

latent mixup (BLM), integrated into its training process. We conduct comprehensive evaluations

on different variants of MusicLDM using objective and subjective metrics, assessing quality,

text-music relevance, and novelty. The experimental results demonstrate the effectiveness of

BLM as a standout mixup strategy for text-to-music generation. And we prove that the proposed

audio representation model (CLAP along with HTS-AT) is able to contribute to this novel

format of music generation task by transferring inspiration and understanding from the language

modality.

This chapter contains some materials (texts, tables, and figures) from a published confer-

ence paper: Ke Chen*, Yusong Wu*, Haohe Liu*, Marianna Nezhurina, Taylor Berg-Kirkpatrick,

Shlomo Dubnov, MusicLDM: Enhancing Novelty in Text-To-Music Generation using Beat-

Synchronous Mixup Strategies, in proceedings of International Conference on Acoustics, Speech

and Signal Processing, ICASSP 2024. The dissertation author was the first author of this

publication.

90

Chapter 6

Conclusion and Future Work

In this dissertation,we trace the evolution of an audio representation model from its

inception to its adaptation in different audio downstream tasks. We begin from an initial design

of an innovative audio transformer as the cornerstone, HTS-AT, that employs imperative designs

to capture semantic and acoustic information of audio data. We demonstrate its efficacy in

capturing both semantic and acoustic information from audio data. We systematically showcase

the versatility of HTS-AT across advanced audio applications, ranging from audio event classi-

fication to audio source separation. Moreover, to facilitate multimodal learning, we introduce

CLAP, a contrastive language-audio pretraining model that integrates HTS-AT with language

understanding. Leveraging these advancements, we present MusicLDM, a latent diffusion model

for text-to-music generation, thereby achieving the goal of content creation.

Through extensive experiments and application studies, we validate the adaptability and

superior performance of HTS-AT across diverse audio tasks, including semantic extraction,

content extraction, multimodal learning, and content generation. Our findings underscore the

potential of building a robust audio representation model as a cornerstone for various audio

applications, offering promising prospects in the field of artificial intelligence.

In the future, we wish to explore more applications of HTS-AT in the field of audio

processing. The applications shown in this dissertation are still in the slots of the general audio

tasks, while more fine-grained applications of music and general sound are awaiting:

91

• Music Recommendation: by leveraging HTS-AT as a Siamese network in capturing both

audio content and user preference in the music recommendation scenario, whose method

is partially verified in [15].

• Singing Melody Extraction and Music Transcription: by leveraging HTS-AT to extract

the fundamental frequencies of singing melodies, or the onset, duration, and velocity

information from the polyphonic music tracks, whose method is partially verified in [17].

• Audio Captioning: by combining CLAP with language models to generate the descriptions

of audio tracks as a reversed target of text-to-audio, whose method is partially verified in

[102].

• Fine-grained Control on Music Generation: by incorporating more controls, such as

chord, melody, lyric as the music control signals, and genre, impression, usage as the

general control signals. Realizing such target requires the developments in both contrastive

learning and generative model.

In conclusion, the field of audio and music processing holds vast untapped potential,

and we are committed to addressing its challenges and maximizing its possibilities through our

ongoing and future endeavors. With HTS-AT, we are merely at the dawn of a new era.

92

Bibliography

[1] Introducing chatgpt. https://openai.com/blog/chatgpt.

[2] Dcase challenge task 4: Sound event detection and separation in domestic environments.
http://dcase.community/challenge2021, 2021.

[3] Abien Fred Agarap. Deep learning using rectified linear units (relu). CoRR,
abs/1803.08375, 2018.

[4] Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine
Caillon, Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. Musi-
cLM: Generating music from text. CoRR, abs/2301.11325, 2023.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors,
Proceedings of International Conference on Learning Representations, 2015.

[6] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2013.

[7] Axel Berg, Mark O’Connor, and Miguel Tairum Cruz. Keyword transformer: A self-
attention model for keyword spotting. In Proceedings of Interspeech, 2021.

[8] Rachel M. Bittner, Justin Salamon, Mike Tierney, Matthias Mauch, Chris Cannam, and
Juan Pablo Bello. Medleydb: A multitrack dataset for annotation-intensive MIR research.
In Proceedings of International Society for Music Information Retrieval Conference, 2014.

[9] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney
von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill,
Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji,
Annie S. Chen, Kathleen Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue,
Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh,
Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah D. Goodman,
Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt,
Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan
Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar

93

Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, and Rohith Kuditipudi. On the
opportunities and risks of foundation models. CoRR, abs/2108.07258, 2021.

[10] Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. Deep learning techniques
for music generation. Springer, 2020.

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Proceedings Conference on Neural
Information Processing Systems, 2020.

[12] Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian
Tramèr, Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from
diffusion models. In Proceedings of USENIX Security Symposium, 2023.

[13] Pritish Chandna, Marius Miron, Jordi Janer, and Emilia Gómez. Monoaural audio source
separation using deep convolutional neural networks. In Proceedings of International
Conference on Latent Variable Analysis and Signal Separation, 2017.

[14] Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-
scale audio-visual dataset. In Proceedings of International Conference on Acoustics,
Speech, and Signal Processing, 2020.

[15] Ke Chen, Beici Liang, Xiaoshuan Ma, and Minwei Gu. Learning audio embeddings
with user listening data for content-based music recommendation. In Proceedings of
International Conference on Acoustics, Speech, and Signal Processing, 2021.

[16] Ke Chen, Cheng-i Wang, Taylor Berg-Kirkpatrick, and Shlomo Dubnov. Music sketchnet:
Controllable music generation via factorized representations of pitch and rhythm. In
Proceedings of International Society for Music Information Retrieval Conference, 2020.

[17] Ke Chen, Shuai Yu, Cheng-i Wang, Wei Li, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
Tonet: Tone-octave network for singing melody extraction from polyphonic music. In
Proceedings of International Conference on Acoustics, Speech, and Signal Processing,
2022.

[18] Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi,
and Alexandre Défossez. Simple and controllable music generation. In Proceedings
Conference on Neural Information Processing Systems, 2023.

[19] Yimian Dai, Fabian Gieseke, Stefan Oehmcke, Yiquan Wu, and Kobus Barnard. Atten-
tional feature fusion. In Proceedings of IEEE/CVF Winter Conference on Applications of
Computer Vision, 2021.

94

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2009.

[21] Soham Deshmukh, Benjamin Elizalde, and Huaming Wang. Audio retrieval with wav-
text5k and CLAP training. In Proceedings of Interspeech, 2023.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Proceedings of Confer-
ence of the North American Chapter of the Association for Computational Linguistics,
2019.

[23] Hao-Wen Dong, Ke Chen, Julian J. McAuley, and Taylor Berg-Kirkpatrick. Muspy: A
toolkit for symbolic music generation. In Proceedings of International Society for Music
Information Retrieval Conference, 2020.

[24] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In Proceedings of International Conference on Learning
Representations, 2021.

[25] Konstantinos Drossos, Samuel Lipping, and Tuomas Virtanen. Clotho: an audio captioning
dataset. In Proceedings of International Conference on Acoustics, Speech, and Signal
Processing, 2020.

[26] Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. CLAP:
learning audio concepts from natural language supervision. In Proceedings of Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 2023.

[27] Rebecca Fiebrink and Baptiste Caramiaux. The machine learning algorithm as creative
musical tool. CoRR, abs/1611.00379, 2016.

[28] Eduardo Fonseca, Xavier Favory, Jordi Pons, Frederic Font, and Xavier Serra. FSD50K:
an open dataset of human-labeled sound events. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2022.

[29] Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P. W. Ellis, Xavier Favory, Jordi
Pons, and Xavier Serra. General-purpose tagging of freesound audio with audioset labels:
Task description, dataset, and baseline. CoRR, abs/1807.09902, 2018.

[30] Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel PW Ellis, Xavier Favory, Jordi
Pons, and Xavier Serra. General-purpose tagging of Freesound audio with Audioset labels:
Task description, dataset, and baseline. In Proceedings of the Detection and Classification
of Acoustic Scenes and Events Workshop (DCASE), 2018.

[31] Frederic Font Corbera, Gerard Roma Trepat, and Xavier Serra. Freesound technical demo.
In Proceedings of Multimedia, 2013.

95

[32] Logan Ford, Hao Tang, François Grondin, and James R. Glass. A deep residual network
for large-scale acoustic scene analysis. In Proceedings of Interspeech, 2019.

[33] Seth Forsgren and Hayk Martiros. Riffusion - Stable diffusion for real-time music
generation. 2022.

[34] Wei Gao, Fang Wan, Xingjia Pan, Zhiliang Peng, Qi Tian, Zhenjun Han, Bolei Zhou, and
Qixiang Ye. Ts-cam: Token semantic coupled attention map for weakly supervised object
localization. In Proceedings of International Conference on Computer Vision, 2021.

[35] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,
R. Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and
human-labeled dataset for audio events. In Proceedings of International Conference on
Acoustics, Speech, and Signal Processing, 2017.

[36] Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation
with state-space models. In Proceedings of International Conference on Machine Learning,
2022.

[37] Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer. In
Proceedings of Interspeech, 2021.

[38] Yuan Gong, Yu-An Chung, and James Glass. Psla: Improving audio tagging with
pretraining, sampling, labeling, and aggregation. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2021.

[39] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state
spaces. CoRR, abs/2312.00752, 2023.

[40] Andrey Guzhov, Federico Raue, Jörn Hees, and Andreas Dengel. Audioclip: Extending
clip to image, text and audio. In Proceedings of International Conference on Acoustics,
Speech, and Signal Processing, 2022.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[42] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: decoding-
enhanced bert with disentangled attention. In Proceedings of International Conference on
Learning Representations, 2021.

[43] Romain Hennequin, Anis Khlif, Felix Voituret, and Manuel Moussallam. Spleeter: a
fast and efficient music source separation tool with pre-trained models. Journal of Open
Source Software, 2020.

[44] Perfecto Herrera, Geoffroy Peeters, and Shlomo Dubnov. Automatic classification of
musical instrument sounds. Journal of New Music Research, 2010.

96

[45] Shawn Hershey, Daniel P. W. Ellis, Eduardo Fonseca, Aren Jansen, Caroline Liu, R. Chan-
ning Moore, and Manoj Plakal. The benefit of temporally-strong labels in audio event
classification. In Proceedings of International Conference on Acoustics, Speech, and
Signal Processing, 2021.

[46] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Proceedings Conference on Neural Information Processing Systems, 2020.

[47] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. CoRR, abs/2207.12598,
2022.

[48] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
1997.

[49] Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, and Paris Smaragdis. Joint opti-
mization of masks and deep recurrent neural networks for monaural source separation.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015.

[50] Qingqing Huang, Daniel S Park, Tao Wang, Timo I Denk, Andy Ly, Nanxin Chen,
Zhengdong Zhang, Zhishuai Zhang, Jiahui Yu, Christian Frank, et al. Noise2music:
Text-conditioned music generation with diffusion models. CoRR, abs/2302.03917, 2023.

[51] Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui
Ye, Jinglin Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation
with prompt-enhanced diffusion models. CoRR, abs/2301.12661, 2023.

[52] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of International Conference
on Machine Learning, 2015.

[53] Andreas Jansson, Eric Humphrey, Nicola Montecchio, Rachel Bittner, Aparna Kumar, and
Tillman Weyde. Singing voice separation with deep U-Net convolutional networks. In
Proceedings of International Society for Music Information Retrieval Conference, 2017.

[54] Ilya Kavalerov, Scott Wisdom, Hakan Erdogan, Brian Patton, Kevin W. Wilson,
Jonathan Le Roux, and John R. Hershey. Universal sound separation. In Proceedings of
Workshop on Applications of Signal Processing to Audio and Acoustics, 2019.

[55] Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. Audiocaps:
Generating captions for audios in the wild. In Proceedings of Conference of the North
American Chapter of the Association for Computational Linguistics, 2019.

[56] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Proceedings of International Conference on Learning Representations, 2015.

[57] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. Proceedings of
International Conference on Learning Representations, 2013.

97

[58] A. Sophia Koepke, Andreea-Maria Oncescu, João F. Henriques, Zeynep Akata, and
Samuel Albanie. Audio retrieval with natural language queries: A benchmark study.
CoRR, abs/2112.09418, 2021.

[59] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial
networks for efficient and high fidelity speech synthesis. In Proceedings Conference on
Neural Information Processing Systems, 2020.

[60] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D. Plumb-
ley. Panns: Large-scale pretrained audio neural networks for audio pattern recognition.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020.

[61] Qiuqiang Kong, Yuxuan Wang, Xuchen Song, Yin Cao, Wenwu Wang, and Mark D.
Plumbley. Source separation with weakly labelled data: an approach to computational
auditory scene analysis. In Proceedings of International Conference on Acoustics, Speech,
and Signal Processing, 2020.

[62] Khaled Koutini, Jan Schlüter, Hamid Eghbal-zadeh, and Gerhard Widmer. Efficient
training of audio transformers with patchout. In Proceedings of Interspeech, 2022.

[63] Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade
Copet, Devi Parikh, Yaniv Taigman, and Yossi Adi. AudioGen: Textually guided audio
generation. In Proceedings of International Conference on Learning Representations,
2022.

[64] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard,
Wayne E. Hubbard, and Lawrence D. Jackel. Handwritten digit recognition with a back-
propagation network. In Proceedings Conference on Neural Information Processing
Systems, 1989.

[65] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization.
In Proceedings Conference on Neural Information Processing Systems, 2000.

[66] Jie Hwan Lee, Hyeong-Seok Choi, and Kyogu Lee. Audio query-based music source
separation. In Proceedings of International Society for Music Information Retrieval
Conference, 2019.

[67] Liwei Lin, Gus Xia, Qiuqiang Kong, and Junyan Jiang. A unified model for zero-shot
music source separation, transcription and synthesis. In Proceedings of International
Society for Music Information Retrieval Conference, 2021.

[68] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang,
and Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models.
In Proceedings of International Conference on Machine Learning, 2023.

[69] Jen-Yu Liu and Yi-Hsuan Yang. Denoising auto-encoder with recurrent skip connections
and residual regression for music source separation. In Proceedings of International
Conference on Machine Learning and Applications, 2018.

98

[70] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized
BERT pretraining approach. CoRR, abs/1907.11692, 2019.

[71] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows.
In Proceedings of International Conference on Computer Vision, 2021.

[72] Antoine Liutkus, Fabian-Robert Stöter, Zafar Rafii, Daichi Kitamura, Bertrand Rivet,
Nobutaka Ito, Nobutaka Ono, and Julie Fontecave. The 2016 signal separation evaluation
campaign. In Proceedings of International Conference on Latent Variable Analysis and
Signal Separation, 2017.

[73] Yi Luo and Nima Mesgarani. Tasnet: Time-domain audio separation network for real-
time, single-channel speech separation. In Proceedings of International Conference on
Acoustics, Speech, and Signal Processing, 2018.

[74] Yi Luo and Nima Mesgarani. Conv-TasNet: Surpassing ideal time–frequency magnitude
masking for speech separation. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2019.

[75] Yi Luo and Jianwei Yu. Music source separation with band-split rnn. CoRR,
abs/2209.15174, 2022.

[76] Xinhao Mei, Xubo Liu, Jianyuan Sun, Mark D. Plumbley, and Wenwu Wang. On metric
learning for audio-text cross-modal retrieval. In Proceedings of Interspeech, 2022.

[77] Annamaria Mesaros, Toni Heittola, Tuomas Virtanen, and Mark D. Plumbley. Sound
event detection: A tutorial. IEEE Signal Processing Letters, 2021.

[78] MubertAI. Mubert: A simple notebook demonstrating prompt-based music generation.

[79] Arsha Nagrani, Shan Yang, Anurag Arnab, Aren Jansen, Cordelia Schmid, and Chen
Sun. Attention bottlenecks for multimodal fusion. In Proceedings Conference on Neural
Information Processing Systems, 2021.

[80] Arun Narayanan and DeLiang Wang. Ideal ratio mask estimation using deep neural
networks for robust speech recognition. In Proceedings of International Conference on
Acoustics, Speech, and Signal Processing, 2013.

[81] Andreea-Maria Oncescu, A. Sophia Koepke, João F. Henriques, Zeynep Akata, and
Samuel Albanie. Audio retrieval with natural language queries. In Proceedings of
Interspeech, 2021.

[82] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D.
Cubuk, and Quoc V. Le. Specaugment: A simple data augmentation method for automatic
speech recognition. In Proceedings of Interspeech, 2019.

99

[83] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film:
Visual reasoning with a general conditioning layer. In Proceedings of AAAI Conference
on Artificial Intelligence, 2018.

[84] Karol J. Piczak. ESC: dataset for environmental sound classification. In Proceedings of
Multimedia, 2015.

[85] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger,
and Ilya Sutskever. Learning transferable visual models from natural language supervision.
In Proceedings of International Conference on Machine Learning, 2021.

[86] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine Learning Research, 2020.

[87] Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter, Stylianos Ioannis Mimilakis, and
Rachel Bittner. The MUSDB18 corpus for music separation. https://sigsep.github.io/
datasets/musdb.html, 2017.

[88] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. CoRR, abs/2204.06125, 2022.

[89] Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu.
Fastspeech: Fast, robust and controllable text to speech. In Proceedings Conference on
Neural Information Processing Systems, 2019.

[90] Gerard Roma, Owen Green, and Pierre Alexandre Tremblay. Improving single-network
single-channel separation of musical audio with convolutional layers. In Proceedings of
International COnference on Latent Variable Analysis and Signal Separation, 2018.

[91] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 2022.

[92] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Proceedings of Medical Image Computing and
Computer-Assisted Intervention, 2015.

[93] Simon Rouard, Francisco Massa, and Alexandre Défossez. Hybrid transformers for music
source separation. In Proceedings of International Conference on Acoustics, Speech, and
Signal Processing, 2023.

[94] David E. Rumelhart and James L. McClelland. Learning internal representations by error
propagation. In Proceedings of Parallel Distributed Processing: Explorations in the
Microstructure of Cognition: Foundations, 1987.

100

https://sigsep.github.io/datasets/musdb.html
https://sigsep.github.io/datasets/musdb.html

[95] Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A dataset and taxonomy for
urban sound research. In Proceedings of Multimedia, 2014.

[96] David Samuel, Aditya Ganeshan, and Jason Naradowsky. Meta-learning extractors for
music source separation. In Proceedings of International Conference on Acoustics, Speech,
and Signal Processing, 2020.

[97] Flavio Schneider, Zhijing Jin, and Bernhard Schölkopf. Moûsai: Text-to-music generation
with long-context latent diffusion. CoRR, abs/2301.11757, 2023.

[98] Romain Serizel, Nicolas Turpault, Ankit Parag Shah, and Justin Salamon. Sound event
detection in synthetic domestic environments. In Proceedings of International Conference
on Acoustics, Speech, and Signal Processing, 2020.

[99] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In Proceedings of International Conference on Learning Representa-
tions, 2015.

[100] Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Diffusion art or digital forgery? investigating data replication in diffusion models. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2023.

[101] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
In Proceedings of International Conference on Learning Representations, 2021.

[102] Nikita Srivatsan, Ke Chen, Shlomo Dubnov, and Taylor Berg-Kirkpatrick. Retrieval
guided music captioning via multimodal prefixes. In Proceedings of International Joint
Conferences on Artificial Intelligence, 2024.

[103] Daniel Stoller, Sebastian Ewert, and Simon Dixon. Wave-u-net: A multi-scale neural
network for end-to-end audio source separation. In Proceedings of International Society
for Music Information Retrieval Conference, 2018.

[104] Fabian-Robert Stöter, Stefan Uhlich, Antoine Liutkus, and Yuki Mitsufuji. Open-unmix -
A reference implementation for music source separation. Journal of Open Source Software,
2019.

[105] Naoya Takahashi, Nabarun Goswami, and Yuki Mitsufuji. MMDenseLSTM: An efficient
combination of convolutional and recurrent neural networks for audio source separation. In
Proceedings of IEEE International Workshop on Acoustic Signal Enhancement (IWAENC),
2018.

[106] Naoya Takahashi and Yuki Mitsufuji. D3net: Densely connected multidilated densenet
for music source separation. CoRR, abs/2010.01733, 2020.

[107] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In Proceedings of International Conference on Machine Learning, 2019.

101

[108] Xu Tan, Jiawei Chen, Haohe Liu, Jian Cong, Chen Zhang, Yanqing Liu, Xi Wang, Yichong
Leng, Yuanhao Yi, Lei He, Sheng Zhao, Tao Qin, Frank K. Soong, and Tie-Yan Liu. CoRR,
abs/2205.04421, 2022.

[109] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles,
and Hervé Jégou. Training data-efficient image transformers & distillation through
attention. In Proceedings of International Conference on Machine Learning, 2021.

[110] George Tzanetakis and Perry Cook. Musical genre classification of audio signals.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2002.

[111] Efthymios Tzinis, Zhepei Wang, and Paris Smaragdis. Sudo RM -rf: Efficient networks for
universal audio source separation. In Proceedings of International Workshop on Machine
Learning for Signal Processing, 2020.

[112] Stefan Uhlich, Marcello Porcu, Franck Giron, Michael Enenkl, Thomas Kemp, Naoya
Takahashi, and Yuki Mitsufuji. Improving music source separation based on deep neural
networks through data augmentation and network blending. In Proceedings of Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 2017.

[113] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings
Conference on Neural Information Processing Systems, 2017.

[114] C. Veaux, J. Yamagishi, and S. King. The Voice Bank Corpus: Design, collection and
data analysis of a large regional accent speech database. In Proceedings of International
Conference Oriental COCOSDA with Conference on Asian Spoken Language Research
and Evaluation, 2013.

[115] Sergey Verbitskiy and Viacheslav Vyshegorodtsev. Eranns: Efficient residual audio neural
networks for audio pattern recognition. CoRR, abs/2106.01621, 2021.

[116] Roman Vygon and Nikolay Mikhaylovskiy. Learning efficient representations for keyword
spotting with triplet loss. In Proceedings of International Conference on Speech and
Computer, 2021.

[117] Wei Wang, Vincent W. Zheng, Han Yu, and Chunyan Miao. A survey of zero-shot
learning: Settings, methods, and applications. ACM Transactions on Intelligent Systems
and Technology, 2019.

[118] Yun Wang, Juncheng Li, and Florian Metze. A comparison of five multiple instance
learning pooling functions for sound event detection with weak labeling. In Proceedings
of International Conference on Acoustics, Speech, and Signal Processing, 2019.

[119] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition.
CoRR, abs/1804.03209, 2018.

102

[120] Felix Weninger, John R. Hershey, Jonathan Le Roux, and Björn W. Schuller. Discrim-
inatively trained recurrent neural networks for single-channel speech separation. In
Proceedings of Global Conference on Signal and Information Processing, 2014.

[121] Donald S Williamson, Yuxuan Wang, and DeLiang Wang. Complex ratio masking for
monaural speech separation. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2015.

[122] Scott Wisdom, Hakan Erdogan, Daniel P. W. Ellis, Romain Serizel, Nicolas Turpault,
Eduardo Fonseca, Justin Salamon, Prem Seetharaman, and John R. Hershey. What’s all
the fuss about free universal sound separation data? In Proceedings of International
Conference on Acoustics, Speech, and Signal Processing, 2021.

[123] Ho-Hsiang Wu, Prem Seetharaman, Kundan Kumar, and Juan Pablo Bello. Wav2clip:
Learning robust audio representations from clip. In Proceedings of International Confer-
ence on Acoustics, Speech, and Signal Processing, 2022.

[124] Yusong Wu, Tianyu Zhang, and Ke Chen. Text-to-audio retrieval via large-scale contrastive
learning. Proceedings of the Detection and Classification of Acoustic Scenes and Events
Workshop (DCASE), 2022.

[125] Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee. A regression approach to speech
enhancement based on deep neural networks. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 2014.

[126] Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and
Dong Yu. DiffSound: Discrete diffusion model for text-to-sound generation. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 2023.

[127] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. In Proceedings of International Conference on
Learning Representations, 2018.

[128] Jingwei Zhao, Gus Xia, and Ye Wang. Beat transformer: Demixed beat and downbeat
tracking with dilated self-attention. In Proceedings of International Society for Music
Information Retrieval Conference, 2022.

103

	Dissertation Approval Page
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Introduction
	Novel Contribution
	Dissertation Organization

	Hierarchical Token-Semantic Audio Transformer
	Introduction
	Supplementary Materials
	Model Architecture
	Encode the Audio Spectrogram
	Patch-Merge and Window Attention
	Token Semantic Module

	Experiments
	Event Classification on AudioSet
	Evaluations on ESC-50 and Speech Command V2
	Localization Performance on DESED

	Conclusion

	Zero-Shot Audio Source Separation
	Introduction
	Supplementary Materials
	Audio Source Separation via Neural Networks
	Time-domain Separation Models
	Frequency-domain Separation Models
	Datasets of Source Separation
	Universal Source Separation

	Audio Classification and Localization
	Model Architecture and Pipeline
	Weakly Labeled Data
	Audio Clips Sampling
	Anchor Segment Mining
	Audio Models in Use: PANN and HTS-AT
	Query-based Source Separator
	Zero-shot Learning via Latent Source Embeddings

	Experiments
	Audio Classification and Localization
	Audio Source Separation
	Zero-Shot Verification
	Visualization of Hierarchical Separation

	Conclusion

	Contrastive Language-Audio Pretraining
	Introduction
	Supplementary Materials
	LAION-Audio-630K and Training Dataset
	LAION-Audio-630K
	Training Dataset
	Dataset Format and Preprocessing

	Model Architecture
	Contrastive Language-Audio Pretraining
	Downstream Tasks in Inference Stage
	Audio Encoders and Text Encoders
	Feature Fusion for Variable-Length Audio

	Attentional Feature Fusion
	Keyword-to-Caption Augmentation

	Experiments
	Hyperparameters and Training Details
	Evaluation Metrics
	Text-to-Audio Retrieval
	Zero-shot and Supervised Audio Classification

	Conclusion
	Additional Information
	Details of LAION-AUDIO-630K
	Additional Experiment on Freesound Dataset

	Experiment Settings on Data Exclusion
	Reference of CLAP

	MusicLDM: Text-To-Music Generation
	Introduction
	Supplementary Materials
	Related Work
	Text-to-Audio Generation
	Plagiarism on Diffusion Models
	Mixup on Data Augmentation

	Model Architecture
	MusicLDM
	Beat-Synchronous Mixup

	Experiments
	CLAP Setup
	MusicLDM Setup
	Generation Quality
	Text-Audio Relevance, Novelty and Plagiarism
	Subjective Listening Test

	Limitations and Impacts
	Conclusion

	Conclusion and Future Work
	Bibliography

