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ABSTRACT
Mutations in isocitrate dehydrogenase 1 (IDH1) characterize most adult low-grade gliomas. Mutant IDH1
catalyzes production of the oncometabolite 2-hydroxyglutarate (2-HG). We recently discovered that the
IDH1 mutation also reprograms pyruvate metabolism in a 2-HG-dependent manner, and that
reprogramming of pyruvate metabolism is essential for cell proliferation in glioma cells with mutant IDH1. KEYWORDS

Glioma; IDH1; metabolic
reprogramming; pyruvate
dehydrogenase; 2-HG

Metabolic reprogramming is increasingly viewed as a hallmark
of cancer, with several common metabolic alterations such
as increased glycolysis reported in a range of tumor types;1

however, the metabolic alterations associated with recently
discovered oncogenic mutations in isocitrate dehydrogenase 1
(IDH1) remain to be fully elucidated.

Mutations in IDH1 characterize over 80% of adult low-grade
gliomas. Cytosolic IDH1 normally catalyzes the production of
a-ketoglutarate (a-KG) from isocitrate and plays an important
role in the regulation of redox status, lipogenesis, and glucose
and glutamine metabolism. Mutations in IDH1, most com-
monly at the R132 residue in the active site of the enzyme,
instead lead to the conversion of a-KG to 2-hydroxyglutarate
(2-HG). By inhibiting the activity of a variety of cellular a-KG-
dependent enzymes, 2-HG induces epigenetic changes that
block cellular differentiation and induce tumorigenesis.2 We
and others have shown that, in addition to an altered epigenetic
profile and elevated 2-HG levels, IDH1 mutant cells also
undergo broader metabolic reprogramming compared to their
wild-type IDH1 counterparts.3,4 Most notably, we observed a
significant reduction in 1H magnetic resonance spectroscopy
(MRS)-detectable steady-state levels of lactate, phosphocholine,
and glutamate in 2 genetically engineered cell models express-
ing mutant IDH1—a U87 glioblastoma-based model and a nor-
mal human astrocyte (NHA) model.4 In a separate study we
discovered that pyruvate dehydrogenase (PDH) activity was
reduced in IDH1 mutant NHA cells.5 Given that PDH is an
important regulatory point for glucose oxidation via the tricar-
boxylic acid (TCA) cycle and, as a result, for glutamate produc-
tion, we questioned the role of PDH in IDH1 mutant glioma
cells.6

In a recently published study6 we confirmed a significant
reduction in PDH activity in both our U87 and NHA mutant
IDH1 cells compared to wild-type.6 13C MRS probing of the
fate of 1-13C-glucose to 4-13C-glutamate, and hyperpolarized

13C MRS probing of the fate of 2-13C-pyruvate to 5–-3C-gluta-
mate, showed that reduced PDH activity also resulted in a
reduction in glucose flux to glutamate in IDH1 mutant cells rel-
ative to wild-type. This was consistent with, and mostly
explained, the decrease in steady-state glutamate levels. We
further found that IDH1 mutant cells showed increased expres-
sion, at both mRNA and protein levels, of pyruvate dehydroge-
nase kinase 3 (PDK3), a well-known regulator of PDH activity.
The increase in PDK3 expression correlated with increased
inhibitory phosphorylation of PDH, thereby explaining the
reduction in PDH activity in IDH1 mutant cells. This effect
was associated with increased levels of hypoxia inducible fac-
tor-1a (HIF-1a) in IDH1 mutant cells, consistent with previous
observations and the stabilization of HIF-1a via inhibition of
a-KG-dependent-prolyl hydroxylases.7,8 Finally, we also
showed that treatment of IDH1 wild-type cells with 2-HG reca-
pitulated the effects of the IDH1 mutation, with increased levels
of PDK3 and HIF-1a and decreased PDH activity in 2-HG
treated cells. Collectively, our results therefore suggested that
IDH1 mutation results in increased PDK3 expression thereby
reducing PDH activity and explaining the reduction in gluta-
mate levels. Fig. 1 summarizes our findings and the mechanism
by which mutant IDH1 leads to inhibition of PDH activity.
Our finding was important because it indicated that the reprog-
ramming of pyruvate metabolism is not linked to 2-HG-
induced hypermethylation, but occurs on a timescale that is
faster and possibly more amenable to intervention.

To test the value of PDH as a therapeutic target, we went on
to address the functional consequences of reduced PDH activity
in IDH1 mutant cells. Our study showed, to our knowledge for
the first time, that reversing the metabolic reprogramming of
PDH in mutant IDH1 cells was detrimental to the proliferation
and clonogenic potential of these cells. Specifically, treatment
with dichloroacetate (DCA), a PDK inhibitor,9 not only
increased PDH activity and glutamate production in IDH1
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mutant cells, but also completely abrogated the increased clo-
nogenicity observed in cells expressing mutant IDH1. More-
over, DCA also inhibited proliferation of patient-derived
mutant IDH1 neurosphere cultures, thereby also validating our
findings in clinically relevant models. DCA treatment also
reversed the metabolic alterations detected by 1H and 13C MRS.

Our results thus suggest that the reduction in PDH activity
induced by the IDH1 mutation is essential for proliferation and
clonogenicity in IDH1 mutant glioma cells, and identify PDH
as a possible therapeutic target for the treatment of mutant
IDH1 cells. Our findings also highlight the value of MRS in elu-
cidating the mechanisms of metabolic reprogramming in IDH1
mutant glioma cells. Importantly, 1H MRS has been used as a
non-invasive method of evaluating brain tumors in human
patients, and, more recently, the value of hyperpolarized 13C
MRS was also demonstrated in patients.10

In summary, our recent study6 identifies a potential thera-
peutic target for mutant IDH1 low-grade gliomas, as well as an
associated companion MRS biomarker for agents that would
modulate that target.
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Figure 1. Isocitrate dehydrogenase 1 (IDH1) mutations lead to the downregulation of PDH activity. IDH1 wild-type enzyme (IDH1 wt) converts isocitrate to a-ketogluta-
rate (a-KG) in the cytosol. a-KG can then re-enter the tricarboxylic acid (TCA) cycle within mitochondria or remain in the cytosol and function as a co-factor for various
enzymes, one of which is the family of prolyl hydroxylases (PHD). PHDs hydroxylate proline residues on hypoxia inducible factor-1a (HIF-1a), thereby targeting HIF-1a for
proteasomal degradation. Mutant IDH1 enzyme (IDH1 mut), on the other hand, converts a-KG to 2-hydroxyglutarate (2-HG). 2-HG inhibits PHD activity, thereby leading
to stabilization of HIF-1a levels. HIF-1a upregulates expression of pyruvate dehydrogenase kinase 3 (PDK3), which then phosphorylates and inhibits PDH activity.
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