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RESEARCH ARTICLE
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Abstract

Motor adaptation paradigms provide a quantitative method to study short-term modification

of motor commands. Despite the growing understanding of the role motion states (e.g.,

velocity) play in this form of motor learning, there is little information on the relative stability

of memories based on these movement characteristics, especially in comparison to the ini-

tial adaptation. Here, we trained subjects to make reaching movements perturbed by force

patterns dependent upon either limb position or velocity. Following training, subjects were

exposed to a series of error-clamp trials to measure the temporal characteristics of the feed-

forward motor output during the decay of learning. The compensatory force patterns were

largely based on the perturbation kinematic (e.g., velocity), but also showed a small contri-

bution from the other motion kinematic (e.g., position). However, the velocity contribution in

response to the position-based perturbation decayed at a slower rate than the position con-

tribution to velocity-based training, suggesting a difference in stability. Next, we modified a

previous model of motor adaptation to reflect this difference and simulated the behavior for

different learning goals. We were interested in the stability of learning when the perturba-

tions were based on different combinations of limb position or velocity that subsequently

resulted in biased amounts of motion-based learning. We trained additional subjects on

these combined motion-state perturbations and confirmed the predictions of the model.

Specifically, we show that (1) there is a significant separation between the observed gain-

space trajectories for the learning and decay of adaptation and (2) for combined motion-

state perturbations, the gain associated to changes in limb position decayed at a faster rate

than the velocity-dependent gain, even when the position-dependent gain at the end of train-

ing was significantly greater. Collectively, these results suggest that the state-dependent

adaptation associated with movement velocity is relatively more stable than that based on

position.
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Author summary

Human motor adaptation of limb movement in response to force perturbations has been

shown to be motion-state dependent. That is, the compensatory response to these distur-

bances is correlated and proportional to the temporal changes in the position, velocity,

and acceleration during the motion. Despite a growing understanding of this adaptation

process, there is little information on the relative stability of this learning when based on

these different temporal features of movement. Here we modified a previous computa-

tional model of motor adaptation to predict the decay of the compensatory response asso-

ciated to different motion states, specifically learning based on temporal variations in limb

position and velocity. We confirmed the simulated behavior by examining the decay of

the temporal force output after subjects were trained to compensate for movement distur-

bances based on different combinations and magnitudes of these two motion states. Both

simulation and behavioral results show that velocity-based learning decays at a slower rate

than position-based, even when learning is significantly biased towards the latter at the

end of training. Collectively, these results suggest that motion-state learning based on

movement velocity is more stable than that based on limb position.

Introduction

The motor system adapts to movement perturbations, a process largely driven by the error

between the executed movement and the predicted consequences of that movement [1–3].

This short-term form of motor learning is a gradual updating of the motor commands

required to counteract the movement perturbation. Similar to learning, the decay of adapta-

tion following the removal of the perturbation is typically a gradual process as the motor com-

mands revert back to the state prior to exposure [4,5]. Thus, examining and comparing the

progression and decay of motor adaptation provides insight into the stability of these updates

to the issued motor commands.

The decay of motor adaptation has been studied for various behavioral paradigms involving

limb movement: prism displacement [6,7], locomotion [8,9], visuomotor alterations [5,10,11]

and force-field perturbations [12–15] In the last case, subjects make reaching movements

while interacting with a robotic manipulandum and are exposed to a force perturbation typi-

cally dependent upon either a single motion kinematic parameter (e.g., changes in position,

velocity or acceleration during the movement) or the combination of these motion states [16].

In response to the movement disturbance, subjects apply an adaptive response based on the

temporal characteristics of the limb state. Although previous investigations of force-field adap-

tation have examined the time course and the factors that influence the stability and retention

of these state-dependent compensatory responses [4,12,14,17–23] the relative stability of the

different state-dependent components that drive adaptation is not well understood, especially

in direct comparison to the initial learning process.

Here, we applied a framework developed by Sing and colleagues [16] to compare the pro-

gression and decay of state-dependent adaptation in response to different types of novel move-

ment dynamics. Based on this framework, the feedforward motor output in response to the

applied force perturbation is the weighted sum of gains assigned to the kinematic parameters

of the reaching motion (changes in limb position and velocity, [16,23–25]). The model pre-

dicted that the changes in these gains during adaptation would follow a different time course

than during the adaptation decay, but the authors did not explicitly test this prediction nor the

Relative stability of motion state-based learning
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relative stability of the changes based on the kinematic parameters. To assess the difference in

the relative stability of the motor memory based on changes in limb position or velocity we

first modified the original model proposed by Sing et al. [16] based on observed differences in

the retention of adaptation in response to purely velocity- or position-dependent disturbances.

The resulting model simulations predicted that when motor learning is based on the combina-

tion of position and velocity the decay of adaptation is biased towards velocity, independent of

the final adaptation level. That is, the model predicted that the decay of position-based adapta-

tion would occur at a faster rate, even when this learning was significantly higher at the end of

training. We tested two additional groups of subjects and found that the behavioral results

were in agreement with the predictions of the model. Collectively, our behavioral and simula-

tion results suggest that (1) the decay of motor adaptation is not merely the reversal of the

learning process, but at least a partially distinct process likely involving separate mechanisms,

(2) the velocity-based contribution to updating motor commands is more stable than that

based on position, and (3) a model with asymmetrical retention factors for position- and veloc-

ity-based motor primitives can predict the time course of adaptation decay for various state-

dependent motor learning goals.

Results

Stability of adaptive responses to position- and velocity-dependent

force-field training

We first trained subjects to make reaching movements in either a position- or velocity-depen-

dent force-field (pFF and vFF) (Fig 1). Each subject experienced only one type of perturbation

after an initial baseline period, during which error-clamp trials were used to quantify the feed-

forward adaptive changes to the motor output (see Materials and Methods). Based on the

forces subjects applied during the error-clamp trials, we were able to determine the adaptation

coefficient (the linear regression of the applied lateral force profile onto the ideal compensa-

tory force profile) and the respective gain of the position-dependent and velocity-dependent

force components to the overall force profile (see Materials and Methods). Fig 2A plots the

adaptation coefficient as a function of trial number for pFF and vFF training. Similar to previ-

ous studies [16,21,26,27], we observed a fast progression of adaptation early on (within the

first 15 trials) that plateaued after approximately 75 trials for both force-field types (Fig 2A).

An exponential fit of the adaptation curve showed a faster overall adaptation for pFF training

(time constant of 7.2 ± 0.8 for pFF compared to 12.3 ± 5.5 trials for vFF. See S1A Fig). The

amount of adaptation at the end of training was significantly greater than at the beginning,

but the adaptation levels were not significantly different between perturbation types (2-way

ANOVA, P< 0.001 for the main effect of training period and P = 0.22 for the main effect of

perturbation type). Specifically, early adaptation levels were not significantly different between

pFF and vFF training (0.38 ± 0.03 compared to 0.30 ± 0.05, mean ± SEM, P = 0.18, two-tailed

t-test). There was also no difference in the adaptation level between vFF and pFF late in train-

ing where the behavior asymptotes (0.72 ± 0.02 for pFF and 0.69 ± 0.04 for vFF, P = 0.58, two-

tailed t-test). (Early adaptation period was determined over trials 1–15, while the late/asymp-

totic adaptation period was trials 150–160. See Materials and Methods for justification of these

ranges.)

Immediately following training, subjects experienced a sequence of consecutive error-

clamp trials to determine the decay of feedforward changes to motor output. Following the

start of the consecutive error clamps the adaptation coefficient began to decay and reached

asymptote by the end of the period. An exponential fit of the adaptation decay curve showed a

faster decrease in adaptation for vFF over pFF training (time constant of 11.0 ± 2.2 trials for

Relative stability of motion state-based learning
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pFF compared to 7.1 ± 1.0 trials for vFF. See S1B Fig). The adaptation coefficient levels at the

end of the decay period remained significantly greater than baseline levels (vFF: 0.006 ± 0.006

vs. 0.26 ± 0.05, pFF:-0.004 ± 0.004 vs. 0.19 ± 0.03, paired two tailed t-test, P< 0.001 for both

cases). Although the pattern of decay was similar for both pFF and vFF training (Fig 2A), there

was a slight, but insignificant difference in the adaptation level before the start of decay as

noted above. In order to examine the decay with respect to the final adaptation levels, we

normalized the decay of adaptation by the initial value of the adaptation coefficient at the

beginning of the decay period (Fig 2B). Starting at an adaptation level of 1.0 we analyzed the

decay of adaptation in early and late epochs during the decay period. The percentage of adap-

tation at the beginning of the decay period was significantly greater than at the end, but the

Fig 1. (A) Experimental setup. Subjects made reaching movements from mid-line in both forward (90˚) and backward (270˚) directions, using a

robotic manipulandum. The location of the hand was represented by a filled yellow circle, while the view of arm was occluded. (B) Trial Types. Null

movements (grey arrows) were made in the absence of the any force from the robot. During force-field trial movements, the robot applied forces

that were dependent on a single or combination of motion kinematics. During velocity-dependent force-field movements the manipulandum applied

lateral forces that scaled with movement velocity (black arrows). For position-dependent movements, the lateral force scaled with hand position

with respect to the start position. Lastly, for both unbiased and position biased combination force-field movements the lateral force scaled with both

hand position and velocity. During error-clamp movements the manipulandum constrained the movement trajectory between the two targets by

countering any lateral motions. (C) Experimental Paradigm. Subjects first completed a baseline period, during which they experienced null

movements with sparse instances of error-clamp movements (blue bars). The 1st transition period, contained an initial period of null movements,

followed by the abrupt application of the force-field. The adaptation period contained only force-field and error-clamp trials. Finally, the 2nd transition

period started with force-field movements followed by only error-clamp trials (thick blue bar). The frequency of error clamp trials increased during

the two transition periods.

https://doi.org/10.1371/journal.pcbi.1005492.g001
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adaptation levels were not significantly different between perturbation types (2-way ANOVA,

P< 0.001 for the main effect of decay period and P = 0.97 for the main effect of perturbation

type). In the early epoch, there was not a significant difference in the percentage of adaptation

that remained for pFF and vFF training (pFF: 42.3 ± 5.2%, vs vFF: 36.0 ± 6.2%; P = 0.41, post

hoc comparisons using Bonferroni correction). This was also true for the late epoch (pFF:

Fig 2. Adaptation and subsequent decay for training in position- and velocity -dependent force-fields (A). Comparison

of the adaptation coefficients during position (pFF, blue curve) and velocity-dependent force-field training (vFF, red curve). Each

point during the adaptation period is the average adaptation coefficient across subjects for windows of 10 or 15 trials. During the

decay period, the points are average across all subjects for each trial. The start of the decay period is shown as a vertical

dashed line. Shaded areas show standard error. (B) Normalized decay for pFF and vFF training. The adaptation coefficients

were scaled with respect to the first coefficient in the decay period, with the first point rescaled to a value of 1.0. Bar graphs

show the average adaptation across subjects for early and late epochs of the decay, represented by the shaded areas. Error

bars are standard error. (C and D) Temporal force profiles during adaptation and decay for pFF and vFF training. Top panel

shows the evolution of the force patterns in the early and late stages of adaptation, while the bottom panel shows the changes in

early and late stages of the decay period. The average force across all subjects is shown by a gray trace. The contribution of

position and velocity to the force profile is represented by the blue and pink dashed lines. The combination of the position and

velocity contribution is shown by a black dashed line, and approximates actual exerted forces. The R2 value from the regression

between actual (thick gray trace) and combined position-velocity fit (black dashed trace) is provided in the top left of each panel.

https://doi.org/10.1371/journal.pcbi.1005492.g002
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18.8 ± 3.4%, vs vFF: 25.5 ± 5.3%; P = 0.35, Bonferroni correction). (The early epoch of decay

was over trials 11–20, while the late epoch was trials 50–60. See Materials and Methods for jus-

tification of these ranges.)

Although the one dimensional adaptation coefficient suggested similar behavior for vFF

and pFF training, we were interested in the temporal characteristics of the corresponding force

profiles during the adaptation and the decay periods (see Materials and Methods). As in previ-

ous studies [16,23,25] we compared the temporal shape of the force profiles with changes in

limb position and velocity (Fig 2C and 2D). As shown previously [16], early in adaptation the

force pattern was dependent on both the position and velocity changes during the movement

(pFF: 21.5 ± 2.2% for velocity and 78.5 ± 2.2% for position, vFF: 67.8 ± 7.3% for velocity and

32.2 ± 7.3% for position) (top panels in Fig 2C and 2D). Notably, late in the adaptation period

the force pattern was mostly aligned with the appropriate movement parameter for the ada-

ptation. In other words, the force exerted by subjects in the late phase of pFF adaptation was

largely aligned with changes in limb position (95.9 ± 0.6% compared to 4.1 ± 0.6% for veloc-

ity), and late adaptation to vFF was mostly aligned with changes in movement velocity (93.2 ±
1.6% compared to 6.8 ± 1.6% for position).

We also examined the temporal force patterns during the decay period of the respective

force-field perturbations. Interestingly, the force profiles remained aligned to the appropriate

motion state required to compensate for the perturbation in both the early and late stages of

decay (bottom panels in Fig 2C and 2D). In the early phase of the decay of pFF learning (Fig

2C bottom panel), the force profiles mainly consisted of a position-dependent component

with a minimal velocity-dependent component (90.1 ± 7.0% compared to 9.9 ± 7.0%). In

the late decay phase of pFF learning, the position-dependent component continued to con-

tribute the most to the exerted force while the velocity contribution remained small (80.4 ±
8.0% compared to 19.6 ± 8.0%). Similarly, the force profiles in both the early and late decay

phases of vFF learning were mostly dependent on movement velocity, with less contribution

of limb position (early: 76.4 ± 7.0% compared to 23.6 ± 7.0%, late: 76.0 ± 8.2% compared to

24.0 ± 8.2%) (bottom panels in Fig 2D). Thus, the comparison of the temporal force profiles

suggests that the proportional contributions of limb position and velocity to the overall motor

output achieved at the end of training were largely maintained during the decay of the motor

learning.

Gain-space analysis of adaptive responses to single state-dependent

force-field training

Differences in the force profile described above suggest that the gain associated to the respec-

tive motion states is different not only between the two types of force-field adaptations, but

also between the learning and decay periods. In order to visualize these differences, we exam-

ined the changes in the respective gain associated to the motion states for adaptation and

decay in a two dimensional gain-space (see Materials and Methods). We parsed the position-

dependent and velocity-dependent force components and found a clear separation between

adaptation and decay paths for both pFF and vFF training (Fig 3A and 3B). For both types

of perturbations, we identified a goal-aligned and a goal-misaligned component. The goal-

aligned component for pFF training is parallel to abscissa in gain space and represents the

position-dependent force component, whereas the goal-misaligned component is parallel to

the ordinate and represents the velocity-dependent force component. These relationships are

reversed for vFF training with the goal-aligned and goal-misaligned components represented

by the velocity- and position-dependent axes, respectively. In both pFF and vFF training, the

goal-aligned force component had a significantly greater contribution to the initial adaptation

Relative stability of motion state-based learning
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than the goal-misaligned components (pFF: goal-aligned (0.33 ± 0.03) vs goal-misaligned

(0.21 ± 0.02); vFF: goal-aligned (0.25 ± 0.03) vs goal-misaligned (0.09 ± 0.04), P< 0.05 in both

cases). (Note there is a larger goal-misaligned component for initial pFF adaptation than for

initial vFF adaptation. That is, the velocity-dependent contribution to the adaptive response

Fig 3. Gain-space representation of adaptation and decay for training in position- and velocity-dependent

force-fields. (A) Evolution of position- and velocity-dependent gains during adaptation and decay for pFF training. Gain-

space trajectories during adaptation and decay periods are shown in blue and gray, respectively, and are averaged

across all subjects. The adaptation goal is shown as a blue filled square. Each point in the trajectory has a contribution

that is goal-aligned and goal-misaligned, as shown by the two vectors. Three points were selected to compare the gains

of the goal-aligned and misaligned components, labeled by the filled ellipses and the numbers 1, 2, and 3. Points 1 and 2

were early and late in the adaptation period, and were the same for both force-field types (training trials 1–15 and 150–

160). Point 3 represents the average over a two trial window during the decay period at which the adaptation coefficient

for the goal-aligned component was not significantly different from the early learning value (trials 12–14 and 16–18 of the

decay period for pFF and vFF, respectively). Ellipses show standard error. (B) Evolution of position- and velocity-

dependent gains during adaptation and decay for vFF training. Gain-space trajectories during adaptation and decay are

shown in red and gray, respectively. The goal of adaptation is represented as a red filled square. Direction of the goal-

aligned and goal-misaligned components are shown as red and cyan vectors, respectively. (C and D) The evolution of

the goal-aligned and goal-misaligned components during training and decay are shown for each force-field perturbation.

Each point during the adaptation period is the average across subjects for windows of 10 or 15 trials. Shaded regions

show the standard error. Bar graphs show the amplitude of the goal-misaligned component during the periods that are

highlighted in panels A and B as 1, 2, and 3. The asterisk above the bar graph represents the result of the ANOVA across

the goal-misaligned components at points 1, 2, and 3. Error bars show standard error of gains for each point.

https://doi.org/10.1371/journal.pcbi.1005492.g003
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for pFF training was larger than the position-dependent contribution for vFF training. This

asymmetry supports an initial adaptation bias towards velocity-dependent learning as dis-

cussed below). As subjects continued to experience the force-field, contributions from the

goal-aligned component increased whereas the goal-misaligned component decreased (Fig 3A

and 3B). We examined two time points during training (points 1 and 2) which represent early

(training trials 1–15) and late adaptation (training trials 150–160) respectively. By the end of

the training period (the point labeled 2 in Fig 3A and 3B), the majority of the compensatory

force was due to the contribution of the goal-aligned force component (vFF: goal-aligned

(0.66 ± 0.04) vs goal-misaligned (0.05 ± 0.008); pFF: goal-aligned (0.69 ± 0.02) vs goal-mis-

aligned (0.1 ± 0.01), P< 0.05 in both cases). This decrease in the goal-misaligned component

resulted in a curvature in the learning trajectories (note the difference between points labeled 1

and 2). However, the magnitude of this curvature was not the same for pFF and vFF training;

the contribution of the velocity-dependent force for pFF training from early (point 1 in Fig

3A) to late adaptation (point 2 in Fig 3A) was significantly different in magnitude (1st point:

0.21 ± 0.02 vs. 2nd point: 0.10 ± 0.01, P< 0.05). Although there was a similar decrease in the

contribution of the position-dependent forces from early to late adaptation for vFF training,

this decrease in magnitude was not significant (1st point: 0.09 ± 0.04 vs. 2nd point: 0.05 ± 0.01,

P = 0.32).

The gain-space trajectories diverge from the initial adaptation path with the start of the

decay period (Fig 3A and 3B gray lines). In both cases, the direction of change in gain is toward

the origin of the gain-space. However, the gain-space trajectories never return completely to

the origin, indicating only partial decay of the force-field adaptation within the period exam-

ined. This is in agreement to the asymptotic behavior seen at the end of the decay period for

the adaptation coefficient (Fig 2A and 2B). Separation of the adaptation and decay gain-space

trajectories for both pFF and vFF training demonstrate a difference in the behavior of the

motor system during the decay of adaptation. The change in the goal-misaligned component

between adaptation and decay dictates the shape of this separation. Fig 3C shows the gains for

both the aligned and misaligned components for pFF training during the adaptation and

decay period as a function of trial. The gain applied to the aligned component at the end of the

decay period remained significantly greater than baseline levels, but this was not the case for

the misaligned gain (aligned: -0.006 ± 0.004 vs. 0.12 ± 0.02, paired two tailed t-test, P< 0.001;

misaligned: 0.009 ± 0.005 vs. 0.03 ± 0.02, paired two tailed t-test, P = 0.27). In order to capture

the changes in the goal-misaligned component, we defined a third point in the gain-space tra-

jectory. This 3rd point was the trial range during the decay period at which the gain of the

aligned component was not significantly different from the respective gain during initial learn-

ing (trials 12–14 and 16–18 of the decay period for pFF and vFF, respectively). For example,

for pFF training, there was no significant difference in the gain for the goal-aligned component

between the 1st and 3rd points (0.33 ± 0.03 compared to 0.27 ± 0.03, P = 0.16, two-tailed t-test).

We determined this point in order to isolate changes in the gain of the goal-misaligned com-

ponent between adaptation and decay, and quantify the trajectory separation. For pFF training

the goal-misaligned component was significantly different between the three different points

(ANOVA, P< 0.001 for the main effect of period). The value of the goal-misaligned compo-

nent at the 1st point was significantly greater than the respective gain at the 2nd and 3rd points

(0.21 ± 0.02 compared to 0.09 ± 0.01 and 0.08 ± 0.02, P< 0.05 for both cases, multiple compar-

isons corrected) (Fig 3C). The difference between the 1st and 2nd points shows that the early

adaptation level is less specific to the goal in comparison to late adaptation. The difference

between the 1st and 3rd points further shows that for similar values of the goal-aligned compo-

nent, adaptation and decay gain-space trajectories are significantly distinct. The goal-mis-

aligned component was significantly different from zero for all 3 points, indicating that both
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adaptation and decay are confined in the 1st quadrant of the gain-space (P< 0.05, two-tailed t-

test).

The behavior of the goal-misaligned component was slightly different for vFF training but

the overall effect was the same. As above for pFF training, we compared the adaptation and

decay gain-space trajectories at points where there was no significant difference in the gain of

the goal-aligned component (between the 1st and 3rd points in Fig 3B, 0.24 ± 0.03 compared to

0.21 ± 0.03, P = 0.16, two-tailed t-test). Again, the goal-misaligned component was signifi-

cantly different between the three different points (ANOVA, P< 0.05 for the main effect of

period). Unlike pFF training, there was no significant difference in the gain of the goal-mis-

aligned component between the 1st and 2nd points (0.09 ± 0.04 compared to 0.05 ± 0.01, P =

0.52, multiple comparisons corrected). Additionally, the value of goal-misaligned component

at the 3rd point was significantly less than the respective gain at the 1st and 2nd points (-0.02 ±
0.01 compared to 0.09 ± 0.04 and 0.05 ± 0.01, P< 0.05 for both cases, multiple comparisons

corrected) (Fig 3D). The goal-misaligned component was significantly different from zero for

both early and late adaptation indicating that adaptation was confined to the 1st quadrant of

the gain-space, but late decay showed a nominal, but negative gain for the position-dependent

component. Similar to pFF training, the gain for the goal-aligned component at the end of the

decay period remained significantly greater than baseline levels (0.008 ± 0.005 vs. 0.16 ± 0.03,

paired two tailed t-test, P< 0.001 for both cases), but the misaligned component was not

(-0.003 ± 0.003 vs. 0.002 ± 0.01, paired two tailed t-test, P = 0.75).

Although a separation between adaptation and decay was present in both vFF and pFF

training gain-space trajectories, the shapes of the trajectories were not the same. We identified

three differences between the gain-space trajectories. First, the initial learning for pFF training

was less specific compared to vFF adaptation. That is, vFF adaptation was more aligned with

the goal (parallel to the ordinate) compared to pFF training (parallel to the abscissa). Another

way to quantify this difference is to determine the angle between the learning gain-space tra-

jectory and the ideal (straight) trajectory to the adaptation goal. For early training (1st point)

this angle was significantly greater for pFF training compared to vFF adaptation (pFF: 31.9˚ ±
2.6˚ vs. vFF: 18.6˚ ± 6.9˚, P< 0.05, one-tail t-test). In other words, initial vFF training was

more aligned with the learning goal (parallel to the velocity-dependent axis) than initial pFF

adaptation (parallel to the position-dependent axis). Second, there was greater change in the

learning gain-space trajectory for pFF training—a significantly larger difference was observed

along the goal-misaligned gain axis between early and late adaptation for pFF adaptation (a

difference in gain of 0.1 ± 0.02 for pFF compared to a difference of 0.03 ± 0.04 for vFF, two-

tailed t-test, P< 0.05). Finally, although the decay of the goal-aligned component was slightly

faster for vFF training (time constant of 10.4 ± 2.2 trials for pFF compared to 7.9 ± 0.9 trials

for vFF. See S2A Fig), there was a much larger difference in the decay of the goal-misaligned

component, with levels for pFF training significantly greater than vFF adaptation throughout

the decay period (S2B Fig). In other words, velocity-based learning persisted at a nonzero

value during the decay of pFF training. However, any subsequent position-based learning

quickly decreased to zero for vFF training.

Symmetric and asymmetric viscoelastic primitive model for motor

adaptation

We hypothesized that these asymmetries for pFF and vFF training represent a possible intrin-

sic bias of the motor system to (1) associate the imposing perturbation with the kinematics of

the movement and (2) retain the motion based learning. If the association between movement

kinematics and the force-field perturbation is biased toward the velocity changes during the
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movement then adaptation to a force-field perturbation that is equally dependent on both

position and velocity should be biased toward the velocity-dependent axis. This effect should

also persist during the decay of the adaptation if velocity-dependent learning is more stable

than that based on position. Sing et al. [16] previously studied adaptation to different force-

field perturbations that were dependent on a combination of changes in limb position and

velocity. However, the decay of this adaptation to different learning goals was not examined.

Moreover, in their viscoelastic primitive model to describe the adaptation there was the basic

assumption that motor learning based on changes in movement position and velocity is sym-

metric—an assumption challenged by the results described above. We therefore modified this

model in order to make predictions about adaptation behavior and decay to novel movement

dynamics dependent on different combinations of changes in limb position and velocity.

The viscoelastic primitive model proposed by Sing et al. [16] captured the changes in the

temporal pattern of force during adaptation to different types of force-field perturbations. The

application of this model to the vFF and pFF behavioral data are shown in Fig 4A. In this

model the force pattern in each trial is a weighted sum of motor primitives that are differen-

tially tuned to changes in position and velocity during the movement. On each trial the error

between the current motor output in the 2D gain-space and the learning goal, combined with

a gradient descent rule, determines how the weights of the respective primitives are updated.

This model captures the initially similar motor output in response to the vFF and pFF pertur-

bations, as well as the late-learning rotation of the gain-space trajectory toward the relevant

motor learning goal (velocity for vFF training or position for pFF training). However, as men-

tioned above, this model assumes that the decay of the adaptation is the same for both types of

motion-based learning (a symmetric primitive model). This similarity in retention results in a

decay trajectory that travels directly back to the baseline value towards the origin. Interestingly,

this decay structure makes testable predictions for force-field perturbations that combine

velocity- and position-based learning (Fig 4A). First, utilizing the parameters determined from

the simultaneous fit to the vFF and pFF behavioral data, for an unbiased combination (ucFF,

equally dependent on both motion states) the learning and decay gain-space trajectories will

be similar, with the decay closely following the reverse of the adaptation path. Second, using

the same model parameters, the decay for adaptation to a position biased force-field (pcFF, a

greater position and smaller velocity dependence) will be biased towards the position axis due

to the greater representation of position-based learning at the end of training.

In our modification to this model we assume, based on the behavioral results above (see S2

Fig and S3 Fig), that the retention of learning based on changes in movement velocity is greater

than the retention of learning based on changes in limb position. That is, during adaptation,

the portion of the primitive population that encodes velocity information maintains a larger

representation of this motion-based learning. We modeled this asymmetry by imposing that

each primitive has two decay rates, one for position-based learning and one for velocity (see

Materials and Methods). In this case, on each trial the amount of adaptation is scaled with

different non-unity factors for position and velocity. We refer to this implementation as the

asymmetric primitive model and, similar to the symmetric model, we applied this model to the

vFF and pFF behavioral data and made predictions for force-field perturbations that combine

velocity- and position-based learning (see Materials and Methods). When determining the

values of the respective retention factors, we did not put any constraint on the relationship.

Thus, the retention asymmetry could be in either direction, allowing a direct assessment of

any difference.

This asymmetric model makes similar predictions as the symmetric model for the time

course of adaptation for pFF and vFF training (Fig 4B). However, only the asymmetric model

captures the small, but distinct separation in the decay of pFF and vFF training (see S3 Fig). In
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addition, the two models make distinct predictions about the decay for ucFF and pcFF train-

ing. As described above, the symmetric primitive model predicts equal adaptation to position

Fig 4. Simulation of symmetric and asymmetric viscoelastic primitive models for adaptation to different force-field types. Simulation of the gain-

space trajectories for the (A) symmetric and (B) asymmetric viscoelastic primitive models fit simultaneously to the vFF and pFF behavioral data (Symmetric

model: αK = αB = 0.951, σK = σB = 0.401, η = 1.5 x 10−4, ρ = 0.51. Asymmetric model: αK = 0.942, αB = 0.951, σK = 0.464, σB = 0.379, η = 1.5 x 10−4, ρ =

0.47). Adaptation and decay to pFF and vFF, and predictions of behavior for ucFF, and pcFF force-field training are depicted by the colored and gray

traces, respectively. (C) Normalized decay of position- and velocity-dependent gains for the predictions of the symmetric (black trace) and asymmetric

(orange trace) primitive models for ucFF and pcFF training.

https://doi.org/10.1371/journal.pcbi.1005492.g004
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and velocity, and decay along a similar trajectory for ucFF learning (Fig 4A and 4B). However,

the asymmetric model (whose parameters are based solely on the vFF and pFF behavioral

data) predicts that the final adaptation to this perturbation is biased toward velocity-based

learning, and that the decay lies completely in the portion of the primitive space with more

velocity contribution (αK = 0.942 vs αB = 0.951). When the two models simulate adaptation to

the pcFF perturbation, the symmetric model predicts a decay that remains biased toward posi-

tion. In contrast, the asymmetric model predicts a shift towards the velocity axis during decay.

This is important in the sense that the adaptation endpoint in the primitive gain space imposes

distinct decay characteristics under the two models that can directly be tested.

In order to further visualize the differences between the decay trajectories under the two

models, we normalized the trajectories with respect to the end point of adaptation (Fig 4C).

We did this to remove the effect of the adaptation endpoint for each force-field type, and more

importantly reveal the difference between the decay rates. Under both ucFF and pcFF, the

symmetric primitive model predicts a decay that follows the unity, x = y line. This is expected

due to the same decay rates for position- and velocity-based learning. In contrast, the asym-

metric model (whose parameters in this case are based only on the vFF and pFF data) predicts

that the decay will be biased towards the velocity axis. The bias in the decay is predicted by the

larger retention rate for velocity state compared to position (S6 Fig).

Although both models fit the pFF and vFF data qualitatively, it is important to note that

there are aspects of the simulated adaptation that both models fail to capture (e.g., differences

in the initial adaptation trajectory (magnitude and direction) between pFF and vFF, Fig 3A

and 3B). For additional insight into these differences we focused on the predictions of the

asymmetric model simulation, fitting the model separately to the vFF and pFF data in S4 Fig.

Note that as in Fig 4, the values of the respective retention factors were not constrained.

Consistent with Fig 4, in all cases the normalized decay trajectory is above the unity line dem-

onstrating that velocity-based learning is decaying slower than position-based adaptation.

Additionally, in S5 Fig and S6 Fig we show the influence of the primitive distribution on the

learning trajectory and the influence of the retention rates on the decay trajectory. Finally,

based on the same parameters in Fig 4, we also simulated the decay for adaptation to a velocity

biased force-field (vcFF, a greater velocity and smaller position dependence, S7 Fig). Although

the learning trajectory mirrors the pcFF simulation, the relative stability of the motion-based

adaptation are consistent with Fig 4C.

Gain-space analysis of training in state-dependent force-fields based on

position and velocity

To test the predictions of the symmetric and asymmetric primitive models we trained two addi-

tional groups of subjects in force-field perturbations that were unbiased (ucFF) and position

biased (pcFF) combinations of the two motion states in order to further characterize the stability

of velocity- and position-dependent learning. Previous studies have shown that the adaptation

rate to a force-field with a positive correlated dependence on limb position and velocity is faster

than adaptation to a purely position or velocity-dependent force-field [16]. Here, we examined

how the ratio of position and velocity dependence influenced the motor adaptation and stability

during the decay period. As described for the simulations above, we first examined adaptation

and decay in response to a force-field equally dependent on both motion states (ucFF). Follow-

ing this, we examined learning and the subsequent decay for movements made within a combi-

nation force-field with a greater position and smaller velocity dependence (pcFF).

We observed that the adaptation to an unbiased combination force-field (equally dependent

on the state of the position and velocity during the movement) was generally closer to the
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learning goal by the end of the adaptation period (Fig 5A). The applied gain was significantly

different between the late periods of adaptation and decay, and between the two types of mo-

tion states (2-way ANOVA, P< 0.001 for both the main effect of period and the main effect of

motion state). Subjects initially adapted to the force-field by applying similar state-dependent

gains for changes in position and velocity (position: 0.20 ± 0.03, velocity: 0.28 ± 0.04, P = 0.09,

paired two-tailed t-test). However, by the end of the adaptation period, the velocity-dependent

gain was significantly greater than the position-dependent gain (position: 0.54 ± 0.03, velocity:

0.68 ± 0.04, P< 0.05, paired two-tailed t-test). This resulted in a gain-space learning trajectory

that was above the unity line and clearly biased towards the velocity-dependent gain axis (ordi-

nate in Fig 5A).

To examine the characteristics of this bias, we projected the gain-space trajectory onto

the position and velocity gain axes at each point during learning and decay (Fig 5C). As

described above, early in adaptation the position- and velocity-dependent gains had similar

magnitudes, but the velocity-dependent gain was significantly greater than the position-depen-

dent gain by the end of the adaptation period. This significant difference between the velocity-

and position-dependent gains extended throughout the decay period (Late in decay: position:

0.07 ± 0.02 compared to velocity: 0.18 ± 0.03, P< 0.05 for both cases, paired two-tailed t-test,

Fig 5C bar graph). An exponential fit to the decay of the velocity and position components

showed a larger time constant for velocity (time constant of 9.4 ± 1.8 trials for position com-

pared to 12.1 ± 2.0 trials for velocity. See S8A Fig). Additionally, the applied gains based on

velocity and position at the end of the decay period remained significantly greater than base-

line levels (velocity: 3.8 x 10−4 ± 0.007 vs. 0.18 ± 0.03, position: 0.003 ± 0.007 vs 0.07 ± 0.02,

paired two tailed t-test, P< 0.001 for both cases). This clearly shows that when the force-field

is equally dependent on changes in movement position and velocity, the gain of the velocity-

dependent force contributed more in both the adaptation and decay periods. This is in agree-

ment with the predictions of asymmetric primitive models, which suggest a bias late in adapta-

tion toward velocity continuing throughout the decay period (Fig 4B).

One might suspect that the observed bias in the decay trajectory for the unbiased combina-

tion force-field is the consequence of the unbalanced adaptation levels; the final adaptation has

a significantly greater velocity-dependent gain compared to position. In order to remove this

confound, we normalized the gain-space trajectory during the decay by the position and veloc-

ity-dependent gains by the respective values at the beginning of the decay period. Thus, the

rescaled initial point of decay in gain-space is located at [1.0, 1.0]. If the shape of the decay

gain-space trajectory in Fig 5A was the result of unequal learning at the end of adaptation,

then the normalized decay should be aligned with the equality line in gain space. However, the

normalized trajectory clearly shows that the velocity-dependent gain was always greater than

the respective position-dependent gain throughout the decay period (Fig 5E). When we exam-

ined the temporal changes of the normalized gains during decay (Fig 5E) by projecting the tra-

jectory onto the position and velocity-dependent gain axes, we observed the same effect (Fig

5G). The percentage of adaptation at the beginning of the decay period was significantly

greater than at the end, and the percentage of adaptation based on velocity and position was

significantly different (2-way ANOVA, P< 0.001 for the main effect of period and the main

effect of motion-based learning). For the early and late epochs of decay, the normalized veloc-

ity-dependent gain was significantly greater than position (early epoch: position: 37 ± 7% vs.

velocity: 52 ± 6%; Late epoch: position: 12 ± 5% vs. velocity: 25 ± 5%; P< 0.05 for all cases,

paired two-tailed t-test). This is in line with the decay predicted by the asymmetric primitive

model and suggests that there is an asymmetry in the retention rates between position- and

velocity-based motion-state learning (Fig 4C).
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Fig 5. Gain-space representation of adaptation and decay for training in combination force-fields. (A and B)

Gain-space trajectories during training in the unbiased combination (ucFF, green trace) and position biased force-field
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As stated previously, a potential confound for the unbiased combination force-field is that

the velocity-dependent gain at the end of adaptation was significantly greater than position.

This may have influenced the decay and resulted in the velocity contribution being more stable

throughout the decay period. We therefore conducted an additional experiment using a posi-

tion-biased combination force-field (pcFF). As predicted by both models, at the end of training

the adaptation gain-space trajectory for this force-field is biased toward the position axis

(abscissa) as shown in Fig 4A and 4B. However, as the decay period starts, the asymmetric

model predicts that the gain-space trajectory will move toward the velocity-dependent gain

axis (ordinate) and remain above the unity line for the remainder of the decay period (Fig 4B).

In contrast, the symmetric model predicts that the adaptation will decay towards the position

axis (Fig 4A)

Fig 5B shows the behavioral results for subjects trained on this combination force field. The

decay of adaptation is clearly biased towards the velocity axis, consistent with the predictions

of the asymmetric model. This can be seen in the trial-by-trial changes of both gains during

adaptation and decay period (Fig 5D). The applied gain was significantly different between

the late periods of adaptation and decay, but there was no main effect of motion state (2-way

ANOVA, P< 0.001 for the main effect of period and P = 0.27 for the main effect of motion

state). (Note that the non-significant effect of motion state is due to significant effects in oppo-

site directions in the late periods of adaptation and decay. See below.) Similar to the ucFF

results, an exponential fit to the decay of the velocity and position components showed a larger

time constant for velocity (time constant of 5.7 ± 0.6 trials for position compared to 9.3 ± 0.9

trials for velocity. See S8B Fig). In addition, the final gains applied to velocity and position

at the end of the decay period remained significantly greater than baseline levels (velocity:

0.001 ± 0.007 vs. 0.10 ± 0.03, position: 8.9 x10-4 ± 0.007 vs. 0.06 ± 0.02, paired two tailed t-test,

P< 0.001 for both cases). Although the adaptation starts with equal contribution of both

motion components, late adaptation is significantly dominated by the position-dependent

learning (Early adaptation: position: 0.26 ± 0.05 vs. velocity: 0.26 ± 0.03, P = 0.99, paired two-

tailed t-test; Late adaptation: position: 0.61 ± 0.03 vs. velocity: 0.53 ± 0.02, P< 0.05, paired

two-tailed t-test). At the start of the decay period there is a rapid drop in the position-depen-

dent gain. However, the decay of the velocity-dependent gain is much slower, resulting in the

gain-space trajectory remaining above the unity line throughout much of the decay period

(Late in decay: position: 0.06 ± 0.02 vs. velocity: 0.10 ± 0.03, P< 0.05, multiple comparisons

corrected).

Due to the significant difference in the gain magnitudes at the end of the training, we also

examined the normalized decay for pcFF training. Similar to the results for the unbiased com-

bination force-field, we observed that the normalized decay gain-space trajectory was above

(pcFF, purple trace) are shown. The respective gain-space trajectories during the decay periods are shown in gray. The

learning goal of the adaptation in gain space is shown by the filled green and purple squares. The directions of position-

aligned and velocity-aligned components are shown by blue and red arrows, respectively. (C and D) Evolution of the

applied position- and velocity-dependent gains during adaptation and decay of the combination force-field training.

Position-dependent gains are shown in blue and velocity-dependent gains are shown in red. Each point during the

adaptation period is the average across subjects for windows of 10 or 15 trials. The bar graphs show the amplitude of

each component for the shaded regions numbered in panels A and B. (E and F) The normalized gain-space trajectories

during the decay periods were computed by rescaling the gains during decay by their respective values at the start of the

decay period. Thus, the first point is rescaled to [1.0, 1.0] in gain space. The gray lines represent the normalized decay in

gain space, and the ellipses show standard error at each point. (G and H) Normalized decay of position- and velocity-

dependent gains. The bar graph depicts the comparison between the normalized gains in the early (E) and late (L)

epochs. Error bars show standard error of gains for each epoch. Insets in panels A, B, E and F show the predictions of

the asymmetric primitive model fit simultaneously to the ucFF and pcFF behavioral data (αK = 0.914, αB = 0.958, σK =

0.546, σB = 0.565, η = 1.5 x 10−4, ρ = 0.48).

https://doi.org/10.1371/journal.pcbi.1005492.g005
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the unity line for the entire decay period, indicating that the velocity-dependent gain decayed

at a slower rate than the position-dependent gain. In addition, the percentage of adaptation at

the beginning of the decay period was significantly greater than at the end, and the percentage

of adaptation based on velocity and position was significantly different (2-way ANOVA, P<
0.001 for the main effect of period and the main effect of motion-based learning). This effect is

strongly present in both early and late epochs of the decay period (Early, position: 24 ± 5% vs.

velocity: 42 ± 6%; Late position: 11 ± 4% vs. velocity: 20 ± 6%; P< 0.05 for both cases, paired

two-tailed t-test) (Fig 5F and 5H). This again is in agreement with the simulations from the

asymmetric primitive model (Fig 4B and 4C, and insets in Fig 5A, 5B, 5E and 5F). When this

model was applied simultaneously to the ucFF and pcFF behavioral data the simulations

(insets in Fig 5A, 5B, 5E and 5F) predicted adaptation during training to be biased toward the

position axis, but with the start of the decay, the gain-space trajectory is biased towards the

velocity axis due to an asymmetry in the stability of the motion-state learning (αK = 0.9424 vs

αB = 0.9654).

Discussion

We designed a series of experiments to examine the stability of motion-state based updates to

motor commands in response to the introduction of novel dynamics during reaching move-

ments. In our first experiments these dynamics were dependent either solely on changes in

movement position or velocity. We directly measured the temporal force patterns subjects

applied via error clamp trials, during which the robotic manipulandum constrained the move-

ment to a straight trajectory between targets by counteracting any perpendicular motion.

Based on the force patterns subjects applied to counter the perturbation, we determined the

gain associated to changes in movement position and velocity. We determined the applied

gains in response to different types of dynamics and examined the stability of these modifica-

tions to motor commands when the perturbation was removed and subjects only made error

clamp movements. When the respective gains were represented in a two-dimension gain space

we observed a separation between the gain-space trajectories during the learning and the

decay periods. Based on the observed behavioral differences in the retention of the learning

between pFF and vFF training, we modified a previous model of motor adaptation and made

several predictions on the decay of learning following training in force-field perturbations that

were a combination of both motion states. Interestingly, the simulations predicted that when

the learning goal had partial dependence on both motion states the position-dependent gain

would decay at a faster rate relative to the velocity-dependent gain. This was the case even

when the gain associated to position at the end of training was significantly greater than that

applied to movement velocity. These simulations were confirmed by a second set of experi-

ments in which we examined the learning and decay to these combination motion-state per-

turbations. Together, our simulation and behavioral results suggest that (1) overlapping, but

distinct processes underlie motor adaptation and its decay and (2) the adjustment of motor

commands based on movement velocity is relatively more stable than that based on position.

Different processes underlie motor learning and decay

The gradual decay of newly formed motor memories has been studied for different contexts

and tasks, including: prism [6,7], locomotion [8,9], visuomotor [10,11] and force-field pertur-

bations [4,12,15]. The decay of adaptation in these studies is often at a different rate compared

to initial learning suggesting at least partially separate mechanisms [23,27]. Recently, Kitago

and colleagues [5] examined the decay of visuomotor adaptation for different types of assess-

ments. For all methods examined, there was a decay in the adaptation, but the rate was the
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fastest when the perturbation was removed and slowest when the errors orthogonal to the

ideal movement trajectory were visually clamped to zero (similar to the error clamps used in

the current study). (Note the minimum decrease in adaptation level occurred with the passage

of time, but the decay rate is difficult to quantify and compare for this context.) This suggests

that the method in which the decay rate is assessed (i.e., the context of the decay period) poten-

tially has a considerable influence on the decay rate of the motor memory [13,14,28].

In order to evaluate modifications to the feedforward changes in the motor output, it was

necessary to utilize error-clamp trials. Although it is possible that assessing adaptation decay

in a different manner (e.g., decay trials with perturbation removal) could influence the reduc-

tions in motor output we report, our main interest was how these changes in motor output

compared to the initial learning and varied for different learning goals. Our results show clear

separation in the applied gains to changes in position and velocity between the initial learning

of the novel dynamics and the subsequent decay of the motor adaptation. In all cases, the

applied gain did not return to baseline levels. This was true for the goal aligned motion state

(Fig 3C and 3D) when the perturbation was based on a single state, and when the perturbation

had a codependence on both motion sates (Fig 5C and 5D). This behavioral difference mirrors

the neuronal retention of learning reported throughout the sensorimotor system following

motor adaptation. The activity of a population of premotor, supplementary motor, and pri-

mary motor cortex cells is modified during force-field adaptation and these correlated modifi-

cations are retained during the decay of the learning, serving as a memory trace of the training

[29–33]. The behavioral difference between learning and decay we report may reflect these

persistent neural changes throughout the sensorimotor system specifically tuned to the motion

kinematics required for force-field compensation.

Although the focus in our study was the examination of the decay of the velocity- and posi-

tion-dependent learning, there are some aspects of the adaptation trajectories that are not cap-

tured by the primitive model (e.g., differences in the initial adaptation trajectories in Figs 3

and 5, compared to the simulations in Fig 4). These inconsistencies may be due to several

interesting factors resulting from perturbation-dependent changes in the primitive distribu-

tion. The supplemental simulations (S5 Fig and S6 Fig) suggest that there are possible changes

in the primitive distribution (at least within this computational framework) occurring during

the two types of training (vFF and pFF) that influence the learning trajectories; it is possible that

the primitive space may rotate during training, but the extent towards a particular axis may

have different rates. We plan to address this possibility with future, systematic experiments.

Finally, the sensory adaptation that occurs with motor learning may provide an additional

measure to assess differences in adaptation retention. Ostry and colleagues [34] demonstrated

that following the exposure to a force-field movement perturbation there was an accompa-

nying modification in the perception of limb position. Specifically, the perceptual shift was in

the direction of the movement disturbance and learning-dependent; there was no observed

sensory modification when the limb was moved passively through the same trajectories experi-

enced during the motor perturbation. Thus, another possible assessment of any asymmetry in

the retention of the velocity and position components could be to compare the magnitude of

the accompanying perceptual shifts in limb estimation and the degree to which these percep-

tual modifications persists throughout the decay period.

Influences on the stability of motor learning

Several studies have suggested that how the perturbation is introduced (e.g., abruptly vs. grad-

ually) and the duration of exposure (e.g., long vs. short) influence the stability and subsequent

properties (transfer, long-term retention, etc.) of motor adaptation [21,35–37]. For example,
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Huang and Shadmehr [22] showed that when the force-field perturbation was applied for a

short duration, the decay of the adaptation was much more rapid than for longer training peri-

ods, suggesting less relative stability in the modifications to the motor commands. This is in

agreement with recordings in motor cortex [38]; the activity of a subset of neurons is modified

dependent on the rate of movement perturbations experienced, indicating that the neural

representation of adaptation is influenced by the training schedule.

In addition to training schedule, previous studies have examined factors that influence the

stability of adaptation retention [12,17–21,39,40]. However, an important distinction of the

current study is that we examined the stability of the components of the motor adaptation (the

motion-state based learning) rather than the long-term stability of the adaptation or stability

in competition with the formation of other motor memories. As in Sing et al. [16], our current

observations show that the motor memory in the late stages of training is more specific to the

task goal compared to the initial stages due to modification in the gains applied to the goal-

aligned and goal-misaligned motion parameters. This specificity in the motor output remains

throughout the decay period; there is no reemergence of the initial goal-misaligned learning as

the acquired goal-aligned learning gradually decays. Based on the collective work described

above, it would be interesting to examine the influence of the (1) training duration, (2) intro-

duction rate and (3) passage of time on the stability of these adjustments to the motion state

gains. For example, there is recent evidence that performance becomes more task specific with

sufficient breaks after training, suggesting that the passage of time may influence the ability to

perform more task-relevant actions [41]. We hypothesize that the well-known savings follow-

ing a break after initial training (faster re-adaptation with exposure) will reflect more goal-

aligned movements [10]. That is, savings over multiple days of training should result in adapta-

tion gain-space trajectories closer to the goal-aligned axis (the motion kinematic of the experi-

enced force-field) than on the first day of exposure.

Physiological implications of the greater relative stability of velocity-

dependent learning

As demonstrated previously [16,24,25], the initial adaptive responses that we observe when learn-

ing novel movement dynamics are consistent with motor primitives with correlated position

and velocity tuning. This theoretical framework is based on the codependent encoding of these

motion states observed throughout the sensorimotor system [42–47]. Our current results suggest

that this codependence does not necessarily result in an equal representation of the two motion

states, but rather codependent processing biased towards velocity. For example, similar to previous

studies [16,24,25], initial position-dependent learning is biased towards the velocity-dependent

gain; the gain-space trajectory is typically closer to the middle of the gain space than that observed

for velocity-dependent learning (Fig 3A and 3B). In addition to initial learning, the decay of the

position-dependent gain was relatively faster than the reduction of the velocity-dependent gain for

both combination force-fields, suggesting an asymmetry in relative stability (Fig 5).

Why should learning based on movement velocity be more stable than that based on posi-

tion? A possible answer may be found in the encoding asymmetries in motor cortex [47].

Velocity tuning among primary motor cortex neurons is more abundant compared to posi-

tion. Another reason for a velocity bias could be that movement velocity provides substantially

more motion information compared to position. For example, during point-to-point move-

ments, there can be a significantly larger variance in the temporal changes in movement veloc-

ity for similar movement trajectories [48]. Take for example the force-field perturbations used

here; the peak force experienced by the subject can vary broadly when based on movement

velocity, whereas this peak is restricted when based on positional changes. If such a coding
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bias exists throughout the sensorimotor system, this imbalance would support a preference

towards velocity-based learning during initial force-field adaptation and an asymmetry during

the subsequent decay. Possible support for this bias may be found in a recent study by Rotella

and colleagues [49]. The authors asked subjects to produce isometric hand forces which were

then mapped to the position or velocity of a virtual cursor. Under these different mappings,

they then tested the generalization of adaptation when a visuomotor rotation was applied to

the cursor motion. Interestingly, the generalization of adaptation under the velocity mapping

was broader, which is aligned with the current implications that movement velocity is a more

stable basis for motor learning than changes in position.

Conclusion

We investigated the decay of short-term adaptation to motion-dependent perturbations applied

to reaching movements. We observed a clear separation between the initial learning and subse-

quent decay when the motor output was represented as the respective gains subjects applied to

changes in position or velocity during movement. When the perturbation was only based on

one motion state (position or velocity), this separation was a direct effect of a sustained decrease

in the gain of the goal-aligned motion parameter, with no reemergence of the goal-misaligned

parameter during the decay period. When exposed to novel dynamics that required a combina-

tion of position- and velocity-dependent learning, the applied velocity-dependent gain was rela-

tively more stable during the decay period, even when the gain applied to changes in position

was significantly greater at the end of training. This difference in the relative state-dependent

learning stability suggests that the motor system has an inherent preference towards adjusting

and retaining modifications to motor commands based on movement velocity. A modified

model of adaptation that accounts for greater retention of velocity-based learning captures these

behavioral results, and importantly predicts the decay behavior for training with novel force-

fields that are jointly dependent on the two motion states. Overall our results show that the

decay of motor adaptation is not exactly unlearning—the complete reversal of the learning pro-

cess. Rather, in agreement with previous physiological and behavioral studies, our results suggest

that the decay of adaptation likely shares overlapping mechanisms with the learning process, but

is a distinct process that reduces the motor memory traces formed over the training period.

Materials and methods

Ethics statement

The study protocol was approved by the George Mason University Institutional Review Board,

and all participants gave informed written consent.

Participants

Fifty-six healthy subjects (37 male and 19 female) without known neurological impairment

were recruited from the George Mason University community to participate in the study. All

participants were right-handed and performed the task using their right hand. Each individual

participated in only one of the experimental sessions and experienced only one type of force-

field (14—Velocity-dependent Force-field, 14—Position-dependent Force-field, 14—Unbiased

Combination Force-field, and 14—Position-biased Combination Force-field).

Experimental setup

The experimental paradigm was based on the standard force-field adaptation paradigm [26].

The subjects were instructed to move a cursor between two targets located on a screen in the
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sagittal axis of their body while grasping a robot manipulandum (KINARM End-Point Lab,

Fig 1A). The manipulandum measured hand position, velocity, and the force applied by sub-

jects, and its motors were used to apply forces to the hand, all at a sampling rate of 1000 Hz. A

semi-transparent mirror was used to project the location of hand and visual targets to the

plane of movement while occluding the subject’s view of the hand (refresh rate of 60Hz). Dur-

ing the experiment the subjects reached to circular targets 0.6 cm in diameter that were spaced

10 cm apart on the sagittal axis of the body. The subjects were instructed to ‘‘make quick reach-

ing movements to the targets in both the forward and backward directions.” At the end of each

trial, subjects received visual and auditory feedback about the completed movement. If the

peak movement velocity was between 0.25–0.35 m/s and the movement duration was shorter

than 750 ms, the reach target (green target in Fig 1A) filled green with an auditory reward indi-

cating a movement within the required criteria. If the peak movement speed was below 0.25

m/s, the reach target filled yellow to indicate that the movement was too slow. If the peak

movement speed was above 0.35 m/s, the reach target filled red to indicate the movement was

too fast. In both of the latter cases no auditory feedback was given. The endpoint of each move-

ment was used as the start point for the following trial, and movements were made only in

these two directions. The subjects received a performance score at the end of each block of

movements that indicated the percentage of correct trials only in the trained 270˚ movement

direction. Subjects were asked to maintain the score above 50% throughout the experiment.

Only 270˚ movements with a peak velocity between 0.2–0.4 m/s were used in the subsequent

data analysis. In addition, subjects had to initiate their movement within 75–2000 ms after the

reach target appeared on the screen. Otherwise all targets were extinguished and the trial was

immediately repeated.

Three trial types were used during the experiment: null trials, force-field (FF) trials, and

error-clamp (EC) trials (Fig 1B). Null trials were used for initial practice, during which the

motors of the robot manipulandum did not apply any force to the hand. During FF trials, the

robot applied a force at the hand that was dependent either on movement position (with

respect to the start location), velocity, or a positive combination of limb position and velocity.

The force that the robot applied to the hand was always orthogonal to the direction of move-

ment, and had the general form of:

Fx

Fy

" #

¼ cK :
0 � K

K 0

" #

:
x

y

" #

þ cB:
0 � B

B 0

" #

:
_x

_y

" #

; K ¼ 45
N:s
m
; B ¼ 15

N
m

ð1Þ

For a position-dependent force-field trial (pFF), cK = ±1 and cB = 0, where cK = ±1 and cK =

−1 correspond to clockwise and counterclockwise direction of the force-field, respectively (a

clockwise force-field is shown in Fig 1B). For a velocity-dependent force-field trial (vFF), cK =

0 and cB = ±1. Unbiased combination force-field trials (ucFF) had a force pattern dependent

on both the position and velocity, with cK = ±0.71 and cB = ±0.71 for clockwise and counter-

clockwise directions [16,23,24]. Lastly, the Position-biased combination force-field trials

(pcFF) had a motion dependent force pattern similar to the ucFF. However, the contribution

of the position-dependent component was 20% greater and the velocity-dependent component

was 25% less, with cK = ±0.85 and cB = ±0.53. As in Sing et al. [16] the values for K and B were

chosen in order to have approximately equal peak perturbing force for vFF and pFF. Each sub-

ject experienced only one type of force-field throughout the experimental session.

During error-clamp trials, the robot motors constrained movements in a straight line

toward the reach target by counteracting any motion perpendicular to the target direction

[21,50]. This was achieved by applying a stiff one-dimensional spring (6 kN/m) and a damper

(150 Ns/m) in the axis perpendicular to the reach direction. In these trials, perpendicular
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displacement from a straight line to the reach target was held to less than 0.6 mm and averaged

about 0.2 mm in magnitude.

Task

Each subject experienced the same basic experimental paradigm shown in Fig 1C. Subjects per-

formed sets of 90˚ and 270˚ movements. Each experiment started with a baseline period, during

which subjects completed 360 null trials (180 movements in the trained 270˚ direction). These

null trials were divided into 4 blocks. The first two blocks had 80 movements each and the last

two blocks each required 100 movements. During the last 2 blocks of trials 12 error-clamp trials

were pseudo-randomly interspersed for the 270˚ movement direction in order to measure the

baseline levels of forces for each subject. The average lateral forces during these trials were then

subtracted from the forces applied on error-clamp trials during the adaptation and decay periods.

Following the baseline period, subjects experienced the adaptation transition block (124

total movements, 62 in the trained 270˚ direction), during which the force-field environment

was suddenly introduced after an initial 30 null movement trials (15 in the trained 270˚ direc-

tion). We designed the adaptation transition block to capture the immediate changes in the

applied force due to initial exposure to the force-field. Once the perturbation was introduced

all 90˚ movements were made under the error-clamp condition, and the force-field was only

applied to 270˚ movements. For the first 10 training trials, the ratio of force-field (FF) to error

clamp (EC) trials was 3 FF: 2 EC which was then reduced to 5 FF: 1 EC for the last 84 trials (42

in the trained direction). The adaptation transition period was followed by 2 blocks of training

(96 total trials each) in which the subjects experienced only one of the four force-field environ-

ments (vFF, pFF, ucFF, or pcFF). Similar to baseline period, we pseudo-randomly inserted 16

error-clamp trials in the 270˚ movement direction in order to measure the adaptation level at

different points in training. The ratio of 5 FF: 1 EC was maintained throughout this training

period. Only the 270˚ direction movements were used for analysis of adaptation and decay.

The sign (direction) of the FF remained constant for each subject, but was counterbalanced

between subjects.

After the adaptation period, subjects experienced the decay transition block of 146 total tri-

als. This block started with 26 training trials. For the first 12 trials, there was a ratio of 5 FF: 1

EC which increased to 4 FF: 3 EC for the last 14 trials in order to obtain an accurate measure

of final adaptation levels. These 26 trials were then followed by 120 consecutive error-clamp

trials (60 in the trained 270˚ direction). We refer to these 120 error-clamp trials as the decay

period, during which the adaptation decayed to the baseline levels prior to experiencing the

force-field. Inclusion of the decay period within the transition block effectively masked any

possible context dependent changes in the behavior of the subject due to the removal of the

force-field [14,28]. We used 60 consecutive error clamp trials to measure adaptation decay in

order to keep this critical experimental block within a reasonable duration, and avoid breaks

and possible cognitive influences during the transition to the decay period. In addition, based

on the exponential decay time constants (S1 Fig, S2 Fig, S8 Fig), this number of error clamp

trials proved sufficient to observe asymptotic levels of decay.

Analysis of force profiles

As described previously [16,21,37,50,51] we used error-clamp trials to measure the change in

feedforward motor output during the adaptation and decay periods. The use of error-clamp

trials reduces the lateral errors experienced during the movement that elicit online feedback

correction. Given that the lateral force during error-clamp trials reflects the predictive feedfor-

ward adaptive response to the force-fields, we limited our analysis to these force patterns.
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Based on Eq 1, subjects fully compensate for the force-field when they produce a countering

force that is proportional to the movement velocity, position, or the positive combination of

the two. We first computed the ideal force pattern by examining the longitudinal movement

kinematics (position, velocity) during the error-clamp trial movement. The movement and

force signals were analyzed within a temporal window of 1500 ms centered on the peak veloc-

ity (±750). Next we defined the adaptation coefficient by determining the linear regression

coefficient between the ideal force and the lateral force applied by the subject during the error-

clamp trials [16,21,37,50,52]. We computed the adaptation coefficient for each subject during

both the adaptation and decay periods and averaged the values over all subjects. In all cases we

provide the SEM of this average value.

We further characterized the adaptation and decay behavior by projecting the lateral force

during each error-clamp trial onto a two-dimensional space that parsed the position-depen-

dent and velocity-dependent components of the applied force [16]. We refer to this two-

dimensional space as the gain-space. This gain-space represents complete adaptation to a vFF

by the point [0,1], pFF by the point [1,0], ucFF by the point [0.71, 0.71], and a pcFF by the

point [0.85, 0.53]. Additionally, the abscissa and ordinate of each point in this gain-space cor-

responds to the position-dependent and velocity-dependent components of the applied force.

In order to depict adaptation and decay in gain-space, we first calculated a multiple regression

between the lateral force during the error-clamp trials, and both the changes in position and

velocity during the movement. We then rescaled the coefficients for the position and velocity

components by the 45N/m and 15Ns/m factors, respectively, and projected these coefficients

onto the gain-space. For each subject, we performed this analysis and calculated the average

gains over all subjects [16,23–25].

Similar to Sing et al. [16], the characterization of position and velocity contributions in the

force output produce excellent fits (R2 values ranging from 0.91 to 0.99, see Fig 2). As in this

prior study, the inclusion of an acceleration term resulted in highly significant but relatively

small improvements in the representation of these force profiles; in the majority of cases for

the different types of perturbations (vFF, pFF, ucFF, and pcFF; early and late) the acceleration

signal’s contribution was significant (P< 0.001 in all cases except early pFF training, P = 0.38),

but the overall force profile variance accounted for only improved by at most 3%. We therefore

elected to focus only on the contributions of the position and velocity state variables.

We operationally defined early and late/asymptotic adaptation as the first 15 (1–15) and last

10 (150–160) trials of training. Thus, the mean and standard error values for these periods are

plotted as a function of the mean trial number within these windows for the adaptation period

(Figs 2, 3 and 5). The data during the decay periods were normalized by dividing all the subject

data by the mean (across subjects) of the first decay trial. Due to the increased frequency of EC

trials during the decay period, we used a smaller window to assess early and late levels (trials

11–20 and 50–60 respectively). Here we excluded the first 10 trials in the analysis for the early

epoch in order to remove the effect of normalization of adaptation gains (Fig 5G and 5H). We

initially tested the main effect of group condition on the different epochs of interest with a

repeated measures ANOVA and subsequently determined the epoch in which these conditions

were significantly different with post-hoc analysis. For example, two-tailed t-tests were per-

formed between different force-field groups to compare the behavior within each epoch. For

all tests the significance level was 0.05.

Exponential fits

In S1 Fig, S2 Fig and S8 Fig we applied a standard exponential model with rate and offset

parameters to determine the time constants of learning and decay for the different types of
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perturbations (vFF, pFF, ucFF and pcFF) and learning components (goal-aligned and goal

misaligned, velocity- and position-based). We computed the standard deviation of the best-fit

parameter values for these model fits by bootstrapping the fits to the data. We made 500 differ-

ent bootstrap estimates of the fit parameters, each by averaging data from 14 randomly gener-

ated choices made from the 14 subject data pool with replacement. We fit the model to each of

these bootstrap estimates and determined the standard deviation of each parameter.

Symmetric and asymmetric viscoelastic primitive model

The viscoelastic primitive model first proposed by Sing et al. [16] consists of N motor primi-

tives, Si = [Ki Bi]
T = Rn×2, which collectively generate the motor output. The primitives are

jointly distributed as

½Ki Bi � � N ðm;SÞ;

m ¼ ½ 0 0 �;

S ¼
s2

K rsKsB

rsKsB s2
B

" #

In this model these primitives have a similar dependency on position and velocity via σK = σB.

Moreover, the correlation between the primitives is determined by ρ.

The motor output on each trial is determined by a weighted combination of motor primi-

tives. Each primitive receives input from the changes in position and velocity during the move-

ment and creates a force output:

FSi
¼

Ki

Bi

" #T
P

V

" #

Given that the vector [P V]T is shared between all primitives, we can factor out this vector and

simplify the calculation. The final force is a weighted linear combination of the primitive

forces:
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In this equation the W 2 Rn×1 is a weight vector that drives the learning in the model. The

output vector [Koutput Boutput]
T represents the gain in position-velocity (p-v) primitive gain-

space, which we refer to as y, or the current motor adaptation state. The goal of adaptation can

be defined as a vector y
�

2 R2×1. On each trial of adaptation we can project the error vector

between the goal and the motor output and use a gradient descent rule to compute the weight
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change for each primitive Si as

dwn
i ¼ ZSiðy

� � yn� 1Þ

The weight change can be used to create a new gain state in the p-v primitive gain-space yn+1

ynþ1 ¼
aK 0

0 aB

" #

yn þ ST dW

For the symmetric model, the retention value for αK and αB are the same. When we applied

this model to the vFF and pFF behavioral data (Fig 3) we estimated these parameters to be:

αK = αB = 0.951, σK = σB = 0.401, η = 1.5 x 10−4, ρ = 0.51. As with the exponential fits, we made

500 different bootstrap estimates of the fit parameters, each by averaging data from 14 ran-

domly generated choices made from the 14 subject data pool with replacement.

For the asymmetric model, the retention values were not constrained and can result in an

asymmetry in either direction. When we applied this model to the vFF and pFF behavioral data

we estimated these parameters to be: αK = 0.942, αB = 0.951, σK = 0.464, σB = 0.379, η = 1.5 x 10−4,

ρ = 0.47. Note that the retention is biased towards velocity primitives, αK< αB. In addition, when

asymmetric model is applied simultaneously to the ucFF and pcFF behavioral data these parame-

ters were estimated to be: αK = 0.914, αB = 0.958, σK = 0.546, σB = 0.565, η = 1.5 x 10−4, ρ = 0.48.

Supporting information

S1 Fig. Exponential fits to vFF and pFF adaptation and decay. (A) A standard exponential

model with rate and offset parameters was fit to the trial-by-trial increase in the adaptation

coefficient during vFF and pFF training (data presented in Fig 2A). A time constant of

7.2 ± 0.8 was determined for pFF training, and a time constant of 12.3 ± 5.5 trials was esti-

mated for vFF training (mean ± the standard deviation from bootstrapping. See Materials and

Methods). (B) The exponential model was fit to the decay of the adaptation coefficient follow-

ing vFF and pFF training. The time constant for decay following pFF training was 11.0 ± 2.2

trials and a constant of 7.1 ± 1.0 trials was determined for vFF training.

(EPS)

S2 Fig. Exponential fits to motion-based components of vFF and pFF adaptation decay.

(A) A standard exponential model with rate and offset parameters was fit to the decay of the

goal-aligned component for vFF and pFF training (data presented in Fig 3C and 3D). A time

constant of 10.4 ± 2.2 trials was estimated for pFF training and a constant of 7.9 ± 0.9 trials was

determined for vFF training. As in S1 Fig, values represent the mean ± the standard deviation

from bootstrapping. (B) The exponential fit was not a correct representation of the decay of

the goal misaligned component. Instead we compared the amount of this component early

(trials 10–20) and late (trials 50–60) in the decay period (Early: pFF = 0.08 ± 0.02 vs vFF =

-0.02 ± 0.02. Late: pFF = 0.03 ± 0.02 vs vFF = 0.002 ± 0.01). The amount of the goal-misaligned

component at the end of the decay period was not significantly different than at the beginning,

but the amount of this component was significantly different between perturbation types

(2-way ANOVA, P = 0.12 for the main effect of decay period, P< 0.01 for the main effect of

perturbation type). There was a significant difference in the amount of the goal-misaligned

component between vFF and pFF training both early and late in the decay period (P< 0.05,

Bonferroni correction). Thus, there is a significantly larger contribution of the velocity compo-

nent during the decay of pFF adaptation that decreases at a much slower rate compared to the

position contribution to the decay of vFF adaptation.

(EPS)
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S3 Fig. Simulation of decay for vFF and pFF training for the symmetric and asymmetric

viscoelastic primitive models. (A) Decay of adaptation for both pFF and vFF training

depicted in the primitive gain-space. The abscissa represents the goal-aligned component of

learning and the ordinate represents the goal-misaligned component. The gain-space trajecto-

ries are rotated such that the learning goal for both types of training are the same in gain-

space. For example, the abscissa represents the velocity gain for vFF training and the position

gain for pFF learning. The decay for vFF training (red trace) is closer to the goal-aligned axis

when compared to pFF training (blue trace). Prediction of the decay gain-space trajectories for

pFF and vFF training for the (B) symmetric and (C) asymmetric primitive viscoelastic models.

In both cases the model parameters are based on fits to the vFF and pFF behavioral data (Fig

3). The panels are the same representation as in panel A. Although small, the asymmetric mod-

el’s prediction of the trajectory separation for the decay of vFF and pFF training are in agree-

ment with behavioral results in panel A.

(EPS)

S4 Fig. Simulation of the asymmetric viscoelastic primitive model based on separated data

sets. Simulations of the learning and decay for adaptation to ucFF and pcFF perturbations

when the asymmetric model was separately fit to the (A) pFF (αK = 0.951, αB = 0.971, σK = σB =

0.40, η = 1.5 x 10−4, ρ = 0.45) and (B) vFF data (αK = 0.885, αB = 0.936, σK = σB = 0.4, η = 1.5 x

10−4, ρ = 0.52). In these fits the primitive variances were constrained to be equal to each other

in order to limit the number of free parameters estimated from the reduced data set. However,

the retention values were not constrained and could result in an asymmetry in either direction.

Adaptation is represented by the colored traces, and the black traces represent decay. The sec-

ond row in each panel shows the normalized decay of position- and velocity-dependent gains

for the respective perturbation. In all cases the decay of the velocity-based learning is slower

than position-based; the normalized trajectory is above the unity line demonstrating that

velocity-based learning is decaying slower than position-based.

(EPS)

S5 Fig. The influence of the covariance matrix on simulated learning trajectories. The sim-

ulation of the asymmetric model for the learning (colored traces) and decay trajectories (black

traces) in primitive gain space for different correlations between position and velocity primi-

tives: symmetric distributions (A) (αK = αB = 0.98, σK = σB = 0.5, η = 1.5 x 10−4, ρ = 0.8), distri-

butions skewed towards the position axis (B) (αK = αB = 0.98, σK = 0.5, σB = 0.4, η = 1.53 x

10−4, ρ = 0.52) and distributions skewed towards the velocity axis (C) (αK = αB = 0.98, σK = 0.4,

σB = 0.5, η = 1.5 x 10−4, ρ = 0.8). In each case, the retention rates for velocity- and position-

based learning, and the correlation are the same (αK = αB = 0.99, ρ = 0.8). The simulations

show that the change in the covariance matrix and subsequently biasing the distribution only

changes how the learning trajectories evolve, not the decay trajectories; for all simulations the

decay trajectories follow a straight line back to the origin due to the symmetry of the decay

rates.

(EPS)

S6 Fig. The influence of the retention rates on simulated learning decay trajectories. The

simulation of the asymmetric model for the learning (colored traces) and decay trajectories

(black traces) in primitive gain space for different retention rates for position- and velocity-

based learning: symmetric rates (A) (αK = αB = 0.96, σK = σB = 0.5, η = 1.5 x 10−4, ρ = 0.8),

asymmetric, with the velocity-based retention higher than the position-based (B) (αK = 0.96,

αB = 0.97, σK = σB = 0.5, η = 1.53 x 10−4, ρ = 0.8) and asymmetric, with the position-based

retention higher than the velocity-based (C) (αK = 0.97, αB = 0.96, σK = σB = 0.5, η = 1.53 x
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10−4, ρ = 0.8). These simulations show that any asymmetry in the ratio of the retention rates

mainly affects the shape of the decay trajectory (black traces, curving towards the axis with

greater retention), with little difference in the learning trajectories (colored traces).

(EPS)

S7 Fig. Simulation of the asymmetric viscoelastic primitive model for adaptation to a

velocity biased force-field perturbation. (A) Adaptation (orange trace) and decay (black

trace) to a velocity biased force-field (vcFF, a greater velocity and smaller position depen-

dence). This learning goal is represented by the point [0.53, 0.85] in gain space. The parameter

values are the same as those used in the simulations presented in Fig 4 (αK = 0.9532, αB =

0.9602, σK = 0.3758, σB = 0.3280, η = 1.5 x 10−4, ρ = 0.50). (B) Normalized decay of position-

and velocity-dependent gains for vcFF training. Similar to the simulations for ucFF and pcFF

adaptation, the position-based learning for the vcFF perturbation decays faster than velocity.

(EPS)

S8 Fig. Exponential fits to position and velocity-based learning for ucFF and pcFF adapta-

tion decay. (A) A standard exponential model with rate and offset parameters fit to the decay

of the velocity- and position-based learning for ucFF training (data presented in Fig 5C). A

time constant of 9.4 ± 1.8 was estimated for position-based adaptation and 12.1 ± 2.0 trials for

velocity-based learning. (B) The exponential model was fit to the decay of the velocity- and

position-based learning for pcFF training (data presented in Fig 5D). A time constant of

5.7 ± 0.6 was determined for position-based learning and 9.3 ± 0.9 trials for velocity-based

adaptation. As in S1 Fig and S2 Fig, values represent the mean ± the standard deviation from

bootstrapping.

(EPS)
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