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ABSTRACT OF THE DISSERTATION 

 

Interactive Time 

by 

Chuktropolis Welling Moran 

Doctor of Philosophy in Communication 

University of California, San Diego, 2013 

Professor Brian Goldfarb, Chair 

 

Computers have enabled new ways to act out time. Unlike times that make 

authoritative measures or keep everyone synchronized to the same pace, some 

software lets a person interact with time. The undo command is a good example of 

this. You can go backward to go forward. That empowers computer users. Interactive 

time is now a normal part of what it means to use a computer to do something. This is 

significant because people use computers to do many things. 
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1

I. Introduction 

I already knew, from a lifetime of using computers, that the time described by 

physicists, philosophers, and theologians did not describe the time I knew on 

computers. In different programs, action can start or stop in an instant, slow or reverse, 

be stored and reloaded, or left on pause indefinitely. In software, these are not 

impossibilities or even special cases of time. These are regular parts of using the 

machine. 

I knew this, intuitively. But, like many, I lacked the words to articulate it, to 

respond to it, to discuss it with others, or to build from it. How can time be one thing 

in one program but be so different in another, and different again outside the 

computer? Why do these times exist, how do they work, and what are their effects? 

These became my questions. 

In many cases, new computer-enabled times have had clear impacts. Digital 

video recorders have changed television by fragmenting the audience, concentrating 

viewer attention on favorite shows, and letting people skip the ads. For music, the 

trade of individual files has encouraged listening on shuffle, tuning out the world 

whenever in public, impulse buys of memorable songs, and an enthusiasm for tracks 

that sound good when they come up unexpectedly. Autosave, file repositories, and 

backup systems mitigate the impact of crashes and can keep older versions of 

documents readily accessible. There are many other cases, such as online calendars, 

multitasking in the operating system, loops and stutters in video editing, or the strange 

flow of time in the hit indie game Braid. Each is different and people tend to speak of 
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each one separately. But the trend should be clear enough: software gives us new ways 

to do time.  

Software 

To think of other times is not new. Divine times, slowed time, time that does 

not pass, time that can be revisited, dreamed or rewritten, Tristram Shandy’s episodic 

existence, Gulliver’s travels to backwards lands, Rip van Winkle’s slumber through 

historic change, the prophetic power of a Nostradamus, or Christian millenarianism 

each represent different variations on time.  

In the last hundred years, some fantasies about time have become regular parts 

of popular culture, forming into a rough set of conventions for imagining time’s 

strangeness. Since Mark Twain’s 1889 A Connecticut Yankee in King Arthur’s Court 

and H.G. Wells’s 1895 The Time Machine, time travel has become one of the most 

popular forms of imagining strange cases of time. These fantasies make variations on 

a timeline, allowing one to travel across it, connect it back to itself, reverse it, slow it 

down, or speed it up. Related ideas, inspired by the same conventions but less strict 

about the timeline, can be found in characters who slow or pause time (as in Heroes 

and The Matrix) or who wander about between times (as in The Time Traveler’s Wife 

and Millennium Actress). These fictions have given us a range of scenarios concerning 

what time is and how it might work differently. These scenarios guide the imagination. 

Strange times in software are different because software codes fantasies into 

social practices that are widely used. In programming interfaces, in designing systems, 
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and in writing code that will run programs, authors are creating hypothetical ways of 

living and doing things for a future world. Like science fiction, programs are exercises 

in cognitive estrangement and speculations about how people might deal with 

unknown tools and situations in the adaptation to changing conditions of the future. 

Authors of software write out scenarios for interaction that can, for an actively 

engaged user, become material practices used on a regular basis. Undoing an action 

only reverses the flow of events at the level of representation, for example, but it is 

exactly at this register where work takes place. Jean Baudrillard’s claim that 

simulations without originals now precede what they represent (Baudrillard 1981) can 

be restated in positive terms: simulations actively produce conditions of the real that 

allude to familiar terms even as they differ from them. Artifice does not subtract from 

reality, but adds its products to a world that includes computer files and hanging files, 

undoable time and clock time, desk chairs, hard disks, and human memories. 

Those making software have been tremendously creative and prolific, writing 

for a large, committed, and growing user base. Without those billions of us who use 

computers, times invented by software might amount to mere speculations. “Software 

constructs sensoriums” (Fuller 2003, 19). In the hours spent at the computer, these 

artificial sensoriums become ours. Staring at the screen, we see whatever authors of 

software have dreamed up for us to experience. Clicking through links on a website, 

zooming into a photo, or editing a macro, we accept and work with meanings, affects, 

and perceptions structured by software. The demand for innovation, lucrative 

economics of software production, and promise of new technology to enhance the 
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capacity of the individual have drawn fantasies of time out from the imagination and 

put them into practice.  

The new fantasies of time that users live out through software have created 

new conventions by which we imagine other times. The timeline is not gone, but it no 

longer represents constant flow. The clock remains, but what it measures has become 

of lesser importance. On the computer, time may start and stop at the command of the 

user. Synchronization depends on sequences of transmitted data more than on finely 

calibrated clockworks, designed to run at the same speed forever. Tiny lengths of time 

that fit within a second have become very important, filled with milliseconds and 

cycles, bundled and swapped too quickly for the user to notice. 

Increasingly, social life runs on software. Laptops, tablets, smartphones, mp3 

players, GPS devices, and digital cameras are only part of the story. Banking, business 

communications, talking to friends, making video, watching video, submitting 

applications, choosing restaurants, ordering food, playing games, meeting friends, 

clipping coupons, planning travel, and sharing photos are only some of the social 

behaviors that computers have absorbed partially or completely.1 The spaces in which 

social life occurs involve software systems at many levels, from objects and personal 

devices to surveillance and computer-controlled infrastructure (Kitchin and Dodge 

2011; Manovich 2008).  

                                                 
1 The Matrix (Wachowski and Wachowski 1999), though usually debated as 
presenting a philosophical proposal, can be remembered as simply a metaphor for the 
simultaneous imprisonment and empowerment of being one small body in a 
computerized world. 
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Image 1.1 “The Times They Are A-Changin'” by Reddit user Gordondel 

Software organizes the agency of computers, determining how they will make 

decisions. This is the central tenet of the developing field of software studies:  

[E]verything is governed, enframed and molded by software-mediated 
processes, while the systems/people creating and overseeing such 
processes have little ability or power to subject them to doubt, debate, 
analysis, reinterpretation or control by the public, philosophy, 
democratic institutions or humanist system of coordinates – whatever 
each of these may still be able to offer” (Goriunova 2011). 
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Software is changing how we live, but these changes are not subject to reasoned 

consideration, whatever reason’s value may be. Software studies wonders what these 

changes are. 

The academic exploration of the software mediated environment has only just 

begun. By looking at how software has been produced, how it has been used, how it 

can be modified, and how these seemingly technical topics relate to larger social 

forces and situated practices, software studies can learn new ways to think about 

computing and its influence (Fuller 2003; Fuller 2008; Manovich 2008). Software can 

exert an influence behind the scenes or in plain view, by mediating human action or by 

automating work.  

My project looks at times common to software, with a special emphasis on 

those that give the user control over time. I use the term interactive time to refer to 

practices of time that allow the user some local modulation of the function of 

temporality, such as that provided by the undo command’s instant reversal of action. 

In the course of this dissertation, I undertake careful consideration of the term “time,” 

provide a case study of the undo command, and describe some infrastructural 

conventions of time in software. The goal is to understand time in software and to 

build from that understanding. 

Time 

This study falls into a long tradition of looking at time in media. Although it is 

a familiar lament that little research has been done on the topic of time and society, 
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this is in fact the name of a journal that is more than twenty years old. Different 

projects concerning time are often about quite different aspects of time (e.g. 

punctuality or future-orientation) and therefore address themselves more 

enthusiastically to other fields (e.g. anthropology of colonialism or sociology of class), 

rather than to comrades studying time (Nowotny 1992).  

Transdisciplinary work on time and society suggests that time is a social 

construction enacted by situated actors, only some of which are human (Nowotny 

1994; Glennie and Thrift 2009; Adam 1990). The basic idea is that times are canals 

through which actions tend to flow. Time is a useful category by which we can know 

and understand the operations of the material world (Bluedorn 2002). To some extent, 

this can be seen by measuring durations and studying schedules, to see how events 

play out at different hours of the day or days of the week. From this point of view, 

computer use claims hours, accelerates processes, or makes schedules flexible. 

My work builds on another line of thought, which emphasizes the constitution 

of different kinds of times by people, places, habits, practices, technologies, and ideas. 

Treating measurement as only one use for time, and a historically recent and culturally 

specific one at that, I focus on the great number of discrepant and concurrent 

experiences of time in everyday life that arise out of local interaction. Times are 

performed socially. From this point of view, we who use computers also use time. Just 

as people measure duration by a stopwatch, plan events by a calendar, or anticipate 

opportunities by a clock, we use computers to do things with time.  
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Existing studies on time and computers have come together around the thesis 

that instantaneity facilitates acceleration. Robert Hassan argues that information and 

communication technologies are displacing the importance of clock time by offering 

instantaneous and simultaneous communication that also allow for a greater degree of 

asynchrony. Processes that would have been conducted according to the clock, post, 

telephone, or face to face encounter now take place online or at a distance at 

potentially any time, day or night. This has tended to make things faster. Society 

operates by a simultaneity that arises from instantaneous connections. The fact that 

finished products can be exchanged instantly also means that you can work all night to 

get something done or do your banking online on any day of the week, making local 

pockets of asynchronous activity (Hassan 2003; Hassan 2007).  

But if the simultaneous and instantaneous define drama on the network, what is 

happening in the asynchronous moments before, after, and alongside connection? 

When I use a computer, or even a mobile device designed for networked 

communication, I often feel isolated, autonomous, and quite disconnected from a 

simultaneous present shared with the network society. The computer’s ability to act 

instantly provides a relaxed time where I can make things go or stop, run in parallel, 

delay, pause, wait, or restore. In the gaps of the network, what time is this? 

Interactive Times 

Living in a highly engineered environment where software mediates actions of 

all kinds, we have become accustomed to luxurious forms of time where objects are 

constantly available and well-behaved, where conditions last longer than just a 
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moment, and where our actions will not ruin the whole setup. These are not the 

conditions of the kitchen, motorway, or courtroom. They are quite rarefied and 

difficult to produce.  

Interactive times are practices of time where functions of temporality 

dynamically respond to user input. The user pushes a button and the past becomes the 

present, an opportunity opens, two objects synchronize, events delay, or a rhythm 

changes. Some interactive times make time appear quite unfamiliar, allowing the user 

to browse through time (Mancini, Dix, and Levialdi 1996), edit a series of possible 

events before or after they have happened (Deutsch and Lampson 1967, 799), or 

rewind certain elements of a system at different rates or as a side effect of other 

actions (Blow 2008).  

Interactive times provide a limited amount of control: a user pushes a button 

and thereby changes the operation of a time. The user is not free to redefine the terms 

of such times, but is able to do more than simply enforce what another has written. In 

video games and digital literature, programs are often only interactive enough to give 

the user an ability to control their own view of the whole; all paths have already been 

charted, user choices simply determine which fraction of the whole to display 

(Manovich 2001, 70–75; Aarseth 1999). The user has more control than that. On the 

other hand, the user is not the architect of time. It would be nice to recover an old 

version of a file that was never saved, to fast forward through the FBI warning on a 

DVD, or see every change ever made to a particular paragraph. But these require pre-
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existing software systems and cannot be performed by the user on the spot simply 

because she is using a computer.  

Interactive times trust the user to control certain conjoined aspects of 

temporality, disbursing the responsibility of time to each user. The usual function of 

this technology is to empower the user, but the consequences exceed the individual. 

Personal computing is not just personal, though this marketing illusion has been 

critical to its development. Those using interactive times produce different kinds of 

products, influenced by the conditions of their production. Using an interactive time 

changes how one goes about his or her business, and this shift has been strategic for 

those selling interactive times and for those buying them. Times can also reach beyond 

the dyadic relation of machine and operator, subjecting others to a time that is 

controlled by another user, who may well be a stranger or corporation actively trying 

to exploit you.  

But, what is a user? By user I mean whoever happens to be at the controls of 

the machine at the moment. The user is a position relative to the computer (Galloway 

2006, 127). System inputs come from what will be called the user, even if they are in 

fact generated by other pieces of software, by a cat walking on the keyboard, a 

company, a worker, a child, a series of different people, or a representative of a group. 

For this reason, Apple developed a tool for user testing called the monkey, a program 

that would simulate a user flailing around and making unexpected decisions of all 

kinds (Tesler and Espinosa 1997, 50). The user is part of the program (Woolgar 1991). 

In fact, specific, embedded actors take on the role of user, and each will make 
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different uses of interactive time because of it. Certain people have been encouraged 

to use more than others, and historical consideration can show who these users were 

imagined to be and, to some extent, who they actually were. But interactive times, like 

computers, remain open to unknown users; the position can be occupied and changed. 

Overview 

To understand interactive times requires understanding time. This is the work 

of the second chapter. It begins by reviewing the status of time in social theory, 

restating the critique of common sense notions of time, and ultimately giving a 

positive account of what times are. The goal of this chapter is, first, to provide 

theoretical vocabulary on which to build and, second, to create some coherent 

integration of the wide ranging scholarly work that already exists on the topic of time. 

I do this through close readings of important writing on time by Barbara Adam and 

Emile Durkheim. I started research knowing what time on computers is not; here I 

argue that a rich vocabulary of time related words clarifies what temporality is and 

what time does. 

In chapter three, I move from examining a single time to the relationships 

between multiple times. Exploring the great variety of ways times can interact, I distill 

two key modalities of relation: translation and influence. Translation occurs at the 

level of representation, though it must always be enacted materially. Influence, a 

relationship that includes the physical effects of temporality, is much broader. A brutal 

schedule that leaves one missing sleep or a relaxing time that helps one finish writing 

a memoir are both cases where one time influences another. Historically, the relations 
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amount to an unstable ecosystem in which a number of mutually reinforcing times 

have become dominant. We now see the second, hour, day, and year as a natural fit, 

based simply on the rotation of the Earth and present in our world as a dimension 

perpendicular to space. The reality is a palimpsest, with newer ideas written over half 

erased older ones in a series of minor improvements that took place over the last few 

centuries. The popular thesis that times have basically accelerated appears, in this 

context, as a recapitulation of the dominant perspective of certain time practices 

measuring other times and treating them according to their measure. 

With these two chapters, it becomes clear both what a time is and how times 

take on relationships to one another. My thesis highlights new practices, brings 

attention to old practices that never fit into the dominant alliance, and provides a 

different perspective on all times, familiar, old, or new. In one sense, interactive times 

join an underground of alternative time practices. To some extent, these infra-

practices, occurring below the radar, have begun to undermine the old alliance by 

becoming common ways that time is practiced. At another level, the balance rests in 

how we imagine time, and how we can build arguments about it. It is at this level that 

this project aims to intervene. 

Chapter four takes a specific example of interactive time and gives it a robust 

historical treatment. The undo command, now a commonplace in software of all kinds, 

established an interactive time where what the user did could be immediately undone. 

The feature arose in a number of projects, gradually moved into a key laboratory, and 

then featured in some influential systems at the moment when personal computing 
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rocketed up from an obscure hobby to an expected future. This case study shows the 

role of the software market and industry, academic researchers, the millions who 

would have to learn to use computers, central institutions such as Microsoft, and the 

programmers who turned fantasies of time into real conditions of work and play. Such 

an approach connects software’s operation to existing historical forces.  

Chapter five considers interactive times as amalgams built from a wider body 

of conventions. These conventions have many names, such as error-checking codes, 

runtime libraries, and hard disk drives. A great many of them are also conventions of 

time. These conventions can be understood on their own, though their role in time 

always depends on the way they are appropriated into actual practices. This chapter 

explores three bodies of convention, those of the processor, memory, and network 

connections. Interactive times depend on processors to establish interactive situations 

and recursive operations. They also depend on memory to access other moments. 

Network connections take interactive time outside of its asynchronous cocoon to a 

situation where the preconditions of interactivity are more precarious, but still 

available in great abundance.  

With an exploration of conventions, I signal the wide range of computer times: 

we do not yet know what a time is capable of. Though these conventions make some 

things easier and harder, their potential reaches ahead of us as well as behind. What 

new times will we live by in an age of shrinking devices and ubiquitous connectivity? 

Many conventions have already produced new kinds of time that have important 

implications already being discussed in terms of robotics, privacy, intellectual 
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property, connection, latency, and attention. The conventions that joined together to 

make interactive times have also made many others. 

Note on Methods 

I have offered some introduction of what is to be discussed and why. Time 

practices, software, interactivity, and social forces are prominent themes. But who is 

actually involved in these practices, where are they located, and how did I go about 

studying them? 

First, who are we talking about? Computer users? There is no way to know 

exactly who has access to interactive times, who could use them but is ignoring them, 

and who is using them all day long. For some technologies, such as digital video 

recording and Microsoft Office, a substantial percentage of an entire country may be 

involved.2 Companies often do not release numbers to answer these questions, and 

even if they did we would still not be sure how many pirated versions or copycat 

products exist worldwide. For other technologies, such as online calendars and video 

editing, the install base is much smaller and we are really talking about specific kinds 

of people, such as white collar workers or video editors. 

Who is using the software and what they are doing with it will vary with each 

technology. Some general answers are that office workers use computers more than 

construction workers, most home users do very regular things, mostly with Microsoft 

products, and most organizations of any size use computers extensively. These 

                                                 
2 Areas with a personal computers for every two people include North America, 
Brazil, Australia, East Asia, and Western Europe. 
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distributions of use, though vague, are important to remember. For the most part, the 

new operations of time I’m describing have more relevance to the elite, to office work, 

to art, science, and entertainment than to other sites. Though computer companies 

have long claimed that their products can be useful to anyone, this clearly makes more 

sense for college graduates and managers than for hermits and mendicant spiritualists. 

Second, where are practices of interactive time taking place? Primarily, 

between the user and the machine. Software exists in a “space that is constantly in-

between, a mass-produced series of instructions that lie in the interstices of everyday 

life, pocket dictators that are constantly expressing themselves” (Thrift and French 

2002, 311). Once, computers took up very large spaces, which were dedicated 

exclusively to them and their operation. As they became smaller, they followed a 

familiar pattern, carving out many small crevices from ordinary life, and gradually 

taking these spaces as territories of their own. This general pattern of machine space 

can be found in the historical erosion of urban spaces as places for people into places 

for cars (Horvath 1974). Now these spaces are all around us, on buses and airplanes, 

cafes and dormitories. The reach of a time may exceed the machine space in which it 

arises, exerting influence at other sites and in less direct ways. As with the question of 

who, it is hard to say exactly where, but the usual sites of computer use correlate 

highly with software saturated societies and less strongly with other places. 

Third, how have I culled empirical material and made it function as evidence? 

The first two chapters are primarily theoretical, working from examples and using 
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close readings and synthetic approaches to build an argument from secondary 

literature, personal experience, and the studies of others.  

The fourth chapter, a case study on the undo command, uses several varieties 

of historical evidence. I visited archives at the Computer History Museum, Brown 

University, and the Charles Babbage Institute at the University of Minnesota. There I 

found evidence on the projects on which I focus, on parallel projects, on various 

perspectives on computing during the period, and on projects that might have included 

an undo command but did not. I interviewed key figures from this history, in person, 

by Skype, and by email. Old copies of Time Magazine, Byte Magazine, and InfoWorld 

were especially helpful in understanding public perceptions of computing, the 

marketplace, design norms, and user practices. 

The fifth chapter, which addresses conventions of time in computers more 

generally, required studying media as they exist today. This research was in a way 

analogous to my work on undo, except the emphasis was technical instead of 

historical, which put me in league with a huge number of others who wanted to learn 

how computers work. For this, I read technical papers and presentations, consulted 

textbooks, talked to experts, and learned from forums like anyone working a tech job 

would do on a regular basis. 

My goal is to build a positive, synthetic work with clear claims that can direct 

action and change our impression of the world around us. Critical reasoning thus takes 

a back seat in the text, though it plays a formative role at certain key junctures (such as 

developing my theory of time and comparing designers’ stated goals for an undo 
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command). This text aims to hone perceptions (particularly of temporality) and to 

expand readers’ ability to imagine connections between what they know and what they 

can perceive. The value of this work depends entirely on the power of its argument 

and pleasure of reading, rather than on facts about its author, and this is a reason to 

keep it simple, clear, organized, and, when possible, interesting. 

One of the key techniques used throughout is to multiply concepts and then 

summarize them in a stultifying abstraction. Often, I use limited lists to suggest some 

members of a class without offering a complete catalog or a set of structural terms by 

which the total space of the category could be known in advance. Such lists are partial 

and not the final word. They are products of a theoretical exploration that learns 

nuance from phenomena, decides between interpretations, and produces stylized 

readings that guide further analysis. The categorical abstractions provide useful 

reference points that help in the navigation of empirical complexity, without claiming 

to produce representations interchangeable with the material they summarize. Such an 

axiomatic approach runs the risk of a contradiction between potential members and the 

overall category. I hope that this is a productive jeopardy, allowing us to grasp ideas 

without squeezing the life out of them by treating them as already captured and fully 

known. 

This technique reflects the quiet influence of Deleuze at work throughout. In 

the text, I explain and defend concepts without appealing to authority or relying on the 

rest of Deleuze’s expansive oeuvre. The multiplication of concepts mismatched with 

summary abstractions restates the relation of the whole and the parts (Deleuze and 
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Guattari 1983, 42–50). I make particular use of Deleuze’s ideas on the relation to 

empirical material as a creative source of concepts (Deleuze 1994, xx; Rose 1999, 12–

13), the distinction between the virtual and actual (Massumi 1992, 34–35; Deleuze 

1988, 42–43; Terranova 2001, 107–109), the power of mutual presupposition 

(Massumi 1992, 13), his landmark analysis of Bergson (Deleuze 1988), discussion of 

inventions’ relation to social diagrams (Deleuze 1999, 34), and vision of societies of 

control (Deleuze 1992). My focus on embodied enactment of time departs from 

Deleuze’s own Bergsonian concept of time, and the style of interpretive social science 

strays from Deleuze in key ways. Still, we are in agreement that philosophy is nothing 

without the empirical.  
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II. Time Theory 

 

A clock advances regularly by drawing on forces that are themselves regular. It 

organizes the inevitable arrival of the future into a sequence. But it does not invent 

inevitability, futurity, or sequence. The clock’s time mediates these operations of 

temporality, but does not wholly encompass them. With clocks, the challenges of 

scheduling events, anticipating potentials, and synchronizing rhythms become easier, 

or at least more calculable. Yet the clock cannot do this alone. It must be built, 

maintained, referenced, and trusted. Through a whole constellation of actions, human 

and non-human, some of the various ways temporality functions can be put to use. 

Despite this complex choreography of contingency, we have come to accept a simpler 

definition of time: what the clock measures.  

This chapter argues that a time is a social practice that translates temporality 

into meaningful codes and organizes temporality’s material influence. There are many 

expressions of temporality and there are many times that strengthen, harness, and 

direct them. This model moves beyond criticizing a traditional view of time as linear, 

singular, constant, and universal. That work has already been done. The goal now is to 

build positive accounts of many times in such a way that they can be understood 

together. This involves explaining terms, identifying levels of organization, and 

responding to possible counter arguments. 

Time is worth thinking about because it matters in many specific cases. 

However, what it does in each situation varies tremendously. This variety has stunted 
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growth around the topic: while many people are writing about time, there seems to be 

no way to fit together the different things they are saying. What goes on in 

intergenerational memories (Giesen 2004) seems to have no relationship to the use of 

historical time in search engines (Hellsten, Leydesdorff, and Wouters 2006). In the 

sociological literature on time, Werner Bergmann notes that “one finds complaints 

everywhere about the neglect and marginality of the time problem in sociology” 

(Bergmann 1992, 82). Yet he reviews work on time-reckoning, historical 

consciousness, utopianism, time-tables, various cases of waiting, careers, 

developmentalism, and time in organizations.  

Such diverse research on time should produce a network effect; each additional 

study should enrich scholarship on time as a whole. At present, however, studies are 

difficult to compare and so compared rarely. There are now a few major theses that 

could unite studies of time. These claims are: that time is accelerating, that a new kind 

of globally networked time is ascendant, and that there are many different times that 

are densely interwoven. Of these, the first simplifies the diversity of times into a single 

dynamic, the second describes only some practices of time, and the third makes all 

studies parallel but isolated. If the parallels between studies could be related in a 

systematic way, the third thesis might turn time into a productive term in the more 

general explanation of social change with which social science is tasked. 

Barbara Adam’s Timewatch gathered and joined together crucial insights from 

lived knowledge of time into a general theoretical model. My work extends this 

project. In Timewatch, Adam turns away from existing work in the social sciences that 
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approaches time from one particular angle (such as future orientation, use of waiting, 

or systems of time measurement). For Adam, times have many aspects, coexist, and 

act in many, complex ways. For Timewatch, she interviewed ordinary people about 

time, hoping to discover not just the personal significance of the term for those 

interviewed, but the actual function of time in the lives of all kinds of people—

something they should understand best themselves. This project revealed a huge 

variety of aspects of time: time when, time as a medium of exchange, time periods, 

time in language, time frames, and the growth and death implicit in process. Such 

aspects of time, she argued, were mutually implicated, inseparable from one another, 

and deeply imbricated with the dominant time of the clock (Adam 1995).  

Adam’s project points the way to a diversity of time but does not provide 

theoretical language by which to recognize and relate together different aspects of 

time. In Timewatch, Adam argues repeatedly against categorization, abstraction, sharp 

distinctions, or isolating any aspect of time. We experience times in combination, as 

real to varying degrees in different contexts, and in multiple registers that do not 

exclude one another. Abstraction, she argued, would falsify that experience. Adam is 

not anti-theory, but this project prioritized everyday experience in order to open space 

for an account of times as multiple and mutually implicated. Here, I extend her 

analysis by offering terms in which different times can be apprehended in their 

difference, so that we can better understand and discuss their combination and mixture 

in reality as it is lived. Though everyday experience positions us between many times, 

we relate to these times in different ways and understand each in its peculiarities. That 
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we think of a timecard in one way and our mortality in another does not deny 

connection between the two or the fact that they both operate on the same people; it is 

by knowing each that we make sense of the experience of multiple times. Timewatch 

refined intuitions of time into a rich vocabulary. Here, I attempt to turn that 

vocabulary into a system for thinking about times as complicated, varied, and 

interrelated social practices. 

Every different time organizes a set of relationships of temporality. Imagine for 

a moment that temporality is essentially a matter of past, present, and future. Then 

what a time does is organize relations between these: on the calendar, the present is 

one box, the past all the ones before, and the future is all the boxes that lie ahead. 

However, there is more to temporality than simply the categories of past, present, and 

future. Synchronization, memory, repetition, delay, and opportunity, for example, 

cannot be reduced to the modes of past, present, or future, yet are critical aspects of 

what calendars actually do. Thus, a time orders relations between not just three modes, 

but a larger number of ways temporality functions.  

Temporality Functions 

The idea that time has a social basis is often traced back to some cursory 

comments made by Emile Durkheim in The Elementary Forms of Religious Life, 

published in 1912. Durkheim begins his argument about time with a highly abridged 

thought experiment: try to imagine time without any of the usual measures such as 

hours, days, or years (Durkheim 1995, 9–10). The ideal reader will take a moment to 

imagine the past or future without reference to known units of time, falter, struggle 
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some more, and discover that time is only conceivable by telling between one moment 

from another, be it by days or some other marker. One way to differentiate moments is 

by our changing mood or mental state. Durkheim explains that this is sufficient for 

thinking of our own past, but is not enough as a definition of time because time is an 

“abstract and impersonal framework that encompasses not only our individual 

existence but that of humanity” (10). Time is a “continuous canvas” where all events 

can be located in relation to reference points that are generated in social life (11). In 

this argument, the word “time” refers to ways that different moments are represented 

socially. The calendar, he concludes, “expresses the rhythm of collective activity 

while ensuring its regularity” (10). It reflects and modifies cycles of social life in a 

relation that you might call feedback. The use of a calendar system changes how 

events are located, remembered, planned for, or enacted. 

What does this mean for other technologies and other aspects of time? In the 

two pages that Durkheim dedicates to time, we do not learn the role of stopwatches, 

harvest rituals, or age set systems. If calendars express and ensure the rhythm of 

collective activity, can we say that forecasts and prophecies express and ensure the 

prospective thought and planning of collective activity?  

Durkheim asks readers to acknowledge the role of social conventions in their 

thinking about time. This is a key theme for which that book is remembered: human 

thought is socially produced and not simply given by the nature of the mind. This 

claim responds to the Kantian tradition, and Durkheim’s comments on time can easily 

be read as responses to the philosophical writings of Henri Bergson in the previous 
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decades or the development of scientific psychology a decade before that. Against all 

of these attempts to pin down the mental experience of time, Durkheim argues that the 

categories of understanding are taken from social life.  

By understanding the claims of his interlocutors, it becomes easier to 

understand the limits of Durkheim’s project. For him, there is fundamentally only one 

time, though different groups organize it and respond to it a bit differently(Miller 

2000). The laws of human thought in Kant, the basic metaphysical reality of duration 

for Bergson, and the measurable nature of human psychology all agree that time is 

ultimately of one kind. Durkheim honors this tradition by claiming that time’s 

singularity is enforced socially. If a society did not respect such a foundational part of 

human thought, then “[a]ll consensus among minds, and thus all common life, would 

become impossible” (Durkheim 1995, 16).  

Though helpful in establishing a clear case for the role of social life in 

something that can easily seem essentially noumenal, Durkheim’s concept could use 

some flexibility and extensibility. The calendar, though existing in great variety, does 

not offer a very deep insight into the range of ways those living in a society practice 

time. Durkheim suggests that calendars are useful for locating the events of any 

member of a society. This is somewhat hyperbolic; for many events, we do not know 

exactly when the thing did (or will) occur. When did you first meet your best friend? 

When will you next go to the hardware store? At the same time, this use of the 

calendar does not capture well the uses to which people put clocks, personal planners, 
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alarms, or time-stamped computer files. There is more to time than Durkheim’s 

continuous canvas and rhythms of collective activity. 

Why do humans produce clocks or schedule meetings? There is not one answer 

to this question, and that fact is critical. Against those narratives of domination that 

see the clock as a tyrannical force in recent human history (Hammer 2011; Frank 

2011; L. Mumford 1964), Paul Glennie and Nigel Thrift argue that the clock’s power 

“comes from the fact that it can be so many things to so many people. Its power comes 

from the difference implicit in the multiple possibilities it generates” (Glennie and 

Thrift 2009, 97). One can use the clock to pace a process, to plan an event, to 

remember hours past, to trigger an alarm, to synchronize movements, to measure 

duration, to delay an action, or to pass the time. With the clock, we can make use of 

many aspects of temporality. However, there are aspects of temporality for which the 

clock is no use at all; the inevitable, the ultimate, the ancient, the backwards, and the 

hip are aspects of temporality on which clocks have no purchase.  

Before anything as organized as a time develops, there are primordial 

influences I will refer to as ways temporality functions. We notice temporality because 

it does things and is the means by which things happen. It can act, mediate, or appear. 

Synchronization makes two processes begin at once that may meet later; pace 

mediates between forces of acceleration and deceleration; an event appears and ends. 

Temporality can work in these ways, or not. Temporality works by a number of 

distinctive functions, such as inevitability, anticipation, events, opportunity, speed, 

ephemerality, frequency, timed access, scheduling, and change. 
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These many functions cannot be reduced to a single term, despite many efforts 

to do just this. Master terms proposed to encompass all the heterogeneous functions of 

temporality include: paced repetition (Brann 1999), absolute flux (Newton 1962), 

ordered sequence (Gell 1992), or duration itself (Bergson 1896). Each unification 

attempt subsumes very different aspects of temporality to its own universal logic. 

Therefore, each reduction works as an exclusion: if temporal passage is the only real 

form of temporality, then eternity, event, and causation are simply redefined as non-

temporal. The most extreme form of this procedure occurs in those accounts that deny 

time exists at all (presentism), thereby asking that we speak of the regular movement 

of pendulums, memory of the past, and hours shops remain open without recourse to 

time or temporal vocabulary (for example, Radovan 2011). However, it is exactly 

because phenomena such as rhythm, pace, change, memory, and opportunity exist that 

time is worth talking about in the first place.  

Does giving up on time as a single essence mean violating Occam’s razor? The 

logic behind what is called Occam’s razor comes down to an aesthetic goal of 

elegance through simplicity and a working preference for simpler theories with greater 

explanatory power. Imagining more factors, such as luminiferous ether or angels, 

increases how much has to be assumed and can only be justified by providing a 

proportionate increase in how much the theory explains. In the case of time, the 

traditional universalizing theories can each explain some very useful things, but only 

at the cost of negating each other by insisting that time has a single, fixed essence. The 

real problem with Occam’s razor as a defense of any theory of time is that the 
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fundamental concepts are all extremely murky and difficult to define in other words. 

Absolute flux, for example, even if renamed whimsically as “the swirling play of 

accidents” (Harman 2009, 217) or “an irreducible stream of unrepeatable events” 

(Glennie and Thrift 2009, 66) is still a very difficult to define qualitative happening. 

So the choice is not really between theories with a clear definition of time but limited 

explanatory power versus a theory based on the weirdness of temporality with greater 

reach. Really, all theories of time depend on an agreement with the audience that there 

is some kind of reality to time and we should discuss it, even though few definitions 

are better than poetic. 

It is by rejecting the search for a stable foundation (a single definitional 

reference for what time is) that we can see the variety of times present in embodied 

activity and wonder what creative spark nominates them for such consideration. What 

makes a thing feel like it might have something to do with time? The many functions 

of temporality do not emerge from a single underlying nature of time, but from the 

variety of occasions which we cannot help but sense as temporal. 

Temporality does things. Though it is not wholly material, temporality has an 

influence in the world. More precisely, it has many influences on the world. 

Temporality happens in every moment and we are quick to notice it because we are 

susceptible to it. The sun rises, an eye blinks, an event is scheduled, a room reminds 

one of the past, events happen in sequence, a library cuts back its hours. To experience 

the influence of temporality is not uniquely human; wood ages and cracks, plants 

flower and die, sedimentary layers accumulate and harden. Temporality is “out there” 
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in the world precisely because it is “in here” for so many objects that are themselves 

out there in the world.1 Things feel temporality and we detect temporality’s influence, 

through these reactions. 

To recognize the pervasive role of temporality requires an ability to sense 

temporality and a willingness to regard phenomena in temporal terms. Boredom is 

psychological insofar as it is a response to disappointed vigilance, but it is also 

temporal insofar as it indexes a specific way temporality shapes human experience 

(Brodsky 1995, 109; Heidegger 1949, 364). Representing other peoples as backward 

invokes ethnocentrism in politically charged rhetoric; yet temporality operates 

alongside ethnicity, race, rhetoric, and politics in backwardsness and cannot be 

reduced to them (Fabian 1983; Chakrabarty 1997; Butler 2008). 

One step in cultivating a sensitivity to temporality is to notice its role in 

writing. As the reader becomes aware of the frequent, and inevitable, use of temporal 

vocabulary in this text, it should become more apparent the urgency of recognizing 

how functions of temporality permeate the domain of language and thought, and 

implicitly what they describe. The previous sentence invokes temporality with the 

words “becomes,” “frequent,” “inevitable,” and “urgency.” We are all already 

invoking temporal functions nearly every time we communicate in language. 

                                                 
1 Steven Shaviro presents Alfred North Whitehead’s metaphysics in readable terms: 
“every event is the prehension of other events,” where prehension means “the act by 
which one actual occasion takes up and respond to another” (Shaviro 2009, 29,28). An 
object touches others by being apprehended by them; the object is experienced in a 
limited way and this experience is the processual occurrence of reality. Or, as Karen 
Barad puts it, using Niels Bohr instead of Whitehead, “phenomena are the ontological 
inseparability/entanglement of intra-acting “agencies”” (Barad 2007, 139). 
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The many ways temporality functions can be better understood with the help of 

theory. Using words, thoughts, and ideas, theory can stultify the influence and 

occurrence of temporality into patterns, types, and categories. This helps us recognize 

and discuss it. This stultification does not stop time or represent temporality as acting 

in singular and controlled ways, but it does provide a technique by which we can 

discern, describe, navigate, and respond to temporality as it functions. To notice 

temporality with theory is to have (and develop) a special sensitivity to temporality. 

This allows us to abstract from scenarios (the complexity of temporal experience) into 

functions.2 The theorization of temporality processes the occurrence of temporality 

into an artifice that can translate temporal influence into thought and argument. 

Here I will lay out four of the many temporal functions to give a sense of this 

technique. Each can be defined by its specific style, which is not quite reducible to 

combinations of other functions.  

Duration 

In Henri Bergson’s notion, duration is the ongoing contraction of the past by 

which the present becomes the future. In his earlier work, objects give rise to images 

that are perceived with the aid of memory; duration is how perception is registered by 

the subject (Bergson 1896/1950, 170–177). Later, Bergson clarifies that duration is a 

qualitative multiplicity, so moments can be told apart but cannot be separated or 

                                                 
2 Abstraction is not strictly a human faculty. The artifice of theory that stultifies 
temporality into analytic terms is not reducible to the human, as it depends on writing, 
education, and practices of rigor that happen through larger assemblages of which 
humans are only parts. This handling of the world exceeds the human.  
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named exactly (Bergson 1910/2002, 75–87). Though we can differentiate moments 

from each other, their effect on the mind is cumulative (100-106). Duration cannot be 

measured by the clock, because the clock works by quantitative multiplicity which 

only registers states and never transformation itself. Duration has both a material 

substrate and a basis in perception with memory. Passage, occurrence, and novelty are 

closely related to duration. Although Bergson’s later work establishes duration as an 

objectively real site for the occurrence of all events (and not just a property of human 

mental experience), the truth of duration is best accessed by intuition, by “carefully 

examining our consciousness” (105). Expressing duration in language quickly 

solidifies sensations into names that mediate our experience of actuality (130-137). 

Contemporary 

Although we often make statements about the contemporary world, most of 

them are quite exclusive. If the contemporary city is secular and lacks public space, if 

contemporary filmmaking is going digital, or contemporary science is moving at a 

breakneck speed, what about those many cases where these generalizations do not 

apply? Johannes Fabian presented this notion as a critique of ethnography: by 

interpreting those studied as timeless and external to the contemporary world of which 

the researcher is part, ethnographers treat them as if they were locked in backwards 

times. Fabian proposed, as an alternative, that ethnography should build from the 

experienced co-presence of fieldwork to give informants full credit as members of the 

contemporary world (Fabian 1983). Dipesh Chakrabarty argues that the contemporary 

is necessarily exclusive, and this is why it is useful. Legalizing homosexual acts means 
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joining the contemporary world in a way that imprisoning those accused of 

homosexuality does not. Even if we imagine that there are many versions of the 

contemporary, each going in their own direction (and few think of the word in this 

way), one can no longer claim that one activity or trend represents the latest or most 

progressive position over another (Chakrabarty 1997, 50). By connecting some things 

as present, the contemporary makes other things absent. The contemporary depends on 

temporality’s ability to synchronize, make present, make out-of-date, and make some 

things more dynamic than others. 

Access 

Though the word access may describe other things, access or availability is an 

important way that temporality functions. A shop may be open 24/7, bankers hours, 

seasonally, for a few years but not anymore, or by chance. Access, as a temporal 

phenomenon, is a property of states of time, usually of the clock, and therefore not 

reducible to the idea of duration. For the coordination of access, the future and past 

can be organized into schedules, such as calendars or eras. Access is a specific 

possibility of encounter contextualized by a schedule, though not ultimately dependent 

on one. In some cases, access is a kind of clairvoyance of the situation and state of 

other things. We can call ahead to get a shop’s hours, or get a feeling that something 

will be accessible at this moment that is not at others. Access is a precondition to 

possible interaction; it is an enabling condition of potential. Access is a means by 

which schedules become meaningful, synchronization possible, and the contemporary 

useful. It is an aspect of temporality we use regularly to locate possibilities in 
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conjunction with time practices that order occurrence into seasons, months, or 

happenings. 

Inevitability 

Inevitability is a specter of a future that cannot be denied. This function of 

temporality is altogether different from access, the contemporary, and duration. 

Access sets potentials of interaction, the contemporary joins them together, and 

duration extends the movement of becoming. The inevitable operates in the present as 

an assurance about the future. What is inevitable is something that will come to pass. 

No matter what. It has the certainty of the past but will only occur in the future. 

Because it will happen, it may be regarded as a fact of the present. However, just 

because we know it will happen doesn’t mean we know how it will happen. 

Inevitability is not just a figure of speech. We rely on it in very concrete ways, as 

when we assume we will return home eventually or die someday, even though how 

this will happen is unclear. Sometimes, as with anything else, the term can be 

misapplied: capitalism is not inevitable. But the death of the sun, rise and fall of the 

tide, and success of a new pop star do function as inevitabilities. Though these can all 

be described without using temporal vocabulary, the implication would remain that 

their future can already be known in the present, and therefore acts in advance of 

itself. 

These are four examples. More could be given. It is hard to think of them in 

isolation because they do not act in isolation. As Adam correctly points out, we live 

with the complexity of everyday times. We cannot use abstractions to deny that 
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complexity. However, we can focus on one specific aspect at a time, making other 

parts blurry for a moment (Adam 1995, 159). By focusing on a specific aspect of 

temporality, we can better understand how it functions and how it may relate to other 

aspects of temporality in a given situation. 

I have argued that temporality acts in the world, creating changes and setting 

circumstances in which events must unfold. But doesn’t this put temporality in the role 

of cause? Some might worry that the argument is circular. First, temporality precedes 

cause because it is its enabling condition: event and sequence are functions of 

temporality that organize causality, in the usual account of causation. Temporality is a 

precondition to causation, but does not usurp the power of other causal forces. Second, 

there are direct causes as well as contributing causes. If someone moves to a city 

because it provides a more contemporary feel, or because she remembers the city as a 

nice place to live, the contemporary and remembrance are contributing causes to the 

move. Third, the usual model of causality is particularly weak in its representation of 

complex temporal functions. The usual model produces powers of prediction and 

control precisely by denying the role of any form of temporality other than events 

acting on each other in sequence. This image of cause discourages us from noticing 

the influence of other aspects of temporality such as anticipation, memory, and 

backwardsness. If one anticipates that searching the web will provide answer a 

question quickly, this attracts the person to the action of searching. The easy search 

drew the person in to use it. But, phrased in the strict causal model, a psychological 

experience, not a distinct modality of temporality, caused real action. In such a model, 
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one is compelled to use a progressive grammatical structure where what is earlier 

always results in what is later, even when we know very well that what happened later 

acted in advance of its realization.  

Luckily, we do not need to use such a stifling model to retain a powerful 

concept of causality. Causality may be understood as powers acting simultaneously on 

one another with varying success (S. Mumford and Anjum 2011). There are more 

ways to act than to trigger or mechanically produce a following event because there 

are more scales of action than the dyad of stimulus and response and because there are 

other ways temporality functions than the sequence relating cause and effect.  

Temporality does many things, yet time is orderly. Temporality functions in 

many ways, is experienced by situated actors, and can be abstracted into theoretical 

terms. Temporality does not just mean an inevitable and constant flow of the future 

into the past. It is less a river than “an uncertainty open to mobile and surging forces 

coming from all directions: an ocean in a storm” (Moran 2010). Yet that which we call 

“a time” is orderly, with set patterns for how temporality occurs. Tuesday always 

follows Monday. Though there remain rogue functions of temporality, most fit 

together in a way we regard as seamless. This is the work of social practices of time, 

and of their naturalization. 

Time as Social Practice 

Time is an enacted, material, social practice that organizes the functions of 

temporality. Though social theory of time has long recognized the artificiality of 
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times, the status of these constructs remains unclear. What is clock time? How does it 

relate to memory, the time of a religious calendar, or the temporality we experience? 

Here, I propose that anything that may be called a time is also a social practice. 

By social, I do not mean something reducible to human will or something 

made up of the totality of connections between objects of any kind whatever. Social 

connections occur between actors whether they are human or not. They are a matter of 

associations that take very different forms, rather than expressions of one thing that is 

fundamentally social (Latour 2002; Harman 2009). This does not mean that relations, 

whether named networks or social constructs, are of a singular type that all join 

together in something so uniform it can always be described as a relation (Bogost 

2009; Moran 2013, 53). “Social” construction happens by many modalities, each 

better understood by discourses and sensitivities appropriate to it. A social practice can 

happen entirely within a machine; if it did, a technical approach would be sufficient. 

Usually it depends on, anticipates, or otherwise encounters things beyond the machine, 

which are better described in terms of culture, practices, economics, time, or biology. 

Humans deserve special moral consideration, but they are hardly the only actors 

responsible for social processes. A gate can enact a time as well as a guard. 

A time is a bundling of temporal functions that rationalizes them and it is a 

practice that coordinates them. I take this idea from John Koller’s analysis of Buddhist 

views of time. Koller defines time as “a theoretical term to cover the temporal terms 

and relations as these are understood conceptually” (1974, 204). Time represents 

temporal terms as connected. It is not the source of that which we recognize as 
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temporal, but the sense made of it. It is in practices that we experience time, and thus 

it is practices that make times (Shove, Pantzar, and Watson 2012, 129). A time gives 

temporal terms specific connections, rather than simply fusing them all together or 

mixing them up with each other. What does this look like? 

In E.P. Thompson’s 1967 article on time in factory work, he argued that a new 

time practice came to dominate the many forms of time that had flourished in Europe 

previously. This new time depended on clocks with hands, gates that locked out 

workers who came late in the morning, and a manufacturing process requiring 

synchronized labor. It organized a number of functions of temporality in specific 

ways: it formed activity into measured durations, purged of idleness, that had 

beginnings and endings positioned within the hours of the day (Thompson 1967). This 

practice, which is also a time, did not rationalize all functions of temporality; 

nostalgia, inevitability, and rituals that had made work irregular before were not part 

of its order. Workers could no longer extend their weekend to honor the fictitious 

Saint Monday. But the factory’s time did take a number of specific ways temporality 

can act in the world (duration, idleness, event, schedule, and passage) and put them 

together so they did something useful. 

If a time arranges temporality at a conceptual level, how does it actually go 

into force? For Thompson’s time practice, the answer is clear: “by the division of 

labour; the supervision of labour; fines; bells and clocks; money incentives; 

preachings and schooling; the suppression of fairs and sports” (Thompson 1967, 90). 

Thompson drew on studies of the first generation of factory workers that showed 
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owners tended to use the stick often and carrot almost never (McKendrick 1961; 

Pollard 1963). The time of the factory, then, seems entirely dependent on force to 

move from an idea in the factory owner’s mind to an actual practice workers would 

more or less obey. 

Discipline, however, represents only one means by which times are enacted. 

Not all times are policies enforced by violence, although those which produce a 

feeling of domination do invite analysis. Accounts narrowly grounded “in either 

technology or in social disciplining produce arguments in which any originary role for 

other spheres, from consumption to everyday practices, is by definition impossible” 

(Glennie and Thrift 2005, 193). This has made scholarship acutely sensitive to the 

modern time formation whose expression is primarily in discipline. But these are not 

the only places where temporality matters, or even where it matters most. Research on 

historical time (Koselleck 1985), time in religion (Eliade 1959; Rayment-Pickard 

2004; Hubert 1999), time in video games (Atkins 2007; Nitsche 2007), and time for 

wood boat enthusiasts (Jalas 2006) all evidence the significance of time beside 

disciplinary relations of domination. Times do not need henchmen to go into effect; 

they just need to be performed. 

Thompson provides an example of time enforced as a policy. Yet social 

practices of time can take many other forms. Involuntary memories “break into the 

present in sudden, unexpected ways” but “do not last long” (Hoy 2009, 192). Trauma 

structures repetition in experience by having first been forgotten and then experienced 

as both forgotten and inescapable (Caruth 1996, 17). Cottage time (the slow and calm 
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situation of time spent in a summer cottage) happens without strict schedules, 

synchronization, or regularity. But, to come into existence this time requires one 

provide specially for it, preparing for a vacation and going to a cottage (Eriksen 2001, 

157–158).  

Practices of time in software affect their users, how work is done, and what is 

produced by providing a working environment. In practice that are interactive, 

functions of temporality relate in a flexible way: users can initiate reversal, create 

stillness, configure flow, or define events. The time goes into effect by empowering 

users, not by techniques of discipline or an arms race of acceleration. They open and 

close documents at any time, view according to terms available to them, switch 

between several simultaneous activities, and retrieve or consult past states. The user 

can make mistakes and correct them and this confidence lets her take more chances 

and move more quickly. This is common practice on the computer. Documents remain 

open to future changes, even if sent off or transferred to hard copy, and a project may 

be borrowed from or repurposed at a later date. That which has been produced by 

software bears the mark of its embodied time practices. Any product can be expected 

to have been edited repeatedly. In many cases, the editor and end user can manipulate 

the pace of time in viewing these products, rewinding songs or playing video at slow 

motion. Because software-based products remain open to corrections and alterations, it 

becomes tempting to put things online that might have once been printed on paper 

(think of the phone book) or done in person (online dating). These practices involve 

access, pastness, reversibility, memory, repetition, pace, and very long windows of 
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opportunity. Each one links together temporal functions in its own way, producing one 

of the many practices of times by which many work and play today. 

In some of these times, processes can be reversed and actions undone. From a 

certain point of view, this will sound quite impossible. But what does it mean to turn 

back time, once flow, pastness, and futurity appear as subtending forces dealt with in 

different ways by different times? “The structure of history, the uninterrupted forward 

movement of clocks, the procession of days, seasons, and years, and simple common 

sense tell us that time is irreversible and moves forward at a steady rate” (Kern 1983, 

29). Yet, how much of our own time is spent fighting to restore order, to reverse the 

sorry events of our existence, and to undo our own mistakes? It is easy to see a movie 

played backwards as action running in reverse. It certainly seems to be a way that 

temporality functions. 

In what sense can actions be undone? Wood burnt to ashes, for example, 

cannot be turned back into wood. But many mistakes can be corrected and many 

things that change one way eventually change back. Although, we may imagine, the 

universe in its terrible size and infinite detail has an endless sensitivity to every action, 

most situations are simpler. Most sensation is ignored and most differences do not 

make a difference.  

If I were to turn on a light, then several conditions would change: the light 

would be on, I would have exerted a bit of energy, the bulb would warm, a second 

would have passed during which other things happened, and I might leave a finger 

print on the switch. If I then flicked the switch again, turning off the light, how would 
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conditions change? I would burn more energy, moving my finger again, and take a 

another second to complete the act. The finger print would still be there and the light 

would be a tad warmer for a moment. The light, however, would be off just as before. 

To a detective, the fingerprint and, if they were quick to arrive at the scene, 

temperature of the bulb would show what had happened and the evidence would show 

that an action taken cannot be retracted. (Although, even then, it would be hard to 

know how many times the light had turned on and off.) To someone watching the 

room from a window, the light would have switched on then off again, but the energy 

used, fingerprint, and heat of the light would not be part of their experience of the 

events. To someone who entered the room after the light was switched twice, the light 

would simply be off and there would be nothing more to it. For myself, I would have 

turned on the light and then undone this action by turning the light off again.  

Only some processes can be reversed and only in some respects. Fire, for 

example, is, for most intents and purposes, impossible to reverse. Turning on a light, 

on the other hand, is easy to reverse. This reversal does not necessarily reverse each 

exact movement composing the initial action, but it does the trick. We can often fix 

mistakes, reverse policies, and put gas back in the car after taking it for a spin. 

What is happening here is that the way an event is apprehended by the world 

around it can be altered, even though the original event cannot.3 Irreversible processes 

                                                 
3 If the relevant prehensions of occurrence can be identified and altered, the present 
form of a past event can be changed, erased, or reversed. In the world outside of 
computers, however, witnesses very often get away or are not properly recognized, 
making it hard to turn back time. 
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cannot be reversed, but, in some cases, their effects can be. The light can be turned off. 

The fact that the switch has moved cannot be undone. But this fact may be of weak 

constitution; if known by only one person it will likely soon be forgotten.  

In computer systems, the user experiences events in an extremely limited way, 

having no insight into the tiny and precise electric and mechanical action that makes 

the computer act the way it does. If the outcome of a command is that a video plays 

backwards, a word written now leaves the page, or an older version of a file replaces a 

newer one, then, for the user (and for the relevant parts of the programs being used), 

actions have been undone and a process can be reversed. The user sees the event 

happen and unhappen; the practice of time does not undo her experience. In the 

finished product, however, that which was done and then undone disappears 

completely. The power to undo actions and reverse the flow of events is an essential 

part of the times computers offer us today. 

Times can be enacted in a variety of ways. Though Koller’s definition of times 

as representations of temporal terms gestures toward the very wide range of ways 

particular times can coordinate aspects of temporality, his argument comes out of a 

Buddhist tradition wherein theoretical terms (such as time) must be regarded as mental 

constructs and therefore unreal. This precept gives him license to play a bit more 

freely with the interlinking concepts making up time, but his conclusion renounces 

what is most useful in his argument: times are made up of many temporal terms. His 

argument, therefore, does not provide an explanation of the social organization of 

temporality in material practices.  
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Thomas Luckmann instructively connects mental constructs of time with their 

social reality using the categories of the virtual and actual. On the one hand, times are 

mental and immaterial. They exist virtually as a social stock of knowledge, ready to be 

drawn on in ways that exceed their material presence. On the other hand, they subsist 

in transmissions or materializations, such as instruments or writing (Luckmann 

1991:159). They are actualized in two characteristic ways. First, they are performed, 

as in instruction or mimesis. Workers hurry off to work or writers propound the 

goodness of time thrift. Second, times manifest themselves in artifacts, such as 

notations and instruments for measuring time.4 The clock, bells, closed gate, and 

posted schedule are examples from Thompson applicable here. Both these kinds of 

actualization, however, depend on the field of potentials established by time 

knowledge. These practices depend upon, situate, and interpret representation. Thus 

the actual and virtual are codependent; someone must know how to read a clock for 

the clock to actualize a practice of time and, similarly, to tell someone they are late 

requires a clock showing that they in fact are.5 Times operate through meaningful 

codes, such as hours, events, or flows. But these codes must be interpreted and put into 

use. Because of the interrelation of the field of potentials surrounding a practice of 

                                                 
4 I have given discourse a very minor role in this argument because discourse about 
time is vague, has difficulty locating itself, and hastily translates other aspects of 
temporality into its own terms. The Foucaultian concept here points only toward the 
vagaries of how time is discussed, not towards the plurality of temporal functions and 
social practices of time by which time acts in the world. 
5 Gilles Deleuze differentiates between the actual and the virtual. The virtual is a 
qualitative potential (what can be) immanent to the actual. The actual is a 
concrescence of the virtual into something particular, embodied, material, and existing 
(Massumi 1992, 34-35; Deleuze 1988, 42-43; Terranova 2001, 107-109). 



45 
 

 

time and the actualized bodies that animate it, social practices of time are not strictly 

human. Times require knowledge, activity, and technology. 

The human experience of time is only one element in a practice of time. 

Ongoing work by Paul Glennie and Nigel Thrift identify the clock as a component of 

distributed cognition in urban areas. “Clock time comprises a number of concepts, 

devices, and practices” that work together in historically and geographically variable 

ways, for various communities of practice (Glennie and Thrift 2009, 9). Time 

practices depend on the imperfect cooperation of these elements, but result together in 

the scheduling of leisure, measuring of movements in a task, and recording of history.  

Despite limits on the subject’s experience of time explained by 

phenomenology (Husserl 1964), technologies extend and modify thought, experience, 

and the performance of human social life. Although humans cannot experience time as 

a series of discrete states (due to protension and retention), they can go back through 

backed up copies of their files on a computer as if time were a series of discrete states. 

In fact, navigating through a series of states is both the exact target of the 

phenomenological critique (Hoy 2009, 68) and the exact design suggested in at least 

one computer science textbook (Gamma 1995, 62–63). Computer technology, in this 

case, augments the human capacity to experience and act in time. What is possible for 

time supported by one technology will be different from what is possible in other 

times. 

These times act together, jostling, ignoring, or overpowering one another. The 

mixture of times that characterizes experience is a product of many practices of time 
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that can be distinguished, and which we do in fact distinguish in ordinary life. 

Catching a plane, checking a watch, and timing a joke all involve different kinds of 

time that can happen together. Often, the joke is not substantially affected by being on 

an airplane, and the time told by the watch, though it is has a different significance on 

the airplane than it did in the airport, is not hard to distinguish from the timing of the 

joke. 

Social practices are not always neat, but they can be separated out. They are 

worth studying because they are not just individual habits or unexpected events; they 

are concretely observable patterns of behavior that are visible in their enactment, that 

often constitute social relations, and that become sites of contestation (Swidler 2001). 

Practices are repeated (Shove, Pantzar, and Watson 2012). This fact makes practices 

matter, because what has repeated many times before is likely to repeat again in the 

future.6 The downside to the conceptual tidiness of the concept of practice is that 

communities of practice are not well defined (Glennie and Thrift 2005, 165) while the 

concepts of practices are defined too well; we can understand practices with a 

diagrammatic clarity that actual events lack. No day is average, but we still speak of 

an average day. Still, what does happen does tend toward certain repetitions that can 

be characterized, and in many cases, those characterizations are worth making. 

Conclusion: What Times Are 

                                                 
6 Practices depend on and are defined by one particular function of temporality: 
repetition. All talk of practices describes only that which repeats, failing to prepare us 
to understand that which occurs singularly or by (another function, such as) hope, 
opportunity, or what is ancient. 
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We notice time most when it is strange. We become confused by time out of 

joint and wonder: what is time? Rather than demand a single explanation that gives a 

single master term for all of temporality, we should trust our instinct that time is 

confusing and not reducible to a timeline or experience of passage. Temporality does 

not work in one way; it functions in many ways. We do not practice time only to 

register temporal passage but for many reasons. The ways that temporality functions 

get caught up in social practices in large part because we want them to. Temporality 

happens in the world, so we involve ourselves with it. By growing living systems of 

time, we make more times and the times begin to animate activity. Some meet each 

other and social relations form. Others miss the opportunity and there is no encounter.  

Different times do not do the same job. Only if we presume a single function 

that all times are doing (such as measuring passage or ordering sequences) is it 

necessary to see how all cultures do something equivalent to the modern reification of 

time. Times, however, organize different aspects of temporality in their own ways for 

their own purposes. 

Interesting things are happening in time. Social practices, particularly those 

with new technological components, are organizing temporality in exciting ways. The 

older associations of time with pace, irreversibility, and mapping the moments in 

which events occur are no longer providing new answers. It is not that these times 

have died out, only that other times have made exceptions to them. Pace, once a 

crucial use of time symbolized by the clock’s tick, has given way to variability. 

Almost no feature of contemporary digital technology guides us with pace. Everything 
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happens when the user requests it or when the computer finishes processing it. With 

few exceptions, we have become dramatically freer to answer a message after a day or 

after an hour, to take stretching breaks on our own schedule, and ignore a task while it 

is executed. The passing of time is becoming less important than the accrual of 

possible events or of sequences that can be activated at any moment. Indeed, these 

practices challenge the very meaning of temporal terms such as memory, event, and 

even the contemporary. They also exist at the edge of what most people would 

comfortably refer to as a time. 

If there is no minimum requirement for what may be considered a time, except 

that it is a practice organizing temporality, are all social practices times? This 

suggestion contradicts everyday experience. Few would refer to the time of paying 

bills, though we would consider many aspects of farming as times. Historically, a 

small number of time practices reified a notion of time that now gives us a limited and 

misleading referent when trying to see time at work around us. We expect times to be 

those things that do what the clock does. The more a practice is like a system of gears, 

the more easily we accept it as a time. Ironically, this means those things most easily 

called times contribute the least to our knowledge of what times can do. In this sense, 

paying bills simply does not sound like time, though it does have its own logic of 

rhythm, procrastination, suddenness, opportunity, and delay. (For many, though, 

payday is a very real time indeed.) 

A historical answer can be supplemented with a theoretical one. A social 

practice referred to by other practices for its organization of temporality serves as a 
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time. The calendar is a time because it is such a standard referent. We use farming as a 

model for time with harvest festivals, our associations for the seasons, and the switch 

to daylight savings time. Paying bills, on the other hand, is simply not referred to as a 

kind of time and does not widely influence how other practices organize temporality. 

Today, a large number of social practices doing interesting things with 

temporality have become important to social life, and so we each have the hunch there 

are many times in effect. We are not just living in the time of the clock and the 

calendar; we live in the time of farming, post-Fordist labor practices, comedic timing, 

involuntary memories, trauma, relaxation, transportation schedules, slow historical 

changes, interactive computer-mediated time, and in the still-changing times of care. 

The opportunity before us is to recognize the nearly invisible temporal 

operations caught up in events, to figure out what they are doing, and to relate this to 

transformations of time, large and small. Which times have accelerated? Which 

conjoin into a reinforcing set that complement the others and share their strength? 

Which do not? What has driven other times to emerge and what projects do they 

support? How do these various times relate to each other, and what can we expect of 

them? These questions are the topics of the next chapter. 

Chapter 2 and 3, in part, are reprints of material as it appears in “Time as a 

Social Practice,” Time and Society. Forthcoming. The dissertation author was the 

primary investigator and author of this paper. 
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III. Times Relating 

 

Social practices of time grow around one another densely. Some are parasites, 

surviving off the strength of others. Some spring up wherever there is space, only to 

wither quickly in the shade of another. Some times provide for others, yield a useful 

substrate, or mend what is broken. Some keep to themselves and survive a little while. 

A very few change the ecosystem where they live and keep themselves large and 

strong. There are many social practices of time. How do they relate to each other? 

How have existing practices of time actually related to each other historically?  

There is a commonly repeated answer to these questions: times have 

accelerated. Though this seems an apt summary for economic changes and some 

cultural ones, it is less appropriate for other times. The speed of shipping, traveling, 

sending a report, or getting a new career and leaving it have accelerated. But 

gardening, social justice, the migration of birds, or the time spent working on a craft 

have not. The time-space compression thesis, laid out most clearly by David Harvey, 

summarizes changes in time practices by translating them into measures of time and 

then recognizing how they have been bent to serve this measure. Because traveling by 

air, for example, has been interpreted, through measurement, as a number of hours 

spent doing a generic activity called traveling, we can now say that traveling has 

accelerated even if, at 30,000 feet, one experiences less speed than on a locomotive. 

Although the acceleration thesis seems to be able to describe practices of any kind, I 

will argue that it is a product of the ways that certain practices of time have become 

dominant and have come to regularly represent other times. To understand how times 
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have related to each other historically requires paying attention to how times are 

enacted in the context of each other. 

Times relate in specific ways, as a rule, but two general types of relations are 

worth special attention: translation and material influence. Translation refers to the 

way one time represents, or fails to represent, another time. The times involved in 

scheduling a flight, getting to the airport, waiting for the plane, waiting on the plane, 

and arriving can all be translated into a practice of time wherein the only relevant 

number is the duration of the flight. Translation is a common relation because, as 

established in the previous chapter, every time is a social practice giving meaningful 

codes by which to understand actual events; one time translates another by interpreting 

events in its own terms, ignoring the other codes of interpretation, such as the 

traveler’s experience or structured practice of those flying the airplane. A second 

primary type of influence is material influence. This is a broad category reflecting the 

embodied nature of times as practices. One time can entrain the rhythm of another, 

deny its resources, act upon the actors of the other time, encourage the growth of one 

time, or provide wider usage for another time. These two types connect to many 

variants and ultimately to an unknowable plurality of potential relations. 

In this ecosystem of times, a few have become widespread, have found 

commonality among themselves, and have entered an alliance to create a reification of 

time. This reification is now our common sense. In some cases, these practices have 

been self-serving; in others they have been in the right place at the right time. In each 

case, it is because practices have been useful that institutions, practices, and groups 
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have given them force. The history of time is not a simple thing because times are not 

practiced all at once, neither by all people equally nor always in the same way; they 

intermingle and are used in various ways, observed with partial regularity, and 

developed by interests whose power may come or go. At one time, colonial interest in 

standard times at their various colonial ports succeeded in realigning time; at another 

point, scientific work dealing with milliseconds organized and implemented a change. 

Despite the differences, several features built up and found common ground. The solar 

day became the clock’s hours which became connected to a system of time zones, new 

practices for maintaining clock accuracy, and eventually these practices of time took 

as their basis the second and its multiples rather than the day and its fractions. Today, 

we accept without hesitation that time is that dimension of the universe measured by 

clocks. This is quite a bit of metaphysical pomp surrounding the relatively simple 

mechanics of a clock. 

This chapter explores the relations between times in order to further the overall 

research question about interactive times. If some times are interactive, why did 

people start living with these strange things at all? How can they survive in a world 

that is, at least apparently, thoroughly dominated by times that are not interactive? 

What is the current state of the time ecosystem in which interactive times appear? To 

approach these questions requires a clear sense of how times relate and how they have 

related. 

How Times Relate 
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The basic syntagm is familiar: we used to get together to watch Project 

Runway in 2008 on TiVo. The memory, the historical period, the TV season, the day 

of the week, the time of the workday, the scheduled time of the show, the wait while 

everyone showed up, the hour we spent together, the segmentation of content and 

advertisements, the sequence of the episodes, the timeline within the show, the editing 

of an episode, the stylistic references of the designers, the harried pace of the design 

process. These are the paradigmatic times involved. But what are the paradigmatic 

relations?  

Times always relate to each other in ways specific to a situation, but we can 

still name some general types of relationships that tend to form. In Timewatch, 

Barbara Adam describes the relations between times with the catchall term mutual 

implication. The phrase suggests play and mutual presupposition; complex relations 

cannot be frozen into a single image (Adam 1995, 159). Through the book, the phrase 

provides several specific meanings. In this section, I draw out types of relations from 

these varied uses of the term. This section will begin with times irrelevant to one 

another, explore how times translate each other, and then explore material influence 

and mutual reinforcement. 

Mutual implication, as a term, ambiguously suggests that all times somehow 

relate to each other in the end. However, Adam is quick to point out that gaps are more 

common than connections, and that non-interactions can be more important than 

connections. 
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Most of these times are implicit, taken for granted, and seldom brought 
into relation with each other: the times of consciousness, memory and 
anticipation are rarely discussed with reference to situations dominated 
by schedules and deadlines. The times expressed through everyday 
language tend to remain isolated from the various parameters and 
boundaries through which we live in time. (Adam 1995, 12) 

Though times may all influence one another at some point, disjuncture is more 

common than connection. Watching TV with friends, the time we agree to meet is 

unaffected by the timing of stoplights between our homes, cannot change or be 

changed by the retro style of a dress in the show, and has no bearing on the relentless 

intensity of the advertisements we TiVo through. Disconnection can be active or 

passive; one time may willfully ignore another (we set a meeting time without 

consulting one person’s schedule), or two times may happen to have no relation (the 

retro dress and the stoplights). 
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Figure 3.1 Christian Siriano creates a winning outfit inspired by Don Andrés de Andrade y la 
Cal in episode 11 of Project Runway Season 4, oringally aired February 13 2008 (Murillo 
1665). 

Most times co-exist in a degree of passive non-interaction. Because the times 

do not envelop and overrun each other, opportunities remain for times to grow, 

flourish, and find a niche. Using the examples of the dissemination of the mechanical 

clock and of railway time, Jon May and Nigel Thrift suggest that there have been 

“various (and uneven) networks of time stretching in different and divergent directions 

across an uneven social field” (May and Thrift 2001, 5). A practice of time will 

interact with times within its reach, changing local patterns of life and giving new 

terms to thoughts of the past and future. But, outside its reach, it may very well not. 

Towns near railroad stations feel the importance of the times used by railroads, but 

those further away easily find other points of reference. For friends huddled around 
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the TiVo, the time of the show is controllable. We can rewind to watch a segment 

again, pause on an image of text and read all the words, fast forward, start and stop 

when we please, or take a break and come back in a bit. Within this situation, the 

interactive time of the TiVo can influence or overpower some actors and some times, 

but has no power over others (such as the season or time of day). The TiVo, like many 

computer based times, radiates a small space wherein its time has power. Geographic 

distance is one expression of non-interaction, but times may also ignore each other up 

close and personal. The times of history, season, and waiting may operate in the same 

space and on the same actors, without having much relation to one another. But non-

interaction between times isn’t always a result of simply being of different kinds or in 

different places; ignorance can be educated. 

Active non-interaction is a politically significant failure of communication. A 

town that refuses to accept the railroad’s time, a factory that does not recognize 

Monday as a drinking holiday, a government that gives no parental leave. Feminist 

studies of time emphasize that the time spent caring for other people has been 

continuously ignored by employers and policymakers. Dominant practices of time are 

numb not only to hours spent (mostly by women), but to the kind of time care 

represents. Staying up with a sick child is not exactly measurable as hours on the 

clock; living with someone older who needs special attention will condition one’s 

working hours but does not simply consume them (Bryson 2007).  Sub-practices of 

one time can be apprehended and reinterpreted in the meaningful codes of another. 
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Active non-interaction is really a failure of translation. One time does not 

register another properly. Sometimes this is done by choice: an employer would rather 

not give more sick leave. Very often, though, one time actually cannot represent 

aspects of the other time in its own idiom. If the system is to count up the number of 

hours spent doing something, how many hours can one claim for the effort of caring 

for a sick child? Times cover some temporal terms and catch them up in a practice; 

other temporal terms, and other parts of other practices, may not fit at all. In care, an 

inconsistent pace of events interrupts other activities; the schedule recognizes only 

beginnings and endings connected by measured durations. Adam describes the mutual 

implication of the time of care and the economic measurement of time as not just 

intermeshed with the commodity, but “evaluated through the mediating filter of that 

economic time” (Adam 1995, 99). That which has value in the arena of exchange 

becomes visible, that which cannot be traded cannot be recognized. The coded 

representations by which one time works subsume another time. 

Bliss Lim further develops the idea of translating time through Henri Bergson. 

Though clocks are, from a Bergsonian perspective, fundamentally translating duration, 

they cannot grasp duration as a qualitative multiplicity. However, they still 

systematically represent it. This is a regularized mistranslation. In the same way, Lim 

argues, the dominant time practices of modernity represent the times of other cultures, 

denying a culture’s own ways of understanding time. Ghosts no longer stand for 

ancestors visiting the present; they become delusions and myths demonstrating a 

culture’s rich storytelling tradition. Despite its attempt to translate a culture’s own 
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time into the secular schema of modernity, modern time cannot account for specters in 

terms of time and so relegates them to the status of superstition and folklore.1 Here, 

one time sorts another into an intelligible portion (a model of the original) and a 

cultural supplement. For Eurocentric developmentalist narratives, the time of other 

cultures appears as a muddled and discrepant version of their own time – of what they 

would no doubt say time really is (Lim 2009). From the point of view of those 

undertaking the project, the translation effort has been successful: modern time has 

converted lunar and solar calendars into its terms, assigned hours to the day, 

reconstructed histories on its timeline, and translated local rhythms into periods of 

days or years. Though much is lost in this rough translation, this representation of 

other times has become dominant in many parts of the world (Postill 2002).  

With translation comes the possibility for the universalization of a time. If a 

time can account for most everything belonging to other times, what do other times 

have to offer? Here is a common view among students learning about suspiciously 

complicated theories of time: time is a dimension, and that is good enough. The 

dimensional account can provide a translation of any other time, so nothing more need 

be said. Ergo, historical time is a matter of how academics write; time systems of 

different cultures are just approximations of the Western system; philosophical ideas 

about time describe psychology and not reality. Like singular accounts of time’s 

                                                 
1 Stefan Tanaka describes such a displacement in Meiji Japan, where important parts 
of a traditional time, such as shell mounds from giants or catfish that make 
earthquakes, were rediscovered as folklore  to be scientifically catalogued (stories 
about gigantism) while the physical phenomena in question (shell mounds and 
earthquakes) were reclassified into other domains – namely, geology (Tanaka 2004).  
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essential nature, this enthusiasm for a single time establishes a universalizing 

pretension. It does this, however, at the expense of many aspects of other times that 

are simply redefined outside the terms of time, as with the displacement of ghosts into 

folklore.  

This universalization, haughty as it might be, has actually been very rewarding 

for scientific concepts of time and practices of time central to modern bureaucracy 

because it allows them to expand their empires. Most science uses a roughly 

Newtonian model of time, making work in different experiments—even in different 

fields—more easily combinable; this allows a larger empire to develop more quickly. 

The arrow of time in science, for instance, can offer  

compelling explanations of a vast panoply of phenomena, from the 
emergence of life to the appearance of a leopard's coat. If we dismiss 
the arrow of time as an illusion, we must forfeit all the insights we 
have gained. This would surely be an enormous sacrifice - and all we 
would gain are the absurdities of a world-view in which bowls of soup 
could heat up of their own accord, and snooker balls mysteriously pop 
out of their pockets” (Coveney 1991, 260).  

It is as if other accounts of time were to be feared. 

When people regularly use one time to translate other times, times can take on 

the relationship of referent. A referent time serves as an ideal toward which other 

times should be directed, or at least with which other times become easier to think 

about. The clock is our most general referent for times. It’s difficult to even recognize 

something as a time except to the degree it resembles the clock. Adam discusses times 

as models in another passage on mutual implication. In the relation of the “archetypal 

and endogenous temporality of the birthing process and the rational clock time of 
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obstetrics,” Adam argues that these times do not just oscillate, but “interpenetrate and 

mutually inform each other’s meanings” (Adam 1995, 49–50). The obstetric schedule 

has a basis in the experience of birthing and can vary during a birth to better model it. 

However, a reciprocal modeling takes place too often, where the actual birth may be 

condensed to fit a given obstetric schedule. 

In the relation of a model, one time is understood, designed, or practiced in the 

image of another, or with significant borrowing of elements. The model often changes 

the very form of another time, not just translating content into it, but actually changing 

it to better accommodate that content. Segments of advertisements during Project 

Runway that are modeled on viewer’s attention will coax and shape that attention; the 

time in the evening when the show runs models the work schedule of an intended 

viewership. Because many practices of time model themselves on others, modeling 

can be iterative. For example, when NASA scientists worked on the Mars rover, the 

hours of their work had to switch to Mars time, a variation of the usual solar day of 

Earth. This time depends on the clock (special watches that run a bit slower than 

usual), but models its structure on the day, which itself refers to the rising and setting 

of the sun (Mirmalek 2009). By reference to already accepted times, many practices 

organizing temporality become legible as times. 



65 
 

 

 

Figure 3.2 From left to right: time at one Mars site, dual faced Earth watch, fatigue measure, 
and solar time for a second site on Mars. (Mimalek, 2008) 

The common sense account of time might imagine times modeled on other 

times as derived from increasingly faithful originals. We traditionally see practices of 

time as imitations of an underlying transcendental essential reality. We often imagine 

that the clock is measuring the constant flux by which all clock-like mechanisms can 

engage in movement. The clock seems an index of a more fundamental dimension of 

the universe that is time’s true nature. But regular motion is just another universal 

account, preferring mysterious simplicity to tangible complexity. By instead seeing 

practices as related to one another by reference, we focus attention on how time is 

enacted and lived, rather than an ideal form to which some of these practices allude. 

Idealizations and referents are tactics within the many practices of time and their 

shifting relations. Most times are not conceived in this way; the time practices of 

passengers in an airport or comedians improvising on stage are rarely seen as 

manifestations of a deeper underlying essence of time. Lacking profundity in their 

references, then, such times are often seen as derivative, when they should instead be 
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recognized as material enactments that, unlike others, simply do not attract an interest 

from those speculating on metaphysics. 

As can be seen with reference, universalization, translation, and numbness, the 

relations between times are not all conceptual. In each of the above cases of 

translation, someone must make a translation and someone must act on it. Times are 

not just concepts covering temporal terms; they are living practices shaping and 

connecting temporal influences. NASA scientists trying to keep on Mars time lost 

sleep, obstetricians rush birth, colonial powers govern societies with very different 

calendars, and work schedules wreak havoc on the time of care. It matters if one time 

translates another properly because the mistranslation will have an impact. If we 

schedule a weekly meetup but ignore one person’s schedule, such that she is late every 

week, our meeting will de facto begin late every week on account of the one time’s 

insensitivity to another. If we schedule an hour to watch the show but skip the 

commercials, we only take 42 minutes. The now familiar compression of one hour 

shows to the 42 minutes of programming is a clear product of interactive time. 

Translation matters materially and material influence is itself a critical register 

at which times (themselves partly material) relate. In most of the passages where 

Adam discusses mutual implication, this is what she means. Times affect other times. 

Times are active simultaneously (15), the addition of new times changes those that 

already exist (28), birthing time and obstetric schedules intermesh (50), and again 

commodified time and the time of care “affect each others quality and meaning” 

(Adam 1995, 99). Mutual implication also means mutual change. 
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In the sociological literature on time, there are many examples of powerful 

interactions between rhythms. In one case, the schedule of the local trolley influenced 

the shift schedule of workers at a prison (Bluedorn 2002, 148). In another case, 

government changes to the week in revolutionary France (the switch to a 10 day week) 

and Soviet Russia (the dissolution of the weekend) resulted in a split between the 

obedient cities and traditional countryside. This undermined the rule of law and rural 

workers simply took holidays from both the new calendar and the old one (Zerubavel 

1985, 10, 42–43). Lefebvre’s incomplete project of rhythmanalysis would have put 

this interaction at the center of all social processes: the world as rhythms of social life 

in complex interactions (Lefebvre 2007). But these visions are perhaps a bit 

monocausal and mechanistic; they stem from a worry that time must unify society or 

that all social life must have behind it a single common aspect of time. 

Influence can come in many forms beside translation and rhythm. The 

Taylorist administration of time that arose in the workplace has moved to home life, 

where it now drives employees to spend more time at their post-Taylorist jobs where 

they can relax for a moment  (Hochschild 1997). One practice drives its practitioners 

to another practice. Contemporary practices of listening to music have encouraged 

shifts in compositional strategy, because audiences enter and exit the piece at the push 

of a button (Kramer 1988, 45). Audiences become used to one kind of time and this 

makes them ready for other practices they would not have enjoyed as much before. 

The ability to quickly retry a segment of a video game encourages short-term planning 

and easier gameplay at the expense of virtuoso play and memorization (Moran 2010). 
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Changes in time practices change the nature of computer game play. Many have 

argued that the relaxed and reversible time afforded by word processors “tends to 

undermine the investment in the original act of writing” (Simpson 1995, 66) or 

encourage a “conversational style of emails, tolerant of typos, betraying little anxiety 

over literary amour proper” (Tomlinson 2007, 110, emphasis in original). 

Though it only tells part of the story, material influence is an important aspect 

of how times relate. For friends watching Project Runway, the finale may bring us 

together more punctually than other episodes, the TV season and harried process of 

design influence the way the show is edited, and the historical period in which the 

show comes out is not irrelevant to the designers’ stylistic references. By 

understanding times as practices, it becomes clearer how easy it is to affect them, and, 

conversely, how influential each practice is itself. Often, these material relations work 

in conjunction with other relations to accomplish a larger effect. The mixture of times, 

in their mutual implication, does not make all times equal, at a political level. Some 

are doing much better than others. 

Times reinforce, complement, contradict, or replace one another historically. 

The ways that times relate can be usefully understood in generic terms, although their 

operation will always vary in specific cases. Many times have no direct relationship 

with each other, and this makes it worthwhile to see connections as they do exist and 

where they do develop. Times translate each other, with incomplete success, and often 

in regularized ways. In translation, they can actively fail to translate one another, 

claim a universal status for their own representation of temporality, or serve as a 



69 
 

 

model for other times. Times influence each other materially, blocking each other, 

privileging some times over others, accelerating other times, or interacting in some 

other way. Times have related to each other in various ways for a long time. These 

plays of power and accident involve many kinds of relations and happen between 

several times at once. Adam refers to a reinforcing set of times that have together 

reified time as an external object (Adam 2004, 138). To understand this 

accomplishment requires some idea of the growth and change of major practices of 

time up to the present moment. 

Time History 

It is not possible to tell the history of all kinds of time. Conversely, it is all too 

easy to tell a very partial story of the early life of certain technologies and ideas 

recognizable now as fundamental to time. Such an account goes like this: Socratic and 

enlightenment philosophy of time paired neatly with the development of clocks to 

produce scientific models of time (of Newton and then Einstein) which have their own 

advanced correlate in a very precise system of internationally synchronized 

timekeeping (Mainzer 2002).  

Such a history presumes the end result as the form to which all intermediaries 

tend. It ignores the other forms of time that grew up and faltered, that were profoundly 

modified, or were excommunicated from the set of practices now composing what is 

colloquially referred to as time. It correlates a small set of practices, usually restricted 

to the elite, with a wide range of ideas, summarized best in a few texts, and ignores the 

geographic and political situations enlisting times into larger practices. It is not a 
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useless history; it is actually quite useful for those times that are dominant today, but a 

broader perspective shows adoption and transformation of times in relation to their 

uses and mutual implication. 

There have been many practices of time, but a dominant, reinforcing set has 

emerged in the last few hundred years that makes other kinds of time relatively 

unthinkable. The set has established itself through a series of modifications—which 

happened for various reasons—that have made the translation of seconds to minutes to 

hours to days to weeks to months to years natural. The whole system seems now to be 

determined by the motion of the Earth, a fundamental dimension of the universe, and a 

completely normal way to pace and schedule labor, leisure, and so much more of life. 

This is a historical occurrence built up primarily in Europe and then North America, 

and later adopted or applied elsewhere, that might have happened otherwise or not at 

all (Lim 2009, 84–86). By understanding how changes did enshrine dominant times, it 

becomes clearer how contemporary changes may undo the reinforcing set. 

Clocks were not always important. Religious calendars, sand hourglasses used 

by blacksmiths, the position of the sun in the sky, church bells, and time cues from 

everyday life allowed common people in Europe before 1450 to know the general time 

of day (Thrift 1981, 57–59). The idea of a day divided into hours was not unfamiliar, 

but a machine used to register this would have been. Clocks were rare, hard to make, 

and not particularly useful. At best, they supplemented existing time practices. In 

Europe at this time, most social organization centered around the completion of tasks 

rather than the number of hours spent engaged in the task. Workers worked on a 
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specific job, not for a specific number of hours; leisure was similarly arranged around 

activities that found their ends for reasons other than the hour (Glennie and Thrift 

2005, 170–171).  

However, time found a new importance with changes in the work ethic 

(following the Reformation) and growing desires for what industriousness could make. 

The protestant work ethic’s attack on idleness and its careful attention to the proper 

use of time (Weber 1905/2005, 104) is well known, though perhaps overstated. The 

general idea is important: there became theological reasons for time thrift, turning any 

short stretch of time into a medium for productive activity. Though records are 

imperfect, watchmakers in France and Germany were disproportionately Protestant 

from 1500-1700 (Landes 1983, 92). In the same period, a revolution in consumer 

practices began to fuel the Industrial Revolution. Changing tastes preferred market 

goods to homemade ones; tea (which could not be made locally) became more 

exciting than beer (often brewed at home). It therefore became worthwhile for people 

to work (or, more exactly, work to produce money) when they otherwise would not. 

The hours of night and the less busy seasons of agriculture, once bastions of more 

relaxed time practices, became colonized with work intended to produce money with 

which to acquire market goods. These crafts done at home required different paces of 

work, requiring new strategies for domestic production (de Vries 1993). A principled 

opposition to idleness and a new motivation for industriousness pressured existing 

practices of times, encouraging the growth of more precise and productive means of 

scheduling and coordination. 
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Figure 3.3 From William Hogarth's Industry and Idleness series, this engraving illustrates the 
dangers of idleness. Here, the idle apprentice is gambling when he should be in Church. 

Clocks became common in urban spaces through the seventeenth century. 

Settlements grew and, along with them, the number of clocks. Urbanization in 

England doubled from the tenth to fourteenth century, then leveled off until the 

sixteenth century when it began rising again. The trend was similar across Europe, 

with the plague hitting denser settlements harder, and urban growth taking off in the 

sixteenth century (Rigby 2010). With urbanization, an increasing number of clocks in 

the immediate environment gradually made it easier to know the clock’s time (which 

was still not understood as identical with other kinds of time). Until the eighteenth 
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century, it was a rare clock that had a dial; most worked by sound rather than sight 

(Glennie and Thrift 2009, 41). A cacophony of bells rang with different sounds 

produced by various forms of striking and different clock bells. These filled the day in 

many cities, indicating events of various kinds, such as the time for fish merchants to 

come to market, certain ships to come to port, meetings to commence, and soldiers to 

come or go (Dohrn-van Rossum 1996, 206–209).  

Because clocks kept invariant hours, they transformed the meaning of the hour. 

Traditionally, the period of daylight was divided into twelve parts, each of which was 

an hour. The same was done for the night. Today, winter days give as little as nine 

hours of daylight. In the older system, every day had twelve hours of sun by 

definition; a shorter day just happened to have shorter hours (thus, nine hours of 

daylight would yield forty-five minute hours). This sounds strange to us now because 

we assume an hour is sixty minutes, but the minute and second were almost 

exclusively theoretical concepts until the late sixteenth century (Dohrn-van Rossum 

1996, 282–283). Thus the length of hours varied seasonally and was different for 

hours of night and day. Clocks disrupted this system by keeping the same hours day 

and night, thereby forcing a redefinition of hours (Sherover 2003, 14).2  

Clocks were primarily public. Most clocks were in churches, but town halls 

often had them as well (Tittler, 1991: 131-139). Schools drilled clock time into the 

young (to prepare them for work) and factories into the slightly older, with strict and 

                                                 
2 Clocks can be built so that every day has twelve hours of daylight, but this is harder 
and rarely done. 
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standard penalties for tardiness (Thrift, 1981: 61-65). The workhouse also deployed 

clock time assiduously for the supposed benefit of the poor, especially children 

(Driver, 1993). Monumental public clocks in European cities enhanced their prestige, 

gave the city an identity, and signified good governance (Dohrn-van Rossum 1996, 

146–156). Only in the late seventeenth century did domestic clocks become common 

(Glennie and Thrift 2005, 24–25).  

Yet, even with a proliferation of clocks, their meaning and use remained far 

from clear. With clocks common in many houses and many wearing wristwatches by 

the seventeenth century, accuracy and punctuality were still considered social niceties 

rather than obligations (Landes 1983, 128). Into the nineteenth century, farmers 

consulted almanacs where “astrology and astronomy, theology and husbandry, 

medicine and science combined to schedule work” (O’Malley 1996, 16). What the 

clock measured was only one small consideration when thinking of time. Further, 

those using the clock did not all agree on what days it divided into hours; although the 

Gregorian calendar has become dominant today, many other calendars remained in use 

even into the twentieth century. 

Clock time did not take over; existing practices found clocks useful. The idea 

of usefulness provides a middle path between visions of technologies as overpowering 

or as overpowered. On the one hand, many would readily claim that changes in time 

alone forced a new pace of life on peasants, for example, capturing them in a 

“chronological net” (Harvey 1989, 228). On the other hand, the image of different 
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groups using technologies for their own varied purposes can imply that a technology 

does nearly anything that is asked of it. A technology is supple, but not infinitely so.  

Usefulness is the ability of a technology to be applied in a specific role in a 

general scenario. These scenarios have a correlate in actuality, but tend to be 

paradigmatic and most stable in the imagination. If a new technology fits into existing 

needs, practices, and budgets, it may be more useful and become regularly used 

(Constant 1978; Landes 1983). Different groups found the clock’s time useful relative 

to different scenarios. Early factories found times based around the clock useful as 

part of a disciplinary production system in a capitalist economy (Thompson 1967; 

Pollard 1963; McKendrick 1961). Foucault goes further with this theme, showing how 

several deployments of time (most using the clock) were useful for various aspects of 

disciplinary institutions (Foucault 1977, 141–162). Public maintenance of time had 

special meaning for federal and regional government in the United States in the late 

nineteenth century, who used it to establish their authority and associate their power 

with order in the world (McCrossen 2007). More could be said about the special cases 

of churches, military timetables, organization of leisure events, school bells and 

deadlines, production schedules, and the maze of rates, periods, and delays handled in 

accounting.  

Among these various ways that clock times could be useful, two 

commonalities deserve special attention. Clock time was useful as a form of authority 

and a means of measurement. The clock displaced and extended many forms of 

authority, thereby increasing its own. Cities and governments using clocks to represent 
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order thereby invested the clock with this association; factories teaching respect for 

the owner’s rules by means of the clock transferred respect to the clock; events that 

might have been organized by the authority of the sun’s setting were increasingly 

linked to an hour indicated by the clock. Almanacs and religious calendars presented 

time as an expression of the authority of nature and the divine, but clocks expressed 

the authority of the institutions and interests that governed daily life (O’Malley 1996, 

98). Slavoj Žižek defines authority as a powerless call that we feel obliged to follow 

without regard for the reasoning behind it (Žižek 2001, 94). We do not follow 

authority because we understand it but because of its position as authority. The clock 

has received this authoritative quality from centuries of use by authorities of all kinds, 

and today we respect what the clock says because it is the clock, not because we 

understand the machine, its time, or the uses by which it has come to prominence. One 

acts because of what the clock reads, almost never questioning this relation of 

obedience. 

Second, clock time has generally been used to direct the productive activities 

of people and machines by making possible comparisons in terms of productivity per 

unit time. The clock can measure activities of almost any kind by creating very 

reductive translations; these translations lend themselves to quantitative manipulation 

such as miles per hour, words per minute, or man-hours of work. Charles Lorenzo 

Simpson has argued against a technological mode, now common, in which we tend to 

reduce activities to their consequences, then design and use technologies to create 

these outcomes more efficiently. Instead of washing dishes by hand, together with 
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others with whom we have shared a meal, we use a dishwasher. The dishwasher 

produces optimal outputs, relative to certain criteria (Simpson 1995). But efficiency 

depends for its meaning on parameters to be maximized and minimized. Clock time is 

almost always one of these parameters, giving a reductive representation of activities 

so they can be seen as improvable and improved. For example, consider the fact that 

before the assembly line, it took twelve and a half hours to build a car at Ford's 

factory. After the line was introduced, it took only an hour and a half to build one 

(Nielsen 2006, 6). This is not just a fact of interest to antiquarians and Ford fanciers; it 

is the exact justification for the assembly line and the key term by which Fordism 

proceeded to reorganize labor more broadly. The five dollar day, the pink slip, and 

thug control of the labor force were other advancements made to keep operations 

statistically impressive, especially in regard to the clock’s measure (Braverman 1975, 

150; Moffit 2002, 297; Norwood 2002, 176).3 The ability of one time to translate 

another is a key usefulness that has been found for the clock and industrial efficiency 

engineering is one example of it. As the clock has become a means of the powerful, 

more within their sphere of influence has been seen and treated as it appears through 

the term of the clock, often in terms of efficiency measured and improved. 

There are commonalities as well as differences in how time has been made 

useful. But there are also contradictions within common approaches. Postal systems, 

railroads, and telegraph networks found that clocks could be kept synchronized in 

                                                 
3 Robert MacNamara’s early successes treating military operations as mathematical 
problems probably owe a considerable debt to the callousness and belligerence of 
Colonel Curtis LeMay.  
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different cities, but the indicated hour varied by longitude; there was a tension 

between synchronization and astronomical time, making scheduling and measuring 

more difficult (O’Malley 1996, 60–61). The clock had always referred to the sun: 12 

o’clock was set to match solar noon, the moment in the day when the sun was at its 

highest in the sky. But the sun does not rise everywhere on earth at the same time; the 

Earth’s rotation gradually exposes its surface to the sun. Every degree of longitude 

(usually representing a distance of fifty miles) translates to an average difference of 

four minutes in solar time. (This ratio grows further from the Equator.) When travel 

was slow and irregular, a few minutes difference hardly mattered. If traveling fifty 

miles took five or six hours, who would notice four minutes? With faster travel 

following a more precise schedule, the difference becomes obvious. This situation 

became a problem for railroads, which had to make rather complicated schedules 

accounting for a different local time at nearly every stop. More complex schedules 

increased the chances of errors, and errors could result in very costly collisions. British 

railroad companies standardized a national time in 1847 (Thrift 1981), and US 

companies finally settled on a standard in 1883 (Stephens 2002, 111–115). Although 

these changes made sense to network owners and operators, common people did not 

travel far or often and found the standard time zones off-putting and irrelevant 

(O’Malley 1996, 119). For them, clocks properly referred to the sun, not a network of 

railroads connecting other clocks. 
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Figure 3.4 In 1857, it would take more than a full day's travel from New York to arrive in a 
place where local time was off by a full hour. For most people, the difference between local 
times was too small to matter. (Base map is from Paullin and Wright 1932, 138c) 

Further standards developed to resolve contradictions in a global system of 

clock time. In 1884, the International Meridian Conference met in Washington D.C. 

with representatives from 25 nations, mostly from the Americas and Western Europe 

(but also including Meiji Japan and the Kingdom of Hawai’i). Unlike the railroad’s 

concerns with different cities off by a few minutes or hours, this conference aimed to 

solve the problem of the date line and local times of colonial possessions. Ships sailing 

around the Earth sometimes found their schedules off by a day when they arrived in 

port. Colonial regulations also lacked standards: the local times in Portuguese Macau 

and the nearby Spanish Philippines differed by several hours. (Today they are in the 

same time zone.) Astronomy and astrology also shared an interest in a standard that 
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could simplify international coordination.4 Advocates at the conference argued a 

unified system would yield benefits in efficiency like those of the metric system. The 

conference ultimately accepted the GMT (Greenwich Mean Time) set of 24 time 

zones and placed the global standard time at Greenwich and the date line in the Pacific 

Ocean on the opposite side of the globe (Bartky 2007).  

Adoption of this standard by governments took more time, with Japan 

implementing the proposal in 1886 (96), the German Empire in 1893, and many other 

European countries soon after. In the German Empire, well-respected Field Marshall 

Helmuth von Moltke the Elder, regarded as one of the greatest strategists of the 

nineteenth century, made the case that unification of the time should follow from 

unification of the country and that, as a practical problem, regional variation required 

carefully writing and copying timetables for each region, which involved a high 

chance of errors that could prove dangerous, particularly in time of war. Ultimately, 

his death six weeks after speaking out on the topic made implementation of uniform 

time a way to pay respects to his legacy (122-127). In 1910, the Eiffel Tower and an 

antenna in Norddeich, Germany began transmitting standard time on high power radio 

signals (139). 

In 1967, another international agreement on time set the length of a second by 

vibrations of Caesium, an obscure metal. The second would be equal to 9,192,631,770 

transitions between two hyperfine levels of the ground state of the Caesium 133 atom, 

replacing astronomical time, including the GMT (Jones, 2000). Astronomical time had 

                                                 
4 Astrology was, by most measures, more important than astronomy at this time. 
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long defined the second as a fraction of (a minute and of an hour and therefore of) a 

day. In that system, the basic referent is a day, and the second can be calculated from 

this. But, again, this common approach included small contradictions. In this case, the 

trouble was milliseconds. The earth’s rotation is not entirely stable: the planet wobbles 

slightly on its axis and is always decelerating slightly (Smith 1982). This makes the 

astronomical second unreliable at very small scales because of wobble and, in the very 

large scale, due to deceleration. The difference between a second defined as a fraction 

of a day and a second defined by the Caesium atom is small but significant for 

technical work that depends on fractions of a second or precise counts of millions of 

seconds elapsed between two events. To hold together various uses to which a set of 

times were put, the whole system’s referent switched from the middle term of days to 

what had previously been its smallest imagined term of seconds. 

Similar clarifications of time for technical standards have happened outside of 

government channels. A persistent weakness of clock time is that most clocks are 

inaccurate. Watches fall behind or drift ahead, clocks driven by a pendulum, a spring, 

or powered by batteries will all shift by at least a few seconds over enough days. 

Building a perfect mechanism is extremely difficult and even a decent one is hard 

enough. For most purposes, though, we are as insensitive to this inaccuracy as those 

traveling by horse were to local times offset by a few minutes. But, for specialized 

users, the difference of a few milliseconds can be quite significant and drifting off by a 

single second can create serious complications. Computer networks now use the 

Network Time Protocol to synchronize clocks on the Internet with great precision. 
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This is a voluntarily adopted Internet standard with special usefulness for airline 

reservations, auction websites, and any system where the clock is not permitted to fall 

behind by more than a minute each month (Mills 2006). However, it is also a standard 

used by most personal computers, where it provides a very precise update to an 

imperfect internal clock. This time protocol has supplemented time’s actual basis, for 

computers of all kinds, it is no longer just precise mechanisms running in place; a 

careful synchronization made every few days corrects the inevitable errancy of the 

counting mechanism. Here, synchronization reinforces the clock’s invariant interval, 

rather than replacing it.  

At a conceptual level, those practices of time that make a linear measurement 

of time found a metaphysical correlate in the idea of time as a dimension of space. 

Though the division of space into three dimensions dates back to the Greeks, the 

suggestion that time might constitute a fourth one arises only in the late eighteenth 

century with the work of Joseph Lagrange. Lagrange argued that, within the 

mathematics of mechanics (the set of physical laws describing the motion of bodies), 

time was a fourth dimension perpendicular to the three of space. In a way, this 

association can seem quite obvious to the student of mechanics: in mechanics, both 

time and space are represented as real numbers and can be interchanged quite 

smoothly. Lagrange formalized what was probably a common intuition, but did not 

claim that this described time outside of the mathematics of classical mechanics. In 

mathematics, a number of explorations were made of higher dimensional and non-

Euclidean spaces but these concerned objects with volumes or surfaces in various 
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numbers of dimensions and did not address time at all. It was in the physics of the 

very late nineteenth century, particularly the work of Henri Poincare and Hermann 

Minkowski, that time came to be treated formally as a fourth dimension (Phillips n.d.). 

These scientists were, of course, only expanding on mechanics, but the idea became 

widespread and people began to eagerly describe time as a fourth dimension. Science 

fiction writers seized on the idea of time as a perpendicular dimension, eager to 

explore the narrative possibilities afforded by characters using science to circumvent 

normal rules of storytelling . H.G. Wells’ The Time Machine, published in 1895, made 

its claim explicit that duration is the fourth dimension. Since then, this assertion has 

been repeated endlessly in science fiction. Today we imagine that what the clock 

measures is our movement through a dimension called time. The movement of the sun, 

Earth, and gears of a clock are all expressions of this uniform movement along an 

invisible dimension. 

In these histories of time’s formation, we find that modern time is not one 

particular thing, did not follow from the interests of any one group, and was never put 

to use equally or universally. At all points, other kinds of time operated. None of these 

large-scale changes have fundamentally altered religious lunar calendars or the 

usefulness of an hourglass. What has happened is that a few kinds of time have been 

specially modified to reinforce each other. Many practices found a usefulness for the 

clock, created new practices of time dependent on the clock and nested within a time 

given by the calendar, gave the clock authority, and ran into some problems that were 

fixed with standards.  
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It’s hard to know why, really and exactly, each of these changes happened. The 

recorded arguments for standardization focus on tiny gains in efficiency. In many 

cases, these don’t seem very convincing. At their strongest, arguments for efficiency 

symbolized modernization, a rejection of the conservative, an appeal for simplicity, 

and the importance of unification. The case of Prussia is most clear. A respected Field 

Marshall endorsed the efficiency of the new time standard, making specific reference 

to its importance in mobilization for war and claiming that unification of time should 

follow from national unification. Ultimately it was not even his argument that was 

persuasive; it was his death. By adopting GMT, politicians paid their respects. 

Symbolic reasons carried the day. 

In some ways, the standardization of times resembles the adoption of the 

metric system. The metric system took a century to find acceptance, starting with the 

French Revolution and becoming standard in Europe and Latin America by the late 

nineteenth century (Hallock and Wade 1906, 105–108). The reason for adopting a 

uniform system of weights and measures was clear enough: without one, cheating and 

mismeasurement in commercial transactions would remain common, generally at the 

expense of the more trusting party (81). The metric system, more than any other 

proposed standard, had the weight of years of scientific use behind it. A series of 

international conventions endorsed it as the best standard system, particularly for its 

decimal division (41-79). Metric made for simpler judging at international exhibitions 

of science and technology whereas local measurement systems made it hard to 
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compare different accomplishments. An advocacy organization eventually formed that 

agitated for policy changes endorsing the metric system (Cox 1958).  

Metric had advocacy, scientific legitimacy, and a compelling commercial 

justification. But it also had clear disadvantages. Important barriers to adoption 

included the instability of regimes in European government in the nineteenth century 

(Hallock and Wade 1906, 81), lack of follow-through by governments in the form of 

secondary standards and offices maintaining standards (64), resistance from 

uneducated populations and their governments (94), and the substantial cost of 

retooling instruments and measuring devices for the new units of measurement (96-

97).  

Compared to metric, changing the time was relatively easy. Adopting the 

metric system involved real obstacles, yet these were overcome for the sake of the 

system’s substantial benefits. Metrification had less precedent and happened in an 

international situation with considerably less stable governments than that of time 

standards. Governments and their people may have been more receptive to standard 

time after the successful adoption of metric and the means by which changes could be 

advocated and implemented were better developed as well. Changing the standard 

time of clocks seems to have been an altogether simpler affair. This possibility 

suggests that the reinforcing set of modern time now dominant is not held together by 

such powerful forces after all. 

In the proliferation of public clocks, institutional use of time, standardization 

of Meridian time, tweaking of the length of a second, and addition of synchronization 
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to control accuracy, the alliance of several times (and the ease with which they can be 

mutually translated) has grown strong. Contradictions and inconsistencies have been 

lessened, as much as possible, by advocates, government policy, and changes of 

practices on the ground. The length of an hour, authority of the clock, the time of 

noon, time of noon in other cities, the date across the world, length of a second, 

accuracy of clocks to the second, and definition of what time measures have all 

changed to establish a harmonious set of practices that we now would simply call 

time. Institutionalized practices of time have found a rather stable alliance and 

produced practices with a great deal of inertia. In the United States, the nine to five 

workday is nearly unshakable, though exceptions have become common. Through 

scientific work, the currency of the clock’s measurement has established it as a 

fundamental dimension of the universe. For projects working at the quick and precise 

scale of milliseconds or smaller, the alliance of practices allows work that it is hard to 

imagine doing another way. 

Yet, by extending a form of time through alliance, contributing forces may also 

strain it and make it vulnerable. Any contradiction between allies threaten the 

reification. If the needs of capitalism no longer depend on blocks of time that measure 

regularized activity, a schedule of hours loses economic importance. If physics rejects 

the dimensional model of time, something quantum theory presents as a serious 

possibility, clock time becomes a useful convention lacking metaphysical significance. 

If a growing part of the population ceases to accept the clock as efficient or 

authoritative, the set may lose its anchoring reification that time is what the clock 
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measures. These weaknesses have already begun to call for contemporary 

investigations of changing time practices. It is not just that many practices have been 

changing, this has happened throughout history. The contemporary situation is that 

time has accumulated into a fairly consistent thing, which was open to critique in the 

middle of the twentieth century and is now beginning to appear as many things nestled 

closely together. 

Time Continues to Change 

The shifting institutional agendas, political climate, economic arrangements, 

and local conditions that have given rise to the reinforcing set of dominant time 

practices have not settled. Although it is easy to speak of time-space compression, 

timeless time, and acceleration, no one narrative can fully account for all changing 

practices of time. In some ways, practices of time known simply as time have come 

unbundled, while in other ways they have become more powerful and efficient than 

ever. New technologies have their own kinds of time and the clock must fit into rather 

different practices. These technologies have afforded us different measures and means 

of living in time (Hassan 2007a). Mobile phones, fax machines, and email all provide 

different systems of access, presentness, sequence, event, scheduling, memory, and 

action that fracture the singular meaning of the clock (Hassan 2007b). Changes in the 

social context within which time is put to use have created openings for new practices 

of time to flourish. Flexible labor, outsourcing, time-shifting, regular long-distance 

communication, and automatic cooperation over great distances demonstrate the 

malleability of practices of time and call for changes in time. The most common 
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summary of the nature of these changes comes under the title of time-space 

compression. But is this summary apt? 

Originally developed by David Harvey, the time-space compression thesis 

claims that social life has accelerated for economic reasons. This idea combines two 

tendencies. The first pattern is the in-built tendency of capitalism to increase profit by 

accelerating the turnover of capital (delay between investment and return) and 

decreasing input time (Castree 2009). This has happened in many ways, from labor to 

distribution to fashion. Second, the experienced reality is that faster means of 

transportation decrease the number of hours separating two places while increasing the 

amount of places that can be reached in a certain number of hours (Schivelbusch 1986, 

35). Transportation and communication are the main examples of this change: the far 

away is close at hand, and this has increased the number of people, places, and things 

to which one has access. Things are being done faster than before and more is in reach 

than before. These changes are not just economic, for Harvey, because they drive 

social life as well (Harvey 1989, 203–204, 228, 254, 344). They express themselves in 

many specific situations: organizational changes following Fordism, the spinoff of 

corporate divisions, just-in-time delivery, improved communication technology and 

information flow, rationalization of distribution, electronic banking, credit cards, 

fashion in mass markets, the change in emphasis from products to services, 

disposability, learning to live with volatility, and the short average tenure of a CEO all 

contribute to the effect (284-287). 
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We are all enthusiastic to be validated in our feeling that life is too harried and 

stressful and this predisposition should give us pause. The history of slowness into the 

contemporary period remains unwritten. Urry’s concept of glacial time is one small 

attempt to turn attention to slower time (Urry 2000, 157–160). Histories of technology 

tend to follow the brilliance of invention and newness, ignoring the dull persistence of 

technologies and practices that have not changed (Edgerton 2006). It is of course less 

interesting to write the history of things that have not changed, but the bias this 

produces is that our world seems to be changing when what changes are only some 

things in it. Acceleration should not be regarded as a general condition, but as a 

phenomenon observable in some cases and not others. 

So long as we ask of time only whether it is getting faster or slower, we force 

discussion into the reductive terms of one time and ignore the opportunity for detailed 

analysis of other relations between times. The foundational evidence of experienced 

acceleration comes from accounts of the elite riding the European rail system, as in 

The Railway Journey (Schivelbusch 1986). Though the transformations they noticed 

were real, elites were more sensitive than most of the population to these changes. 

Their interpretation framed the issue in terms of progress: things are faster than they 

were and will become faster yet (Stein 2001, 119). Narratives of progress, self-

congratulatory for the elite, omit the persistence of other practices and anticipate a 

structure of directed change, sometimes with a heavy hand.  

Different practices of time proceed in various ways. The vision of accelerated 

blocks of activity is how the dominant set of times sees the world and how it often 



90 
 

 

treats it. Measurement is a key symbolic intermediary in dominant time practices, and, 

in practice, tends to be used as a parameter to be optimized. John Tomlinson observes 

that the world has opted for speed over slowness despite cultural critique because, in 

each case, speed seems more rational and practical (Tomlinson 2007, 39). This follows 

from the general usefulness of the clock as a means to define and increase efficiency. 

But this is still only a perspective and not a finished project of domination. 

Acceleration is not the zeitgeist or the essential story of the modern world.  

Responses to acceleration (and exceptions from it) are as much a part of the 

world as acceleration itself. Watching TiVo is quite relaxed compared to the usually 

strict playback cycle; chat and text messages are slower than face to face or telephone 

conversations; the production of information technology happens in companies that 

emphasize temporal autonomy and non-quantifiable time (O’Carroll 2008), we do not 

sleep less now than in the eighteenth century (Ekirch 2005); a growing number now 

travel by bicycle and enjoy foods that are not prepared quickly; new movies extend 

old stories one episode at a time; high rates of literacy have encouraged a radical 

growth in the number taking the time to become authors (Pelli and Bigelow 2009). 

The point is not to show that the world is slowing, rather than speeding up; the point is 

that it is more interesting to discuss the details than to live in fear of a very broad 

generalization. If speed is inevitable and stressful, if it sacrifices reflection and 

creativity, we are left mournful and completely unprepared for the varied forms that 

time takes today.  
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But speed can have different meanings and different effects across practices of 

time. Word processors let one write faster because everything can always be changed 

later. This encourages experimentation, self awareness, and play. The perspective of 

scheduled blocks of activities does show the changes that it has been used to make. 

Other perspectives might summarize our situation differently. Has it been useful, for 

every time in every relation of usefulness, to increase speed as measured by the clock 

and calendar? Is there even just one way to make this measurement?  

It is a totalizing claim that the world has gotten faster or time is busier now 

than before. Many things remain slow, despite the powerful translations by which 

some practices have reduced others to measures of speed. Still, these translations do 

not encompass or dominate the world, are not made uniformly, and may encourage 

transformations of very different kinds. Time are social practices, real both in their 

basis and consequences, that take many varied forms between different cities and 

farms, arise from machines or nothing but habit, change gradually or quite quickly, 

and may at some point fade from view. 

Conclusion: Dominant Times and Undo 

Times have come and gone. When a technology fits into a practice of time and 

this practice fits into a usefulness, a time can become very powerful. When such a 

time relates to other times constructively, they can be mutually supportive, often at the 

expense of others. The legacy of such power remains in the authority with which the 

clock provides an idiom that interprets all other times. Those practices of city 

governance, market organization, domestic industriousness, workplace discipline, 
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railroad scheduling, colonial shipping, scientific and computer work at the millisecond 

level, and network communication that put time to use in powerful ways made the 

times they supported powerful. They did this by starting with a familiar model, such as 

the solar day, putting it to use in a new way, and eventually getting the new practice 

accepted as a standard time. It is a consequence of these practices, and the 

commonality between them, that, when we think of the clock, we take for granted that 

it is set correctly, geared reliably, displayed publicly, referred to regularly, and used to 

measure, schedule, and plan human activities. 

This dominant set of practices of time is not entirely coherent, but its 

inefficiencies have not yet brought it to a stop. There are many persistent incongruities 

between times: the allocation of paid time off, alignment of working hours with our 

sleep rhythms, measurement by advertisers of how many people saw a TV ad that they 

may have skipped over, and sequencing of courses for students are highly imperfect. 

But these differences do not splinter society or ruin the Durkheimian collective 

rhythm. The ecosystem of times does not work because it is strictly organized; it lives 

on by being loose, allowing movement, and recovering from failure. It “operates by 

delays and omissions, fuzzy relationships and vague orientations, accelerations and 

flexibilities and it can avoid breakdowns only because it is not tightly but loosely 

coupled” (Giesen 2004). This looseness provides exceptions, wiggle room, and 

opportunities. 

In the jumble of times, many specific situations can be understood in terms of a 

more basic relationship of translation or influence. Times organize temporality hand 
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over hand, often acting through the same objects or making different uses of the same 

temporal realities. Watching Project Runway, many times happen at once. In 

translation, times represent functions of temporality that are also already part of 

another time. Translation entails many more specific kinds of relation: most times 

happen not to translate one another at all (towns far from the railroad ignored railroad 

time), many actively fail to understand another (the factory disregards Saint Monday), 

some claim a universal significance and routinely ignore others (the dimensional 

model of time in mechanics has done quite well), and most refer to some other time as 

a model. Those times that are referred to most often are not more fundamental than 

other times, but they do set the standard for what counts as a time. They carry greater 

legitimacy, are more familiar, and encourage us to use a temporal vocabulary when 

describing them. Ironically, their value as a reference has generally come at the cost of 

their power as a practice. The solar day has become less important than the clock’s 

representation of the solar day. The calendar has similarly gained power over the 

seasons and astronomical year. Practices, more than their referents, organize temporal 

influence. Times do not only interact by representing temporality, they also touch each 

other through the medium of their enactment: all times act on the same world. One 

time can bring another into its rhythm (the train and the shift schedule), regenerate the 

powers of those actors involved in another time (post-Taylorist workplaces for 

workers), or make the requirements of another time inaccessible (Saint Monday was 

forgotten). 
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Thus far, my entire argument has amounted to a social theory of time. It 

describes how the functions of temporality become caught up in a regular organization 

that is embodied in a practice. These practices form in contact with other times and 

relate to them in specific ways that are sometimes well summarized as translation and 

influence. Some of these times have formed a dominant set at the expense of others. 

We can hardly imagine, let alone accept, the time of care, the time of birthing and the 

time systems of other cultures as times. The authoritative translation overpowers these 

other times, to the point that we hesitate to recognize these others as times at all. And 

yet, despite the force of these practices, other times do not die off. In many cases, 

different times, though they have been poorly understood, have maintained themselves 

and found a usefulness within other practices of time where they are flourishing.  

In a world rapidly shifting its diverse social infrastructures into relatively 

uniform computerized mechanisms, new practices are organizing temporality in 

powerful ways. We who live with these times know that something is different, though 

enthusiasm and fear have drowned out critical reflection. Being sensitive to the 

operations of temporality, it is clear that something is amiss when forward and 

backward are equal options, when a process can start or stop at any moment, or when 

the pace of events is not beholden to ritual but to the individual’s own present. 

However, these practices do not resemble the clock, the calendar, or the second. They 

are not useful for measuring and increasing efficiency. Their widespread use has not 

required a redefinition of any aspect of the dominant set of times. Though they refer to 

others times, such as the clock, they do not represent those times naturalistically; these 
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times are artificial variations on older times and enact this unapologetically. These 

times emerge from the technical, itself a social product, and join historical forces to 

create enacted practices. 

Though theory gives us instincts with which to understand actual cases, it is 

empirical matter that puts it in conversation with reality, and this evidence is always 

incomplete, misleading, and, in some ways, an exception rather than a representative. 

To pursue further the question of interactive times requires extending the theoretical 

into the realm of the empirical. How have new times formed, become common, related 

to other times, and had an impact? 

Thus we move from general ideas of time and society to the lowly and oft-

ignored undo command. The command is a conventional feature of software, and not a 

time just by itself. However, the technology joined a practice of time that found many 

uses and so became practiced widely. Its model is not the clock but the sequence of 

actions that a person using a computer has just inputted. In reference to this model 

time, undoing allows temporality to reverse the flow of local events, going backward 

to go forward and moving slowly to move quickly. In a world where the clock’s 

authoritative translation of other practices into terms of efficiency dominated, undoing 

saved time for some by making a gentler time for many. It did this by establishing a 

new practice of time whose locus of control was not in the sun, the international 

standards defining when now is, or even in the clockwork mechanisms driving a 

practice; the time of undoing depends on local agents each making their own decisions 

about when to go forward and when to go back, how to use this power of reversal, and 
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how to go about the whole thing while also living within a number of other more 

powerful times.  

Chapter 2 and 3, in part, are reprints of material as it appears in “Time as a 

Social Practice,” Time and Society. Forthcoming. The dissertation author was the 

primary investigator and author of this paper. 
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IV. The Historical Undo Command 

An undo command is a procedure in a piece of software that restores the state 

of a document to what it was just before the user’s last action. Delete a sentence, then 

undo the deletion and the sentence is back. While the command has had many forms, 

today it negates almost any action whose effects can be undone. If you send an email 

or print a document, you can’t undo the action because commands have already been 

passed on to other systems that cannot undo their actions: the printer puts ink on paper 

and the email server communicates with another server. The printer cannot remove the 

ink and return the page to its original tray and the email server cannot make other 

servers return or delete a message.1 There are many ways to design the command at a 

technical level, but they all produce the same function: the user can take one tiny step 

back. 

Sometimes it feels as if, by undoing, one is going back in time. It seems that, 

with an undo command at the ready, one is living in a time where reversal is always 

possible. This little time machine is my insurance policy, my protector, my super-

power. Ctrl-Z. 

This chapter shows that the historical emergence of an undo command was a 

response to how people used computers, what they could do with them, and what 

others wanted them to do with them. It established a general practice of time that was 

                                                 
1 Can email be unsent? Yes, if all sender and receiver accounts are on the same 
system. When this is available, the feature is rarely used (Cabitza and Loregian 2008). 
Some email providers delete undelivered emails if they are known to be spam, but 
deleting delivered messages of any kind usually scares users. 
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repeated in the millions of cases where a person typed and clicked buttons, while 

looking at a screen, in order to get something done on a computer. When the user used 

software, an undo command made temporality function in an uncommon way: actions 

could be undone. This function was part of a new problematic wherein user input 

produced actions that changed the state of a frequently updated document. An undo 

command would not have made sense for a 1950s mainframe, would not have been 

possible for another technology (such as an engine or phonograph), and did not come 

into existence in payroll or wind tunnel simulations. Undo empowered knowledge 

workers at workstations to relax, experiment, explore, change their plans, and improve 

their products. We live in the aftermath of these transformations. 

Understanding the historical context of the emergence of the undo command is 

important because inventions express and change the situations that create them. It is 

exciting to imagine that an invention comes to life, like Frankenstein’s monster, and 

runs off changing the world forever. However, technology is slower and designers 

more conventional than that. As Deleuze puts it, technology is “social before it is 

technical;” “there is a human technology which exists before a material technology” 

(Deleuze 1999, 34). One does not design user-friendly interfaces without their context 

and likely use in mind. Innovators work with existing conventions to produce new 

technologies, which, when successful, will become conventions in turn. Buzz about 

the future of technology tends to guide invention, and most scientists expect that if 

they do not finish an invention quickly enough, someone will beat them to it (Merton 

1961). The myth of inevitability is strong even though often incorrect (Moran 2013, 
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27–28, 214–215) Those making new technologies chase images of the future that they 

regard as inevitable and, in the process, make things that express their situation.  

If the right people find a way to make a technology useful, it can enter into 

regular use and, if things work out, a technology may become a common convention, 

in turn expressing and changing the situation where it arose. Gunpowder and guns 

were well understood technologies in many places for almost a thousand years before 

an army gave every soldier a gun; the distance from marginal existence to widespread 

standardization can be very large.2 The prison has existed in many societies, but took 

on greater significance and utility in disciplinary ones, becoming, more recently, a 

response to the problems of suburban anxiety and reelection.  

When a technology does become a standard, as undo did, people wonder who 

invented it first. This question brings various tinkerers’ projects to light and 

retrospectively groups them together as variations on the same idea. Now that undoing 

exists, we see creativity’s redundancy. We are noticing a pattern. Historical 

perspective here does not just reveal the pastness of the past or tell the history of the 

present; it shows the old functions that sustain the inertia of the present and the 

designs that structure present potentials for change.3 The situation that made undo 

                                                 
2 What is the distance between gunpowder and regiments of rifleman? To equip an 
army with guns requires, at minimum, a constant supply of metal, highly developed 
and reasonably common skill at smithing, rifling to reduce friendly fire, training for all 
soldiers and skill on their part, a supply line for ammunition, ways to prevent theft of 
the weapons, a large scale production operation, and a General willing to experiment. 
3 A history of the present identifies the historically specific problematic of a practice 
and draws connections between current and past forms of that practice in order to 
extract from the present an alternative that allows a departure from that present (Roth 
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popular is not so different from our own and that is why we relate unrelated toy 

projects together as the history of the command. 

While undo developed in specific conditions, it is not reducible to the social 

forces animating it. Both social and technological actors had some determining force. 

The undo command came to life, but from its first implementation, was a material 

actor. It acted with, and against, those who made it, and their best laid plans. In some 

cases, a sophisticated undo command failed. In others, it was of special use to expert 

users or was an incentive to consumers on the fence about which of two products was 

worth their money. To say that it was material is to say its reality exceeded all 

representations that could be made of it. It did things that could not be foreseen and 

were not commanded by its own powers. 

To understand the command as a material actor suggests some of its 

unpredictable development and application. But the command also had a systematic 

effect that can be understood best in the idiom of time. The command formed a social 

practice of time by linking together a number of temporal terms into a practice that, 

while initially unique, eventually became repeated across almost all software being 

made. It linked together the inevitability of user error and the stillness of the 

computer’s idle cycles into a sequence of actions stored in temporary memory 

accessible and ready to be undone. In an editing program, the future of a document 

exists in the potentials established by the set of commands that the system recognizes; 

                                                                                                                                             
1981, 43). In this vein, what matters is that undoing made time a generic approach to 
error correction, when others might have prevailed. 
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undoing was that command which would advance the state by taking it back a step. 

This changed the meaning of that future of possible commands, making them all 

interesting experiments, rather than lasting commitments. Although different undo 

commands work in different ways, they all reverse actions by reversing their effects. 

No undo can change the fact that, at some point, a certain command was entered. 

What they can do is change the state of a document and reverse one flow of actions 

within a very particular context.  

This time occurs in relation to others. Undoing happens on the clock or after 

hours, on one day of the week or another, and in conversation with those other times 

of anxiety, belonging, craft, and so on. Historically, it was in relation to these other 

times that the command became a practice that we might today recognize as a time. 

We refer to this interactive time implicitly when thinking of how things go when one 

works on a computer and how temporality is organized in those spaces of word 

processors and video editors, where the rules of other times are in abeyance. The 

interactive computer, running real time programs by idling away extra cycles and only 

making updates upon instruction from the user, took on (in historically specific ways) 

an interactive time. Undo was only one technology providing a time subject to the 

manipulation of a proximate human actor known as the user. 

The case of undo is an important form of interactive time for a few reasons. 

First, the undo function amounts to a radical denial of common sense ideas about time. 

In folk wisdom, we can slow down ageing and decay or record ephemera in fixed 

forms, but we cannot take back death, the expenditure of energy, or a nasty remark 
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(Adam 1995, 18–19). With undoing, this rule does not apply. The user can take back a 

poor turn of phrase, a premature ending, or an unlikely experiment. One might expect 

this to cause problems. The weight of tradition and dominance of the reinforcing set of 

time practices has a clear exception. Yet it does not make so much as a ripple, so long 

as undo is not considered as a time but as only a computer command. Second, undo is 

one of the earliest forms of interactive time. Before undo, there had been interactive 

computing, but very few systems offered users a variety of commands that would 

instantly alter documents in potentially harmful ways. Implemented first in word 

processing and programming interfaces, undo preceded media playback and other 

work and interactive consumer applications by a few years. By leading the way, undo 

gave people a sense of what time on computers could be like, and how new programs 

ought to work. It worked as a prototype for other times, for their architects and their 

users. Third, the history of the undo command touches on most of the central moments 

in the rise of interactive time practices generally, such as real time computing, 

knowledge workers on the computer, the graphical user interface, the study of human-

computer interaction, and the development of user-friendly software. Despite the 

breakneck pace of change in information technology, many practices around 

computers can still be linked quite directly to these same moments. 

This chapter explores the historical roots of undoing as a command on 

software systems developed first in 1969. The command emerged on real time 

interactive computers as a way to empower knowledge workers by automation. 

Although computing had before not been very interactive, many institutions found 
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ways to put computers to work as part of the daily operations of their workers. In these 

interactive systems, the operator’s actions were usually defined quite specifically, and 

therefore so was error correction. A program for inputting bank transactions provided 

operators with a way to void a transaction; a spreadsheet allowed cells and formulas to 

be modified more than once. In a few academic projects, the role of the user of an 

interactive system became broad enough that many kinds of mistakes could be made, 

and they were not all as easy to correct as they were to make. Undo was invented at 

least three separate times within a two year period before it caught on with anyone. It 

caught on at the right place at the right time (Xerox PARC in the 1970s), and came to 

Apple’s operating system and to Microsoft Word. The command slowly replaced a 

variety of other related commands that counteracted the effects of specific actions.  

The gendered nature of these transformations is worth noting. Undo was one 

example of office automation displacing female labor and extending the power of 

male workers. In many cases, office automation proletarianized clerical work by 

lowering working conditions, reducing the role of employees’ judgment, and closing  

chances at upward mobility (Glenn and Feldberg 1977). At the same time, economic 

growth created skilled jobs that were often occupied by women, though ultimately at 

lower pay and in worse positions than men for the same types of work (P. Kraft 1987; 

P. N. Edwards 1990). Into the 1980s, those using interactive computers in creative 

ways would mostly be workers in science and engineering. This group was then—and 

still is now—composed primarily of men (Mather 2007). Software that would 

augment the powers of the individual was therefore designed by and for men and 
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automated away much work previously done by women for pay. This does not 

represent a willful attack on women so much as a series of enthusiastic intensifications 

of the powers of smart men, first by the hiring of women as office workers to augment 

the powers of male thinkers and then, later, by replacing these women with computers. 

By the late 1960s, the power of men to change the world through innovation (rather 

than virtuous action or physical strength) was well established (Oldenziel 1999). In 

undo’s genesis and rise to banality, this enthusiasm was always palpable. By the end 

of its expansion, however, the undo command became part of the work done in many 

occupations, including feminized jobs such as that of secretary and teacher. While 

women workers were initially a more or less deliberate target for those streamlining 

and intensifying knowledge work, the long term consequences for women are less 

clear. Like undo itself, software became a generic approach to working with ideas. 

Undo became the standard way to negate the effects of an action and restore a 

previous state. It problematized the time of user action in terms of series and reversal. 

This new problematic gained traction during the 1980s thanks to prevailing dynamics 

in the commercial software market that selected for it. It was a nifty new feature, a 

way to make programs easier to use, allowed designers to make more complex 

programs, and became an expectation in just a few years. Due to its inclusion in 

Apple’s user interface guidelines and the majority of word processors (and other 

applications), IBM and Microsoft added the command to their interface standards 

specifications. Dominant throughout software for personal computers, the function has 

been surprisingly uncommon on web and mobile platforms. Yet its legacy remains in 
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the expectation that anything you do on the computer, you should be able to undo. We 

intuit now, whether we would say it or not, that the time that passes in the computer’s 

operations should be, to the extent possible, subject to the control of the user. How did 

interactive time become so normal? 

Computing into the 1960s 

The scene where undo first appeared represented a radical (though not wholly 

original) departure from what computing had meant before. Starting in the 1940s, 

computers were high tech gizmos that could take on a surprising range of jobs, usually 

replacing human labor. They coordinated large amounts of data: to give a computer a 

new job required changing only what the data would represent, and programming a 

new set of operations to be performed on it. This approach could work whether the 

data was profiles of colleges for prospective students, noises that engines made when 

in need of repair, names and demographic details for mailing lists, or the motion of 

stars and planets. Decades later it would become hard to imagine anything could not 

be rendered as data.  However, the extraction from human labor of something that 

would now be called electronic data processing still depended on human labor; 

computers displaced the job of thousands (mostly women) to a few engineers (mostly 

men) clustered around mainframes running batch operations, usually on punch cards 

and magnetic tape (Haigh 2001). 

Computing machines distinguished themselves from the many kinds of high 

technology equipment of the mid-twentieth century by the variety of contributions 

they could make to different institutions that could afford them. The 1940s and 1950s 
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used computers for basic research in science, weapons simulations, bomber navigation 

and targeting, weather forecasting, wind tunnel experiments, control of traffic lights 

and oil refineries, and payroll.  

In most cases, computers explicitly replaced human labor. In a sense, this was 

all there was to replace. A good deal of this labor was female: women pushing 

numbers through formulas at desks, women programming mainframes (Light 1999), 

women doing clerical work (Morgall and Vedel 1985), and women doing bookkeeping 

at banks (Fisher and McKenney 1993). The 1957 film The Desk Set dramatized these 

fears: an aloof systems man designs a computer to work the reference library for a 

large company; the librarians (all women) fear they will lose their jobs, but in the end 

the machine complements their work and everyone is happy. Although a dominant 

image into the 1960s was of the computer as a brain (“Science: The Thinking 

Machine” 1950; Friedman 2005, 23,66), the computer had no mind. Its faculties really 

amounted only to brute force and simple tricks. With these powers, a computer (often 

with a feminine name) could do in a few days what a human with a calculator could do 

in a few years. It was the cadre of engineers surrounding the computer that directed 

this “intelligence” and made it useful. Together, engineers and computers could take 

on an increasing number of jobs.  

Although much has been made of the military’s role in developing computers, 

major funders encouraged computers’ use for large-scale data-intensive applications of 

many kinds. Nuclear weapons testing, targeting, flight controls, rocket science, and 

early-warning air defense were important early applications. However, most 
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computers, even when developed under government contracts, made little direct 

contribution to violence or its intensification (Ceruzzi 2003, 7–8). UNIVAC, one of 

the most important early computers, was first designed for the 1950 U.S. Census; 

when it was completed too late to be used there, the Air Force used it for logistics (e.g. 

the distribution of goods and scheduling of transportation) and the US Atomic Energy 

Commission ran simulations of the effects of nuclear explosions, rather than 

detonating real devices and creating fallout.4 General Electric’s 1954 UNIVAC 

purchase (one of the first computers purchased by a corporation) had the computer 

working on payroll, scheduling, inventory control, billing, and accounting; the 

computer soon took on other roles in market forecasts and production process design 

(Ceruzzi 2003, 32–33) 

In the public imagination, computers were brains, and the risk was that they 

would turn evil, as did the NOVAC (a takeoff on UNIVAC) in the 1954 science 

fiction film Gog. The reality was much less exciting. Computers were not crazed 

dictators; they were finicky, data-obsessed whiz kids. They were controlling an 

increased range of processes (door locks, radio communications, thermostats, and 

automatic controls of all kinds). But these functions did not amount to extensions of a 

single intelligent master. The real danger of computers was a far cry from the 

simplistic personification of computers as omnipotent masterminds: computers have 

prioritized data collection for processing and encouraged management practices that 

                                                 
4 Radioactive fallout was just being discovered at this time. Rendering explosions as 
data produced less pollution than real tests, which is quite a different benefit than 
automation as a savings on labor costs. 
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regard data representations as reality. They have had a substantial but difficult-to-

recognize influence on every operation they became a part of, and they have become 

part of almost everything. What they have not done is take over the world with robots. 

However, in 1954 it was far from clear what dangers would be real and which would 

play out only on the silver screen. Certainly computers were strange and, even as they 

began to influence everyday life, they remained hidden in basements and backrooms, 

out of site. 

Throughout the 1960s, businesses and governments of all kinds put computers 

to work in pivotal roles (Ceruzzi 2003, 110). DMVs, police departments, the Social 

Security Administration, US Post Office, and IRS all switched to computer systems to 

hold, receive, and check records as well as to direct their current activity. The police 

could radio in and run a license plate number, the Post Office could sort mail with 

typewritten addresses automatically, and the IRS adopted a system that would help 

process the records of the many new tax payers produced by tax reforms of World 

War II (Ceruzzi 2003, 119)—partly to intimidate people into honest reporting (“The 

U.S. Taxpayer: Due, Blue, and 97% Pure” 1962). Government economists and policy 

analysts, churches, rail yards, realtors, courthouses, libraries, horse breeders, and 

makers of prepared foods found uses for computers by the end of the decade.  

Many of these systems responded to dire circumstances. In banking, the 

amount of data to process was exploding. From 1943 to 1952, the number of checks 

written each year doubled from four billion to eight billion; analysts predicted that by 

1955, each year would see one billion more checks written than the previous year. The 
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stress of handling this data already forced banks to close early and hire more personnel 

(mostly young women) to a job with a 100% attrition rate. The banks needed help. 

Bank of America, a large bank expanding apace with California’s growing population, 

contracted with Stanford Research Institute and General Electric to devise a system to 

automate check processing (Fisher and McKenney 1993). In office work, consultants 

warned of a similar problem. US businesses were adding 4000 pages of documents per 

employee each year, on average. A 1967 IBM promotional video directed by Jim 

Henson called this the “paperwork explosion” (Henson 1967). Heightened aspirations 

of often college-educated workers caused a major problem with attrition, and therefore 

training. At the same time, the cost of electronics and communications lines had been 

falling consistently. Automating office work, especially supervisory and management 

work, would also improve employee morale and result in benefits passed down to 

customers (Fronk 1980). Computers were called on to allow existing businesses to 

grow their operations to a scale that they were not otherwise prepared to handle. 
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Figure 4.1 A 1965 cover from Time Magazine shows the computer as brain, keeping the 
madness of the office under control for men in suits. 

Computers, during this period, were replacements for human power, rather 

than extensions of it. Any task had to be fed into a computer and then executed, with 

an output only received in the case of an error or a final product. This mode of use, 

called batch processing, centered around expert users; those who had been downsized 

would never have come into contact with the computer that now did their jobs. It was 

not just a gripe of the unemployed that automation took jobs, it was the point of 

automation. A cover story in Time magazine on “the Cybernated Generation” 
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consoled readers that every major technological advance had caused temporary 

unemployment, but in the long run, change was always for the better. In theory, new 

jobs would be created in other sectors, often providing services for a population whose 

basic needs were met by automated production and distribution (Bolz 1969). Yet, it 

seemed clear that those who had planned to make a living at a job that was now done 

by a computer were simply out of luck (“Technology: The Cybernated Generation” 

1965). What computers would do was create an automated environment, for the 

benefit of consumers and the corporations that thrived on them. Humans would be 

displaced, rather than altered. 

There were a few cases, however, where batch processing was clearly 

insufficient. In these places real time computing allowed computers into time-sensitive 

roles, generally replacing operators. The first such case was Semi-Automatic Ground 

Environment (SAGE), the military’s early warning system. The idea was simple: 

Soviet bombers could reach American targets very quickly and only a machine-

coordinated response could detect them and deploy fighters fast enough. SAGE ran on 

the largest physical computer ever built and was obsolete by the time it was finished in 

1959. However, the project educated hundreds who took their experiences with SAGE 

out to the computer industry (Campbell-Kelly 2003, 36–41). A second case of real 

time computing was airline reservations. Not only must each ticket reserve a seat on 

the flight, but agents across the country needed up-to-date information on prices and 

availability. Sabre, for American Airlines, was the first announced project, but by 

1960 four others were completed for smaller airlines (“A Survey of Airline 
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Reservation Systems” 1962). A third case of real time computing was to track stock 

prices. A number of systems, starting in 1960, used computers to improve on ticker 

tape, giving instant access to opening, high, low, and current prices (Phister 1989). 

In the transition from batch processing to real time computing, computers 

switched from a role in one time practice to another. In batch processing, computers 

saved on billable man-hours. Running the computer was expensive, but the hours it 

ran were worth the money if they replaced hours that many humans would have 

worked instead. The computer was invisible in the world of day to day operations and 

its principal function was data processing. It was important to those few engineers 

clustered around it and to those above who saw its contribution to total performance 

over measured units of duration. With real time computing, however, the computer 

became part of the active operations of employees. This embedded it in practices of 

time more familiar to employees. Reliability, performance, and human interfaces 

became important because traders needed updates on the double, travel agents needed 

tickets, and military radar stations needed to know what other stations were reporting. 

With real time, what the computer did in terms of man hours depended on what it 

could do at the fingertips of actual employees. Real time interactive computing had to 

be fast enough for humans and efficient enough to cover its own hourly rate. It would 

soon be discovered that it would be able to accomplish much more if, rather than 

going fast or sparing little time, it could match the varying pace of its human user, 

whether operator or customer. 
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Real time computing had the potential to displace human labor further, but it 

also opened the door to a very new perspective on computers. Real time computing 

turned archives (that were analyzed retrospectively) into available resources for day-

to-day operations. Information could be combined dynamically, passed along to agents 

in other cities, and modified immediately. Memory became available instantly, 

combinable, and usable for planning future operations and executing corrections. 

What this meant for organizations that might adopt real time systems was the potential 

to replace human operators with more efficient, errorless, strictly regulated, and easily 

monitored systems (Head 1963).  

There was, however, still a human laborer necessary for even a real time 

system that did away with operators as best it could. The elimination of those jobs, and 

of some responsibilities for others, required the addition of an “army of systems 

analysts, programmers, and software specialists” (Ceruzzi 2003, 9). This new laborer 

(usually male) worked very near a computer that responded in real time, received 

input from a lightpen or keyboard, and could be used for work outside of its job 

description. Among those “sitting at a computer four or five hours a day” was J.C.R. 

Licklider, the psychologist who became director of the major government funding 

source for computer research (Licklider 1988, 30). Licklider had found, studying his 

own habits, that 85% of the time he would have said he spent thinking was instead 

spent getting himself in the position to do the actual thinking – plotting graphs, 

hunting down information, interchanging data formats, and teaching others to do these 

same things (Licklider 1960). The computer, he reasoned, could someday boost 
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productivity of those in his position by doing all the busy work and letting its user 

focus on contemplating deeply. Licklider found intellectual camaraderie in 

Cambridge, at Harvard and then MIT, developing an enthusiasm for interactive 

computing and memory sharing (Licklider 1988, 17,25). He became convinced that 

artificial intelligence systems would someday cut out human users altogether, 

automating operators and perhaps even taking over maintenance and programming 

(30), but until then, some body would remain hunched over the keyboard. Immediate 

research should endeavor to augment the computer’s human symbiote. 

In 1962, the Advanced Research Project Agency (ARPA) hired Licklider to 

run the Information Processing Techniques Office (IPTO). President Eisenhower 

established ARPA in February of 1958, six months after the Soviet Union launched 

Sputnik. By 1962, the agency’s primary focus was on ballistic missile defense and 

nuclear test detection, though it sustained many other projects at this time, including 

fuel cell research (Ruina 1989). Although Licklider was hired for work on behavioral 

sciences, he ended up making more lasting contributions with a budget of about 12 

million dollars as director of IPTO.5 Because IPTO was a tiny part of ARPA and word 

around the Pentagon was that Licklider would talk your ear off, IPTO received little 

                                                 
5 Why did Licklider succeed in making computer science important and not behavior 
science? Work in behavioral sciences was more difficult politically because projects 
were easier to ridicule; if a congressperson could make a bit of research sound silly, it 
would make trouble for ARPA (Ruina 1989, 2–3). Because computing research was 
harder to understand and make jokes about, it was a safer investment. Further, money 
invested in computing produced a network effect, with resources and conventions 
shared quickly and widely. Behavioral science projects did not see an advantage in 
sharing space or resources, and thus they failed to build a community in the way those 
working on computers did (Licklider 1988, 26–27). 
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oversight—a case of benign neglect (Licklider 1988, 27, 42). Licklider directed for 

only two years, but during this time he set the agenda for the organization and 

encouraged (i.e. funded) work on interactive, real time computing, putting special 

emphasis on time-sharing as a means to that end. This had a lasting influence on 

computing history. His choice of Ivan Sutherland as a successor kept the vision of 

interactive computing alive through the 1960s, even as the actual deployment of 

computers in government and industry was still trying to replace humans with 

computers rather than join them (Kita 2003). 

Brown’s Hypertext Project 

If the 1960s had been the decade when computers were normalized into 

institutions as replacements for human labor, Brown University was no exception. 

Publications through the Association for Computing Machinery (the ACM is the 

world’s largest learned society for computing) from Brown up until 1969 addressed 

algorithms for division, numerical integration, precision calculations, error bounds for 

linear equations, and compact data structures for line drawings. In sociology, James 

Sakoda was exploring statistical applications of computers in sociology, such as 

family building and population dynamics (Potter and Sakoda 1966). In linguistics, a 

database of real life uses of the English language offered new computational 

approaches to the study of language, as it was spoken, rather than as it is structured 

grammatically (Kučera and Francis 1967). The campus mainframe primarily served 

scientists, mathematicians, and administrators who ran analyses of complex data sets, 



120 
 

or tested the limits of what was possible with a computer. Interactive computing was 

not on the agenda. 

In 1965, Brown’s Department of Applied Mathematics hired Andy van Dam to 

work on computer graphics. Having just completed his PhD building graphics on top 

of an associative memory system (a simulation of neural connections), van Dam 

worked on the enormous, and very expensive, IBM 2250 monitor. The usable display 

was twelve inches on a side and showed vector graphics.6 Van Dam got tenure in just 

three years. In 1967, he met up with an old friend from college and agreed to set up a 

side project at Brown making an editor for non-linear, associative texts. Using the 

2250 monitor, and working on Brown’s IBM System/360, the two began work on the 

Hypertext Editing System (HES). That friend was Ted Nelson (Andy van Dam and 

Simpson 2011). 

                                                 
6 Contemporary computers use a raster display made up of lots of tiny pixels, out of 
which lines and volumes can be approximated. A vector display instead makes images 
by drawing lines, which is one reason for the association of sans serif fonts and simple 
line drawings with computers. 
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Figure 4.2 IBM 2250 monitor, from a Sikorsky Aircraft advertisement in Communications of 
the ACM, Vol.11 No.11, November 1968. 

Ted Nelson coined the phrase “hypertext,” first publishing it two years before 

joining forces with Andy (T. H. Nelson 1965). The concept has since become 

associated with a range of meanings, from html to CD encyclopedias, but generally 

describes a system of interconnected texts and media that allow markup and 

navigation in a relatively free way. The concept has often been traced back to 

Vannevar Bush’s Memex. The Memex is a hypothetical system for building traces of 

connection between microfiche records as a way to automate the mental work of a 

researcher following leads for a project (Bush 1945). Bush was a senior government 

bureaucrat for the sciences, who may have been less an inspiration than a reference 

point helping Nelson explain his own ideas (T. Nelson 2010). Nelson describes his 



122 
 

vision of hypertext as a way to reproduce Russian author Leo Tolstoy’s editing system 

on a computer. Tolstoy, Nelson states, used to dictate a draft of his work to two 

daughters. He would save one version and “cut up the other copy and rearrange it, 

adding material and deleting, and eventually pasting the pieces and new notes into 

their new sequence” (34). Hypertext would hold all the bits of material together, 

allowing paths of connection be authored freely. Though hypertext can be seen as an 

idea passed along through an intellectual history, the links of influence are weaker 

than they appear.7 Hypertext might instead be understood as a name applied to a 

variety of systems that link together bits of text of media in theoretically unlimited 

configurations. 

At Brown, Nelson’s creative efforts to imagine hypertext served a different 

function. Andy van Dam, always preferring to do two things at once, was happy to 

experiment with the possibilities of literature, but he also needed a better tool for 

writing. His whole group was “constantly writing proposals and course materials and 

papers,” with nothing better than a card editor or line editor. Such text editors centered 

on blocks or lines of text, rather than sentences, pages, or paragraphs, and were hard to 

use to write the kinds of documents Andy wanted. The Hypertext Editing System, 

designed by Nelson, van Dam, Brown freshman Steven Carmody, and others was both 

an experiment in hypertext and a practical tool for word processing (Andy van Dam 

                                                 
7 Tim Berners-Lee, who designed the HTML (HyperText Markup Language) and 
HTTP (HyperText Transfer Protocol) specifications in the early 1990s for the web, 
was not directly aware of Ted Nelson’s work at the time even though Nelson coined 
the term hypertext (Berners-Lee 1999:5; personal communication, November 15, 
2011). 
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and Simpson 2011). 8 A working version of HES was finished in 1968, running on the 

/360 and displayed on the IBM 2250. The system aimed to  

provide the user with unrestricted "spatial" options, and not to bother 
him with arbitrary concerns that have no meaning in terms of the work 
being performed. The entities he would be concerned with would 
correspond to the content of conventional writing: words, sentences, 
paragraphs, sections, and also non-structured, arbitrary fragments of 
text to be rearranged and spliced into appropriate combinations. He 
would not encounter line numbers, page numbers or footnote numbers, 
all of which are extraneous artifacts of conventional writing 
"hardware", that is, paper. His activities, too, would correspond to the 
operations ordinarily performed upon text by writers and editors. He 
would be able to perform manipulations directly upon pieces of text: 
correcting, moving, linking and copying, etc. Such actions would 
correspond directly to the "scissors-and-paste" operations of 
rearranging manuscripts. In addition, the writer would be able to do 
various other things which are usually very costly in time and/or 
money, or downright impossible: file previous drafts, spin off 
alternative versions for separate tinkering, and communicate between 
separate versions, lifting or replacing sections as desired. (Carmody et 
al. 1969, 299–300). 

The conflicting priorities of paper-writing and creating a full hypertext system (with 

transclusion, two-way links, and transcopyright) became an interpersonal conflict as 

                                                 
8 Andy van Dam explained to me, “I built Brown Computer Science on the notion that 
even freshman, after they've had one rigorous course under their belt can make serious 
contributions and so you'll find all the early papers the dominant contributors are 
undergraduates. FRESS was largely designed by undergraduates, Bob Wallace was an 
undergraduate - on drugs! […] so the way I work with the kids I never did any of my 
own implementation because I'm not as fast as they are and I don't have the time, the 
luxury to do what they do, which is to sit down with their coke and their pizza and go 
for 8 hours or 10 hours or 14 hours of design and implementation and debugging 
marathons” (Andy van Dam and Simpson 2011). 
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well. Van Dam, busy on other projects, had little time or interest in pursuing Nelson’s 

truly radical design program.9 

In HES, real time interactive computing, made possible by late-night 

mainframe use and a display unit almost no one could afford (including most other 

researchers working on graphics), empowered knowledge workers by letting them do 

alone what before many did together. The pattern was not new: a group of 

programmers using a mainframe, working with text for programming and other kinds 

of writing, has almost always designed a word processing application to meet their 

needs (Haigh 2006, 13–15). HES allowed hypertext facilities which may have been 

useful, but it also allowed something more basic that was not to be popularized for 

another decade: full-screen video word-processing. In a historical moment where 

computers were tools used by large organizations to crunch through analyses of large 

data sets, HES let the uninitiated do things they had never done with text before. Van 

Dam recalls, “once you spent fifteen minutes with HES, you were hooked! Totally 

addictive, because of the rapidity with which you could author and edit, and then push 

a button and it will come off the line printer, I mean that was friggin magic.” At the 

time, most professionals producing documents (van Dam calls them knowledge 

workers) used a different intermediary: women. “You gave your work to your girl 

(always a girl) as in "my girl will call your girl to set up the luncheon date” – that was 

                                                 
9 Nelson’s main idea is that the computer is a media machine that can do anything we 
want it to do. It should be a system linking together everyone’s notes, videos, artwork, 
books, etc. into constellations that are themselves interconnected. Nelson has 
elaborated on this vision, and many other related systems, in a number of his 
publications, including the flip side of Computer Lib, a book called Dream Machines. 
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absolutely the mindset.” With HES, the radical new possibility was to cut out excess 

women from a knowledge workers work, “you don't want to give it to some third party 

that doesn't know what you're thinking, and you don't want to give them the finished 

work product in handwriting; you want to conceptualize, ideate at the computer and 

use it as your brainstorming tool” (Andy van Dam and Simpson 2011).  

Thomas Edison claimed that genius is one percent inspiration and ninety-nine 

percent perspiration, but a more common attitude (common to van Dam, Nelson, 

Licklider, and Henson’s “Paperwork Explosion” ad for IBM) was that the perspiration 

should be minimized, to make more room for inspiration. Henson’s video repeated the 

slogan like a mantra: “machines should work; people should think.” Peter Drucker, 

credited with the idea of a knowledge worker, makes this perspective clear in his 

definition of knowledge not as “facts (whatever this slippery metaphysical term might 

mean)” but “a new vision, a new pattern, a new attitude” (Drucker 1959, 26). The 

knowledge worker uses theories and concepts to process information and is improved 

by being changed by this information (Kidd 1994). The thinking was that, if 

computers could help downsize women from the office, they could also restrict their 

apparently unhelpful role in the production of serious thought (Losh 2009, 316–321).  

Having seen HES, and copied features freely10 from Doug Engelbart’s NLS (a 

related system whose 1967 demo sent shockwaves through computing), Andy van 

Dam began work on a follow-up system called File Retrieval and Editing SyStem 

                                                 
10 Until the mid-1980s, copyright was not the norm, most software was regarded as 
free, and copying features was simply the fastest way to make a better design 
(Campbell-Kelly 2003, 107). 
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(FRESS). All through its development, HES had been a side-project and a benign 

abuse of IBM’s display screen. Van Dam had focused his efforts on graphics research 

and gotten tenure for it. But with HES fully operational, van Dam could bring the side 

project to light. He showed his sponsor from IBM, who was impressed, and the group 

got meetings at Time-Life and the New York Times. Nelson demonstrated the system 

and reactions were very positive, though the idea of people using computers to write 

and layout the news sounded a bit like science fiction to the journalists. The system 

seemed like a part of the far off future that had arrived too early. Ultimately both 

companies began using computer systems for these purposes within the next decade. 

Those in van Dam’s group discussed starting a business around HES. Ultimately, 

negotiations broke down due to a lack of trust in their primary investor and 

disagreements about how the work of each member would be compensated. Nelson 

left Brown,11 and van Dam developed FRESS slowly with his undergraduates. The 

new system would allow collaborative work, have a more robust set of commands, and 

not depend on the IBM display. 

With less hurry to get the system finished, more confidence in the project, a 

larger user-base and more time during which features could slowly be added, FRESS, 

HES’s successor, was the first editor to include an undo command. The year was 

1969. The feature was one of many novelties; some new features were overkill and 

                                                 
11 Nelson’s experience at Brown remains unclear, is recalled differently by van Dam 
and himself, and is the subject of a chapter that he ultimately edited out of his recent 
autobiography.  
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almost never used, such as locking sections of a document, while others had always 

been planned, but had simply not made it into HES, such as bidirectional linking. 

An ability to undo was built into the system from the beginning. Van Dam 

explains the command as a logical extension of the backups and checkpoints common 

to computer culture. Since the 1950s, it had been common practice to make backups of 

projects and entire mainframe memories, because glitches and mistakes are inevitable. 

In developing a project, whenever things were going to be changed significantly, a 

backup would be made (called a checkpoint), to which the team could retreat if new 

developments made a mess of things. If this concept already existed at a larger scale, 

van Dam was driving for “the microscopic version of that, where, for the "Oh Shit!” 

moments, particularly when you delete something, you can get it back (and I have oh 

shit moments all the time)” (Andy van Dam and Simpson 2011). Regret, then, offered 

one justification for an undo function. Nelson’s original paper on hypertext mentioned 

an undo command that “would permit the user to retrace chronologically everything 

he does on the system” for safety’s sake (T. H. Nelson 1965, 94–95). Thinking of 

FRESS in terms of hypertext, the undo command mimics the back button (now well 

known on web browsers) that Nelson had successfully introduced in HES (as Return). 

Hypertext set out a whole world of pathways, leading from a present view to any 

number of proximate and distant connections; “hypertext positions one in a continuing 

present in which something is about to happen” (Landow 1990, 51). Proceeding along 

these links would eventually take the user on a tangent from which he or she would 
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want to return. What the back button could do for navigation, undoing could do for 

authoring and editing. 

Each of these four explanations came to the same conclusion. First, if files 

could be backed up and restored every week, day or hour, they could be stored every 

second. If the scope of this backup could be an entire drive, a set of folders, or a single 

file, it could also be just a part of a file. Undo could recover the smallest possible 

difference made in a document, which was a single user edit. Van Dam’s second, 

related, concept of a mechanism to take care of intense regret would require a feature 

that could do more than edit the document. It would have to function as a step back in 

time, a way to retreat from anything whatsoever that had happened. Third, Nelson’s 

very early concept of an infinite undo that never disappears produced a sense of safety. 

Fourth, from the hypertext perspective, an undo command would not just help the 

viewer/editor stay in the right here spatially, but in the right now temporally. Undo 

would be a way temporality functioned, allowing the user to step back. The step would 

not be of a minute hand or a space on a calendar, but of the smallest meaningful 

granule of change on the interactive system: a command. 

The undo command in FRESS was surprisingly close to the version we know 

today. A surviving manual from FRESS’s last years explains the function as the user 

would experience it. The command, called Revert, undid the last editing operation. 

Revert reset the editor’s view to the point in the file at which the now reverted edit 

was initiated. It only undid the most recent editing operation. The user could navigate 

around the document without losing the ability to Revert the previous editing action. A 
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For FRESS, van Dam explains, “you could undo most things and you could 

undo it after travel, which is very important to me because when the "Oh, Shit” 

moment occurs, it typically is somewhere else already” (Andy van Dam and Simpson 

2011). HES was the first pancake, partly a proof of concept and partly a very quick 

way to get a better word processor. HES had a Cancel command which would 

interrupt a command before it was completed or undo a command immediately after it 

was completed. This left the user a very short future line of development before they 

lost the ability to go back. Instead, HES, like many other editors, encouraged users to 

undo the effects of commands by using other commands: scroll forward is undone by 

scroll backward, navigating forward could be undone by going back (Return), 

formatting commands (which were actually non-printing text inserted between the 

regular text) could be deleted (Carmody et al. 1969, 314). 

Revert functioned on the individual command, because this was the smallest 

unit of action recognized by the system. In batch processing, operators fed an entire 

program into the computer, which then ran through the whole thing and printed 

results. No cycles were wasted; the computer ran continuously at a constant speed 

always doing work. Real time computing made the computer responsive to a user. 

This required the computer to do something extravagant and inadvisable: it required 

the computer to wait. The computer’s architecture requires it not to wait; it runs 

through processor cycles at a set rate per-second, and must do something in each 

cycle. The computer was too expensive to leave sitting around, yet was capable of 

exciting things if it would only give a user time to interact with it in an ongoing 
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dialogue. Time-sharing was an early solution to this dilemma, putting the computer to 

work on one job while it waited for someone else to respond. Today, computers run an 

idle process, twiddling their thumbs, to make up for the difference between their 

maximum possible performance and what they’re usually being asked to do. This 

process must be simple, short, and ideally decreases power consumption. The 

computer does as little as possible. It is still. A command cuts into this idleness. Users 

initiate commands mechanically, as if pushing buttons or flipping switches. Initiating a 

command, the computer runs a procedure of arbitrary complexity whose function the 

user may never understand (Pold 2008).  

In a system where the computer is still and the user only touches it by discrete 

actions that initiate complex procedures, the relevant flow of events to be reversed is 

that of the action. Undo allows a reversed course through a series of events that are 

discrete procedures. If the software’s state were continuously changing (if the 

computer did not wait idly), or if the user could give continuous input (rather than 

choosing either to initiate a command or to do nothing), undoing would look more like 

rewinding. Some video games have included such rewind features, emboldening the 

player by allowing things to be attempted more than once (Moran 2010). 

In 1969, Cancel and Revert were not the best system van Dam could muster. 

They represented a simplified version of yet another side project. In the paper 

published on HES, the authors claimed they would create a facility for “retaining a 

complete, or a user-specified, chronological trail of editorial changes, and 

reconstituting any previous state of the textual contents from them” (Carmody et al. 
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1969, 328). This probably refers to simultaneous work being done by van Dam’s 

students Warren Elliott and David Potas on a system “preserving the finely delineated 

details of a text’s evolution without requiring retention of specific drafts” (Elliott, van 

Dam, and Potas 1971, 534). That project would have stored every modification to a 

document, as it was made, turning all actions into modified versions of other versions. 

Although some of us hate how paper can easily be lost or notes can be hard to read, 

this group saw the mass of edits made on a page to be the main problem with hard 

copy editing. This could be fixed by treating all actions taken on a document as parts 

of the document, to be navigated through spatially. Ultimately, the project required an 

extremely complex data structure, with a record of the difference between two 

document states referring to yet more records of differences, “putting deltas on top of 

deltas on top of deltas” (Andy van Dam and Simpson 2011). The project was never 

completed. 

Revert in FRESS undid the most recent editing action taken by a user. It was 

simpler but it did the job. It was more specific than restoring a previous version of a 

file, more general than a command that could only restore deleted text, less powerful 

than more sophisticated undo systems, and quicker to work with than scissors and 

tape.  

A number of other solutions emerged in other systems to the problem of 

machine glitches, unintentional actions, and users changing their minds. Bank of 

America’s automated check system, Electronic Recording Machine: Accounting 

(ERMA), read account and routing numbers automatically from checks but depended 
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on operators to type in the actual dollar amounts. Here they could err. To correct these 

mistakes, the item could be reversed, which marked it with a special symbol that 

rendered it void, and a new entry was made using the same account and routing 

information (“ERMA: Electronic Recording Machine, Accounting” 1955). In batch 

processing, an error on the part of the user (the programmer) resulted in the computer 

printing out the entire contents of its memory in a dump that was intimidating and 

often difficult to interpret; the only way to undo a mistake was to modify the input and 

run it through again from the top (Ceruzzi 2003, 99–100). Similarly, in Programmed 

Logic for Automated Teaching Operations (PLATO was the first large-scale system 

for education, operational from the 1960s) mistakes could be fixed by backspacing, 

resetting an entry, or navigating backward through a program (Avner and Tenczar 

1969, 11–14). Another comparable yet different system is Ivan Sutherland’s 

Sketchpad; here, users make graphics not by coloring pixels but by modifying 

attributes of vertices, lines, curves, and shapes. All these attributes remain open to 

modification, making it relatively easy, in most cases, to undo actions (Sutherland 

1963). 12 The same alternative to undo can be found in other early systems, such as 

Visicalc. In this, the first spreadsheet and most successful early application for 

personal computers, any action the user took resulted in the modification of cells on a 

table, and any of these cells could be manually edited again at any time. The content 

of the table could be modified in other ways, and there was no obvious reason why 

                                                 
12 Sketchpad was Sutherland’s dissertation project years before he succeeded Licklider 
as director of IPTO at ARPA. According to its longest running director, “the best 
[ARPA] program managers have always been freewheeling zealots in pursuit of their 
goals” (Tether 2008). 
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one should have to “restore” a previous state when they could rather easily recreate it 

(“Visicalc: A Visible Calculator For the Apple II: Reference Card” 1979). 

What these other approaches have in common is that they leave the present 

open to change. The user is not forced to concede the events of the past as a lasting 

influence in the present, because something can be done to restore what has been lost. 

But, in most cases, the past can only be recreated by additional actions, not restored 

from memory. Phrased in this way, these various operations are not as simple or 

generic as undo. The obvious way to return to the previous state is to undo, but this is 

not their purpose. To counteract the effects of a specific action had many meanings; in 

one case it may be to backspace over a mistyped letter and in another it would be to 

clear a misread entry. The problem that undo solves had yet to become understood as a 

generic problematic. It was not yet obvious that a system needed to provide users with 

a way to return to the recently forgotten past. This phrasing of the problem (to which 

undo was the solution) followed the distribution of undo. For the most part, it was not 

easy to lose the past because the actions available on computers were of such a limited 

and discrete nature. If you entered an incorrect answer in PLATO, there was not much 

to be undone but to answer the question again. A worker entering in amounts for 
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checks had only to reverse the entry, type it properly, and move on.

 

Figure 4.4 Though it had many special control keys, including a cancel/reset key, in 1983 the 
Wang Word Processor’s keyboard did not have an undo command (“Word Processing 
Reference Manual” 1983, 1–24). 

Other systems used very different means to ensure that mistakes would not be 

permanent. IBM’s offering to office automation was the extremely popular Selectric 

family of typewriters. The machine used correction tape, and later tape that removed 

ink by lifting it off the typed page. In 1964, IBM announced the Magnetic Tape 

Selectric Typewriter. On this system, letters are stored on magnetic tape before being 

transferred to a piece of paper. This lets the typist backspace and retype without using 

correction tape of any kind (Pieslak 1974, 15, 109). Wang Laboratories dominated 

word processing into the 1980s with standalone systems (that were ousted by 

networked personal computers by the end of the decade). Across versions, Wang 

systems actually improved very little over the IBM Selectric in the area of correcting 

operator error. The user could backspace over characters, delete any selection of text, 
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and cancel operations (such as find and replace) before they had been executed 

(“Word Processing Reference Manual” 1983). Microsoft’s first entry into productivity 

software, Multiplan (a spreadsheet application), allowed commands to be canceled 

after they had been specified but before they had been implemented and allowed cells 

to be locked to foreclose the possibility of any accidental modification (“Microsoft 

Multiplan: Electronic Worksheet for CP/M-80” 1982, 20,145). Red Pencil, released in 

1986, facilitated markup of electronic documents to correct mistakes just as one might 

with a real red pencil. Writers could make mistakes in the writing process, and this 

program would allow editors (including the original writer) to fix them, or make other 

modifications, during a later review stage. Surprisingly, the product was not always 

better than an actual red pencil (“Writing and Editing Tools” 1986, 24). None of these 

systems included an undo and thus none suggested that the way to correct an error was 

to return to a moment before it had been made. 

In all these examples, one starts to see why undo did not appear in other 

systems and how widespread its neglect was. FRESS can be seen as the first working 

prototype of word processing (as we now understand it) that ran on commercial 

hardware that was also a hypertext system accessible to beginners (Barnet 2010). 

Despite its importance to the historian, the system is not just forgotten now, it was 

quite obscure at the time. “No one, to a first approximation, knew what HES was,” 

although one group at another university ran it on color terminals and expanded on it, 

“there might have been another half dozen people in the world outside Brown who 
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knew about HES. We were not influential and FRESS, unfortunately, was not 

influential” (Andy van Dam and Simpson 2011).  

The image of undo implemented in FRESS created a solution to a new 

problematic: the time of successive user actions. The stack of past actions that might 

be undone became the meaningful code by which a system could keep time reversible 

and by which the user could make use of the command. Designed for a system that 

allowed more commands, including actions that were not easy to reverse (such as find 

and replace), undo approached complexity with a simplified abstraction. Some kinds 

of error correction, certainly, have still not been reduced to undo: switching between 

editing modes, changing the view of a document, or conducting file operations from a 

program (such as saving or opening) are not undoable actions. But for most things the 

user did, the program could keep actions as a stack of inputted commands to be 

undone.  

FRESS did not lead to the adoption of undo, but became a teaching tool, used 

at Brown throughout the 1970s. Finding funding for educational applications from 

Exxon and the National Endowment for the Humanities, Brown professors taught 

classes with material and assignments on FRESS. These research projects concluded 

that computers were a better supplement to teaching than replacement for it, that 

students using FRESS wrote much more text than they did otherwise, and that students 

could use the network environment to get into a nasty flame war. As opposed to the 

traditionally  respectful classroom environment or messages written out and then 

delivered later, with FRESS, “you just flap any goddamn thought that comes into your 
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mind” (Andy van Dam and Simpson 2011). Ultimately, the research program, like 

many others, made some findings about the possibilities of educational computing 

while it simultaneously gave students valuable computer experience. At this time, 

trends in automation threatened those without computer skills and rewarded those 

familiar with a machine that was still quickly gaining power and importance. 

Hypertext or not, poking in commands and reading error messages was valuable 

classroom experience. 

The invention of the undo command at Brown University resulted from a 

confluence of forces responding to very different concerns. While computers stormed 

into governments and corporations during the 1960s to replace human labor of many 

kinds, Brown’s hypertext project sought to empower those with access to a computer 

with a new, more efficient, more freely structured means of composing texts. The 

system would intensify creativity and innovation, facilitate expression, and let genius 

focus on thought and automate the busy work. This effort had little influence and did 

not satisfy Ted Nelson’s original goals. Andy van Dam’s plan to kill two birds with 

one stone did get one bird, as the system produced a viable form of word processing of 

a kind that would not be available against until the 1980s. The university was rarely 

supportive of the project, and an administrator almost shut it down calling it an 

unnecessary substitute for typewriters–despite the fact that Brown luminary Rod 

Chisolm found his productivity had doubled while using the system (Andy van Dam 

and Simpson 2011). 
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The undo function had to be invented again in a few other projects before it 

began to be recognized, let alone standardized. 

Inventing Undo Again 

Because an undo function offered practical advantages in specific situations, 

projects of various kinds came up with their own versions of undoing. In many cases, 

there seem to be no connections between these inventions except that engineers found 

themselves dealing with the same situations and came up with similar ideas for 

responding to them. However, when one particular undo command (that of BBN 

LISP) became sufficiently well known by the right group of people (researchers at 

PARC), undo blossomed. This success was not enough on its own. The evolution of 

splendor in the commercial software market of the 1980s and 1990s sealed the fate of 

specific features such as undo, and the command quickly became expected. Though 

the feature was standard on Apple systems, it was the success of Windows that 

catapulted Microsoft Word to its position as the word processor of choice for almost 

all personal computer users and exposed everyone who used it to undoing. After these 

events, formal standards for the IBM PC and then Microsoft Windows locked in undo 

as a key part of user interface guidelines and, therefore, as a part of most commercial 

software. This process started slowly, in the early 1970s, accelerated in the mid 1980s, 

and then became very still for the 1990s and 2000s, only to gradually dissolve since 

the late 2000s. 

At Stanford Research Institute (SRI), Pentti Kanerva rewrote SRI’s popular old 

text editor TVEDIT for a newer computer, and wanted to make sure that, in his 
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system, no one would have to do anything twice. The program, called TVEDIT, was 

first written in 1965 (for the PDP-1 by Brian Tolliver), then rewritten for a graphical 

minicomputer (the Imlac). Kanerva had come to Stanford in 1967 and used previous 

versions of TVEDIT extensively. This had been his first experience with a full screen 

text editor, and he was excited about it. In 1971, SRI acquired a newer computer, and 

Kanerva had the opportunity to rewrite TVEDIT for the PDP-10, a machine that 

would put fewer constraints on memory and therefore allow more features. In his 

version of TVEDIT, the user would be less likely to lose work. Text could be changed 

between upper and lower case, the user could duplicate a block of text, repeat the last 

command, and use a special command called Oops. Oops could undo a delete 

command (restore the lost text at the current position), restore the line currently being 

edited to what it had been before the user started editing it, 13 or restore the entire file 

to the version loaded at the beginning of the session (personal communication, 

October 7, 2011). These commands, individually, were not original. What Oops did 

was consolidate these functions as part of a single command whose operative logic 

was expressed elegantly by its four letter name: Oops. 

For Kanerva, the goal was to minimize manual redoing. What he had that 

previous designers did not was the increased memory capacity of the PDP-10. The 

outcome of his situation was a command named for the same feeling that would drive 

one to undo; van Dam’s “oh, shit” became Kanerva’s “oops.” 

                                                 
13 This editor was line-oriented, meaning text had to belong to a line of up to 128 
characters (Andries Van Dam and Rice 1971, 102). The limits of such editors were a 
major motivation for HES. 
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Despite Revert at Brown and Oops at Stanford, undo was invented afresh one 

more time before it caught on. Bolt, Beranek & Newman (BBN) was a high 

technology company in Cambridge Massachusetts that had transitioned from acoustics 

work to innovation in computer software. In the late 1960s, when BBN was 

developing the beginnings of ARPANET, Warren Teitelman (a recently graduated 

PhD from nearby MIT whose adviser had been Marvin Minksy) designed a 

programming environment for LISP (a programming language closely connected to 

artificial intelligence). Teitelman was concerned that the job of programming could 

now be done at a real-time interactive computer, but the computer was still doing very 

little to help the process. The programmer has to “write some code, run the program, 

make some changes, write some more code, run the program again, etc.” (Teitelman 

1966, 1). It would be better if software could raise the level of interaction between 

programmer and computer (2). The computer should not just wait for the human to 

complete its work; the machine should actively participate in production. If the 

machine could make it “easier to solve problems” this would make it “possible to 

solve harder problems” (18). 

Teitelman first implemented undo in his Programmer’s Assistant for BBN-

LISP in 1970. As he recalls, it was after accidentally deleting a chunk of data that he 

realized the computer ought to be able to save enough information to keep track of his 

changes and revert them. At first the feature could only reverse the more frequently 

used commands. But this made undo unreliable, his colleagues complained; if the user 

could undo all commands, then the command would offer something really comforting 



142 
 

and exciting. By 1971, users could undo the last few commands (any commands) in 

arbitrary order (undoing, for example, the third action back, rather than the most 

recent one). Teitelman added the feature to the version of LISP in use at BBN and, as 

he recalls, the command became part of the workplace vernacular. In casual 

conversation, workers would express frustration and regret as a desire to undo real life 

events, “I wish I could UNDO THRU TUESDAY” (personal communication, October 

24, 2011). 

In 1972, Teitelman moved to Xerox’s Palo Alto Research Center, bringing 

undo with him. Xerox PARC is now famous for pioneering laser printers, bitmap 

graphics, graphical user interfaces operated by mouse, Ethernet, object-oriented 

programming, and contemporary WYSIWYG word processing (What You See Is 

What You Get, meaning that what you see when editing a document is roughly what it 

will look like when printed). Xerox was a very large company rich off xerography 

patents and photocopiers that used them, but it had taken an interest in the office of the 

future. Its research center in Palo Alto enjoyed considerable freedom to develop new 

technologies because it hired the best and brightest (often away from other projects), 

was far from corporate headquarters, was cheap enough (in Xerox’s overall budget) to 

keep around, and was uninteresting enough to influential higher-ups that no one really 

told it what to do, because they wanted nothing from it (Hiltzik 1999). At PARC, 

Teitelman continued work on LISP and a LISP programming environment (including 

Do What I Mean, an early foray into autocorrect). In 1974, PARC produced Bravo, a 

word processing application with many innovative features, including a single-step 
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undo command (Gregory Kusnick, personal communication, October 3, 2011). 

Bravo’s general undo command would eventually go back several steps, reversing the 

effect of any command (Lampson 1979, 36, 52). 

The technology transfer of undo occurred first by Teitelman’s move to PARC 

and second by people seeing and using the feature in his version of LISP. Personal 

contact, the human presence of one who understands how something works and 

actually goes about using it regularly, is a crucial mechanism of technology transfer in 

many contexts. At PARC, every new employee gave a talk about their work and then 

was assaulted by a notoriously harsh question period in which well-respected (and 

sometimes arrogant) engineers tested the newcomer for weakness (Hiltzik 1999, 146). 

Larry Tesler, who rewrote Bravo into a user-friendly modeless editor called Gypsy in 

1974, remembers undo as something people at PARC attributed to Teitelman 

(personal communication, October 8, 2011). Although intellectual history readily 

notes the chains of similarity between a number of technologies and their inventors, 

engineers are often more impressed by a working prototype than a set of old ideas. To 

see a machine in use is not the same as hearing about it. To have it right there, one can 

imagine its future, connect it to their own work, and imaginatively link it to other 

devices with which it might one day interact (Barnet 2010).  

From PARC, undo crept into work at Microsoft and Apple.  Xerox’s PARC 

facility was extremely productive. Its chief output was high-potential innovations that 

were very relevant to current and anticipated changes across the industry. What it 

lacked was a parent corporation prepared to turn talented engineers’ heartfelt 
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experiments into products for the market. Steve Jobs and Bill Gates both recruited 

talent away from PARC without too much difficulty, especially as the spirit of the 

organization wilted with the end of the 1970s. Those who left PARC brought with 

them a familiarity with PARC’s office of the future. Though it may be an exaggeration 

to say Microsoft or Apple copied PARC inventions (Horn 1996), technologies created 

by these employees bear a stronger resemblance to PARC technology than those 

technologies created by anyone else 

Microsoft recruited employees from PARC and soon developed Microsoft 

Word. In 1981, Microsoft hired Charles Simonyi as director of application 

development. Simonyi planned a consistent graphical user interface for a suite of 

productivity applications based on ideas at PARC (Allan 2001, 12/22). Simonyi, who 

had been a lead on Bravo, hired others who had worked on the project, and its 

successor, Gypsy. One of these, Richard Brodie, scrapped code passed down from 

Microsoft’s existing Multi-Plan, and, from 1982-1983, created a simple word 

processor with a number of features that the competition would not have for years to 

come (Tsang 2000, 57). Microsoft Word 1.0 was a WYSIWYG, full-screen text editor 

with a mouse driven graphical user interface that supported proportional fonts, style 

sheets, multiple windows, footnotes, and an undo/redo feature that built on Bravo’s 

piece table architecture.14  

                                                 
14 Piece table architecture appends edited bits of text to an established document file. 
This took less memory, allowed one to edit a large document without having to load it 
all into memory, and meant one was never altering the underlying file, but just a data 
structure that showed which pieces of the file were intact and which had been edited. 
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There are some common features in the several known projects that invented 

an undo function from 1969 to 1971. Certainly the availability of computer hardware 

was a prerequisite to an undo command; each project needed an interactive real-time 

computer interface, an editing program (in each case, for text), and a bit of excess 

memory.15 Additionally, in all three cases, designers needed some leeway to pursue 

their own ideas, without having to make too compelling a case for the idea’s viability 

or necessity. Each undo command presupposed a system with a great number of 

commands in which a user could build complex documents the creation of which 

would entail many mistakes and wrong turns. Finally, the designers each had a 

personal motivation that made them want to be able to undo actions at the terminal.  

What should we make of the multiple, nearly simultaneous, inventions of what 

is almost the same command? One response is to infer from these inventions that 

conditions were right for several inventors to create almost identical inventions 

simultaneously (Scharf 2009). The situation expressed itself in the technologies it 

attracted from designers, and, though these technologies had very little impact at first, 

they eventually did change the scene from which they were born. But the historical 

reality is still one of details. Undoing did not simply arise out of a cultural longing for 

stability or an early 1970s desire for the comfort of eternal return. That a few tinkerers 

tried similar things can also be explained as a product of random chance (Simonton 

                                                                                                                                             
This made it easy for the program to keep a record of edits so that they could be 
reversed by undo (Richard Brodie, personal communication, September 14, 2011). 
15 Undo probably developed on text editors because there were lots of them, they did 
not always tax computer memory to the limit (as image editors did, for example), and 
because programmers needed text editors to do their own work. 
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1986). Undo was not the only or most original concept in these projects, there were 

many other original projects at the time, and pioneering work was happening during 

this period in many other fields.  

Undoing became a possible cultural expression only after it became common 

enough that other people might have heard of it (as happened early on at BBN). In 

hindsight, Van Dam, Kanerva, and Teitelman produced different commands that all 

resemble the contemporary concept of undo. But would they have considered their 

commands similar at the time? It was through the standardization of these techniques 

at PARC, Apple, Microsoft, and then in the commercial software market of the 1980s 

and 1990s that particular features from a few old programs begin to appear as 

multiple, simultaneous inventions. The question is not, “Why did several people 

invent the same technology?” (the technology was not the same). The question is 

“How and why did these different technologies come to appear as one?” 

To follow the development of undo from a few experimental systems used by 

small groups into a standard feature on many applications used by millions, we must 

turn to commercial software. 

Undoing in Commercial Software 

Up to the late 1960s, software was not a commodity. A program that worked 

on one computer would not work on another. At this time, software and customer 

service went hand in hand. If IBM sold General Electric a computer, they would also 

send people along to install it, get the programs running on it, train staff at GE to use 
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it, and answer questions as they came up. GE estimated this process took an average of 

one man-year (“IGE Presentation” 1962, 5). The programming of a computer was 

always specific to the computer and there was no expectation that a program written 

for one machine would work on another. (Software companies today may use this 

older model prior to productization; if the product won’t simply install and run 

smoothly on everyone’s computer and for everyone’s uses, a company can sell it as a 

service provided on contract.) The paradigm we know today, where software comes 

overpackaged in colorful boxes, downloaded directly, or burned to optical media 

emerged in the 1970s. 

The software industry separated gradually from hardware for a few reasons. 

First, in the summer of 1969, IBM announced that it would unbundle its software 

services from its hardware services. This decision responded to a number of concerns 

for IBM. First, IBM was at the beginning of anti-trust inquiries that pointed out its 

very real dominance of the computer industry. Second, bundling software with 

hardware left the company vulnerable to competitors who would design compatible 

hardware and then run IBM software without paying for it (Humphrey 2002). IBM’s 

own 1964 decision to develop a standard product line of compatible computers (the 

System/360) promised to save corporations money because software (usually custom 

for each company) could be used on different computers within the IBM line (Ceruzzi 

2003, 144–145). What worked on one /360 would work on all the others. Or at least 

that was the idea. Additionally, floppy disks first came out in the early 1970s and 

allowed users to copy files between computers relatively easily. Finally, with the 
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nascent popularity of personal computers in the early 1980s, there was a pressing need 

for quality software to help hardware manufacturers sell computers (Meserve 1983, 

pcw–3). By the 1980s, this need could no longer be met by individuals and small 

teams, because the programs that would sell were complex, versatile, reliable, and 

interoperable with existing systems. 

Although the beauty of the computer has always been its range of applications, 

one type of program was more important in software than all others throughout the 

history of the industry: word processing. When we think of word processing now, we 

think of a person sitting in front of a large, color display typing on a keyboard, editing 

as they go, formatting the document, and printing or sending along the file to others. 

This has not always been the case. The term “word processing” came from IBM, 

where it was adopted because it sounded equally important as “data processing.” Data 

processing made and sold mainframes, for which IBM was well known. Those 

working in word processing made and sold typewriters. Word processing became a 

key part of the very popular concept of office automation. It was particularly attractive 

for corporations because it symbolized futuristic automation, only required a minimal 

departure from existing practices, and could easily be forced onto relatively powerless 

workers (secretaries, typists, and other “girls” in no position to resist the changes). 

Directly replacing typewriters, word processing usually described all-in-one machines 

with a dedicated function, such as those made by Wang Laboratories. These glorified 

typewriters actually had less capacity to manipulate text, in many ways, than FRESS 

or TVEDIT. But they were affordable and helped corporations handle the paperwork 
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explosion. As personal computers became cheaper and more powerful, hobbyists, 

schools, employees, and eventually large organizations began using them for whatever 

they could—and word processing was one thing these minicomputers could do (Haigh 

2006). Early systems reproduced standalone word processing systems, but as the IBM 

PC and Apple Macintosh emerged as stable hardware platforms, many word 

processing programs began to compete, only consolidating in the mid-1990s (Bergin 

2006). 

Microsoft released its highly advanced word processor (that included undo) for 

DOS in 1983 to weak sales. The program debuted in a period where a new trend in 

software was for idea processing, rather than just data or word processing (Shapiro 

1984, 81). Brodie’s Microsoft Word was not just another typewriter; it consolidated a 

number of related functions, such as formatting and footnoting, into the job of one 

capable person sitting at a rather powerful personal computer. Functions that had once 

been done by different techniques at different stages by different people were all 

within the purview of the new program and its user.  

The program sold poorly. One reviewer suggested that Word, while great for 

formatting documents and rich with new features, “may have gotten too far in front of 

today’s hardware” (Markoff 1983). The more specific reasons for Word’s weak sales 

are instructive. Performance was sluggish on most machines. Word used a mouse at a 

time when most users had never touched one. The copy-protection scheme required 

the user to keep the application disk in the drive while working (if your document was 

on a disk, you’d have to switch between that disk and the program’s own disk, 
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disrupting your work), which was a deal-breaker for some companies (Calta 1984). 

Word was one more entrant in the already packed IBM PC word processing market 

(on Apple computers, where the mouse was standard, it was virtually alone). Most 

users had already cut their teeth on WordStar and saw little reason to learn Microsoft’s 

new system. Still, the program did better with later versions, and became a top 

competitor by the mid-1980s (Petrosky 1985). 

 

Figure 4.5 Microsoft Word advertisement in Byte magazine, July 1984. 

Before Word, undo in word processing usually meant only undelete, but by 

1986 it became grounds for complaint if a program didn’t have a full undo. VEDIT, a 

word processor that advertised aggressively in computer magazines, touted among its 
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features ““Undo” key to restore line” starting in 1981.16 But Word and Apple had set a 

new standard for undo. Projects with full undo features, such as FRESS and BBN-

LISP, continued to pop up outside the mainstream of commercial software; 

Convergent Technologies released an operating system in 1982 with an undo 

command, and Apricot Computers released a personal computer that could undo in 

1983. WordStar’s late adoption of an undo function (offering only unerase) 

contributed to the program’s declining reputation (Miller 1986), and those reading a 

review of Wang’s word processor application for the IBM PC were reminded that 

most full-featured word processors at the time had an undo command of some kind 

(Freeze 1986). Programs without an undo function were subject to the criticism that 

they had poor error-handling and were not quite up to date (Lombardi 1986). 

Macintosh, Apple’s 1984 runaway success of a personal computer, 

standardized undo, allowing the user to undo just about any action taken on the 

machine (Neudecker 1984, 90). This was great for users, but required extra work from 

developers. To make a program for the Macintosh required conforming to the user 

interface established by Macwrite and Macpaint. This meant not only including an 

undo command, but also working with a bitmapped display, a mouse, and a clipboard 

that would hold information in a format compatible with other Macintosh programs 

(Watt and McGeever 1985). This challenge decreased competition on the Macintosh 

as a platform but it did not deter all developers. Eager to work in the Macintosh 

environment because it was similar to the Alto, Xerox PARC’s personal computer, 
                                                 
16 This wording is from the 1983 ad, but VEDIT ads spotlighted an undo command of 
some kind from 1981 through 1994. (Green 2011) 
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and because it represented a possible future for computing, Microsoft released Word 

for the Macintosh in 1985. The program soon became the standard word processor on 

Macintosh, and gave Microsoft the opportunity to perfect their application for a 

windowed graphical user interface. 

Apple and Microsoft Word exposed huge numbers of people to undo. 

Although Word was successful on the early IBM PC, and dominant on Apple, with the 

rise of Microsoft Windows, it became just about the only word processor anyone used. 

Word and Apple’s graphical operating systems had both been based on ideas from 

PARC. But Apple had never been top dog in personal computing; their focus had been 

on users concerned with graphics and usability (Eran 2006). Thus, Apple’s 

standardization of the undo command would never reach the average office worker, or 

any specialized markets Apple did not target (such as computers for programmers, 

data-entry, or the sciences). Microsoft’s software work for Apple operating systems 

had trained the company for the windowed graphical user interface that was seen as 

the way of the future. Microsoft Windows 1.0 came out in early 1985, a year when a 

number of similar systems debuted. All of these systems did poorly, leaving customers 

waiting for a decent windowed, graphical operating system. IBM collaborated with 

Microsoft to develop OS/2, a project that was to have been the definitive solution to 

the question of windows. However, collaboration faltered and Microsoft returned to 

development of Windows, leaving OS/2 to IBM. Most companies with popular word 

processors continued developing for OS/2, but Microsoft focused its applications on 

its own operating system. When OS/2 came out in 1988, it was expensive and 
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underwhelming. Two years later, Windows 3.0 came out with a large-scale marketing 

campaign and was received enthusiastically (and was bundled with many new PCs). 

This was the environment that, for seven years, Word had been developed for, first 

within DOS and then on the Macintosh. The odds were stacked in its favor (Campbell-

Kelly 2003, 246–252).  

Ultimately, it was the fact that Word ran on the new and ubiquitous operating 

system called Windows that brought it the masses.  Secure on both major operating 

systems for personal computers, business practices surrounding the product changed 

dramatically. Word was already king of the hill: it had to maintain that position and 

expand the size of the hill. This made giveaways, with charges for updates, and free 

licenses for apologetic pirates reasonable tactics. Word also had to prove itself useful 

for more varied kinds of use. During this period, as huge numbers of people became 

familiar with Microsoft Word, undo, because it was included in the program, became 

something that anyone who had ever worked seriously on a computer would have 

used. As they used undo, they became familiar with it, and expected it.  

But why did undo proliferate across software so quickly from 1983 to 1986?  

From the 1960s, the most common perspective on changes in computing was a 

narrative of progress. New products were more or less advanced, computers 

represented new or old technology, and the future had to be anticipated. Alan Kay, at 

Xerox PARC, voiced the rare opposite opinion, that “the best way to predict the future 

is to invent it.” PARC was well funded and talent rich. For everyone else, the future 

was something to chase after. If a new device was less efficient than another, if a 
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program came out for a system that was losing users, if the niche or market for which 

one was designing was about to change, or if you were building for time-shared 

mainframes when the next thing was personal computers, the accomplishments of an 

individual, a project, or an entire company could vanish like a pipe dream.  

However, a consideration of market dynamics shows that the future was not 

inevitable. The future that actually occurred was a result of a complex playing field 

and the particular moves that were made on it. The case of undo demonstrates some of 

the forces guiding the evolution of splendor in commercial software during this 

period.17 New features were cool, these cool features became expected very soon after 

they were introduced, consumers demanded compatibility, user-friendly software sold 

well in a quickly expanding market, and companies had to intelligently target those 

making purchasing decisions. Each dynamics is worth considering. 

New features helped products sell because they were promising. It was during 

the 1980s that a huge number of features we now take for granted in word processing 

first appeared: hyphenation and justification for word wrapped text, multiple windows, 

movable columns in a table, printer drivers, tools for writing formulas and equations, 

designs for many sizes of paper, subscript and superscript, decent-looking icons, fonts, 

kerning, and file management. Versatility of a program meant that a product could be 

used in new ways, and some programs made a point to allow features such as music 

composition or scholarly references that would cater to a specialized market. By 

                                                 
17 Evolutionary theory tends to emphasize reproduction of the unit of selection, such 
as the individual or colony, but alongside this evolution of individuals, aesthetic 
practices mutate and proliferate as well (Lingis 2005, 20–54) 



155 
 

writing a program more cleverly, or with greater emphasis on a feature, a new product 

could claim to multiply old features, such as by allowing one to work with documents 

three times longer than before or having twice as many fonts as a competitor. New 

capacities on a program also made the program a substitute for more than one 

previously existing program: word processors that included spell-check replaced not 

only previous word processors, but also previous spell check programs. Changes in an 

interface that responded to consumer complaints were exciting because they expressed 

the ambitions of many who had used older programs. Such enthusiasm had a part in 

the replacement of large menu bars with pop-up menus, for example. 

New programs copied features from other programs because they knew this 

would make them look better in side-by-side comparisons. Many reviewing 

periodicals, such as InfoWorld and The Seybold Report on Desktop Publishing, lined 

up products next to each other to compare features. Any program without an undo 

feature, for example, would appear lacking in this kind of categorical analysis. 

Reviews expressed the disappointment experienced users and industry observers 

would feel with new products. New programs should come with “the niceties we 

would expect,” and “all of the features one would expect” (“Desktop Publishing” 

1986, 23,24). 

In the burgeoning computer market, compatibility between devices was a 

necessity for software. A program must be able to run on the operating system of a 

potential customer for it to even be considered an option. But this is not enough. The 

program should also work with other display, input, and printing devices that the 
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potential customer either already owns or may have plans to acquire. Consolidations 

of the market into dominant platforms, operating systems, and data interface formats 

made it easier to produce software that more people might buy and made it easier for 

those who already owned equipment to select the software they really wanted, rather 

than the software they had to buy because it was all their hardware supported. 

Software (and hardware) that was easier to use for those unfamiliar with a 

computer had several advantages. First organizations could spend less money on 

training. Prior to IBM’s unbundling, software had been fused with the service 

department. Training was included in the price of software. Unbundling meant that 

those buying a program had to internalize the costs of training people to use the 

program. This was a general problem for all software suites, and meant that something 

easier to pick up and to master was cheaper than something that required training to 

use. Although this concern seems abstract, business and professional users were the 

most important source of revenue for personal computing into the 1980s (“Research 

Memorandum: User Spending Forecast” 1981, 6). New software could create new 

inabilities for established higher-ups in a company, as some took to it more easily than 

others. Easy to use software could potentially bypass this political quagmire. Outside 

of organizations, the same savings-on-training took other forms. For software 

producers, an easier to use program required less technical support by phone. For 

users, a more approachable program was better because they wouldn’t have to read the 

manual or sit on hold calling a support number. Second, easier to use programs could 

be introduced more smoothly in the large education and consumer markets. Apple, for 
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example, established itself in education and reaped the reward when students hoped to 

use the same computer at home that they had learned to use at school (57).  

 

Figure 4.6 This chart from a consultant's report in 1981 showed that though the consumer 
market was large, it had very little technical comfort and would require very approachable 
software (Meserve and Wright 1981, 15). 

Third, previous decades had cemented a fear of computers so that customers 

had to be coaxed into using them. Those films where the computer goes out of control 

and starts killing humans were but one part in a broader prejudice against computers. 

Because of this, having useful programs on quality machines was not enough. The 

thing had to look friendly, whatever that could possibly mean (Meserve and Wright 

1981, 14–16). Fourth, the user base of computer software expanded by drawing in 
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many people who had not before used computers. The old ways of using a computer 

were of interest to a declining minority; new people saw all systems as new and 

wanted one they could understand easily. These people would be less impressed with 

products for working the way old products did and more excited about products that 

they could make sense of quickly and actually get something done with.  

For software to sell, someone had to buy it. An interesting problem with 

software (a relatively unknown and difficult to classify good at the time) was that it 

was not clear who should be the one to buy it. Was this the responsibility of technical 

support people, office managers, secretaries, or someone further up the chain of 

command? The difficulty of this problem can be seen most clearly in the story of 

PageMaker. Paul Brainerd had worked at newspapers laying out pages with a variety 

of technologies and began his own company to produce a piece of software to do 

layout for newspapers. His original plans to market the product to daily newspapers 

fizzled as he slowly discovered that no one he met with was in a position to purchase 

such a product. At many offices, he found that such a decision would have to go 

through a corporate chain of command, with approvals and oversight that would delay 

the decision by at least a year. At that speed, his small start-up would be bankrupt by 

the time it made its first sale. Instead, he discovered a relatively unrecognized market 

of small-time publishers: churches, businesses, clubs, and schools who had sufficient 

funding and circulation to buy a product that could streamline their production 

process. PageMaker came out in 1985 for the Macintosh, with some help from Apple, 

and championed the new idea of desktop publishing (thereby helping Apple sell laser 
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printers) (Brainerd 2005). This story demonstrates the interstitial locus of decision 

making to which commercial software had to respond. The market for personal 

computing was, in this way, easier to deal with than corporate customers, even though 

the big companies were still spending the most money on software. With personal 

computing and smaller organizations, at least it was clear who was buying. This 

problem did not have a single resolution, but it did mean software had to be designed 

for those making purchasing decisions, not just for the ideal end user. 

The undo command thrived in these conditions. The feature was new and 

interesting, but even better, made it safe for producers to add even more features to 

their product. Programmers often come up with interesting ideas, but if all of them go 

in the final package, a program becomes bloated and users will make mistakes they 

don’t even understand (Heckel 1982, 26). An undo feature makes an overloaded 

program more comfortable. A mistake made with any command (even one you don’t 

understand) can be cleared up with one quick undo. The feature became expected in 

other programs very quickly, and the fact that it is easy to refer to (“undo”) probably 

helped it spread. However, the catchy name also made it less clear what really counted 

as an undo feature or what, exactly, an undo should do. Though it did nothing to make 

a program compatible with other hardware or software, the command benefitted 

tremendously from the standardization produced by operating system compatibility. 

To minimize training, undo is quintessentially user-friendly (and was developed for 

exactly this reason at Brown, Stanford, and BBN.) It helped users recover from errors 

and gave them a “tremendous security blanket” that let them experiment more and 
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worry less (Williams 1983, 39). Undo did not help software producers target decision-

makers, but helped give a product a gentler feel to those who used it and those who 

advocated on behalf of a purchasing decision.  

Outside of word processing, it was harder to implement an undo command, yet 

it was still the norm. Undoing is easier for text than images or video. The amount of 

data actually altered by word processor commands is small compared to other kinds of 

editing. If someone deletes a whole page, or replaces all instances of a word, an undo 

feature will require that all the missing text be retained along with the location of the 

changes. Image, sound, and video editing programs require more. To delete a segment 

of a sound file isn’t much worse, but to undo an effect that alters the entire clip (such 

as an echo) requires either an algorithm that reverses the effect (often impossible) or a 

buffer that stores an entire copy of the file prior to the change. With images, some 

programs came up with new approaches to make undoing easier. Live Picture, for 

example, stored changes to an image as layers on top of the original image. Adding a 

blur effect to the image only really added a layer of blur over the old image, producing 

a temporary copy of the image for the user to view while preserving the original file 

(Borzo 1993).18 Something similar happened again with Smart Filters and Smart 

Objects, introduced later in Photoshop CS 3 (in 2008): elements of an image could be 

modified without damaging the original source. This is also the concept behind non-

destructive video editing: the editor modifies a set of references pointing to original 

                                                 
18 Live Picture was exceptional and ahead of its time (Neel 2011). The Language of 
New Media used it as an example of how computer graphics can get beyond the limits 
of pixels (Manovich 2001, 53). 
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footage, rendering small clips as needed. No amount of editing changes the original 

footage. 

Because many programs included an undo command, it was standardized into 

user interface guidelines set by Apple, IBM, and eventually Microsoft. Early on in my 

research I assumed that these guidelines had standardized undo themselves. However, 

the effect of these documents has been closer to the function of ordinary laws; they 

conserve practices that have already become the norm by specifying them formally 

and enforcing them with varying amounts of success. The interplay of magazine 

reviews, word of mouth, impressions of consumer demand, and other factors played 

out according to certain dynamics and resulted in a de facto standardization of undo 

that prompted those producing operating systems to formalize the standard. 

Apple began setting standards for its user interface in 1978 with the arrival of 

Bruce Tognazzini. Tognazzini had owned a computer store selling the Apple II in San 

Francisco. There, he wrote an application with his partner that would introduce new 

users to the system’s interface. To figure out what worked, he ran experiments with 

users to see what they could and couldn’t do on the system and how easily. In this 

process, he began to settle on firm opinions about how interfaces ought to be designed. 

Employees at Apple found standards attractive for a few reasons. First, standards 

seemed to decrease the amount of time spent on user training (and its analogues such 

as phone support). Second, there was a delay of several weeks between when a manual 

was finished and when it was available on paper. During this delay, work on the 

system continued, probably at an accelerated pace, but the manual was already 
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finalized. With standards, technical writers could confidently state what a program 

would do before it was actually done. Third, Tognazzini based interface guidelines on 

the publications style guide he had already written. The publications style guide gave 

consistent explanations for all aspects of Apple systems, including interface, and this 

made design more consistent as well. 

Apple’s standards were not popular with developers but ultimately derived 

their value from the evidence of user testing. Developers could design for the IBM PC, 

Apple, or another system. Why should they choose Apple and why, if they did, should 

they accept Apple’s approach to interface design, when there was a whole unexplored 

world out there of user interface design? Developers wanted to see what they could 

accomplish, to distinguish their products from each other, and to spend as little time as 

possible jumping through hoops for Apple. What Apple had, however, was a quasi-

scientific data source. In addition to tests run in Tognazzini’s computer store, Apple 

ran experiments continuously. After orientation, new employees at Apple had the 

option to be a user test subject for a few hours before starting work. New employees 

counted as naïve users because, while Apple would have preferred to hire candidates 

with computer experience, most new recruits had little to none.19 Subjects sat for an 

hour or two with a computer, observed by a designer, and recorded for later scrutiny 

(recordings were only audio at first but included video in later years). Apple 

conducted a few sessions of testing that were more rigorous and scientific, with 

                                                 
19 Brown undergraduates who had used FRESS would have had an advantage getting a 
job from Apple, quite aside from any educational benefits of hypertext. Computer 
experience, even a decade after FRESS, was valuable and rare. 
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double-blind setups and subjects who weren’t employees. Through these many tests, a 

number of concepts taken from PARC turned out to need significant reworking. For 

example, before “OK” and “Cancel” became default alternatives, Apple had a prompt 

reading “Do it” or “Cancel.” In testing, they discovered that some users misread the 

first option  as “Dolt” and consistently chose to cancel rather than accept the insult 

(Atkinson and Hertzfeld 2004, 20–21). 

For Apple, the tests resolved contentious debates between employees in 

various departments about look and feel. For developers hesitant to do things any way 

but their own, user tests made a compelling case that standards would add value to a 

product rather than frustrate the design process (Tesler and Espinosa 1997). 

 

Figure 4.7 The menu names the action that will be reversed, or redone (Apple Computer 1987) 

The undo command actually fared poorly in early user tests yet was included in 

the interface guidelines from at least 1980. Apple Writer II shipped with only undelete 

mechanisms (“Apple Writer II User’s Manual” 1981, 30–31), but the command 
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appeared in Lisa User Interface Standards by 1980. Most users who had used a 

computer had never seen an undo command at this point in time and didn’t understand 

what it meant. This may be a reason the Apple User Interface Guidelines of 1985 

specified that “the actual wording of the Undo command as it appears in the Edit menu 

is ““Undo xxx”, where xxx is the name of the last operation” (Tognazzini 1985, 99). 

“Undo typing” is a bit easier to understand than just undo alone. However, the 

command’s unpopularity suggests that what failed in user testing was not always 

abandoned, but was treated with more care. The Lisa specification calls for a single-

layer undo command that applied only to edit commands, adding that, “in later 

releases it will apply to all” commands (Atkinson 1980, 16). By the 1987 guidelines, 

the command was generic and unremarkable (Apple Computer 1987, 82). 

IBM set its Common User Access guidelines in its Systems Application 

Architecture document in 1987. This set of standards aimed to encourage 

interoperable software for different platforms and operating systems on IBM PCs. The 

Common User Access rules had several justifications. They would lead to better user 

interfaces by solving common problems and formalizing best practices, increase 

consistency between products, streamline the development process by providing 

ready-made answers for many design questions, and ensure that what a user learned 

with one program would probably work in another (Berry 1988, 283, 289). The 

standard was designed to be able to evolve and respond to changes. In 1987, it 

encouraged developers to provide undo capability, but did not specify its functionality 

(Berry 1988, 295). The 1989 edition included an undo command of unspecified depth 
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that should appear under the edit menu with a dynamic wording, like Apple’s, that 

specified what type of action will be undone (IBM Corp. 1989, 3.7.6.15). 

Unlike Apple’s reliance on user testing to support its standards, IBM’s 

guidelines simply had the right supporters. Because they came out of a time of 

collaboration between Microsoft and IBM on OS/2, both companies endorsed the 

guidelines and used them in their respective operating systems (OS/2 and Windows for 

DOS). Other key backers included Lotus, Aldus, WordPerfect (these three produced 

some of the most popular PC software of the era), and the Open Software Foundation. 

IBM encouraged the CUA as an open standard and released Easel (a development 

environment for those building for OS/2), which made the CUA easier to follow 

(Berry and Reeves 1992, 417). 

Since that time, Microsoft developed its own user experience and inductive 

interface guidelines, Apple has updated its guidelines many times, and IBM has 

stopped producing operating systems. The contemporary documents describe undo in 

almost unchanged language, but bring the command up in many more contexts to 

emphasize the more general principle, common to both Microsoft and Apple, of 

forgiveness (Taylor 1990, 126; Apple 2009, 8). The formalization of undo through 

interface guidelines has standardized its function and made that function an implicit 

part of wizards, confirmations, destructive changes, and actions that commit the user 

to a particular future. Forgiveness is one of the fundamental design principles for both 

sets of rules, and these documents relate its meaning by frequent references to undo 

commands. For example, a program should warn users before they do anything that 
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can’t be undone and should use an after the fact undo command instead of a popup 

confirmation window whenever possible. It has become a rule that the user can reverse 

the flow of actions and need not be swept away by it. 

Still, the role of voluntarily adopted standards is easy to overstate. Usability 

studies by Jakob Nielsen and collaborators have shown that developers often fail to 

comply with standards. They violate guidelines when designing, fail to notice 

violations in other programs, and end up producing products that break up to half the 

rules in a set. Two identified reasons are that developers rely more on the examples 

rather than the rules in a standards document and, second, that they use experience 

from other user interfaces to make decisions, rather than just sticking with the rules 

(Thovtrup and Nielsen 1991). This suggests that the weight of tradition is a more 

important force in the proliferation of a feature than formal standardization.  

Yet, by standardization and tradition, the substantial variation between undo 

functions disappeared and the command took on a much more singular identity. 

Teitelman’s Undo allowed any of the last several commands to be undone. Kanerva’s 

Oops could restore deleted text by undoing a delete, restoring a line, or restoring the 

whole file. Van Dam’s Revert would restore, from memory, the part of a document 

that had been modified by the last command entered. In 1984, Jeffrey Vitter, also of 

Brown University, proposed US&R, an undo system that turned all commands into 

units that could be recombined rather freely by choosing which command one wanted 

to have undone or redone (Vitter 1984). After standardization, things got simpler. 

“Undo reverses the effects of the previous operation” (Apple Computer 1987, 82), or, 
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to say the same thing in a different dialect of technical writing, undo “reverses the 

most recently executed user action” (IBM Corp. 1989, 2.5.4.1.2). The historical course 

by which a technology, considered useful, joined practices established a common 

practice of time whose precursors now appear as imperfect attempts at the same thing. 

The same cannot be said for the conceptual scaffolding that created each undo 

command. Standardization did not simplify the ideas. Each creator gave a different 

justification for the command, but, over time, we are no closer to consensus. Instead, 

we use undo as a matter of course. Though IBM’s CUA and Apple’s HIG 

subordinated undo to the principle of forgiveness, few read these documents. 

Standardization has helped undo flourish as a material actor, used by individuals at the 

computer to practice new kinds of time. 

Each invention of undo discussed here had its own explanations for the 

affective role of undo. In the original HES paper, a future undo facility was desirable 

“both for reference to previous drafts, and for return to earlier document states deemed 

to have been preferable to some present condition” (Carmody et al. 1969, 328). Van 

Dam now remembers the command’s invention as a way to instantly ameliorate an 

“Oh Shit moment” (Andy van Dam and Simpson 2011). Kanerva was less concerned 

with regret and more with frustration, trying to recreate the TVEDIT system so users 

would have to repeat work as rarely as possible (personal communication, October 7, 

2011). Teitelman stated clearly his aim of computer-assisted programming in his 

dissertation (Teitelman 1966). Rather than frustration or regret, he emphasized that, as 

a practical matter, undoing was more efficient for memory and computing time than 
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keeping around backup copies and restoring from them when something went wrong. 

As an aid to the computer user, the existence of an undo command gives the person at 

the controls confidence, lets the user relax, cuts out distractions from having to restore 

lost work, and allows the person to experiment without thinking through all the 

implications of a series of actions in advance (Teitelman 1966, 918–919). Again, in 

Vitter’s recreation later of undo, the justification is different: “the ability to recover 

from unforeseen errors gives users more freedom to experiment with the system's 

advanced commands” (Vitter 1984, 39).  

The intention to improve operations by influencing the user, rather than the 

computer, worked quite well. The nascent field of human-computer interaction argued 

that usability was at least as important as functionality, that it increased adoption, and 

increased efficiency for expert users (Goodwin 1987). One study found that 

typographers used undo commands to correct mistakes and experiment with page 

layout (Bødker 1989, 184). Computer programs are tools that make people powerful; 

an undo command effectively reduced the risks of powerful accidents (Dix, Mancini, 

and Levialdi 1996). In the early days of interactive computing, those at a terminal had 

a rather good idea how the computer worked and what was going on at any given 

moment; since that time, the norm had shifted to the point where most users were 

uncertain what was happening or how they should go about using the program. In this 

atmosphere of heightened ambiguity, undo helped out (Howard et al. 1997). For those 

producing recommendations for future design based on observed use, undo became 

understood as a user intention, not just a system function (Abowd and Dix 1992).  



169 
 

A number of key figures in usability threw their weight behind the command. 

The first book on human-computer interaction included undo as a key principle, 

arguing that expert users then spent 30% of their time recovering from errors (Card, 

Moran, and Newell 1983, 423). Authoritative figures in the new field including Bruce 

Tognazzini, Jef Raskin, Ben Shneiderman, Donald Norman, and Jakob Nielsen all 

supported universal undoing as a fundamental principle for design, some even going 

so far as to recommend a universal undo/redo key on all keyboards (Tognazzini 2003; 

Raskin 2000; Shneiderman 1986; Norman 2002, 131; Nielsen 1993). Because it was 

found useful in real life cases of computer use, the command was canonized in human-

computer interaction and preached to professors’ students, consultants’ clients, and 

any who would listen. Various theorists would claim it as essential to letting the user 

suspend disbelief (Laurel 1991, 114–115), achieving a flow state (Kay 2004), or 

whatever other theory they used to understand people using computers. 

Further research revealed further details about the command’s actual use. 

Users, it turned out, generally undo by clicking an icon or finding it in the menu, 

rather than using the slightly quicker keyboard shortcut, unless they work with 

computers for a very large number of hours and work near others who use shortcuts 

rather than the mouse (Lane et al. 2005; Tak, Westendorp, and Rooij 2013). Older 

(often higher-ranking) individuals fear the embarrassment of making a mistake on the 

computer and, insofar as undo provides safety in general, it may help mitigate fear in 

this influential class (Riggs 2004, 15–16). The command also streamlines operations 

for expert users by letting them skip confirmation pop-ups (Taylor 1990, 127). For 
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users of all kinds, the affective contribution of undoing is to make people more bold 

and creative.  

These are exactly the kinds of changes of working conditions that make 

knowledge workers more productive, a field of inquiry also known as ergonomics or 

usability. Knowledge workers need autonomy, will have to learn new things and 

master new systems, benefit from boldness that leads to innovation, and are more 

valuable for producing quality than quantity (Drucker 1999). Computer systems that 

could save workers from repeating anything, require minimal memory, decrease 

frustration, and encourage habit patterns were considered good for productivity, in a 

rather broad sense (Fried 1982) 

Today, the standards that formalized the undo command as a requisite feature 

for all software have lost power. Development for Microsoft Windows and Apple OS 

X remains subject to the old guidelines, and there undo remains the norm. But the 

more exciting projects these days are for the web and for mobile devices. Undo 

options are common on Facebook, but not on Google Maps, Tumblr, Yelp, 

Soundcloud, or Netflix. These interfaces assume the user can figure out how to reverse 

the effects of an action on her own. Similarly, for mobile platforms, undo is not a 

standard on as many apps as it could be. In its iOS Human Interface Guidelines, 

covering the iPhone and iPad, the emphasis is on a simple and clean interface, at the 

expense of features or productivity; forgiveness is no longer a design principle (Apple 

2011). For the web, there are no authoritative interaction or interface guidelines. The 

innovations in interface design that Apple once blocked with usability studies are now 
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routine. Designers are less impressed by one set of quasi-scientific research, less 

concerned with naïve users, and more excited about distinguishing their product and 

producing the solution they think will work best. The dictates of fashion and user 

testing keep major websites similar, but a huge amount of variation exists in the 

margins of the Internet, most of it without undo. 

Conclusion: What Undo Does 

The undo command was reinvented, developed, and carried on between 

programs because the feature was good, not because the idea was good. Van Dam’s 

concept of micro-backups, or Kanerva’s of never doing the same job over again, did 

not come along. The feature’s history shows that it was adopted for different reasons 

at different stages and by different institutions. 1950s and 1960s visions of an 

automated environment had no need for an undo command because computers replace 

operators. As small research projects brought Licklider’s alternative vision of a 

human-computer symbiote to life, various forms of error correction prospered. Undo’s 

problematization of the time of user action eventually replaced other techniques 

because of its success in the software industry at a time when personal computing 

overtook automation. Because Apple and Microsoft, who got undo from PARC, were 

able to set the standard, both informally through dynamics of the software market and, 

later, formally through interface guidelines, we now see undo as a standard feature 

with historical origins in a few squirrelly research projects. 

The undo command materialized a previously obscure function of temporality 

by applying reversal to actions which were rendered as objects, material only in the 
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symbolic register of a software system. The undo architecture stored and represented 

whatever the user did on the computer as a series of discrete commands with specific 

parameters. The system enforced this representation of time by giving the operator a 

command that would navigate backward through this stack. Undoing provided users 

control over a way temporality functions that was quite powerful within the editing 

environment. The inevitability of mistakes, series of actions constituting the recent 

past, future of all available commands, emotional state of the user, and calm present of 

wasted cycles connected together in this practice of time. The computer and user 

enacted this together; the time had great power within the editing environment, but 

seemed to stop at the edge of the screen. 

The practice fit rather comfortably into the times around it. In the authoritative 

terms of management’s time practices, undoing accelerated training and perhaps 

increased efficiency. For the time of one attempting to use a computer to get 

something done, undoing made some parts of the recent past accessible and had an 

affective value that improved the operator’s side of the work, rather than the 

machine’s. The practice of real time computing became more approachable with the 

addition of undoing, allowing it to be adopted more places more quickly. For the 

computer’s own practices of time, undoing was another bit of software code to be 

executed as easily as any other. Undoing is uncanny, relative to common sense notions 

of time (Cudmore 2004; Browning 2008). But the fact that the user could, within the 

confines of a program, reverse the flow of time did not amount to a real problem as 

long as it worked well with other times. The time practice enabled by undo 
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strengthened some related times (a form of influence). But, much more often, it was 

ignored by other times—the working calendar, for example, fails to translate undo—

and this benign negligence allowed it to spread.  

Thus, other practices of time were not the primary motors of undo’s spread. 

Undoing appeared as a minor feature common to a number of particular programs and 

systems. As a detail in a larger picture, the fate of the command rested in many 

specific systems and programs, which were themselves subject to forces that have in 

some ways changed little.  

The many historical trajectories nudging undo to standardization can be 

restated as a few ways that the command, in a larger package, was found useful. These 

uses remain relevant today. First, having an undo feature made computers easier to 

use. Although the command was not itself intuitive, it helped make software more 

user-friendly and made variations or innovations in software more tolerable to users. 

The command had become standard by the mid-1980s, which was long after corporate 

and government backbones of institutional life had adopted computers, but just before 

personal computing proliferated to homes, schools and workplaces in the cultural 

industries. Today, apps and sites are simpler and have fewer commands. Quite often, 

undo is not one of them. 

Second, undoing made it easier to brainstorm, create, and edit at the same time. 

This combination of tasks into a single location made the computer appear more 

powerful, because it could host the work of a number of other processes. Along with 

copy, paste, save, load, new window, fullscreen, find, exit and other standard 
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commands, undo defined an archetypal experience of computer use that could be 

grasped and applied in seemingly limitless ways. Once you have mastered the system 

and gained some computer literacy, new projects become viable. In many cases, 

workers took on a wider range of jobs than ever before and were expected to respond 

to work on shorter, more ad hoc schedules (Riggs 2004, 71). This valorization of 

wearing many hats has intensified. The recent recession has driven employers to value 

a candidate’s versatility to help expand into new types of business and hire one person 

to do what would have previously been more than one job (Testa 2010; Casserley 

2012). 

Third, because the computer user could more easily undo mistakes and more 

easily test out ideas, the undo function helped make computers seem superior to the 

analog technologies they replaced. We take for granted now that any document can be 

changed around quite easily, but this was much less true for those editing film with 

scissors, photographs in darkrooms, or documents on typewriters. Undoing, and other 

affordances that made time into another interactive element, provide an added value 

for those making purchasing decisions. Undo and interactive time have definite curb 

appeal. Digitally Video Recorders are a clear example of this: digitally recording live 

television for later playback on a small computer yields several advantages that are 

easy to advertise, whether they are actually desirable or not. Hype has been an 

important force for much of the history of computers, though today the simple undo 

command has lost its luster. 



175 
 

Fourth, the command helped reduce reliance on feminized, low-pay, low-status 

jobs that seemed, to those above, to be better done away with (Garson 1988). 

Ultimately, it remains unclear whether such office automation helped or hurt women 

in the workforce because women soon found information technology jobs and would 

exit the often-crappy job of typist (J. F. Kraft and Siegenthaler 1989). The issue 

exceeds the scope of this project. Systems explicitly replaced women, but may have 

implicitly displaced other groups, such as the elderly or working class. Many women 

were displaced early on, but those who learned typing skills as training for a job as a 

typist and secretary found that they could find work on the computer keyboard instead 

of the typewriter (Riggs 2004, 16).  

Finally, the undo command helped empower knowledge workers. Male genius, 

augmented by appropriate computer technology, would be able to do more, if it could 

undo a little as well. Even if undoing saved the user no time at all, it feels nicer to be 

assisted by the computer than to have to repeat work or do boring fixes oneself. These 

were exactly the sorts of sentiments that motivated van Dam, Kanerva, and Teitelman. 

Undo empowered users by making errors less problematic, increasing one’s ability to 

concentrate and experiment, and by giving even lowly interns the sense they could 

control and reverse time. Popular culture continues to depict computer technology as a 

source of great power. Aside from works explicitly portraying computers as the 

ultimate power in the universe, such as The Matrix and Tron: Legacy, many other 

movies, such as Jurassic Park, The Dark Knight and Skyfall, take it as a given that the 
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power of computers is hard to match. To a limited extent, software can enact these 

fantasies. 

Undoing made computers easier to use, more versatile, seemingly more 

powerful, better able to replace other jobs, and more valuable as tools for knowledge 

workers. Those using a computer could do more than before, though usually for the 

benefit of others. This empowerment accumulated huge gains for those whose power 

was being shared. IBM, Apple, and Microsoft on the one hand, and all those 

businesses and organizations benefitting from computer use–such as schools, fan 

clubs, pornographers, police agencies, and financial traders–on the other. Also, 

empowerment secured users complicity in those large-scale plans to bring computers 

to new markets. By making computers nicer to use, undo fed the growth of 

organizations using computers and increased the spread of computerization. It thus 

also furthered the ability of data representations to be prioritized over that which they 

represent. 

The forces that standardized undo chose a simple command over more 

powerful ones. Radical systems can allow speculative, branching scenarios, gradual 

rollback undos, or local (but not system-wide) undos. In some specialized editors still 

used today, for example, the user can undo previous commands in any order. The 

Timewarp system tracks document changes on a branching timeline, between different 

users, and allows lines of development to split or recombine (K. Edwards and Mynatt 

1997). Why have systems such as Timewarp or Vitter’s US&R not become common? 

As human-computer interaction discovered, undoing has been useful to users as a 
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simple, general condition of work, rather than another system to be figured out. Most 

people using software are inexpert and not using the program in quite the way its 

designers intended. This is the condition of contemporary computer use, for work or 

for play. Undoing allows this situation to continue. 

Undoing is the tip of the iceberg. It represents one specific combination of 

conventions and it is itself just one more partial object of software, enabling just one 

kind of time. This time is interactive, but not all times have been designed to give 

temporal control to the user, and not all times of our computer saturated environment 

were designed as times. 

Software is built up of partial objects (Manovich 2008, 83): an undo command, 

a paste command, an edit menu, a window, procedures for recognizing the double 

clicking of a mouse, keyboard shortcut keys, and resource allocation techniques for 

graphics. Each of these partial objects travels between programs with popularity, 

prototypes, programmers, and designers. Each building block has its own history 

wherein it was produced in many different implementations. Each faces its own 

challenges in the evolution of splendor. At certain technical levels, these pieces 

function similarly: they depend on electric power, they are stored in binary code, they 

are written with computationalist logic. But each piece does something different from 

the other parts and with them. 

These partial objects relate to each other concretely. This is how undo was able 

to find a niche in so many programs. But it is not the only partial object of software 

that has found a regular usefulness because of the time it enables. A quick processor, a 
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large and reliable memory, and a nearly instant connection to the Internet all host 

families of time conventions that put temporality to work in embodied practices. 

Compared to this teeming mass of ways time works in computers, interactive time can 

actually seem quite small. It is only one kind of designed time and only some times 

were designed intentionally. We have come to live in many other times that also have 

a basis in the computer. The sad fact that personal information does not go away, the 

happy fact that weather and news are available at any time of the day, and the tedious 

fact that computers work in cycles and loops are also evidence from ordinary 

experience of these other times. By turning to this broad horizon of subtending and 

parallel conventions of time, interactive time can be understood relative to the 

computer conventions that enable it, and that do quite a bit else. 
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V. Architecture of Time 

Undo makes one time. By studying it, the relaxed and reversible time of 

personal computing becomes easier to understand. Focusing on military funding, 

competition in the software industry, prerogatives of small academic labs, human 

interface guidelines, and other molar factors, we can see the contingency of its 

development and the way it expressed the social field in which it developed. But 

computers have created many other times too. Twitch gaming, robots with lightning 

fast reactions, one’s own faulty digital archive, a world of consumer services available 

24/7 online, an acceleration of social processes that follows computerization, and 

personal information that cannot be deleted are also products of new times supported 

by software. 

Undo is one offshoot in a thick branch of conventions. The convention of 

undoing grew out of conventions of software, firmware, and hardware and it supported 

new ones in interface design and usability. Conventions are patterns, usually 

approximate, but sometimes very strict. Though some are well described in technical 

terms, they are not only technical. They have other aspects: social, cultural, literary, 

political, artistic, aesthetic, historical, and temporal.  

Many basic parts of regular computer activity function as conventions of time. 

While two different ways to organize menus or render text fields might not make 

much difference to the user’s experience of time, some things do. Though they may be 

called hardware specifications, manufacturing standards, services, or network 

protocols, they join functions of temporality together into a repeated behavior, make 
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certain functions available and others less, and give specific expressions to functions 

of temporality that existed before computers, often augmenting and redefining them 

rather completely. They have changed what we think of as the contemporary and 

given a new air of virtuality to the term access.  

This chapter explores some of the subtending temporal conventions of 

computing and their formative role in the genesis of well known computer-mediated 

practices of time—particularly interactive ones. Where my study of undo began with a 

feature, this section begins with the underlying engineering that can create time 

practices such as undo. The work of infrastructure though crucial in many domains, 

tends to be invisible (Star 1999). The infrastructure of computing includes the 

platform: “whatever the programmer takes for granted when developing, and 

whatever, from another side, the user is required to have working in order to use 

particular software” (Montfort and Bogost 2009, 2). The platform enables higher 

levels of construction. These dependencies are not just historical: at run time, undo is 

part of a complex, mostly hierarchical, structure of conventions. 

The practices of time that can come from these layers do not always show the 

marks of their dependencies. Though others have treated this effacement of low level 

functionality as a case of ideological mystification (Chun 2006, 20–21), each 

particular time makes careful use of some conventions in order to accommodate 

different forms of activity for the user. This is more akin to deliberate duplicity in 

Goffman than political hegemony in Gramsci. Designers intentionally show a front to 

the user, who usually ignores politely what is visible of the backstage. We have 
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learned not to speak of dropdown menus or Internet load times for the same reason 

designers have produced appealing abstractions such as buttons to replace more 

cumbersome realities such as defining variables. Users and designers conspire to 

simplify mental models of computer use. We want to buy tickets or set an alarm 

without having to think about the computer mediation these acts involve. 

Computer technology is a growing accumulation of conventions, usually 

explicitly in conversation with only the most proximate work from which it builds. 

Conventions accumulate because they afford better opportunities for creation. The use 

of integrated circuits, of digital code for memory, of graphical display, and of 

processors executing instructions establish some of the terms by which what is built 

with them will operate. Some describe this in terms of a lock-in that occurs when new 

designs rely on older conventions that should probably be changed. Data on a hard 

drive, for example, does not need to be represented as files in folders, but working 

without this convention has become very difficult (Lanier 2010, 7). However, this 

process of accretion is also how software stands on the shoulders of giants and the 

actual historical route by which computers have developed from large calculators into 

tiny multi-function smart phones. Working with analog computers, custom audio 

formats, rare ports and jacks, paper memory, forgotten run-time libraries, proprietary 

compilers, and completely original graphics techniques is harder than using existing 

conventions. It requires work to debug, maintain, and make compatible with other 

systems. When an organization gives specifications for a convention and promulgates 

this convention in specific ways, as Apple, IBM, and Microsoft did for undo, it 
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becomes a standard; this allows widespread interoperability and creates a more 

hospitable environment for improvements to be made atop the old (Robinson and 

Cargill 1996).  

As a whole, conventions are a pile of rubble, with some connected to others, 

many potentially relatable, and others quite disconnected. Computer scientists play in 

this sandbox, dedicating their time to making conventions that are new by modifying, 

imitating, or combining old ones. Engineers and programmers raid the junkyard to 

build structures out of conventions, and eventually figure out and rationalize the 

structure of the dependencies between the conventions they have used. Companies sell 

the structures made by engineers and programmers as platforms on which other things 

can be done. Users experience these platforms as tools (or toys) that interact with other 

partial objects only through conventionalized protocol. For example an image editor 

can manipulate images if they are of a readable format. Historians can trace 

connections between conventions, showing how they have grown over the years, but 

most links have been lost and regrown many times over. Undo is one convention 

among many variations, an object ready to be used, a part of many structures, a facet 

of another tool, and a branch in an old growth. 

Because this chapter reviews fundamentals to computer hardware and software 

that are matters of common practice, rather than claims attributable to any one source, 

it contains relatively few citations. My explanations draw on two textbooks (Hennessy 

and Patterson 1998; Stallings 2000), many Wikipedia articles, countless explanations 

offered in different online forums, the stark prose of computer science course 
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websites, articles and blogs reviewing fundamentals in order to explain more complex 

concepts, and conversation with people who understand these things better than I do, 

including Cynthia Taylor, Steve Chekoway, Elizabther Petrick, Ryan Baker, Graeme 

Worthy, and Tom Moran. In this journey down the rabbit hole, I was reassured to 

discover that the endless complexity of computing is not fully understood by anyone. 

Although many conventions of time in computers have an influence in our 

world, three groups stand out as particularly important for their role in computing and 

for their explanatory power: processing, memory, and networking. The processor is 

the fundamental hardware unit of a computer, doing the actual work of processing 

symbols that qualifies the machine as a computer. Memory has also been fundamental 

to the computer since the beginning, storing symbols to be processed, the programs 

that conduct processing, and the output of those processes. Networking is a more 

recent addition, but has quickly become the basis for the one phenomenon by which 

our era will be remembered best: the Internet. Together these computer parts have 

some role in anything that happens on the computer. Thus, the time conventions they 

establish have some role (usually many overlapping ones) in all that computers do. 

There is a reason that the activities of computers are worth talking about and 

that is the explosive growth by which they have come to saturate the human world. 

There is a very simple explanation of this growth: Moore’s law. Stated originally as an 

observation (not a law) about integrated circuits in a magazine article, Caltech 

Professor Gordon Moore wrote, “the complexity for minimum component costs has 

increased at a rate of roughly a factor of two per year” (Moore 1965). Moore pointed 
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out that miniaturization was making transistors smaller, denser, and cheaper per unit. 

Moore looked forward to possibly another ten years of consistent change. Since then, 

the rule has been broadened to claim that processor power doubles every year—a 

claim that, surprisingly, has held true for decades.  

Miniaturization increased processor speeds for several reasons. First, signals 

travel at a constant speed, but the distances traveled shrink with the circuit, increasing 

the rate at which signals arrive at their destinations. Second, the higher density of 

transistors provides more memory per square inch, which gives processors more 

resources to work with, allowing increases in effective power. Though these two raw 

expressions of Moore’s original thesis drove progress for decades, they have provided 

diminishing returns and might have faltered, in a world depending on increased 

computer power, had researchers not found other frontiers. A third phenomenon 

supporting Moore’s law is that having more transistors actually allows for more 

sophisticated microarchitecture within the processor. This accomplishes speed gains in 

various ways (e.g. by executing instructions in parallel, increasing the efficiency with 

which instructions are executed, and establishing efficient specialties within the 

processor).  

It seems that miniaturizing transistors may have reached a physical limit as the 

heat they leak becomes greater at smaller sizes (Borkar and Chien 2011). Recent 

progress in processor power has had less to do with processor speed than with efficient 

use of multiple processors running concurrently. However, several technologies, 

including carbon nanotubes, promise to extend miniaturization even further.  
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What is known as Moore’s law may more accurately describe the industrial 

pressures on research and development of integrated circuits than the specific 

engineering technique that provides the (expected and required) breakthrough for its 

decade. Moore’s original observation became a powerful myth of inevitability. If the 

company’s lab fails to double computing power in a given year, the chief scientist may 

need to find another job. 

Although apparently only a claim about processing, Moore’s law has 

significant implications for memory and networking too. The pressure on researchers 

to continually provide increased power have worked, and the rate of growth in hard 

drive storage has actually outpaced that of processors (Walter 2005). Miniaturization 

lets memory hold more data in less space. More recently, the exact product of Moore’s 

law—more transistors in less space—has become the basis for solid-state memory 

(e.g. flash drives) that use transistors as a storage medium. The increase in processing 

power described by Moore’s law has increased the processing power of every 

individual computer, while increases in memory have made each able to store more 

information on its own. These have directly contributed to the power of networking, as 

stronger computers have more to offer the network and can get more out of it. 

Computers with fast processors and large memories let people share pictures, 

collaborate on documents, find out what to order at a restaurant they’ve never been to, 

and do all the other charming things advertised by spunky web companies. 

In essence, the human race has recently specialized in one form of technology 

that is the technique by which it handles a still-increasing range of activities. In most 
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cases, this technology would be a very inefficient solution were we not already so far 

along in our use of it. To watch videos other people made, for example, could have 

been done more directly using the existing cable infrastructure. Keeping a todo list or 

set of contacts can be done quite well on paper. The miniaturization of transistors, 

development of graphical user interfaces, and refinement of database query algorithms 

are not the most direct routes to any of these goals. However, because we have the 

technology, usually developed for some other project, computers can be very good 

tools for many kinds of situations. 

At another level, though, the growth of computing results not from an increase 

in raw power, but from the production of clever software, an increased range of 

situations to which computers were brought, and the addition of new peripheral 

devices such as speakers, microphones, color monitors, mice, and modems. Each 

application seemed within reach of current computer technology, though some 

innovation and modifications would be required. Incrementally, then, by using 

conventions, computers have gotten to each specific place, doing each specific thing 

they do today. 

This chapter outlines conventions of time and applications of these 

conventions in the three key domains of processing, memory, and networking. For the 

processor, the basic form of time is a cycle. The faster the cycles, the faster the 

computer. This structure repeats in the operating system, where the scheduler 

cyclically doles out units of processor cycles, and then again in software, where loops 

and iteration in code allow smaller programs to do more things. For memory, the chief 
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issue is the interplay between the fixed form by which things can be preserved and the 

movement by which they can be maintained and accessed. Ironically, movement both 

makes memory very fragile and is the key to digital memory’s fabled longevity. For 

networking, the sequences of data transmission pair with the connection medium to 

synchronize a seemingly instant worldwide present, in which the more that is 

connected, the more connection becomes desirable. Each is a case of designed times in 

which the old movers of time, such as the sun or pace of a regular pendulum or crystal 

vibration, has given way to modular, configurable routines enacting many times at 

once. Of these, some give the reins to the user, encouraging her to intelligently 

modulate temporality’s function as she sees fit. Other times condition this power or 

are up to something else entirely. 

The Fast Cycles 

Imagine that your computer is running slow. Very slow. The thing stutters 

playing music, letters appear in spurts following your keystrokes, websites load in 

steps with very long gaps between them, games are hard to play because the frame rate 

has dropped to only a few images per second, and your cursor turns into some symbol 

meant to gently convey the sad fact that you cannot click on anything until the 

computer works through something you know not what. At such a moment, the 

processor is trying to process but is stuck waiting while data passes through channels, 

buffers, processes, and memory. Delays, slowness, pauses that may become final 

stops, and moments of inaccessibility become your working conditions, if you are 

working, or the conditions of play, if you are playing. You have become slow. 
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Inefficient, your productivity might indicate, dim, your play might suggest. But, even 

now, when the computer is taxed to the extreme, the processor still spends much of its 

time idle. The processor goes through its regular cycles at its ordinary rate, shifting 

from a task that requires some waiting to one that does not.  

A computer is a programmable device that can carry out a finite set of logical 

operations. These operations, in theory, could be handled in many different ways; but 

all contemporary computers use processors that handle operations sequentially in a 

pre-defined cycle. Alan Turing gave this idea, of a computer carrying out a set of 

operations, its first, clearest statement in 1937 when he described an automatic 

machine, now known as a Turing machine. The Turing machine manipulates symbols 

on a strip of tape according to a table of rules that can change with the machine’s state. 

It reads a symbol and reacts according to the rule set of its present state; it can modify 

the symbol, change its own state, and/or move to another location on the strip. Imagine 

this as a menial job. For shelving books in a library, take the next book on the cart, go 

find the shelf where it belongs, put it in place, check the shelf’s own order (fixing it 

involves a simple subroutine), and move on to the next book. This procedure changes 

when the shelver’s mode switches from working, usually by the advent of a break, 

empty cart, or the end of a shift. A Turing machine can enact any particular set of 

operations on its symbols, such as coding a message or searching for all appearances 

of a symbol along its data strip. A universal Turing machine is simply a Turing 

machine that can simulate any other Turning machine. The logical formulation of a 

computer does not specify hardware; Turing imagined this work would be done by a 
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human, a connection that was common for those thinking about computation in the 

1930s. Formal protocological specifications, that do not clarify how they should be 

accomplished, are still the norm in computing and this tells us something about the 

field. Specifications exist and must be met by others, be they hardware components, 

software programs, or just us humans. The modern computer is a universal Turing 

machine built mostly out of transistors. At this level of abstraction, though, computing 

is symbolic manipulation performed in discrete steps according to given rules. The 

pattern of discrete steps can be thought of as a cycle. 

The cycle of a Turing machine is fundamental to the contemporary computer 

and the practices of times that build from it. Though processors do many kinds of 

work, they always use the same basic technique of a loop. The processor’s process is 

simple: it fetches data, interprets that data as an instruction and a bit of information 

that may be the object of the instruction, executes the instructions using the relevant 

information, and repeats.  

The process begins with the processor knowing the address of the next bit of 

data. It fetches that data. The data consists of two parts: an operation code and some 

information. The operation code, interpreted according to a set of rules, gives the 

processor an instruction. The processor has been designed to be able to satisfy these 

operation codes by its instruction set architecture, which is hardwired in the 

microprocessor architecture. The instruction it reads may require doing arithmetic, 

looking up data from disk, writing data back to memory, changing what address shall 

be fetched next, or a variety of other functions. The default for which address to visit 
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next is simply the next address in the memory, but this can be changed. When the next 

address to visit is one that has already been visited, the hardware enacts a software 

loop. Just before completion, the cycle checks for inputs from other parts of the 

system. These interrupts could be keystrokes on the keyboard, expected information 

from the hard disk, a timer ringing, or an error. Then the process repeats. 

 

Figure 5.1 The fetch cycle. 

If only given one instruction, a processor is little more than a calculator 

borrowed from a friend for a moment. The power of the processor comes from its 

reuse. By doing thousands of instructions it can do many transformations on a large 

data set. This was what computers did as electronic data processors from the 1940s 

through the 1970s. During this period, few things could be effectively treated as data 

(symbols manipulated by a Turing machine). Payroll, census, and wind tunnel 

simulations were popular uses; representing a painting, a movie, a molecular structure, 

the best way to drive home, a castle full of Nazis, or the sociogram of one’s 

relationships were not. Since that time, it seems increasingly as if everything around 

us is data or can be represented this way (Shaviro 2003, 248–250). This is the result of 

increases in computing power won by progress in engineering. By executing more 

instructions, and by making more transformations to data, the computer can simulate 
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nearly any occurrence. Booking seats for airlines, editing documents, or simulating 

explosions all became possible because they could be modeled as data undergoing 

transformation.  

Fast cycles are a crucial design element in the architecture of time. Cycles fit 

into the design of a time and enable it, in specific ways. Real time services depend on 

updating information so quickly humans experience the change as continuous. Each 

update is, in fact, a process executed on a processor that moves old data to a log, reads 

data from an input source, and displays the new information as the truth of the present 

moment (Moran 2011). The same principle also drives machine feedback. A real time 

data feed (that is, a very quickly updating one) can pass along information to a control 

unit with very fast reaction times. In contemporary robotics, this allows ultra-rapid 

responses that let machines find equilibrium points for balance and movement. 

Computer-controlled stabilization lets multicopters turn barrel rolls and maneuver 

through windows —moving with their center of mass offset from their geometric 

center (Mellinger et al. 2011; Mellinger, Michael, and Kumar 2010).1 It is also the 

means by which the Segway drives: when you lean, it moves to catch up. Similar 

techniques are used throughout computing, as in digital signal processing responding 

to live signals, artificial intelligence reacting to changing conditions, attempts to 

coordinate multiple processors, and time-critical safety systems. Processor cycles 

                                                 
1 In fact, multicopters have been built since 1920, but have not been workable until 
real time computer-controlled stabilization made them a very convenient UAV 
platform and RC toy (Roberts et al. 2007). Drones depend on processors. 
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make available the instantaneous, continuous, and simultaneous for any manipulations 

performed on what can be represented as data. 

The processor does not cycle alone. Turing’s abstraction is subject to a further 

level of representation and control. In modern computing, the operating system divides 

the processor’s cycles into a unit of time called a quantum, and distributes these to the 

many concurrent processes running on a system. The operating system is a collection 

of software that makes the machine’s hardware accessible as resources to programs, so 

they can run on the computer. One of its essential components, the scheduler, gives 

threads (sequences of instructions) to the processor, and switches these out. The 

scheduler does the very important work of ensuring the processor works while waiting 

for inputs rather than going idle and allowing multiple programs to run on a computer 

at once. Waiting would be a serious risk for the processor without a scheduler. Many 

kinds of instructions require information from an input/output device, such as a hard 

disk drive or the mouse. Relative to the millions of instructions the processor can 

execute every second, human inputs such as typing are very slow (120 words per 

minute is only ten characters per second). Waiting on each communication would slow 

down overall performance considerably. The scheduler also allows multiple processes 

to run concurrently; by switching between them frequently enough, they appear to run 

simultaneously. This is the magic of multi-tasking. The scheduler must allocate time 

between threads fairly, with differential responsiveness, and with efficiency. 

Efficiency, in this case, means maximum throughput, minimum response times, and 

the ability to accommodate multiple users.  
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Each quantum of processor time, given by the scheduler to each process, 

represents processor cycles as an interchangeable unit of work. This unit also becomes 

the minimum interval of activity on most computers. To update the computer clock, 

set in motion a scheduled event (such as an alarm), or make a response, a process 

needs a quantum of processing time. Generally the quantum is about 10-100 

milliseconds—short enough to multitask and give good response times, but not so 

short that too much time is spent switching between processes.  

The quantum functions as the de facto matrix of events within which computer 

life can take place. In this regard, it is a form of event-based time, not unlike the 

agricultural cycle of a society that depends on produce. After intensively studying the 

lunar calendar of Trobriand islanders, Malinowski discovered that he had, in asking 

after moons and their names, missed the real basis of time-reckoning in the society. 

Gardening, not astronomy or mythology, gave people a reason to act, a sense of 

anticipation, a guide for memory, and a system by which to organize events. The 

clearing of the scrub, when the vine supports are positioned, and the harvest’s end 

were the meaningful events structuring time (Malinowski 1927). Other anthropologists 

studying time-reckoning have come to similar conclusions; in many societies, it is 

regular events, rather than abstract measures, that pace social life (Beidelman 1963; 

Evans-Pritchard 1939). An important insight from this ethnographic work is that social 

practices of time may depend on a regular kind of event to organize and pace all other 

events. This is the role of the quantum in the computer. 
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Like days on a calendar or seconds on a clock, quanta are the ether of moments 

into which all other events must be translated and on which they must be based. Any 

scheduled event, any thread of computing, any active process, and any response to 

user action (or other input) can only happen within a quantum and only when other 

quanta have finished. Most quanta will simply run a default idle thread, repeatedly 

executing a halt command, to save power by temporarily reducing the processor’s 

functionality. But all quanta function to pace, separate, and organize other operations 

run through the processor. To run an alarm, for example, the processor does not check 

every cycle whether the designated time has arrived; this would be a very busy form of 

waiting and would waste a considerable portion of the processor’s time. Instead, the 

scheduler provides occasional quanta for a timer-checking service that sees if the 

current time on the clock ought to trigger any alarms or scheduled actions. The 

quantum provided to the timer-checking service represents the maximum precision 

with which the timer can operate, so a single quantum would be the height of 

exactitude and also the maximum resolution of the system’s clock (Etsion, Tsafrir, and 

Feitelson 2003). Quanta allow many things to happen at once, define events, and pace 

processes, yet they also limit the computer’s clock precision.  Operating systems have 

been built in other ways, but the quantum is a highly standard approach to the problem 

of scheduling. 

In addition to the basic hardware level of processor cycles and the operating 

system’s fundamental scheduling loop, cycles have a critical role in code. The 

importance of loops, cycles, recursion, and iteration in software derives from the 
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traditional importance of efficiency in the field. At its most naked, programs once 

needed to be short because there was little space available to store them. The early 

hacker ethic promotes elegance by simplicity, in part due to this condition on writing 

(Coleman 2013, 93–122). Programs should therefore reuse as much of their code as 

possible, handling different situations as minor variations of other situations. This 

approach to writing, quite different from novelists or screenwriters making newness in 

place of cliché, has made computers able to do a huge number of things, but mostly by 

using menus, buttons, and forms that are remarkably similar between applications.  

Cycles also make for cleaner code. Computer code had, in many cases, been a 

text authored and used by a single person, but as software distinguished itself from 

hardware and grew more complex, a program became a project created by many, used 

by many more, and translated, modified and evaluated by still others. Programming no 

longer meant simply instructing hardware how to operate, but writing a text that others 

would have to read. Simplifying code, adding comments, and organizing operations in 

a way that would be clear to human readers became a priority. As software came into 

its own, high-level languages, no longer machine code, enabled an approach called 

structured programming that prioritized organization into subroutines, block structures 

(a number of lines of code nested within an operation), and loops. In this climate, 

Edsger Djikstra wrote his now famous “Go To Statement Considered Harmful,” 

stating loud and clear that loops were the more efficient and scientific technique for 

programming (Dijkstra 1968; Knuth 1974). 
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Program cycles have become a subtle, but ubiquitous part of contemporary life. 

What began as efficiencies in design have long since become norms of user experience 

and a familiar part of how we are treated by the machine. “To live today is to know 

how to use menus,” (A. R. Galloway 2006, 17) and, among those for whom this rings 

true, procedures of code and cycles of the computer are all too familiar. Slowly, these 

terms seem apt not only to describe programming, but everything else in our world. At 

another moment in history, social realists saw film as an opportunity not to record 

theatrical performances but to represent the truth of the world as a slow unfolding of 

unimpressive and quotidian events. Hollywood starlet Mary Astor countered that this 

could never capture the specificities of individuals lives and missed entirely that, to 

the person living a life, theirs is a grand story of drama, represented well by theater 

(Astor 1971, 93). Today, advocates of ubiquitous computing claim that “our lives are 

built from basic, daily operations,” (Greenfield 33), which can usually be improved by 

the addition of more tiny computers. Cyclic operations seem a better model for regular 

life than either high drama or the mundane occurrence of one thing after another. As 

Ian Bogost puts it,  

Because computers function procedurally, they are particularly adept 
at representing real or imagined systems that themselves function in 
some particular way—that is, that operate according to a set of 
processes. The computer magnifies the ability to create representations 
of processes. (Bogost 2007, 5) 

The computer slowly habituates us to experiencing activities as procedures. 

David Golumbia, focusing on the vanguard of this change in academic disciplines 

including linguistics and philosophy, refers to this as the cultural logic of computation: 
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“the power and universal applicability of computation has made it look to us as if, 

quite literally, everything might be made out of computation” (Golumbia 2009, 19 

emphasis in original). In the limitless horizon of this vision, cyclic process is the 

means by which all events occur; all the temporal variety of occurrence, change, 

rhythm, and pace seem built up entirely of pulsating mobs of computer cycles.2 

The practical value of the cycle as a powerful, approachable, and reusable unit 

of work has made it popular in music. Though repetition has always been important to 

music, loops driven by the computer cycle have become a dominant feature in the last 

few decades. In the mid twentieth century, experimentalists used loops of cassette tape 

to explore new musical possibilities. In the 1970s, DJs invented hip hop by switching 

back and forth between two copies of the same record, so the break (an interlude 

between two sections of a song) could keep repeating for several minutes. This 

beatjuggling encouraged new forms of dance (breaking) and spoken word 

performance (MCing) during the looped break. Loops play sound, not just music, and 

this has encouraged a focus on rhythm and timbre (Stillar 2005). Today, drum 

machines, looper pedals, keyboards, and, now, software running on laptops have 

become key technologies in the production of music. In each of these devices, loops 

arise from a computer running through a set of instructions and looping back to the 

start at the end of a sequence. The computer has several advantages for looping. 

Computer-based loops require less exertion to perform, are more consistent than 
                                                 
2 Is everything procedural? Hopefully, the afterimage of iteration and cycles can also 
provoke a concomitant sense of what eludes the cyclic structure. Quite possibly, those 
who see continuity will produce others who see discontinuity as a reaction to their 
narrow-mindedness.  
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beatjuggling on vinyl, and are easier to modify than loops physically assembled with 

cassette tape. Furthermore, loops based on computer cycles allow for multiple loops to 

run at different speeds simultaneously (Latartara 2010). The use of loops in music is 

partially an aesthetic phenomenon, connecting the experimentalism of Terry Riley and 

Steve Reich to the hip hop DJing of Kool Herc to the futuristic techno of Derrick May 

and Juan Atkins (Carter 2008). But loops have also been an engineering solution 

arrived at by untrained musicians to the limits of memory available on early digital 

media, as was the case in video games (Collins 2007). Computer cycles did not invent 

the loop in music, but they did make looping considerably easier and thereby 

encouraged its use, transforming music and establishing hip hop and techno as 

genres.3 

The computer cycle is a specific practice of time almost identical at each level. 

A program organizes instructions into cycles, while the instructions themselves run on 

a processor handling each in a cycle, subject to the control of a scheduler which puts 

the processor to work on one process or moves it to another. Unlike cycles of other 

kinds, these are not tremors that grow in intensity, plateau, and come to an end. There 

are no fixed matches between processor cycles and quanta or between quanta and 

processor cycles. There is no intermediary between cycles; the end of one cycle is 

always immediately the beginning of the next. The cycle of the computer is even, 

                                                 
3 Looping has been important for other forms of art as well, sometimes because of 
computer’s time conventions. Installation video art, for example, relies heavily on 
looped footage to occupy gallery space. Loops have also proven useful in computer 
animation and video, though computers are directly reproducing a known technique 
from cell animation (Manovich 2001, 314–322). 
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reliable, and calm. But it is also hyperactive, extremely fast, and optimized to meet 

many different demands. 

The cycle, at the level of processor, operating system, and program has a clear 

and important role in most computer enabled practices of time. The cycle is not 

interactive, though it is the precondition to a responsive computer. It makes computers 

fast, able to process many things as data, and uses repetition for efficiency to 

maximize its power. It let several things happen at once, paces and spaces them as 

events, and makes the discrete appear continuous. These fact cycles are a key reason 

that with computer we rarely experience a set pace. The machine is almost always 

waiting for us.  

Anything running on a computer must, at a technical level, use cycles, but 

cycles do not always have notable temporal influence. Cloud computing, ATMs, and 

streaming video run on programs and processors that make heavy use of cycles. Yet 

they react based on network traffic and enigmatic delays, develop technologically at 

their own rate, and are present to users in a way that has very little clear relation to the 

cycle.  

Memory 

What is computer memory? Like many technical terms, the word can be 

misleading. Computer memory is an abstract space of addressed entries mapped onto a 

physical space divided into tiny columns and rows. The Turing machine’s tape of 

symbols is one dimensional, but this abstraction can represent many dimensions. The 
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memory contains many small markings, which are readable as binary digits, but the 

computer treats these all as clusters of information. The abstract map can be impressed 

upon a number of specialized media. Optical media (such as CDs and DVDs) usually 

store information in indentations and flat spaces (pits and lands) melted by a laser into 

a thin layer of aluminum on a plastic (polycarbonate) disc. On a hard disk drive, bits 

of data exist physically as varying levels of magnetic charge that can be detected or 

altered by an electromagnet. In flash memory, every single one or zero represents a 

very small transistor which is either holding charge or not.4 RAM stores bits (one or 

zero) in transistors, holding their  charge with a constant flow of electricity; this makes 

the technology faster to access but means that power loss wipes it clean.  

The Turing machine processes symbols. To do this it needs a supply of 

symbols and a way to retain and modify its own state. The computer is thus a machine 

for storing data as well as processing it. Processing happens by recurring cycles but 

storage depends on memory. Computer memory works by making abstract 

representations of physical media and rewriting this media to utilize, add to, and 

modify information processed by software. This rewriting of data makes digital 

information capable of accurate and durable copies, but it also incurs constant risks of 

corruption and loss. The question is, for whom? 

                                                 
4 New technologies store multiple bits of information in place of a single bit by piling 
charges vertically. Multi-level flash memory, like multi-layer optical discs, are good 
examples of the progressive change that characterize engineering. Relative to certain 
criteria, more is better. 
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Computer memory represents highly-engineered media (such as the DVD or 

flashdrive) as an addressed neighborhood populated by blocks of data. Different levels 

of the system represent this differently, with the processor using one reference system, 

applications using another, and users seeing yet another. On the actual medium, the 

smallest unit of information is binary, though only approximately. At every higher 

level of abstraction, these units are treated as clusters of greater size and variability, 

providing the end user with the impression that computer memory is wholly 

immaterial (Kirschenbaum 2008, 135). 

 

Figure 5.2 A scanning electron microscope reveals the complex structure routing 
signals from transistors in a piece of flash memory (Aaronson 2008).  

Because computers treat memory with a variety of abstractions, software can 

create multiple types of records and use these in combination. Users tend to see 

computer memory as primarily a matter of storage space for folder and files. This 

accords with our usual experience of memory in other media where an object holds 



212 
 

records of the past in just one form, such as words in a book or grooves on a record. 

Computer memory, however, also involves page files, temporary files, swap space, 

system files generally invisible to the user, and a whole range of volatile forms of 

memory that clear themselves only on power off. These kinds of memory allow 

software to keep other kinds of information that the user usually does not know about. 

Generally, these operations make software more responsive; for example, when 

streaming video from the Internet, a computer creates a buffer of video that is ready to 

play in order to prevent hiccups and uneven playback speed. Most programs use many 

stacks to record the value of a number of variables and parameters that will shift 

during a session of use. Undo commands rely on a small collection of memory called 

the undo stack, which stores the ordered list of actions that could be undone. 

Computer memory depends on constant movement between temporarily fixed 

locations. Just as the processor must load instructions from addresses, programs 

running on a computer request things from memory, make use of them, create more 

information to be stored in memory, and hopefully tidy up after themselves by 

deleting entries they have created but no longer need. To prevent the processor from 

having to wait, computers use what is called a memory hierarchy. The hierarchy 

represents a general solution to the problem that faster memory is expensive. Most 

computers have a large amount of memory that is slow to access, a much smaller 

amount of faster memory, and a very small amount of extremely fast memory. The 

concept of the hierarchy is to use the fastest memory for information that changes 

most quickly, and the slower memories for what is updated less often. At the top of 
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this hierarchy are registers and caches on the processor, followed by random access 

memory (RAM), then flash memory, and finally hard drives and other media that 

depend on mechanical motion. The computer must move data between these forms of 

memory quickly and often. 

Because all memory media depend on movement and operate as if they contain 

binary information, software can move any information between registers and turn the 

present state of a process into an item stored on a disk. Memory is fungible. It can be 

copied between different devices. Any information that goes through the computer can 

be captured and stored. This is the fundamental reason a computer that can play a 

DVD can copy the content off the disk, and that anything that can display through a 

computer can be grabbed and kept. This is a serious problem with copyright 

enforcement in the digital age: any data that moves through a personal computer for 

playback can be captured and distributed. Ripping CDs, recording audio streams, 

downloading images from the web, saving the current state of a video game, and 

undoing an action in a word processor all rely on the same principle of capturing 

temporary memory in a more permanent format. In many realms of human experience, 

the present cannot be frozen and restored at a later moment in such a complete form. 

But, with computer memory, the living present and a stored file are not so different 

that the one cannot be turned back into the other. This convention of time can allow 

users to switch processes between active and static states. This allows piracy and yet is 

also the basis for undo’s ability to restore, video game’s ability to save, and operating 

system’s use of hard disk space to supplement RAM. 
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Memory is fragile. It is tiny, complex, and constantly in motion. 

Extraordinarily small and precise variations in physical material (e.g. metal or plastic) 

are vulnerable to tiny errors that render portions of the medium useless for storage. 

Keeping every bit in place becomes a surreal challenge when their physical size is less 

than a billionth of a square inch. At such scales, a grain of sand or a dust mite becomes 

a large, bulky, dangerous object (which is why hard disk drives are sealed). IBM 

research suggests that trace amounts of radiation from standard industrial cleaning 

processes and cosmic rays cascading down from the atmosphere damage one bit per 

64 megabytes of RAM per day, though more at higher altitude (Ziegler et al. 1996, 7). 

Over the course of several years, the risks become substantial. The upgrade-happy 

industry keeps consumers switching to new storage media, but old hard disk drives die 

quickly after five years of use (Schroeder and Gibson 2007; Pinheiro, Weber, and 

Barroso 2007). Physical media aside, the incredible complexity of the computer, and 

reality that those working on one aspect of it know very little about the rest, ensures 

data corruption. Database mismanagement, malicious code, software bugs, 

weaknesses in the operating system, firmware errors in the storage device, and 

fluctuation of power supply can all cause data corruption (Borisov et al. 2011; Leddy 

2003). Finally, the constant movement involved in using memory causes wear that 

eventually puts storage devices out of commission. The hard disk drive operates by 

spinning at high speeds (the faster the better) with its electromagnetic head 

nanometers from the surface, floating on a cushion of air. When the head accidentally 

hits the plate, due to any number of causes, it scratches it, often destroying the drive 
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permanently. Optical media, such as CDs and DVDs, are useful because you can pull 

them out, store them, perhaps mail them across the country, and put them back in 

another drive. Yet, this exposes them to the dangers of fingerprints, humidity, 

temperature, prolonged horizontal storage, and tiny pieces of grit sliding across the 

surface. Although we hope optical media will last for decades, many discs fail in only 

a few years, particularly consumer-grade writable discs made and sold at the lowest 

possible cost (Marken 2004; Woolf 2001). For digital memory, the physical medium is 

a weak point. 

 

Figure 5.3 How would you get data off these old disks? 

In addition to these problems, sustained innovations in computing technology 

may render specific memory formats obsolete. Many have noticed that old movies on 

VHS and data on floppy drives are practically inaccessible because finding a working 

player is difficult and transferring to a more contemporary format is even more work. 
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But these formats are clearly dead. What is more surprising is that early CD-ROM 

formats are not readable by later CD drives and that memory cards designed for digital 

cameras from the early 2000s (such as xD) may be nearly impossible to read. MIT 

Libraries host a website called “Chamber of Horrors: Obsolete and Endangered 

Media,” tracking the endangerment and extinction of such digital storage media. 

Beyond changing physical media, some old material depends on proprietary software 

from a folded company, lost access codes, or a programming language whose 

documentation and compilers have all been lost. Changes in software technology 

make such items extremely difficult to maintain in an accessible state over the course 

of decades (Smith 2005). The basic problem is that, lacking associated software, a file 

is nothing but a series of bits on a piece of memory; we may lose the correct means of 

interpreting it (Rothenberg 1995). Physical media, even if intact, may be hard to read 

within just a few years. 

In the long term, digital memory is a problematic way for individuals to keep 

things from their past. Individuals are usually aware that they should make backups 

(and most have lost things they regret losing), but do not in fact understand how to do 

this, put little energy into regular backups or archive management, do not organize 

their old materials in a way that will make sense in the future, store media in less than 

secure sites (cardboard boxes in the garage), do not convert from more specific to 

more general formats, are less likely to have reliable storage media, and often put their 

trust in websites that do not value consumer data highly (Marshall, Bly, and Brun-

Cottan 2006; Marshall, McCown, and Nelson 2007; Marshall 2008). Though digital 
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memory can potentially keep photos, diaries, art, and records of all kinds intact for 

years, for most people, much is lost. Memory is fragile, at least for individuals. 

At the same time, however, computer memory represents one of the highest 

forms of precise replication ever known. Three reasons for this are that digital 

memories are clearly defined, that digital media are relatively stable (at least for a 

short while), and that the procedures for reading and writing data are executed with 

great care.  

First, digital copies are generally higher fidelity than analog copies because the 

content being copied can be defined more precisely. In analog media, the thing to be 

copied is hard to distinguish from its containing medium. A painting is paint and 

canvas; a film is patterns of chemicals in celluloid. What exactly is the thing itself? 

How can it be preserved in its infinitely particular materiality? If you tried to copy it, 

what exactly is it that you would want to copy? But with digital media, the physical 

medium is clearly distinct from its content. Matthew Kirschenbaum refers to this 

double-life of objects stored in digital memory in terms of forensic materiality and 

formal materiality. The forensic materiality of an object is the electromagnetic charge 

on pieces of metal, the traces and marks made on surfaces, and the tiny bits of 

evidence that can be made to speak of the object. A piece of memory on the computer 

is unique and irreplaceable at the level of forensic materiality because every hard disk 

is different. An object’s formal materiality depends on symbolic representations made 

by the computer, ultimately grounded in nothing deeper than zeros and ones. At this 

level, the data read as an image from one’s last vacation is fundamentally a set of 
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symbols. Formal materiality makes digital memories discrete and well-specified 

(Kirschenbaum 2008, 13–15).  

Second, although the long term prospects of storage media are not impressive, 

their ability to hold large amounts of information in a compact format that can be read 

and written quickly is nearly unmatched. At this moment, magnetic storage is difficult 

to beat for capacity, reliability, performance, and price. And, though solid state drives 

have become popular because they are less fragile, weigh less, use less power, and are 

more compact, the long term future of storage media may eventually require other 

materials. Research has already demonstrated the potential of DNA, quantum 

holography, and liquid crystals for storage (Church, Gao, and Kosuri 2012; Moon et 

al. 2009; Kim et al. 2009). 

Third, digital memory works because of the care with which it is read and 

written. Machines make very good copies of well specified objects and check their 

work. Humans could do this with their own memories. One could write out a memory 

(ground it in a kind of formal materiality), memorize it, devise methods to check that 

the memory had not changed, review these often, and pass the memory on to others 

who would be equally careful with it. This could work to remember a phone number, 

keep a calendar, or record a story. In practice, humans show this care rarely and 

computers do it all the time. Because digital memory relies on accuracy to the bit level 

and tiny errors happen for a variety of reasons, devices routinely use a variety of error 

correction procedures to detect and fix small errors. These error correction codes 

confirm the content of a stretch of data, and allow electronics on a storage device to 
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check the accuracy of what the device reads or writes; the central processing unit of 

the computer repeats this check. The error correction codes used for storage (such as 

the Reed-Solomon algorithm) are common to many information technologies, such as 

cellular phone transmission.5 In the case of hard disk drives, the main risks are single 

bit errors stored on the disk, weakly charged bits, or mistakes made in reading and 

transmission, therefore the procedures used for correcting errors are less intensive than 

in other applications and occupy a tiny percent of drive space. CD-ROMs, being more 

fragile, devote 10% of their capacity to error correction (Kozierok 2001). In the case 

of multi-level cell flash memory, a greater risk for error plus more careful error 

correction actually produces a net-gain in capacity and affordability (Deal 2009). In 

addition to error correction codes, hard disk drives reallocate data from damaged 

sectors and report on their performance. This attention to detail is rare in humans. 

Because computer memory is actually fragile but potentially invulnerable, it 

favors certain practices of copying. Those who implement these practices will be able 

to maintain their (usually valuable) collection of virtual artifacts quite well. This is the 

vision of cloud computing: a company whose livelihood depends on its ability to keep 

data secure will do all it can. It will store information redundantly on several devices 

in separate physical locations, replacing and maintaining the physical media and 
                                                 
5 Error correction codes interpret data as a series of symbols that can be fed into a 
mathematical function to produce an abstraction of minimal complexity that is 
consistent with, but not uniquely associated with, an original message. A very simple 
technique is to include a bit indicating whether a string of bits is even or odd. This 
would only catch a single error, and would not show where the error was. Better 
techniques catch more errors, can also recognize erasures, and allow some errors to be 
corrected. As with all engineering, the basic idea is simple, but techniques have gone 
through so many generations of refinement that they are now very hard to learn. 
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scrubbing the data for maximum preservation. Google Docs, Hotmail, Flickr, 

Youtube, DropBox, Amazon Cloud Drive, and iCloud offer a secure and permanent 

home for consumer data.  

DSpace at MIT Libraries and LOCKSS (Lots of Copies Keep Stuff Safe) at 

Stanford use the cloud concept of virtualization by redundancy to circumvent the risk 

of dying media formats, encouraging the conversion of archives to digital format and 

the preservation of materials by making huge numbers of copies of everything. For 

large institutions who can afford it, best practices in data preservation promise to make 

digital memory a substantial advance in what can be recorded and how long it will 

last. This is very good news in a world where the number of books published has more 

than doubled every year for a decade.  

For individuals, commercial services may store one’s records for a while, but 

with some level of risk that the service will change its policies, fail or exploit private 

data. Social networking sites such as Facebook, people search sites such as Spokeo, 

and video sites such as Youtube use the same techniques as LOCKSS and DSpace, but 

to permanently preserve personal information that might otherwise be private. The 

cloud protects memory from the usual threats of error, environment, and death. But 

this is an interactive time whose user is a corporation, not you. Our traditional notions 

of reputation and identity depend on the disappearance of certain kinds of memories, 

but commercial websites have challenged these concepts of personhood (Greenfield 

2006, 128). Viktor Mayer-Schonberger proposes an optimistic solution by changing 

digital memory itself: information should come with an expiration date (Mayer-
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Schonberger 2009). But, as with piracy, if someone gets a copy of data just once and 

wants to keep it, the low-level conventions of digital memory make this possible. The 

familiar, soft, and placid connotations of clouds obscure both the irregularities of 

service and the often unnerving business practices driving companies to provide cloud 

storage in the first place (Coley and Lockwood 2012). There are great rewards to 

preserving certain data properly. 

Memory provides connected temporal functions. It allows easy conversion 

between the frozen, still, and fixed world of files and the living, hyper-active domain 

of information being accessed. It can enhance performance speed by decreasing 

interruptions to processor cycles. Though it stores perfect copies, its physical basis 

makes data fragile and ephemeral. On the other hand, digital memory can also make 

something that might have been temporary become quite permanent. This is creating 

dramatic changes in the sense of unity that a self must have between past, present and 

future. But memory can do more. 

Drawing on memory, software can create interactive times. These times are 

interactive in that they can be modulated by local controllers and are not dependent on 

central authorities, such as those keeping the most accurate time of the clock. The lack 

of central authority implies a decentralization of power, but not an end to power. Each 

time bends to the will of its individual master, and the illusion that such interactivity is 

to the benefit of the individual flatters the egocentric consumer. If everything is 

interactive, the chirpy individualist imagines, then it will all be subject to my personal 

control! That everyone can scan their photos and keep them digitally in a data center 
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where they will never get wet or thrown away during spring cleaning does not mean 

they are under one’s personal control; interactivity empowers any controller, whether 

human, corporate, or computer. Automated labor works just as well for any master.  

Network Connection 

No laptop could index the entire web and search it. When a laptop (a client) 

connects to (a server at) Google and searches for a query, Google’s computers retrieve 

a few lists of top matches for each search term and combine them. These lists organize 

and cull the findings of crawlers that explore the web constantly, checking for 

changes, copying content, and studying links. The laptop itself does not search the 

web; the client prompts a server to search its database for the results of years of actual 

exploration. The total amount of information exchanged in this operation is very 

small, and the computation involved in a single search request is also. But the search 

taps into much larger operations, from which it gleans only the most summary 

information. This is the basic reality of network connections. 

A universal Turing machine can operate as if it were any particular Turing 

machine. The computer in an mp3 player could, in theory, simulate supercomputers 

that play chess, forecast the weather, or map the web. However, the small computer is 

not going to do a good job of it. You would get tomorrow’s weather forecast in a few 

years, or use a simplified model and get very inaccurate results today. Simpler than 

having one machine simulate another machine is to have the two communicate. For 

two Turing machines, conversation consists of executing instructions on symbols to 

produce symbols in an outgoing channel, and then reading symbols from an incoming 
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channel. It is as if each Turing machine had several strips of symbols, and some of 

these strips stretched from one to another. Network connection, data exchange 

between two or more computers, has become a huge phenomenon because it allows 

one computer to express the symbolic operations of another. The explosive growth of 

the web represents the empowerment consumers experience from having their one 

(usually small) computer do a huge range of things it could not, practically speaking, 

do on its own.  

Several unique conventions of time arise from the basic facts of network 

connection and have important material consequences. Packet switching—the way 

communication passes through the network—establishes a fragile sequence of 

operations that paces Internet usage and encourages 24/7 access to services of many 

kinds. The line through which this information passes creates experiences of fast and 

slow connections and of accelerated communication. Through network effect, the 

Internet has grown in importance at an astounding rate, and produced a new cutting 

edge of the present moment that has divided our attention between the many things we 

can find online. Those in the loop make the present; everyone else is living in the past. 

The basis of efficient, multi-party network connectivity today is packet 

switching. This mode of communication is full of sequences. Before transmitting a 

message, each computer must fragment it into small units that each have a short 

header, including information such as where they come from and where they are going 

to. This turns the wildly varied forms of data that are being sent over the network into 

a single type of packet, easily readable by any computer. When a packet, marked with 
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a destination outside the network, arrives at a router (a specialized computer) it sends 

the packet along to an ISP (Internet Service Provider), which forwards the packet 

toward its destination. This forwarding process is complicated technically and 

economically, since there are many algorithms to find paths, many kinds of hardware 

filtering and redirecting messages, and, on top of this, those who control routing 

hardware may prefer that packets take one route to another. Once a packet arrives, the 

destination sends an acknowledgment and, usually, a response. Some packets don’t 

make it, because their data becomes corrupted, they become mixed in with another 

packet (collision), they take a path that is too long and reach their hop limit, 6 they are 

rejected by a proxy or firewall, or something else happens to them along the way. The 

reading, organizing, and directing of packets all work by protocol formalized by 

standards organizations (such as the IETF, ICANN, IANA), and then adopted 

voluntarily—or partially, or not at all—by users of all kinds (A. Galloway 2004). 

These protocols specify much more than the basic mechanism of packet switching. For 

example, before a computer can navigate to a url (such as Wikipedia.org), it must find 

a server that knows the IP address of the url (such as 204.74.112.1), then it must make 

a TCP handshake (a series of three messages confirming an intention to communicate) 

with the server at that IP address. All activity on the Internet depends on these 

conventional sequences and some bear the imprint. 

                                                 
6 A hop limit, previously called time to live, is a number in a packet’s header that is 
reduced by one at every router that processes it. The number starts somewhere 
between one and 255; when it reaches zero, the packet is destroyed and a report sent to 
its source. A traceroute derives from this convention, sending a series of packets with 
a hop limit of zero, then one, then two and so on. 
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The various protocological sequences involved in packet switching all take a 

measurable number of milliseconds. These tiny delays add up to the familiar effect of 

latency. The latency on the Internet itself is rather small, near to the theoretical 

minimum. The machines processing packets tend to be very specialized and powerful. 

However, the latency introduced by one’s own computer, or by the modem connecting 

a local network to the Internet service provider, may be substantial. The minimum 

time to send a message may be a tenth of a second, which sets an absolute upper limit 

to the response time of any activity done online. The latency introduced by these weak 

links cannot easily be overcome without getting a new computer or modem.  

Chrome, the most popular browser as of this writing, attempts to circumvent it. 

By anticipating what sites a user might need next, the browser can look up the future 

site’s IP address and make a TCP handshake (Grigorik 2012). (Other designs go a step 

further and begin loading pages that the user may soon visit, a practice called 

prefetching links.) In these schemes, the fractions of a second required to connect to a 

server and load a website can happen, or at least begin, before the user even starts 

waiting. This technique does not reduce latency, but does reduce the experience of 

latency.  

The time of latency inherent in Internet communication is quite important in 

online gaming. Though a slowly loading page tests our patience, or makes a website 

less desirable to visit, a delay in gaming can make a decisive difference within the 

game. If, gaming, I enter a room and find myself in a showdown, a tenth of a second 

can very easily be the difference between being the first to draw and first to die. 
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Network latency can create a delay between user input and avatar actions or between 

the actions of others and their display on the user’s machine. Though gamers have 

some understanding of lag, and often see it as an important part of online gaming, they 

usually are unable to do much about it (Tseng et al. 2011). Latency supplements the 

sporadic flow of new information (whether website or game) with a small, 

ineliminable delay. 

One of the most frequently remarked upon transformations of contemporary 

practices of time is that more things are available 24/7. Not so long ago, shopping, 

banking, and buying tickets had to be done at specific hours of the day. Waiting until 

after dinner would simply not do. Now these services are available on the web and can 

be done at any time. This change in time results quite directly from the nature of 

Internet connections and from the economics of running a server. One website, in one 

place, serves users everywhere.7 The many people who might want to use a web 

service may have very different schedules from each other and probably live in 

different time zones. Requests to a server can therefore come any time during the day. 

Usual business hours represent only one third of the total number of hours in the day, 

and their use has always depended on the synchronization of human populations in 

their patterns of work, sleep, and childcare—patterns more or less aligned with 

daylight. Although a website could decide to turn off its servers in the evening, 

                                                 
7 Though not all points on the planet are connected to each other equally, there are 
strong economic motivations to build infrastructure responding to existing demand for 
connection. This usually produces a link between two points on the Internet. On the 
other hand, when it fails, the disconnected machine is simply not counted as on the 
Internet at all. 
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according to local time, there are economic and cultural reasons not to do this. Given 

the very large costs associated with creating a website, running the business, and 

drawing in customers, the costs of keeping a server powered on at night is usually 

worth the marginal cost of power consumption. Though there may be very few 

visitors, the machine can perform automated maintenance, will be available to 

crawlers, and will suffer less thermal stress if its components remain at a constant 

temperature (Hamilton 2008). Culturally, 24/7 accessibility has become an expectation 

for the web. Though some orthodox religious groups limit the functionality of their 

websites on holy days, and some government websites still depend on batch 

processing systems that restrict functionality to business hours, these are exceptions 

that prove the rule: the web must be accessible 24/7 (Dubner 2012). 

The communication line by which packets move is itself a significant condition 

on time in computers. The line establishes a maximum rate of communication, which 

is often faster in one direction than another, and is being slowly improved by the use 

of fiber optic cables. What is speed on the network? The speed at which a signal 

moves across a copper wire is at least two thirds the speed of light (light moves at 300 

million kilometers per second in a vacuum). A single impulse, then, is very fast. Why, 

then, do Youtube videos often load so slowly? The question of speed in an electronic 

connection is actually a question of how many impulses can be sent per second—

frequency. The trouble with copper wire is that a higher frequency signal creates 

inductive reactance, which causes the signal to weaken over distance. Repeaters can 

receive a fading signal and repeat it with greater strength and clarity, but these cost 
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money. This is the basic reason for the widespread shift to fiber optic cables; fiber 

optics transmit higher frequency signals further. Because fiber optics don’t carry 

current, they are also better protected from interference caused by electrical fields, 

such as from the electrical lines they inevitably parallel or cross. Different lines run at 

different speeds. In the U.S., telecommunication companies have improved the trunk 

lines for Internet traffic by building out from telephone networks or networks 

established by the federal government, thereby privatizing the Internet backbone 

quickly and with very little public visibility (Shah and Kesan 2007). These companies 

collect rent on traffic moving through their lines, and increased Internet traffic has 

encouraged them to lay more fiber optic cables. As with latency, the major bottleneck 

for connection speed is usually the infrastructure between the user’s fingertips and the 

Internet service provider’s nearest hub.  

Despite latency, despite limited bandwidth, and despite bottlenecks, the 

Internet is faster than what it replaces. This simple concrescence of shortened response 

time, increased throughput of data, and quicker distribution of information has 

changed many previously existing social practices of time. The news cycle of nightly 

news on TV and morning headlines of paper has been recontextualized by Internet 

news, which is constantly available and constantly updating.  

The pace of doing business was, like the pace of fashion or personal 

communication, entrained to the rhythms of older technologies. With the increasing 

centrality of computers linked by a network, the delays of postal communication, 

information processing within an office, and transfer of records between different 
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departments (from a warehouse to marketing, for example), has become much shorter, 

though it is still never quite instant. Stock trading, email, and telecommuting are well 

known examples of this transformation. In each case, the pace of information passed 

through a network connection is sufficiently faster than previous methods to change 

how people do things (Hassan 2007). However, most of the force behind these 

transformations comes from the saturation of social space with computers. Email 

without regular computer access would probably not replace paper mail so completely; 

telecommuting would be impossible without a powerful home computer.  

Computers combine together many kinds of activities, allow new kinds of 

services, and connect with each other, thereby increasing the value of each individual 

computer. This is called network effect. The more things that are attached, the more 

powerful the network becomes; the more powerful the network, the more things will 

attach to it. As the early web became populated with interesting and useful sites, it 

became more worthwhile for others to connect. More recently, Facebook and other 

sites hosting user-generated content have made use of the same principle. As more 

people use the site, it becomes more attractive for others to join. In fifteen years, 

global Internet traffic grew from 1.9 petabytes per month in 1996 to 27,483 petabytes 

per month in 2011 (“Internet Traffic” 2012). As of 2012, there were 1.3 billion used IP 

addresses (Carna Botnet 2013) and more than two billion Internet users, with half of 

that number on Facebook (“World Internet Users Statistics Usage and World 

Population Stats” 2012). Billions of tangled Turing machines swap symbols, process 

them, and continue. 
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The huge number of computational services available through the Internet have 

made it a font of newness and established it as the cutting edge of the present. The 

Internet allows consumers to choose from a huge range of options 24/7, and access 

these options with lower overhead than the usual channels. Entertainment industries 

such as movies, pornography, TV, video games, and music have re-oriented their 

business models around the Internet. The Internet has always meant connecting one 

computer to another, but things have changed from the original model of occasionally 

updated documents accessed by curious strangers (Berners-Lee 1999). In web 2.0, a 

revitalization of this earlier model, special efforts were made to create user interaction 

with servers; the page served to a user would be personalized and invite new 

contributions, that would be shared with others. This has drastically increased the 

number of authors updating the web and this is essential to getting information 

relevant to the current moment. Aggregating sites prioritize newer material 

(presumably to satisfy users), thereby creating a browsing experience obsessed with 

the present moment. The Network Time Protocol that keeps computers’ clocks 

synchronized is an afterthought to these main dynamics; the protocol estimates 

latency, requests several signals from a time server, and calculates an average to which 

it sets the clock. In comparison to the Internet, everything else is always a bit out of 

date. The newspapers actually at newsstands, the political opinions of someone who 

has not read the latest news, and the taste of those who have not had access to the web, 

those without smartphones, those who spend less time online, and those with no 

connection at all are practically members of a pre-dead past. 
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The bonanza of stuff to look at, accessible thanks to network effect, has taught 

new patterns of reading and attention. We have become fickle and, in some regards, 

lazy. If a story is not interesting, we move on. If a website is not immediately useful, 

we try hitting a link, hoping to get something better. Jakob Nielsen’s articles on user 

behavior explain that the average visitor to a website spends less than ten seconds on 

the page and reads less than twenty words. Readers scan for text and disregard images 

unless they are big and easy to understand. Generally, the visitor is looking for 

something in particular, and ignores everything else. The eyes move in an F shape 

pattern, concentrating on the top and left side of the page, checking only the first few 

lines of the center. Often, users don’t scroll down the page at all.8 These patterns of 

attention set the rhythm for the time of browsing. Those making content reinforce 

these patterns by designing with this reading practice in mind. 

Network connectivity establishes several conventions of time that have direct 

and indirect expressions, depending on how they are appropriated. Discussion of the 

Internet’s delicate protocological sequences, 24/7 nature, lag or high speed, 

acceleration of social processes, power to generate novelty, and transformation of our 

patterns of attention each describe different applications of the same technologies. The 

Internet can create a time of terrible slowness, when your latency is high or bandwidth 

is insufficient, or a time characterized by intense speed, when it replaces something 

slower. It can be a rich library calmly pored over for hours, or a blur of superficial non 

sequiturs. It can be sequenced, with hundreds of tiny operations required for every 
                                                 
8 Articles on these topics and more are available on Jakob Nielsen’s Alterbox at 
http://www.nngroup.com/articles/. 
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second of operation, and it yet it can be practically instantaneous. As with processing 

and memory, the diversity of times that use the technology arises from the variety of 

ways that conventions of time are actually taken up by material practices. There are 

patterns to this appropriation. 

Conclusion: How Conventions Have Joined 

Computers have enabled many new kinds of times. Some speed us up, others 

slow us down; some require caution and care, others demand that we step back and 

wait. Each project making a time forms out of a heap of conventions, ignoring some, 

mimicking others, and depending on a great many. Each time, then, is the product of 

work building on an unsteady pile of dependencies. In some cases, this feat will be 

remembered, repeated, and eventually reinterpreted as itself another convention. The 

times produced by conventions have been the topic of this chapter: the time of undo, 

the ether of moments defined by the scheduler, the musical loops facilitated by 

software, the uncertain future of our personal digital archives, the 24/7 web, and the 

fragmented attention of web browsers.  

The conventions covered in this chapter will give a partial explanation of most 

times that computers can produce, but this is hardly the last word on the topic. Many 

other conventions of time exist that are not closely connected to the times of 

processing, memory, or networks. There are significant conventions of time in file 

formats, in graphical user interface, in email, in hardware, firmware, design, software, 

and user behavior.  Digital video, for example, depends on hundreds of methods for 

compressing and playing back video, at different framerates and bitrates, with 
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different requirements for transmission, storage, and processor power at playback. 

Conventions for online calendars, built up by decades of digital schedulers systems, 

include automatic scheduling, public and private events, available time, recurring 

events and alarm systems.  

I call these conventions of time because they are known formulas that put 

temporal influence to work. They are patterns ready to be put into practice. Some 

conventions set a single parameter of time’s function, such as rate or schedule. Others 

refashion functions of temporality into new forms, creating new kinds of immediacy, 

memory, or delay. Most put several aspects of time into a practice that produces an 

abstract type of time, actualized by many different implementations. Latency, for 

example, will matter in very different ways for a file repository than for someone 

playing an online video game, though it is one convention of time arising, in both 

cases, from the same technical basis. Conventions are not themselves times, which are 

more material, or temporal functions, which are less. Cycles and loops, prominent in 

computing, are specific versions of repetition, with certain conditions resulting 

directly from the machine. Conventions are repetitions recognized; these patterns 

make names for themselves and find new uses. 

Conventions combine to make various kinds of times. Together, they can 

provide an interactive time, where the user decides when things start, pause, stop, or 

save. To do this, the processor provides a responsive environment where almost any 

object can be represented as data and manipulated; memory converts freely between 

the living present and stored images of it, preserving the past for the lifetime of the 
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machine’s storage medium; the network lets each client  computer do things it could 

not do alone, operates with minimum latency to give the user a sense of instant 

connection, and can share or unshare the work at any time. Alternately, conventions 

can produce a time that excludes one or many people, leaving them not only with no 

ability to control the time, but even trapped forever in its past. Network connections 

can be closed, the position of the present moment can be contested too hotly, and users 

may have read-only access to the 24/7 events announced by powerful processors 

running software loops on some other server. Many other times are conceivable. A 

website could offer a moment always a step in the future, where everyone would add 

their immediate plans to a collaborative image of what is expected to soon be the 

present. A museum could open an old-fashioned website, re-enacting the web as it was 

in 1993 even down to the speed of the user’s connection. A game developer could 

make a world that runs backwards as easily as forwards, with this flow applying 

unevenly to some objects but not others. 

Time can be designed, and today’s architects of time do this by appropriating 

conventions. Software engineers, game developers, computer scientists, electrical 

engineers, user interface designers, and those making and contributing to computers 

infrastructures may, at some point in their work, inadvertently or quite intentionally, 

design new times that become conditions for the lives of others. They take the 

fungibility of memory and create from it a series of static images of a streaming file or 

a temporary state. They design programs around the habits of the operating system’s 

scheduler to produce a smooth and responsive experience for their users. They study 
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hard disk failure, monitor their drives, and follow best practices to keep an eternity of 

protected data.  

In some of these cases, the user gains some mastery of time. In others, they do 

not. An Internet service provider that limits download speeds establishes a rate of flow 

for all effected users, but the people using the throttled connection are subject to this 

designed time, not in control of it. An automated stock trading system uses its 

heightened reactions and low-latency network connection to privilege trades made on 

behalf of its owner over those made by anyone else. Times designed for one class of 

user affect others, but, once designed, these others are not in a position to manipulate 

the time as it acts upon them. In most cases the key criterion for success in the design 

of time is user satisfaction, not the consequences for other people. If the user to be 

satisfied is a rich, centralized political authority, designed times can be quite 

unpleasant things to be around. 

We are, in a way, fortunate that designed times, which could have done many 

other things, are often interactive. Though things could be different, in many cases the 

user has, within certain bounds, been given a degree of control over the functioning of 

time. When we make changes to a file, we benefit not only from an ability to undo but 

also from autosaves and an archive of previous versions. When we listen to music, we 

expect to be able to stop, pause, skip or skip around within that piece of music. For 

TV, digital video became a normal part of home life for many because it allows the 

person with the remote control to control time. In social networking, almost any action 

that can be taken can be taken back. Sound and video editing go further, turning the 
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occurrence of events into blocks of movement that can be shifted around and 

manipulated in hundreds of ways, as the editor sees fit, to boldly sculpt time in new 

ways. Backup systems, content versioning systems, games that allow the user to 

control the pace of gameplay, and any system that puts the influence of temporality in 

the hands of its user are interactive times produced by the artful use of the time 

conventions of computing. Interactive times were no mistake. Their original designers 

created reversible times intentionally; other adopted the convention and, in many 

cases, the industry created a standard out of it. 

Interactive times are one case of designed times which are themselves only the 

intentional arrangement of underlying conventions of computing. These times are not 

alone in the world. They do not extinguish the beauty of a slow moment of fulfillment 

and hope, the slow passing of a season of fleeting sunsets, or the progress by invariant 

intervals of the clock. 

Times exist as contested territory. Machine driven times are not the only, or 

even the most important times in the social world. We live in practices of time and we 

live through them. Whether alone on the computer or resting intimately in the 

branches of a tree, there is no exit from times and the social situation that they express. 

While the conventions of time present in computing can innovate and imagine lots of 

strange little times, and have established some very common ones, they are still 

subject to the translation and influence of other times. They are still invested in the 

same fields of force connecting material objects. This makes them vulnerable, 

threatening, or attractive to other times.  
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Interactive times have become widespread because they have been useful.  

Built of conventions that are usually less forgiving, and responding to them, 

interactive times, enacted by computers and their users, allow local modulation of 

time. The knowledge worker, a category into which a great number of people now fall, 

if only for parts of their day, has gained a limited power over time. This empowerment 

is psychological insofar as interactive time is emboldening and encourages computer 

use. But it is also a very real form of power with consequences visible all around us. 

To recognize this power clearly is a good step towards coming to live with it. 
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VI. Conclusion: Interactive Time 
 

This project took several years. At many points along the way, I doubted my 

own understanding of time and of the clock in particular. So I decided to build one. I 

ordered a kit for a wooden gear clock and assembled it over the course of a year. I 

hoped to better understand how the escapement translates gravity into invariant 

intervals that gears organize into seconds, minutes, and hours. What I learned was a bit 

different: most of what makes a clock work is casing, supports, screws, mounts, and 

adhesives. We think of clocks as measuring the passage of time by counting off the 

seconds. But, for the machine to operate regularly, a much larger number of other 

parts have to be working properly first. Some parts must be smooth or loose. Others 

provide resistance, support, or serve simply to position the other bits. Decoration is 

intrinsic to the dial and the space that the clock will ultimately occupy is a concern 

from the very beginning. 

Enlisting temporal function is hard, even when there are established 

conventions for doing it! The challenge of enacting a time lies first in the secondary 

roles of support, position, resistance, and looseness. What we consider the primary 

elements of a clock, such as the gears, dials, escapement, weight, and pendulum, will 

only work when all the rest is in place. 

In the same way, practices of time are made up mostly of supports. The times 

of factory work, undo, care, or travel by airplane depend on a huge number of things 

happening (Thompson 1967; Luckmann 1991). When everything goes right, or 

basically right, congeries enact times (Durkheim 1995, 11–12). Times bundle temporal 
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functions together, covering temporal terms (Koller 1974). In this way, each time is 

quite partial, organizing only a limited range of all the heterogeneous ways 

temporality actually plays out. Thus, the key to understanding times is to discern the 

various roles of temporality. Enactment, in my account, is more important than 

reference.  

If time is enacted, what does this mean for metaphysics? In the contemporary 

scene, it has become popular to define the world as a large number of objects 

interacting with each other to create occurrences, including other objects. By various 

names, this view usefully expresses the fact that there are other actors than human 

things, that nature is epistemological, that unexpected connections may be important, 

and that social construction is productive work. Seeing time as an enacted combination 

of temporal terms yields three contributions to these ideas. First, time is not a neutral 

container in which connections occur. You can undo actions in some times, but not in 

others. Events occur within multiple, overlapping times. They do not just happen in 

the essential flux of the universe; often, they are scheduled, expected, or remembered. 

Second, causality is not the only possible relation of influence. Anticipation can direct 

action as easily as can flow. Beings attract and touch each other without regard for a 

timeline or progressive grammatical structure of one thing leading to another. Third, 

objects experiencing one another are not all that sensitive. Turning on a light can be 

reversed, from the point of view of those who have not entered the room. If times 

apply temporality to particular ranges of objects, and there is no fundamental time 
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applying its rules to all objects, some cases of access, inevitability, history, and 

presence will be missed by some beings as a simple matter of ignorance and neglect.  

The many projects of social theory exploring contemporary times have tended 

to miss each other likes ships in the night. By understanding times as practices, 

however, it should be possible to establish a network effect for such theory. Different 

studies can show how various times operate and relate, in relation to dominant times 

or the underground of alternative times formally excluded by the dominant set but, 

still, in fact, in common use.  

Times exist as contested territories with overlapping borders, quite like 

relations of power. Times are mutually implicated in very unequal ways (Adam 1995). 

Chapter three looked at relationships between times paradigmatically and historically. 

Of the many possible relationships times have taken on, the categories of translation 

and influence are particularly explanatory. In translation, one time captures some of 

the temporal contents of another time without regard for the different practice that 

combined these terms in the other time (Lim 2009). Influence puts translation to work 

and enacts one time on the supports of another, changing it. 

The clock’s rise to centrality in time practices reveals the supports that 

positioned it in its current role. Industriousness, market affairs, and public clocks in an 

urban environment selected a technology useful to time practices of many kinds 

(Dohrn-van Rossum 1996; Glennie and Thrift 2009). The technology proved 

particularly useful at creating authoritative measurements that directed efforts, often at 

increasing efficiency (O’Malley 1996; Simpson 1995).  
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Older kinds of time had made their own uses of many of temporality’s diverse 

functions, such as memory, ritual, synchronization, event, inevitability, hope, eternity, 

and sequence. But times using the clock, reinforcing each others’ accounts as 

fundamentally unitary, universal, and authoritative, presented a mechanically 

measured time as a symbol of rationality, heralding the way of the future (Tanaka 

2004; Nanni 2012; McCrossen 2007; Kern 1983; Dohrn-van Rossum 1996). 

The modern formulation of time as consistent across the metaphysical, 

everyday, scientific, and astronomical owed its power to a series of small realignments 

that clarified certain aspects of time that were proving problematic to certain practices. 

As a result, we now think that the relationship is natural between the vibrations of the 

Caesium atom, length of an hour, system of time zones determining what the hour is, 

leap year and leap second that keep astronomical time consistent with everyday 

representation, synchronization of our clocks with this very specific hour, and the 

concept of time as a dimension perpendicular to the three of space (Jones 2000; Bartky 

2007; Mills 2006; Phillips n.d.).  

We have become used to the idea that someone else (or, even better, something 

else) is in charge of time, and that human activity occurs within this already existing 

parameter of the universe. But it is hard to deny the concurrency of the mutually 

presupposing alternative: we have made time into forms which we control.  

The world is not simply accelerating around us; many times coexist. Some 

groups are opting for speed or are not. Certainly, some drives intrinsic to capitalism 

have encouraged efficiency on the basis of a practice of measuring time, increasing 
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turnover and delivery times, and providing a cultural sense of speed and access 

(Harvey 1989). But many practices are not well translated by such generalization and 

not so obedient to this representation of what they do. Many things are slow, have 

become slower, remain unchanged, or have become quick without simply being 

accelerated. New times produced by computers and cultivated by market imperatives 

do not always make life faster.  

Looking at specific, enacted time practices shows the impacts of computers as 

they have already begun to take effect. Avoiding prophecy and guesswork, chapter 

four describes the rise of a particularly important kind of time yielded by computers: 

undo. Computers switched from batch processing and a paradigm of automation to 

become tools assisting people in live interactions. Nelson, van Dam, and a few 

undergrads at Brown followed a very big idea to empower and change knowledge 

work and, along the way, added to interactive computing a bit of interactive time. For 

various reasons, these designers, along with others in other projects, created a 

command that turned the series of actions entered by a user into a reversible flow of 

events. The time of undo would not have gone far without being caught up in larger 

currents. At PARC, where invention did not always follow hype, the command 

proliferated through Teitelman’s prototype. Yet it was only with the decline of PARC 

that the technological infrastructure for a new kind of time moved out to the software 

market and became a norm. 

The supports of this interactive time are quite different from the little pieces of 

wood holding together my clock. They are rhizomatic, of various qualities, and branch 
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into unexpected empirical domains. Undo relies on reviews that would point out a 

program without the feature, interface guidelines requiring it, and office managers 

afraid to be seen making an irrecoverable mistake on a computer, among others. An 

earlier technology of time had a very different set of supports. Colonial powers, 

railroad companies, national interests, and revered generals threw their weight behind 

standardized clock times. In contrast, the primary vehicle of interactive time is the 

computer and its primary supports are those many, diverse interests supporting 

computerization in its current form.  

Contemporary computing converts real phenomena into digital representations 

and puts knowledge workers on the job of analyzing, translating, using, and getting 

things done with this data. Each individual information processor need not fully 

understand the system. This would require far too much training and new systems are 

always coming along that require new skills. More people became users, using the 

system with little ability and less understanding. The net effect was a vast increase in 

functionality for computers overall.  

An increased user base augmented more computer symbiotes with a sensorium 

constructed by software. The limits on time perception discovered by phenomenology 

have been circumvented by a cyborg state of perception and imagination that runs on 

software. Software animates fantasies, allowing new ideas of how temporality might 

work to become new conditions that apply to some other activity being done on a 

computer. With interactive time, documents remain open to future changes, even if 

sent off or transferred to hard copy, and a project may be borrowed from or 
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repurposed at a later date. Interactive time changed the products of those who used it. 

Any file can be expected to have been edited repeatedly. In many cases, the editor and 

end user can manipulate the pace of time in viewing these products, rewinding songs 

or playing video in slow motion. Because data remains open to corrections and 

alterations, it becomes tempting to put things online that might have once been printed 

on paper (think of the phone book) or done in person (online dating). These practices 

involve access, pastness, reversibility, memory, repetition, pace, and very long 

windows of opportunity. Each one links together these functions in its own way, 

producing one of the many practices of times by which many work and play today. 

We do not yet know what a time is capable of. Times enacted by processor, 

memory, network connections, peripheral devices, and human affiliates have already 

produced a new international meanwhile, a number of systems trading stocks or 

piloting drones, and a system of memory wherein most consumers lose old files they 

will miss dearly but the well funded never forget a status update.  

This is not because times can be authored freely by any genius using a 

computer. Every piece of software must be made up from an infinite slang of pre-

existing conventions. Conventions combine to create violent video games, printer 

drivers, proxy servers, and mp3 players. Any two programs will have many 

conventions in common, even when it seems that they couldn’t be more opposite 

(Montfort and Bogost 2009). The millions who work today building new software 

combine existing conventions to make new programs for purposes they have accepted 

as their own. We do not know all that these conventions can create because their 
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potentials change in the context of other conventions and situations, both of which are 

being created freshly on a daily basis. 

Chapter five approached the grand pile of computer conventions in terms of 

time, asking how certain existing ways of doing things with computers effectively 

connect functions of temporality. These conventions of time are repeated, though 

enacted in different ways in practice. The cycle unites processors, programs, and the 

operating system’s scheduler to pace activity, thus enabling interactive computing and 

real time systems. The same conventions also make software work iteratively and 

constrain the precision of events to the quanta of the scheduler. Memory is vulnerable 

in physical form, but very powerful as an immaterial procedure. Its conventions make 

movie piracy inevitable and data precarious or permanent depending on backup 

procedures. Networking establishes fast connections with latency, a network effect 

that makes readers hasty, and a contemporary moment always ahead of the world it 

describes. Following this approach, the time practices of media playback (mp3, DVR, 

Netflix), calendars, traffic updates, or saving in video games could be explored to see 

how the situated practices by which time actually operates have changed and with 

what effect. 

The strange times enabled by computers parallel dominant times without 

disrupting them. They have grown up and around the older times and, for the present 

moment, do not conflict. The hour, day, and year are at least as important now as they 

were in 1937 when computers were not yet machines. But, in practice, the way we live 

times has changed.  
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A significant trend in these changes has been the production of times that are 

interactive. The conventions of computing, by themselves, could yield any number of 

speculative times. Yet, certain types of times have received support and have become 

defining parts of what it means to use computers, in many different contexts. A staple 

of these times is a degree of interactivity by which the user locally modulates 

functions of temporality. 

Interactive times have several key commonalities. First, they are decentralized. 

The authoritative measurement of other time practices depended on a central concept 

of time, whether the hospital’s main clock or the precise position of the Earth. 

Interactive times bend locally, pausing a show only on one TV. Second, interactive 

times empower individuals, often in their capacity as knowledge workers or geniuses. 

You are encouraged to control the flow of events, restore the files you want, or 

provide access to others as you see fit. Third, the products of computers bear the mark 

of interactive time. The very notion of what it means to do work on the computer has 

come to include interactive time as a presupposition. It is common knowledge that if 

you do something on the computer you can try out variations, go back to old versions, 

and fix mistakes more easily. But there is a more subtle influence beyond this. Editing 

together film by hand is quite different from using a computer, where all decisions are 

temporary, and the product tends to have more technical complexities, layers, and 

strange little tricks but less reflective thought than work done with actual film 

(Mangolte 2002). Similar arguments have already been made by others about word 

processing (Simpson 1995, 66; Eriksen 2001, 53) and music (Kramer 1988, 79; Loy 



252 
 

2007). Fourth, the way that someone controls interactive time has effects on other 

people. Whether by making a final product that others will receive or by dragging 

others along in some process, there is nothing about these times to keep them isolated 

to the private experience of the empowered individual. 

This does not sound like the usual story of interactivity, freedom, 

customization, consumer empowerment, and efficient data-driven solutions we have 

come to associate with digital, interactive technologies. But it is the other side of the 

same story. Interactivity lets people make decisions on behalf of others as well as 

themselves. This freedom to choose is itself a condition creating its own foibles and 

biases. We put music on shuffle to avoid having to constantly choose a song; our 

ability to freely modify a bit of edited video changes the style of it final form. 

Customization produces a unique individual making his or her own decisions, who 

also seems quite dim and boring from the point of view of a scanner that sees us only 

darkly. Consumer empowerment is the battleground of consent by which groups, now 

understood as economic rather than political actors, fight for support. Data-driven 

solutions may be optimal relative to certain criteria applied to certain data sets, but 

usually these are marketing decisions made for various reasons that refer to data that 

was itself built on categories and interpretation decided by others earlier on for other 

reasons. It does not matter if everyone wants an undo command, companies decided to 

include one for their own reasons and it cannot be disabled.  

For centuries, a dominant set of times has made canonical translations of others 

times into its own terms. Sunlight and holidays became hours of a day and days of a 
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year. Today, the basis of a great many activities are shifting to the computer and to its 

conventions of time.  

This is the occasion for a reciprocal translation of dominant times by those of 

the computer. The calendar, the clock, the measurement of labor, the hours a shop is 

open for business, the frequency of the news cycle, and the synchronization of work 

between different sites have already begun to shift on to a new basis in software. This 

has not eliminated old practices. In many cases, though it has changed them. Time 

practices that have sustained themselves outside the dominant alliance will now have 

their own opportunities to adopt new practices of time as they present themselves. 

Many of these new practices are interactive and exert a gentle influence in 

contemporary culture already, pulling us toward a time that is out of joint, that starts 

and stops, that is very present and precise, that operates in several ways in parallel, 

and yet can restore the past in a split second. 

Time once derived from human religious and political institutions, traditions of 

paced change under divine control, or clocks synchronized to a central standard. 

Today, computers have emerged as a new force that creates and shapes times. Our 

new times are assemblages of various aspects of temporality and are the outcomes of 

multiple, flexible conventions. We live in cross-cutting temporal orders driven by 

machines. Of these times, only some are intentional. The death of storage media, the 

minima of network latency, and the moments defined by a quantum of processing 

power were not invented as bold new times for the human race or even exciting 

products for consumers. They are side effects of other engineering projects. However, 
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they make conditions in which we must act. These machine times have little to unite 

them, though many are interactive. They are complicated, there are many of them, and 

their effects are very different. They do not all accelerate social life, they do not all 

create a global village with instantaneous communications, and they do not spell the 

end of time. They instead indicate the rise of new times and give us a reason to 

become diligent about how these times work and what they do. 
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