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vastra;ct

This thesis describes the measurement of multiplicities and differential cross-
sections of the p° , K*°, and ¢ in ete™ annihilation at /s = 29 GeV, using
data collected by the TPC/ 2y Detector Facility at PEP. The number of vector
mesons per event is determined to be N(p°) = 0.77 +0.08 £ 0.15, N(K*° + K~ )
= 0:58 + 0.05 £ 0.11, and N(¢) = 0.076 £ 0.010 £ 0.012. These multiplicities
are used to find that the ratio of strange quarks to up quarks produced in the
hadronization process is 0.30 £ 0.07, and that the ratio of light vector mesons
to all light mesons produced in the hadronization process is 0.45 + 0.08. All
results agree with previous measurements. Measurements are compared with

- predictions of the Lund and Webber hadronization medels; neither model is

particularly favored nor disfavored.

This Work is supported by the United States Department of Energy under
Contract DE-AC03-76SF00098
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Chapter 1

Introduction

It is the goal of physics to understand the material universe we live in. The goal
of High Energy Physics is to understand the fundamental constituents of matter
and the interactions between them. The current best understanding of these

fundamental constituents and forces is in terms of gauge theories describing the

'1nteract1ons of pointlike particles.

The most successful of these theories is Quantum Electrodynamics (QED),
which can, for example, predict the magnetlc moment of the electron to nine
significant -ﬁgures. QED has been combined with the gauge theory of weak
interactions into an “electroweak” theory, also called the Sﬁanda.rd Model éf
Glashow, Weinberg, and Salam. While this model cannot comﬁete with QED for
extreme numerical precision of its predictions, it has had some dazzling successes
(such as the prediction of the existence and maéses of the W* and Z° bosons), and
is consistent with all current experimental resﬁlts. This theory’s main drawbacks
are the abundance of unconstrained parameters that must be fixed by experiment,
and the crucial and experimentally unverified assumption of the existence of the
Higgs particle(s). |

The cur_fent theory of stréhg interactions, Quantum Chromodynamics (QCD),
is another successful gaugef’theory. The physical reality of the quarks, gluons,

and three color charges that it postulates have been amply verified in diverse phe-



nomena. The existence of quarks, for example, is seen in hadron spectroscopy,
(approximate) Bjorken scaling in deep inelastic lepton-nucleon scattering, and in
the éxiste’nce of jets in ete™ annihilation. The three color charges are necessary
to explain, among other things, the rate of ete™ annihilation into hadrons, the 7°
lifetime, and the existence of the AT+ and 2. The role of gluons as t‘he quanta
of QCD is demonstrated in the existence of three-jet events in ete~ annihilation,
in large pr jets in hadron-hadron collisions, and in the observations from deep
inelastic lepton-nucleon scattering of scaling violations, broad pr distributions,
and the presence of electrically neutral hadronic constituents.

QCD suffers, however, from the relatively large value of its coupling constant,
a;. This means that perturbation theory calculations are less accurate to a given
order than electroweak calculations. What is worse, o is a fairly strong function
of Q?, the four-momentum transfer of the interaction. This running coupling

constant is given by
127
(33 —2ny) In (Q2/A20013)

where n is the number of quark flavors (presumably six) and where Agep ~0.1-

a,(Q%) = (1.1)

0.5 GeV is a parameter to be determined by experiment. This means that for
quark-gluon interactions on the scale of 30 GeV, say, a, ~ 0.15-0.2 and per-
turbation expansions are useful; but that for interactions on the scale of the 1
GeV typical of hadronic masses, o, < 1 and perturbation expansions are use-
less. In a way, this is good news, for it explains the phenomena of confinement
and asymptotic freedom: confinement refers to the fact that isolated quarks are
never observed directly in the lab, but rather are always confined within hadrons;
asymptotic freedom refers to the fact that quarks inside hadrons behave as if they
were non-interacting when probed by large Q2 processes. The running coupling
constant enforces confinement by making the long-range — hence low Q* —

restoring force on a quark heading out of a hadron so strong that it either re-
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mains bound or it becomes energetically favbrable for q@ pairs to materialize
from the strong field energy to “dress” the escaping quark; either way, a quark
can never depart the company of other quarks bound to it in a hadron. The run-
ning coupling constant allows asymptotic freedom because high Q?, short-range
probes interact with quarks inside hadronsin a Q? regime where they are largely
decoupled from one another due to the small magnitude of as;.

While the nature of the running coupling con_étant helps explain the promi-
nent QCD phenomena of confinement and asymp_,tbtic freedom, it makes it impos-
sible to understand the detailed nature of conﬁnénient forces from a perturbative
QCD approabh. Moreover, it makes uncalculable the transition from the initial
qq state crea.téd in ete™ annihilation to the ﬁn.al;observed hadrons, a transition
which of ‘neti:essity involves low Q? gluons and Quarks on the road to hadrons
whose masses are O(1 GeV). The lack of an .":'Va.nalytic theory to predict this
transition to final state hadrons, a process calledl. “hadronization” or “fragmenta-
tion,” necessitates recourse’toi éin_piricai models:i_;'o describe the transition. These
models fypicé.lly are motivated by some underlying physical pyin‘ciple, but resort
to modeling the uncalculable i)rocesses in tern;é of Monte Carlo computer pro-
grams which use random number generators to :éimulate the stochastic processes
involved. |

An ete™ annihilation into hadrons sepa.rates" into four basic svtages, illustrated
in Figure 1.1. First is the electroweak creation of a qq pair from the virtual « or Z°
arising from the ete™ annihilation. The second stage of the event consists of the
hard QCD processes accessible to analytic calculation. The third stage consists
of the soft QCD hadronization process. Fiﬁally, in the fourth stage, hadrons
produced in the .thirdi stage-&xat are unstab_le. decay into the particles ultimately
detected experimentally. As ';iepicted in Figure 1.1, the initial q and q evolve into

the final state hadrons through QCD gluon emission and qq pair creation in a



hadrons

electroweak hadronization , ,
hard QCD ‘ decays

Figure 1.1: Schematic evolution of an e*e™ annihilation into hadrons. The arrows
represent the detected particles.

continuous fashion; the boundaries between the second, third, and fourth stages
~ are arbitrary and set by limitations of the calculational tools brought to bear in
each case. Roughly speaking, the hard QCD phase gives way to hadronization
when Q? is on the order of a few GeV? (i.e. ‘when a, approaches 1), and resonance
decays take over when Q? S1 GeV2.

" The least understood of these four stages is the hadronization process. Sev-
eral different models have been proposed to describe had;dnization; I discuss
some of these in the next chapter. It is the goal of ekp’éfimentalists studying
hadronization to bring as many experimental tests of the various models to bear
as possible. This serves to fine-tune the models for better agreement with ex-

periment, to identify strengths and weaknesses of the models, and to provide



input for future model-builders to revise current models or to construct new
ones. Achieving agreetnent between models and data is. worthwhile at the least
because the event structure produced by fragmentation can be a background for
other measurements of interest, and because fragmentation is the filter through
which the hard QCD processes must be studied. But more importantly, the hope
is that by ferreting out the strengths and weaknesses of various models, insight
' will be gained into the actual physics of hadronization itself. The analogy has
been made that by describing the hadronization process ever more accurately and
completely, the door "'tn::buld be opened tb a true physical theory, much as Kepler’s
precise kinematical descnptlon of elhptlca.l planeta.ry orblts enabled Newton’s
dynamical theory of gravitation.

In this dissertation, I add new ex’?érimeptal meaéiirements to the body of
knowledge describing hadronization. Using data fror”t; e*te™ annihilation into
| hadrons at /s = 29 GeV, collected by the TPC/2v Détector Facility at PEP,

I measure the differential cross-sections 1 _do
g . ﬁdH dz

for three vector mesons: the p°,
the K*d, and the ¢. :'Zli"hese cross-sections are functions of £ = Encson/Epeam =
éEmm,. /+/s; they are normalized to the total hadronié.zr,cross-section og. (The
B in the denominator compensates for. phase-space sup;pression at low = which
would otherwise mask the expected sca,hng behawor) In addition, I integrate
the differential cross-sections to estabhsh measured mu1t1p11c1tles for the three
vector mesons. These multiplicities are in prax;tlce of_ten more useful than the
detailed shape information. of the diﬁ'éfentia.l cross—sections for the purpose of
evaluating the performance of a: modeln\.»'b _r |

One of the characteristic features of fragmentationlfis- that hadrons are not
produced in simple proportlon to the number of available spin states. Since u, d,

and s quarks are so much lighter than the 29 GeV of available energy at PEP, one

might naively predict from Su(6). (ﬁavor) x (spin) symmetry that equal fragmen-
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tation production rates should hold for particles that differ only by the substitu-
tion of an s for a u or d quark, and that vector mesons should be produced three
times as often as their pseudoscalar partners. What is observed, however, is that
strange particles appear in hadronization about a third as often as particles that
differ by the substitution of a u or d quark for an s quark; and that light vector
mesons (those not containing a c or b quark) appear in hadronization with rates
comparable to their pseudoscalar partners. (The production rates from fragmen-
tation are not the same as the rates observed, for decays of higher mass states
contribute to the observed rates. Such decay, or “feed-down,” contributions must
be subtracted from observed rates before comparison of ffagmentatiqn rates can
be made.)

The observed suppression of strange and vector states must be reproduced in
any successful model of hadronization. In this thesis, I use my measured vector
meson multiplicities to quantify the strange suppression in terms of the “s/u”
ratio (the relative production rates of mesons differing by the substitution of an
sforauord quark), and to quantify the light vector meson suppression in terms
of the “V/(V+P)” ratio (the fraction of light mesons of a given quark content
that are vectors instead of pseudoscalars).

The p° K*°, and ¢ are useful particles to consider for a number of reasons.
Vector mesons as a class are produced at rates éxceeded only by pseudoscalar
mesons, so these three particles appear at reasonable rates. Of all SU(3) vector
mesons, only these threebdecay copiously to two charged particles, enabling effi-
cient reconstruction of the parent using the pa.rficle identification ability of the
TPC central tracking chamber. Vector mesons are a better probe of hadroniza-
tion than are pseudoscalars, for they are less diluted by feed-down decays and
hence provide a more direct window on fragmentation. (Another way of saying

this is that the systematic error from feed-down subtraction is smaller for vector



than for pseudoscalar mesons. For example, the Lund Monte Carlo predicts that
almost 90% of observed n* stem from decays of ‘more massive states, whereas
less than 20% of p* originate in particle decay.ﬁ)' Comparisorls of p° and K*°
rates with 7° and K° rates yield two measurements of V/(V+P); and the p°,
K*°, and ¢ contain zero, one, and two strange qua.rks, respectively, allowing for
a redundant measure of the s/u ratio. |

Measuring the con_tirruous function ,Bo-. da: for a glven meson amounts to
making independent measurements of the meson production in each of several
discrete wv bins. One forms invariant mass spectra of meson decay product can-
didates from the data for each z bin; determlmng the area under the resonance
peak establishes the number of mesons observed in the data Normallzatlon to
the total hadronic cross-section is accomplished simply by dividing by the num-
ber of events represented in the mass plot An acceptarrce correction is applied
to account for inefficiencies in detectmg the meson, this correctlon is determined
by perforrmng the 1dent1cal a.nalysxs on Monte Carlo 51mulated events passed
through a detector simulation. |

A complication arises from the fact that the incomirrg et or e~ can emit a
photon before annihilating. The effect of this initial state- radiation is to lower
the /s available in the annihilation, ’w'hich raises the i'radronic cross-section.
If unaccounted for, this would increase the reported ?{%g—:— So that cross-
sections and multiplicities can be compared unambiguously to models and other
experiments, a correction to account for initial state radi?tion must always be
made before reporting results; corrected'r;esults correspond to an unambiguous
/s, easily compared to calculations or Gétlanken experirnents performed with no
initial state radiation. | |

In practice, then, measurmg ﬂ - d:c Boﬂs down to this approximation:

lde_11 Np oo , (1.2)



where
T = Emeson/Ebeam = 2Emeson/\/§a

(3 is some suitably defined average meson speed over the z-bin,
Az is the width of the bin,

. Np is the number of particles observed in the given z bin per accepted event

in the data sample,

Ny is the number of particles observed in the given z bin per accepted event in
the Monte Carlo sample (generated with initial state radiation, processed
through a detector simulation, and analyzed in the same manner as the

data), and

Nyen is the number of particles generated in the given x bin per event in the

Monte Carlo physics generator when run with no initial state radiation.

To understand Equation 1.2, one may view it as (%ALI) %D- where A = Npyc/Nyen
is the acceptance term that simultaneously corrects the observed rate Np for
detector acceptance and initial state radiation. Alternatively, one can think
of Equation 1.2 as (%—Al—;) T Nyen, where r = Np/Npyc is the ratio of mesons
detected in the data (per event) to those in the detector-simulated Monte Carlo
(per event); this amounts to scaling fhe Monte Carlo generator cross-section
by how mﬁch the data exceeds or falls short of the corresponding Monte Carlo
measurement.

In this chapter I have outlined the reasons for interest in understanding
hadronization, and the measurements I make to probe it. In Chapter 2 I ex-
plain in more detail the physics of e*e™ annihilation and models used to describe

hadronization. I describe the TPC/2vy Detector Facility in Chapter 3, and the

manner in which raw data is processed in Chapter 4. Chapters 5, 6, and 7 present



oA

my analyses for the p°, ¢, and K*, respectively; I determine s/u and V/(V+P)

ratios in Chapter 8. I summarize my results and conclusions in Chapter 9.
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Chapter 2

Theory of Hadron Production in
ete™ Annihilation

2.1 Electroweak Production of qq

The annihilation of ete™ into hadrons begins with the electroweak production of

a qq pair through a virtual v or Z°. The QED production of a vspin—% fermion

pair ff through a virtual 4 has the cross-section in the center-of-mass frame -
%(e'fe“ —ff) = ¢} - Z—:(l + cos? ),

where s is the square of the center-of-mass energy, « is the fine-structure constant,

0 is the angle between the f and the e™, and e is the charge of f in units of

the electron charge. This expression is valid in the extreme relativistic limit.

Integrating over angles gives
4ra?

-er.
3s £

This works out to 105¢2 pb (neglecting radiative corrections) for the /s = 29

o(ete” — ff) =

GeV available at PEP. Including the Z° channel in a full electroweak treatment
makes only a small correction to this cross-section. 1

The total cross-section for production of all possible qq pairs is thus

2
olete” — allqg) = (47ra ) -3 el (2.1)
q

3s
= oete” - ptp™) 3> €
q
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where e, is the charge of quark q (in units of the electron charge), the factor
of three is from the three color states available for each quark flavor, and the
sum runs over all quarks light enough to be produced. This is not quite the
same as the total cross-section for production of hadrons, since the quarks can
radiate gluons, thus providing more channels to hadronic final states. Adding a
first order QCD correction to account for this yields the total O(«,) hadronic
cross-section oy = o(ete™ — hadrons):

oy =o(ete” — p+u_) . 3263 (1+ %) . ' 2.2)

P .9 R i S

This hadronic cross-section is often expressed through the ratio R, defined by

o(ete” — hadrons) -

| R= o(etem 5 )
2.2 Hard QCD Processes
The qq pair created in the electroweak ete” annihilation will evolve to the
observed hadrons- through a complicated cascade of. gluon emission and quark
pair creation such_‘_v‘as that pictured in Figure 1.1. S.vome of this pro‘cessb — the
hard QCD stage — is calculable in analytic approximation schemes. There are
two such schemes currently available: fixed order pértmbative QCD (sometimes
called the matrix element (ME) scheme), and the léading logarithm approxima-
tion (LLA). The ME method consists of performi_r;g a perturbativé ‘expansion
in powers of a,, keeping all Feynma.n diagrams up to a given order and ne-
glecting everything beyond. The LLA method uses the renormalization group
technique to sum the most divergent term from every order of as, neglecting all
less severely divergent terms. (Each leading term is logarithmicallyv divergent,
hence the name.)

Since every gluon vertex _cént;ibutes one power Qf as to the cross-section,

an n** order ME calculation can only provide cross-sections for states contain-
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ing no more than n partons beyond the original qq pair. By contrast, the LLA
method can in principle be used to compute cross-sections for states containing
any number of gluons. Both the ME and LLA methods are often lumped under
the appellation “perturbative QCD” to indicate that they are QCD approxima-

tion methods analytically calculable by virtue of the small value of «; at high
Q.
2.2.1 Fixed Order Perturbative QCD

Single gluon emission from the original q or g, pictured in Figure 2.1, contributes
to the O(a;) QCD cross-section. The single gluon emission cross-section can be
expressed as

d20’ ' + - - 20!3 .’1321) + .13%
dr,dzy o(e7e” — all 47) - 3r (1 —z1)(1 — T3)

(2.3)

where z; = 2E,/+\/s, z2 = 2E;/+/s, and o(ete~ — all qq) is the zeroth order
cross-section from Equation 2.1. The gluon emission cross-section diverges if
z, — 1 or o — 1, which corresponds to the gluon being either collinear with the
q or g or being arbitrarily soft. This divergence is not necessarily a problem with
the theory, for naked quarks accompanied by sufficiently soft or collinear gluons
will be indistinguishable from the dressed quarks that result from fragfnehtation.
The divergences in the integrated glﬁon emission cross-section are cancelled by
diver'gences in the O(a;) vertex and propagator corrections to t};e zeroth order
cross-section, so that the total O(a;) cross-section is finite. (It is this result-
ing total O(a;) cross-section that appears in Equation 2.2.) In Monte Carlo
programming, the divergence in Equation 2.3 is handled by imposing arbitrary
cutoffs to z1 and zs.

QCD cross-sections to O(a?) have been computed, although the results de-
pend somewhat on the regularization scheme used to cancel divergences. The

O(a?) terms represent the addition of two partons to the original qq state. Terms
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q e : q

Figure 2 1: Feynman diagrams for single gluon emission from the qq state pro-
duced in e*e™ annihilation.

of O(a3) are difﬁt:ult to calculate and are not used in ME Monte Carlos.
2.2.2 Leading Logarithm Approximation

The most divergent part of Equation 2.3 and higher order terms comes from the
emission of gluons nearly collinear with their paieﬂt parton. The LLA approach
sums these djvefgerit contributions into a finite cross-section, thﬁs describing vpro‘—
cesses invc')lvingv any number of gluons. The radiated gluons can themselvés emit
gluons or split into qq pairs; the ‘resulﬁrié “parton shower” of gluons and quarks
splitting into more gluons and quarks can be computed in the LLA scheme. A
typical parton shower is depicted in Figure 2.4a.

The evolution of the shower is governed by the differential probability dP,_s.
for a given parton a to split into two pa.rtbns b and c, given by

as(Qz) d(mz)

a

APy = Pavte(z )dz - (2.4)

" where m, is the mass of parton a, z is the fra/ction of parton a’s momentum
given to parton b, and P,_.s(2) is'the Altarelli- Pan51 splitting kernel [1 2). These

splitting kernels depend on the type of vertex:

Pobe= . 52 for q — qg,
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z(1—=z)

Pacbe = 1(22+ (1 —2)%) for g — qq.

Soft gluon terms are included in Equation 2.4 in an incoherent manner, i.e.

neglecting their interference. The effect of soft gluon interference has been shown

to restrict the phase space regime allowed for the shower [3]. This forbidden phase

space can be avoided if successive splittings are ordered in decreasing magnitude

of a variable £ defined by

- av* qc
&= E.E.’

where ¢, and Qc are the four-fhornenta of partons b and ¢. For éma.ll values of ¢?
and ¢2, £ ~ (1 — cos6) where 0 is the angle between the f)roduced partons, hence
the name “angular ordering” applied to this prescription.

In Monte Carlo implementation, partons are emitted in the shower under
the control of Equation 2.4, subject to the angular ordering restriction. The
emitted partons become less and less virtual as the shower progresses until some

minimum cutoff is reached, at which point showering is terminated.

2.3 Hadronization Models

The_ analytical tools of the last section can only go so far in describing the tran-
sition from initial qq to observed hadrons; they fail once o, approaches unity.
Hadronization models take over where the ahalyticéi methods leave off. They of-
fer computer programmed prescriptions for stochastically evolving partonic con-
figurations (generated by Monte Carlos that used analytical méthods) through to
final state hadrons. These prescriptions are motivated by somev guiding physical
principles; the successes or failures of a given model should give some insight into
the role of the corresponding physical principle in fragmentation. In éhis section

I discuss four models: independent fragmentation, string fragmentation, cluster

%



15
fragmentation, and the UCLA model.
2.3.1 Independent Fragmentation

The independent fragmentation (IF) ;'nédel was first pfoposed by Field and Feyn—
man [4] as a w@y to conveniéntly describe hadrqnic jeté. In the Field—Feynman
formulation, eax:h’initial quark evdlves into hadrons“independently. Thev evolu-
tion is an iterative process: q and q “sea quarks” materiaiize from thé vaéuum,
one of which binds with the quark left over from the previous iteration to form
a meson, the other sea qua:rk being ;left over fof the next iteration. The ﬂgvor of
the sea quark pair is selected»randpmly in the ratio 2:2:1 for u:d:s to account for
strange quark suppression. The transverse ;r;omenta (with respect to the jet) of
fhe_ sea quarks sum to zero; their relative transverse moment@ is chosen from a
gaussié.n distribution. The lqngitﬁdinal, momentum of the newly created meson is
determined by a probability fuﬁcﬁi’on f(z), which fépresents the probébility that
the meson c_arri.es off a fraction z of the remaining momentum of the jet. The
_inclusive momentum spectrum D(z) of (prim,a.ry) hadrons is then detenningd by
fe) throvgh
D) = £)+ [ L0 =)D/,
where the first term comes from ff_:he first meson i)roduced and the second term
accounts for mesons produced a_f;ilater? iterationsi.:ﬂ:{ ‘The spin of the new meson
is chosen to be one or zero with:-equal probability to account for the observed
V/(V+P) ratio. The iteration halts once the rema;ifling energy in the jet is below
- some threshold. |
The IF approach has flaws as a model of hadronization: energy and mo-
mentum conservation are not irr}"plicit in' the model and must be imposed in an
ad hoc fashion, flavor is not conserved and there are always leftover quarks to

be disposed of somehow, the médel is not manifestly Lorentz covariant, and no
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correlations exist. Between opposing jets. Despite these flaws, it does well in
- reproducing broad characteristics of fragmentation phenomenology, which is all
Field and Feynman ever intended it to do.

Extensions to the model were made by Hoyer [5] to add gluon jets; by Ali [6]
to add b and c quark decay as well as a more elaborate treatment of gluons; and

by Meyer [7] to add a mechanism for baryon production.

2.3.2 String Fragmentation

The central concept of string fragmentation (SF) is that of a color singlet QCD
flux tube, or string, connecting partons. The strong interaction lines of force
from colored partons are assumed to collapse into an essentially one-dimensional
tube due to the mutual interactions of the gluon flux duanta inherent in the
non-Abelian nature of the QCD Lagrangian; stroﬁg interactions between par-
tons occur only through the force applied by the string. Such a string con-
nec{:ing the original q of an ete~ annihilation is depicted in Figure 2.2a. This
one-dimensional flux tube is assumed to carry a constant linear energy den-
sity of about 1 GeV/fim. It is treated as a classical, massless, relativistic, one-
dimensional string with no transverse excitations. |

Fragmentation of the initial quark-string-antiquark system is understood as
follows. As the original qq pair separates in the center-of-mass frame, energy is
deposited into the elongation of the string. It becomes eﬁergetically favorable
for a q@ pair to materialize from the vacuum in such a manner as to screen
the color charge flux in between them, thereby reducing ’.che.pqtehtial energy
contained in the field. That is, the string severs into two pieces, each of which
now ends on one of the new quarks as illustrated in Figure 2.2b. Each piece of
string can sever again by the same argumenf. This process continues until the

individual quark-string-antiquark segments are no longer energetically favored to
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Figure 2.2: String fragmentation into hadrons. (a) The string connecting the
original qq pair. (b) A break in the string by creation of a q§ pair from the
‘vacuum. (c) The string hadronized into mesons. (d) The string hadronized into
~ mesons and baryons. :

break: this occurs when confinement forces take over to make the quark-string-
antiquark segrnents bound states — mesons — that would absorb rather than
release energy upon cleaving. Put another way, the fragmentation process stops
when the energy debt in creating new mesons exceeds’the profit of removing
energy from the field. The end result of the string fragmentation is a collection
of quark-string—anti’ciuark objects which are inesons,'as pictured in Figure 2.2c.

The picture so far does not accommodate baryon production. Baryons can
be incorporated by assuming that diquark-antidiquark pairs instead of quark-
antiquark pairs are occasior;ally produced from the vacuum. These diquarks are
not taken to be new fundamental particles, but simply to be two ordinary qg
creations sufficiently close in phase space that the color field effectively acts on
the qq and the q as umts Inclusion of thJs mechanism of baryon production
results in the picture of stﬁﬁ’g fragrhenta'ti(;r'l‘shbwn' in Figure 2.2d.

There are several heuristic arguments for exploring the string concept as a ba-
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sis for hadronization. The 141 dimensional QED model of Schwinger [8] predicts
stringlike fragmentation characteristics. QCD lattice gauge theory calculations
predict linear QCD binding potentials [9]. Charm specfbroscopy can be under-
stood in terms of linear binding potentials [10]. Regge trajectories (which show
hadron masses m) appearing on loci given by m} o« J + constant) can be inter-
preted by considering rotational modes of a relativistic string [11]. Whatever the
motivations for the approach, however, its success must be judged in comparisons
with .da,ta, which I discuss briefly in Section 2.3.5.

The most successful implementation of the SF approach is made by the Lund
model [12,13,14]. To implement the string fragmentation picture, the Lund
Monte Carlo uses an iterative procedure: the remaining string from the pre-
vious stage is fragmehted into a hadron plus a leftover piece of string that then
serves as input for the following stage. The hadron carries off one of the q;arks
that terminated the string at the start of the current iteration plus one of the
vacuum (di)quarks; the other vacuum (di)quark terminates the lefﬁover string.

The formation of a hadron in the model occurs through several steps, first
at the quark level, then at the hadron level. The first steps are to select the
flavor and pr (with respect to the string direction) of the quark pair or diquark
pair materializing from the vacuum. (Diquarks appear in the process at a rate
governed by the Lund qq/q parameter. Since the steps are substantially the same
if quarks materialize instead of diquarks, for ease of explanation I will discuss
the chain of events only for quark production from the vacuum.) Combined with
the known flavor and pr of the quark terminating the string that will also enter
the hadron, this specifies the total flavor content and pr of the hadron.

Field theoretically, the vacuum qgq must b.e produced at a point. This violates
energy conservation, however, for energy is put into quark masses and pr but

not removed from the string. The Lund model assumes the materialization of qq

£
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pairs can be deécribed by creation at a point followed by quantum mechanical
tunneling to the classically allowed locations, where the energy in the eliminated
portion of string balances the mass and pr of the new qq. - A WKB calculation
using constituent quark masses predicts that the probability of ut : dd :s5:cc
tunneling to the allowed region is roughly in the ratio 1 : 1 : 0.3 : 107'*. This
mechanism accounts for: strange quark suppression, and dictates that ¢ and b
quarks are not produced at all in ha,dronize,tion. Moreover, the WKB calculation
predicts a gaussian spread in pr that is decoupléd from the flavor assignment,
a natural way to explain the observed gaussian spread of pT in jets. While
predicting the general quantitative behavior of strange quark snppreSSion and pr
distribution, the Lund model does not use the WKB calculation to constrain these
quantities; rather, it leaves them as free parameters of the model, to be adjusted
for best agreement with data. Thus, the.'ﬂavor of the q@ paJr is chosen randomly
in the ratiol:1: (s / u) for ui : dd : S8, and the pr is chosen independently from
a gauss1an of width aq (and randormzed in azimuth). Slnce the string has no
transverse excitations, the pr of vacuum: quark and ant1quark sum to zero.

After the flavor content of the hadron is 'specified, 1ts 1dent1ty 1S unique once
the angular momentum assignment is made Since the strmg carries no transverse
exc1tat10ns it contributes no orbital angular momentum, and the total angular
momentum of the hadrqn is determined by the total spm-._:.(Thus only vector and
pseudoscalar mesons, and octet and decn_:élet baryons, are"accommodated by the
model.)' For mesons, the spin is chosen go be one or 'zere‘in accordance with a
V/(V+P) weighting factor that is left asa free pa.ramete;fof the model.

At this point the identity of the hadron is known (as is its pT) its mass my,
is chosen from the approprlate resonance line shape (Wthh is a 6- functlon for
stable partxcles). A quantlty called “transyerse mass” is defined by m% = mi+p.

This is used in determining the only reméjning piece of information necessary to
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completely describe the kinematics of the hadron, its longitudinal (Wifh respect
to the string) momentum.

This longitudinal momentum, p;, is drawn from a probability function (called
the “fragmentation function”) similar in purpose to f(z) in the IF model. In the

Lund model the fragmentation function f(z) is given by
—z)° bm? .
f(z) x Q—Z—z—)~ exp (——n;-l> (2.5)

where z is the fraction of the light cone variable (E + pl) available in the string
that is carried off by the hadron. Called the Lund symmetric fragméﬁtation
function (LSFF), this has been shown to be the only possible form for a Lorentz
covariant fragmentation function under certain general assumptions about the
shape of the central rapidity distribution, and under the requirement that the
resulting event should not depend (on average) on which end of the string the
fragmentation begins at [15]. (The most general form éf the LSFF is actually
a little more encompassing in that a may depend on flavor, but Equation 2.5
is the implementation of the LSFF in the Lund package used in this thesis.)
The formation of hadrons continues until the (E + p;) remaining in the string
falls below a cutoff, at which point the remaining string decays into two hadrons
accordiﬁ.g to two-body‘phase space. -

So far in this description no provision has been made for' glﬁons. Gluons are
incorporated as kinks in the string as pictured in Figure 2.3; two pieces of string
.may contact a gluon by virtue of its two color indices. (In contrast, strings must
always terminate on quarké, which carry only one color index.) The SF method
can thus be mated with any hard QCD approximation scheme: whatever the
partonic configuration presented by the hard QCD event generator, one connects
the partons by a string (appropriately kinked at the gluons) and turns loose the
SF algorithm.

The Lund model does well in reproducing experimental results. Its main
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Figure 2.3: Incorporating gluons into the Lund model by introducing a kink in

the string.
=T v VY (7 ¥ _
Qs a Iq b S/u (m) u,d (m) s (m) cb
0.183 | 0.955 | 0.350 GeV/c | 0.6 {0.30 | - 0.5 0.6 - 0.75

Table 2.1: Values of Lund v5.3 parameters used in this thesis..

drawback as a modeliis its plethora of free parameters: what is gained in flexibility
and accuracy is lost in lack of physical insight and dee?eased universality. -

I use the Lund Monte Carlo extensively in this .‘Vt‘r:'hesis. I always use Lund
v5.3 with the O(af)‘ ME scheme for the hard QCD phase The parameters have
. been left at default.,. except for three — as, 04, a — which have been tuned to

reach agreement with several experi;nental measﬁres ef momentum flow at PEP
-[16]. The values of these parameters, as well as some relevant_ default values, are
listed in Table 2.1. (The only time different pa.ramefers are used is 1n Chapter

8, where I perform a different tune of parameters taking the values of Table 2.1

as a starting poin'ﬁ-;)
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2.3.3 Cluster Fragmentation

The central concept of cluster fragmentation (CF) models is that of preconfine-
ment. Preconfinement is a phenomenon ‘resulting from the fact that in LLA
events, color flow lines tend not to cross. The partons arising in the LLA scheme
can therefore be grouped into localized color singlet objects, called clusters [17].
Figure 2.4b shows the color flow and resulting clusters for the LLA event of Fig-
ure 2.4a. Being a color singlet, a cluster is capable of decaying directly to color
singlet hadrons; it .is also at least partly screened from the internal color charges
of its neighboring cluster and hence approximately free to decay to hadrons in-
dependently of other clusters.. These clusters appear at the mass scale where «;,
approaches unity, regardless of the original Q? available in the primary interac-
tion. The clusters’ universal mass scale, their existence as color singlets, and
their independent decay to hadrons gives clusters some hadron-like properties,
hence the term preconfinement (in analogy to confinement of hadrons).

A CF model, then, combines the assumptioh of clusters with an Ansatz for
their decay to hadrons. (Note that CF only works in conjunction with the LLA
approach to hard QCD processes.) A fruitful Ansatz for cluster decay, proposed
by Wolfram [18], is that qq clusters decay (through.auxiliary creation of a sea
(di)quark pair) isotropically into two hadrons whose identity is determined —
consistent with the cluster flavor content — entirely according to probabilities
proportional to available phase space. That is, all sea quark pairs are assumed
to be equally likely; all possible hadron pairs are considered as cluster decay
products, each weighted solely by their available phase space. Thus the suppres-
sion of strange hadrons and vector mesons is understood to be due only to their
generally higher mass. The pr distribution falls out naturally in this algorithm,
too, without recourse to a separate parameterization. |

This cluster decay Ansatz was taken by Webber as the basis for his CF model



Figure 2.4: (a) A typical LLA parton shower. (b) The color flow of the same
event, after gluons split into q@ pairs; the blobs represent preconfinement into
color singlet clusters. (Diagrams from Webber [3].)

23
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Aqcp Qo M;
0.25 GeV | 0.6 GeV | 3.5 GeV

Table 2.2: Parameter values used in Webber v3.0 Monte Carlo.

[3]; I use the Webber v3.0 Monte Carlo extensi'vely in this thesis with all pa-
rameters taken at default. Following Wolfram’s leéd, Webber requires all gluons
remaining at the end of LLA evolution to split into qg Ipa.irs before the formation
of clusters, so that all clusters consist of q+ @ with no gluons. This g — q{ split-
ting was imposed on the event of Figuré 2.4a before the color flow in Figure 2.4b
was established.

The only parameters of the Webbexl model are Agcp and the virtuality cutoff
of the parton shower Qo, and the maximum allowed cluster mass M ¢. (Clusters
more massive than M fission into two clusters Before applicétion of the isotropic
cluster decay algorithm.) Quark masses are set to m;, = 5.3 GeV, m. =1.9 GeV,
my; = 0.5 GeV, and m, = my = 0.3 GeV. The default values for the model’s
paramefers are listed in Table 22

To weight all possible decay products by their available phase space, one must
have an assumed table of allowed decay products. Webber v3.0 uses as allowed
decay products all 0, 1*, 17, and 2+ SU(3) mesons, all %"’ and %+ octet and
decuplet baryons, and well-established charmed hédrons. Bottom quarks are
decayed weakly before cluster formation, so thatv the only' quarks remaining to
form clusters are u, d, s, and c.

The Webber Monte Carlo has the beauty of using a minimum of free param-
eters to define an algorithm that works to reproduce a wide range of observed
phenomena. When the model has been demonstrated to have shortcomings,
Webber has patched it in various ways to better agree with experiment; the

improved agreement comes at the cost of introducing extra parameters and as-
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sumptions. Some of the changes in versions subsequent to v3.0 are mentioned in

Section 2.3.5.

2.3.4 UCLA Model

A recent modification of the Lund scheme has been advanced by Buchanan and
Chun at UCLA [19]. In this UCLA model, the LSFF of Equation 2.5 is reinter-
preted as a simultaneous probability density in my, pr, and z = (E+p;) hedron /(E+
D1)jet- That is, the .hadroﬁ’s identity and morh_e_htum are selected simultaneously
at the hadron level, with no quark level par%;net‘ers such as s/u or qq/q. The
scheme is iterative, so that each‘potential héhroﬁ is Weighted'by its Clebsch-
Gordan coupling to potential sea .quarks (whlch automatically accoﬁnté for spin
counting) as well as weighted by the LSFF. Because selection of s5 sea quarks
(instead of ui or dd) produces two heavier hé@rons, the overall prdbability of a
given decay chain will be suppfessed by mor_el.than is apparent from the single
heavier hadron appearing at one stage of thé iteration. To account for this, all
possible decay chains from two future iteratiéfi_é are also weighted into the hadron
selection. ) v

Since thev selection of f)roduced hadror%S depends only 6n the final staté
hadrons themselvés, and because the global decay sequeﬁcé is. weighted By cou-
pling successive fragmentation iterations, thls method is in the spirit of ‘fepr;)—
ducing an overall global quantum mechanica.yl.:.' trahéition from inifial state to ﬁnal
state. All s/u and V/(V+P) suppression is accoﬁﬁtéd for by suppression of
higher mass hadrons in a highly con'straand manner: the oﬁly free parameters
of the model are a and b in the LSFF. The ';.utomatic .suppreséions and few free

parameters are advantages of this model in common with CF models.
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2.3.5 Experimental Status of Models

Of the SF, CF, and UCLA models just described, none stands out from the others
as clearly better or worse; each has regimes where it performs well and where it
performs poorly. I will touch on some of the major expefimenfal arenas where
the models are tested.

Each predicts the pseudoscalar and vector meson and octet and decuplet
baryon multiplicities reasonably correctly [20,19]. Each fails to predict inclusive
m, Kand p differential cross-sections and fractions correctly over some sigrificant
momentum interval [21]. The IF model suffers because only it fails to reproduce
the “string effeét” in three jet events (the phenomenon that the region between
two quark jets is less populated than that between quark and gluon jets) [22,23].

The Webber model predicts too few hadrons at high z, an artifact of the two-
body decay of the cluster which guarantees that no single hadron gets all the
available energy [24,21]. (This has been cured in Webber versions subsequent to
v3.0 by allowing some clusters to “decay” to a single hadron.) Webber v3.0 also
fails to reproduce the observed peaking of pp production in the jet direction; this
is an artifact of isotropic cluster decay [25]. (Subsequent versions allow some g —
qqdq splittings which creates three-quark clusters to alleviate this discrepancy.
The baryon decay products of these clusters tend to follow the clusters’ boost,
which is in the direction of the jet.) |

Both the Lund and Webber models as used ih this thesis fail to predict ra-
pidity distributions correctly for events with sphericity intermediate between two
and three jet events [26]. (Lund v6.3, which implements a parton shower to gen-
erate the hard QCD parton configuration, does much better.) The LLA-based
Lund v6.3 and Webber Monte Carlos yield a momentum spectrum for the gluon
jet in three jet events softer than quark jets, in agreement with da,ta;_ Lund using

the ME scheme predicts a gluon jet spectrum that is too hard [27,20].
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Chapte’r 3

Experimental Apparatus

3.1 PEP

* The data used in this di;eertation were celiected by the TPC/2v detector facility.
This féi‘é’ility. is operate_ctat Interaction Reglon 2 of the PEP ete~ storage ring,
loca;tedv.”at the Stanfofd:::‘_Linear Aecelere'_itor Center. This storage ring contains
counter-rotating b'eams"‘:..o‘f electrons and Isesitrons, each beamn consisting of three
discrete bunches which meet at six interaction regions. The beam energy is 14.5
GeV for a total center-of-mass ehergy ef 29 GeV. Beam crossings occur every
2.44 psec; a typical oijerating lufhinosity is ~ 1-2 x 1031 cm™2%sec”!. With a
cross-section of 0.4 nb for ete~ annihilation into a qq pair at 29 GeV, this means

annihilation-channel hadronic events occur once every ~ 2—4 minutes.

3.2 Detector Systems
3.2.1 TPC/2y Detector Fae'_ility

The TPC/2v detector facﬂlty is an assembly of several detector and support
subsystems. It has been described in detail elsewhere [28]. It is a so—called gen-
eral purpose’ detector des1gned to detect a.nd record as much information about
interesting events as p0551b1e for later ofﬂlne ana.lysm The overall geometry is

an azimuthally symmetrlc “barrel” structure of components concentric about the
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beamline, plus fore and aft “endcap” components.

The TPC/2+ facility is shown in a longitudinal section in Figure 3.1, with the
central elements isolated in Figure 3.2 and Figure 3.3. The detector closest to
the interaction point is the Inner Drift Chamber (IDC), a wire chamber used for
triggering. The next detector outside of this in the barrel portion of the facility is
the Time Projection Chamber (TPC), a proportional wire chamber that provides
the main charged particle tracking and particle identification. Surrounding this
is a superconducting magnet creating a 13.25 kG solenoida.i field in the TPC to
enable momentum measurement of the recorded tracks; specially shaped pole-
tips in the endcap ensure uniformity of the field. Outsi‘de the magnet is the
Outer Drift Chamber (ODC), a wire chamber used for triggering and tagging
of photons that convert in the magnet. External to this is the Electromagnetic
Hexagonal Calorimeter (HEX), a wire chamber sampling shower counter operated
in limited Geiger mode. The outermost system in the barrel geometry is the
muon detection system, consisting of shielding iron to absorb particles other
than mﬁons (and to provide a return magnetic flux path) and wire proportional
chambers. The endcap detector closest to the interaction point is the Pole-
Tip Calorimeter (PTC), a wire chamber sampling shower counter operated in
proportional mode. QOutside of the PTC are more muon system layers of absorber
iron and wire chambers. Further out, and providing coverage at angles closer
to the beamline, are assemblies of detectors known collectively as the Forward
Detectors, which are used primarily in the detection of two-photon events. The
IDC, TPC, and PTC are inside the same 8.5 atm pressure volume, delimited by
an inner radius pressure wall, the magnet cryostat, and the magnet pole-tips; the
other gas chambers operate at 1 atm.

The analysis in this thesis overtly uses only the charged particle tracking and

particle identification information from the TPC, the other subsystems being
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Figure 3.1: Loﬁgitudinal section of the TPC/2v detector facility.
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Figure 3.2: Longitudinal section of the TPC/2~v detector facility, omitting the
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relevant only through their role in triggering. I will therefore describe the other

systems only briefly, but the TPC in some detail.

IDC

The IDC [29,30] is 1.2 m long, extending in radius from about 13 cm to 19 cm.
This covers 95% of 4m solid angle. It contains fouf cylindrical layers of 60 axial
sense wires each; the wires in a layer are spaced evenly in azimuth, with 1.2 cm
radially between layers. The volume is divided electrostatically into cells about
each sense wire by field-shaping wires. Each layer is offset azimuthally from its
neighbors by a one-half cell rotation. The wires éperate in proportional mode in
an 8.5 atm argon (80%)-methane (20%) gas mixture. This detector provides fast

azimuthal iﬁformatioh for triggering, but no longitudinal information.

ODC

The ODC [30] is 3 m long, extending in radius from 1.19 m to 1.24 m. This
covers T7% of 4 solid angle. It contains three cylindrical layers of 216 axial
sense wireé each; the wires in a layer are spaced evenly in azimuth, with 2 cm
radially between layers. The middle layer is offset azimuthally from the inner
layer by a one-half cell rotation; the outer layer is offset by an additional quarter
cell rotation. The wires operate in proportional mode in a 1 atm argon (80%)-
methane (20%) gas mixture. Like the IDC, this detector offers only azimuthal

track information.

HEX

The HEX calorimeter [31,32,33] consists of six modules, each 4.2 m long and
trapezoidal in a cross-section taken perpendicular to the beam. Assembled into

a hexagonal geometry surrounding the ODC, this covers 75% of 47 solid angle.
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Each module is 10.4 radiation lengths thick, consisting of a 40 layer sandwich of
0.14 cm thick lead plates and 0.6 cm gas gaps containing sense wires. The lead
provides a medium for electromagnetic showers which are sampled for magnitude
and location by the wire chambers. Inéide each gas gap parallel sense wires
are strung éxially, 0.5 cm apart. The wires are operated in Geiger mode in a
1 atm argon (92.3%)-methylal (5.5%)-nitrous oxide (2.2%) gas mixture. Nylon
filaments strung perpendicular to and touching the sense wires limit the Geiger
discharges to cells 1.0 cm long. Cathode strips are mounted on the cell walls to
capacitively sense the Geiger discharges. These strips run at £60° with respect to
the wires on facing walls of a gas gap, so that wire and cathode readout together

provide three stereo views of the shower in each layer.

Muon System

'The muon system [34] consists of interleaved layers of iron absorber and propor-
tional wire cells operating in 1 atm of argon (80%)-methane (20%). Structurally,
these célls are aluminum tubes triangular in cross-section, 8.26 cm high. The
barrel portion of the system lies outside the HEX with the same hexagonal ge-
ometry. It contains four layers of wire cells, the inner three running parallel to
the beam direction, the outermost oriented at 90° to the beam. Between the in-
nermost layer of cells and the HEX is 30 cm of iron, which serves as the magnet
return yoke as well as absorber. Between the inner two chamber layers lies an
additional 35 cm of iron, with a final 30 cm iron layer lying between the middle
two chanAlber‘layers. The endcap detectors only contain three chamber layers,
the middle one oriented horizontally, the others running vertically; 20 cm of iron
sits between the inner layer and the outer two layers. The muon system provides
coverage over 98% of 47 solid angle, but with performance varying with the angle

of a track, due to the varying thickness (4-11 interaction lengths) of absorber
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traversed by the track.

PTC

The PTC [35] consists of two endcap detectors, together covering 18% of 4w
solid angle. Each detector is 13.5 radiation lengths thick, consisting of a 51 layer
sandwich of lead plateé and 0.41 cm gas gaps containing parallel sense wires.
The lead thickness and wire spacing is a function of depth into the detector. The
direction of the wires in successive layers is rotated azimuthally by 60°, so that
three consecutive layers provide thfee stereo views of a shower. The wires operate

in proportional mode in an 8.5 atm argon (80%)-methane (20%) gas mixture.

Forward Detectors

The Forward Detectors provide particle tracking, identification, and calorimetry
capabilities at angles close to the beamline, subtending the polar angles 22-180
mrad. A set of five drift chambers perform charged particle tracking_. Particle
identification is done by threshold Cerenkov counters, time-of-flight couhters, and
muon chambers behind iron absorbers. Calorimetry duties are split between a

Nal array (22-90 mrad) and a lead-scintillator sandwich shower counter (100-180

mrad).

3.2.2 TPC
3.2.2.1 Operation

The TPC is a cylindrical drift chamber 2 m in diameter and 2 m long, operating
in an 8.5 atm argon (80%)-methane (20%) gas mixture [36,37]. The chamber is
immersed in a 13.25 kG axial fnagnetic field. Midway down its length a wire mesh
at negative high voltage bisects the cylinder to establish an axial electric field

pointing from the ground potential endcaps. Metallic equipotential rings in the
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Figure 3.4: Schematic view of the TPC geometry, showing E field, B field, and
electron drift directions, and sectors in the endcaps. For simplicity, tracks from
the interaction are not shown curving in the magnetic field. : :

G-10 walls of the TPC enforce uniformity of the elecfric field. Cha.rged particles
traversing the TPC leave ionization trails in the gas; the liberated electrons in
this track drift under the influerice of the electric field to the endcaps where
they are detected by proportional wire arrays. The midplane mesh was initially
o held at -50 kV for the data used in this thésis, imposing a drift speed of about
3.3 cm/ uéec; the voltage was increased to -55 kV partway through the rﬁnning
cycle. Figufe 3.4 shows schernatica.lly the géometry of the TPC and the electron
drift. The right-handed detector coordinate system has x horizontal and pointing
outward (roughly east) from the center of PEP, y vértical, and z parallel to the
beam (pointing roughly éouth). |

The endcaps, which contain the proportional wire arrays, are each composed
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of six identical kite-shaped modules, called sectors. A local riéht-handed coor-

dinate system is defined for each sector: n points left to right in the plané of
the sector face (roughly the azimuthal direction when installed in the TPC), §{
points radially outward along the sector midline in the plane of the sector face,

and z points perpendicular to the sector face into the TPC volume. Each sector

has 183 parallel sense wires, running in the 7 direction. The wires are spaced

0.4 cm apart and 0.4 cm above the grounded cathode plane. The cathode plane

is subdivided in places into electrically isolated rectangles, called pads, which

are virtually grounded through amplifiers in order to sense the capacitively in- -
duced signals from avalanches on overhead wires. These pads are 0.75 cm high

by 0.70 vcm'wide, arranged into 15 rows running parallel to the sense wires, with

0.05 cm between pads in a row. Each pad row is centered under a sense wire,

receiving effectively their entire induced signal from the five closest wires. The

centers of the pad rows are located at the following ¢ distances (in cm) from the

interaction point: 23.6, 28.4, 33.6, 38.8, 44.0, 49.2, 54.4, 59.6, 64.8, 70.0, 75.2,

80.4, 85.2, 90.0, and 94.8. The arrangement of pad rows and sense wires in a

sector is shown schematically in Figure 3.5; the configuration of sectors in the

endcaps is shown schematically in Figure 3.4.

The arrangement of wire grids abo{fe the cathode plane is shown in Figure 3.6.
The sense wires are interleaved with field wires which help shape the electrostatic
configuration near the sense wires. A grounded grid of wires, called the shielding
grid, is located 0.4 cm above the sense and field wires. "I‘he shielding grid defines
the ground plane seen by the TPC midplane high-voltage mesh, and separates
the proportional cells from the electron drift region. Above the shielding grid by
an additional 0.8 cm is a grid of wires called the gating grid.

The gating grid acts as a normally closed “electronic shutter.” In its open

(transparent) mode, the wires of this grid are set to Vgg, a negative voltage such
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Figure 3.5: Schematic view of a sector, with a close-up of part of a pad row.
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Figure 3.6: Conﬁguratién of wire planes above the cathode plane of a sector.
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that field lines running from the drift region to the sense wires are uninterrupted:
drifting electrons can reach the sense wires. (In practice, Vgg roughly doubles
the field between the gating grid and the shielding grid relative to the drift field
_in the main volume of the TPC.) In its closed (opaque) mode, offset voltages
+AVge and —AVgg are added to Vgg on alternate wires, which has the effect
of deflecting the drift and sense wire_ﬁelci lines to end on the gating grid: both
drifting electrons and avalanche-produced positive ions discharge at the gating
grid. This grid when closed thereby prevents positive ions from fentering the drift
region where they wouid distort the uniform electric field by their space charge,
and hence distort the apparent trajectories of reconstructed tracks. In use, the
gating grid is left closed until a pre-pretrigger decision (described in Section 3.3)
switches it 6pen just long enough for the ionization trails of intereé@ to drift to
the sense wires; it closes again before the slowly-moving positive ions can escape
into the drift region.

The ionization trails from charged particle tracks drift to the sectors, where
amplitude and arrival time are measured for the resulting pulses on wires and
pads. Because the drift field is uniform, the ionization lands on the endcaps as
a direct axial projection of the original ionization trail. The locations of the hit
pads give two-dimensional (x-y) information about the location in space of the
original ionization trail; the arrival vtime‘, coupled with knowledge of the electron
drift speed, gives the axial third coordinate (z). The pad signals therefore give
three-dimensional space points along a track, from which the track can be recon-
structed. The curvature of the track in the axial magnetic field is proportional to
its (transverse) momentum and its electric charge, so reconstructing the helical
trajectory of a particle enables the measurement of these quantities. The wire
signals only give two-dimensional spatial information, which can be used to re-

fine the spatial information of the pads. More importantly, the amplitudes of the
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wire signals constitute a large number of independent samples of the particle’s
ionization energy loss per unit track length, dE/dx. This ionization energy loss is
a function only of the speed of the particle, so measuring dE/dx measures speed;
coupled with the simultaneous measurement of momentum, this amounts to a
mass — i.e. particle identity — measurement. This ability to identify charged
particles is the greatest strength of the TPC/2v detector facility. I discuss par-
ticle identification in more detail in Section 4.1.2.

Tracks need to cross at least three pad rows to define the helical orbit. The
angular coverage of tracks in the TPC that cross at least three pad rows is about
95% of 4w solid angle.

To detect pulses on wires and pads, the signals are coupled to preamplifiers
mounted on the backs of the sectors. These preamplifiers integrate charge to form
a step output with a long decay. These output steps are amplified and shaped to
pulses having a rise time of ~ 250 nsec (with comparable decay time) by shaper
amplifiers located outside the detector’s radiation shielding. These shaped pulses
are sampled every 100 nsec by a “bucket brigade” linear CCD shift register, each
sample being passed to the next bucket at every CCD clock. The CCDs are 455
- buckets long, and so can hold a total time history of 45.5 usec of shaper amp
output at the normal 10 MHz clock rate. If a trigger decision (Section 3.3) is made
to read out the event, the clock rate is slowed to 20 kHz so that (relatively slow)
9-bit ADCs can digitize the CCD samples. Zero-suppression is performed by
comparing the ADC counts to software-controlled thresholds; counts exceeding
threshold are read along with their bucket number (i.e. time) into the online
data acquisition VAX 11/782 computer.

A minimum ionizing track typically has 5-7 ADC buckets above threshold
for each wire or pad signal, with a maximum wire signal of ~ 70 ADC counts

above pedestal. A parabola is fit to the three largest ADC counts to define the
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magnitude and arrival time for that pulse. A track typically induces signals on
2-3 adjacent pads in a pad row, so hits on adjacent pads arriving at nearly the
same time are grouped to determine a space point for a track by simpiy averaging
(weighted by pulse heights) the pad positions and arrival times.

These rudimentary space points allow pattern recognition programs to iden-
tify tracks and associate the corresponding wire hits with them. Once this is
done, the track direction and wire infomation is used to refine the space points.
The location of a spacé point in 7 is determined by a gaussian fit to the am-
i’)litudes of the grouped pads; if less than three pads are above threshold then
the width of the gaussian is fixed by a parameterization as a function of drift
distance and track angle o, where « is the ahgle of the track with respect to the
pad row in the x-y plane. A small correction,

2 2
An = Z zw,H,/ z wiHi Dtana,

1=—2 1=—2

is applied to account for ionization fluctuations in the five wires closest to the

pads, where
w; is the wire-to-pad coupling weight for wire i,
H; is the pulse amplitude on wire i,
D is the spacing between wires, and

1 = 0 labels the wire centered on the pad row.

The location of a space point in £ is taken to be the pad row center, plus a

correction

2 2
A€= z iwiHi/ Z wiHi D.

1=-2 1==2

The location of a space point in z is simply the average of the pad z values
weighted by the pad amplitudes. These refined space points are used for subse-

quent, more accurate, track fitting.
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3.2.2.2 Calibration

Calibration of the electronics (i.e. amplifiers, CCDs, and digitizersl) is done in
two steps. First, the pedestal (the output with no input signal) is measured for
each channel. This is a baseline that must be subtracted from the raw ADC
counts to arrive at the true signal in a given channél. The pedestal is typically
~ 30 ADC counts (out of a maximum of 511), with a slope of one or two counts
per 100 CCD buckets (due to CCD leakage currents). Second, the relative gain
curve for each electronics channel is determined by pulsing the shielding grid with
precision pulses of several amplitudes to induce signals on the wires and pads.
The absolute normalization of this gain curve is not determined. The complete
electronics qalibration 1s pgrfomned on the order of once a month, with daily
monitoring calibrations. The electronics calibration translates the ADC counts
to éva.lanche size at the wires and pads (up to an overall normalization).

Calibration of the gas gain is done in two steps. First, a permanent gain
map of each sector was made before installation into the TPC by irradiating the -
sector (operating in a test vessel) with *Fe sources in a precise pattern. Gain
variations are primarily due to non-uniformities in wire diameters and wire-to-
cathode spacing. Second, periodic in situ corrections to this gain map are made
from the results of irradiating the wires with 3Fe sources located within the
sectors. These **Fe data acquisition runs were made on the order of once a
month. .Ga.in variations from pressure, temperature, and sense voltage changes
are accounted for by monitoring these variables for every event and correcting
the data accordingly. These calibrations translate the wire signal sizes to the
amount of initial ionization incident on the wires (up to an overall normalization
constant).

In addition to these hardware calibrations, several corrections must be applied

to the data that are determined from the data themselves. This requires the data
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analysis to be done in several stages in an iterative fashion, using the results
from previous analysis stages to refine the various corrections for subsequent,
more accurate, analysis stages. This iterative procedure is outlined in the next
chapter.

Data collection is divided into runs that typically consist of a few thousand
events acquired under a stable configuration of PEP and the detector over a pe-
riod on the order of an hour. By averaging over many events in a run, values
can be determined for slowly time-varying characteristics of the TPC operation.
Electron drift speed, precise knowledge of which is needed for z position mea-
" surement, is determined by matching the two parts of tracks that cross the TPC
midplane, and also by defining drift over the entire TPC length to correspond
to the time éndpoint of signals in an endcap. Electron diffusion and absorbtion,
which both attenuate pulse height as a function of drift distance, are measured
by dividing tracks in half and comparing the ionization from the half nearest the
endcap to that from the half farthest away. The absolute gain normalization is
set by defining the average dE/dx of minimum ionizing pions (a well-identified
set of tracks) to be 12.1 keV/cm. The beam interaction point is measured by
fitting a common vertex to tracks in an event, then averaging over e\./ents.

Additional corrections to the data must also be made on a track-to-track basis.
An example of this has already been seen in the track angle dependent corrections
to the pad space points. Another instance is that the dE/dx measurement for a
track must be adjusted as a function of polar angle, to account for the increased
track length integrated by each sense wire when a track is not parallel to the

sector.
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3.2.2.3 Resolutions
Position Resolution

The position resolutions in both x-y and z are expected to be limited by diffu-
sion of the drifting electrons, electronics noise and miscalibration, and ionization
fluctuations at the wires. The position resolution in z is also degraded by uncer-
tainties in the pulse arrival times. The ionization fluctuation contributions should
be angle dependent: fluctuations for tracks perpendicular to the pad rows will
not affect the x-y measurements, fluctuations for tracks parallel to the e;1dcaps
will not affect the z measurement; but for angles other than these; fluctuations
can smear the measurements.

Empirical measurements of the position resolutions confirm this angle depen-
dence. Cosmic ray tracks are reconstructed with one pad row excluded from
the fit; gaussian fits to the residuals of the excluded space points measure the
resolution. The measured resolution in the x-y plane is 120-200 pm, depending

on the track angle «; the z resolution is 160-250 pm, depending on polar angle.

Momentum Resolution

The (transverse) momentum of a track is related to its radius of curvature in a

magnetic field through the expression

_ 3335P%
R—-3335B

where R is the radius of curvature (in cm) of the track, p; is the component
of track momentum in the x-y plane (in GeV/c), B is the axial magnetic field
strength (in kG), and where the particle’s charge magnitude is assumed to be
that of the electron. Measuring the curvature of a track thus measures p, , which
amounts to knowledge of total momentum p if the polar angle of the track is

known. In short, measuring momentum boils down to measuring the track.



45

Inner || Radiation | Cumulative

Component Radius Length | Rad. Length
(cm) (%) (%)
Beampipe 8.50 2.3 , 2.3
Cooling Tubes 8.70 0.3 2.6
Pressure Wall 10.95 7.1 _ 9.7
Gas Gap 11.59 0.1 9.8

IDC | 1318 | 26 12.4

Insulator + Field Cage || 20.00 3.2 - 15.6
TPC Volume 22.25 4.9 20.5

Table 3.1: Thickness of material between the TPC and the interaction point.

In the TPC, the final track measurements are performed in the programs
TRAGIC and VERTEX. These are run after a preliminary identity assignment has
been made for the track based on dE/dx information, so that mass-dependent
energy losses in traversing material before entering the TPC and in the TPC gas
can be taken into account. The thicknesses of components between the TPC and
the interaction point are listed in Table 3.1. -

TRAGIC fits tracks using the measurement errors of the space points. The -
effect of Coulomb multiple scattering is incorporated by adjusting the errors of
the fit track parameters. VERTEX finds an event vertex by constraining all tracks
to pass through a single point, subject to consistency of that point with the run-
averaged beam position; this is done iteratively, discarding tracks inconsistent
with the common origin before refitting. The vertex constraint effectively adds
an extra space point with a large lever arm to tracks consistent Wit:h.the cdrﬁfnon
origin, thereby improving the momentum resolution. More on TPC track fitting
may be found in reference [38].

The momentum resolution has two a prior: contributions: measurement error
- and Coulomb multiple scattering error. The measured quantity is actually C =

1/ p 1, the curvature of the track in units of (GeV/c)~!. This measured quantity
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is assumed to have gaussian errors of the form
(00)? = A’/pl + B®

where the first term corresponds to Coulomb scattering (neglecting the depen-
dence on () and the second term corresponds to measurement error. Since

oc/C = op, [p1 = 0,/p, this can be rewritten as
2
(@) = A% 4+ B,
p

The multiple scattering term A is calculated from formulae in Gluckstern [39],
and represents an average over tracks of different polar angles. The measurement
error term B is measured using stiff tracks for which the multiple scattering term
is negligible.. This was done by comparing the curvature in different sectors of
cosmic ray tracks and by measuring the width of the curvature distributions for
14.5 GeV tracks in ete™ — ete™ and ete™ — ptpu~ events. Like A, B represents
an average over tracks of different lengths and polar angles. The momentum

resolution thus determined is
2
(%) = (0.015)? + (0.007)p”

for tracks satisfying the vertex constraint. For tracks that fail the vertex con-

straint, the measurement error contribution worsens from (0.007)?p? to (0.011)%p?%.

dE/dx Resolution

The dE/dx resolution is determined from a sample of minimum ienizing pions.
It can be parameterized as a function of the number of wires used to determine
dE/dx and of the polar angle of the track, and is found to be gaussian to three
standard deviations. The dE/dx resolution averaged over tracks with at least
120 wire samples is 3.4%. The dE/dx measurement from a single pad is more

reliable than that from a single wire because it integrates over several wires; pads
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are used instead of wires to determine dE/dx if the number of usable wires is

less than 2.5 times the number of usable pads.

3.3 Trigger

Beam crossings occur once every 2.44 usec, but events of physics interest occur
some 5-6 orders of magnitude less often. Since it takes about 30 usec to drift
out the entire TPC volume, and about 80-100 msec to completely digitize and
store an event, it is clear that the detector cannot be read out at every beam
crossing. It is the role of the trigger — a network of fast digital electronics — to
identify events of potential interest for readout, otherwise leaving thev detector
live for subsequent beam crossings.

"The trigéer decision is made in three steps. Each step has progresSivelsr more
information available to it, so can appfy tighter criteria.t(') the decision of whether
to advance to the next (more time-consuming) step or to abort the current event
and reset the detector The first step is the pre-pretmgger This makes the fast
(< 2 psec) decision of whether to open the gatmg grld to activate the TPC, or
to reset the detector in time for the next beam crossmg The second step is the
pretrigger. This uses information from the first few usec of drift in the TPC
and calorimeter readout to decide whether to allow sufficient time for all TPC
tracks to drift to the endceps or to close the gatirlg grid end reset the detecter
It makes this decision w1th1n 7. 5 psec after the pre—pretrlgger The third step
is the trxgger itself. It uses TPC and calorimeter 1nformat10n to de01de whether
to digitize and read out the event, or whether to 1gnore the event and reset the
detector. The trigger makes its de0131on about 35 psec after the pre—pretrlggermg
beam crossing. o | |

The Forward Detectors ‘can also generate pre-pretriggers, }sretriggers, and

triggers. Since these are triggers for two-photon events, I do not discuss them in
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the following descriptions. These descriptions are simplifications of complicated

logic; see, for example, references [40,16,41] for greater detail.

Pre-pretrigger

The pre-pretrigger uses information from the IDC, ODC, TPC (from tracks pierc-
ing the endcap), and ganged signals in the HEX and the PTC. The charged pre-
pretrigger requires at least two hits in the IDC separated by 60° or more, and
either any ODC hit or two TPC wire hits azimuthally coincident with the IDC

hits. At a luminosity of 2 x 103! cm™2sec™!, the pre-pretrigger rate is ~ 1.5 kHz.

Pretrigger

TPC information drifted from the few centimeters nearest the endcapé, and larger
calbrimeter ganged signals are new information available during the pretrigger
window. The charged pretrigger requires two IDC hits azimuthally consistent
with ODC hits, or one such IDC-ODC coincidence plus an IDC hit azimuthally
consistent with signals on several TPC wires, or two such IDC-TPC coincidences.

2

At a luminosity of 2 x 10%! cm™2sec™?, the pretrigger rate is ~ 500 Hz.

Trigger

There are four charged triggers, two neutral triggers, and one charged-plus-
neufral trigger defined. The variety of triggers allows for triggering on events
of different classes (hence different topologies) and redundancy of the trigger de-
cision. Most important of these triggers is the charged “ripple trigger.” Latches
ganging sets of eight adjacent TPC wires are enabled if at least four wires are
hit within a time window; the latch is set if the latch corresponding to the next
larger radius is set within an earlier time window. A track emanating from the
interaction point at the midplane of the detector will have its ionization near

the beampipe arrive at the sectors last, with ionization from larger radii arriving
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correspondingly earlier, depending on the polar angle of the track. It should thus
set off the domino-like cascade of latches, called a ripple. The ripple trigger is
satisfied if two ripples occur in two different sectors.

At a luminosity of 2 x 10" cm™?sec™, the trigger rate is ~ 2 Hz. Due to |
the large energy and multiplicity of qq events, several triggers are usuaily easily

satisfied for each event; the trigger efficiency for qq events is thus over 99%.
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Chapter 4

Data Reduction, Event Selection,
and Event Simulation

4.1 Data Reduction

4.1.1 Analysis‘ Sequence

As mentioned earlier, analysis of TPC data must be done in aniterative fash-
ion. A first pass through the data is done using the best available information
(nominal values or averages of preceding runs) for run-dependent constants. The
results of this first pass are used to refine these constants, which are then used
in a second, more accurate, pass through the data. Later passes use corrections
from the analyzed data (averaged over hundreds of runs) for yet more detailed
reﬁnements of analyzed data.

Interspersed with the analysis programs are ﬁlter. programs which decide
which events to pass on to the next stage of analysis. Separate analysis streams
 exist to distill selected events into condensed Data Summary Tapes (DSTs) for
two-photon, 77, or qq events. The DSTs contain summary information for each
track and event, but no raw data. I will describe the analysis stream leading
to the qq DSTs [42]. A schematic flow chart of this sequence is pictured in
Figure 4.1.

In order for the raw data to be written to tape, it must first pass the PRE-
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Raw Data
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Figure 4.1: Analysis sequence leading to DST's for annihilation qq events. Only
the flow for TPC information is depicted. The filters are actually interspersed
with analysis code, and are shown grouped only for pictorial convenience. Final
distortion and dE/dx corrections described in the text are not pictured.
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ANALYSIS filter. This is essentially a software online verification of the hardware
trigger; it passes ~ 65% of triggered events. About 1500 raw data tapes were
written during the 1984-86 running cycles.

The basic sequence of analysis programs is then executed online, if time per-
mits between triggers; the results of the analyses are written to the raw data
tapes along with the data themselves. This analysis sequence consists of the

following programs:

CLUSTER identifies pad and wire hits from the ADC counts, applies the electron-
ics calibration to establish pulse heights and arrival times; and associates

neighboring pad hits into space points;

PATTERN identifies tracks from the set of space points and performs a first mo-

mentum fit to the tracks;
HAWIRE associates wire hits with the identified tracks;

DISTORT refines space points using wire information, applies corrections for elec-

trostatic track distortions, and refits tracks;
DEDX computes the dE/dx for the tracks and makes identity assignments;

TRAGIC performs a final track fit to a helix, taking into account mass-dependent

energy losses;

VERTEX constrains fitted tracks to a common origin for improved momentum

resolution and event vertex determination.

This program sequence is carried to completion online between triggers for all qg
events and at least through DISTORT for most other events. Enough events are
analyzed to determine run-dependent constants (vertex position, drift speed, gas

gain, electron absorbtion and diffusion) immediately upon completion of a run.



53

In the next analysis pass (this one offline), CLUSTER, PATTERN, and HAWIRE
are executed as needed for events that- had insufficient time for their execu-
tion online. Then DISTORT, DEDX, TRAGIC, and VERTEX are run again on all
events using the run-averaged constants determined online. To be written to the
next set of tapes (“E” tapes), events must satisfy the filters BHABHA_COUNT,
STRIP_COSMIC, and TPC_SEL. STRIP-COSMIC and TPC_SEL delete cosmic rays
using muon chamber and TPC information? respectively; BHABHA_COUNT counts
low-angle Bhabha events for 1uminbéit$r rﬁonitoring and keeés ja{/ery ténfh..AAbout
65% of the raw data tape events pass these filters and are writtén to the E tapes.
Roughly 1000 E tapes, were made fqr the 1984-86 data. ‘

In the séme processing run E tape events are passed to the filter SELQQTAU.
This filter makes 1odse topology cuts to select qq events and most 77 events
while rejecting other processes. About 17% of E tape events pass this filter and
are written to “F” tapes; 193 F tapes were written for the 1984-86 data. DST
records are created for the F tape évents; these records are included on the F
tapes and are extracted (without further selection) onto “Select DST” tapes.

The Select DSTs are processed by the analysis programs FIDUCIAL, LaA-
BEL_PAIRS, FIXDEDX, and VERTEX, which compute information relevant to the
final qq selection, identify electrons from photon conversions, refine dE/dx in-
formation, and identify _seco;_ldaryv. decay vertices, respectively. A filter LA-
BEL_HADRON_V2 passes ~ 25% of the Select DST events onto the final “Hadron
DSTs” (which are actually disk files). This filter makes cuts similar to, but looser
than, the final TPC/2~ hadronic event seled:ion described in Section 4.2; about
65% of the events. in the Hadron DSTs are TPC/2v good hadronic events.

Two final corrections to the data are not shown in Figure 4.1. (These cor-
rections are made long after the creation of the original_-Hadrqn DSTs.) Final

electrostatic distortion corrections are determined from two-prong events selected
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from E tapes. These corrections are applied to the F tape events (starting with
DISTORT and proceeding. through the analysis chain as usual) to produce new F
tapes, Select DSTs, and Hadron DSTs. Final dE/dx corrections are determined
from the Hadron DSTs. (As of this writing, new DST's have not yet been made
using this final dE/dx correction; instead, the corrections are applied by the

program FIXDEDX whenever a DST is analyzed.)

4.1.2 Particle Identification Using dE/dx
Theory of dE/dx

The ionization by a charged particle traversing the TPC gas is a function only of
the speed v of the particle. (This makes the assumption that the particle’s charge
is plus or rﬁinus the ‘electron charge.) Measuring the ionization thus measures
the speed of the particle; combined with the measured track momentum, this
establishes the particle’s mass m through the relation p = fym, where 8 = v/c
and v = 1/4/1 = 2. The viability of this technique to establish the particle’s
identity depends on the ability of the TPC to characterize the ionization suffi-
ciently accurately. (The energy loss per unit track length dE/dx is assumed to
be proportional to the total ionization produced per ﬁnit track length, so that
“lonization” and “energy loss” are often used equivalently.)

The priinary ionization along a track comes from two physical sources, de-
pending on the scale of the energy transfer involved. The ionization cross-section
is strongly peaked at energy transfers corresponding to the binding energies of
electrons in the TPC gas, so for energy transfers comparable to atomic energy
levels this resonant ionization dominates. For energy transfers large compared to
the atomic binding energies, the electrons in the gas are essentially free and the
process is well-described by Rutherford scattering. The Rutherford scattering

is “hard,” resulting in energetic ionization electrons, but rare compared to the
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softer resonantly produced ionization electrons.

A sense wire in the TPC collects ionization from a 4 mm thick slice of gas,
corresponding to 5 mm or so of track length for a typical track. On the order of
100 primary electrons are liberated on average along each 5 mm of a typical track.
This primary ionization obeys Poisson statistics, so the mean primary ionization
could be determined to ~ 10% per. wire (neglecting avalanche fluctuations), or
1% for a track ‘cxl“ossing. the entire; TPC, if oniy thew’I:PC were to detect just
the primary ionization. Unfortunately, the hard electrons from the Rutherford
scattering (and the resonantly produced electrons from deep levels) are energetic
enough to ionize the gas themselves, resulting in secondary ionization. This
secondary ionization contributes greatly toward the total ionization detected,
but arises from just a few hard scatters, so the statistical fluctuations (“Landau
fluctuations”) in the total detected ionization are large.

Simply taking the total detected ionization for a track is therefore a poor way
to characterize the ionization. The TPC was designed to sample the track’s ion-
ization fnany times so that shape information of the resulting dE/dx distribution
could be used to account for the effect of the few hard scatters. (This is why the
sectors contain so many sense wires, more than are necessary for tracking.)

A detailed calculation [21] predicts the distribution of dE/dx samples from a
track, which is found to be in good agreement with tht;,‘data. This calculation
takes into account six energy levels of methane and argon, making suitable ap-
proximations for resonant and Rutherford cross-sections; the resulting shape is a
function of B and the sampled track length éz. I show both the predicted curve
and the data in Figure 4.2; the salient feature is the long high energy tail (“Lan-
dau tail”) resulting from the hard Rutherford scatters. It is primarily dE/dx
samples drawn from this tail that cause laafge fluctuations in the mean dE/dx.

In principle, one could measure the dE/dx distribution for each track, then



1000
Amp
v
800 |- r
(/5]
o
£ 600 |-
(10}
[75]
L=
3)
@
‘g 400 }
=
pd
Landau tail
200
ol | |

O b6 10 15 20 25 30 35 40
dE/dx (keV/cm)

Figure 4.2: Distribution of dE/dx energy loss for 4 mm track samples for data
(histogram) and as predicted by the detailed calculation (curve).

56



57

fit the predicted shape (with éz as a parameter) to establish 3 for each track.
This would use the full dE/dx shape information, but would be very difficult
to calibrate. In practice, a single, simple estimator is constructed (using dE/dx
shape information in a rudimentary fashion) for each track to characterize the
ionization: called the “truncated mean,” it consists of the mean of the lowest
65% usable dE/dx samples. The truncated mean is what is meant in TPC
parlance by the dE/dx value for a track. By simply throwing away the Landau
tail, the truncated mean isolates and removes much of the fluctuations from
the hard scatters. (It turns out that most of the particle identity information
resides in the resonant ionization, so that discarding the bulk of the Rutherford
information is benign.) The truncated mean is assumed to be proportional to
the most probable energy loss Amp, an assumption born out by Monte Carlo
studies. The same formalism that predicted the dE/dx distribution is used to
derive A, as a function of 3, so that the dE/dx value of a track is known as
a function of 8. The dE/dx resolution is typically 3.4% for a track crossing the
entire TPC; this yields a sufficiently accurate characterization of the ionization
for the TPC to perform particle identification by simultaneous measurement of
dE/dx and momentum.

The results of the calculation for A, are:

A'mp = (Amp)Rutherford + (Amp)resona.'nce, (41) .
(Amp)Rutherford = ng l:ln (‘é%‘) + 0198] ) (42)
J J

dN\ 1 |
(Amp)resonance = Z l:&v <E> - E:I Ez{j’ (4'3)
_ ¥ iy

where the sums are over energy level ¢ of gas j, and

2net(8z)n;
= Toap

n; = electron number density of gas j,
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Figure 4.3: Predicted truncated mean energy loss as a function of S~.
ér = sampled track length,

E; = mean jonization potential for gas j,
<dN> 271’647’1,_7' wij(s;j - 1)
ij

7’7’1,862,82 E',-js,-j

dz |
) 2m.c?(3%~? ) o .|
[hl (E{j|1 - @) T 1 — B*Re(e(EY)|

E;; = ionization threshold for level i of gas j,
E;; = mean ionization potential for level i of gas j,
e = (€1 +1€ez) = the dielectric constant of TPC gas,

and where w;; and s;; are numbers parameterizing the oscillator strength of level
i of gas j. This curve for dE/dx (which is equivalent to A,,,/6z) as a function
of B is plotted in Figure 4.3.

This curve divides into four broadly defined regimes. For slow particles,

dE/dx ~ 1/6? and the curve drops sharply with increasing 8+; this is the “1/4%”
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region. Around (v ~ 3 the curve reaches a minimum; this is the “minimum
ionizing” region. The curve rises slowly with 8+ up to around Bv ~ 103; this is
the “relativistic rise” region. Above By ~ 103 the curve flattens to the “Fermi
plateau;” The physical interpretation of these regimes is straightforward. Ioniza-
tion is heavy in the 1/3? region because the slowly moving particle spends a lot
of time near each atom, thus increasing the probability of an ionization. The rel-
ativistic rise is due to the Lorentz enhancement of the particle’s transverse field,
and hence its ionizing power. 'The‘Fermi plateau is the result of polarization
of the medium cutting off any further relativistic rise. The minimum ionizing
region is simply the cusp between two regions of heavier ionization.

Some relevant properties of (Amp) Rutherford @aNd (App ) resonance can be inspected
from Equatibns 4.2 and 4.3. The Rutherford term has a logarithmic dependence
on 6z, an effect accounted for in the software before determining a track’s dE/dx
value. This term also saturates to a constant value above the minimum ionizing
region. Both Rutherford and resonance terms exhibit the behavior of the 1/32
region; vbut only the resonance term contains the behavior of the relativistic
rise and the Fermi plateau. (Both the relativistic rise and the Fermi plateau
are implicit in the logarithmic term of <%>ij: the argument of the logarithm
increases as %y* until the 4?y*(1 — €(Ej;)) in the denominator dominates the 1
to cancel the 8y dependence.)

Since p = Bym, the dE/dx curves for particles of different mass are estab-
lished by simple lateral translation in In(p) space. This means any two curves
are guaranteed to cross at one point, called a “crossover”; particle identity as-
signments are problematic in the vicinity of crossovers. It is worth noting that
the ability of the TPC to perform particle identification above minimum ionizing
regions rests in the relativistic rise inherent in the resonant ionization term.

The curve predicted by Equations 4.1, 4.2, and 4.3 is fine-tuned by a fit
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to samples of unambiguously identified tracks (1/8% protons, minimum ionizing
and relativistic rise pions, cosmic ray muons, conversion electrons, and Bhabha
electrons). The resulting agreement between the theoretical curve and data is
excellent; the systematic error on the theoretical curve is estimated to be 0.2%.
Plotted in Figure 4.4 are data and the curves for e, u, m, K, and p; the sepa-
ration of the five species on the plot and the agreement with theory graphically

demonstrate the ability of the TPC to perform particle identification.

Particle Identity x2

Each dE/dx curve represents an allowed locus in dE/dx vs. momentum space for
particles of a given mass. Each track has its dE/dx and momentum measured,

so a x? can be formed to quantify consistency with a given mass hypothesis:

dE /dz i._ dE/dz meas 2 i — Pmeas 2
& = (B[~ (B /) | (= )’ s
O4E/dz 9

In this expression, 7 stands for any of the five stable species e, u, 7, K, p. Pairs
of (dE / dz); and p; are taken on the dE/dx curve for species 7, stepping along the
curve until x? is minimized; this minimum value is the x? for that measured track
and that species hypothesis i. The dE/dx resolution o45/4, is parameterized as a
function of polar angle and number of dE/dx samples; the momentum resolution

op is the quoted error from the TRAGIC fit.

Particle Identity Probability

The x? information can stand on its own, or it can be supplemented by prior
knowledge to arrive at probability assignments. The prior information used in
TPC hadronic analysis is the knowledge of particle fractions in the hadronic
event sample as a function of momentum. Thus for example, a particle observed

at the K/m crossover will be identified as a m, since pions outnumber kaons by
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about 8 to 1 at that momentum. Using the particle fractions, the probability P;

of a track being species 1 is given by

fi(p) exp™X/? | |
P=""g 5 — (4.5)
J

=1
where f;(p) is the fraction of tracks of momentum p that are species i. The
denominator simply normalizes the sum of probabilities to unity. The particle

fractions measured by the TPC/2y Collaboration are parameterized by

fe = (02/p)®
fr| = maz(0.8494 — 0.13501n(p), 0)
frk = maz(0.1093 + 0.0916In(p),0)

fo = maz(0.0413 + 0.04341In(p), 0)

where the momentum p is measured in GeV/c. Since muons are a small compo-

nent of hadronic events they are not included in this procedure.

4.2 Event Selection

Annihilation events ete~™ — qq are characterized by large multiplicities, large
detected energy, and low Lorentz boost with respect to the laboratory frame.
The standard TPC/2y selection for these events capitalizes on these features,
using charged tracks detected in the TPC to make the selection.

To be used in making the selection, a track must satisfy these conditions:
1. the polar angle with respect to the beam direction must be > 30°;

2. either the curvature error dC must be < 0.30 GeV~! or the fractional

curvature error dC/C must be < 0.30;

3. the momentum of the track in the TPC volume must be > 100 MeV/c;
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4. the momentum of the track extrapolated to the vertex (correcting for en-

ergy loss) mmust be > 120 MeV/c; and

5. the track must extrapolate to within 6 cm of the nominal vertex in the x-y
plahe and within 10 ¢m in z.

Crlterlon (1) ensures that the track is well within the ﬁduc1al volume of the
TPC; criterion (2) rejects tracks w1th poorly measured momenta criteria (3)
and (4) reject tracks too soft to have made 1t into the TPC from the interaction
pomt ‘and criterion (5) requlres the track to be cons1stent with orlgmatlng at the
interaction pomt thereby reJect1ng many cosmic rays and tracks orlgmatmg mn
nuclea.r interactions in the beamplpe a.nd beam-gas colhs1ons A track satlsfymg

these condxtlons is called a good track.”
To be consxdered a good hadromc anmhllatlon event an event must satisfy

these condltxons.

1. there must be at least five good non-electron tracks, where electron identi-
fication is done either by dE/dx or by geometric reconstruction of photon

conversions;
2. the total energy of the charged good tracks, Es, must be > 7.25 GeV;

3. the longitudinal momentum balance of good tracks must satisfy |Zp,| <
0-4Ech;

4. at least half the tracks of the event must be good tracks;

5. the reconstructed vertex of the event must be within 2 cm of the nominal

vertex in the x-y plane and within 3.5 cm in z; and

6. at least one event hemisphere (defined by the sphericity axis of the event)
must contain either at least four charged non-electron goOdA tracks or an

invariant mass of at least 2 GeV.
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Criterion (1) eliminates low multiplicity events and Bhabha events where one
of the particles showexjed heading into the TPC; criteria (2) and (3) discrimi-
nate against two-photon and beam-gas events; criterion (3) also discﬁminates
against q@ events with energetic initial state radiation; criterion (4) eliminates
problematic cases; criterion (5) suppresses beam-gas events; and criterion (6) dis-
criminates against 77 events. Monte Carlo studies estimate the contamination of
these good hadronic annihilation events (taking into account the relative cross-
sections) to be (0.4+0.1)% from 77 events, (0.5£0.1)% from two-photon events,
and < 0.1% from beam-gas and Bhabha events. About 78% [67%)] of generated
Monte Carlo hadronic annihilation events satisfy the hadronic event selection
when generated without [with] initial state radiation. (Direct interpretation of
the .accepta,r'xce for events generated with initial state radiation is difficult, for
it depends on the details of the initial state radiation high energy cutoff. This
does not affect the analysis, for events with energetic initial state radiation do
not pass the hadronic selection anyway; data and Monte Carlo need not agree in
this regime.)

In addition to the standard TPC/2v hadronic evént selection, I require an

event to satisfy two more requirements:

e the sphericity axis of the event must lie > 45° away from the beam direction,

and
e the sphericity value must be < 0.5.

These criteria ensure that the bulk of the event is contained within the TPC
fiducial volume and that the orientation of the sphericity axis is meaningful
when used in my subsequent analysis.

The data used in this dissertation were collected during the 1984-86 run-

ning cycles of the detector. Data corresponding to an integrated luminosity of
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~ ~ 68 pb™! [43] were collected, resulting in 25782 events passing the standard
TPC/ 2~ hadronic event selection, of which 20089 pass my a,dditional sphericity
cuts. These 20089 events form the data set on which I perform the measurements

of this _dissertation. A
4.3 Detector Simulation

The operation of a modern High Energy Physics detector is sufficiently compli-
cated that the only way to understand its performance in detail is through a
detector simulation Monte Carlo program. Such a program propagates an event
through the elerhents of a defei;tor using a rgndompu_mber generator to repro-
duce the relevant stochastic physical processes experienced by the real events in
the detectioﬁ process. This produces simulated data useful for estimating detec-
tor acceptances, estimating ba_mckgrounds, honing one’s analysis techniques, and
studying systematic errors.

The TPC/27 collaboration has two detector simulation Monte Carlos avail-
able: the Global Monte Carlo (GMC) and the Fast Monte Carlo (FMC). The
GMC generates simulated raw data which is then passed through the complete
data analysis chain for detailed investigation of detector performance. It is too
slow, however, to provide the high statistics simulated data usually necessary in
an analysis.. The FMC trades exactitude for speed, essentially picking up the
analysis chain partway through, generating derived quantities such as the dE/dx
for a track from a distribution instead of generating the individ_ual" wire hits.
For many purposes, the FMC is accurate enough. The portion of the FMC that
simulates the TPC is called TPCLUND; it is the only relevant detector simulation
for my analysis so I sketch its operation here. It takes ~ 1.5 sec of VAX 8650
CPU time for TPCLUND to simulate an hadronic annihilation ev.entv (compared

to ~ 30 msec for the physics generator to produce the interaction itself).
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TPCLUND takes as input the buffer of particle species and momenta generated
by a physics generator; initial state radiation is simulated using the program of
Berends and Kleiss [44]. The TPC and mateﬁal between it and the interaction
point are modelled. as concentric layers, each characterized by a location, an
interaction length, and a radiation length. The beampipe, pressure wall, IDC,
inner field cage, and each TPC pad row constitute layers. Particles interact with
each layer in turn, the results of these interactions being propagated to the next
layer. Neutral particles can decay and undergd nuclear interactions; photons
can convert. Charged particles can decay, undergo nuclear interactions, emit
bremsstrahlung, undergo Coulomb multiple scattering, and experience dE/dx
energy loss.

' The event vertex is smeared about its nominal value by tbé beam spot size.
TPC space ﬁoints are generated where each charged track crosses a pad row,
then smeared by resolutions parameterized according to tré,ck angle and other
variables. The resulting space points are assigned to tracks; points can be lost
from tracks due to geometric losses and ambiguous track assignments, but are
never assigned to the wrong track. A track with three or more associated points
is considered found, otherwise the track is lost. A fit is then performed to the
space points to establish the measured track momentum; this fit is not the same
as the TRAGIC fit used for real data, but is sufficiently similar for most purposes.

The number of usable dE/dx samples is chosen, which along with the polar
angle of the track defines the dE/dx resolution expected for that track. The
dE/dx value for the particle species and momentum is smeared by this resolution
to arrive at the simulated dE/dx measurement.

A true vertex constrained fit is not performed in TPCLUND. Instead, x2s for
vertex consistency are selected for tracks in a quick fashion to roughly reproduce

the results of VERTEX.
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Sets of tapes of simulated data DST's are produced using the FMC. A given set
has ~ 80,000 good hadronic events, or about four times the data set. Statistical
errors when using Monte Carlo tapes are therefore small compared to the data
set.

The performance of TPCLUND has been checked by Corr;paxing a ﬁriety of
expérirhental distributions (such as track curvature error, number of dE/dx sam-
ples per track, vértex impaét Iﬁéram'eterj”e'tc.) .'vvith the predictions of thé detector
simulation. These comparisons have been made in the course of several a.né.lysis
projects, including this one. TPCLUND generally does quite well. (One excep-
tion is that the x? for vertex consistency is untrustworthy, so I ayoid using it.)
At the points where an analysis in this thesis deperids. on TPCLUND, I estimate
the reliability of the detector simulation and the corresponding systematic errors

- incurred by its role in the analysis. - |
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Chapter 5

Measurement of the oY
Differential Cross-section

5.1 Ov'erviﬁew

The p° is a broad resonance (I' = 153 MéV, M = 770 MeV) which decays almost
exclusively to 7t#n~ (~ 100% branching fraction). These seemingly innocent facts
conspire to make the p° a surprisingly hard particle to measure. The exclusive
decay mode means the only accessible signature of a p° in this experiment is as
a feature in the nt#~ invariant mass spectrum; the fact that pions are by far
the most copiously produced particles in the hadronization process and ensuing
decays means that this 777~ mass spectrum has a large background in and near
the p° rnasé region. The sizable width of the p° means that the measured area
of the spectrum belonging to the p° peak is subject to a large systematic error
from uncertainty of the background underlying the 'p°.

The nature of the background in the mass spectrum is complicated by the fact
that there are two contributions to it. The largest contribution to the background
is from the many mass pairings possible from the large number of candidate
tracks; this combinatoric background is large but smooth. Also entering into the
mass plot are particle pairings that stem from the decay of a particle other than

the p°; these pairings are fewer in number but give structure to the spectrum.
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The analysis technique I use to measure the p° cross-section is suggested in
part by the foregoing considerations. Also relevant to my ﬁnél choice of analy-
sis technique is the observation that neither the Lund nor Webber Monte Carlo
packages (including detector simulation) adequately reproduce the observed di-
pion mass spectrum. This effect can be seen in Figure 5.1, where I present the
unlike—sigﬁ and like-sign dipion spectra (M(7*7~) and M(n*n?)) for z < .10
and for z > .10, along with the Lund prediction (normalized to the same num-
ber of analyzed events). (These spectra are prepared as described in the next
section.) I also present the result of subtracting the like—sign sp>ectra from the
unlike-sign spectra. I investigated the source of the disagreement between data
and Monte Carlo extensively but without success. As I e>'cp1a.in in the next sec-
tion, the Monte Carlos play a central role in this analysis; since I am unable
"to understand or eliminate this mass discrepancy, my analysis must minimize
~ its effect. Noting that this discrepancy appears roughly equally in the like-sign
and unlike-sign mass spectra and therefore largely cancels when subtracting the
former from the latter, I employ a spectfum subtraction technique in part to
cancel remaining discrepancies between Monte Carlo and data. The remaining
discrepancy after this subtraction is a strong function of z. The effect is that at
low z the data shows an excess in the subtracted spectra in the mass region be-
tween the p° and the K, an excess that diminishes rapidly with increasing = (see
Figure 5.1). Because of this discrepa_hcy, I choose not to attempt measurements
for z < .10 since the background is not well understood; for z > .10 I consider
the discrepancy when assigning systematic errors.

As a final considefation in selecting an analysis techniqﬁe, having no com-
pelling reason for trusting one genefator and rejecting the other, I adopt the
philosophy that both Lund and Webber give equally reliable predictions of the

underlying physical truth. That is, when measuring the p® cross-section I in-
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Figure 5.1: Dipion mass spectra for data (solid lines) and the predictions of the
Lund Monte Carlo (dashed lines). These spectra are prepared in the manner
described in Section 5.2. The Monte Carlo spectra are normalized to the same
number of analyzed events as in the data. (a) Unlike-sign spectrum M(z*#~) for
z < .10. (b) Unlike-sign spectrum for z > .10. (c) Like-sign spectrum M(n*r?)
(e) Subtracted spectrum
M(n*n~) - M(n*nt) for ¢ < .10. (f) Subtracted spectrum for z > .10. The
arrows in (e) and (f) indicate the central p° mass.

for z < .10. (d) Like-sign spectrum for z > .10.
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dependently use both Monte Carlos in turn and average the results; when ap-
propriate in estimating systematic errors, I assume disagreements between the
two Monte Carlos are representative of the disagreements between either Monte
Carlo and physical reality.

I have presentéd the general context of the p° analysis in this section. In
Section 5.2, I explain the method I've chosen for this analysis and present the
results (with statistical errors only) for the cross-section. I estimate the system-
atic errors of my analysis in Section 5.3. I present final results and errors in
Section 5.4, as well as comparisons with the predictions of the generators and

the measurements from other experiments.

5.2 Basic Method

In order to measure ﬂ—l——gz (as described in Chapter 1), I divide the data and
o dz

Monte Carlo mass spectra into six z bins for z > .10, and measure the area in the

p° peak independently in each bin. The « bins are chosen to be wide compared to

the z resolution of the detector, to have comparable statistical significance of the

0° in each bin, and to give the finest granularity at low z where the background

shape .changes rapidly as a function of z. The specific z bins I use are given in

Table 5.3.

5.2.1 Formation of the Mass Spectra

To be used in this analysis, an event must first pass the multihadronic event
selection and sphericity requirements described in Section 4.2. An event passing
these cuts is called a “good event.”

For a track to be used in forming the mass spectra, it must pass a set of cuts
tighter than that used in choosing good events. Tracks that pass these cuts are

called “good tracks.” For a track to be considered good, it must
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1. have a measured dE/dx and have been fit to a helix by the program

TRAGIC,

2. satisfy dp.1/p.1< .05 (if pr< 1 GeV/c) or dp./p3 < .05 (if p1> 1 GeV/c),

where p; is the mbmentum transverse to the beam axis and dp, is its error,
3. have momentum (extrapolated to the event vertex) > 150 MeV /c,
4. have momentum (extrapolated to the event vertex) < 14.5 GeV/c,
5. point in a directioﬁ more than 30° awayvfrom the beam axis,

6. extrapoiaté to within 1 cm of the measured event vertex in both the bending

plane and in the beam direction,
7. have at least 30 wires used in measuring dE/dx,
8. have a particle-id x? for the pion hypothesis < 9, and

9. have a probability for being a pion (measured using the algorithm explained

at the end of Section 4.1.2) > 0.5.

Cuts (1) and (4) reject meaningless tracks. Cut (2) rejects tracks with poorly
measured momenta. Cut (3) eliminates tracks in a momentum region of large
energy loss and uncertain acceptance. Cut (5) rejects tracks at grazing angles
to the material in front of the TPC, which are subject to lérge multiple scatter-
ing and uncertain acceptance. Cut (6) helps eliminate tracks that originate in
processes other than the primary interaction and ensuing strong decays: these
processes are beam-gas interactions, cosmic ray coincidences, nuclear interactions
in the material in front of the TPC, photons converting to electrons (should the
electrons be misidentified as pions), and weak decays (most notably K, —»ntn~

decay). Cut (7) requires the track to have a well-measured dE/dx for purposes
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% of remaining tracks
cut number cut at each stage

(4+) charge (-) charge

) 14 12
(2) 3 2
(3) 4 4
@) || <1 <1
(5) 2 2
(6) 25| 22
(7) 14 14
(8) 15 15
(9) 5 5
Total 59 56

Table 5.1: Percent of tracks in the data cut by single-track selection.

of pion identification; cuts (8) and (9) are the pion identification cuts. The per-
centages rejected at each stage of tracks surviving the previous cut are given
in Tablé 5.1; the cuts are illustrated in Figure 5.2. (Hadronic interactions in
the TPC material preferentially introduce extra positive tracks into the event
that are screened out by these cuts; this is why slightly more positive tracks are
eliminated than negative tracks.) Overall, these cuts reducé the number of ad-
missible unlike-sign (like-sign) pairings in the data (relative to all detected pairs)
by 81.3% (82.9%). The pion purity and acceptance of the good track sample
as estimated from the Monte Carlo are plotted in Figure 5.3..The purity is the
fraction of the good tracks that are actually pions; the acceptance is the fraction
of pions generated in good events that are called good tracks. Integrated over all
momentum, the pﬁrity is 93% and the acceptance is 59%.

For a pair of tracks to have its mass entered into the mass spectrum, each

track must be a good track. In addition, the following track-pair requirements
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Figure 5.2: Selection of good tracks. The arrows indicate the cuts used in this
analysis. Only those tracks surviving all previous cuts enter the plot for the
indicated quantity. The “k” in the vertical scales stands for units of 1000. The
number of pads used for dE/dx by tracks not using wire information are dis-
played, shifted by 20 to the left, on the “# of wires” plot.
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Figure 5.3: Purity and acceptance of pions in the set of good tracks. The dip in
purity around 1 GeV/c is due to the K/# crossover.

are imposed:

e both tracks must lie on the same side of the event midplane, defined to be
the plane passing through the event vertex perpehdicular to the sphericity

axis;

e the vector sum of the momenta of the two tracks must point in a direction

more than 30° away from the beam axis.

The first requirement is to réduce the combinatoric background underlying the
o°. It is only relevant for = S .15; for highér i, any pair lying on opposite
sides of the event midplane has an invariant mass well above the p? mass region.
This cut eliminates 47.3% (52.3%) of the femaining unlike-sign (like-sign) pairs.
The second cut is to prevent distortion of the p° line shape: pairs, formed of
tracks lying outside a 30° half-angle cone about the beampipe, whose resultant

momentum lie within this cone have masses biased high because small opening

angles are excluded. In conjunction with the first track-pair cut and the event
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selection requiring the sphericity axis to point > 45° away from the beampipe,
this second track-pair cut turns out to eliminate only 1% of the remaining pairs.

The invariant masses of track pairs surviving all the above selection passes
form the mass spectra from which I will extract the p° signal. These spectra frofn
the data, divided into z bins, are histogrammed in 40 MeV bins in Figure 5.4.
Both unlike-sign (M(7*7~)) and like-sign (M(n*7%)) spectra are presented. The
lack of a feature at the p° massin the like-sign combinations, and the presence of
a feature at the p° mass consistent with the p® width in the unlike-sign spectra, is
evidence that I truly am observing the p° signal. The acceptance of p°s into these
spectra as estimated from the Monte Carlo is plotted in Figure 5.5; acceptance
is the fraction of p% generated in good events which have daughter pions passing

all cuts. The overall p° acceptance for z > .10 is 45.9%.

5.2.2 Extracting the Cross-section

.To extract the p° signal from the data mass spectrum in a given z bin, I employ
two distinct but éimilar methods. In the first method, I subtract the like-sign
spectrum from the unlike-sign spectrum. This reduces the combinétoric contri-
bution and cancels or reduces some resonant contributions to the background
under the p® without diluting the p° itself. The discrepancy in the mass spectra
between the data and the Monte Carlo prediction, occurring as it does in both
like-sign and unlike-sign combinations, is also largely cancelled. These subtracted
spectra are shown for the data in 40 MeV bins in Figure 5.6.

To estimate the residual background under the p° after subtraction, I use the
identically prepared like-sign-subtracted-from-unlike-sign spectra from the Monte
Carlo, after first removing pairings from the same p° and from the same K*°.
(That is, I remove the p° and the K*° peaks from the Monte Carlo spectra. The

K*° peak stems from the K¥**—<K*7~ (+ c.c.) decay, with the K* misidentified
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Figure 5.5: p° acceptance in each z bin.

as a wt; this is reconstructed as a broad peak lying slightly below the p°, and is
the only significant resonant background structure remaining in the relevant mass
region after the subtraction of the spectra.) I then perform a least-squares fit
to the data summing three contributions: a curife fixed in shape and magnitude
to account for the K*°, a P-wave Breit-Wigner line (PWBW) fixed in shape but
free to float in magﬁitude to account for the p°, and the aforementioned Monte
Carlo histogram floating in magnitude to account for everything else but the p°
and the K*°. There are thus two free parameters in this fit: the normalizations
of the background and the p°. o

The K*° shape and magnitude are fixed from Monté Caﬂo predictions; the
exact line shape is hard to pre_,dict; analytically, for the curve that appeérs as a
pure PWBW in the K*n¥ spectrum gets distorted under the misassignment of
the pion mass to the kaon Empirically, an S-wave Breit-Wigner (SWBW) with
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mass and width in each z bin suitably chosen was found to fit the Mente Carlo
K*° contributions to the detected spectra with good x2s. I nsed this SWBW
with magnitude fixed from the Monte Carlo prediction. The systematic error
from the K*° contribution preves to be small, so the details of the K*° treatment

are not important.

The PWBW used for the p° is given by

2\  mMT -
N(m)dm N, ( )(m2 M02)2+M02F2dm _ (5.1)

. 3
= po(i) Mo
- \9o m

as suggested by Jackson [45]. In these equations, N (nt)dm is the .expected num-

with

ber of p°s in a mass bin of width dm centered on mass m; Mp and I'g are the
“table value” mass and .Width' g is the three-momentum maghitude of the decay
products in the parent’s rest frame; %P is the three—momentum magmtude of the
decay products in the rest frame if the parent has m = Mo, and N is the overall
normalization (that is, the number of p%s present). Fixing My = 771 MeV and
I'o =154 MeV gives goodbﬁts to the Monte Carlo p° shape, including detector
acceptance and resolution, for ail z > .10. The notmalization ‘N,,.‘ ;15 the enly p°
parameter allowed to vary when fitting the data B |
When using the Lund package for the ‘Monte Carlo I perform the fits in the
mass ranges .6-1.2 GeV and .6-1.4 GeV a.nd average the results. When using the
Webber package for the Monte Carlo, I fit only in the mass range .6-1.2 GeV.
This is because the Webber Monte Carlo inciudes the f tensor meson at 1270
MeV with the unphysical width ' = 0, this unphysical feature in the simulated
‘*;w;spectrum prohibits its use in the .6-1.4 GeV window. (I conclude later that
the fits are 1nsen51t1ve to the fit range used so this difference between the Lund

and Webber fits is 1rrelevant )
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The second algorithm I use to fit the p® peak is quite similar to the first
-method. The only difference is that I scale up the like-sign spectrum before
subtracting it from the unlike-sign spectrum. The scale factor used is different for
each z bin. The motivation for this method is the observation in the Monte Carlo
that the combinatoric contributions to the same-sign and opposite-sign spectra
(that is, pairings not belonging to the same decay tree) are nearly identical
in shape, differing only in magnitude. The difference in magnitude is simply
because there are more unlike-sign pairings possible than like-sign; the difference
is typically 10% over most z. This means that a straight subtraction of like-
sign from unlike-sign spectra leaves on the order of 10% of the combinatoric
backgréund residual under the p°%; one might achieve better signal-to-noise by
eliminating this background entirely. The scaling of the like-sign spectra is an
attempt to eliminate this residual background by using the combinatoric portion’
of the like-sign spectra to cancel the combinatoric portion of the unlike-sign
spectra.

To get the proper scale factor in a given z bin, an approximate solution is the
ratio of the areas in the unlike- and like-sign spectra of the data in a control re-
gion away from the p° and other resonant structures. If the spectra were entirely
combinatoric in origin in this control region, this approximate solution would be
the ezact solution for the scale factor; to the extent that the spectra are not en-
tirely combinatoric in origin, the scale factor desired to cancel the combinatoric
contributions will differ from this approximate solution. A correction to the ap-
proximate scale factor is determined from the Monte Carlo as that multiplicative
constant needed to adjust the approximate solution to the desired scale factor
in the Monte Carlo. I then multiply the data-determined approximate scale fac-
tor by this correction to arrive at the final factor used in scaling the like-sign

spectrum. This technique keeps the Monte Carlo influence on the scale factor
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as small as possible; this Monte Ca.rlov correction factor differs from urlity by
typically 2%. When using the Lund (Webber) Monte Carlo for backgrounds and
acceptances, I use the correction factor as determined using the Lund (Webber)
package. | | '
| The final differential cross-sections are computed using the fits from both
methods, each using both Monte Carlos in turn, for a total of four different
measurements in each = bin. The results of the four methods are reasbonably
consistent, although the straight-subtraction technique gives croes-éections sys-
terhatieally slightly lower than those computed from the Scaied—suBtraction tech-
nirlue,: and use of the Webber Monte Carlo gives cross-sections Systemetieally
slightly lower than those ’computed ﬁsirrg the Lund Monte Cerlo. Not having
any compelling reason to trust any of the four methods vover the others, I take as
my final answer the average of the four measurements, weighted by the inverse
square of the statistical errors. As the measurements are all perforrhed on the
same data set, the statistical errors are mutually comparable and the results are
not 1ndependent I therefore quote a statxstlcal error that is s1mp1y an average
of the four individual errors. The results of the four 1nd1v1dual fits are glven in '
Table 5. 2 o

The goodness of these ﬁts is reasonable. When fitting in the mass range .6
1.2 GeV, for example, the average x? per degree of freedom over all z blrls and
all four .ﬁtting methods is 1.3'for 13 degrees of freedom. I can assign the role of
“data” to a Monte Carlo and use my analysis technique to measure N, fer' this
Monte Cerlo; comparing this measured N, to its'knowh vallre, 1 saw no obvious
correlation .bet.ween goodness—of-ﬁf and the aceuraCy ef the p° measurement. I
therefore accept all the fits regardless of x?, even thouéh the goodness-of-fit
overall is slightly worse than one expects when modeling backgrounds perfectly.

In calculating ﬂ from the observed number of p%, 1 follow the prescrip-
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tion of Equation 1.2. To get the total statistical error on the cross-section I add
in quadrature the statistical errors of the p°‘ lﬁt iﬁ the Vdata, the statistical error
of the p% accepted into the Monte Carlo w7~ spectrum, and the statistical error
~of the p%s generated in events without initial state radiation; this resulting sta-
tistical error is dominated by the error in the fit to fhe data. (Statistical errors
in this thesis are always standard deviations.) I choose § evaluated from the

Monte Carlos, as described in detail later. The final results for Za?i;‘i_g are given

in Table 5.3.

The Webber Monte Carlo introduces a complicationl to‘ this analysis all its
own. Webbef clusters decaying directly into n¥m~ introducé a feafure ét the
~ cluster mass into the unlike-sign dipion spectra: the cluster is effectively a broad
“resonance.” As it hdppens, the Webber version used in this analysis.yields this
cluster peak with a mass and width comparable to the p°. Luckily, this effect is
small except at high z; to the extent it contributes, however, it is a dangerous
background that might or might not be present in the data. And if a cluster-
like feature is present, it might or might not hav¢ the shape and magnitude
predicted by.Webber: the shape depends on details of the event generation, and
the magnitude depends on Webber’s particular choice of decay Ansatz. |

I handle this uncertainty in the background in the following manner. Every
fit to the data using the Webber Monte Carlo for the background is éctually
performed twice. I measure the p° first using the Webber spectrum “as is.” I then
- remove the 777~ pairs stemming directly from cluéter decay, scale the remaining
Webber spectrum up fo have the same total number of entries, and then -reﬁt. I
average the two fits to arrive at the number of p°s I quote as having fit in that bin;
I use this single number as “the” Webber measurement in the subsequent analysis.
In the estimation of systematic errors I include an error for the uncertainty of this

cluster effect. The philosophy here is that Webber “as is” probably overestimates
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the cluster feature (since the feature is enhanced by artificial thresholds in the |
generation); to remove the feature entirely underestimates it (1f it exists). Thus
an average of these two extremes is as reasonable a guess as to its effect as any;
the quoted systematic error quantifies the degree of guesswork.

In any procedure involving as many fits as mine, there are bound to be a
few special cases to be dealt with; this analysis has two instances to mention,
each involving a best-fit N, converging to an (unphysical) negative value.. The
first case involves NP{O for .2 < z < .3 using the Lund Monte Carlo and the
scaled—up like-sign spectrum teehnique Iinclude this measurement in the avefage
quoted for that bin, ignoring the fact that it represents a measurement of a
' phys1ca.lly 1mposs1ble value. As it turns out, due to the large statlstlcal error of
the nega,tlve best-fit, the final average and final statistical error in this bin is quite
insensitive to whether or not this negative value is included. The secend special
case to mention‘is N,<Qfor 6 <z <1 using the Webber spectrum modified
by removing direct cluster decays, fitting using the scaled-up like—sign spectrum
teChniq.ue.v For the method using this modiﬁed Webber spectrum to make .sense,
it must fit a larger N, than when using the unmodified spectrum. I therefore
ignore the fit to the modified spectrum where %\T,,<O, and instead simply take the
N, measured using the unmodified spectrum and scale it up by 20%: this 20%
increase is predicted by a Monte Carlo study, and is Within the systeme,tic error
relevant to this effect that I quote in th1s bm Since thls effect turns out to be
small compared to the total systematlc error of this bm anyway, the details of

this adjustment are not mgmﬁcant

Merits of the Basic Method

Having explained my analysis method and presented the results, I now turn to

the question of why I favor my approach over alternative methods, and tests I've
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z bin Fitting Algorithm
Unscaled like-sign Scaled-up like-sign
subtraction technique subtraction technique
Lund Webber Lund Webber
Monte Carlo | Monte Carlo | Monte Carlo Monte Carlo
10<z <151 1441 + 3701648 + 451 | 2056 + 579 | 846 + 830
A5< <20 ({1166 + 265[946 =+ 288 | 1220 + 4551201 =+ 330
20< <30 789 + 318300 + 374 (-1426 = 1764 | 1601 =+ 343
B0<z <40 943 + 131 (651 =+ 178 913 = 91| 698 =+ 174
40<z<.60f 450 + 114234 + 139 | 608 <+ 92| 524 =+ 118
b0<z<10ff 135 + 36| 79 + 56| 149 =+ 30| 134 + 31

» Tabie 5.2: Number of ¢% fit in the data by each of the four fit prbcédures.

z bin 8 WLH% statistical
error

A0<z < .15 | .766 3.86 1.42
15 <z <.20| 910 2.55 0.71
20 <z < .30 | .960 0.91 0.36
B0<z< .40 .981 0.87 0.13
40 <z < .60 || 991 .240 .055
60 <z <1.0 .994 .037 .010

‘Table 5.3: p°? differential cross-section with statistical errors.
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made to verify the validity of my technique.

Preparation of the Spectra

To test if my snhericity requirements in event selection intfoduced a bias, I re-
measured the differential cross-section using enly the good multihadron events
which failed the spherieity-dip cut. I uéed the unscaled like-sign subi:raction
technique, taking both Monte Carlos in turn, for a total of two measurements
of ﬂ; 4z These measurements were consistent within errors of the same mea-
surements performed usmg good events, with no systematic trend of deviations
observed (although the errors are la.rge due to the small sample sxze)

The smgle—track cuts are straaghtforwa.rd and as can be seen from ‘Flgure 5.2,
~ details of the cut thresholds are unlikely to affect the analysis. At low momentum,
however, the 1 cm vertex cuts potentially remove t00 many pions or cut in a
rapidly. changing distribution. To test the sensitivity of the analysis to this
cut, I remeasured HTZ_Z ‘using a 2 cm vertex cut in both the bending plane
and in z. Comparing the cross-sections (as measured using the unscaled like-
sign subtraction algorithm and Lund as the Monte Carlo). revealed negligible
differences between the results of the two sets of vertex cuts.

| I did a similar test of the treck—najr cut requiring both pions to be in the

same event hemisphere. I reran the ana,lysis (unscaled like-sign subtraction,
Lund Monte Carlo) eliminating this requirement. The cross—seetions measured
under both sets of cuts were consistent to well within errors.

To test the sensitivity of the 'measurement to 'particle.i;ientiﬁcation criteria,
I reran the analysis accepting a track regardless of how fewiwires or pads were
used for the dE/dx information. The cross-sections measured under both sets of

cuts were consistent to within errors.

In addition to the track-pair cuts that I made, there were a number that I
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considered and rejected: Monte Carlo studies showed them to be of little assis-
tance in this analysis. For cdmpleteness, I list these rejected trial cuts: (a) cut on
6*, the angle between the pion momentum and the reconstructed p° momentum
in the p° rest frame; (b) require each pion to be in the same hemisphere defined
by the direction of travel of the p° (c) cut on the minimum p°® momentum; and

(d) cut on the momentum transverse to the jet direction of one or both pions.

_ Fitting the p°

The technique I use of subtracting the like-sign dipion spectrum (scaled or un-
scaled) from the unlike-sign spectrum, and taking the background from the Monte

Carlo histograms, has numerous merits:

e The lai‘ge combinatoric background beneath the p° is reduced without di-
luting the p° itself, reducing systematic errors from uncertainty in the back-

ground shape.

e Certain resonance contributions (e.g. K** — 7*K,, K, — 7*t7~) appear
equally in both like- and unlike-sign spectra and so cancel in the subtrac-

tion; other resonant contributions at least partially cancel.

e The imperfect reproduction of the data dipion spectra in the Monte Carlo,
appearing roughly equally in both like- and unlike-sign spectra, is mostly

cancelled.

e There is no need to involve the mass region <600 MeV in the fit—a mass
region rich in resonant structure (and subject to Bose-Einstein effects in
the like-sign case) and therefore prone to introducing systematic errors if

used.

e Certain systematic errors (such as mismodeling of pion identification or

trackfinding efficiency) cancel in the subtraction.
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e Details of structure in the mass spectra are preserved (instead of being

obliterated in a smooth analytic fit).

e The procedure is simple, allowing for efficient exploration of systematic

€Irrors.

The primary demerit of this analysis technique is the increase of statistical errors
- inherent in the éperation of subtracting- histograms.

I tried and rejected a variety of other techniques to fit the p°, aiming at :reduc'-
ing the statistical errors of the fits. One can a prior: reject fitting the unlike-sign
. data with a background taken directly from the Monte Carlo due to the obvious

discrepancy between the two. One may also reject a prior: any technique using a
smooth analytic curve fit to the Monte Carlo for the background: the reduction
i.n statistical errors is minimal, for the Monte Carlo sample is almost four times
the size of the data set. I attempted to fit. the unlike-sign spectra (both with
and without subtraction of the like-sign spectra) with a smooth analytic back-
ground plus p° line shape independently in t}he data (for N,) and Monte Carlo
(for acceptance correction); these fits "pro.ved to be unstable, hO\.é:vever; without
benefit of a mass sideband below the p° to control the background curve. I also
attempted subtraéting from the unlike-sign spectra a smooth analytic fit to the
like-sign spectra (instead of subtracting the like-sign histograms themselves), us-
ing backgrounds taken from similarly-prepared Monte Carlo spectra. While this .
last method did reduce the statistical errors of the fits, it proved to be subject to
systematic errors larger than those of my chosen method, as revealed by running
the anélysis on a Monte Carlo (treating it as if it were data) and comparing the
best-fit N, to the true N,. I conclude that reduction of the statistical errors of
~ the fits can only be accomplished by increasing the systematic errors, so I am

satisfied with my nominal method.
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My method leaves two parameters free in the fit to the data: the PWBW
magnitude to account for the cases where both pions from a p° decay are paired,
and the background magnitude to account for all other pairings. This approach
makes the tacit assumption that pairings of one pion from a p° decay and one
unrelated pion have a mass structure similar to that of pairings of pions neither
of which came from p° decay. Only in this case is the magnitude that I call
“background” correctly accounting for all the pairs not stemming from the same
po. Using the Monte Carlo to test this assumption, I compared spectra consisting
of pairs of pions exactly one of which came from a p°, to.spectra consisting of
pairs of pions neither of which came from a p°. The agreement is good: fitting one
set of spectra by the other set in .6-1.2 GeV gives an average x*/d.of. of 1.2 for
14 degrees of freedom for z < .6. (The fit was bad for ¢ > .6, where systematic
errors are large anyway.) Especially since the extracted spectra represent only
20-25% of the total, I conclude that they are sufficiently similar to verify the

tacit assumption of similarity.
5.3 Estimation of Systematic Errors

Sources of systematic error are considered below. The quantified errors are listed
in Table 5.4. These errors are combined in quadrature to arrive at an overall

systematic error in each bin.

Background

By far the dominant systematic error is the uncertainty in the backgrbur;d un-
~ derneath the p°. 1 estimate this uncertajnfy as follows. In a given Monte Carlo
(either Lund or Webber) I measure N, by applying my analysis techniqﬁe, using
the other Monte Carlo for backgrounds. The N, that I fit in the ranalysis can be

compared to the number actually present to arrive at a figure of mismeasurement.
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If I use the true background, I will measure (within statis’ticalex.‘rors) the true
nurnber of p%, N, present in the spectrnm. Thus, if orie ignoreé statistical
scatter, the deviation of the measured number, N )82 from N, is attributable
to the background being different from the true background.” (Ignoring statistical
 variation must result in a somewhat conservative estimate of the background
systematic.) I assume that the.two Monte Carlos reasonably reproduce the data,
and hence comparing one to another (where the errors are known) to estimate
the systefnatic error is a reasonable approximation of the ”systefnatic' error when
~fitting data by the Monte Carlo (where the errors are unknown).vy
Both Monte "Carloé can be fit by my analysis method (taking backgrounds
~ from the other Monte Caﬂo), each undergoing the two po-ﬁtting tec_hniqnes, for
a total of four such ccmparisons. For each comparison, I compute thehpercentage

mismeasurement:

r meas true
Np - Np

Nptrue X_ 1 00 :

I average these four numbers, weighting by the in{/erse square of the statistical
error of the ﬁt, to arrive at a final estimate for the percentage of mismeasurement
_in each = bin. Not having a particular model of how this: systemat1c error should
depend on z, I attempt no smoothmg or nelghbormg-bm averagmg 1nstead 1
simply compute the errors independently in each z bin.

To test the effect of statistical fluctuations in the Monte Carlo backgrounds,
I re-measured 57% using the differences of smooth analytic fits to the»Monte
Carlo M(7*#~) and M(n*n®) histograms (instead'of subtracting the histograxns
_ themselves). Except for .10 < = < .15, these ﬁts were con81stent w1th my nominal
method to W1th1n systematic errors. For .10 < z < .15 these fits were 30% higher
‘than the nominal fits. | | » 4

To test the eﬁ'ect of the discrepancy between Monte Carlo a.nd.data. subtracted

spectra, I re-measured 7— ﬁa d:c using a free ﬁve-pa.rameter analyt1c background fit
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instead of taking backgrounds from the Monte Carlos. This free fit background
is pulled up in the data by the excess of entries below the p° mass, thus yielding
a smaller p° area. Except for .10 < z < .15, these fits were consistent with
my nominal method to within systematic errérs. For .10 < z < 15, Wﬁere the
discrepancy is most apparent, these fits were 30% lower than the nominal fits.

I conclude from these checks that my systematic errofs as determined above
are reasonable except for .10 < z < .15. In this bin I increase the systematic
error to 30% to account for its special sensitivity to background assumptions and
to the discrepancy between data and Monte Carlo at lov;} z in the mass region

below the p°.
0 .
p’ shape

There is some a priori uncertainty in what to use for the P-wave Breit-Wigner
(PWBW) functional form for the p° [45]. More important still are effects pre-
dicted by the detajls of various hadronization schemes: some perhaps artifacts,
some perhaps physically expected.

The most important of these considerations is a.n'v effect predicted by the
Lund hadronization scheme. The LSFF (Equation 2.5) févors higher-momentum
decays for more massive particles. Because the p° is so broad, a given p° can
assume a wide range of actual masses; and a more massive p°, on a{rerage, will
have a stiffer spectrum than a less massive p°® under the influence of the LSFF. In
the cross-section measurerrient, the act of segregating p%s according to z therefore
groups stiff p% (soft ps) together which should have higher (lower) mass, on
average. The upshot is that Lund predicts a p° line shape distorted toward
higher masses at high z: for .6 < z < 1, for example, the best-fit Mo and Tg
~in the Lund Monte Carlo are found to be ~ 11 MeV and ~ 14 MeV larger

than the generator values, respectively. (Observation of this effect would be very
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interesting evidence for the physical 'reality of the string decay model. I looked
at the data, and found it impossible to get reliable fits when floating M, and/ or
I'o due to the low statistics. This bears further investigation should significantly
more data become available.) H

There are other generator-dependent d1stort10ns of the PWBW For example
' toward the end of the Lund iterative decay scheme particles are produced at low
z w1th 1nsufﬁ01ent energy to form a hlgh-mass P ——thls results in a p° line shape
distorted toward low mass at low z. - |

To somewhat counterbalance these amhiguities about the‘correct p° line shape
to use—which stem essentially‘ frorn its bioad Width—is the fact th.at: detector
resolution broadening of the signal vis negligible compared to its inti_;insic width.
This means detailed understanding of the detector resolution is unnecessary for
the determination of the proper resonance shape.

To estimate the potential systematic error from using the wrong line shape
when ﬁtting to the data, I fit the areaof a histogram generated from a po PWBW,
the ﬁt usxng a PWBW shape with a variety of fixed Mo and 1"0 1 ﬁxed Mo and
To at several values extending from 760 MeV to 783 MeV for Mo, and from
140 MeV to 170 MeV for I'y; I performed the fits in two different mass windows
(.6-1.2 GeV-and .6-1.8 GeV). In these fits the fit area deviated from the true
area by typically less than 1-2% (4% in the worst case) As these: values for Mg
“and Iy cover the full range expected from the discussed effects, I conclude that
for any reasonably expected mass and width in the data at any z 2 .10, VI incur

<2% systematic error by fixing Mo = 771 MeV and I'g = 154 MeV

~ I'furthermore observe that the best-fit PWBW area typically deviates by ~1%
from the true contents of the PWBW—prepared histogram; that the best-fit area
changes by ~1% depending on the fit window; and that choosing an alternative
form of the PWBW [45] changes the best-fit area by v<_2_%. I lump all of these
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systematic errors associated with the PWBW shape into a conservative estimate

of 4% systematic error at all z.

‘Webber cluster

As detailed earlier, the Webber cluster—nr."’ﬂ‘r decay introduces a systematic
uncertainty; I perform several fits to quantify this uncertainty. Fitting the data
in turn by the previously-described two versions of the Webber spectra gives a
measureA of the eﬁ'ect. As equivalent tests, I fit both versioné of Webber spectra as
if they were data, using Lund as the Monte Carlo; and fit Lund as if it were data
using both versions of Webber as Monte Carlo. I do these three tests for both
scaled and unscaled like-sign analysis techniques, for a total of six estimations of
‘the effect. For each of these six tests, I compute

v, -5

(R
that is, half the fractional excursion between the fit number of p% using Webber
as is (N,) and using the modified Webber spectra (N,). I then average these six

‘numbers to arrive at a quantification of this uncertainty, listed in Table 5.4.

Beta

The 8 occurring in b_;—HZ_Z refers to the 8 of p% at that z; when performing the

analysis in discrete = bins, 8 must represent an appropriate average over the z
~ bin in question.

Sincé the B of p% carfies no necessary relation to the computed from
random pién pairings, I cannot determine it directly from the data.(which is
mostly combinatoric in origin). I can compute it from the measured differential
cross-section, but tfxis is liable to be subject to relatively large errors. Instead, I
compute it directly from the Monte Carlo. Since the average (3 in a bin depends

only on the shape of the differential cross-section, and since the shapes of the two



94

generators I use generally agree with each other and with the data. (z;lthough the
magnitudes differ), I assume that g is not strongly model-dependent, and hence
it is safe to determine it from the Monte Carlos.

I compute  as follows. In each z bin, using the Lund and Webber Monte
Carlos in turn, I compute < é—>_l for generated p°s in events without initial state
radiation. I take the average of <%‘>—1 as my final value for 8. I take half the
absolute difference of the two values as my estimate of the systematic error on
B3, expressed as a percentage. My values for 3 are listed in Table 5.3; the errors
are listed in Table 5.4. -

Nuclear interactions

Pions may undergo nuclear interactions in the material between their creation
point and the fiducial volume of the TPC. These interactions can scatter pions,
absorb pions, or produce more pions, so reproducing their eﬁ'éét; in the detector
simulation is important in getting the simulated béckgrounds and acceptances
right.

To estimate the error in p° acceptance from mismodeling the nuclear interac-
tions, I consider pions in the Monte Carlo from p° deemed “findable.” A findable
p° is one in an event that passes the event selectiqns 'criteria., whose»da‘ughter pi- .
ons satisfy (before detector simulation) the track-pair cﬁts, and whose daughter
pions each have momentum > 150 MeV/ c.pointed > 30° away from the beam
direction. Up to the track-quality cuts, these are thé p°s one Woﬁld expect to find
in the 77~ spectrum if it were not for interactions in the material in front of the
TPC. In each z bin I tabulate (a) the number of findable p%;,.and (b) of these,
the number that have at least one daughter undergoing a nuclear interaction of
any type. | _

In the worst-case bin (.10 < z < .15), 15% of ﬁndabie p% have daughters
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involved in nuclear interactions. Since the Monte Carlo interactions are estimated
to be accurate to within 10% of reality [46], this 15% is accurate to within ~ 2%.
That is, one expects only ~ 2% of the p% to have nuclear interactions not.
correctly modeled in the detector simulation. Since not all nuclear interactions
remove a 7t 7w~ mass from the p° region, to quote a full 2% systematic uncertainty
in the p° acceptance for this bin is a conservative choice, which I make. The errors
for the other bins’ acceptance are computed in the same manner.

A priofi, the background is also subject to errors from mismodeling nuclear
interactions; but siﬁce the background is composed of the difference between two
dipion spectra, errors in the dipion acceptance should cancel. Since I have just
shown that any such error is individually small to begin with, background errors

from mismoaeling nuclear interactions are negligible.

Pion decay |

The decay m — p affects the Monte Carlo acceptances and backgrounds in the
- same way as nuclear interactions and are evaluated in the same manner. The
) background error is negligible for the same reasoning as in the case of nuclear

-interactions.

Track reconstruction efficiency

The track-finding efficiency in the TPC (excluding geometric losses) is estimated
to be 97%+2% (28]. The 2% uncertainty of single-track efficiency means a 4%

uncertainty in the two-track-—hence p®—acceptance.

Pion identification

-1 find 97% pion acceptance (flat in z) for my particle identification cuts, judged to
be accurate to within 2%. As with the track reconstruction efficiency uncérta.inty,

this leads to a 4% syétematic error in p° acceptance.
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To verify this systematic error, I perform the following Eest. The establish—
ment of the identity x? for a given species hypothesis depends on three things:
1) the assumed dE/dx curve, 2) the dE/dx resolution, and 3) the momentum
resolution. Of these, (1) is knowri by far the best, (2) is known to within about
8% of itself, and (3) is known to within about 10% of itself. "I assume (1) is
correct, and test the sensitivity of my analysis to (2) and (3) by refitting N, in
the data after reprocessing all tracks with the resolutions altered up and down
by their uncertainty. | The uncertainty in (2) dominates the uncerta.inty in (3);
the average absolute percent shift in N under ra.lsmg and lowermg (2) is 2%,
| indicating that a 4% systematic is, if anything, conservatwe
Errors in the background are neghglble from track reconstructlon and pxon
N 1dent1ﬁcat10n systematlcs for the same reasomng as in the case of nuclear inter-

actions.
Fitting window

The analysis technique to fit N, should not .depend on the mass window used in
performing the fits. To test this, I fit N, in the data (using the Lund backgrounds)
using several different mass Windows: 6-1.0 GeV; 6-1.2 GeV, .6-14 GeV,’.and
6-1.6 GeV. I found that fits using different ﬁndcws were consistent to well
wifhin errors, and that the fits showed no systemaxtic trend '(excel;.)t that N, was
occasionally a littlevlow when fit in .6-1.0 GeV)r. This indicates that the analysis
is insensitive to the fit window, as long as it extends tc_ 1.2 Ge\} or beyond.

As a high-statistics test of this claim, I lumped all the data for z > .10 to-
gether and measured 'che"p0 multiplicity ‘by fitting in the mass WindOVVYS"..6—1.2
' GeV, .6-1.4 GeV, and .6-1.8 GeV. I used only Lund backgrounds, but used both
unscaled and scaled subtraction algorithms. The rms deviation of Athese six mea-

surements was 7%. This is not quite a true test of my nominal method, since it
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does not allow for independent background subtraction as z varies (and is there-
fore unduly weighted by the many entries at low z where systematic background
errors are known to be large); moreover, the 7% variation may be partly statisti-
cal in origin. I believe this makes a 7% systematic error a conservative estimate,

but one I choose to quote.
K*0 area

Because kaons are misidentified as pions most often near the K/m crossover, the
contribution of the K*° to the ntn~ spectrurh is significant only in one z bin,
10 < z < .15. In this bin its area is about a fourth as large as the p° area.
Taking‘ the K*? contribution from the upper and lower extremes of measured
values and Lund and Webber predictions (see Section 7.4) makes the measured
N, in the data vary by 5% for .10 < = < .15. I am therefore unlikely to be more
than 5% in error in my final measurement of N, and hence &';H%%; 5% is the

error I assign in this bin. The errors in the other bins were estimated in the same

manner and found to be ~ 1%.

Attempts to Diagnose the Mass Discrepancy

For completeness, I list here the attempts I made to diagnose the low z, low
mass discrepancy between Monte Carlo and data in the M(ntzn™) - M(wiwi)
subtracted speétra. The discrepancy persisted for extensive variation of track
and particle identification cuts, so I believe it’s not an artifact of my particular
set of cuts. I examined the predicted contribution to the mass spectra from all
likely 0—, 17, 1%, and 2% mesons to see if a reasonable shift in Monte Carlo
assumptions (production rates, decay branchiﬁg fractions, detector acceptance)
could explain the excess seen in the data, but none had the necessary combination
of spectrum shape and magnitude.

The discrepancy remained when requiring all tracks to lie > 50° away from the
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Source of - " z bin
Error . L _
10— | .15 | .20- | .30— | .40 | .60— |
151 20| .30 40| .60| 1.0
Background 30| 10| 25| 45| 35| 75
p° shape 4 4 4 4 4 4
- Webber cluster 2 2 21 2| .5 20
B 4 1{ O 0| O 0
Nuclear interactions 2021 1| 1 1] 1
Pion decay 2 21 1 17 1| 1
Tracking efficiency 4 4 4 4 4 4
Identification efficiency 4 4 4| -4 4| 4
Fitting window 7| 7 T 7 7 7
K*%rea 5 1 1] 1 1] 1
‘Quadrature Total o
Systematic Error 32| 15| 27| 46| 37| 78
Statistical ’
Error 38| 28| 40 15 23 26

Table 5.4: Systematic and statistical errors. All figures expressed in %

I' beam direction, regardless of whether track peurs were requlred to be in the same
sphericity hemlsphere or not, so I do not suspect mlsmodehng of 1nteract10ns in
the beamp1pe as the culprlt. Further tests of the TPCLUND detector s;mulat1on
were made by dividing trach pa,irs into 'severafl momentum and polar angle bins
and observing that the discrepancy was present in all birlls. Whereas it’s unlikelyv

'vthat TPCLUND — abundantly checked in other people s analyses — is wrong
across the board. Moreover, the dlscrepancy exxsted in data collected in an
earlier conﬁguratlon of the detector for Whlch a d1ﬁ‘erent version of TPCLUND

was used, so an element of the current version of TPCLUND wrong in detail is
unlikely to be the source ot' the problerri. |

The excess in the dat“a‘ cannot be due to Bose-Einstein enhsncerhent, for

(a) it appeers in the unlike—signv spectra, and (b) it extends to masses too high

to be sub ject to this effect. To investigate the ability of a tune of Monte Carlo

parameters to eliminate the discrepancy, I generated detector-simulated events
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for four different tunes of the Lund v5.3 Monte Carlo; all continued to exhibit
the effect. To test the role of the hard QCD generation scheme, I generated
detector-simulated events using the parton shower algorithm of Lund v6.3; the’
discrepancy was not reduced. (And it is present in the Webber prediction as
'well, also a parton shower scheme.) I explored several different cutoffs to the
hadronization process in both Lund and Webber to see if the effect was sensitive
to the essentially ad hoc termination of the fragmentation schemes, all to no avail.

In short, the mass discrepancy between data and Monte Carlo at low z in the
subtracted spectra was stable against all my attempts to explain and eliminate
it. There may be interesting hadronization physics implicit in this effect, but

further investigation of this possibility is outside the scope of this thesis.

5.4 Results

The p° differential cross-section measured in this study (with radiative correc- -
tions applied following the prescription of Equation 1.2) is plotted in Figure 5.7,
along with the results from several other experiments [47,48,49, 50]. (The JADE,
TASSO, and HRS measured quantities are ﬂ d . To convert to ’30 d:z:’ I divide
by oys = ¥22. R, assuming R = 355, ¢?(1 + %) = 3.84 using e, = 0.15.) Com-
parison to the two Monte Carlo generators is made in Figure 5.8. Forming a x?2
from my measured contributions in each z bin and the Monte Carlo predictions
- quantifies the agreement between the generators and this experiment. This x? for
six degrees ofhfreedom is 8.2 for Lund and 7.6 for Webber, indicating that both
models do equally well in predicting the p° differential cross-section. The points -
plotted for all experiments (including this one) indicate statistical error bars only,
except for the HRS measurement which shows their systematics-dominated total
error bars. The horizontal bars on my measured points simply represent the

extent of the z bins. The points are located in = at the average = of the bin,
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cbrnputed from an exponential fit to the cross-section.

To get the total measured p°® multiplicity, I sum the contributions to the mul- _
tiplicity from each z bin as measured in this analysis for radiationless initial state
-events. This gives 0.50 &+ 0.07 p°/event measured in z > .10 taking statistical
errors only. Combining all mass pairs for z > .10 and then fitting with my anal-
ysis technique yields a p° multiplicity of O.3_9:i: v(;).09 for z > .10. Since this latter
technique does not allow for independen'g baékground subtraction as z varies, I
am not surprised by the discrepancy with the sum of the individual fits. Com-
- bining thé systematic _errofs_‘frofn each bin quafdrati;:‘a,lly'_ yields a.n uncertainty
| on this mﬁltiplicity of 11%. 'Combi-ning thém linearly yields an uncertainty of
27%. As there are certainly some, but not perfect, éorreléfioné of the s&stématic
errors émong the biné, these two ‘ﬁgures bracket the sensible rahgé of 'Syééematic
errors. A hybrid approach to combining systematic errors, v‘v'hervei‘n.a 15% error
is assumed to be correlated and the rest is uncorrelated, finds a réaéonabie 20%
systematic uncertainty; I use this value in the remaining discussioh;

An éukiliary exefcise in calculating the total ,o0= multiplicity .ivmlrol'ves fitting a
smooth curve to the measured Ei;j—g; a single éprnential doés' vs}éll. .I take the
abscissé, of the cross-section points to be the (z) in each Binéémpﬁfed from the
previous ﬁt; the fit converges in two iterations. This fit haé a %2 of 4.7 for four
deg'ree.s of freedom. | v | |

" The Lund Monte Carlo, Webber Monte Carlo, and éxpdneﬁtial ivﬁt predict
34%, 28%, and 30% of all p°s generated in events without initial state radiation
to have z < .10, respectively. Using these iﬁgures to extrapolate the éum of
individual z bin measureménts to the full z range, I find 0.76 + 0.11, 0.69 +0.10,
and 0.71 4 0.10 p°/event produced in raQiationless initial sta;ce"eveﬁts assuming
the Lund, Webber and exponeﬁtial correction, respectively.

An alternative method to calculate the total p° multiplicity is to fit a fixed
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| Source | p°/event |

TPC (this study) | .77 +.17

TASSO 72+ .15
JADE 98+ .17
HRS 95+ .09
MARK II- 67+ .11

"Lund Generator .84
Webber Generator | .62

Table 5.5: p° multiplicity in this and other experiments, and as predicted by the
Monte Carlos. Errors are quadrature sums of statistical and systematic errors.

shape td the differential cross-section and integrate the multiplicity under the
curve (correctly accounting for %) This tends to reduce statistical errors at the
cost of introducing systematic error from the assumed fixed shape. I use three
shapes for this approach: the Lund predicted shape, the Webber shape, and the
exponential shape. The fits to the Monte Carlos are a one parameter fit, floating
the nbrina]izaﬁion of the generator curves; the exponential is a two parameter
fit. The resiilts of these fits for Lund, Webber, and expopential, respectively,
are 0.80 & 0.08 (x*> = 8.0 for 5 d.o.f.), 0.76 + 0.07 (x? = 4.1 for 5 d.of.), and
0.7440.10 (x% = 4.7 for 4 d.o.f.). Since these fits cluster closely, I judge that the
systematic error from dependence on assumed cross-section shape is sufficiently
small to be neglected in comparison to the other errors in this analysis. I choose
to average the results of these fits to arrive at my final result. Including the 20%
systematic error, this yields 0.7740.08(stat)£0.15(syst) p°/event as my measure
of total o° muItiplicity. This multiplicity is compared to the determinations of
other expériments and t.he predictions of the Monte Carlos in Table 5.5. (No
correction is made for the differing /s of the various experlments The Monte

Carlo predlctxons are for /s =29 GeV.)
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Figure 5.7: p° differential cross-section in this and other experiments. Errors
(except for HRS) are statistical only. .
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| Chapter 6

Measurement of the ¢
Differential Cross-section

6.1 Overview

The ¢ is a narrow reéonance (I' = 4.2 MeV, M = 1019.5 MeV) which decays
frequently to K*K~ (49.5% branching fraction), the decay mode studied in this
analysis. Implicit in these characteristics are the salient features of the ¢ analysis.
~ Because the decay mode is to charged kaons, the TPC’s particle identifica-
tion ability greatly reduces the background under the ¢ peak. The remaining
background is virtually entirely combinatoric and smooth; resonant structure in
this K*K~ background is negligible.

Because the daughters’ masses sumn to nearly the mass of the ¢, the decay
products havé little momentum in the ¢ rest frame. This means the daughters
have similar momenta when boosted tol the lab ffame, which in turn means a)
the tracks are close in space and the detectors’ ability to resolve them must be
well understood, and b) that in momentum regions of low kaon acceptance —
in particular the K/m crossover region — the ¢ acceptance shows a pronounced
hole if both kaons are subject to stringent identification criteria.

Lastly, the narrow width of the ¢ is comparable to the detector resolution,

so that understanding the correct line shape to use for the ¢ peak in the data
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and the Monte Carlo — and thereby estimating the acceptance coi‘rectly — is
not trivial.

Because my ¢ analysis measures the ¢ independently in the‘ data énd the
Monte Carlo (as opposed to the p® analysis, where Monte Carlo backgrounds
were used when measuring the data), the Monte Carlo- measurement serves only
-as an acceptance correction (and a tool for probing systematic errors). This is
essentially a question of detector simulation, insensitive to the particular physics
generator used, as long as the generatbr gets the gross features of the multihadron
event environment close to reality. There is therefore no need to duplicate this
analysis using different Monte Carlo generators; for the ¢ study I use only the
Lund generator, and in this chapter “Monte Cark?” is always taken to mean the
Lund Monte Carlo package. ‘

I have previewed some features of the ¢ 'analysis in this section. In Section 6.2
- I explain the method I've chosen for the ¢ analysis and present the cross-section
results (with statistical errors only). In Section 6.3 I estimate systematic errors,

with final results and errors described in Section 6.4.

6.2 Basic M_ethod

In order to measure —ﬂ}l_;%%’ I divide the data and Monte Carlo mass épectra into

five z bins for .1 < z < .8, and measure the area in the ¢ pea.k independently in
* each bin. The z bins are chosen to be wide compared to the 'z resolution of the
detector and to have reasonable numbers of ¢s in each bin. The specific = bins I

use are given in Table 6.1.

6.2.1 Formation of the MaSs_ Spectra

To be used in this analysis, an event must first pass the multihadronic event

selection and sphericity requirements described in Section 4.2. For a track to
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be used as a kaon candidate in forming the mass spectra, it must pass — apart
from identity cuts — nearly the same track cuts as in the p° analysis. The
only differences from that analysis are: cut (2) is re}axed to dp 1/pi< 10 (if
p1< 1 GeV/c) or dpy/pi< .10 (if p.> 1 GeV/c), where p, is the momentum
transverse to the beam axis and dp, is its error; and cut (3) is tightened to
require momentum (extrapolated to the event vertex) > 350 MeV /c, since kaons
range out in material before the TPC at higher momentum than pions. These
cuts may be inspected from Figure 5.2.

The freedom in choosing the kaon identification cuts leads to important de-
cisions. To begin with, I require no minimum number of wires for the dE/dx
‘i_nforrnatio‘n, thus utilizing tracks that have dE/dx determined from pad signals.
This is because the daughters of tht;, ¢, often close in space, will often lose wire
dE/dx assigﬁments due to ambiguity of the assignments of wire hits to tracks;
the slight cost of worsened dE/dx resolution when using pads for the dE/dx

- measurements is worth the gain of highér acceptance and lessened systematic
uncerta;inty of the acceptance. |

Even more important is the choice of the particle identity selection. If no

_identification is used at all, ¢ acceptance is high but so is the background; this
‘is similar to the procedure used by HRS [51]. If tight identification criteria are
used on both kaons, the ¢ acceptance drops but so does the background; this is
the procedure used by a previous measurement using the TPC [52]. (Under this
algorithm, no measurement can be made in .15 < z < .25, the bin affected by
the K/7 crossover kaon acceptance hole, due to the miniscule ¢ acceptance.) For
this analysis, I choose a mi.ddle,ground: I require at least one kaon to satisfy a
fairly tight identity cut, but the other kaon may satisfy a much looser identity
cut. The increased ¢ acceptance relative to the earlier TPC approach, which

improves the statistical significance of the signal, competes with the increased



106

background, which reduces the significance: the result is that the “one tight +
one loose” selection has about the same statistical signiﬁcance as the “two tight”
selection. Moreover, this approach allows a measurement in .15 < z < .25, as -
there is sufficient ¢ acceptance after the cut for a meanirig;ful result.

The ¢ acceptance (estimated from the Monte Carlo) for several approaches to
kaon identification are shown in Figure 6.2. Acceptance here means the number
of ¢s entering the mass plot after all cuts divided by the number of ¢s generated,
both from Monte Carlo good events. I define the loose kaon identity selection to
be x% < 9, where x¥% is the particle-id x? for the kaon hypothesis; this represents
consistency of the track with the kaon identif;y The tight kaon selection for my
analysis I define to be XK <9, xe > 4, and the probability (see Sect1on 41.2)
for bemg a kaon > 0.3; this represents a reasonably solidly identified kaon in-
consistent with the electron hypothesis. (In studies requiring both kaons solidly
identified, I strengthen the minimurﬁ probability requirement for the tight se-
lection t070.5.) The x%r.cut rejects 50.7% of tracks surviving previous cuts; of
those tracks surviving the x% cut, 28.1% have a probability for being a kaon >
0.3. These identity cuts are illustrated in Figure 6.1. The electron discrimina-
tion only matters for the lowest z bin, .where the K/e dE/dx crossover at 600
MeV /c would otherwise admit conversion electron pairs which peak in mass near
threshold complicating the smooth ‘background fit. - |

The kaon purity a.nd acceptance as estimated from the Monte Carlo for the
loose and tight identification cuts are shown in Figure 6.3. Integrated over all
momentum, the purity is 26% (68%) [13%] and the acceptance is 77% (52%)
[79%)] for the loose (tight) [no] kaon selection. The purity is the fraction of good
tracks (undef the relevant identification scheme) that are actually kaons; the
acceptance is the fraction of kaons generated in good events that are called good

tracks (under the relevant identification scheme).
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Figure 6.1: Kaon identity cuts for those tracks surviving previous cuts. The
probability plot only contains entries for tracks passing the x% selection. The
arrows indicate the cuts used in this analysis. |
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Figure 6.2: ¢ acceptance under various kaon selection schemes: a) no particle
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one tightly identified kaon with one loosely identified kaon; d) require two tightly
identified kaons. The definitions of tight and loose identification criteria are in
the text. ' 2 L '
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Figure 6.3: Kaon purity and acceptance under (a) loose (x% < 9), and (b) tight
(x% < 9, x2 > 4, and kaon probability > 0.3) identification criteria. The dips
around 1 GeV/c in purity (plots (a) and (b)) and accepta.nce (plot (b)) are due
to the K/r crossover.
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The invariant masses of track pairs surviving all the above selection passes,
undeil~ the at least one tight kaon identification procedure, form the mass spectra
from which I will extract the ¢ signal. No édditional cuts at the track-pair level
are made. These spectra from the data, divided in%b'x Bins, are histogrammed
in 4 MeV bins in Figﬁre 6.4 for both unlike-sign and like-sign combinations. The
¢ feature is prominent in all unlike-sign bins (at a mass and width consistent
with the @) and is absent in all like-sign bins, indicating that the observed peak

is truly the ¢ and not an artifact of the selection.

6.2.2 Extracting the Cross-section

To extract the number of ¢s observed in a given mass plot, Ny, I perform a
maximum-likelihood fit to the spectrum using a smooth background' function
plus a resonance curve fixed in shape but floating in magnitude. The ba;:kground

curve is

em®(cz — m)*°(1 + cam + csm?) (6.1)

where the ¢; are the floating parameters of the fit. (’I_‘he exponent fixed at 20
could in principle be a free parameter, but it proves to be highly correlated with
c3 when free, so it is sensible to fix it.) |
" The resonance curve for the ¢ is the convolution of the P-wave Breit-Wigner
(PWBW) of Equation 5.1 and a fixed gauséian détectof rééolution. The Breit-
Wigner parameters used are I'c = 4.0 MeV and My = 1020 MeV. The analysis
is done twice, once using a detector resolution fixed at 2.5 MeV and once using
a 3.5 MeV resolution; the results are averaged for the final Ny.
The spectra are fit in the mass range from threshold to 1.28 GeV. The six-
-parameter (five backgrouna and one signal) fit to these 74 bins has 68 degrees
of freedom. The fits are fair: the average x? over all x bins for these 68 ciegrees

of freedom for z < .6 is 84 (99) for the data (Monte Carlo). (An alternative
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Figure 6.4: Dikaon invariant mass spectra from the data. Unlike-sign pairings
are in the left column, like-sign pairings are in the right column. The curves show
the results of the fitting procedure described in the text. The total fit (using a
2.5 MeV detector resolution for the ¢) and the smooth background component
are superposed.
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z bin B Ny o
10< z <.15 ]| .807] 55 % 15] 0.335 % 0.007
15< = <.25 || .926 | 107 & 24 | 0.311 % 0.079
25< z <40 || 974 | 80 £ 19 0.114 & 0.026

40< z <60 | .989 | 49 + 11 | 0.051 £ 0.013
B60< z <.80 .995| 6.1 &+ 4.5 | 0.010 £ 0.007

Table 6.1: Ny fit to the data and the derived ¢ differential cross-section; errors
are statistical.

method, wherein I fix the four background shape parameters from a fit to the
like-sign spectra before ﬁtting for the ¢, I reject because the x%s of the fits are
markedly worse.) |
The systematic errors incurred by this method of measuring Ny are discussed
1

in the next section. The results for m%, derived from Ny by the prescription

of Equation 1.2, are presented with statistical errors in Table 6.1.

6.3 Estimation of Systematic Errors

Sources of systematic error are considered below. The quantified errors are listed
in Table 6.2. These errors are combined in quadrature to arrive at an overall

systematic error in each bin.
¢ shape

If the spectra are fit with the wrong ¢ shape, a systematic error in Ny will result.
If the Monte Carlo mass resolution matches that of the data, this systematic
error cancels out in the final cross-section by virtue of the acceptance correction;
so the relevant information is how closely the Monte Carlo and data resolutions
agree. | estimate the mass resolutions for the data and the Monte Carlo by a
number of methods, described below.

A simple calculation sets the scale of the expected resolution. Assuming a
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symmetric decay geometry and including multiple scattering and measurement
error contributions to both the momentum and angular track resolution, this
calculation predicts a mass resolution of 2.6 MeV at its optimum around z = .2,
worsening to 3.3 MeV at £ = .1 and 3.9 MeV at x = .8. This is in rough agreement
with the resolution found by propagating quoted track errors for tfack pairs in
the ¢ mass band 1.012<m(GeV)<1.028 (using the “two tight” kaon selection to
maximize signal-to-noise): this exercise yields mass resolutions of 1.8 MeV to
2.6 MeV (2.3 MeV to 3.1 MeV) for the data (Monte Carlo) over the observed
z range .1 < z < .8. This is also roughly consistent with the resolution in the
Monte Carlo determined by fitting just the spectrum of accepted ¢s (i.e. with
background removed) with a floating line shape, then deconvolving the gaussian
detector contribution to the fit width; this exercise gives best-fit resolutions from
2.1 MeV to 5.1 MeV in the observed z range, with errors marginally consistent
with the simple calculation. ‘
- Deducing the detector resolution from fits to the full mass spectra (i.e. with
ba.ckgréund present) using a ¢ signal free to float in shapé. is complicatéd by two
_eﬁects. First, the errors in the resolution are large after deconvolving from the
observed width. Second, the Monte Carlo shows a tendency for the background
curve and the ¢ curve to interact, giving a larger measured width (and larger N)
to the ¢ than when fitting the ¢ contribution to this spectrum by itself. With
these warnings in mind, the general trend of this estimate of the resolution is
that the data is marginally consistent with the simple calculation, but systemat-
ically better; the Monte Carlo is marginally consistent with the calculation but
systematically worse.

Because of the errors oBserved in fitting Ny in the Monte Carlo with a floating
line shape, and because the predicted detector resolution has been reasonably

verified for both data and Monte Carlo as just described, I choose to fix the
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¢ shape when fitting the spectra. The shape is fixed as the convolution of a
PWBW and the “right” detector resolution. The resolution is sufficiently flat in
T to use one resolution for all z. The best estimate of the resolution from tests
‘in the data (Monte Carlo) is around 2.5 MeV (3.5 MeV), values Which bracket
the prediction. I use these two resolutions in turn to generate the fixed ¢ shape,
as described in the previous section.

I clairh that the above estimates of the mass resolution show that it is surely
between 1 MeV and 5 MeV in both data and Monte Carlo, but that the relative
agreement of Monte Carlo and data cannot be pinned down more precisely than
that. In order to quantify the possible systematic error from ¢ shape disagree-
ment between data and Monte Carlo, I refit the spectra using the unreasonably
large and small resolutions of 5 and 1 MeV in the ¢ shape. Calling these refit

values N5 and Ny, I tabulate
% INs — Ny|
Ny ’
this represents half the extreme excursion in Ny for these extreme resolutions, and
is thus a conservative estimate of the systematic error. The errors so determined

are flat in x and average to 10% in both the data and the Monte Carlo. I take

10% as my systematic error from uncertainty in the ¢ line shape.

Background

In the Monte Carlo7 I establish the true background for each spectrum from
the fit of the smooth background curve to the spectrum once mass pairs from
the same ¢ have been removed. I then refit for Ny using this fixed shape and
normalization instead of allowing the background to float. Denoting this new Ny

by Ngy, and the original measurement by Ngoa¢, I find the worst-case deviation

lNﬂoat - Nﬁxl
Nex ’
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where the worst case is selected from the two fits using reasonable detector res-
olutions of 2.5 and 3.5 MeV in the ¢ shape. This deviation expresses the error
incurred when using the free background instead of the true background. It is
flat in x and averages to 8%, which I take as my estimate of systematic error from
uncertainty in the background shape. (Broadening this test to include 1 MeV
and 5 MeV resolutions gives a 10% systematic error estimate.)

As a further test, I can compare Ny as I fit it in the Monte Carlo to the
actual number of ¢ entries present, Nywe. This is problematical as a test. of the
background systematic, for statistical fluctuations and the ¢ shape uncertainty
may also contribute to any deviation of Ny from Niye. Nevertheless, this com-
parison shows average absolute deviations of Ny from Nime to be 12% from this
combination of systerha,tig: effects, indicating that my choice of an 8% error from

background uncertainty alone is reasonable.

Two-track overlap

Since the daughter kaons of a ¢ decay tend to be close in space, especially at
high z, the ability of the detector simulation to reproduce the actual two-track
separation ability of the TPC is potentially important in getting the cérrect 1)
acceptance. Since the Monte Carlo estimates that only 10% of the ¢s are lost
due to two-track overlap even at the extreme of z = .8, dropping sharply with
lowering x, uncertainty in the accuracy of the overlap simulation is unlikely to
be a problem: the Monte Carlo could be grossly in error and still not contribute
significant errors. Nevertheless, I test to see that the Monte Carlo roughly re-
produces the true loss of overlapping tracks.

To test the performance of the detector simulation, I prepare distributions
that quantify the “closeness” of tracks. The expected acceptance loss for very

close tracks is observed in these plots; comparing these distributions from the
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data and Monte Carlo shows excellent agreement, even for the most sensitive case
of tracks within 1° of each other in polar angle. Agreement of the plof;s‘away
from the overlap region indicates that the Monte Carlo correctly reproduces the
overall structure of the plot, and that the agreement in the overlap region is
therefore evidence for the general correctness of the ovex;lap simulation.

I conclude that, while there is some slight detector loss for close tracks, the
Monte Carlo reproduces these losses adequately. To quantify the systematic
error, I assume the detector simulation is correct to wit_hiﬁ a factor of two, and

therefore I set the error equal to the predicted loss of ¢s from this effect.

Kaon identification

The systematic error from uncertainty in ﬁhe particle identification aéceptance I
estimate by varying the momentum and dE/dx resolutions and refitting N, in
the éaxne manner as in the p? analysis. The systematic error so determined is
8% over most of the z range (worsening as expected at high z where the dE/dx

bands converge).
¢ spin-alignment

The possibility of the ¢s having their spins preferentially aligned with some

quantization axis is important for two reasons:

° knowledge of such would reveal new physics of the hadronization process,

and

e such an alignment could cause the acceptance calculated from the Monte

Carlo, wherein ¢s are decayed isotropically, to be in error.

I consider such an alignment along two different quantization axes: 1) the ¢
flight direction, and 2) the normal to the plane determined by the ¢ flight di-

rection and the sphericity axis (representing the direction of flight of the initial
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quarks). (Although it is not implemented in the Lund Monte Carlo program,
some alignment along the latter axis, depending on p, is predicted in the string
model.) |

To test for spin alignment, I divide the mass spectra (all = combined) into
five cos(6) bins and three p; bins, where § is the angle of the decay products in
the ¢ rest frame relative to the quantization axis under cbnsideratiop, and pg is
the transverse momentum of the ¢ with respect to the sphericity axis. I fit the
number of ¢s, Ng(8,p), in each bin as I do for my standard analysis. Dividing
N ¢(9.,p.;) as measured in the data by that as measured in the Monte Carlo provides
acceptance-corrected plots showing the angular distribution of ¢s in thé data. I
fit thése plots by a function of the form R - (5%) (1 4+ Bcos?8), where R is the

relative ¢ pfoduction between data and Monte Carlo and B measures the degree

3

= B) normalizes

of anisotropy by the amount it differs from zero. The factor of (
the distribution so that it integrates to R. I allow R to float in the fits, but the
results for B are insensitive to whether I float R or fix it from the results of the

next section.

For py > 0.6 GeV/c, B = .19+ .85 for axis (1) and B = 0.2+ 1.0 for axis (2).
For all p, combined, B = .19+ .51 for axis (1) and B = —.09 £+ .41 for axis (2).
The other p, bins have statistical errors so large that this exercise loses meaniﬁg.
I conclude that ¢ spin alignment, if it occurs, is undetectable in this analysis,
and that isotropy of the ¢ decay in the Monte Carlo introduces no systematic

error.

Other sources

I deduce systematic errors from uncertainties in tracks lost from kaon decay,
track-finding efficiency, nuclear interactions in material before the TPC, and

determination of 3 in the same manner as for the p® analysis. The errors from
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Source of z bin
Error '

10-.15 | .15-.25 | .25-.40 | .40-.60 | .60-.80
¢ shape 10 10 10 | 101 . 10
Background 8 8 8 8 8
Two-track overlap 0 0 1 3 6
Identification efficiency 8 8 8 .8 20
Kaon decay 3 1 0 0 0
Tracking efficiency 4 4 4 4 4
Branching fraction 3 3 3 3 3
Quadrature Total ' .
Systematic Error 16 16 16 16 25
Statistical .
Error " 29 25 23| 25| 74

Table 6.2: Systematic and statistical errors. All figures expressed in %.

the latter two sources I find to be negligible. The former two sources have errors
that are small but nonzero, and are entered into Table 6.2. I find that direct decay
of the Webber cluster to good frack pairs is expected to contribute negligibly to
the mass spectra. The uncertainty in the 49.5% ¢ branching fraction to K*K~

is +1.5%, contributing a 3% relative error to the acceptance correction.

6.4 Results

The ¢ differential cross-section measured in this study (With radiétive corrections
applied according to Equation 1.2) is plotted in Figure 6.5, along with the results
from earlier experiments [51,52]. (The HRS measured quantities are converted
to ,B—;;Z—g in the same manner as for the ho measurement.) ‘Comparison to the
Lund and Webber Monte Carlo generators is made in Figure 6.6. The x? formed
from my measured points and the Monte Carlo predictions is 13 for Lund and 3.9

for Webber for five degrees of freedom, indicating that Webber does much better

than Lund in predicting this cross-section. The points plotted for all experiments
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(including this one) indicate statistical error bars only. The horizontal bars on
my measured points simply represent the éxtent of the = bins. The points are
located in z at the average z of the bin, computed from an exponential fit to the
cross-section. (The points from other experiments are plotted at the centers of
‘their bins.)

To get the total measured ¢ multiplicity, I sum the contributions from each z
bin as measured in this analysis for radiationless initial state events. This gives
0.071 4 0.010 ¢/event measured in.l<z<.8 (taking statistical errors only).
I fit an exponential to the differential cross-section as in the p° analysis; this fit
has a x? of 1.4 for three degrees of freedom. The Lund Monte Carlo, Webber
Monte Carlo, and exponential fit predict 19%, 14%, and 11%, respectively, of all
os generatea in events without initial state radiation to have « <.dorz> &8
Using these figures to extrapolate the sum of individual z bin measurements to
the full = range, I find 0.088 £ 0.011, 0.083 & 0.012, and 0.080 & 0.011 ¢/event
produced in fadiationless initial state events assuming the Lund, Webber, and
exponential correction, respectively. Combining all mass pairs (for all ) and then
fitting with my analysis technique yields a total ¢ multiplicity of 0.081 &£ 0.010.

As in the p? analysis, an alternative method to calculate the total ¢ multi-
plicity is to fit the measured &;Hg% by the Lund and Webber shapes and by
the exponential, and th;an integrate the contents under the curve (taking into ac-
count the % factor). The results of these fits for Lund, Webber, and exponential,
respectively, are 0.080 =+ 0.010 (x? = 2.8 for four d.o.f.), 0.073 £ 0.010 (x* = 3.5
for four d.o.f.), and 0.074 & 0.009 (x® = 1.4 for three d.o.f.).

Since all these determinations of multiplicity cluster within the other errors
in this analysis, I assign no additional -systematic error for the multiplicity de-

termination. The systematic error determined in the previous section is 16% in

all bins except the highest, where the contribution to the multiplicity is small; it
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| Source | ¢/event |

TPC (this study) | .076+.016

TPC 1984 .077 £ .020
HRS . .101 + .015
Lund Generator 112
Webber Generator | .079

Table 6.3: ¢ multiplicity in this and other expérirnents, and as predicted by two
Monte Carlos. Errors are quadrature sums of statistical and systematic érrors.

is thus fair to take an overall 16% systematic error on the ¢ multiplicity. To be
consistent with the p° analysis, I average the results of the fits to B—(—};g‘—; as my
quoted result; this gives 0.076 4 0.010(stat) £ 0.012(syst) ¢/event as my mea-
sured total ¢ multiplicity. This multiplicity is compared to the determinations
of other experiments and the predictions of the Monte Carlos in Table 6.3. (All

measuremerits and Monte Carlo predictions are for /s = 29 GeV.)
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~ Figure 6.5: ¢ differential cross-section in this and other experiments. Errors are
statistical only.
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Chapter 7

Measurement of the K*0
Differential Cross-section

7.1 Overview

The K*° resonance (I' = 51 MeV, M = 897 MeV) is broad enough that the con-
siderations relevant to this analysis are similar to those of the p°, but somewhat
less prone to errors. (In this thesis, “K*®” and its decays are understood to stand
for the charge-conjugated states as well.) The fact that it decays to K*z~ (67%
branching fraction), the decay mode studied in this chapter, makes the combi-
natoric background under the K*® smaller than the .7r+'rr‘ background beneath
the p°. Along with the comparable production rate (despite the loss of observed
rate from the smaller branching fraction) and the smaller intrinsic width of the
K*?, this reduces the statistical error of the fits relative to the p° analysis. These
same facts, aided by the relative lack of structure in the Kﬂr‘ spectrum from
resonance decays, mean also that the analysis is less prone to systematic error
from uncertainty in the background shape.

As in the p° analysis, the background uncertajnfy will dominate the system-
atic error. The K*? is broad enough that precise knoWledge of déteétor resolution
is relatively unimportant. There is no serious momentum-dependent gap in the

acceptance, as the large QQ value of the decay spreads the momenta of daughter
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kaons sufficiently that the kaon acceptance loss at 7 /K crossover is washed-out
over fna.ny z bins.

As with the ¢ analysis, my K*° analysis measures the K*® independently in
the data and the Monte Carlo, using the Monte Carlo measurement only for the
acceptance correction. Hence it suffices to use only the Lund Monte Carlo in this
analysis, and unless otherwise stated, “Monte Carl»” in this chapter refers to the
Lund Monte Carlo package. (I use the Webber Monte Carlo only to investigate
certain systematic errors.)

I have previewed some features of the K*° analysis in this section. In Sec-
tion 7.2 I explain the method I've chosen for the K*® analysis and present the
cross-section results (with statistical errors only). In Section 7.3 I estimate sys-

tematic errofs, with final results and errors described in Section 7.4.

7.2 Basic Method

In orde;’ to measure ﬁ%;;g_g’ I divide the data and Monte Carlo mass spectra into
seven z bins for z > .075, and measure the area in the K*° peak independently
in' each bin. The z bins are chosen to be wide compared to the z resolution of
the detector and to have reasonable numbers of K:"Os in each bin. The specific =

bins I use are given in Table 7.1.

7.2.1 Formation of the Mass Spectra

To be used in this analysis, an event must first pass the multihadronic event
selection and sphericity requirements described in Section 4.2. For a track to be
used as a kaon (pion) candidate in forming the mass spectra, it must pass —
apart from identity cuts — the same kaon (pion) candidate track cuts as in the
¢ (p°) analysis.

I make the following choices for the particle identification cuts. I require no
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minimum number of wires or pads (to maximize acceptance), acceptiﬁg the slight
cost in purity of the identified tracks. For a track to be used as a kaon'candidate, I
demand consistency with the kaon hypothesis by requiring x% < 9; and I require
it to have a probability (see Section 4.1.2) for being a kaon > 0.3. These are
fairly loose identification criteria, designed to maximize acceptance. For a track
to be used as a pion candidate, I demand consistency with the pion hypothesis
by requiring x2 < 9; and I require it to have a probability for being a pion > 0.7.
This cut does not overly restrict acceptance for the p1on probablhty is strongly

:peaked above 0. 7 anyway; by requiring the kaon and pion probabilities to sum
to one or more, I eliminate the possibility of the same pair of tracks entering the
mass plots more than once. The track cuts are either identical to, or trivially
inspected frcm, those illustrated in Figures 5.2 and 6.1. [ consider the systematic
error from this choice of identification criteria later. |

The purity and acceptance of the kaon ‘and pion candidates, as cemputed
from the Monte Carlo, are plotted in Figure 7.1. The purity is th'e fraction of
candidates of a given species that are identified correctly; the acce;;ta_nce is the
fraction of a given species generated in good events that are correctly' identified
candidates. Integrated over all momentum, the kaon (pion) purity is 66% (93%)
and the kaon (plon) acceptance is 56% (65%).

In addition to comprising one kaon and one pion candidate, for a frack pair to‘
enter into fhe mass spectrum both tracks must lie on the same‘,side;of the event
midplane as defined by the sphericity axis. This is to recluce the combinatoric
background underlying the K*°.

The invariant masses of track pairs surv1v1ng all the above selectlon passes
form the spectra from which I w111 extract the K*° signal. These spectra from
the data, divided into z bins, are histogrammed in 20 MeV bins; unlike-sign

combinations in Figure 7.2, like-sign in Figure 7.3. The K*° peak is evident in
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Figure 7.1: Kaon and pion purity and acceptance. The dips in purity and accep-
tance around 1 GeV/c are due to the K/n crossover.
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the unlike-sign spectra at the correct mass and width (within statistical errors)
and absent in the like-sign spectra, indicating that the feature is truly from the
K*°, and is not an artifact of the selection procedure.

The K*° acceptance, defined as the number of K*%s éntering the mass plots
(iivided by the number generated in good events (both estimated from the Monte
Carlo) is plotted in Figure 7.4. Integrating over the measured z range yields an

overall acceptance of 24%.

7.2.2 Extracting the Cross-section

As a preliminary observation, the Monte Carlo indiéatés that the unlike-sign
spectra are composed almost entirely of two peaks riding atop a combinatoric
background. One of these featurés is the K*° itself. The other is from the
decay D*t — n*+D° (and its charge-conjugate) with the ensuing decay D° —
K~ + anything: The 7" is soft in the D** frame and to lesser extents in the D°
and K~ frames, so mass combinations of it with the K~ yield ‘masses peaking
near threshold. Another relevant observation from the Monte Carlo is that the
like-sign spectra are éicpected to closely resemble, in both shape and magnitude,
the combinatoric portion of the unlike-sign spéctra. |

I fit the K*° é,rea independently in data and Monte Carlo by the following
procedure. To extract the K*° signal from the mass plots, I-exploit the similarity
of the like-sign spectra to the backgfound beneath the K*°. Rather than using
some smooth analytic curve fit to the like-sign spectra directly as background for
the unlike-sign spectra, which would make an assumption about the functional
form, I take the more assumption-free step of subtracting the like-sign histograms
from the unlike-sign plots in each z bin. Monte Carlo studies indicate that this
procedure yields results somewhat less prone to systematic error than fitting the

unlike-sign spectra directly; the cost of increased statistical errors is justified
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Figure 7.4: K*° acceptance as a function of .

since systematic errors will prove to dominate the multiplicity determiﬁation.
Having thus greatly reduced the combinatoric background beneath the K*°
by this subtraction, I account for residual background by using the analytic form
of Equation 6.1; all parameters éxcept the overall normalization are fixed in each
z bin by a fit to the like-sign spectrum for that bin. The normaiization is left free
in the fits to the subtracted spectra. This is not necessarily the correct shape
to use to estimate the background to the K*° in the subtracllted sp.ectra;‘ but
aside from having a certain a priori appeal, it works well in the Monte Carlo, it
certainly has the right limiting behavior (it vanishes) at threshold and at high
mass, and it yields x?s of .the fits as good as those of fits using diﬁ'erenﬁ back-
ground assumptions, and hence is as reasonable as a.nythihg eise. The sysfematic
uncertainty in the cross-'section from background shape is estimated in the ne$ct

section.
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To account for the K*C contribution, I use a curve fixed in shape at the convo-
lution of the P-wave Breit-Wigner (PWBW) of Equation 5.1 and a fixed gaussian
detector resolution. Only the normalization is left free in the fit. The PWBW
parameters are TO = 52 MeV and My = 898 MeV. The detector resolution used
is 10 MeV for z < .3 and 15 MeV for = > .3. These values for the resolution

-:are not critical as loog as the detector simulation closely reproduces the true
resolution, for the acceptance correction cancels errors in the fit area to better
than a few percent. A systematic error can enter only if the simulation fails to
reproduce the true situation, a source of error I consider in the next section.

To account for. the contribution from the D*i decay chaﬁn I use the Monte
Carlo predlctlon for both shape and magmtude‘ This contrlbutlon is: therefore
totally ﬁxed in the ﬁt the systematic error from this w111 prove to be minor.

The two-parameter fit (background and K*° normalizations) is performed as
a least-squares fit to the subtracted spectra from threshold to 1.35 GeV. The
upper mass cutoff is to avoid the feature from K*0(1430) — K*n~ decay. These
fits and the subtracted spectra are plotted in Figlire"7.5. The x?s of the_.‘ﬁts seem
only fair on the surface: they average to 43 for the data, 51 for the Lund Monte
Carlo, and 62 for the Webber Monte Carlo, for the 35 d.o.f. Some of this x?
comes from the D** feature region, however, where the final fit can be obviously
wrong without affecting the measured K*° area. (Floating the D*# area in the

vvfﬁt in an effort to account for wrong branching ratios in the Monte Carlo, does
not s1gn1ﬁcantly improve the x2s.) A more mea.mngful measure of goodness of fit
is to consider only the contribution to the x2 from above 800 MeV (thus avoiding
the D** contribution): here the x2s average 30 (data), 28 (Lund Monte Carlo),
and 37 (Webber Monte Carlo) for 26 d.of., indicating that the fits are good in
the K*? region and above.

- The results for ,—3%1; -3—: are derived from the fit K*° areas,-Ng-, in the standard
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: ' T d
z bin ,8 NK- md—g

075< = <.10 || .625 | 267 = 54 | 6.18 = 1.42
10< z <.15 || .820 | 468 + 86 | 2.82 + 0.58
15< z <.20 || .923 {480 £ 78 { 1.87 + 0.35
20< <30 | 962 | 825 £92 | 1.49 £ 0.21
30< z <.40 | .981 | 390 £ 69 [ 0.53 £ 0.11 |
40< z <.60 || .992 | 331 £ 56 | 0.29 + 0.06
60<z<1.0|.997| 54 £ 23| .026 £ .012

Table 7.1: Ng- fit to the data and the derived K*° differential cross-section;
errors are statistical.

“manner. The fit Nx. and the derived cross-section are presented, with statistical

errors, in Table 7.1.

7.3 Estimation of Systematic Errors

-Sources of systematic error are considered below. The quantified errors are listed
in Table 7.2. These errors are combined in quadrature to arrive at an overall

systematic error in each bin.

Background

In order to estimate the systematic error from uncertainty in the background, .'
I focus attention on (Ng¢/Neme), the ratio of the fit number (using my nominal
procedure) of K*% in a Monte Carlo spectrum to the actual number present.
While a fitting method needn’t necessarily have this ratio close to unity to be
reliable — as long as the corresponding ratio in the data is the same, the accep-
tance correction cancels the potential error — it is certainly reassuring to find
this ratio close to unity, and seems as reasonable a measure of the reliability of
the method as any.

I average the absolute deviation from unity of this ratio (Ng/Nere) over the

seven z bins using the Lund and Webber Monte Carlos. This average is 11%
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for Lund and 21% for Webber. The signed average deviation from unity is -7%
in Lund and +1% in Webber, indicating that the procedure introduces no gross
systematic shift of (Ngy/Nyue). This ratio is plotted for each z bin a.nd both
Monte Carlos in Figure 7.6.

I choose to claim a 15% systematic error due to background uncerta‘mty from
this study. This is a happy medium between the Lund and Webber estimates of
error (with theaassumption that such errors in the data are partio.lly correlated
with those in the Monte Carlos so that I need not increase them By V2). At least
it’s a conservative estimate in that I'm attriboting all the scatter to ‘sjrreternatic
error, while some is statistical in origin.

This method of estlmatmg the systematic error also attrlbutes all systematlcs
to background uncertainty, while some could be due to using the wrong K*° signal

shape or D** contribution. 1 show presently that these effects are expected to
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be small compared to the observed errors, however, and so do not affect this
estimate. As a check, I measured (Ng;/Niyue) using slightly different techniques
designed to eliminate the K*° shape and D** systematics, and found essentially
the same background systematic errbr. v

As a further check of this 15% background systematic, I rémeasured ﬂ_;;%
using different background assumptions. These included: floating the back-
ground parameters c2 and c3 in the fits, using a free linear backg’rouri?l, using
a free linear background but fitting only above 800 MeV, and even the (extreme)
choice of no background at all. I also tried fitting the unlike-sign (i.e. unsub-
tracted) spectra, taking as background both the shapes used in my nominal
méthod, and starting at these shapes but letting all five parameters float. The
ratio of these results to my nominal ﬁaLHZ—Z are plotted in Figure 7.7. The vast
majority lie within +15% of my nominal results, indicating that my results are

stable against differing background assumptions to within my quoted systematic

error.
K*O shape
There are two leading uncertainties in the line shape of the K*°. The dominant
systematic is from uncertainty in the detector mass resolution, o,,. The lesser
effect is from the perturbation of the pure PWBW resonance shape, in the context
of Lund string fragmentation, as explained in the case of the p°.

| I treat the dominant systematic first. A calculation for the case of a decay
transverse (in the K*® frame) to the K*° flight direction indicates expected de-
tector resolution of ~8 MeV at z ~ 0.1, worsening to ~17 MeV at ¢ ~ 1. The
resolutions determined from Monte Carlo studiés agrees with this calculation, as

does the resolution observed in the data by deconvolving the intrinsic line shape.

I only get a systematic error in the cross-section if the Monte Carlo fails to re-
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produce the resolution of the data; it would be nice to compare the resolutions
directly to see how dissimilar they could be. The statistical errors, unfortunately,
are too large to do this meaningfully.

To estimate this systematic, I instead consider the basic error propagation

oo (B e (B2 o+ (2 ]

to evaluate how far off the Monte Carlo could be. Here, px and p, are the

fermula,

magnitudes of the kaon and pion momenta, and « is the angle between the
tracks. The potentlal error incurred in N;o is worst at high z, where o, is
largest. In thxs reglme measurement errors in the TPC dominate 6pK, épr, and
ba, so they scale together. By examining 6p for muons in e*e~ — u* i~ events,
Monte Carlo is seen to reproduce data to probably 20% of itself or better, and
surely to better than 50% of itself [53]. A 50% shift in the o,, used, from 15 MeV
to 22 MeV, causes a 7% shift in Ng., which I take as my (conservative) estimate
of high z error. The potential Nk« error is less severe at lower z, dropping to
4% for = < A.

The lesser effect of the Lund perturbation of the intrinsic line shape I treat as
follows. For the worst-case bin .6 < z < 1.0, the Lund generator pfedicts a K*°
line shape well described by a PWBW with T =59 MeV (and Mg = 898 MeV).
Fitting a PWBW generated using ', = 52 MeV by a PWBW with o = 59 MeV
shifts the fit area by less than 4%. I take this as my systematic error from
" uncertainty as to the presence or absence of this effect in the data. Repeating
this exercise for the other bins gives a 3% error in .4 < z < .6, and negligible
error otherwise. These errors are added in quadrature with the errors from o,,
uncertainty to arrive at the overall systematic errors from uncertainty in the K*°

line shape quoted in Table 7.2.
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Particle identification

The systematic error from uncertainty in the particle identification acceptance I
estimate in the same manner as in the p° and ¢ analyses. I find an _8% systematic
error for all x. :

As a further test that this analysis 1s insensitive to the details of particle
identification, I remeasure B;l;;%g using two different particle identification cuts:
probability cuts for the kaon (pion) of 0.5 (0.5)., and of 0.7 (0.5). These cross-

sections agree with my nominal results within statistical errors.

D** contribution

I attack the question of the systematic error incurred by uncertainty in the D**
contributioﬁ in two Ways. First, I repeat the fits to the data handling the D**
feature in manners different from my nominal method: a) instead of fixing the
feature area I leave it free, and b) I restrict the fit to masses > 800 MeV to
eliminate the feature from consideration. The resulting fits are in all cases within
statistical errors of the nominal fits; and with one exception they are all within
the +15% systematic error from background subtraction. (Performing the same
fits (a) and (b) to the Lund spectra shifts the fit N ﬁegligibly.: The Ngt/Nirue
criterion thus fails to single out one method of accounting for the D** feature
over the others.) I do not attribute a value to this systematic error, but simply
declare it to be small compared to the background systematic.

As a check, I can remeasure E};% using a cut to greatly reduce the D**
feature. Since the feature arises from D** — #+DP (and its charge-conjugate)
and D? — K~X, with X often including a n*, there is a low mass enhancement
in the 7*n* spectrum just as there is in the K¥n* spectrum. Rejecting any

pion that enters into a like-sign dipion mass pair lighter than 600 MeV therefore

results in an 80% reduction of the D** feature in the K¥7* spectra. The cross-
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section measured using this cut agrees with my nominal method within statistical

€1Tors.

Other sources

I estimate systematic errors from uncertainties in particle deéay reconstruction,
track reconstruction efficiency, nuclear intefactions, and determination of 3 in
the same manner as for the p° and ¢ analyses. While these expected errors are
small, I include them in Table 7.2 for completeness. The expected contribution
- to the mass plots from p° decay (entering via misidentification of one of the
daughter pions) is broad, removed from the K’f‘o mass, presumably reasonably
well reproduced in the Monte Carlo, and small (comparable to the fluctuations
in each mass bin), so should influence the measured cross-section negiigibly. The
predicted spectrum (from the Webber Monte Carlo) of clusters decaying direétly
to accepted track pairs is likewise lost in the noise and smooth over the mass
range used in this analysis, and so its presence or lack in the data should not

appreciably affect the results.

7.4 Results

The K*© differential cross-section measured in this study (with radiative cor-
rections applied) is plotted in Figure 7.8, along with the results from eé,rlier
experiments [50,54]. (The HRS measured quantities are converted to B;_HZ_Z in
the same manner as for the p° and ¢ measurements.) Cofnparison to the Lund
and Webber Monte Carlo generators is made in Figure 7.9. The x? formed from
my measured points and the Monte Carlo predictions is 8.2 for Lund and 21 for
Webber for seven degrees of freedom, indicating that Lund does well in.predicting

this differential cross-section, while Webber does poorly. The points are plotted

with statistical error bars only, excepﬁ that the HRS results are plotted with
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Source of z bin
Error 075 | .10~ | .15- | .20~ | .30— | .40— | .60~
. {f-10} .15] .20 30} 40| 60| 1.0
Background 15| 15| 15 15 15 15 15
K*° shape 4 4 4 4 4 8 8
Identification efficiency 8| 8 8 8 8 8 8
K/m decay 4 2 1 1 0 0 0
Tracking efficiency 4| 4 4 4 4 4 4
Nuclear interactions 1 1 1 1 1 1 1
B 4 1 1 1 0 0 0
Quadrature Total ' . .
Systematic Error 19 18| 18 18 18 19 19~
Statistical -
Error 23| 20| 19f 14| 20| 20| 45

- Table 7.2: Systematic and statistical errors. All figures expressed in %.

their systematic error bars. The horizontal bars on my measured points simply

- represent the extent of the z bins. The points are located in z at the average

of the bin, computed from an exponential fit to the cross-section. (The points
from other experiments are piotted at the centers of their ‘bins.)

To get the total measured K*° multiplicity, I sum the contributions from
each z bin as measured in this analysis for radiationless initial state events. This
gives 0.56 &+ 0.04 K*°/event measured in z > .075 (statistical errors only). I fit

“an exponential to the differential cross-section as in the p° and ¢ analyses; this
fit has a x? of 6.6 for five degrees of freedom. The Lund Monte Carlo, Webber
Monte Carlo, and exponential fit predict 8%, 8%, and 5%, of all K*°s generated

in events without initial state radiation to have z < .075; respectively. Using
these figures to extrapolate the sum of individual  bin measurements to the full

z range, I find 0.61 &+ 0.05, 0.61 % 0.05, and 0.59 + 0.05 K*°/event produced in

radiationless initial state events assuming the Lund, Webber, and exponential

correction, respectively. Combining all mass pairs (for all z) and then fitting
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| Source | K**/event |

TPC (this study) | .58 & .12

TPC 1984 49 £+ .08
MARK II 62 % .13
HRS .63 £ .10

Lund Generator .58
Webber Generator | .41

Table 7.3: K*° multiplicity in this and other experiments, and as predié¢ted by
two Monte Carlos. Errors are quadrature sums of statistical and systematic
errors.

with my analysis technique yields a total K*° multiplicity of 0.57 & 0.04.

As in the p° and ¢ cases, an alternative method to calculate the total K*°
multiplicity is to fit the measured WLH-Z% by the Lund. and Webber lshapes and
by the exponential, and then integrate the contents under the cur;\re (taking
into account the % factor). The results of these fits for Lund, Webber, and
exponential, respectively, are 0.61 +0.05 (x? = 7.9 for six d.o.f.), 0.58 +0.05 (x?2
= 7.2 for six d.o.f.), and 0.56 £ 0.05 (x? = 6.6 for five d.o.f.).

Since all these determinations of multiplicity cluster well within the other
errors in this analysis, I assign no additional systematic error for the ﬁdtiplicity
determination. The systematic error determined in the previous section is close
to 19% in all bins; it is thus fair to take an overall 19% systematic error on the
K*® multiplicity. As for the p° and the ¢, I average the results of the fits to
Erl-;;z—; as my quoted result; this gives 0.58 + 0.05(stat) + 0.11(3y3t) K*°/event
"as my measured total K*® multiplicity. This muitiplicity is compared to the
determinations of other experiments and the predictions of the Monte Carlos

in Table 7.3. (All measurements and Monte Carlo predictions are for /s = 29
GeV.)
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Chapter 8

Determination of s/u and

V/(V+P)

The foregoing measurements o Et%;%% and overall multiplicities for the p°, K*O,

and ¢ vector mesons stand on their own as additions to the world body of knowl-
edge of the behavior of e*e™ annihilation at /s = 29 GeV. In .a,ddition, they
can be used to probe the underlying nature of the hadronization process; in this
chapter I use them té deduce values for the strange quark to nonstrange light
quark (u or d) production ratio in hadronization — the “s/u” ratio — and for
the fraction of all ligi'lt mesons (those containing only u, d, or s quarks) produced
in fragmentation that are vector mesons — the “V/(V+P)” ratié. |

The determination of s/u and V/ (V+P) can be approaéhed in model depen-
deﬁt and (reasonably) rmodel independent fashions. In the mqqel independent ap-
proach (Section 8.1), I consider only the multiplicities Np"'m‘“& stemming from the
hadronization process, i.e. the measured multiplicities once contribut.ionsbfrom
decay of higher-mass states have been subtracted, and N8, which is NPA™aY with
contributions from leading quarks removed. Making the assumption that',v apart
from particles containing the QED-produced leading quarks, relative production
rates of particles that differ only by the substitution of s quarks for u or d quarks
depend only on a single s/u suppression factor, the three ratios (%Nﬁf‘g /N2y

20

(Nga'g / %Nﬁi‘é), and \/Ngag / N;‘;ag represent two independent measurements of s/u.
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(In this chapter, all multiplicities are understood to include antiparticles as well;
hence the factor of 7 accompanying Nﬁ%‘ in these ratios.) Making the assumption
that relative production rates of vector and pseudoscalar mesons that have identi-
cal quark content are governed only by a single vector to pseudoscalar productioh
ratio, the fractions N‘;é"mm’ / (N‘;ffmmy + NPE™aYY and NG / (NP2 . NPamary
represent two independent measurements of V/(V+P). These assumptions are
important (and in themselves form a sort of a toy model) and must be kept in
mind when interpreting these results; bﬁt they must be made to gain any insight
into the fragmentation process independent of detailed hadronization models.
For a model dependent understanding of s/u and V/(V+P) (Section 8.2), I
consider the Lund Monte Carlo, which contains s/u and V/(V+P) as explicit
parameters. | Tuning these parameters to reproduce the measured fragrnentatk.)n
multiplicities at the least investigates the model’s ability to self-consistently re-
produce this aspect of the data. Assuming that such a tune of Lund is reasonable
(i.e. yields all multiplicities satisfactorily close to those observed), the resulting
s/u and V/(V+P) values will automatically include detailed effects inherent to
the hadronization process: for example, threshold effects from the finite /s avail-
able that slightly favor lighter particles beyond any intrinsic s/u or V/(V+P)
ratios. Even if s/u and V/(V+P) are considered simply as parameters of the
model, devoid of physical content,. tuning them in the Lund context is a way of

characterizing my results that allows comparison with other determinations of

s/u and V/(V+P) in the Lund context.

8.1 Multiplicity Ratio Method

In general, observed particles come from three sources: decay products of higher
mass particles, particles produced in the hadronization process that contain one

of the original two leading quarks from the QED annihilation, and particles pro-
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duced in the hadronization process that do not contain a leading quark. Breaking
the total observed multiplicity N into the individual contributions from the three

processes and calling them Ndecay ,.Nleadi“g, and N8 respectively, one can write
N = Nde;:ay_ 4 Nleading | Nfrag_ ‘ (8.1)

_The total hadronization contribution, NPP™a¥ is given by |
Nprimary = Nleading | Nffrag ' (8.2)

The definition of Ndecay involveé some subtlety, in that one must carefully
define just what particles one considefs decay products from. As Hofmann [55]
points out, the boundary where “hadronization” ends 'and “decays” begin is
largely a matter of definition: does it make sense to treat a tensor particle, say,
ona differenf footing than a piece of Lund string or a Webber QCD cluster which
can have the same quark conteﬁt aﬁd comparable mass? Indeed, if onevvaccounts
for decays from tensor, axial vector, and scalar mesons as well as those from pseu-
doscalar and vector mesons, the resulting rates of “primary” light pseudoscalars
are consistent with zero [55]. - Following Hofmann’s lead, I willjonly consider
decays from pseudoscalar and vector rﬁesons (and octet and decuplet baryons,
although thése should contfibute negligibly to the vector meson muitipli_cities);
this is also the approach of the Lund model. |

In this section, I will first estimate N'*adin& then Ndec&y, With this information,
I. compute values for s/u and V/(V+P). I then consider systematic errors of this

computation to arrive at final values and errors for s/u and V/(V+P). .

Estimation of Nleading

I will estimate leading quark contributions to multiplicities, N'**4"8 not only for
the p°, K*°, and ¢; but also for the heavy pseudoscalars (D and B mesons) and
heavy vector mesons (D* and B* mesons), as these rates will be needed for the

feed-down contributions Ndecay
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symbol | default meaning
value

Im 0.90 | Probability of a leading quark forming
a meson instead of a baryon.

Ds 0.13 | Probability of a non-leading quark
to be strange. (Equivalent to s/u = 0.30.)

Du 0.43 | Probability of a non-leading quark
to be up.

pPd 0.43 ' | Probability of a non-leading quark
to be down.

D 0.50 | Probability of a light meson

to be a vector.

pt | 0.75 | Probability of a heavy meson
(i.e. one containing charm or bottom)
to be a vector.

Table 8.1: Nomenclature and default values for calculation of multiplicities from
leading quarks.

I assume leading quarks are produced in the QED ratioofu:d:c:s:b = 1—81- :
e % (These are the average multiplicities per eveht, with antiquarks
included.) I further assume, as in Lund, that each leading quark will mate with
a quark from the vacuum to form a meson a fraction f,, of the time, the flavor
of this quark selected at random in theratiou:d:s:c:b=p, : pg:ps:0:0.
This meson will be a vector a fraction p, of the time (p", if the leading quark
is ¢ or b); else it will be a pseudoscalar. For the p°, a factor of % enters from
the Clebsch-Gordan decomposition of ui or dd quark pairs: these could equally

well produce an w. The notation and default numerical values are sumrmarized

in Table 8.1. The multiplicities are computed in Table 8.2.

Estimation of N9¢<® for o0 K*°, and ¢

There is no baryon significantly produced at PEP that decays to p°, K*° or ¢, so

in computing the decay feed-down into these three states I may restrict attention
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Species Formula deféuiﬁ ‘ |
(includes antiparticles) | | value
o° [Epupod + Zpapod] frm | 089
KO [Zpopo + &Paps| fm | 046
¢ | & PsPy fm 011
D° | Ep - fm 071
D+ 15Pa(1 = L) fm | o
D} [ Ena-sbie |om
D*0 2 publ fm 213
D*+ %pdpﬁfm 213
D+ L pp" fim 064
BO ZPa(1 = p) fm .018
Bt %pu(l ~ M) fm .018
BY | Eps(1 =Pl fim | 005
B*° 2 paph frm - |.053
B*+ 2 pupl fm .053
Bz Zp,ph fm | 016

Table 8.2: Calculation of expected multiplicities from leading quarks.
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to pseudoscalar and vector mesons. Of these, the only state not containing a
charm or a bottom quark that contributes to the feed-down is the 7/, which decays
~ to p%y 30% of the time. Using the measured n/ multiplicity [56] of .26 + .09+ .05,
I find .08 £ .03 p°/event expected from 7/ decay (taking the quoted errors in
quadrature).

The remaining states to consider for contributions to N;‘;“y, Niﬁ?" , and N:lfcay

are B, D, B*, and D* mesons. Except for the D**, I assume the B* and D*
“mesons always decay to their pseudoscalar partners plus an irrelevant pion or
photon. I assume the D** decays to D° 50% of the time and to D% the rest
of the time (again along with the emission of a pion or photon). With these
assumptions and the leading multiplicities just calculated, I can estimate the
multiplicitieé of D and B mesons, which constitute the remaining sources of the
. decay contributions to vector mesons. All I need to complete the feed-down
cé.lculation are the 18 branching fractions of the six D and B states into the
three vector mesons states.
Unfbrtunately, these branching fractions are not well-known; uncertainty in
them is a source of systematic error. I will arrive at a set of nominal branching
fractions that I think are reasonable, along with estimates of upper and lower
limits to these branching fractions. Using the nominal branching fractions to
complete the estimation of feed-down into the p° K*° and ¢, I will proceed to
compute values for s/u and V/(V+P), employing the branching fraction limits
later on to estimate the systematic error of this computation.
| For the D mesons, I estimate branching fractions using experimental measure-

ments, usually from the Particle Data Group compilations. Setting a lower limit
- on a given branching fraction is straightforward: I take a one sigma excursion
on the low side of the sum of explicitly measured exclusive decay channels. If no

such measurements exist, then the lower limit is simply zero.
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Setting an upper limit for a D meson branching fraction is more problematical.
Decay modes that have been measured or had upper limits set contribute in the
same straightforward manner as when setting lower limits. But many potential
decay modes have not been measured, except perhaps as possible contributions
to observed final states (where the vector meson has not been reconstructed).
In this case, one may set limits on vector mesons by assuming that final states
consistent with an unreconstructed vector mesoén do, in fact, come from a decay
chain including that meson at an intermediate stage. (The known branching
fraction of the vector meson to the final observed particles must be factore(i into
this analysis.) This procedure for setting upper limits is complicated by the fact
that these limits sometimes turn out to be so conservative as to be patently
ridiculous; there are also more or less arbitrary decisions of which heavy meson
decay channels to consider and which to neglect. (One might neglect Cabibbo
s_uppressed channels, say, or massive final states expected to be phase-space sup-
pressed. Since the uncertainty in the dominant modes is typically larger than th¢
likely contribution from the less dominant modes, it should suffice to consider
only the dominant modes.) The upper limits that I select are therefore subject to
some guesswork. The systematic errors from the branching fraction uncertainties
turn out to be modest, however; so mistakes in setting the upper limits should
not be very important. (The Particle Data Group figures I use are preliminary
values for the 1988 edition of its biannual review. Because the systematic depen-
dence on the branching fractions is moderate, my analysis should not be affected
by any disparities between these figures and the ultimately published values.)

When combining explicitly measured modes and limits on unmeasured modes
to arrive at an overall branching fraction upper limit, I make the conservative
assumption that observed final states consistent with the presence of a vector

meson always include that meson; I treat measured upper limits as one-sigma
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errors on a zero measurement. All contributions can thus be treated as measure-
ments with errors added in quadrature to arrive at a plus one-sigma excursion,
which I take as the overall upper limit.

The branching fractions I choosé as nominal values to assume in performing
the analysis are similarly subject to some guesswork. But agéjn, since the sys-
tematic error from this guesswork does not dominate the final errors, errors in
these guesses should not be important. The branching fractions I select are at
least equal to the sum of explicitly measured channels, lwith occasional .adjust-
ment upward to fall somewhere near the center of the range bracketed by the
maximum and minimum estimates.

Decay branching fractions for the B mesons are even more difficult to estimate
from measured channels than for D mesons. For B mesons, therefore, I simply
take the Lund model predictions for the fractions. This model treats B decay
by first weakly decaying the bottom quark, then decaying the resulting partonic
configuration by the usual string decay. Since the B decay results in a reasonably
high energy (several GeV) string, this algorithm should roughly reproduce the
true branching fraction. Because the multiplicity of B mesons is much smaller
than that of D mesons, errors in the B branching fractiqns should not matter
- much. (For this reason, I need not set upper and lower limits for the B branching
fractions.)

There are two places where I depart from the straight Lund predictions for B
branching fractions. First, I use the measured B+ and B° (unseparated) branch-
ing fraction to ¢ + X [57]. Second, I override the Lund D to vector meson branch-
ing fractions with my nominal fractions in decay sequences of the B mesons.

In Table 8.3 I present the elements of the estimation of the branching fractions
for D mesons: the decay channels I consider and their numerical values. I present

the corresponding information for B decays in Table 8.4. Using these ingredients,
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I calculate the values I use for nominal, minimum, and maximum branching
fractions, presented in Table 8.5. Using the nominal fractions, I can compute
the estimated feed-down contributions to the p°, K*°, and ¢ multiplicities from

heavy mesons; I list these contributions in Table 8.6. |

Nominal s/u and V/(V+P)

Since the strange quark content of r_nesohs containing leading quarks is presum-
ably different from those produced in the fragmentation process, one must sub-
~ tract Nleading 55 well as N9 from observed multiplicities when computing s/u.
Since there is no reason to believe the spin of ak particle depends on whether
it contains a leading quark, only Ndecay néeds to be subtracted from observed
multiplicities when computing V/(V+P). That is, s/u must be calculated from
Nfr2g; vV /(V4+P) may be calculated from Nprimary, |

The necessary subtractions from the observed p°, K*°, and ¢ multiplicities are
performed in Table 8.7. The ratios (1Ng=5/ meg) (N5*6/ANE8), and \/W
that ch.aractver.ize the s/u ratio are 0.4440.18, 0.20+0.08, and 0.300.07, respec-
tively, where the errors come from the total error on my measured multiplicities.
All three ratios are consistent with the generally accepted value of s/u ~ 0.3.

In order to determine the V/(V+P) ratios Np.'fmmy / (Np(',immy + Npﬁma”) and
NErimary /(NPrimary | NPEmay) 1 need figures for NP5™ and Nprm Hofmann
[55] computes these to be 0.87 +0.45 and 0.55 4 0.11 respectively. This calcula-
tion uses world-average measured multiplicities minus feed—down .expectéd from
pseudoscalar and vector mesons and octet and decuplet baryons; the errors in-
clude systematic as well as statistical errors. These figures yield'V/ (V4P) ratios
of 0.40 £ 0.13 (from p° and 7°) and 0.47 & 0.08 (from K*° and K°), where the
errors combine my measured multiplicity errors and the pseudoscalar multiplic-

ity errors. The 7° error dominates for the p°/n° determinétion; the K*° error
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Branching Channel Value
Fraction (%)
DY - p°+ X K ont(x+n) < (15%%
K (nrtr ety < (22439)
I_(O(r+7r“)u+u B(D* — _I—(—Ovr"‘n‘e'*’u)
Dt K +X K ort 1.7+0.8
KK+ 0.4+0.2
(K-nt)w+n® < $(3.8%33
(R°n)ntntn— < 3(44133)
(K~ n*t)ntnOx° < $(2.2%53
(K—nt)nlety < 2(4.4%32
(K~nH)nuty B(D* — K~n*n%ty)
Dt ¢+ X pmt 0.7+0.2
. _ Foﬂ+(n+7r“7r°) < 7(4.4%32
D° - p°+ X KO 0.5%93
K-ntp° 6.711:3
K n%° B(D° — K—ntp?)
rtn=(wtn™) < (1.0137
. m(ntn) <(1.11+04)
DK+ X K on® 2.1+0.6
K™% 08533
K ontn- <29
K KO <07 .
K n0n0 B(D° — K °n+7-)
D° =+ X K¢ 0.8 +0.2
DY - o+ X Pt < (0.2)B(D} — ¢rt)
Dt K4+ X KK+ (144 0.4)B(D? — ¢n)
DF 56+ X o 14+1.1 [58)
prtatn~ (1.1 £0.5)B(D} — ¢nt) [59]

Table 8.3: Contributions to branching fractions for D mesons decaying to p%, K*°,
and ¢. Channels wherein the vector meson has not been explicitly reconstructed
are entered with parentheses around the putative vector meson contribution; the
numerical value for these channels is weighted by the inverse of the branching
fraction of the vector meson to the final state particles. Unless otherwise cited,
all numerical values are taken from the Particle Data Group (1988 preliminary).
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Branching | Value
Fraction (%)
BY* - p°+ X 17
B*-K +X 9 -
BY* 5 ¢+ X 2.3+ 0.8 [57]
B° — PP+ X . 19
B oK +X 21
[BS5 6+ X  |23£08 57
BY o %+ X 27
B EK°+X 26
Bg -+ X ‘ 9

Table 8.4: Branching fractions for B mesons decaying to p% K*°, and ¢. Unless
- otherwise cited, all numerical values are taken from the Lund model prediction.

Branching Nominal | Lower | Upper
Fraction Value Limit | Limit
(%) (%) | (%)

Dt - p%+ X 8 0 29
D*>EK°+X| 25 1.3 | 57
DF 5S¢+ X 5 | 05 | 67
P S0+ X 12 | 53 18
D° K+ X 5 | 19 | 7
DO S é+X 08 | 06 | 1.0
DY - p°+ X 0 0 1
Dt 5K+ X 6 4 | 9
DFf 5S¢+ X | 8 6 12
Bt - p°+ X 17 i
B*toEK +X| 9 — | =
BY 545X 93 15 | 3.1
B 5 p%4+ X 19 — —
BPo>K +Xx | 21 | — | —.
B S é+ X 23 | 15 | 31
B> p°+ X 27 — —
B 5K +X 26 — —
B¢+ X 9 1 — I —

Table 8.5: Nominal, minimum, and maximum branching fractions used in this
analysis for D and B mesons decaying into p°, K*°, and ¢.



153

Heavy Multiplicity | Daughter | Branching | Neeay
Pseudoscalar Meson Fraction '
D* 0.178 o° .08 - .014
K*0 .25 .045

¢ .02 .004

- D° 1 0.391 o° 14 | .055
K*0 .05 .020

¢ .01 |:.003

D} 0.085 p° .00 .000
K*0 .06 .005

¢ .08 .007

B* 0.071 P° 17 .012
K*° .09 .006

' . 1) .02 .002

B° - 0.071 . - p° .19 013 -
K*° 21 015

' 1) .02 .002

B 0.021 p° 27 .006
K*0 .26 .005

¢ .09 .002

Table 8.6: Estimated feed-down contributions to p° K*°, and ¢ from heavy
pseudoscalars. This calculation uses the nominal branching fractions listed in
Table 8.5. The heavy pseudoscalar multiplicities include the effects of heavy
vector meson decay, as explained in the text. .

| Vector Meson: | P° | K | .' é |

Measured multiplicity ' ' ‘
(this thesis) 0.77+0.17 | 0.58 £ 0.12 | 0.076 £ 0.016

Nleading » 0.089 0.046 0.011
Ndeca¥(from B, D mesons) 0.100 0.096 0.020
Ndeca¥ (from /) 0.08 + 0.03 0 0
Nfrag 11 0.50+0.17 | 0.44 +£0.12 | 0.045 + 0.016
Nprimary 0.59+0.17 { 0.48 £ 0.12 | 0.056 £ 0.016

Table 8.7: Estimation of N2 and NP™a for o0 K*O, and ¢. The errors are the
total errors on the measured multiplicity.
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dominates for the K*°/K°® determination. Both ratios are consistent with the

generally accepted value of V/(V+P) ~ 0.4-0.5.
Systematic Errors
I consider the following sources of systematic error:
e The D*+ — D° + X branching fraction,
. 2 | | -
® fm,

e the effect of the assumed s/u and V/(V+P) (i.e. p;,’(pé, Dss and pv) on
Nleading | - | |

‘the heavy pseudoscalar decay branching fractions, and

D multiplicities.

The first four of these prove to be oiuite_ small, so I'll tfeat the_m.brie:ﬁyv..' 4
Varying the D** — D% 4+ X branching fraction from 0.4 to 0.6 (roughly a
+10 swing) causes no more than a 4% r‘(lelativ.e shift in s/u and no _fnore than a
2% relative shift in V/ (V+P). Altering p” to the extreme vr;mlués éf 0.5 and 1.0
produces less than a 4% (2%) relative shift in s/ u (V/ (V+P)) Varying fm to the
extreme vvalues of 0.8 and 1.0 creates a 2% change 1n both s/u and V/(V+P).
Changing f for heavy mesons only to 0.7 (as suggested by measuféments of A,
[55]) also changes s/u and V/(V-+P) by ~ 2% of themselves. Setting s/u to 0.25
and 0.35 causes Ngag (Ngnm‘“y) to vary from némirial by 4% (2%) of itself, with
much less variation in the p° and K*%; I therefore éake 4% (27%) as a sensible
systematic error on s/u (V/(V+P)). The only effecf of chmées in p, is t(;change
meg.i_n a correlated fashion for p°, K*o, and ¢, and not té chénge .N"v’“'f‘m,at all;

so no significant systematic error in s/u or V/(V+P) results from an error in p,.
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Adding these minor systematxcs (all oonservatlve) in quadrature results in a
7% error on s/u and a 4% error on V/ (V+P) quite neghglble compared to the
~20—40% relatwe errors found prev10usly

To estlma.te the systematic error from uncertainty in the heavy rddson branch-
ing fractions to p% K*°, and ¢, I recompute vthe‘Nde‘:ay contributions using the
lower and upper limits for these fractions tabulated in Table 8.5. Using all of
the lower limit Branching fractions (which corresponds to correlated branching
fraction errors and hence is a conservative choice), N¥28 and NP™™aY jncrease
by 0.048, 0.058, and 0.008 for the p°, K*°, and ¢, respectively. Using all of the
upper limit branching fractions (again a conservatiVe'choice) results in a decrease -
in Nf28 and NPmawy of (0.054 and 0.067 for the p° and K*°, respectively. This
exercise unfdrtunately forcesv Nfrag and Npﬁm“y for the ¢ to be negative, an aber-
ration that can be traced back to the absurdly high upper limit set on B(D* — ¢
+ X) from thé KCr+(n+n~n°) channel. I choose to assume the limits of B(D+
— ¢ + X) are symmetric about the nominal valde in this channel; this choice
gives a decrease in N¢ and Npmlrlmy of 0.008. |

These systematic shifts in N8 and NPrimary gre rdughvly‘ éymrﬁéfric about
the ndminal values, so I take symmetric systematic errors on N8 and Nprimary of
0.06, 0.07, and 0.008 for the ¢°, K*9, and ¢, respectively. This branching fraction
systematic is much larger than the other systematic errors put together, so the
other systematics can be safely ignored. | | .

Since the branching fraction systematics are largely independenﬁ fof the p°,
K*°, and ¢ and independent of the measurementé, and since the rheasurements
each have different dominant systematic errors which are independént, to an
excellent approximation all systematic errors are indepeﬁdent and may be added
in quadraturé. This results in the final estimates of Nfraé and NPrimary Jisted in

Table 8.8, and final caiculations of s/uand V/(V+P), systematic exlfors included,
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| Vector meson: | p° | K*0 I 8. |
Nirag 0.50 +£0.17+0.06 | 0.44 +0.12 +0.07 | 0.045 £ 0.016 £ 0.008
- =0.50+0.18 =044+0.14 = 0.045 +0.018
Nprimary 0.59+0.1730.06 | 0.48+0.12 £ 0.07 |. 0.056 & 0.016 £ 0.008
=0.59 + 0.18

=048+0.14

= 0.056 4 0.018

Table 8.8: Estimation of N2 and NPrimary for o0 K*O and ¢. The first error
is the total error on the measured mult1phc1ty (statistical and systematic); the
second error is the systematic error of the subtraction of N9 and Nleading,
These errors are added in quadrature for a total error. :

" Value

| Quantity |

average 0 30 £ 0.07

0.44 + 0.21 (from p° and K*°)
- s/u | 0.20+0.10 (from K*° and ¢)
0.30 £ 0.08 (from p° and ¢)

average: 0.45 £ 0.08

0.40 £0.14 (from p° and =°)
V/(V+P) | 0.47 £ 0.09 (from K*® and K°)

Table 8.9: Calculated s/u and V/(V+P). The errors include the total error of
~ the measured multiplicities (statistical and systematic) and the systematic error
of the subtraction of N9 and N'e»di"g¢, The averages are weighted averages; in
the case of s/u, correlations in the definitions of the 1nd1v1dual s/u ratios are
taken into account.

listed in Table 8.9. The vireighted averages of these est‘imates of s / wand V /(V+P)

represent my end results for this section, and are also entered into Table 8.9.

Taking into account the correlations in the definitions of the s/u ratios, these

averages are s/u = 0.30 + 0.07 and V/(V+P) = 0.45 £ 0.08.

Finally, one may use the measured D° and D'*‘ rniiltiplicities 0.45 £ 0.07 and

- 0.17 £ 0.03, respectively [60] instead of my calculated multiplicities To do this,

I retain the calculated feed-down from channels not 1nvolv1ng DO and D*. This

| 1ncludes all D} decays and the fraction of B decays coming from Lund string
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fragmentation. I add to this the contribution from the measured D mesons
multiplicities, using my nominal branching fractions. This calculation yields the
new values foj“ Y =0.106, N&o2¥ = 0.079, and Ndemy = 0.021. Using these values
to recompute s/u and V/(V+P) gives s/u = 0.47 (from p° and K*?), s/u = 0.19
(from K*° and ¢), s/u = 0.30 (from p° and ¢), V/(V+P) = 0.40 (from p° and %),
and V/(V+P) = 0.48 (from K*® and K°). The shifts from the calculated values
in Table 8.9 are small compared to the errors, so using measui‘ed D vmultiplicities

in lieu of the predicted multiplicities makes no significant difference.

8.2 Lund-specific Method

As explamed earlier, I can attempt to tune the Lund s/u and V/ (V+P) parame-
ters to ach1eve agreement of the Lund model pred1ct10ns with my measurements.
I use Lund v5.3 for this study. (Lund v5.3 allows the V/ (V+P) ratio for strange
mesons to be different from V/(V+P) for nonstrange light mesons; I set these to
be equal so there is one overall V/ (V+P) ratio for light mesons.)

I tune these pa.raméters by fninimizing a x? formed from Lund model pre-
dictions and éxperirnental measﬁrementé. One is therefore faced with é choice
of just what dua.ntities to include in forni‘ing' this x2. The simplest x? one could
form from my measurements would include the p°, K*b, and ¢ multiplicities
before feed-down, i.e. NP2  QOne would then tune s/u and V/.(V+_P) to re-
pfoduce these rates. This could result in a contrived and useless configuration
of the Lund parﬂa;meters, however, if other predictioné of the model fell into poor
agreement with the data in the pfocess of adjus'ting s/u andV/ (V+P). In par-
ticular, adjusting s/u and V/ (V;{—P) is éertajn to change: the fota.l and strange
multiplicity predictions of the model, multiplicities which al;e well-measured in
the form of charged pion and charged kaon multiplicities. To keep my tuning

procedure from going too far afield in these well-measured qua.htities, I include
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them in the x? and alléw the parameter a in the LSFF (E(iuation 2.5) to vary
to help compensate for multiplicity changes when adjusting s/u and V/(V+P).
Apart from a, s/u, and V/(V+P), all parameters are kept at the values used
throughout this thesis, described in Section 2.3.2.

Thus, the x? I choose to minimize is

. Npgimary _ NLound 2 Nprj:zary _ Nli’.‘{)‘d 2 NP'rimc.zry._ NLund, 2
2 P P + K K SR ¢ ¢_

X = 5 Nggimary s N}pg;ignary I3 Ngrimary
N ( N;g_tal _ N#nd ) 2 ( N;é)ial _ N}%ﬁnd») 2
5N fr‘f“’ : 6N}gial
' - (8.3)

where the indicated particles are understood to include antiparticles. The Nprimary
and their errors SNPrimary for 50 K*0 and ¢ are taken from Table 8.8. The
statistical errors of the Lund predictions are negligibly small, so no additional
error is taken in NP™™aY. For the pion and kaon charged multiplicities Nl
and Nl I take the world-average values 10.3+0.4 and 1.48 +0.09, réspectively
[55]. No error in addition to those just quotéd are taken in 6N and SNt
The quantities superscripted “Lund” are the Lund model predictions for the
corresponding measured quantity. I vary three Lund parameters — d, s/u, and
V/(V4+P) — so there are two degrees of freedom in this fit to ﬁvefmeasured
qué.ntitieé.

To minimize this x2, I generate 10,000 hadronic events (without initial state
radiation) at each point of a lattice in the three-dimensional parameter space.
The lattice sites are at all 45 combinations of a = 0.855, 0.955, and 1.055, s/u
= 0.25, 0.30, and 0.35, and V/(V+P) = 0.40, 0.45, 0.50, 0.55, and 0.60. At
each lattice site, tabulating the various multiplicities in the 10,060 events gives
the Lund predictions from which I form the x2. I assume this x? is sufficiently
near minimum to be described by a three-dimensional parabola centered on the

minimum. Assuming equal errors on the x? at each lattice site, I fit a three-



L]

159

dimensional parabola of the form
A(a - amin)z + B(S - smi'n.)2 + C(V - Vmin)2

+D(a - amin)(s - Smin) + E(a - amin)(v - Vmin) + F(S - Smin)(v - Vmin)
+ X'r2nin (8.4)

to this x?, where s is short for s/u. and V is short for V/(V+P). The ten free
parameters of this fit are A, B, C, D, E, F, Gmin, Smin, Vmin, and x2,... The values
Qmins Smin, and Vi, represent the best tune of a, s/u, and V/(V+P); r171~a,pping
out the (x> —x2;.) = 1 locus in three dimensions yields the 410 bounds on these
parameters including correlations. Systematic errors are also included in these
410 bounds, as systematic errors are included in the x2. I presen£ these tuned

parameters and their errors in Table 8.10. The tuned values for s Juand V/(V+P)

| are consistent with the generally accepted values s/u ~ 0.3 and V/(V+P) ~ 0.4

0.5. At minimum, x21.= 0.7 for two degrees of freedom, indicating that the Lund

model is capable of simultaneously reproducing all five experimental quantities

~ that entered into the x2.

The errors quoted on the tuned values for a, s/u, and V/ (V-{-P) are only
sensible if the three-dimensional parabola is a good fit to the actual x2s at the
lattice sites. The RMS deviation of the parabola from the actual values is 0.36
taken over all 45 lattice sites. Interpreted as the order of the x? fitting error,
perhaps I've found the Ax? = 1.36 or Ax? = 0.64 locus instead of the Ax? = 1.0
locus. This would mean my 1o errors are wrong by ~ 20% of themselves, a mod-
est discrepancy. (In point of fact, the agreement between the three-dimensional
parabola and the actual lattice values is better than an RMS deviation of 0.36
in the vicinity of the Ax? = 1.0 locus.) The parabolic fit is therefore sufficiently

good to trust the errors I quote.
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LLund parameter | tuned value l o
a 1.01 +0.29
s/u 0.30 £ 0.03

“V/(V+P) 0.45£0.11

Table 8.10: Result of tuning the Lund parameters a, s/u, and V/(V+P) to fit
NP, NRewo 7y Ng o, and charged pion and kaon multiplicities. The errors
include correlations and systematic errors. :
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Chapter 9

Summary and Conclusions

In this thesis I have measured radiatively corrected differential cross-sections
inz = Emeso,; / Ebeam for the vector mesons p°, K*°, and ¢. The results of these
measurements are plotted, along with previous measurements and the predictions
of the Lund:and WeBber Monte Carlos, in Figures 5.7, 5.8, 7.8, 7.9, 6.5, and 6.6.
Integrating the cross-sections and extrabolating to unmeasured z regions yields
the particle multiplicities in Table 9.1. The agreement with the Lund and Webber
Monte Carlos is quantified in terms of x%s both for the differential cross-sections
and for the total multiplicities in Table 9.2.

Using these measured multipliéities, plus estimations of the leading quark
and feed-down contribution to them, I computed the s/u and V/(V+P) ratios
presented in Table 9.3. In the specific ééntext of the Lund Monte Carlo, I tuned
the s/u and V/(V+P) (and a) parameters of the model to minimize a x? formed
using these multiplicities. I list the results of this Lund-specific tune in Table 9.4.

These measurements in themselves do not clearly favor nor disfavor either
the Lund or Webber Moﬁte Carlos. The differential cross-sectiohs, multiplicities,
and sb/u..va.nd V/(V+P) ratios measured in this thesis are consistent with previous
measurements. While the results of this work provide no dramatic breakthroughs
nor deﬁnitive tests of models, it is my hope that their contribution to the world

body of knowledge brings us closer to finding an ultimate theory of hadronization.
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measured multiplicity

—

0

P

. 0.77 £ 0.08(stat) £ 0.15(syst)

K*O

0.58 + 0.05(stat) £ 0.11(syst)

¢ n

0.076 £ 0.010(stat) & 0.012(sys

t)
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Table 9.1: Vector meson multiplicities rheasured in this thesis. These results are
extrapolated from measured z regions to cover all allowed z and are corrected
for initial state radiation. '

meson ,GO'LH Z—g multiplicity
Lund f Webber l d.of. || Lund I Webber

0° 8.2 7.6 6 0.2 0.8

K*0 8.2 21 7 0.0 2.0

¢ 13 3.9 5 5.1 0.0

Table 9.2: Agreement of predictions of the Lund and Webber Monte Carlos with
measured differential cross-sections and multiplicities, expressed as y2s. The
degrees of freedom (d.o.f.), which are simply the number of z-bins, are indicated
for the differential cross-sections; the d.o.f. is one for multiplicities. The specifics
of the Lund and Webber Monte Carlos used for these comparisons are detailed

in Section 2.3.
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0.44 £ 0.21 (using p° and K*?)
s/u 0.20 + 0.10 (using K*® and ¢)
0.30 £ 0.08 (using p° and ¢)

average: 0.30 &+ 0.07

0.40 £ 0.14 (using p° and =%)
V/(V+P) | 0.47 £ 0.09 (using K*° and K°)

-average: 0.45 4 0.08

Table 9.3: The s/u and V/(V+P) ratios determined in Chapter 8. Errors are
combined statistical and systematic errors.

s/u 0.30 £0.03
V/(V+P) | 0.45 £ 0.11
a 1.01 £0.29

Table 9.4: The s/u, V/(V+P), and a parameters of Lund determined by the
tuning procedure described in Chapter 8. The errors are combined statistical
and systematic, and include correlations among the parameters.
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