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Hernando Ombaoa

aKing Abdullah University of Science and Technology

bUniversity of Minnesota

cUniversity of California Irvine

Abstract

The standard approach to analyzing brain electrical activity is to examine the spectral density 

function (SDF) and identify frequency bands, defined a priori, that have the most substantial 

relative contributions to the overall variance of the signal. However, a limitation of this approach is 

that the precise frequency and bandwidth of oscillations are not uniform across different cognitive 

demands. Thus, these bands should not be arbitrarily set in any analysis. To overcome this 

limitation, the Bayesian mixture auto-regressive decomposition (BMARD) method is proposed, 

as a data-driven approach that identifies (i) the number of prominent spectral peaks, (ii) the 

frequency peak locations, and (iii) their corresponding bandwidths (or spread of power around the 

peaks). Using the BMARD method, the standardized SDF is represented as a Dirichlet process 

mixture based on a kernel derived from second-order auto-regressive processes which completely 

characterize the location (peak) and scale (bandwidth) parameters. A Metropolis-Hastings within 

the Gibbs algorithm is developed for sampling the posterior distribution of the mixture parameters. 

Simulations demonstrate the robust performance of the proposed method. Finally, the BMARD 

method is applied to analyze local field potential (LFP) activity from the hippocampus of 

laboratory rats across different conditions in a non-spatial sequence memory experiment, to 

identify the most prominent frequency bands and examine the link between specific patterns of 

brain oscillatory activity and trial-specific cognitive demands.

Keywords

Spectral density estimation; Bayesian nonparametrics; local field potentials; Dirichlet Process; 
Markov chain Monte Carlo

1. Introduction

Considerable research indicates that the hippocampus — a brain region highly conserved 

across mammals — plays a key role in mammals’ ability to remember the order in which 
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daily life events occur [1]. However, there is little insight into how these processes are 

accomplished at the neuronal level.

A major scientific goal of co-author’s Fortin research (Neurobiology laboratory, UC Irvine) 

is to study the ability of animals to remember the specific sequence in which events 

occurred, and to understand how the hippocampus supports this capacity. To identify the 

neuronal mechanisms underlying this capacity critical to daily life function, an experiment 

was conducted in which neural activity, specifically the local field potentials (LFP), was 

recorded in the hippocampus of rats as they performed a complex, non-spatial sequence 

memory task (similar to paradigms used in humans (see [2]). The five rats (hereafter referred 

to as subjects) were trained to recognize a sequence of five different odors (A = Lemon, B = 

Rum, C = Anise, D = Vanilla, E = Banana). A trial (i.e., a single odor presentation within the 

sequence) is labeled as ”in sequence” (InSeq) if the odor is presented in the correct sequence 

position (e.g., ABC…); otherwise, the trial is labeled as ”out of sequence” (OutSeq; e.g., 

ABE…), as illustrated in Figure 1. The particular aim was to identify features (e.g., the 

most prominent oscillatory patterns) in the observed signals that are associated with specific 

aspects of task performance.

The standard analysis for electrophysiological signals detects the most prominent oscillatory 

components of the signal by estimating power in the spectral density function (SDF) in 

predefined frequency bands, namely, delta (0.5–4 Hertz), theta (4–8 Hertz), alpha (8–12 

Hertz), beta (12–30 Hertz), and gamma (> 30 Hertz). The power at the delta band indicates 

the contribution of slow oscillations to the total variance of the signal; whereas the gamma 

power is the contribution of fast oscillations. Visually, the spectral power forms peaks along 

the spectral density with certain bandwidths. The SDF is a good descriptor of any stationary 

stochastic process because it quantifies the amount of variability in a signal (such as the 

LFP) that is accounted for by the different frequency bands [3, 4, 5, 6].

However, the current segmentation of the frequency range into the delta-to-gamma 

frequency bands is ad hoc and is primarily driven by pragmatic considerations [7]. In current 

research, many neuroscientists now consider some of these bands to be too wide and thus 

they do not possess the required level of precision in order to identify differences between 

different type of stimuli and between patient or treatment groups (see [8, 9]). There is an 

increased demand for more precise analyses with finer subdivisions within the bands, for 

example as ”low”-alpha and ”high”-alpha (see [10], [11]). Moreover, these frequency bands 

are predefined, according to the species under study. This is a limitation because different 

experimental conditions may elicit different oscillatory activity (different peak locations and 

different bandwidths).

The plot of the LFP on the second half of the epoch displayed in dark blue and dark 

red in Figure 2 reveals a highly dynamic pattern of hippocampal oscillations during 

task performance, reflecting the distinct cognitive demands at different moments in time. 

Notably, the specific frequencies and bandwidth of the observed oscillations do not map well 

with standard predefined frequency bands (delta, theta, alpha, beta, and gamma bands). The 

goal is to identify–in a data-driven manner–the frequency peaks and bandwidth, and link 

these with specific types of information processing.
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There are two general classes of methods for estimating the SDF. One class is modeled 

in the time domain where a parametric model, typically autoregressive moving average 

(ARMA), is fitted to the data and an estimate of the SDF is obtained by plugging in 

the estimates of the ARMA parameters. Another class is nonparametric techniques based 

on kernel-smoothing or wavelet-denoising of the observed periodogram curves (or log 

periodogram curves). The main limitations of the standard estimation methods and the 

general approach where the frequency bands are a priori defined are: (1) the lack of direct 

connection between the SDF estimator parameters to the time domain properties of the 

signal; (2) imprecise location of the frequencies of the spectral peaks; and (3) the need to 

increase the number of basic components of a model to satisfy some estimation criterion 

(e.g., squared estimation error) which leads to an unnecessarily more complex representation 

(or a less parsimonious representation) of the SDF.

The primary motivation is to address the need for precise identification of oscillations in 

LFPs by developing the Bayesian mixture auto-regressive decomposition (BMARD) that 

will produce estimates of the SDF with peaks and bandwidths that are determined by 

the data – rather than arbitrarily defined by the standard bands. The proposed BMARD 

method is applied to the hippocampal (LFP) activity recorded from laboratory rats to detect 

task-related changes in brain signals through changes in the peak activity or shifts in the 

frequency content. BMARD sets a Dirichlet process prior on the standardized SDF leading 

to characterization of the SDF as a weighted mixture of kernels. The proposed kernel 

is derived from the standardized SDF of a second-order autoregressive process, which is 

associated with a unique oscillatory pattern. The BMARD approach leads to a representation 

of the signal as a weighted mixture of latent second-order autoregressive processes, where 

the number of components in the mixture is an unknown parameter in the model. For the 

BMARD estimator, it will be sufficient to have a small number of kernels in order to obtain 

a suitable fit. Thus, BMARD provides simple representations of the final SDF estimators, to 

enable easier interpretation and a more straightforward framework for addressing scientific 

questions related to the frequency and time domain properties of the data and perform 

comparisons of experimental conditions. Most importantly, BMARD is not constrained by 

the a priori frequency bands used in standard analyses; it fully relies on the data to identify 

the location of the spectral peaks and also the frequency bandwidths of these oscillations.

The remainder of this paper is organized as follows. In Section 2, the general Bayesian 

non-parametric framework through a Dirichlet Process prior is described and a new kernel 

is proposed from the standardized SDF of a second-order autoregressive (AR(2)) process. 

The robustness of the BMARD method to model misspecification is demonstrated through 

simulation studies in Section 3. A realistic simulation study is conducted, where the 

observed simulated LFP is a mixture of AR(2) latent processes with peaks that were actually 

observed in the the LFP signals recorded during the experiments in the Fortin laboratory. 

In Section 4, the hippocampal LFP signals of five laboratory rats are analyzed using the 

proposed BMARD method to address important neuroscience questions using a non-spatial 

sequence memory experiment. Finally, the MCMC algorithm for obtaining posterior samples 

of the BMARD estimator is described in the Appendix.
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2. Bayesian Mixture Auto-regressive Decomposition (BMARD)

2.1. Overview of spectral analysis

To develop the specific ideas of the proposed approach, a brief overview of spectral 

analysis is given. Consider a process Xt that is locally weakly stationary with zero-

mean and autocovariance sequence given by {γ(h) = E(Xt+hXt), h = 0, ±1, …} that 

is absolutely summable, i.e., ∑h |γ(h)| < ∞. The SDF (within this stationary epoch) 

is formally defined as f(ω) = ∑h γ(h)exp(−i2πωh), where ω ∈ (−0.5, 0.5). Consider 

now the observed signal within an epoch Xt t = 1
T , where T is even and the sample 

mean X = 0. A nonparameteric estimate of the SDF f(ω) obtained from the observed 

signal are the periodogram values I ωk = 1
T ∑t = 1

T Xtexp −i2πωkt , which are computed 

at the fundamental frequencies ωk = k
T  (where k ∈ − T

2 − 1 …, T
2 . The periodogram is an 

asymptotically unbiased estimator for the SDF. However, it is not consistent because its 

variance does not decay to 0, even when the length T of the observed process increases.

One way to construct a consistent estimator for the SDF f(ω) is by smoothing (or denoising) 

the periodogram or log periodogram. Several nonparametric methods have been proposed. 

Bandwidth selection methods for kernel and spline smoothing have been developed for 

this approach (see for example, [12], [13], and [14]). These nonparametric methods aim to 

find a spectral estimator that minimizes a well-defined global criterion, such as complexity-

penalized deviance or integrated mean squared error. In addition, [15] proposed a Whittle 

likelihood-based approach. In [16], a functional mixed models approach was developed to 

account for the variation of the spectra for multiple processes data.

An alternative class of methods has been developed under the Bayesian framework. In [17], 

a Bayesian method was proposed for estimating the log-SDF which is modeled as a mixture 

of Gaussian distributions with frequency-specific means and logistic weights. A related 

approach, using the ideas in Bayesian non-parametric methods, uses kernels that are based 

on the Bernstein polynomial (BP). This was first proposed in [18] to estimate a probability 

density function. These ideas were transferred to spectral density function estimation in [19] 

and [20], where the estimator uses a Dirichlet process (DP) mixture model with BP kernels. 

The Bernstein polynomial approach was extended to the multivariate processes in [21], 

which gives a decomposition in the frequency domain in terms of BP-DP approximation. 

Furthermore, [22] generalized the BP kernels with a procedure using a prior based on 

B-splines, which reduces the L1-error. A semiparametric Bayesian estimator for the SDF 

with a BP-DP prior, along with a nonparametric correction in the frequency domain of a 

parametric likelihood, was developed by [23].

The mixture models based on BPs have the advantage of providing consistent pseudo 

posterior estimates. However, in practice, BP mixtures can either oversmooth the peaks of 

the spectral estimates or require a high number of polynomials to achieve certain levels of 

accuracy. Another disadvantage of the BP method is their lack of association to an easily 

interpretable data-generating mechanism in the time domain.
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The state-space models (SSM) are a recent advancement on spectral estimation (see [11] 

and [24]). In [11], an evolutionary SSM is proposed to offer a representation of a weakly 

stationary process as a mixture of second-order auto-regressive processes. The AR(2) SDF, 

derived from the phase and magnitude of the non-real complex-valued roots of the AR(2) 

polynomial function, are assumed to be constant in time. A property of this method is that 

the discrepancy between the true SDF and the approximate SDF derived from the AR(2) 

mixture vanishes by increasing the number of components. However, in practice, both the 

number of components and their phases are fixed. In some practical scenarios, it might be 

necessary to add components in order to produce better estimates. This is a consequence 

of the rigidity when the phases of the complex-valued roots are constrained to be fixed. 

However, in practice, a better solution is to adaptively identify the locations of the various 

peaks in the SDF, which will produce a more parsimonious model and enable a more precise 

identification of the spectral peaks. The proposed BMARD method accomplishes these 

tasks.

Nonparametric methods are flexible but, their main disadvantage is that they generally 

do not employ a straightforward data-generating mechanism. The parametric approach, on 

the other hand, is generally efficient, but may not always be directly justified from the 

underlying brain physiology and may suffer from model misspecification.

BMARD is a Bayesian nonparametric approach for spectral density estimation that 

combines the best of both time and frequency domains. BMARD decomposes the SDF of a 

signal as a mixture of spectra of the AR(2) processes, providing a framework that precisely 

describes each specific oscillatory content in the signal. More precisely, the standardized 

SDF is modeled as a multimodal probability density function by a DP-mixture model with 

kernels derived from the standardized SDF of second auto-regressive processes.

BMARD has the advantage of data-adaptively providing an estimate of the number of latent 

processes with unique locations and scale parameters matching a single peak of the target 

standardized SDF. Unlike standard methods for spectral estimation, the BMARD method 

can precisely estimate the frequencies that produce the highest peaks in the standardized 

SDF without the need to constrain the peak locations to pre-specified bands, and determines 

the width of each of these peaks (through a bandwidth parameter). Thus, BMARD provides 

the practitioner with a more informative estimate of the oscillatory activity of brain signals 

and provides a more direct mapping between physiological signals and animal behavior (or 

cognitive responses to various stimuli).

2.2. Autoregressive Kernel and the DP mixture

In the proposed model, a kernel g is proposed as the standardized spectral density function 

(SDF) of an AR(2) process, leading to a representation of the observed process as a 

linear mixture of multiple uncorrelated latent stochastic AR(2) processes, each with unique 

spectra.

A weakly stationary process Zt is said to be autoregressive of order 2, AR(2), if it has the 

representation Zt – ϕ1Zt−1 – ϕ2Zt−2 = Wt, where Wt is a white noise process with variance 

σW
2  and the roots of the AR(2) polynomial function Φ(u) = 1 – ϕ1u – ϕ2u2 do not lie on the 
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unit circle. Furthermore, when the roots of Φ(u) have magnitudes greater than 1, the AR(2) 

process is causal. When the roots, denoted as u1 and u2, are non-real complex-valued, then 

they are complex-conjugates of each other, that is, u1 = u2* and |uj| > 1. The above conditions 

ensures the causality of the process Zt. When Zt is causal with non-real complex-valued 

roots, then both roots have the polar representation

u1 = M exp(i2πψ) and u2 = M exp( − i2πψ). 

with magnitude M > 1. The AR(2) polynomial function above can be completely 

characterized by the coefficients (ϕ1, ϕ2), the roots (u1, u2), or the magnitude-phase of 

the roots through the following one-to-one relation between the roots and the coefficients in 

terms of the log-modulus L = log(M) > 0:

ϕ1 = 2 cos(2πψ) exp( − L), ϕ2 = − exp( − 2L), ψ ∈ ( − 1/2, 1/2), L > 0. (1)

Due to the symmetry of the SDF f(ω) at 0, it is sufficient to specify the standardized SDF 

only at the frequency range ω ∈ (0, 0.50). In order to represent the SDF of Zt as a valid 

probability density function, it must integrate to 1, which is achieved by scaling by (or 

dividing by) ∫0
1/2f(ω)dω = V ar Zt /2 =

1 − ϕ2 σW
2

2 1 + ϕ2 1 − ϕ2 2 − ϕ1
2 . Then the standardized SDF is 

defined as

g(ω; ψ, L) =
2 1 − e−2L 1 + e−2L 2 − 4 cos2(2πψ)e−2L

1 + e−2L 1 − 2 cos(2πψ)e−L e−i2πω + e−2L e−i4πω 2 . (2)

where ω, ψ ∈ (0, 1/2) and L > 0. Here, ψ is the location parameter of the kernel that attains 

a localized peak of the SDF of Zt. The role of L is to control the spread of the kernel as 

a scale parameter; hence, it will be called the bandwidth parameter. Figure 3 illustrates the 

roles of ψ and L in producing the different kernels.

According to [3], given an arbitrary stationary time series and ϵ > 0 there exists an AR(p) 

process such that the absolute difference of their SDFs is less than ϵ for all frequencies. 

Based on this result, a more formal justification for the selection of a second-order 

autoregressive model is based on structural process modeling (see [25], [26], [3]), where an 

AR(p) process is represented in such a way that is equivalent to a consecutive input-output 

system of simpler processes. If the set of p roots of its characteristic equation consists of 

p1 real roots and 2p2 complex roots (here, p = p1 + 2p2), then the characteristic equation 

is expressed as Λ − λ1 Λ − λ1* … Λ − λp2 Λ − λp2* … Λ − λp2 + 1 … Λ − λp1 + p2 , where * 

denotes the complex conjugate. Then, the AR(p) can be represented through a p1 + p2 

consecutive input-output system composed of p1 AR(1) processes and p2 AR(2) processes. 

Each pair of roots associated to an AR(2) process are constructed with the following 

coefficients: ϕ1
(i) = λi + λi and ϕ2

(i) = − λ 2 for i ∈ 1, …, p2, while the real root associated 

to an AR(1) has coefficient ϕ2
(j) = λj for j ∈ p2 + 1, …, p1 + p2. The method proposes 
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approximation of the AR(1) components by AR(2) processes based on the flexibility to fit 

the AR(1) SDF illustrated previously when appropriate values for ψ and M are estimated. 

Using this representation, it follows that the SDF of a weakly stationary process can be 

approximated by a mixture of AR(2) as latent factors, equivalent to a parallel structural 

model.

In general, for an arbitrary set of uncorrelated weakly stationary processes {Zt
c, c = 1, …, 

C} with corresponding identifiable autocorrelation functions {ρZc(ℎ), c = 1, …, C} and 

identifiable SDFs {gc(ω), c = 1, …, C}, their linear combination is still a weakly stationary 

process. Moreover, define Xt = ∑c = 1
C acZt

c then there exist the following relations:

∑
c = 1

C
ac2gc(ω) = fX(ω) and  ∑

c = 1

C
ac2ρZc(ℎ) = ρX(ℎ) .

where fX(ω) and ρX(h) are the SDF and auto-correlation function of Xt, respectively. 

Conversely, a decomposition in the frequency domain may have this one-to-one relation 

only in one direction, since two processes with the same spectrum can be not correlated.

2.3. Dirichlet Process Mixture Model

Let {Xt, t = 1, …, T} be the observed time series from a zero-mean weakly stationary 

process with SDF f(ω). [27] proposed a quasi-likelihood of the joint distribution of the 

periodogram values at frequency ωk, denoted I(ωk), expressed as the log-likelihood up to 

some additive constant.

ℓ f ∣ X1, …, XT = ∑
k = 1

(T − 1)/2
− log f ωk − I ωk /f ωk . (3)

where ωk = 2πk/T, k ∈ {1, …, (T/2 − 1)}. This quasi log-likelihood is based on the 

property that for sufficiently large T, then {I(ωk)} are approximately jointly distributed as 

uncorrelated exponential random variables with E(I(ωk)) ≈ f(ωk) for k = 1, …T
2 − 1.

To formulate the model, consider the SDF f(ω) as an infinite-dimensional object modeled 

as a mixture of the autoregressive kernels g with respect to an unknown mixing probability 

distribution G defined over the support of the parameter vector θ = {p1, …, pC, ψ1, …, ψC, 

L1, …, LC, C}. Then, the mixture model is specified given the vector θ, and a DP prior is set 

for the mixing measure G.

I ωk
1

f ωk
exp −I ωk /f ωk ,

f ωk ∣ θ = ∑
c = 1

C
pcg ω; ψc, Lc ,

Granados-Garcia et al. Page 7

Comput Stat Data Anal. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



θ ∣ G G,

G DP G0, α .

The prior DP(G0, α) refers to the Dirichlet process [28, 29, 30] with parameter α and 

probability measure G0. Then, for any finite partition of measurable sets (S1, S2, …, 

Sk), the probabilities (G(S1), …, G(Sk)) have a Dirichlet prior with parameters (αG0(S1), 

…, αG0(Sk)). Due to the symmetry of the SDF, a partition over the interval (0, 0.5) is 

considered. The parameter α is a scale parameter of the DP that gives an indication of the 

number of estimated components. Low values of α lead to a posterior distribution of G that 

is dominated by a few components (see [31, 32]). The prior G0 is called a base measure and 

is associated with the prior distributions of the components of θ. The following papers give 

a detailed description of the role of α in determining the estimated number of components: 

[33], [34], [35], [32]. From now on, C is referred to as the random number of components 

with a prior distribution over the positive integers truncated up to a certain high possible 

value, based on the so-called truncated Dirichlet process (TDP), introduced in [36].

Note that in the usual DP-based clustering model, individual observations are assigned to 

each cluster with some probability. In contrast, the goal of BMARD is to estimate the 

standardized SDF g(ω) = f(ω)
∫ f(ω)dω . Since ∫ g(ω)dω = 1, g(ω) captures the shape of the 

SDF f(ω) and gives the proportion of variance explained by each frequency component, 

the standardized SDF g(ω) for each of the experiment trials is approximated using the 

periodogram values computed by first standardizing the trial data to have unit variance. Note 

that the periodogram values are not being ”clustered” – rather, they are associated with a 

convex combination of kernels.

The next section constructs a kernel that is based on a parametric model, where the shape of 

the standardized SDFs is a single peak represented in terms of a location (frequency peak) 

and scale (frequency bandwidth) parameter in the frequency domain. The new kernel allows 

us to specify the standardized SDF distribution, F, in the DP mixture model.

2.4. Specification of the prior

The definition of the parametric kernel completes the general specification of the DP 

mixture model stated in equation 2.3. Now, we discuss the prior distributions of the location 

and scale parameters of the kernel, as well as the choice of a prior probability mass function 

for the number of components.

In practical implementation of the MCMC algorithm, the potential label switching problem 

of the location parameter ψc observed in mixture models, see [37], is avoided by defining a 

random partition over the interval (0, 0.50) as 0 < ϵ1 < ⋯ < ϵC. The first and last frequency 

block are fixed as ϵ0 = 0 and ϵC = 0.50. The partition protects the identifiability of the 

mixture components since each location parameter ψc is restricted over the interval ϵc−1 < 
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ψc < ϵc for c = 1, …, C, thus imposing the constraint that there is only one component in 

each frequency block.

At each iteration of the MCMC algorithm, the random cut-off points ϵc are key to the 

procedure of generating the proper number of components. First, a component label c is 

selected at random and is proposed to be deleted (death) or to create a new component 

(birth) with equal probability. When ”birth” is chosen, the candidate value for the partition 

cut off ϵ* is draw uniformly over the interval (ϵc−1, ϵc) and a ψ* is proposed randomly over 

the interval ϵc−1 < ψc < ϵ*. When ”death” is selected, then cut off ϵc is eliminated and a 

random ψ* is proposed.

In the BMARD implementation, a prior for the bandwidth parameter Lc is selected to 

penalize the full log-likelihood conditional on the DP mixture model parameters to capture 

sharp peaks. One example of the prior takes the form Lc ∣ C Lc
δ; note here that δ = −2 

defines the Jeffrey’s prior. Utilizing this type of prior on the full conditional likelihood 

has some effect on the identification of the components, as well as the smoothness of the 

components. In the M-H step, the resulting contribution of a new proposal L*,— relative to 

a previous value L— on the log-likelihood is δ log(L/L*), which depends on the sign of δ. 

If δ < 0 (δ > 0) the algorithm penalizes the M-H acceptance probability if the shape of the 

proposed peak is sharper (broader). However, if the update steps are small (i.e., L* = L + ϵ), 

then this contribution will vanish due to the ratio L/L* being close to 1.

When the M-H step involves the creation of a new component, then the contribution of a 

new Lc+1 is −δ log(Lc+1); if the generated Lc+1 is close to 0, then the contribution will 

be substantial. Then, for δ < 0 the penalization is over proposing a higher number of 

components. The prior for the number of components is chosen from the general form 

π(C) = exp(λCq) based on [19], which suggested λ = −0.50, q = 2.0. This prior penalizes 

decreasing the number of components (in order to guarantee a more precise identification 

of peaks) since the contribution to the likelihood in the M-H step will be λ(cq − (c + 1)q) 

> 0. This prior will have a more significant impact in cases when the observed signal is 

composed of low frequencies and when all possible peaks are not well separated. Then the 

model could collapse to the simplest representation of one component and oversmooth the 

peaks. Allowing the number of components to increase as necessary helps to detect and 

isolate peaks that are not easily distinguishable.

Given the prior definitions, the base measure G0 of the DP Mixture model associated with 

the prior distribution over the parameter vector θ = (ψ, L, ϵ) is as follows:

ϵc ϵ−c, C U ϵc − 1, ϵc + 1 , ψc ψ−c, ϵ, C U ϵc − 1, ϵc , Lc ∣ C, b Lcδ .

Where b is a user-defined value to set an upper bound of the space of Lc. From Figure 3, 

the kernel flattens as Lc increases. Another influence on the algorithm performance are small 

weights that will hinder the M-H steps discard spurious components, in practice setting b = 

1 allows the kernels to be flexible enough to fit the SDF peaks. The posterior distribution 

of the DP mixing weights is estimated with the “stick breaking” representation introduced 
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by [30]. The posterior distribution of the parameter α is sampled based on two different 

priors: (i) Gamma prior (as motivated in [38]) and updating the sample for αi by a Gibbs 

sampling through the marginal αi+1|V ~ gamma(M +a−1, b−log(qM)), where V is the vector 

of “breaks” Vj ~ Beta(1, α), qM = V M∏i = 1
M − 1 1 − V i  and M is the length of V, which is the 

level of truncation; or (ii) log-normal prior and sampling from the distribution of α using a 

slice sampler [39] based on the posterior distribution given by [40].

3. Simulation Study

3.1. Setting and criteria

Simulation studies were conducted to examine the relative strengths and weaknesses of 

the BMARD method compared to three spectral estimation methods: (i) kernel regression 

smoothing using the Nadaraya-Watson estimator; (ii) a cubic smoothing spline approach 

and (iii) the non-parametric Bayesian estimator developed by [19] based on Bernstein 

polynomials. Both (i) and (ii) are optimized with respect to leave-oneout cross-validation 

(LOOCV) for the smoothness parameters.

The criteria—Three different parametric processes were used (see descriptions below). 

The methods were compared under the following criteria: (A.) The local integrated absolute 

error criterion (local IAE). Let ωmax be the true value of the frequency at which the true 

SDF attains a peak and define f(ωmax) to be the value of the SDF at the peak. Moreover, 

define a local interval around the peak to be (ωmax – ϵ1, ωmax + ϵ2) where ϵ1> 0 and ϵ2 > 0 

satisfy f(ωmax – ϵ1) ≈ 0.9f(ωmax) and f(ωmax – ϵ2) ≈ 0.9f(ωmax). Then the local IAE of the 

estimator f  around the frequency peak ωmax is defined as

Local IAEωmax = ∫ωmax − ϵ1

ωmax + ϵ2
f(ω) − f(ω) dω . (4)

(B.) The maximal-phase disparity criterion which is inspired on [41]. Here, the focus is on 

identifying the frequency at which the SDF is maximized for a specific band – as opposed to 

the local IAE criterion which focused on estimating the peak value of the SDF. This criterion 

was used in particular for the alpha frequency band motivated from cognitive studies where 

the alpha band is associated with learning. The maximal-phase-disparity is computed as the 

absolute difference ωmax − ωmax  where ωmax is the location of the local maximizer of an 

estimator f  within a frequency band b, ωmax = arg maxω ∈ b(f(ω)).

The integrated absolute error (IAE) computed through the whole frequency range as a global 

metric, i.e., it examines the performance across the entire range of frequencies. However, 

the local IAE measures the performance of the methods only in a local frequency range 

that contains the spectral peak. On the other hand the phase-disparity helps to evaluate the 

performance of the estimator to properly locate the peaks of the SDF.

The simulation settings.—The first is a mixture of three AR(2) processes Zt
c, c = 1, 2, 

3 with peak locations chosen similar to the ones observed in the LFPs in the data analysis. 

The frequency peaks were located at 4, 34, and 60 Hz (assuming that the sampling rate is 
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1000 Hertz per second but only half-second worth of data (i.e., T = 500) is observed which 

mimics the rat LFP data analyzed in Section 4.

The peaks are associated to the following weights p1 = 0.1, p2 = 0.6, p3 = 0.3. Moreover, 

setting Lc = 0.01, c = 1, 2, 3, the peaks in the SDF will be sharp. The construction simulates 

realistic brain signals since a common component at very low frequencies, a second peak 

around 30 Hz, and a third peak representing an artifact at 60 Hz were observed in a 

exploratory analysis. Each pair of values (ψc, Lc) defines a unique AR(2) process Zt
c.

The goal of the next two settings is to test the robustness of BMARD with respect to a 

deliberately misspecified parametric model. The second simulation setting is an AR(12) 

process that was studied in [14] to test the smoothing splines estimator of the standardized 

SDF. Moreover, the same setting defined in Equation 5 was also studied in [19] using 

Bernstein polynomials to estimate the AR(12) standardized SDF:

Xt = 0.9Xt − 4 + 0.7Xt − 8 − 0.63Xt − 12 + ϵt, (5)

where ϵt is a white noise process. The setting is useful to test the robustness of the BMARD 

method under model misspecification since the true process is not a mixture of AR(2) 

processes. The scenario examines how well the mixture can approximate a model with 3 

main peaks at ω = 0, 250, 500 Hz and two smaller peaks at ω = 150, 350 Hz. As a side 

remark, [3] explain that higher order AR models can approximate the SDF of any arbitrary 

stationary linear process which motivates the importance of estimating this type of model. 

The third setting is a MA(4) process generated as

Xt = − .3ηt − 4 − .6ηt − 3 − .3ηt − 2 + .6ηt − 1 + ηt, (6)

where ηt is a white noise process. Similar processes are discussed in [14], [12], [13], [42], 

and [43]. The standardized SDF of this moving average process is a smooth curve centered 

at ω = 250 Hz with an extra bump around 500 Hz. This model would help to test BMARD 

under the scenario of fitting broad and smooth peaks, when the misspecification is not only 

in terms of the order but also in the structure of dependency since the MA processes have a 

zero correlation beyond the order (or when the absolute value of the lag exceeds the order).

To evaluate the performance of BMARD, 1000 processes were generated per setting each of 

T = 500 time points. The data settings match the window size in the LFP data analysis. The 

spectral spline estimation was deployed using the package connection between R and C++: 

Rcpp [44], [45], [46] in order to boost its efficiency, with the number of MCMC samples 

fixed to 100000 for six chains discarding 95000 as burn-in samples.

The following process was performed to summarize the MCMC samples containing 

different dimensions at different iterations across chains. First, for each parameter, the 

after burn-in samples are stacked in a vector and merged across chains. After making these 

vectors for each parameter ψ, L, W, the vectors are bound into a matrix of three columns 

generating a cloud of points in a 3-dimensional space. Then, a clustering algorithm is run 

to identify all configurations found by the MCMC. The number of components C from 

the after burn-in samples are summarized in their unique values to consider all possible 
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components found in the MCMC. These unique C values are the input for the classification 

algorithm for the possible clusters. The method chosen to classify the components is the 

mixture of Gaussians from the package mclust [47]. This clustering algorithm is optimized 

based on the integrated complete likelihood (see [48]). Finally, the cluster means ψ, L, W
are used as the estimated components. To obtain the curves summary the pointwise median 

of the sampled curves is computed considering 5000 after burn-in samples and all MCMC 

chains.

The reported results are based on the implementation based on the gamma prior for 

parameter α, the initial number of components was randomly selected in the set {1, …, 

20} for each chain to start with different initial conditions aiming to convergence to the same 

posterior distribution. The level of truncation for the stick breaking representation was set 

random per each chain in the set {20, …, 30} as a conservative rule based on [19].

Roughly BMARD takes 4 hours to finish all chains running in parallel. In comparison, the 

BP method can take 10 hours to run all chains in parallel and use a more considerable 

amount of memory when the number of components increases. However, a computational 

efficiency study was not carried out rigorously. It was also noticed that the number of atoms 

used in the DP prior for both methods was not a significant factor for the computational 

times.

3.2. Results

Figure 4 displays the logarithm of all the pointwise median curves per simulated processes 

for each of the methods. For the BMARD estimators the associated peak locations is added 

in green vertical lines with its linewidth determined by the mixture weights. The first 

row corresponds to the AR(2) mixture setting. The results demonstrate that the BMARD 

method retrieves better the true standardized SDF peaks locations and shapes than the other 

methods. It is also evident that the Bernstein polynomial method consistently smooths out 

the peaks. The spline and kernel estimators identify the peaks in different simulations but, in 

general, show higher variability capturing the main components, and more peaks across all 

frequencies.

The results from modeling the AR(12) process standardized SDF shows how the BMARD 

method out-performs the Bernstein polynomial method at retrieving the shapes of the peaks. 

The curves in log-scale indicate that when the SDF contains well-spaced and sharp peaks, 

the BMARD method produces better estimates. Regarding the algorithm sensitivity, different 

values were tested for δ and λ for the bandwidth prior, and the level of truncation of the DP 

prior. The BMARD curves across chains generally consistently converged to similar curves 

and parameter settings.

In the MA(4) setting, the BMARD method was able to locate the peaks around the 

maximum of the true standardized SDF. However, it requires several components to 

approximate the smooth shape of the target standardized SDF due to the convexity of 

the autoregressive kernel - whereas the shape of the modes of MA(4) standardized SDF is 

concave. This behavior of the BMARD method is pointed out as a limitation if there is an 

interest in the shape around the peak (not only the actual location of the peak). The cubic 
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spline estimator has a better performance followed by the Kernel smoother, showing as well 

higher variability on the curves observed in Figure 4.

Tables 1–3 are computed using a topological data analysis (TDA) filtration to detect the 

number of peaks of the estimated curves. The filtration process finds portions in the curve 

where a peak appears called the rips filtration computed through the TDA package [49]. 

According to [50], the rips filtration detect the peaks, but their location is missed. Therefore 

this process is used only to count the number of peaks. The intuition behind this evaluation 

is that the wiggliness of the estimated curve can lead to spurious peaks, which is a false 

positive of activity detected in the signal. The BMARD method was tested under the 

TDA approach and by the MCMC iterations estimating the number of components. The 

Metropolis-Hasting steps can keep some components containing minimal weights because 

its deletion does not affect the Whittle likelihood value. Thus, the components considered 

are those with weights larger than 1%. Table 1 shows that BMARD based on its MCMC 

summary, finds three components for 43% BMARD of the estimations, while in 27% it 

finds two peaks. The TDA analysis of BMARD counts that in half of the simulations were 

found two peaks and three peaks in 25% of the cases. In contrast, the BP method in most 

of the simulations oversmooth the periodogram into a single peak activity. The splines 

and kernel smoothing method estimate a single component around 60% of the simulations; 

however, these methods retrieve more than five peaks in several estimations. The BMARD 

method performance for the AR(12) process shown in Table 2 demonstrates to fit five 

components according to the TDA filtration, while the estimated number of peaks based on 

the MCMC summary is distributed between three to five components. The consequence of 

the wiggliness shown in Figure 4 for the competitors is the high number of peaks detected 

in the estimated curves. The BP method, in some cases, reaches to generates more than 

seven peaks. The kernel and spline have the worst performance since, in most cases, these 

smoothing methods estimate more than ten components. The filtration applied for the MA(4) 

SDF estimates confirms from Figure 4 the BP method has the best performance for this 

SDF with smooth curvature since it predominantly detects three components. The BMARD 

method estimates between three to five peaks which extra components are mainly located 

at around 250 Hz. The kernel and spline methods have mixed performance giving smooth 

estimates, but in some simulations reaching to estimate more than seven components.

The local error measures were compared mainly for the AR(2) mixture. The local IAE was 

similar for all methods, most likely because a window of only 500 points was sampled 

while the sampling rate is 1000 Hz, leading to compute the local IAE with only three 

frequencies within the band for each peak. The Bernstein method has a lower local error in 

the first two peaks, at 8 and 30 Hz, while the BMARD method and the classical smoothers 

behave similarly. For the last peak at 60 Hz, the BMARD method achieved a lower local 

error in several simulations. This pattern leads us to conclude that when the peaks occur 

in closely-placed frequencies, implying potentially indistinguishable periodogram peaks, the 

BMARD method tends to identify them as a single peak, which turns out in higher error. Of 

course this problem can be alleviated by increasing the number of observations but keeping 

the sampling rate fixed, i.e., by observing the data for a longer physical time. In contrast, 

when there is sufficient space between peaks (higher frequency resolution), the BMARD 

method can identify the peak activity even when the contribution to the total SDF is small.
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Each of the single MCMC chain estimates of the parameters (ψ, L, p) are used to evaluate 

the average of the absolute for the maximal-phase disparity of the estimates compared to 

the true values. Only the chains that correctly estimate the true number of components 

are considered to compute the average difference across the six chains over the 1000 

simulations. Table 4 reports the average absolute disparity and its standard deviation across 

the 1000 simulations for all the parameters of the individual components. The interval of 

the mean disparity plus two standard deviations contains 0 for the location parameters ψc 

and the bandwidth parameters Lc, c = 1, 2, 3, which leads to conclude the estimation of 

both parameters is unbiased, for all components. However, the weights errors show the 

estimations differ from their true values, even when the shapes in the log scale of the mean 

curves in Figure 4 demonstrate the estimated curves are close enough to the true SDF.

This behavior is due to having two parameters that contribute to the scale of the individual 

components of the mixture since the bandwidth Lc at lower values narrows the Kernel 

implying a higher maximum. On the other hand, the weight pc directly shrinks or expands 

the scale of the c–th autoregressive kernel in the mixture. In further joint analysis of the 

parameters, is noted that the overall shape and contribution to the SDF estimation of the 

individual components is more sensitive to the bandwidth values.

To assess model fit, the convergence of the Whittle log-likelihood was investigated to ensure 

the stationarity of the MCMC for each of the generated datasets and each chain run. The 

evolution of the Whittle likelihood (not shown here) displayed an initial increase followed 

by a stationary behavior for all chains before reaching 50,000 iterations of the MCMC. 

Convergence of the Whittle log-likelihood to a stationary pattern was also observed for the 

Bernstein polynomial method.

An evaluation to find the location of the central peak of the misspecification scenario was 

performed for all methods. The argument at which the maximum value is reached within a 

fixed window of 10 HZ (240–260 Hz) was computed for all the estimators. The densities of 

the absolute disparity between the local maximum location and 250 Hz are shown in Figure 

5. All methods have similar performance; however, BMARD has a higher density around 0, 

which is associated with a slightly better performance among the considered methods.

In summary, the simulations show that the BMARD method provides better estimates of the 

SDF when the true underlying process has auto-regressive (even higher order). However, 

it is less desirable than the nonparametric Bernstein polynomial method to fit the MA(4) 

SDF. Based on the AR(2) mixture simulations, the BMARD method was able to identify 

the SDF peaks more accurately compared with other methods as the BMARD estimated 

curves neither oversmooth nor overfit the periodogram. The higher accuracy of identifying 

peaks and bandwidth in the SDF is the central contribution of the BMARD, which directly 

addresses the current limitations of spectral analysis of electrophysiological signals in 

neuroscience.
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4. Analysis of hippocampal LFPs from 5 rats

In the experiment performed in the Fortin lab, each subject is trained to identify InSeq 

trials by holding its nose in the port for 1.2s (when an auditory signal is delivered), and 

OutSeq trials by withdrawing its nose from the odor port before 1.2-seconds. The LFPs were 

recorded from 20 electrodes (tetrodes) positioned in the pyramidal layer of the dorsal CA1 

region of the hippocampus measured at a sampling rate of 1000 Hertz (1000 time points per 

second).

The data was first examined in [10] where the authors analyzed the LFP activity using 

predefined frequency bands (4–12 Hz and 20–40 Hz). The authors found that, as animals 

ran toward the odor port, power was high in the 4–12 Hz band, particularly in the 7–10 

Hz range. Upon odor delivery (when animals were immobile with their nose in the port), 

that oscillation seems to reduce in frequency (stronger in the 5–8 Hz range). Power in the 

20–40 Hz range increased during odor presentations (particularly in the 19–35 Hz range), 

but was weak during the running period. Notably, 20–40 Hz power showed an association 

with session performance (higher in sessions with high performance). It also differed 

between InSeq and OutSeq trial types (higher on InSeq trials), although that analysis could 

not completely rule out the effects of uncontrolled differences in the animal’s behavior. 

Clearly, such dynamic and frequency-specific (narrow band) patterns analysis in the LFP is 

necessary but cannot be derived from standard analyses using broad, predefined frequency 

bands.

To address this limitation, the BMARD posterior curves are used to conduct inference over 

all the frequencies and locate those with significant changes in power across experimental 

conditions. In the analysis, the first odor was omitted because, regardless of the sequence, 

odor A is always presented first (and hence always in correct order). In order to focus on 

the interaction between stimulus condition and temporal context, the trials in which a subject 

made the wrong response were excluded since different and more complex brain processes is 

expected to be present over wrong responses. The number of the trials during the experiment 

is displayed in Table 6.

To identify the LFP dynamics associated with the processing of the odor stimuli the analysis 

is focused on a single electrode aligned at the same brain location for all subjects for 

two time periods: a Pre-Odor baseline period (500 ms before odor presentation), and an 

odor period (focusing on the first 500 ms following onset of odor, during which the 

animal’s behavior is consistent across trial types). LFPs are generally non-stationary but 

it is reasonable to model each of the LFP recosrds to be locally stationary and hence quasi-

stationary within the very brief intervals of 500 milliseconds. Separate analysis on a single 

electrode using BMARD consistently retrieved the peak activity observed in the observed 

periodogram curves. It is also of interest to consider the joint variability in oscillatory 

behavior across different tetrodes. Indeed there is a keen interest in the community to 

study potential lead-lag relationships between tetrodes and also various types of spectral 

dependence between pairs of tetrodes including coherence [51], partial coherence [52, 

53], partial directed coherence [54], copulas [55], and Hierarchical Bayesian models [56]. 

Future work will be on the generalization of BMARD for multivariate models. Under this 
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framework methods for inference on cross-tetrodes connectivity will be developed in further 

BMARD extensions.

The BMARD was used to explore the posterior curves of each periodogram running eight 

chains of size 100000 considering a burn-in period of 90000 samples. The initial number of 

components (of latent AR(2) processes) were randomly set between 10 and 20. The sampler 

used for the posterior distribution of α is based on a gamma prior with initial parameters 

a = 0.10, b = 0.10 to set a less informative prior. The DP parameter was set to a initial 

value of α0 = 1.00. The level of truncation of the stick-breaking representation was selected 

randomly between 20 and 30. The final estimated curves were computed as the point-wise 

median of 10000 after burn-in posterior curves. With respect to the model fit assessment, the 

log-likelihood trace plots shown an increase and convergence to a stationary behavior for all 

the different trials, stimulus conditions, and temporal contexts.

In the analysis, the LFPs from all trials were used and was applied the two-stage approach 

for estimating the SDF separately for the Inseq and Outseq conditions. In the first stage, 

the SDF was estimated separately for each trial; in the second stage, the information across 

trials within each of the Inseq and Outseq condition was combined. There are many possible 

ways to obtain some ”summary” across the SDFs including (a.) functional median curve 

[57] (the option used); (b.) point-wise median for each frequency; (c.) weighted average of 

all trial-specific SDF estimates where the weight is inversely proportional to the variance 

of the estimate (a spectral curve estimate derived from a very noisy trial should have low 

weight). Regardless, the summary tells about the center of the distribution of the true SDFs 

across all hypothetically infinitely many trials.

Some of the major questions posed in the Fortin laboratory answered by BMARD are 

the following: (a.) Are there differences in peak activity between stimulus conditions (Pre-

Odor vs. odor) on Inseq trials; (b.) Are there differences in peak activity between stimulus 

conditions on Outseq trials; (c.) Is there a potential interaction between stimulus condition 

and temporal context, i.e., is the difference between the Pre-Odor and the odor periods the 

same across Inseq and Outseq trials?

The distribution of the peak frequency of each subject is summarized by considering the 

AR(2) component with the highest estimated contribution to the variance for each trial. 

More specifically, for each subject, trial, and temporal context, the component with the 

biggest estimated weight is selected. Usually their values were at least 65% with high 

concentration around 90%. The main-peak activity subject-specific distributions (derived 

across all trials for each combination of pre vs post-odor and Inseq vs Outseq conditions) are 

shown in Figure 6.

The Inseq trials (top row) for each of the 5 subjects, show first for subject 1 (S1), the 

distribution of the peak frequency Pre-Odor is unimodal with support over 0–25 Hertz; for 

post-odor the distribution of the peak frequencies is also unimodal with the same support. 

The main difference between the Pre-Odor and post-odor for the distribution of the peak 

frequencies during the Inseq condition is the mode: it is 8 Hertz for Pre-Odor while it is 

higher at 10 Hertz for post-odor. For subject 2 (S2), the distributions are unimodal for both 

Granados-Garcia et al. Page 16

Comput Stat Data Anal. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pre- and post-odor but the support is narrower with concentration on 0–18 Hertz. The mode 

for the peak frequency for Pre-Odor is 6 Hertz, while it is 8 Hertz for post-odor. For subject 

3 (S3), the support is even narrower with concentration on 0–12 Hertz and the modes are 

almost identical for Pre-Odor and post-odor peak activity at approximately 6 Hertz. Subject 

4 (S4) has a similar support as subject 1 (S1) but displays a unique feature because the mode 

for the Pre-Odor is 7 Hertz which is higher than that for the post-odor which is at 5 Hertz. 

For subject 5 (S5), the mode for the peak frequency at Pre-Odor is 5 Hertz vs 7 Hertz for the 

post-odor. Note that for the Inseq condition there is quite a variation in the brain functional 

response across the 5 subjects. For this reason it is not possible find a solid justification 

for developing a single unifying model for these 5 subjects. Thus, the individual modeling 

for each subject should be performed to describe similarities and differences in the results 

across the subjects.

A formal test was conducted for the hypothesis of equality of the distributions of Pre-

Odor vs post-odor using the Kolmogorov-Smirnov method. These tests were conducted 

separately for each of the 5 subjects and the findings shown on each of the distribution 

graph in Figure 6. Under a 5% of significance level, S5 during InSeq trials is the only 

subject with significant difference of the pre and post distributions (pvalue=4.5 × 10−5). 

Note that subjects S1, S2, and S3 clearly suggest equality of distributions while for S4 

is not significant despite the bimodality of the post-sequence distribution. Note that the 

identification of these precise peaks were made possible because the BMARD method 

gives a representation of the SDF in terms of the building blocks which are the AR(2) 

spectra. These precise differences in the modes would not have been detected using standard 

approaches where the frequency bands were predetermined rather than adapted to the 

specific data that is being analyzed.

The distribution of peaks for the Outseq condition looks different from the Inseq condition 

uniformly across the 5 subjects. Some evidence of bimodality and greater visual separation 

between the distribution of the Pre-Odor and post-odor presentation is observed uniformly 

across the 5 subjects. Most notable again is S5 (fondly called ”Super-Chris” in the 

laboratory) whose distribution of Pre-Odor and post-odor peaks have a different support 

- despite the estimated modes being very similar. For Super-Chris, the distribution of the 

peaks for pre-odor is very tight from roughly 4–10 Hertz while the post-odor peak has 

more variation with the spread from approximately 4 – 16 Hertz. As in the Inseq condition, 

a Kolmogorov-Smirnov test for the equality of the distributions of peaks for pre-odor vs 

post-odor was used. These tests were conducted separately for each of the 5 subjects which 

results can be found on the side of each graph of the bottom row of Figure 6 where now 

subjects S3 and S5 display significant differences(S3: pvalue=0.035, S5: pvalue=0.015) 

among distributions while subject S1, S2, and S4 show similar test outcomes as in the InSeq 

trials.

To address questions (a.) and (b.) above, let the frequency-specific difference in the SDF 

within InSeq trials and within Outseq trials be, respectively,

ΔI(ω) = fA
I (ω) − fB

I (ω),
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ΔO(ω) = fA
O(ω) − fB

O(ω),

for all ω ∈ (0, .5) where fA
I (ω) and fB

I (ω) are the SDF for Inseq trials for, respectively, 

the Pre-Odor and post-odor presentation. Thus, the quantity ΔI(ω) measures the extent 

of the frequency-specific change after the subject detects an odor presented under the 

setting of correct sequential order. The SDFs for Outseq trials the frequency-specific change 

ΔO(ω) are defined in a similar manner. The functional boxplots for the pre-odor vs odor 

differences on Inseq and Outseq trials (ΔI(ω) and ΔO(ω)) are given in Figure 7 where is 

noted positive differences for higher frequencies, consistent with Figure 6 on the activation 

of this frequencies after the stimulus is presented to each subject. It is stronger in the InSeq 

trials shown on the top row. Besides, some peaks on the boxplots between 8 and 14 Hz 

aligned with the mode of the main peaks locations.

The next question of (c.) regarding the interaction between stimulus conditions and temporal 

context is now addressed. Indeed, a natural question posed by the neuroscientists is whether 

the change (pre vs post-odor) differs between the Inseq and Outseq conditions. In particular, 

the task is to identify the specific frequencies (or bands) where the changes (pre vs post-

odor) are more highlighted for Outseq trials (and which are more emphasized for Inseq 

trials). To conduct a formal inference on the interaction, let define

ΔI − O(ω) = ΔI(ω) − ΔO(ω) .

For a particular frequency ω*, when ΔI−O(ω*) > 0 then the change in pre vs post-odor for 

the Inseq condition is greater than that for the Outseq condition. This will be important for 

identifying physiological features in signals that differentiate between the two experimental 

conditions. In the implementation, the last MCMC 5000 posterior samples were extracted 

for each of the conditions before described for all trials.

The use of the proposed ”difference of the change” ΔI−O(ω) can also be 

interpreted from another point of view. For example, when ΔI−O(ω) > 0 then 

Δi
I(ω) > Δj

O(ω) fA
I (ω) − fB

I (ω) > fA
O(ω) − fB

O(ω). This can be rewritten in another form and 

thus leads to the interpretation

fA
I (ω) − fA

O(ω) > fB
I (ω) − fB

O(ω) .

The quantity fA
I (ω) − fA

O(ω) measures the difference between the spectral power for Inseq vs 

Outseq conditions during the Pre-Odor presentation; whereas the fB
I (ω) − fB

O(ω) measure the 

difference between Inseq and Outseq during the post-odor presentations.

The posterior inference of the curve ΔI−O(ω), shown in Figure 8, displays the functional 

boxplot from the fda package in R set to show the 95% internal region. For subjects S1, 

S3 and S4, is observed a similar pattern of decay for frequencies higher to 8 Hz but only 
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S3 shows significant differences below 0 for frequencies between 12 and 24 Hz. subject 

4 has a significant ΔI−0(ω) for 22 <= ω <= 32Hz while the significant differences for S4 

appear only for ω < 8Hz. A different behavior is noted for S2 who shows positive ΔI−0(ω) 

for ω > 32Hz. Super-Chris (S5) shows quite a distinct pattern. Most notably, the change 

for pre-vs-post during Outseq is significantly greater than the change during Inseq at a very 

narrow band around 6–10 Hertz. Thus, the BMARD method produced a highly specific 

band which identifies the difference in the brain reaction to a correct sequence vs incorrect 

sequence of the odors.

The potential impact to neuroscience brought by the new findings obtained from BMARD 

includes are as follows: (a.) identifying the specific frequency (or narrow bands) of the 

most dominant neuronal oscillations that are engaged in memory; (b.) leading to new sets of 

hypothesis about memory and designing new experiments that test for intervention effects 

such as applying electrical stimulation at the identified frequency peaks.

5. Conclusion

The primary contribution of the BMARD method is to extract information from the data 

to provide highly specific frequency information about spectral density function. It gives 

the estimated number of spectral components (peaks) and provides precise identification 

of the dominant frequencies where the SDF attains localized peaks. It also gives the 

corresponding spread (bandwidth) for each of the spectral peaks that were identified. The 

determination of the number of components, the location of the peaks, and the spread are 

all data-adaptive rather than imposed a priori using the standard methods. The Bayesian 

framework facilitates inference on many subject-matter hypotheses. The construction of 

the SDF under the BMARD method uses a family of autoregressive kernels which, along 

with a Dirichlet process prior, gives rise to a Bayesian nonparametric discrete mixture 

model. BMARD decomposes a stationary univariate process as a linear mixture of latent 

AR(2) processes, where each component is associated to a unique peak on the SDF. The 

weights of the mixture provide an insight into the components contribution of each latent 

process to the total variance of the observed signal. Moreover, as demonstrated in the 

simulations, BMARD gives very good estimates without requiring a higher number of 

components, which is essential when the sampling rate is low. Thus, even with a relatively 

few components, the location of the frequencies corresponding to spectral peaks are well 

estimated because the method data-adaptively identifies the optimal placement of these peak 

frequencies.

The comparison of BMARD with other approaches points to a limitation when estimating 

a moving average SDF due to its concavity and smooth shape. Since the AR(2) kernel is a 

convex function, fitting BMARD to a smooth SDF results in a mixture of several kernels 

localized by peaks arising from the variability of the periodogram. When the SDF is shaped 

by sharp peaks as the autoregressive models, BMARD provides parsimonious estimator for 

the SDF, and outperform other methods. However, despite this limitation, the BMARD still 

performs very well using the metric of identifying the frequencies that produce the spectral 

peaks.
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The LFP analysis of 5 rats shows how the signal is decomposed into different frequency 

components during performance of an odor sequence memory task, and how the distribution 

of peak activity varies across trial types. The significant difference between InSeq 

and OutSeq trials (in which odors were presented in the correct or incorrect order, 

respectively) provides compelling evidence that hippocampal LFP activity carries significant 

information about the sequential organization of human experiences, specifically whether 

or not events occurred in the expected order. This is an important finding because LFP 

activity reflects the summed influence of large groups of neurons near the electrode 

tip. In fact, hippocampal oscillations are generally viewed as playing an important role 

in synchronizing neural activity across neuronal ensembles and circuits, or promoting 

distinct information processing states (reviewed in [58]). Beyond the data analysis specific 

findings, the development of this model may have broader implications in neuroscience as 

a novel approach to extract additional trial-specific information from LFP recordings, an 

electrophysiological approach extensively used in the field.

The decomposition representation in the BMARD method provides a different insight 

for weakly stationary processes as composed of latent processes with various oscillatory 

behavior. The application of BMARD is broad and could extend well beyond neuroscience. 

It is applicable to other types of data such as weather evolution composed of natural 

cycles with different periodicity or financial data that exhibit economical cycles that are 

not necessarily sinusoidal but can be better represented by simpler stochastic processes 

explaining short, medium, and long term tendencies.

One of the possible extensions of the BMARD is nonstationary time series analysis. Some 

works with similar goals than ours in this branch of time series analysis are [59] showing 

how to find the optimal frequency band for nonstationary time series while [60],[61], [62], 

[63] and the empirical mode decomposition by [64] gives other decomposition approaches.
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Appendix: MCMC Algorithm

A Metropolis-Hastings within Gibbs is next described to sample from the posterior 

distribution of the parameters and is available on github through https://github.com/

Cuauhtemoctzin/BMARD. The algorithm first updates the number of components with a 

birth-death process, which at each iteration proposes with equal probability to increase the 

number of components by one or decrease it by one. In the case of a birth step, the M-H 

ratio is.

q θ ∣ θ* /q θ* ∣ θ
= I ϵj

* (i) < ψj
(i) ϵj

* (i) − ϵj − 1
−1 + I ϵj

* (i) > ψj
(i) ϵj − ϵj

* (i) −1 −1 (7)
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Where ϵ*(i) represent a new generation for the partition in the interval (ϵj−1, ϵj) assuming the 

random selection of the index j to split that subinterval and I is the indicator function. While 

in the the case of choosing a death step the M-H probability is computed as

q θ ∣ θ* /q θ* ∣ θ = I ϵj > ψj
* (i) ϵj − ϵj − 1

−1 + I ϵj < ψj
* (i) ϵj + 1 − ϵj

−1
(8)

where ψ* represents the uniform draw when two component are joined by deleting the 

value ϵj from the partition. The proposal distribution to update of the location parameters is 

uniform in the interval (ψc – ϵ, ψc + ϵ) with appropriate conditions to take the modulus over 

the subinterval defined by the partition. For the scale parameter, is used a similar uniform 

draw over the interval (Lc – ϵ, Lc + ϵ).

The alpha parameter is updated based on the slice sampling to generate a random walk over 

the subgraph of the marginal posterior distribution of α given by:

π(α ∣ C) ∝ π(α)αC − 1(α + T )β(α + 1, T ) (9)

where π(α) is the prior over α in the algorithm is set π(α) as log-normal, T the observed 

process size, and β(.) is the beta function. The next algorithm presents the steps described.
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Algorithm 1:

M-H within Gibbs DP AR(2) mixture for stationary processes
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Figure 1: 
Five rats received multiple sequences of five odors (left; odors A, B, C, D, E). The animals 

were required to correctly identify whether the odor was presented ”in sequence” (top right; 

by holding its nose in the port for ~1.2 s, when an auditory signal is delivered) or ”out 

of sequence” (bottom right; by withdrawing its nose before the signal) to receive a water 

reward.

Granados-Garcia et al. Page 27

Comput Stat Data Anal. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Local field potential (LFP) signals recorded from five rats during an odor sequence memory 

experiment. Two stimulus conditions are considered: before the odor is presented (”Pre-

Odor”) vs. during odor delivery (”Odor”). Two types of trials with different temporal 

contexts are displayed: trials in which the odor is presented in the correct order (”InSeq”) vs. 

trials in which the odor is presented in the incorrect order (OutSeq).
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Figure 3: 
Some AR(2) kernels g(ω; ψ, L) with different values of the phase parameter ψ = 0.05, 0.30, 

0.49 as a location (frequency peak) parameter and L = 0.05, 0.20 as a scale (bandwidth) 

parameter.
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Figure 4: 
Estimated standardized SDF curves in log scale for all 1000 simulations for the BMARD 

method. The thick black curve represents the logarithm of the true standardized SDF of 

each simulation setting, visualized in green are the estimation of the location parameters ψj
obtained from post-processing MCMC samples associated to each estimated curve.
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Figure 5: 
Absolute disparity between the AR(12) SDF for the central peak of misspecification 

scenario compared to the argument at which the local maximum is reached on the range 

of 240–250 Hz for all methods.
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Figure 6: 
Peak activity distribution for one hour session for all subjects, the vertical lines correspond 

to the mode of the localized peaks with the highest mixture weight by OutSeq and InSeq 

contexts accordingly. The right of each graph contains the p-value and test statistic D of the 

Kolmogorov-Smirnov test.
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Figure 7: 
(top row) Functional Boxplot with 95% of internal region computed from 100000 iterations 

of a resampling scheme on the difference ΔI(ω) = fA
I (ω) − fB

I (ω) for each subject. (bottom 

row) Functional Boxplot with 95% of internal region computed from 100000 iterations of a 

resampling scheme on the difference ΔO(ω) = fA
O(ω) − fB

O(ω) for each subject.
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Figure 8: 
Functional Boxplots with 95% of internal region for the curves 

ΔI − O(ω) = ΔI(ω) − ΔO(ω) = fA
I (ω) − fB

I (ω) − fA
O(ω) − fB

O(ω)  showing the median curve. The 

curves used in the boxplot were computed using a resample scheme of 105 samples from the 

BMARD posterior SDF curves.
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Table 1:

Number of peaks found by applying the rips filtration (TDA) to each median curve estimated for the AR(2) 

mixture. For the BMARD method is also reported the number of components C* using a clustering algorithm 

to post-process the 6 MCMC chains

# of peaks 1 2 3 4 5 >5

BMARD TDA 19.7% 51.8% 25.6% 2.5% 0.4% 0%

BMARD pj > 1% 2% 27.6% 43.5% 24.1% 2.7% 0.1%

Bernstein TDA 99% 1% 0% 0% 0% 0%

Kernel TDA 66.7% 6.1% 15.1% 5.4% 2.9% 3.8%

Spline TDA 62.6% 9.6% 16.1% 3.9% 3.4% 4.4%

Comput Stat Data Anal. Author manuscript; available in PMC 2023 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Granados-Garcia et al. Page 36

Table 2:

Number of peaks found by applying the rips filtration (TDA) to each median curve estimated for the AR(12) 

process. For the BMARD method is also reported the number of components C* using a clustering algorithm 

to post-process the 6 MCMC chains

# of peaks 3 4 5 6 7 8 9 10 >10

BMARD TDA 0% 0.2% 59.3% 30.9% 8.3% 1.2% 0% 0.1% 0%

BMARD pj > 1% 17.1% 38.5% 27.2% 14.7% 2.5% 0% 0% 0% 0%

Bernstein TDA 0% 0% 0.8% 6.4% 19.2% 30.6% 29.5% 11.5% 1.8%

Kernel TDA 0% 0% 0.4% 0.4% 0.4% 1.2% 1.7% 2.3% 93.6%

Spline TDA 1% 0.1% 1.7% 0.1% 0.3% 0.2% 9.7% 4.4% 82.5%
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Table 3:

Number of peaks found by applying the rips filtration (TDA) to each median curve estimated for the MA(4) 

process. For the BMARD method is also reported the number of components C* using a clustering algorithm 

to post-process the 6 MCMC chains

# of peaks 2 3 4 5 6 7 >7

BMARD TDA 7.2% 44.1% 31.6% 13.6% 2.9% 0.6% 0%

BMARD pj > 1% 0% 4.9% 45.4% 46.9% 2.7% 0.1% 0%

Bernstein TDA 0.4% 88.8% 9% 1.8% 0% 0% 0%

Kernel TDA 2.9% 39.4% 26.3% 12.4% 7% 4.6% 7.4%

Spline TDA 39.6% 48.6% 5.2% 2.2% 1.3% 0.1% 3%
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Table 4:

Mean and standard deviation of the absolute difference with respect to the AR(2) mixture simulation 

parameters. Only for generated processes with at least one chain that correctly identified the true number 

of components. All components were generated with L = .03

p1 = .1 p2 = .6 p3 = .3

Mean Disparity ψ1 = 4 Hz ψ2 = 34 Hz ψ3 = 60 Hz

ψc − ψc Hz 4.34(1.43) 7.77(5.64) 8.76(8.76)

Lc − Lc 0.02(0.04) 0.02(0.04) 0.02(0.03)

pc − pc 0.68(0.13) 0.43(0.09) 0.21(0.06)

Comput Stat Data Anal. Author manuscript; available in PMC 2023 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Granados-Garcia et al. Page 39

Table 5:

Mean and standard deviation of the absolute difference with respect to the AR(12) peaks in the SDF. Only for 

generated processes with at least one chain that correctly identified the true number of components (5).

Mean Disparity ψ1 = 0Hz ψ2 = 150Hz ψ3 = 250Hz ψ4 = 350Hz ψ5 = 500Hz

ψc − ψc Hz 4.77(2.19) 32.67(21.36) 3.94(14.38) 31.09(19.58) 3.68(2.07)
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Table 6:

Total number of trials/epochs for each subject (S1, S2, S3, S4, S5) for each odor type (B-C-D-E) and 

stimulus type (OutSeq vs Inseq).

Subject B InSeq B OutSeq C InSeq C OutSeq D InSeq D OutSeq E InSeq E OutSeq

S1 34 1 25 0 26 3 21 2

S2 38 8 26 8 42 6 29 7

S3 57 3 47 5 37 4 23 4

S4 40 2 30 4 29 8 24 2

S5 41 3 37 5 31 8 26 5
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